Name and ID number: \qquad

No calculators, phones or any other devices may be present during the exam. Put them away. Show your work to receive full credit. The exam you took may have problems which are slightly different than the ones listed here.

1. (18 pts) Find the general solutions for the following differential equations.
(a) $y^{\prime \prime}-y^{\prime}-12 y=0 \quad c_{1} e^{4 t}+c_{2} e^{-3 t}$
(b) $y^{\prime \prime}-2 y^{\prime}+10 y=0 \quad c_{1} e^{t} \cos (3 t)+c_{2} e^{t} \sin (3 t)$
(c) $D^{2}\left(D^{2}+3\right)^{2} y=0$ where $D=\frac{d}{d t}$
$c_{1}+c_{2} t+c_{3} \cos (\sqrt{3} t)+c_{4} \sin (\sqrt{3} t)+t c_{5} \cos (\sqrt{3} t)+c_{6} t \sin (\sqrt{3} t)$
2. (18 pts) For the following equations, make a simplified guess for the form of the particular solution. Do not solve for the coefficients.
(a) $y^{\prime \prime}-y=\cos (t)-2 \quad c_{1} \cos (t)+c_{2} \sin (t)+c_{3}$
(b) $y^{(3)}+4 y^{\prime}=\sin (2 t)-1 \quad c_{1} t \cos (2 t)+c_{2} t \sin (2 t)+c_{3} t$
(c) $y^{\prime \prime}+6 y^{\prime}+9 y=e^{-3 t} \quad c_{1} t^{2} e^{-3 t}$
3. (16 pts) Use variation of parameters to find the general solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{\sqrt{t}} \quad(t>0)
$$

(Useful: $W=W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}, u_{1}=-\int y_{2} f / W, u_{2}=\int y_{1} f / W$.)
$y_{p}(t)=c_{1} e^{t}+c_{2} t e^{t}+\frac{4}{3} t^{3 / 2} e^{t}$
4. (16 pts) Solve $y^{\prime \prime}+2 y^{\prime}+3 y=0$ where $y(0)=0, y^{\prime}(0)=1$.
$y(t)=\frac{1}{\sqrt{2}} e^{-t} \sin (\sqrt{2} t)$
5. (16 pts) Consider a spring system with mass $m=2$, spring constant $k=12$, shock absorber with damping constant $b=10$, and external force $f(t)=t \cos (t)$.
(a) Set up the ODE for the motion of the mass $x(t)$.

$$
2 x^{\prime \prime}+10 x^{\prime}+12 x=t \cos (t)
$$

(b) Write the general solution, without solving for the coefficients of $x_{p}(t)$.

$$
\begin{aligned}
& x(t)=x_{p}(t)+c_{1} e^{-2 t}+c_{2} e^{-3 t}, \text { where } \\
& x_{p}(t)=\widetilde{c}_{1} \cos (t)+\widetilde{c}_{2} \sin (t)+\widetilde{c}_{3} t \cos (t)+\widetilde{c}_{4} t \sin (t)
\end{aligned}
$$

6. (16 pts) Solve $y^{\prime \prime}+y=\cos (t)$ with initial conditions $y(0)=1, y^{\prime}(0)=-1$. $y(t)=\cos (t)-\sin (t)+\frac{1}{2} t \sin (t)$
