Please write legibly and show all work. If the answer to a problem is written down correctly, but certain steps of solving it are not shown, points might be taken off.

- 1. Show that $y_1(t) = \sqrt{t}$ and the constant function $y_2(t) = 1$ are solutions of $yy'' + (y')^2 = 0$, but that the sum $y_1 + y_2$ is not a solution. (This shows that the superposition principle does not hold for nonlinear equations.)
- 2. Determine whether each pair of functions y_1, y_2 are linearly independent.
 - (a) $y_1(t) = e^t \sin(t), y_2(t) = e^t \cos(t)$ (Try the Wronskian on this one!)
 - (b) $y_1(t) = \sin^2(t), y_2(t) = 1 2\cos(2t)$
 - (c) $y_1(t) = t^3, y_2(t) = t^2|t|$
- 3. Find the general solution to each of the following differential equations.
 - (a) y'' 3y' + 2y = 0
 - (b) y'' 10y' = 0
 - (c) y'' + y' y = 0
 - (d) y'' + 2y' + y = 0
- 4. Find the solution to y'' + 5y' + 6y = 0 satisfying y(0) = 0 and y'(0) = 1.
- 5. Find the general solution to each of the following differential equations.
 - (a) $3y^{(4)} + 4y^{(3)} = 0$
 - (b) $y^{(4)} 3y^{(3)} + 3y'' y' = 0$
- 6. Find the general solution to each of the following differential equations.
 - (a) y'' 2y' + 2y = 0
 - (b) y'' + y' + y = 0
- 7. Each of the below is a general solution y(t) of a homogeneous 2^{nd} order ODE y'' + py' + qy = 0 with constant coefficients. Find such an equation.
 - (a) $y(t) = c_1 e^{-5t} + c_2 t e^{-5t}$
 - (b) $y(t) = e^t \left(c_1 e^{t\sqrt{3}} + c_2 e^{-t\sqrt{3}} \right)$
 - (c) $y(t) = c_1 e^t \cos(2t) + c_2 e^t \sin(2t)$