This is intended to be similar (but different!) to the midterm you will take in class. Make sure you also study the homework problems (from HW 5, 6, 7).

- 1. Find the general solution to the following differential equations.
 - (a) y'' 8y' + 15y = 0 $y(t) = c_1 e^{5t} + c_2 e^{3t}$
 - (b) y'' 2y' + 2y = 0 $y(t) = c_1 e^t \cos(t) + c_2 e^t \sin(t)$
 - (c) $(D+2)^3(D-7)y = 0$ where $D = \frac{d}{dt}$ $y(t) = c_1e^{-2t} + c_2te^{-2t} + c_3t^2e^{-2t} + c_4e^{7t}$
- 2. For the following equations, make a simplified guess for form of the particular solution. Do not solve for the coefficients.
 - (a) $y'' + 4y = 5t\sin(2t) t$ $y_p(t) = c_1 + c_2t + c_3t\cos(t) + c_4t\sin(t) + c_5t^2\cos(t) + c_6t^2\sin(t)$
 - (b) $y^{(3)} + 2y'' + y' = -2e^{-t}\cos(t) + 3$ $y_p(t) = c_1e^{-t}\cos(t) + c_2e^{-t}\sin(t) + c_3t$
 - (c) $y^{(4)} + 2y'' + y = \cos(t)$ $y_p(t) = c_1 t^2 \cos(t) + c_2 t^2 \sin(t)$
- 3. Solve $y'' y = e^t(2\cos(t) \sin(t))$ with initial conditions y(0) = y'(0) = 0. $y(t) = e^{-t}/2 - e^t/2 + e^t \sin(t)$
- 4. Use variation of parameters to find a particular solution to $y'' + 2y' + y = 15e^{-t}\sqrt{t}$. $y_p(t) = 4e^{-t}t^{5/2}$
- 5. Consider a spring system with mass m = 2, spring constant k = 20, a shock absorber with damping constant b = 4, and an external force $f(t) = 3\cos(t)$.
 - (a) Set up the ODE for the motion of the mass x(t). $x'' + 2x' + 10x = 3\cos(t)/2$
 - (b) Write the general solution, without solving for the coefficients of x_p . $x(t) = c_1 e^{-t} \cos(3t) + c_2 e^{-t} \sin(3t) + x_p(t)$ where $x_p(t) = \tilde{c_1} \cos(t) + \tilde{c_2} \sin(t)$
- 6. Find the solution to $y^{(3)} 2y'' + 4y' 8y = 0$ with y(0) = 0, y'(0) = 4, y''(0) = 16. $y(t) = 2e^{2t} - 2\cos(2t)$