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Surfaces arise naturally in many different forms, in branches of mathematics 
ranging from complex analysis to dynamical systems. The Classification Theorem, 
known since the 1860's, asserts that all closed surfaces, despite their diverse origins 
and seemingly diverse forms, are topologically equivalent to spheres with some 
number of handles or crosscaps. The proofs found in most modern textbooks 
follow that of Seifert and Threlfall [5]. Seifert and Threlfall's proof, while satisfy- 
ingly constructive, requires that a given surface be brought into a somewhat 
artificial standard form. Here we present a completely new proof, discovered by 
John H. Conway in about 1992, which retains the constructive nature of [5] while 
eliminating the irrelevancies of the standard form. Conway calls it his Zero 
Irrelevancy Proof, or "ZIP proof," and asks that it always be called by this name, 
remarking that "otherwise there's a real danger that its origin would be lost, since 
everyone who hears it immediately regards it as the obvious proof." We trust that 
Conway's ingenious proof will replace the customary textbook repetition of 
Seifert-Threlfall in favor of a lighter, fat-free nouvelle cuisine approach that retains 
all the classical flavor of elementary topology. 

We work in the realm of topology, where surfaces may be freely stretched and 
deformed. For example, a sphere and an ellipsoid are topologically equivalent, 
because one may be smoothly deformed into the other. But a sphere and a 
doughnut surface are topologically different, because no such deformation is 
possible. All of our figures depict deformations of surfaces. For example, the 
square with two holes in Figure 1A is topologically equivalent to the square with 
two tubes (1B), because one may be deformed to the other. More generally, two 
surfaces are considered equivalent, or homeomorphic, if and only if one may be 

Figure 1. Handle Figure 2. Crosshandle 
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mapped onto the other in a continuous, one-to-one fashion. That is, it's the final 
equivalence that counts, whether or not it was obtained via a deformation. 

Let us introduce the primitive topological features in terms of zippers or 
"zip-pairs," a zip being half a zipper. Figure 1A shows a surface with two boundary 
circles, each with a zip. Zip the zips, and the surface acquires a handle (1D). If we 
reverse the direction of one of the zips (2A), then one of the tubes must "pass 
through itself" (2B) to get the zip orientations to match. Figure 2B shows the 
self-intersecting tube with a vertical slice temporarily removed, so the reader may 
see its structure more easily. Zipping the zips (2C) yields a cross handle (2D). This 
picture of a crosshandle contains a line of self-intersection. The self-intersection is 
an interesting feature of the surface's placement in 3-dimensional space, but has 
no effect on the intrinsic topology of the surface itself. 

If the zips occupy two halves of a single boundary circle (Figure 3A), and their 
orientations are consistent, then we get a cap (3C), which is topologically 
trivial (3D) and won't be considered further. If the zip orientations are inconsis- 
tent (4A), the result is more interesting. We deform the surface so that correspond- 
ing points on the two zips lie opposite one another (4B), and begin zipping. At first 

Figure 3. Cap Figure 4. Crosscap 

the zipper head moves uneventfully upward (4C), but upon reaching the top it 
starts downward, zipping together the "other two sheets" and creating a line of 
self-intersection. As before, the self-intersection is merely an artifact of the 
model, and has no effect on the intrinsic topology of the surface. The result is a 
crosscap (4D), shown here with a cut-away view to make the self-intersections 
clearer. 

The preceding constructions should make the concept of a surface clear to 
non-specialists. Specialists may note that our surfaces are compact, and may have 
boundary. 

Comment. A surface is not assumed to be connected. 

Comment. Figure 5 shows an example of a triangulated surface. All surfaces may 
be triangulated, but the proof [4] is difficult. Instead we may consider the 
Classification Theorem to be a statement about surfaces that have already been 
triangulated. 
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Figure 5. Install a zip-pair along each edge of the triangulation, unzip them all, and then re-zip them 
one at a time. 

Definition. A perforation is what's left when you remove an open disk from a 
surface. For example, Figure IA shows a portion of a surface with two perfora- 
tions. 

Definition. A surface is ordinary if it is homeomorphic to a finite collection of 
spheres, each with a finite number of handles, crosshandles, crosscaps, and 
perforations. 

Classification Theorem (preliminary version). Every surface is ordinary. 

Proof Begin with an arbitrary triangulated surface. Imagine it as a patchwork 
quilt, only instead of imagining traditional square patches of material held together 
with stitching, imagine triangular patches held together with zip-pairs (Figure 5). 
Unzip all the zip-pairs, and the surface falls into a collection of triangles with zips 
along their edges. This collection of triangles is an ordinary surface, because each 
triangle is homeomorphic to a sphere with a single perforation. Now re-zip one zip 
to its original mate. It's not hard to show that the resulting surface must again be 
ordinary, but for clarity we postpone the details to Lemma 1. Continue re-zipping 
the zips to their original mates,, one pair at a time, noting that at each step 
Lemma 1 ensures that the surface remains ordinary. When the last zip-pair is 
zipped, the original surface is restored, and is seen to be ordinary. a 

Lemma 1. Consider a surface with two zips attached to portions of its boundary. If the 
surface is ordinary before the zips are zipped together, it is ordinary afterwards as well. 

Proof First consider the case that each of the two zips completely occupies a 
boundary circle. If the two boundary circles lie on the same connected component 
of the surface, then the surface may be deformed so that the boundary circles are 
adjacent to one another, and zipping them together converts them into either a 
handle (Figure 1) or a crosshandle (Figure 2), according to their relative orienta- 
tion. If the two boundary circles lie on different connected components, then 
zipping them together joins the two components into one. 
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Next consider the case that the two zips share a single boundary circle, which 
they occupy completely. Zipping them together creates either a cap (Figure 3) or a 
crosscap (Figure 4), according to their relative orientation. 

Finally, consider the various cases in which the zips needn't completely occupy 
their boundary circle(s), but may leave gaps. For example, zipping together the zips 
in Figure 6A converts two perforations into a handle with a perforation on 
top (6B). The perforation may then be slid free of the handle (6C, 6D). Returning 
to the general case of two zips that needn't completely occupy their boundary 

Figure 6. These zips only partially occupy the boundary circles, so zipping them yields a handle with a 
puncture. 

circle(s), imagine that those two zips retain their normal size, while all other zips 
shrink to a size so small that we can't see them with our eyeglasses off. This 
reduces us (with our eyeglasses still off!) to the case of two zips that do completely 
occupy their boundary circle(s), so we zip them and obtain a handle, crosshandle, 
cap, or crosscap, as illustrated in Figures 1-4. When we put our eyeglasses back 
on, we notice that the surface has small perforations as well, which we now restore 
to their original size. e 

The following two lemmas express the relationships among handles, crosshan- 
dles, and crosscaps. 

Lemma 2. A crosshandle is homeomorphic to two crosscaps. 

Proof: Consider a surface with a "Klein perforation" (Figure 7A). If the parallel 
zips (shown with black arrows in 7A) are zipped first, the perforation splits in 
two (7B). Zipping the remaining zips yields a crosshandle (7C). 

If, on the other hand, the antiparallel zips (shown with white arrows in 
Figure 7A) are zipped first, we get a perforation with a "M6bius bridge" (7D). 
Raising its boundary to a constant height, while letting the surface droop below it, 
yields the bottom half of a crosscap (7E). Temporarily fill in the top half of the 
crosscap with an "invisible disk" (7F), slide the disk free of the crosscap's line of 
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Figure 7. A crosshandle is homeomorphic to two crosscaps. 

self-intersection (7G), and then remove the temporary disk. Slide the perforation 
off the crosscap (7H) and zip the remaining zip-pair (shown with black arrows) to 
create a second crosscap (71). 

The intrinsic topology of the surface does not depend on which zip-pair is 
zipped first, so we conclude that the crosshandle (7C) is homeomorphic to two 
crosscaps (71). i 

Lemma 3 (Dyck's Theorem [1]). Handles and crosshandles are equivalent in the 
presence of a crosscap. 

Proof: Consider a pair of perforations with zips installed as in Figure 8A. If, on the 
one hand, the black arrows are zipped first (8B), we get a handle along with 
instructions for a crosscap. If, on the other hand, one tube crosses through itself 
(8C, recall also Figure 2B) and the white arrows are zipped first, we get a 
crosshandle with instructions for a crosscap (8D). In both cases, of course, the 
crosscap may be slid free of the handle or crosshandle, just as the perforation was 
slid free of the handle in Figure 6BCD. Thus a handle-with-crosscap is homeomor- 
phic to a crosshandle-with-crosscap. a 

Classification Theorem. Every connected closed surface is homeomorphic to either a 
sphere with crosscaps or a sphere with handles. 

Proof: By the preliminary version of the Classification Theorem, a connected 
closed surface is homeomorphic to a sphere with handles, crosshandles, and 
crosscaps. 

Case 1: At least one crosshandle or crosscap is present. Each crosshandle is 
homeomorphic to two crosscaps (Lemma 2), so the surface as a whole is homeo- 
morphic to a sphere with crosscaps and handles only. At least one crosscap 
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Figure 8. The presence of a crosscap makes a handle cross. 

is present, so each handle is equivalent to a crosshandle (Lemma 3), which is in 
turn homeomorphic to two crosscaps (Lemma 2), resulting in a sphere with 
crosscaps only. 

Case 2: No crosshandle or crosscap is present. The surface is homeomorphic to 
a sphere with handles only. 

We have shown that every connected closed surface is homeomorphic to either 
a sphere with crosscaps or a sphere with handles. a 

Comment. The surfaces named in the Classification Theorem are all topologically 
distinct, and may be recognized by their orientability and Euler number. A sphere 
with n handles is orientable with Euler number 2 - 2n, while a sphere with n 
crosscaps is nonorientable with Euler number 2 - n. Most topology books provide 
details; elementary introductions appear in [6] and [2]. 

Nomenclature. A sphere with one handle is a torus, a sphere with two handles is a 
double torus, with three handles a triple torus, and so on. A sphere with one 
crosscap has traditionally been called a real projective plane. That name is 
appropriate in the study of projective geometry, when an affine structure is 
present, but is inappropriate for a purely topological object. Instead, Conway 
proposes that a sphere with one crosscap be called a cross surface. The name cross 
surface evokes not only the crosscap, but also the surface's elegant alternative 
construction as a sphere with antipodal points identified. A sphere with two 
crosscaps then becomes a double cross surface, with three crosscaps a triple cross 
surface, and so on. As special cases, the double cross surface is often called a Klein 
bottle, and the triple cross surface is often called Dyck's surface [3]. 
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A Problem From the MONTHLY 100 Years Ago 
114. Proposed by F. P. MATZ, M.Sc., Ph.D., Professor of Mathe- 
matics and Astronomy, Irving College, Mechanicsburg, Pa. 

Does it pay a $4-carpenter using a dozen four-penny nails per 
minute, to pick up a dropped nail? At this rate, should twenty 
penny nails be picked up? 

MONTHLY 6 (1899) 237 

Editors note: In the printed solution to the problem (by the 
MONTHLY'S editor, Benjamin Finkel) one discovers that the carpen- 
ter was paid $4 per day and that four-penny nails cost 5 cents per 
pound. 
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