Please write legibly and show all work. If the answer to a problem is written down correctly, but certain steps of solving it are not shown, points might be taken off.

1. Show that $y_{1}(t)=\sqrt{t}$ and the constant function $y_{2}(t)=1$ are solutions of $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$, but that the sum $y_{1}+y_{2}$ is not a solution. (This shows that the superposition principle does not hold for nonlinear equations.)
2. Determine whether each pair of functions y_{1}, y_{2} are linearly independent.
(a) $y_{1}(t)=e^{t} \sin (t), y_{2}(t)=e^{t} \cos (t) \quad$ (Try the Wronskian on this one!)
(b) $y_{1}(t)=\sin ^{2}(t), y_{2}(t)=1-2 \cos (2 t)$
(c) $y_{1}(t)=t^{3}, y_{2}(t)=t^{2}|t|$
3. Find the general solution to each of the following differential equations.
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=0$
(b) $y^{\prime \prime}-10 y^{\prime}=0$
(c) $y^{\prime \prime}+y^{\prime}-y=0$
(d) $y^{\prime \prime}+2 y^{\prime}+y=0$
4. Find the solution to $y^{\prime \prime}+5 y^{\prime}+6 y=0$ satisfying $y(0)=0$ and $y^{\prime}(0)=1$.
5. Find the general solution to each of the following differential equations.
(a) $3 y^{(4)}+4 y^{(3)}=0$
(b) $y^{(4)}-3 y^{(3)}+3 y^{\prime \prime}-y^{\prime}=0$
6. Find the general solution to each of the following differential equations.
(a) $y^{\prime \prime}-2 y^{\prime}+2 y=0$
(b) $y^{\prime \prime}+y^{\prime}+y=0$
7. Each of the below is a general solution $y(t)$ of a homogeneous $2^{\text {nd }}$ order ODE $y^{\prime \prime}+p y^{\prime}+q y=0$ with constant coefficients. Find such an equation.
(a) $y(t)=c_{1} e^{-5 t}+c_{2} t e^{-5 t}$
(b) $y(t)=e^{t}\left(c_{1} e^{t \sqrt{3}}+c_{2} e^{-t \sqrt{3}}\right)$
(c) $y(t)=c_{1} e^{t} \cos (2 t)+c_{2} e^{t} \sin (2 t)$
