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Basic properties of groups

In this lecture we discuss some basic properties of groups which follow directly from the
definition. To begin, a few words on notation. Up to now we have considered a typical
group pG,˝q with operation a ˝ b. It is convenient to omit “˝” from the notation and write

ab “ a ˝ b

Although this is a valid convention for any group, we will not always want to use it. For
example, for the group pZ,`q, writing “ab” for a ˝ b “ a ` b has the shortcoming of looking
like integer multiplication. But for an arbitrary abstract group it is very convenient.

The associativity property of a group tells us that pabqc “ apbcq. This continues on for more
complicated operations. For example, we have

ppabqcqd “ papbcqqd “ appbcqdq “ apbpcdqq “ pabqpcdq

Each equality uses one use of the associativity axiom. What associativity is really telling us
is that we can forget about those pesky parantheses: no matter where we put them, we get
the same answer. The above group element can just be written abcd.

For what follows we let G be any group, with the conventions above.

§ The identity element in G is unique.

Proof. Let e, e1 P G be two identity elements. Because e is an identity element, ee1 “ e.
Because e1 is an identity element, ee1 “ e1. Together we get e “ e1.

§ The inverse of any element in G is unique.

Proof. Let a P G be be any element. Let b and c be two inverses of a. (Let us avoid calling
either one a´1 for now.) Because b is an inverse of a we have ba “ e. Multiply both sides of
this equation on the right by c to get bac “ c. Because c is an inverse for a, we have ac “ e.
Thus bac “ c becomes be “ c, and finally b “ c.

§ For every a P G, we have pa´1q´1 “ a.

Proof. The element a satisfies aa´1 “ a´1a “ e and thus is an inverse of a´1. It then makes
sense to say a “ pa´1q´1 because inverses are unique.

§ For all a, b P G we have pabq´1 “ b´1a´1.

Proof. We only need check that b´1a´1 satisfies the property of being an inverse for ab. To
this end: pabqpb´1a´1q “ abb´1a´1 “ aea´1 “ aa´1 “ e. Similarly pb´1a´1qpabq “ e.
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This last property can be used any number of times to show the following relation:

pa1a2⋯an´1anq´1 “ a´1
n a´1

n´1⋯a´1
2 a´1

1

We introduce some more convenient notation. Suppose n is a positive integer. Then we
define the symbol an to mean the element aa⋯a “ a˝a˝⋯˝a formed by applying the group
operation to n copies of the element a. If n is negative, define an “ a´1

⋯a´1 for ´n copies
of a´1. If n “ 0, define a0 “ e, the identity element. The following is straightforward to verify:

§ For all a, b P G and n,m P Z we have the following properties:

anam “ an`m, panqm “ anm, pabqn “ pb´1a´1q´n

The above discussion shows that in an arbitrary group G, we have all the properties we are
used to with, say, matrix multiplication of invertible matrices. Furthermore:

§ If G is abelian, then for all a, b P G and n P Z we have pabqn “ anbn.

To see this, write pabqn “ abab⋯ab and use that ab “ ba, since G is abelian, to move the
terms past one another, yielding a⋯ab⋯ b “ anbn. However, for a general group which is not
necessarily abelian, just like for matrices, we do not always have pabqn “ anbn. To further
illustrate this point:

§ If a group G has pabq2 “ a2b2 for all a, b P G then G is abelian.

Proof. Suppose pabq2 “ a2b2 for all a, b P G, i.e. abab “ aabb. Multiply both sides of this
equation by a´1 on the left and b´1 on the right to obtain ba “ ab. Thus G is abelian.

In the argument just made, we used the following cancellation property, which again follows
by multiplying both sides of the equation on the left or right by the appropriate element:

§ Let a, b, c P G. If ab “ ac then b “ c. If ba “ ca then b “ c.

Let us illustrate how to solve equations in an abstract group. Suppose we are given

pxaxq2 “ abx2 x2a “ pxaq´1

where a, b P G are known and we would like to solve for x P G. We do this as follows:

pxaxq2 “ abx2

xaxxax “ abx2

xapx2aqx “ abx2

xapxaq´1x “ abx2

x “ abx2

e “ abx

x “ pabq´1 “ b´1a´1
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Subgroups

A subset H Ă G of a group G is called a subgroup if the set H with the group operation
restricted from G makes H a group. If we spell this out, we see that a subset H Ă G is a
subgroup if and only if the following properties hold:

1. The identity element e is in H.

2. For all a, b P H we have ab P H.

3. For all a P H we have a´1 P H.

You might like to verify that these properties imply H is a subgroup. The key point is
that given these properties, the axioms of a group for H are inherited from those of G. A
subgroup H Ă G is proper if H ‰ G. Another good exercise is to check:

§ The intersection of two subgroups H,K Ă G is again a subgroup.

Examples

1. The group pZ,`q is a subgroup of pQ,`q and pR,`q, and pQ,`q is a subgroup of pR,`q.

2. The group pQˆ,ˆq is a subgroup of pRˆ,ˆq. Note that pQˆ,ˆq is not a subgroup of
pQ,`q, even though Qˆ Ă Q, because the group operations are not the same.

3. Define SL2pRq to be the set of 2 ˆ 2 matrices with real entries and determinant 1:

SL2pRq “

"

A “

ˆ

a b
c d

˙

∶ a, b, c, d P R, detpAq “ ad ´ bc “ 1

*

This is called the special linear group of degree 2 over R. This is a subgroup of GL2pRq.

4. A non-trivial group G has at least two subgroups: G itself and teu Ă G.

5. Consider G “ te, r, b, g, y, ou of order 6 from Lecture 1. Then te, ru, te, bu, te, gu are
subgroups of order 2, while te, y, ou is a subgroup of order 3. Here are their Cayley tables:

e r

e e r

r r e

e b

e e b

b b e

e g

e e g

g g e

e y o

e e y o

y y o e

o o e y
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