

Basic properties of groups

In this lecture we discuss some basic properties of groups which follow directly from the definition. To begin, a few words on notation. Up to now we have considered a typical group (G, \circ) with operation $a \circ b$. It is convenient to omit “ \circ ” from the notation and write

$$ab = a \circ b$$

Although this is a valid convention for any group, we will not always want to use it. For example, for the group $(\mathbb{Z}, +)$, writing “ ab ” for $a \circ b = a + b$ has the shortcoming of looking like integer multiplication. But for an arbitrary abstract group it is very convenient.

The associativity property of a group tells us that $(ab)c = a(bc)$. This continues on for more complicated operations. For example, we have

$$((ab)c)d = (a(bc))d = a((bc)d) = a(b(cd)) = (ab)(cd)$$

Each equality uses one use of the associativity axiom. What associativity is really telling us is that we can forget about those pesky parentheses: no matter where we put them, we get the same answer. The above group element can just be written $abcd$.

For what follows we let G be any group, with the conventions above.

► The identity element in G is unique.

Proof. Let $e, e' \in G$ be two identity elements. Because e is an identity element, $ee' = e$. Because e' is an identity element, $ee' = e'$. Together we get $e = e'$. \square

► The inverse of any element in G is unique.

Proof. Let $a \in G$ be any element. Let b and c be two inverses of a . (Let us avoid calling either one a^{-1} for now.) Because b is an inverse of a we have $ba = e$. Multiply both sides of this equation on the right by c to get $bac = c$. Because c is an inverse for a , we have $ac = e$. Thus $bac = c$ becomes $be = c$, and finally $b = c$. \square

► For every $a \in G$, we have $(a^{-1})^{-1} = a$.

Proof. The element a satisfies $aa^{-1} = a^{-1}a = e$ and thus is an inverse of a^{-1} . It then makes sense to say $a = (a^{-1})^{-1}$ because inverses are unique. \square

► For all $a, b \in G$ we have $(ab)^{-1} = b^{-1}a^{-1}$.

Proof. We only need check that $b^{-1}a^{-1}$ satisfies the property of being an inverse for ab . To this end: $(ab)(b^{-1}a^{-1}) = abb^{-1}a^{-1} = aea^{-1} = aa^{-1} = e$. Similarly $(b^{-1}a^{-1})(ab) = e$. \square

This last property can be used any number of times to show the following relation:

$$(a_1 a_2 \cdots a_{n-1} a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_2^{-1} a_1^{-1}$$

We introduce some more convenient notation. Suppose n is a positive integer. Then we define the symbol a^n to mean the element $aa\cdots a = a \circ a \circ \cdots \circ a$ formed by applying the group operation to n copies of the element a . If n is negative, define $a^n = a^{-1} \cdots a^{-1}$ for $-n$ copies of a^{-1} . If $n = 0$, define $a^0 = e$, the identity element. The following is straightforward to verify:

- For all $a, b \in G$ and $n, m \in \mathbb{Z}$ we have the following properties:

$$a^n a^m = a^{n+m}, \quad (a^n)^m = a^{nm}, \quad (ab)^n = (b^{-1} a^{-1})^{-n}$$

The above discussion shows that in an arbitrary group G , we have all the properties we are used to with, say, matrix multiplication of invertible matrices. Furthermore:

- If G is abelian, then for all $a, b \in G$ and $n \in \mathbb{Z}$ we have $(ab)^n = a^n b^n$.

To see this, write $(ab)^n = abab\cdots ab$ and use that $ab = ba$, since G is abelian, to move the terms past one another, yielding $a\cdots ab\cdots b = a^n b^n$. However, for a general group which is not necessarily abelian, just like for matrices, we do not always have $(ab)^n = a^n b^n$. To further illustrate this point:

- If a group G has $(ab)^2 = a^2 b^2$ for all $a, b \in G$ then G is abelian.

Proof. Suppose $(ab)^2 = a^2 b^2$ for all $a, b \in G$, i.e. $abab = aabb$. Multiply both sides of this equation by a^{-1} on the left and b^{-1} on the right to obtain $ba = ab$. Thus G is abelian. \square

In the argument just made, we used the following cancellation property, which again follows by multiplying both sides of the equation on the left or right by the appropriate element:

- Let $a, b, c \in G$. If $ab = ac$ then $b = c$. If $ba = ca$ then $b = c$.

Let us illustrate how to solve equations in an abstract group. Suppose we are given

$$(xax)^2 = abx^2 \quad x^2 a = (xa)^{-1}$$

where $a, b \in G$ are known and we would like to solve for $x \in G$. We do this as follows:

$$\begin{aligned} (xax)^2 &= abx^2 \\ xaxxax &= abx^2 \\ xa(x^2 a)x &= abx^2 \\ xa(xa)^{-1}x &= abx^2 \\ x &= abx^2 \\ e &= abx \\ x &= (ab)^{-1} = b^{-1}a^{-1} \end{aligned}$$

Subgroups

A subset $H \subset G$ of a group G is called a *subgroup* if the set H with the group operation restricted from G makes H a group. If we spell this out, we see that a subset $H \subset G$ is a subgroup if and only if the following properties hold:

1. The identity element e is in H .
2. For all $a, b \in H$ we have $ab \in H$.
3. For all $a \in H$ we have $a^{-1} \in H$.

You might like to verify that these properties imply H is a subgroup. The key point is that given these properties, the axioms of a group for H are inherited from those of G . A subgroup $H \subset G$ is *proper* if $H \neq G$. Another good exercise is to check:

► **The intersection of two subgroups $H, K \subset G$ is again a subgroup.**

Examples

1. The group $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Q}, +)$ and $(\mathbb{R}, +)$, and $(\mathbb{Q}, +)$ is a subgroup of $(\mathbb{R}, +)$.
2. The group $(\mathbb{Q}^\times, \times)$ is a subgroup of $(\mathbb{R}^\times, \times)$. Note that $(\mathbb{Q}^\times, \times)$ is *not* a subgroup of $(\mathbb{Q}, +)$, even though $\mathbb{Q}^\times \subset \mathbb{Q}$, because the group operations are not the same.
3. Define $\text{SL}_2(\mathbb{R})$ to be the set of 2×2 matrices with real entries and determinant 1:

$$\text{SL}_2(\mathbb{R}) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, \det(A) = ad - bc = 1 \right\}$$

This is called the *special linear group* of degree 2 over \mathbb{R} . This is a subgroup of $\text{GL}_2(\mathbb{R})$.

4. A non-trivial group G has at least two subgroups: G itself and $\{e\} \subset G$.
5. Consider $G = \{e, r, b, g, y, o\}$ of order 6 from Lecture 1. Then $\{e, r\}$, $\{e, b\}$, $\{e, g\}$ are subgroups of order 2, while $\{e, y, o\}$ is a subgroup of order 3. Here are their Cayley tables:

--	--	--	--