MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 4

More modular arithmetic

Last time, for any given positive integer n, we introduced the set Z,,, which is obtained from
Z by identifying integers which differ by a multiple of n. We defined a group operation on
Zy, called “+” which is inherited from addition in Z. In this lecture we continue studying
further algebraic properties and structures on Z,.

Another natural operation to consider on Z, is multiplication: writing @ (mod n) for the
equivalence class of a € Z, we define the product of a (mod n) and b (mod n) to be ab
(mod n). Alternatively, if we write [a] for the equivalence class of a € Z, our definition is:

[a][b] = [ab]

This is well-defined: if [¢’] = [a] and [¥'] = [b], then o’ — a = nk and ¥ — b = nl for some
k,leZ,so a'll —ab=a' (b —b) + b(a' —a) = n(la’ + kb), and therefore [a'V'] = [ab].

The operations of addition and multiplication on Z, satisfy the properties:

(Associativity for +
(Associativity for x
(Identity for +

(Inverses for +

(Distributivity

Commutativity for +
y

a+ (b+c¢)=(a+b)+c (modn)
a(bc) = (ab)e (mod n)
a+0=0+a=a (modn)
l-a=a-1=a (mod n)

a+ (—a)=(—a) +a=0 (mod n)
a(b+c) = ab+ ac (mod n)
a+b=b+a (modn)

)
)
)
(Identity for x)
)
)
)
)

(Commutativity for x) | ab=ba (mod n)

In short, all the formal properties you are familiar with in Z hold in Z,,. A structure with two
operations (“addition” and “multiplication”) satisfying all of the above formal properties is
called a (commutative) ring. However we will hold off on studying general rings.

Included in the above list are the axioms for (Z,,, +) to be an abelian group. However, except
in the degenerate case n = 1 for which 0 =1 (mod 1), the set Z,, with multiplication does not
form a group. This is because 0 € Z,, does not have a multiplicative inverse. The problem is
not just 0, however. For example, in Z, = {0, 1,2,3} we have:
2.0=0 (mod4), 2-1=2 (mod4), 2:-2=0 (mod4), 2-3=2 (mod4)

Thus there is no element of Z, which is a multiplicative inverse for 2; such an element x € Z,
would have to have 2-x =1 (mod 4). After reviewing some basic properties of the integers
we will show how to “correct” this problem, by eliminating certain elements from Z,, so that

it becomes a group with multiplication.
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The group Z}

An integer d is a divisor of an integer a if a = dk for some k € Z. A positive integer d is a
greatest common divisor of a and b, written d = ged(a,b), if it is a divisor of a and b, and
for any integer d’ dividing both a and b, we have that d’ divides d. A good exercise is to
check that there is a unique greatest common divisor for any a,b € Z. As an example, we
have ged(9,24) = 3. The key property we are after is:

Let a,b € Z be non-zero integers. Then there exist integers r,s € Z such that
ged(a,b) = ar + bs
As an illustration, we can see directly that this is true for a = 9,b = 24:
9(3) +24(—1) =3
so upon choosing r = 3, s = —1 we have the desired relation.

To prove the statement in general, we proceed by considering the subset of Z defined by
S={am+bn: m,neZ, am+bn> 0}

As a, b are non-zero, the set S is non-empty. For example, with m = a and n = b we have
am +bn = a®>+b> > 0, so a®> +b? is in S. Let d be the smallest element in S. Then
d = ar + bs for some r,s € Z. The claim is that d = gcd(a,b). To prove this we use division
with remainder for integers, applied to a divided by d: that is, we can write

a=dqg+7r
where ¢,r" € Z and 0 <1’ < d (the remainder). We can then write
r'=a—dg=a— (ar+0bs)qg=a(l—rq)—b(sq)

If " > 0 then " € S and is less than d, a contradiction to our minimality assumption on d.
Thus " = 0, and a = dq, so d divides a. A similar argument shows d divides b. Thus d divides
both a and b. Finally, we must show that if d’ divides both a and b then it divides d. If d’ di-
vides a then a = d’k and if d’ divides b then b = d'l. Sod = ar+bs = d'kr +d'ls = d'(kr +1s),
and thus d’ divides d. Therefore d = ged(a,b). This completes the proof.

In Z,, a (mod n) has a multiplicative inverse if and only if gcd(a,n) = 1.

To see this, first suppose a (mod n) has a multiplicative inverse, i.e. there is some integer b
such that ab =1 (mod n), or equivalently ab— 1 = nk for some integer k. Thus ab—nk = 1.
If d divides a and n, it divides ab— nk = 1, so d divides 1. Thus gcd(a,n) = 1. Conversely,
suppose ged(a,n) = 1. There exists r, s € Z such that ged(a,n) = ar+ns. Then ar—1 = —ns,
so ar =1 (mod n). Thus r (mod n) is a multiplicative inverse for a (mod n).
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If ged(a,b) = 1 then a,b are said to be relatively prime. This motivates the following
definition: we let Z denote the subset of Z, consisting of elements relatively prime to n:

Z:={a (modn): gecd(a,n)=1}
Z); equipped with the operation of multiplication defines an abelian group.
Let us look at some examples. First, consider the integers mod 4, i.e. Z,. Then we have

ZZ = {173} - Z4 = {0717273}

As is often done, we have just written “1” etc. for the equivalence class “1 (mod 4)” which
we also previously wrote as “[1]”. In conclusion, Z; is a finite abelian group of order 2.

Next, consider Zg, the integers modulo 10. In this case we find:
ZTO = {1’ 3’ 77 9} = Zlo = {07 1a 2a 37 47 57 67 77 8, 9}

Thus Zj, is a finite abelian group of order 4. For example, 3-7 =21 =1 (mod 10), so the
inverse of 3 (mod 10) is 7 (mod 10), and conversely. Here is the Cayley table for (Zj,, x):

© N W =

© J W = |
~N = O W W
w © — 3|3
— W J © |

When n is a prime number p, then Zx = {1,...,p— 1}. For example, Z; = {1,2,3,4,5,6}.
Suppose ged(a,n) =1 and b any integer. Then the equation in Z, given by
ar=>b (mod n)
can always be solved for x, and the solution z is unique as an element of Z,.

To see that this statement is true, we use the fact that a (mod n) has an inverse in Z and
multiply both sides of the equation by this inverse.

For example, consider the equation 7x = 6 (mod 10) in Z;g. Then multiply both sides by
3 (mod 10) to get x = 18 = 8 (mod 10). On the other hand, we saw earlier that 2z = 1
(mod 4) has no solutions, but in this case ged(2,4) = 2 # 1.
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Euclidean Algorithm

Above we have seen that a (mod n) is invertible in Z,, if and only if ged(a,n) = 1. In prac-
tice, how can we find the inverse? We use the Euclidean algorithm.

The algorithm takes two integers a,b and computes ged(a,b). By recording each step of the
algorithm one has the information to find r, s € Z such that

ar + bs = ged(a, b).
In the case that b = n and ged(a,n) = 1, the inverse of a (mod n) is given by r (mod n).
The algorithm is as follows. Assume a > b > 0. Set | = a, ro = b. Divide a by b to obtain
Ty =T2q1 + 73

where 0 < r3 < ry is the remainder. Continue in this fashion to obtain a sequence of non-
negative integers 1,79, 73, ...: if one has computed up to rg, then divide r;_; by 7 to obtain

Tk—1 = TrQr—1 + Tkt

where 0 < rp,q < 1 is the remainder. As each 7y is non-negative and smaller than the pre-
vious entry 741, this process must eventually stop. The last non-zero r obtained is ged(a, b)!

Let us do a simple example: a =17, b = 11. We compute:

17=11-1+6 6=17—-11
11=6-1+5 5=11-6
6=5-1+1 1=6-5

The left column shows the algorithm as described; it terminates at “1” which is ged(17,11).
But we can say more! In the right column we have rearranged each equation to solve for the
remainder. Now starting from “1” (the ged) we continually substitute the expressions in the
right column to obtain an end result in terms of the original a = 17 and b = 11:

ged(17,11) =1=6-5
— (17—11) — (11 —6)
—17-2(11) +6

—17-2(11) + (17— 11)
— 2(17) — 3(11)

In particular, we see that —3(11) =1 (mod 17), and so —3 (mod 17), which is the same as
14 (mod 17), is the inverse of 11 (mod 17).
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