
MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 4

More modular arithmetic

Last time, for any given positive integer n, we introduced the set Zn, which is obtained from
Z by identifying integers which differ by a multiple of n. We defined a group operation on
Zn called “`” which is inherited from addition in Z. In this lecture we continue studying
further algebraic properties and structures on Zn.

Another natural operation to consider on Zn is multiplication: writing a pmod nq for the
equivalence class of a P Z, we define the product of a pmod nq and b pmod nq to be ab
pmod nq. Alternatively, if we write ras for the equivalence class of a P Z, our definition is:

rasrbs “ rabs

This is well-defined: if ra1s “ ras and rb1s “ rbs, then a1 ´ a “ nk and b1 ´ b “ nl for some
k, l P Z, so a1b1 ´ ab “ a1pb1 ´ bq ` bpa1 ´ aq “ npla1 ` kbq, and therefore ra1b1s “ rabs.

§ The operations of addition and multiplication on Zn satisfy the properties:

(Associativity for `) a ` pb ` cq ” pa ` bq ` c pmod nq

(Associativity for ˆ) apbcq ” pabqc pmod nq

(Identity for `) a ` 0 ” 0 ` a ” a pmod nq

(Identity for ˆ) 1 ¨ a ” a ¨ 1 ” a pmod nq

(Inverses for `) a ` p´aq ” p´aq ` a ” 0 pmod nq

(Distributivity) apb ` cq ” ab ` ac pmod nq

(Commutativity for `) a ` b ” b ` a pmod nq

(Commutativity for ˆ) ab ” ba pmod nq

In short, all the formal properties you are familiar with in Z hold in Zn. A structure with two
operations (“addition” and “multiplication”) satisfying all of the above formal properties is
called a (commutative) ring . However we will hold off on studying general rings.

Included in the above list are the axioms for pZn,`q to be an abelian group. However, except
in the degenerate case n “ 1 for which 0 ” 1 pmod 1q, the set Zn with multiplication does not
form a group. This is because 0 P Zn does not have a multiplicative inverse. The problem is
not just 0, however. For example, in Z4 “ t0,1,2,3u we have:

2 ¨ 0 ” 0 pmod 4q, 2 ¨ 1 ” 2 pmod 4q, 2 ¨ 2 ” 0 pmod 4q, 2 ¨ 3 ” 2 pmod 4q

Thus there is no element of Z4 which is a multiplicative inverse for 2; such an element x P Z4

would have to have 2 ¨ x ” 1 pmod 4q. After reviewing some basic properties of the integers
we will show how to “correct” this problem, by eliminating certain elements from Zn so that
it becomes a group with multiplication.
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The group Zˆ
n

An integer d is a divisor of an integer a if a “ dk for some k P Z. A positive integer d is a
greatest common divisor of a and b, written d “ gcdpa, bq, if it is a divisor of a and b, and
for any integer d1 dividing both a and b, we have that d1 divides d. A good exercise is to
check that there is a unique greatest common divisor for any a, b P Z. As an example, we
have gcdp9,24q “ 3. The key property we are after is:

§ Let a, b P Z be non-zero integers. Then there exist integers r, s P Z such that

gcdpa, bq “ ar ` bs

As an illustration, we can see directly that this is true for a “ 9, b “ 24:

9p3q ` 24p´1q “ 3

so upon choosing r “ 3, s “ ´1 we have the desired relation.

To prove the statement in general, we proceed by considering the subset of Z defined by

S “ tam ` bn ∶ m,n P Z, am ` bn ą 0u

As a, b are non-zero, the set S is non-empty. For example, with m “ a and n “ b we have
am ` bn “ a2 ` b2 ą 0, so a2 ` b2 is in S. Let d be the smallest element in S. Then
d “ ar ` bs for some r, s P Z. The claim is that d “ gcdpa, bq. To prove this we use division
with remainder for integers, applied to a divided by d: that is, we can write

a “ dq ` r1

where q, r1 P Z and 0 ď r1 ă d (the remainder). We can then write

r1 “ a ´ dq “ a ´ par ` bsqq “ ap1 ´ rqq ´ bpsqq

If r1 ą 0 then r1 P S and is less than d, a contradiction to our minimality assumption on d.
Thus r1 “ 0, and a “ dq, so d divides a. A similar argument shows d divides b. Thus d divides
both a and b. Finally, we must show that if d1 divides both a and b then it divides d. If d1 di-
vides a then a “ d1k and if d1 divides b then b “ d1l. So d “ ar`bs “ d1kr`d1ls “ d1pkr` lsq,
and thus d1 divides d. Therefore d “ gcdpa, bq. This completes the proof.

§ In Zn, a pmod nq has a multiplicative inverse if and only if gcdpa,nq “ 1.

To see this, first suppose a pmod nq has a multiplicative inverse, i.e. there is some integer b
such that ab ” 1 pmod nq, or equivalently ab´ 1 “ nk for some integer k. Thus ab´nk “ 1.
If d divides a and n, it divides ab ´ nk “ 1, so d divides 1. Thus gcdpa,nq “ 1. Conversely,
suppose gcdpa,nq “ 1. There exists r, s P Z such that gcdpa,nq “ ar`ns. Then ar´1 “ ´ns,
so ar ” 1 pmod nq. Thus r pmod nq is a multiplicative inverse for a pmod nq.
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If gcdpa, bq “ 1 then a, b are said to be relatively prime. This motivates the following
definition: we let Zˆ

n denote the subset of Zn consisting of elements relatively prime to n:

Zˆ
n “ t a pmod nq ∶ gcdpa,nq “ 1 u

§ Zˆ
n equipped with the operation of multiplication defines an abelian group.

Let us look at some examples. First, consider the integers mod 4, i.e. Z4. Then we have

Zˆ
4 “ t1,3u Ă Z4 “ t0,1,2,3u

As is often done, we have just written “1” etc. for the equivalence class “1 pmod 4q” which
we also previously wrote as “r1s”. In conclusion, Zˆ

4 is a finite abelian group of order 2.

Next, consider Z10, the integers modulo 10. In this case we find:

Zˆ
10 “ t1,3,7,9u Ă Z10 “ t0,1,2,3,4,5,6,7,8,9u

Thus Zˆ
10 is a finite abelian group of order 4. For example, 3 ¨ 7 ” 21 ” 1 pmod 10q, so the

inverse of 3 pmod 10q is 7 pmod 10q, and conversely. Here is the Cayley table for pZˆ
10,ˆq:

1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

When n is a prime number p, then Zˆ
p “ t1, . . . , p ´ 1u. For example, Zˆ

7 “ t1,2,3,4,5,6u.

§ Suppose gcdpa,nq “ 1 and b any integer. Then the equation in Zn given by

ax ” b pmod nq

can always be solved for x, and the solution x is unique as an element of Zn.

To see that this statement is true, we use the fact that a pmod nq has an inverse in Zˆ
n and

multiply both sides of the equation by this inverse.

For example, consider the equation 7x ” 6 pmod 10q in Z10. Then multiply both sides by
3 pmod 10q to get x ” 18 ” 8 pmod 10q. On the other hand, we saw earlier that 2x ” 1
pmod 4q has no solutions, but in this case gcdp2,4q “ 2 ‰ 1.
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Euclidean Algorithm

Above we have seen that a pmod nq is invertible in Zn if and only if gcdpa,nq “ 1. In prac-
tice, how can we find the inverse? We use the Euclidean algorithm.

The algorithm takes two integers a, b and computes gcdpa, bq. By recording each step of the
algorithm one has the information to find r, s P Z such that

ar ` bs “ gcdpa, bq.

In the case that b “ n and gcdpa,nq “ 1, the inverse of a pmod nq is given by r pmod nq.

The algorithm is as follows. Assume a ą b ą 0. Set r1 “ a, r2 “ b. Divide a by b to obtain

r1 “ r2q1 ` r3

where 0 ď r3 ă r2 is the remainder. Continue in this fashion to obtain a sequence of non-
negative integers r1, r2, r3, . . .: if one has computed up to rk, then divide rk´1 by rk to obtain

rk´1 “ rkqk´1 ` rk`1

where 0 ď rk`1 ă rk is the remainder. As each rk is non-negative and smaller than the pre-
vious entry rk´1, this process must eventually stop. The last non-zero rk obtained is gcdpa, bq!

Let us do a simple example: a “ 17, b “ 11. We compute:

17 “ 11 ¨ 1 ` 6 6“ 17 ´ 11

11 “ 6 ¨ 1 ` 5 5“ 11 ´ 6

6 “ 5 ¨ 1 ` 1 1“ 6 ´ 5

The left column shows the algorithm as described; it terminates at “1” which is gcdp17,11q.
But we can say more! In the right column we have rearranged each equation to solve for the
remainder. Now starting from “1” (the gcd) we continually substitute the expressions in the
right column to obtain an end result in terms of the original a “ 17 and b “ 11:

gcdp17,11q “ 1 “ 6 ´ 5

“ p17 ´ 11q ´ p11 ´ 6q

“ 17 ´ 2p11q ` 6

“ 17 ´ 2p11q ` p17 ´ 11q

“ 2p17q ´ 3p11q

In particular, we see that ´3p11q ” 1 pmod 17q, and so ´3 pmod 17q, which is the same as
14 pmod 17q, is the inverse of 11 pmod 17q.
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