MTH 461: Survey of Modern Algebra, Spring 2026 Lecture 2

Basic properties of groups

In this lecture we discuss some basic properties of groups which follow directly from the
definition. To begin, a few words on notation. Up to now we have considered a typical
group (G, o) with operation aob. It is convenient to omit “o” from the notation and write

ab=aob

Although this is a valid convention for any group, we will not always want to use it. For
example, for the group (Z, +), writing “ab” for aob = a + b has the shortcoming of looking
like integer multiplication. But for an arbitrary abstract group it is very convenient.

The associativity property of a group tells us that (ab)c = a(bc). This continues on for more
complicated operations. For example, we have

((ab)e)d = (a(bc))d = a((be)d) = a(b(ed)) = (ab)(cd)

Each equality uses one use of the associativity axiom. What associativity is really telling us
is that we can forget about those pesky parantheses: no matter where we put them, we get
the same answer. The above group element can just be written abcd.

For what follows we let G be any group, with the conventions above.

The identity element in G is unique.

Proof. Let e,e’ € G be two identity elements. Because e is an identity element, ee’ = e.
Because €’ is an identity element, ee’ = e’. Together we get e = ¢€’. O

The inverse of any element in G is unique.

Proof. Let a € G be be any element. Let b and ¢ be two inverses of a. (Let us avoid calling
either one a~! for now.) Because b is an inverse of a we have ba = e. Multiply both sides of
this equation on the right by ¢ to get bac = c¢. Because c is an inverse for a, we have ac = e.
Thus bac = ¢ becomes be = ¢, and finally b = c. O]

For every a € G, we have (a71)~! =a.
Proof. The element a satisfies aa~! = a~'a = e and thus is an inverse of a~!. It then makes

sense to say a = (a~!)~! because inverses are unique. O

For all a,be G we have (ab)~! =b"ta"L.

Proof. We only need check that b=1a~! satisfies the property of being an inverse for ab. To
this end: (ab)(b~ta=!) = abb~la=! = aea™ = aa=! = e. Similarly (b=ta=1t)(ab) = e. O
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This last property can be used any number of times to show the following relation:

(arag -+ a, 1a,) "t = ay a;t aytar?
We introduce some more convenient notation. Suppose n is a positive integer. Then we
define the symbol a™ to mean the element aa---a = aoao---oa formed by applying the group
operation to n copies of the element a. If n is negative, define a® = a=!---a=! for —n copies
of a=!. If n = 0, define a® = e, the identity element. The following is straightforward to verify:

For all a,be G and n,m € Z we have the following properties:
ata™ = an-‘rm’ (an)m _ anm’ (ab)n — (b—la—l)—n

The above discussion shows that in an arbitrary group G, we have all the properties we are
used to with, say, matrix multiplication of invertible matrices. Furthermore:

If G is abelian, then for all a,be G and n € Z we have (ab)” = a™b".

To see this, write (ab)™ = abab---ab and use that ab = ba, since G is abelian, to move the
terms past one another, yielding a---ab---b = a"b". However, for a general group which is not
necessarily abelian, just like for matrices, we do not always have (ab)” = a™b". To further
illustrate this point:

If a group G has (ab)? = a?b? for all a,be G then G is abelian.

Proof. Suppose (ab)? = a?b? for all a,b € G, i.e. abab = aabb. Multiply both sides of this
equation by a~! on the left and 6=! on the right to obtain ba = ab. Thus G is abelian. [

In the argument just made, we used the following cancellation property, which again follows
by multiplying both sides of the equation on the left or right by the appropriate element:

Let a,b,ce G. If ab = ac then b= c. If ba = ca then b = c.

Let us illustrate how to solve equations in an abstract group. Suppose we are given

2 2

(rax)? = abx® r?a = (va)™"

where a,b € G are known and we would like to solve for z € G. We do this as follows:

(raz)?* = abx?

rarrar = abx?

ra(ra)r = abx®

va(va) 'z = abx?

x = abx?
e = abx

v=(ab)"'=b"ta"?
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Subgroups

A subset H < G of a group G is called a subgroup if the set H with the group operation
restricted from G makes H a group. If we spell this out, we see that a subset H < G is a
subgroup if and only if the following properties hold:

1. The identity element e is in H.

2. For all a,be H we have abe H.

3. For all a € H we have a=! € H.
You might like to verify that these properties imply H is a subgroup. The key point is
that given these properties, the axioms of a group for H are inherited from those of G. A
subgroup H < G is proper if H # G. Another good exercise is to check:

The intersection of two subgroups H, K < (G is again a subgroup.
Examples

1. The group (Z, +) is a subgroup of (Q,+) and (R, +), and (Q, +) is a subgroup of (R, +).

2. The group (Q*, x) is a subgroup of (R*, x). Note that (Q*, x) is not a subgroup of
(Q, +), even though Q* < Q, because the group operations are not the same.

3. Define SLy(R) to be the set of 2 x 2 matrices with real entries and determinant 1:

SLﬂR)z{Az(Z Z) a,b,c,d e R, det(A)=ad—bc=1}

This is called the special linear group of degree 2 over R. This is a subgroup of GLy(R).
4. A non-trivial group G has at least two subgroups: G itself and {e} < G.

5. Consider G = {e,r,b,9,y,0} of order 6 from Lecture 1. Then {e,r}, {e, b}, {e,g} are
subgroups of order 2, while {e, y, 0} is a subgroup of order 3. Here are their Cayley tables:
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