Please write legibly and show all work. If the answer to a problem is written down correctly, but certain steps of solving it are not shown, points might be taken off.

1. A body with mass 150 kg is attached to the end of a spring that is stretched 10 cm by a force of 5 N . At $t=0$ the body is pushed 1 m to the left (in the usual picture) and set in motion with an initial velocity of $4 \mathrm{~m} / \mathrm{s}$.
(a) Find $x(t)$ in the form $C \cos \left(\omega_{0} t-\alpha\right)$ and graph it.
(b) What are the amplitude and period of motion of the body?
2. Suppose a body with mass 2 kg is attached to a spring that is stretched 2 m by a force of 4 N , but now also a shock absorber is attached to the other end of the body. At $t=0$ the body is pulled 2 m to the right (in the usual picture) and set in motion with an initial velocity of $1 \mathrm{~m} / \mathrm{s}$.
(a) Suppose the damping constant is $b=6$. Find $x(t)$. If your answer involves sines and cosines, write it in the form $x(t)=C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$.
(b) Do the same as in (a) but for $b=4$.
(c) Do the same as in (a) but for $b=2$.
3. For each of the following equations find a particular solution $y_{p}(t)$.
(a) $y^{\prime \prime}+4 y=e^{5 t}$
(b) $4 y^{\prime \prime}+4 y^{\prime}+y=3 t e^{t}$
(c) $y^{\prime \prime}+4 y^{\prime}+2 y=t^{2}$
(d) $y^{\prime \prime}+9 y=\cos (3 t)+4 \sin (3 t)$
4. For each of the following equations find the general solution.
(a) $y^{\prime \prime}-2 y^{\prime}+2 y=e^{t} \sin (t)$
(b) $y^{(4)}-4 y^{\prime \prime}+4 y=e^{t}-t e^{2 t}$
5. Suppose a body with mass 1 kg is attached to a spring that is stretched 2 m by a force of 2 N . There is also an externel force of $\cos (t)$ Newtons acting on the spring. At $t=0$ the body is 1 m to the left (in the usual picture) and has an initial velocity of $1 \mathrm{~m} / \mathrm{s}$. Find $x(t)$.
