Please write legibly and show all work. If the answer to a problem is written down correctly, but certain steps of solving it are not shown, points might be taken off.

1. Consider the following matrices.

$$
A=\left[\begin{array}{cc}
3 & -1 \\
2 & 1 \\
1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-2 & 3 & 1 \\
4 & -1 & 1
\end{array}\right], \quad C=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 0
\end{array}\right], \quad E=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Compute the following expressions.
(a) $A B+I$. (Here I is the 3×3 identity matrix.)
(b) $B C-2 B$.
(c) $C E+3 E$.
2. Find all eigenvalues and all eigenvectors for the following matrices.
(a) $\left[\begin{array}{ll}6 & -7 \\ 1 & -2\end{array}\right]$
(b) $\left[\begin{array}{lll}4 & 1 & 4 \\ 1 & 7 & 1 \\ 4 & 1 & 4\end{array}\right]$
(c) $\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]$

For the next problems: (a) find the general solution to the given system of differential equations, and (b) draw the corresponding phase portrait.
3. $x_{1}^{\prime}=6 x_{1}-7 x_{2}, x_{2}^{\prime}=x_{1}-2 x_{2}$.
4. $x^{\prime}=-y, y^{\prime}=4 x$.
5. $x_{1}^{\prime}=9 x_{1}+5 x_{2}, x_{2}^{\prime}=-6 x_{1}-2 x_{2}$.
6. $x^{\prime}=x-2 y, y^{\prime}=2 x+y$.

