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Abstract

Crowley and Nordström introduced an invariant of G2-structures on the tangent bundle of
a closed 7-manifold, taking values in the integers modulo 48. Using the spectral description
of this invariant due to Crowley, Goette and Nordström, we compute it for many of the closed
torsion-free G2-manifolds defined by Joyce’s generalized Kummer construction.

1 Introduction

In [CN15], Crowley and Nordström introduced an invariant νpM,φq P Z{48 for a closed 7-manifold
M equipped with a G2-structure φ on its tangent bundle, invariant under homotopies of φ. In the
case that M has a metric g with holonomy contained in G2 and associated G2-structure φg, Crowley,
Goette and Nordström [CGN18a] showed that this invariant has the spectral description

νpM,φgq ” 3ηpBM q ´ 24ηpDM q ` 24p1` b1pMqq mod 48

Here ηpBM q is the η-invariant of the odd signature operatorBM for the Riemannian manifold pM, gq,
and DM is the associated spin Dirac operator. In fact, the authors show that

ν̄pM, gq :“ 3ηpBM q ´ 24ηpDM q P Z

is an invariant of the torsion-free G2-manifold pM, gq which is locally constant on the moduli space
of metrics on M with holonomy contained in G2.

There are only a handful of methods available to construct closed G2-manifolds. The first is the
generalized Kummer construction of Joyce [Joy96, Joy00]. There is also the twisted connected sum
method of Kovalev [Kov03], generalized by Corti–Haskins–Nordström–Pacini [CHNP15, CHNP13].
A further generalization, that of “extra-twisted” connected sums, is considered by Crowley–Goette–
Nordström [CGN18a]; see also [Nor18]. More recently, Joyce and Karigiannis [JK18] introduced
another construction, the input of which is a closed G2-manifold with an involution.

Crowley and Nordström [CN15, Theorem 1.7] show ν ” 24 (mod 48) for twisted connected
sums. This is refined by Crowley–Goette–Nordström [CGN18a, Corollary 3], who show ν̄ “ 0
for these G2-manifolds. More generally, the authors compute ν̄ for extra-twisted connected sums,
[CGN18a, Theorem 1], producing many examples with non-vanishing ν̄.
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Here we compute the ν-invariants for many of Joyce’s original G2-manifolds constructed in
[Joy96]. Our investigation is by no means complete, and we largely focus on how a few observa-
tions allow one to use well-known “soft” properties of η-invariants in this setting. A more detailed
undertaking may allow for the computation of the integer-valued ν-invariants.

The construction of a Joyce manifold pM, gq involves taking the resolution of orbifold singu-
larities in the quotient O “ T 7{Γ of a 7-torus T 7 by a finite group action Γ preserving the flat
G2-structure. Many of the examples considered in [Joy96] satisfy the following.

Hypothesis 1.1. Each connected component of the singular set in O “ T 7{Γ has a neighborhood
isometric, for some finite subgroup G Ă SUp2q, to a neighborhood of the singular set in the orbifold

T 3 ˆ C2{G (1)

In general we write T k for any quotient of Rk by a discrete full rank sublattice, not necessarily Zk.
When the singular set is nice enough, the ν-invariant of the resulting torsion-free G2-manifold M
may be computed from invariants of the orbifold O.

Theorem 1.2. Let pM, gq be a compact G2-manifold obtained from the generalized Kummer con-
struction of Joyce using a flat orbifold O “ T 7{Γ satisfying Hypothesis 1.1. Then

νpM,φgq ” 3ηpBOq ´ 24ηpDOq ` 24p1` b1pOqq mod 48 (2)

We will see that this result also holds under weaker conditions than those imposed by Hypothesis
1.1; see Proposition 6.3. The right-hand side of (2) is straightforward to compute. The odd signature
η-invariant of the orbifold O “ T 7{Γ may be identified with the evaluation at s “ 0 of

ηpBOqpsq “
ÿ

λ‰0

signpλq ¨ dimpEΓ
λ q ¨ |λ|

´s (3)

where λ ranges over the non-zero eigenvalues of the odd signature operator for T 7 with corresponding
eigenspaces Eλ and Γ-invariant subspaces EΓ

λ Ă Eλ. In particular, we have

ηpBOq “
1

|Γ|

ÿ

γPΓ

ηγpBT 7q (4)

where ηγpBT 7q is the equivariant η-invariant, obtained from (3) by replacing dimpEΓ
λ qwith Trpγ|Eλq

and evaluating at s “ 0. Similar remarks hold for the η-invariant of the spin Dirac operator. We then
compute these equivariant η-invariants using standard techniques, as in [APS75b,Don78,MP06]. We
compute ν (mod 24) for all examples in Joyce’s original papers [Joy96], and for a majority of these
we compute ν (mod 48). Some results from our computations are:

• The two simply-connected torsion-free G2-manifolds with b2 “ 2 and b3 “ 10 constructed by
Joyce in [Joy96] have distinct ν invariants.

• For almost all examples considered, we compute ν ” 0 (mod 24).

• For all of the examples considered, we compute ν ” 0 (mod 3).
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For general remarks on the possible values for ν, see e.g. [CGN18b]. The range of values ν takes
for the examples in [Joy96] is small; see Table 1 and Figure 3. We expect that further computations,
obtained in part by relaxing our assumptions on the singular set, will lead to a greater range of values.
Indeed, our constraints on the singular set of O are not necessarily optimal for Theorem 1.2, and are
mainly imposed by our methods.

The proof of Theorem 1.2 compares the invariants for the orbifold O and its resolution G2-
manifold through gluing formulae for η-invariants as described in [Bun95, KL04]; such formulae
were used in [CGN18a]. However, our situation does not fit the hypotheses of these formulae: our
gluing region is not isometric to an interval times a hypersurface. The central observation is that the
invariants under consideration are insensitive to regions of the geometry locally isometric to a product
in which one factor is a flat manifold, as is the case near the singularities in O. We may then modify
the geometry in these regions to satisfy the hypotheses of the gluing formulae.

A more careful analysis of the behavior of η-invariants under resolutions of orbifold singularities
should lift Theorem 1.2 to the integers, and compute ν. This lift is achieved in the current article for
η-invariants of the odd signature operator; the case of the spin Dirac operator is more delicate.

In the final section of the paper, we show how some of our computations can be recovered by
decomposing Joyce’s orbifolds along a flat 6-torus, similar to the decompositions of twisted connected
sums.

Finally, we mention that a more analytical approach to computing ν for Joyce’s manifolds was
studied in the PhD work of Nelvis Fornasin [For].

Acknowledgments. The author would like to thank Simon Donaldson for his support and encour-
agement, as well as Nelvis Fornasin, Sebastian Goette and Johannes Nordström for fruitful discus-
sions. The “twisted connected sum” type decompositions in Section 8 were pointed out to the author
by Sebastian Goette and Johannes Nordström. The author was supported by the Simons Collaboration
Grant on Special Holonomy in Geometry, Analysis and Physics.

2 Hypotheses on the singular set

We first discuss Hypothesis 1.1 in the general context of Joyce’s construction as described in [Joy00,
Chapter 11]. Let Λ be a lattice in R7, isomorphic as an abelian group to Z7. Then the quotient
T 7 “ R7{Λ is a 7-torus. Every point x P T 7 may be written as v ` Λ for some v P R7 and every
tangent space TxT 7 is naturally isomorphic to R7. The flat Euclidean G2-structure on R7, described
for example by the 3-form (17), descends to a flat G2-structure on T 7.

Let Γ be a finite group acting on T 7 preserving itsG2-structure. ThenO “ T 7{Γ is a flat orbifold,
with an inherited flat orbifold metric g0. For a subgroup A Ă Γ let FixpAq denote the fixed points of
A. Let L be the set of F Ă T 7 such that F is a connected component of FixpAq for some subgroup
A Ă Γ. Write L “ tFiuiPI where 0 P I is the index such that F0 “ T 7. Then

SingpOq “
ď

iPIzt0u

Fi

N

Γ Ă O

forms the singular set of O. From [Joy00, Proposition 11.1.3], each Fi with i ‰ 0 is either a 1-torus
or a 3-torus. In general, we may have two distinct 3-tori Fi and Fj that intersect in a 1-torus Fk.

The normalizer NpF q of a subset F Ă T 7 is the subgroup of γ P Γ such that γF “ F , and the
centralizerCpF q is the subgroup of γ P Γ that act as the identity on F . For Fi P L defineAi “ CpFiq
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and Bi “ NpFiq{CpFiq. Then Fi Ă FixpAiq. As γFi is a component of FixpγAiγ´1q, there is an
index denoted γ ¨ i P I with γFi “ Fγ¨i. The part of SingpOq coming from Fi is

ΓFi{Γ “
ď

γPΓ

Fγ¨i

N

Γ

Now suppose Fi X Fγ¨i “ H for each γ P Γ such that γ ¨ i ‰ i. Then O is isomorphic near ΓFi{Γ to

Zi :“ pFi ˆWi{Aiq{Bi (5)

Here, if Vi is the invariant subspace of the action ofAi lifted to R7, thenWi is the orthogonal comple-
ment of Vi. If Bi acts freely on Fi then the singular locus of (5) is the image of Fi. By [Joy00, Propo-
sition 11.1.3], Wi{Ai is of the form C2{G or C3{G for G some subgroup of SUp2q or SUp3q. Thus
when Bi is trivial and dimFi “ 3, the neighborhood (5) recovers the description (1). Most of our
arguments go through under the following weakening of Hypothesis 1.1:

Hypothesis 2.1. Each connected component of the singular set in O “ T 7{Γ has a neighborhood
isometric to a neighborhood of the singular set in the orbifold

pT 7´2n ˆ Cn{Gq{B (6)

where n P t2, 3u, G is a finite subgroup of SUp2q or SUp3q, the action ofB preserves the two factors
and acts freely on the torus. Furthermore, the torus T 7´2n admits an orientation-reversing isometry
τ such that τ ˆ id descends to define an isometry of (6).

Hypothesis 2.1 is satisfied if: (i) Fi X Fγ¨i “ H whenever γ ¨ i ‰ i; (ii) each Bi acts freely on
Fi; and (iii) each Fi admits an orientation-reversing isometry, which by extension to the identity on
Wi{Ai induces an orientation-reversing isometry of Zi. If Bi is trivial, then (iii) automatically holds.
If B is Z{2 and Fi is a 1-torus then (iii) also holds.

3 Flexibility of metric

Let pX, gq be a Riemannian manifold. Suppose for some open subset U Ă X there is an isometry
φU : pF, gF q ˆ pV, gV q Ñ pU, g|U q, where pF, gF q is flat and of dimension ě 1, and pV, gV q is any
Riemannian manifold. We say a metric h on X is related to g by a flat factor move if g|XzU “ h|XzU
and φ˚U ph|U q “ gF ` hV for some open set U Ă X , isometry φU as above, and metric hV on V . We
say g and h are flat factor equivalent if they are related by a sequence of flat factor moves. Observe
that it suffices in the definition to consider pF, gF q “ pI, dt2q for interals I Ă R.

It was observed in [APS75b] that the odd signature η-invariant is invariant under conformal
changes of the metric, and that the same is true, modulo Z, for the reduced η-invariant of the spin
Dirac type operator. Here the reduced η-invariant of an operator D is defined by

ξpDq “
1

2
pηpDq ` dim kerpDqq

The argument used there may be adapted to show the following:

Proposition 3.1. Let X be a closed oriented odd-dimensional manifold, with flat factor equivalent
metrics g and h. The odd signature η-invariants for pX, gq and pX,hq are equal. If X is given a spin
structure, the same is true for the reduced spin Dirac η-invariants taken modulo Z.
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Proof. It suffices to prove the claim when h and g are related by a flat factor move. Equip r0, 1s ˆX
with the metric G “ ds2 ` λpsqh` p1´ λpsqqg where λ : r0, 1s Ñ R is a bump function equal to 0
for s P r0, 1{4s and equal to 1 for s P r3{4, 1s. Write BpM,gq for the odd signature operator defined
using the metric g. Then by the Atiyah-Patodi-Singer theorem [APS75a, Theorem 4.14] we have

ηpBpM,hqq ´ ηpBpM,gqq “

ż

r0,1sˆX
LpppGqq

where LpppGqq is the Hirzebruch L-polynomial applied to the Pontryagin forms of the Riemannian
metric G on r0, 1s ˆX . We use the following elementary property: the top degree term of LpppGqq
vanishes if the metric G is a non-trivial product metric with one of its factors a flat metric. On XzU
the metrics g and h are equal, and thus G “ ds2` g|XzU has the flat factor pr0, 1s, ds2q. This implies
that the integral of LpppGqq over r0, 1s ˆ pXzUq vanishes. Next,

ż

r0,1sˆU
LpppGqq “

ż

r0,1sˆFˆV
Lpppds2 ` gF ` λpsqhV ` p1´ λpsqqgV qq “ 0,

as the metric appearing on the right, equal to pid ˆ φU q
˚pGq, has the flat factor pF, gF q. The claim

for the reduced η-invariant of the spin Dirac operator follows the same argument, using [APS75a,
Theorem 4.2], with the pA-polynomial in place of L. In this latter case, the index of the Dirac operator
on r0, 1s ˆX is not a topological invariant, and so the result holds only modulo Z.

In conclusion, the quantities ηpBM q and ξpDM q (mod Z) are invariants of the equivalence class of a
metric generated by conformal changes and flat factor equivalences. Note that these two notions are
distinct. For example, T 2ˆpS2zptq and T 2ˆR2 with their standard metrics are flat factor equivalent
but not conformally equivalent.

4 Comparison of odd signature η-invariants

Starting from a flat G2-orbifold, the construction of Joyce proceeds in two steps. First, a smooth
closed Riemannian 7-manifold pM, gtq with a closed G2-structure φt is constructed by choosing
resolutions for the singularities and pasting structures together using a partition of unity. Then he
shows that gt and φt may be deformed into a torsion-free G2-structure on M . In this section we
compare the odd signature η-invariants of the flat orbifold pO, g0q and pM, gtq.

Remark 4.1. The parameter t is any small positive real number, and roughly represents the size of
the glued-in resolution pieces. However, this will only be important in Section 6.

We first recall the relevant aspects of Joyce’s construction from [Joy96, Joy00]. We assume Hy-
pothesis 2.1. We denote by Z˝i “ pFi ˆ Di{Aiq{Bi the compact manifold with boundary obtained
from Zi “ pFi ˆWi{Aiq{Bi of (5) by restricting to a small closed ball Di Ă Wi centered at the
origin. Let M˝ be obtained from O by deleting neighborhoods of the singular set corresponding to
the Z˝i and taking the closure. Then we have the decomposition

O “M˝ Y
ď

ΓiPI{Γ

Z˝i (7)

Let i P I be such that Fi is a 3-torus. Choose an ALE Riemannian 4-manifold Xi with holonomy
SUp2q which is asymptotic to Wi{Ai, and a free isometric action of Bi on Xi such that pFi ˆ
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O

M˝

Z˝3

Z˝2 Z˝1

Z˝4

M

M˝

M˝
3

M˝
2 M˝

1

M˝
4

Figure 1: Schematic decompositions of O and M .

Xiq{Bi is asymptotic to Zi in the sense of [Joy00, Definition 11.2.2]. In particular, Xi is a non-
compact 4-manifold with one end, which near infinity metrically resembles the end of Wi{Ai. When
Fi is a 1-torus, we instead choose Xi to be a Quasi-ALE 6-manifold with holonomy SUp3q as in
[Joy00, Chapter 9]. We choose such data for each orbit Γi. Set Mi “ pFi ˆ Xiq{Bi. Then Mi is
a smooth 7-manifold with one end, which may be truncated to obtain a 7-manifold with boundary,
denoted M˝

i . The resolution manifold M is then topologically

M “M˝ Y
ď

ΓiPI{Γ

M˝
i (8)

The decompositions (7) and (8) are schematically depicted in Figure 1; there, O is replaced by a 2-
dimensional orbifold with 4 singular points, andM is a corresponding resolution. WriteNi “ BZ

˝
i “

BM˝
i and N “

Ť

Ni “ BM
˝. For small ε and t P p0, εs, a closed G2-structure φt and Riemannian

metric gt on M are constructed in [Joy96, Joy00] by patching together the torsion-free G2-structures
on the different pieces using a partition of unity.

Proposition 4.2. If Hypothesis 2.1 holds, then ηpBpM,gtqq “ ηpBpO,g0qq.

Before proceeding to the proof we make some remarks on the metrics involved, all of which are
clear from Joyce’s construction. We may choose the decompositions above such that pMo, gt|Moq is
isometrically identified with pMo, g0|M˝q, and we may arrange that this holds for all t P p0, εs.

The metric gt is constructed such that pMo
i , g

t|Mo
i
q is locally the Riemannian product of metrics

on Fi and Xi. Indeed, the flat metric g0 has a compatible product structure near the boundary of M˝

and thus the partition of unity respects this structure. In particular, Hypothesis 2.1 guarantees that
each of pMo

i , g
t|Mo

i
q has an orientation-reversing isometry.

To prove Proposition 4.2 we invoke a gluing formula for odd signature η-invariants. As our
application is similar to that of [CGN18a], we also refer the reader there for more details.

Theorem 4.3. [KL04, Theorem 8.12] Let X be a closed, oriented odd-dimensional Riemannian
manifold and Y Ă X a hypersurface separating X into X` and X´. Suppose the Riemannian
metric on X is a product in a collar neighborhood of Y . Then

ηpBM q “ ηAPSpBX`
, V`q ` ηAPSpBX´

, V´q `mpV`, V´;H˚pY qq (9)
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Figure 2: Modifying a metric near a collar neighborhood to a product metric.

with real coefficients in cohomology understood, where the last term is the Maslov index of the La-
grangian subspaces V˘ Ă H˚pY q defined by V˘ “ impH˚pX˘q Ñ H˚pY qq.

To apply this result, we must modify our metrics. Suppose the ball Di ĂWi has radius R. In a collar
neighborhood of the boundary of M˝ inside pO, g0q, the metric is the quotient of a metric on FiˆWi

of the form g1 ` dr2 ` r2g2, where g1 is the metric on Fi and g2 is the metric on the unit sphere in
Wi. Here r is the radial coordinate in Wi and r P rR ´ ε, R ` εs for some small ε ą 0. This is not a
product metric for the collar, but may be modified as follows.

Choose a smooth function ρ : rR ´ ε, R ` εs Ñ R such that ρprq “ r for |R ´ r| ą 2ε{3 and
ρprq “ 1 for |R´r| ă ε{3. Replace g1`dr

2`r2g2 with g1`dr
2`ρprq2g2; the effect of altering the

metric dr2 ` r2g2 on a collar neighborhood of the sphere BDi Ă Wi to a product metric is depicted
in Figure 2. This replacement is compatible with the actions of Ai and Bi, and in this way we obtain
a new metric g0

c on O unaltered outside of small collar neighborhoods of the gluing boundaries. As
the modification is radial in Wi, the manifold pZoi , g

0
c |Zoi q retains an orientation-reversing isometry.

As Fi is a non-trivial flat manifold, the metric g0
c is flat factor equivalent to g0. By Proposition 3.1,

we may compute ηpBOq using g0
c in place of g0.

We make a similar modification of the metric gt on M . In a gluing collar neighborhood as above,
the metric gt is of the form g1 ` ht where ht is glued together from dr2 ` r2g2 and a metric on
Xi which may be arranged close to dr2 ` r2g2. We alter gt to equal dr2 ` g2 on |R ´ r| ă ε{3,
and so that it is unchanged for |R ´ r| ą 2ε{3 and outside of the gluing collar. This may all be
done Bi-equivariantly, either directly or by averaging afterwards. We call the resulting metric gtc.
By Proposition 3.1, we may compute ηpBpM,gtqq using gtc in place of gt. We may also arrange that
pM˝

i , g
t
c|M˝

i
q retains an orientation-reversing isometry.

Proof of Proposition 4.2. As is evident from the proof of [KL04, Theorem 8.12], the statement of
Theorem 4.3 works equally if X is a Riemannian orbifold isometric to a quotient by a finite group, as
long as the hypersurface Y is disjoint from the singular set.

We compare the applications of (9) to pO, g0
c q and pM, gtcq each with X` “ M˝. The term

ηAPSpBX`
, V`q is the same in both applications. The term ηAPSpBX´

, V´q vanishes in both cases,
as pZ˝i , g

0
c |Z˝

i
q and pM˝

i , g
t
c|M˝

i
q have orientation-reversing isometries preserving the Lagrangian sub-

space V´. This vanishing argument is the same as in [CGN18a, Section 4.3].
Thus ηpBM q “ ηpBOq holds if we show that the Maslov index mpV`, V´;H˚pY qq in the

two cases are the same. According to [CGN18a, Remark 4.3], this Maslov index only depends on

7



impH3pX˘q Ñ H3pY qq. By additivity under disjoint union, it suffices to show that the images of
H3pZ˝i q and H3pM˝

i q in H3pNiq are equal for each i.
There are two cases to consider. First suppose that Fi is a 1-torus. We may identify BDi Ă Wi

with S5. Note H˚pS5{Aiq “ H˚pS5qAi “ H˚pS5q. Then

H3pNiq “ H3ppS1 ˆ S5{Aiq{Biq “ H3pS1 ˆ S5{Aiq
Bi “ 0,

and there is nothing to check. Next suppose Fi is a 3-torus. We may identify BDi ĂWi with S3. Now
H˚pS3{Aiq is isomorphic to H˚pS3q. Thus H3pNiq may be identified with the Bi-invariant subpace
of H3pT 3q ‘H3pS3{Aiq. The map H3pZ˝i q Ñ H3pNiq has image H3pT 3qBi . Indeed, under these
identifications it is the Bi-invariant image of the map

H3pT 3q ‘H3pD4{Aiq Ñ H3pT 3q ‘H3pS3{Aiq. (10)

The image of H3pM˝
i q is exactly the same; in (10), D4{Ai is replaced by the truncation X˝i of Xi

with boundary S3{Ai, and H3pX˝i q Ñ H3pS3{Aiq is zero by the long exact sequence of a pair.

It is clear that Proposition 4.2 holds under more general conditions than stated. In particular, we
have not used anything aboutG2-structures. Similar computations may be done for resolutions of any
orbifold Tn{Γ, where n is aribitrary, and the singular set behaves reasonably well, as in Hypothesis
2.1; the dimensions of the fixed point tori need not be 1 and 3. Note that the modification of metrics
used above is valid even if dimFi “ 0, for in this case the alteration is conformal.

5 Comparison of spin Dirac η-invariants

For the Dirac η-invariants, we follow the same strategy. We continue assuming Hypothesis 2.1 and
use the setup of Section 4. We will apply the following mod Z gluing formula.

Theorem 5.1. [Bun95],[KL04, Theorem 5.9] Let X be a closed, oriented odd-dimensional Rieman-
nian manifold and Y Ă X a hypersurface separating X into X` and X´. Suppose the metric on X
is a product in a neighborhood of Y , and the tangential operator on Y is invertible. Then

ξpDXq “ ξAPSpDX`
q ` ξAPSpDX´

q mod Z (11)

We may apply Theorem 5.1 to both pM, gtcq and pO, g0
c q, as the collar neighborhood in each case

is a union of manifolds r´ε, εs ˆ Ni, where Ni is a finite quotient of either I ˆ T 3 ˆ S3{Ai or
I ˆ S1 ˆ S5{Ai. In each case, Y “ YNi has a metric of positive scalar curvature, and so has no
harmonic spinors. Consequently, the tangential operator is invertible.

We would like to show ξpDpM,gtqq ” ξpDpO,g0qq (mod Z). From the gluing formula (11), it
suffices to show that ξAPSpDX´

q “ 0 (mod Z) in the two cases of pM, gtcq and pO, g0
c q. In each case,

Hypothesis 2.1 guarantees that X´ admits an orientation-reversing isometry. If this isometry is spin,
then ηAPSpDX´

q “ 0. This implies ξAPSpDX´
q “ hAPSpDX´

q{2, where hAPSpDX´
q denotes the

dimension of the kernel of the Dirac operator DX´
with APS boundary conditions.

Remark 5.2. If the orientation-reversing isometries in Hypothesis 2.1 preserve the spin structure, we
say that Hypothesis 2.1 with spin isometries holds.
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Thus far we have established that ξpDpM,gtqq ” ξpDpO,g0qq (mod 1
2Z) under the assumption of Hy-

pothesis 2.1 with spin isometries.
Now assume Hypothesis 1.1. As X´ is isometric in each case to a product T 3 ˆ V where V

is some Riemannian manifold, the Künneth theorem for elliptic complexes implies hAPSpDX´
q “

hpDT 3qhAPSpDV q, compare [Hit74, p.12]. Harmonic spinors on T 3 are in correspondence with con-
stant vectors in the standard 2-dimensional representation of Spinp3q via parallel transport. Thus
hpDT 3q “ 2 and hAPSpDX´

q ” 0 (mod 2). It follows that ξAPSpDX´
q “ 0 (mod Z). We conclude:

Proposition 5.3. If Hypothesis 1.1 holds, then ξpDpM,gtqq ” ξpDpO,g0qq (mod Z). If only Hypothesis
2.1 with spin isometries holds, then this congruence holds modulo 1

2Z.

However, in many cases the mod Z congruence still holds under weaker conditions than those given
in Hypothesis 1.1. We next describe a common feature of many examples encountered in Section 7
for which the desired congruence continues to hold.

Situation 5.4. Suppose Hypothesis 2.1 holds. Let tFi{BiuiPJ be the connected components of the
singular set of O which are not 3-tori. Here J Ă I{Γ. When defining the resolution manifold M , we
replace a neighborhood Z˝i of each Fi{Bi with M˝

i . We suppose that for each i P J , there are an even
number of k P J such that the resolution data M˝

k is isomorphic to that of M˝
i .

Proposition 5.5. In Situation 5.4, ξpDpM,gtqq ” ξpDpO,g0qq (mod Z).

Proof. Let us return to the argument for the proof of Proposition 5.3 given above, and focus on the
case of pO, g0q. We may write X´ “ YZ˝i where i ranges over the connected components of the
singular set of O. Then hAPSpDX´

q “
ř

hAPSpDZ˝
i
q. The components with Fi{Bi “ T 3 have

hAPSpDZ˝
i
q ” 0 (mod 2) as argued in the case of Hypothesis 1.1. Situation 5.4 allows us to gather

the remaining hAPSpDZ˝
i
q into groups of equal terms of even cardinality, implying hAPSpDX´

q ” 0
(mod 2). The same holds for the case of pM, gtq. Then ξpDpM,gtqq ” ξpDpO,gtqq (mod Z) follows
again from the gluing formula (11), as claimed.

6 Flexibility of G2-structure

Let pM, gq be a closed Riemannian 7-manifold. Suppose a spinor bundle SM over M is chosen,
and s P ΓpSMq a non-vanishing spinor. Let gSM and ∇SM denote the metric and connection on
SM induced by g and the Levi-Civita connection of g. Then Crowley–Goette–Nordström [CGN18a]
define ν, the integer-valued extended ν-invariant of pM, g, sq, as follows:

νpM, g, sq “ 2

ż

M
s˚ψp∇SM , gSM q ` 3ηpBM q ´ 24ηpDM q P Z (12)

We describe the Mathai–Quillen current s˚ψp∇SM , gSM q following [CGN18a]. The curvature RSM

is an element of Ω2pM ; Λ2SMq, and∇SMs of Ω1pM ;SMq. We have

s˚ψp∇SM , gSM q “
ż 8

0

ż B s

2
?
t
e´R

SM`
?
t∇SMs`t}s}2dt (13)

Here
şB

: Ω˚pM ; Λ˚SMq Ñ Ω˚pMq denotes the Berezin integral, extracting a certain constant
multiple of the top-degree component in Λ˚SM . In particular, s˚ψp∇SM , gSM q is a differential
form on M , not necessarily homogeneous.

9



As described in [CN15, §2.3], unit spinors in ΓpSMq are in correspondence with G2-structures
on M . If φ is the G2-structure corresponding to s, then by [CGN18a, Theorem 1.2], we have

νpM,φq ” νpM, g, sq ` 24hpDM q mod 48 (14)

for any metric g. Here hpDM q is the dimension of the kernel of the spin Dirac operator DM . When
s and g are determined by a G2-structure φ we write νpM,φq “ νpM, g, sq. When s is g-parallel,
or equivalently when the corresponding G2-structure is compatible with g and torsion-free, then it is
shown [CGN18a, Lemma 1.3] that s˚ψp∇SM , gSM q “ 0, leading to

νpM, gq “ 3ηpBM q ´ 24ηpDM q ” νpM,φq ` 24p1` b1pMqq mod 48.

Here is used the fact that hpDM q “ 1`b1pMq for a closed spin Riemannian manifold with holonomy
contained inG2. We presently determine some other conditions under which the term

ş

M s˚ψp∇SM , gSM q
in (12) vanishes.

We say that pM, g, sq as above is torsion-free up to flat factors if there is an open set U Ă M
such that s is∇SM -parallel on the complement MzU , and U is covered by open sets Ui each with an
isometry φi : pFi, gFiqˆ pVi, gViq Ñ pUi, g|Uiq, where pFi, gFiq is flat and of dimension ě 1, and the
spinor s is ∇SM -parallel in the directions pφiq˚pvq where v P TFi. In short, pM, gq is a torsion-free
G2-manifold away from U with parallel spinor s, and on U , the metric g locally splits off a flat factor,
and s is parallel with respect to this flat factor. As in the definition of flat factor equivalence, it suffices
to consider pF, gF q “ pI, dt2q for intervals I Ă R.

Proposition 6.1. Suppose pM, g, sq is torsion-free up to flat factors. Then

νpM, g, sq “ 3ηpBM q ´ 24ηpDM q.

Proof. For simplicity we assume that the open covering tUiu consists only of U , and that pF, gF q is
isometric to an interval pI, dt2q. The computation is local on M and the general case easily follows.
We let v P ΓpTM |U q be the vector field on U induced by B{Bt. Thus pM, g, sq has ∇SMs “ 0 on
MzU , and ∇SMv s “ 0 on U . By (12) it suffices to show

ş

M s˚ψp∇SM , gSM q “ 0. First,
ż

MzU
s˚ψp∇SM , gSM q “ 0

because s˚ψp∇SM , gSM q|MzU “ 0, as explained in [CGN18a, Lemma 1.3]. The argument is as
follows. In the expression (13), the terms RSM , ∇SMs and }s}2 have their degrees with respect to
Λ˚SM given by 2, 1 and 0, respectively. As ∇SMs “ 0 on MzU , it follows that the exponential in
(13) is of even degree. This is multiplied by s, yielding an expression of odd degree in Λ˚SM . As
rankpSMq “ 8, the Berezin integral vanishes, implying s˚ψp∇SM , gSM q|MzU “ 0.

Next, we similarly claim that the Mathai–Quillen term vanishes over U :
ż

U
s˚ψp∇SM , gSM q “ 0 (15)

In contrast to the argument above, it is no longer necessarily true that s˚ψp∇SM , gSM q|U “ 0.
However, as the contraction of RSM with v is zero, and ∇SMv s “ 0, from (13) we easily see that the
contraction of the differential form s˚ψp∇SM , gSM q with v is zero. This implies that the top degree
term of this differential form vanishes on U , from which (15) follows.
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The manifolds pM, gtq defined by Joyce with closed G2-structures φt, obtained by resolving an
orbifold T 7{Γ satisfying Hypothesis 2.1, are torsion-free up to flat factors.

Corollary 6.2. Let pM, gtq for t P p0, εs be a resolution of a flat G2-orbifold T 7{Γ satisfying Hy-
pothesis 2.1, with closed G2-structure φt as defined by Joyce. Then

νpM,φtq “ 3ηpBpM,gtqq ´ 24ηpDpM,gtqq. (16)

If pM, gq is a torsion-freeG2-manifold obtained from pM, gt, φtq for t ! ε then νpM, gq ” νpM,φtq.

Proof. Equation (16) follows from Proposition 6.1 and the observation that pM, gt, φtq is torsion-
free up to flat factors. The G2-structures φt for t P p0, εs are all homotopic, with homotopies given
by the parameter t. As the ν-invariant is invariant under homotopies of G2-structures, νpM,φtq is
independent of t P p0, εs. For small enough t, there exists a torsion-free G2-structure pM, g, φq with
}φt´φ}C0 ď Kt1{2 for some constant K independent of t, see [Joy00, Section 11.6]. Thus for small
enough t, φ is homotopic to φt, and hence νpM,φq ” νpM,φtq.

Proof of Theorem 1.2. Combine Corollary 6.2, equation (14), Propositions 4.2 and 5.3, and the fol-
lowing well-known observation, which has already been mentioned above: for a closed Riemannian
manifold M with holonomy contained in G2, we have hpDM q “ 1 ` b1pMq. This is because the
G2-structure induces an identification of the spinor bundle with R ‘ T ˚M , and for closed Ricci-flat
manifolds, 1-forms are parallel if and only if they are harmonic. This readily adapts to the orbifold
setting, so that hpDOq “ 1` b1pOq.

In fact, from Propositions 5.3 and 5.5 we have the following extension.

Proposition 6.3. Under Hypothesis 2.1 with spin isometries, the congruence (2) of Theorem 1.2 holds
modulo 24. In Situation 5.4, Theorem 1.2 continues to hold, i.e. (2) holds modulo 48.

7 Computations

We now use Theorem 1.2 and its extensions to compute ν for many of Joyce’s G2-manifolds. Let
O “ T 7{Γ be a flat G2-orbifold. To compute ν using (2) it suffices to compute ηpBOq and ηpDOq
(mod 2Z), which are averages of the equivariant invariants ηγpBT 7q and ηγpDT 7q, as seen in (4). A
summary of our computations is given by Figure 3.

7.1 Examples with vanishing η-invariants

The first class of orbifolds considered by Joyce in [Joy96] are as follows. Let T 7 “ R7{Z7. This has
a flat G2-structure induced by the 3-form

φ “ dx127 ` dx136 ` dx145 ` dx235 ´ dx246 ` dx347 ` dx567 (17)

where xi are coordinates on R7 and dxijk “ dxidxjdxk. Let α, β, γ be the involutions

αpx1, . . . , x7q “ p´x1,´x2,´x3,´x4, x5, x6, x7q

βpx1, . . . , x7q “ pb1 ´ x1, b2 ´ x2, x3, x4,´x5,´x6, x7q

γpx1, . . . , x7q “ pc1 ´ x1, x2, c3 ´ x3, x4, c5 ´ x5, x6,´x7q
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where b1, b2, c1, c3, c5 P t0, 1{2u are fixed. These involutions preserve φ and generate a group
isomorphic to pZ{2q3. Examples 1–5 of [Joy96] are obtained from resolutions of O “ T 7{Γ for
subgroups Γ Ă xα, β, γy with b1, b2, c1, c3, c5 fixed constants. The orientation-reversing isometry
px1, . . . , x7q ÞÑ p´x1, . . . ,´x7q commutes with α, β, γ and reflects the eigenspaces of the Dirac
operator. Thus ηgpBT 7q “ ηgpDT 7q “ 0 for all g P xα, β, γy, implying ηpBOq “ ηpDOq “ 0.
Example 6 of [Joy96] includes a generator sending px1, . . . , x7q to p1

2 ` x1, x2,
1
2 ` x3,

1
2 ` x4,

1
2 `

x5, x6, x7q; this also commutes with the above reflection, so the same holds in this case.
For each of these examples, the singular set ofO is a disjoint union of T 3 and T 3{Z{2 where Z{2

acts by py1, y2, y3q ÞÑ p1
2 ` y1,´y2,´y3q. Thus Hypothesis 2.1 with spin isometries is satisfied, and

by Proposition 6.3, we conclude that Examples 1–6 of [Joy96] have ν ” 0 (mod 24).
We next consider ν (mod 48). Each neighborhood of T 3 is resolved using an Eguchi–Hanson

space, and each neighborhood of T 3{Z{2 is resolved using an Eguchi–Hanson space with Z{2-action,
of which there are two choices. Let ` be the number of resolutions of one of these distinguished
choices. If ` is even, we are in Situation 5.4, and by Proposition 6.3, we conclude that Examples 1–6
[Joy96] with ` ” 0 (mod 2) have ν ” 24p1 ` b1q (mod 48). Note that all examples have b1 “ 0
except for Examples 1 and 2, which have b1 “ 3 and b1 “ 1, respectively; these two examples have
holonomy groups strictly smaller than G2.

7.2 Donnelly’s formula for ηpBOq

Before proceeding to the next examples, we make some remarks. The torus T 7 “ R7{Λ admits an
orientation-reversing spin isometry, induced by negation on R7, so ηpBT 7q “ ηpDT 7q “ 0. Next,
suppose γ P Γ has non-empty, proper fixed point set F . Then F is isometric to either a 1-torus or a
3-torus. In each of the examples we consider, it is easy to find an orientation-reversing isometry of F
that extends to T 7 which commutes with γ. Thus we may write

ηpBOq “
1

|Γ|

ÿ

γPΓ
Fixpγq“H

ηγpBT 7q

(In our examples this follows also from direct computation.) To compute each term ηγpBT 7q for
our next set of examples, we describe a situation considered by Donnelly [Don78]. Assume T 7 is
isometric to T 6 ˆ S1, i.e. the lattice Λ Ă R7 defining T 7 “ R7{Λ splits off an orthogonal rank 1
summand, so that Λ “ Λ1 ‘ Z for some rank 6 lattice Λ1 Ă R6. Suppose for γ P Γ we have

γpx, yq “ pAx` c, y ` dq (18)

where y P S1 “ R{Z and x P T 6. Here A acts linearly and orthogonally on R6 preserving Λ1,
conjugate to the direct sum of three rotation matrices with angles γ1, γ2, γ3, while c P T 6 and d P S1.
If A has eigenvalues ˘1 or d “ 0 P S1 then ηγpBT 7q “ 0. Otherwise we have

ηγpBT 7q “ νpγq cotpπdq cotpγ1{2q cotpγ2{2q cotpγ3{2q

where νpγq is the number of fixed points of the extension of γ to T 6ˆD2. This result is only a slight
extension of [Don78, Proposition 4.7], and follows by applying the equivariant Atiyah–Patodi–Singer
theorem to γ acting on T 6 ˆD2. Then for O “ T 7{Λ we may write

ηpBOq “
1

|Γ|

ÿ

γPΓ
Fixpγq“H

νpγq cotpπdq
3
ź

i“1

cotpγi{2q. (19)
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Donnelly’s method may be adapted to compute spin Dirac eta invariants, modulo 2Z, but not nec-
essarily for the spin structure we want. We thus describe a more direct method which in addition
computes the real number ηpDOq.

7.3 Direct computations for ηpDOq

Spinors on O are Γ-invariant spinors on T 7, which in turn are Λ-invariant spinors on R7. Following
an observation which goes back to Friedrich [Fri84], the determination of eigenspinors forO quickly
becomes representation-theoretic. A direct computation of ηpDOq in this fashion is nearly contained
in [MP06], which considers the case in which O is smooth, but the arguments carry over to the
orbifold case without difficulty. Further, as we are not considering a twisted Dirac operator, and
our spin structures are naturally induced by G2-structures, our situation is considerably simpler. We
review the key aspects, leaving only a few details to [MP06].

First, we describe eigenspaces of the Dirac operator acting on T 7 “ R7{Λ. Let S denote the
8-dimensional complex spinor representation of Spinp7q, equipped with a Hermitian inner product
x¨, ¨y for which Clifford multiplication is skew-Hermitian. For u P Λ˚ and w P S consider the spinor
fu,w : T 7 Ñ S given by fu,wpxq “ e2πixu,xyw. Write D “ DT 7 for the Dirac operator. Then

Dfu,wpxq “
7
ÿ

j“1

ej ¨
B

Bxj
fu,wpxq “ 2πiu ¨ fu,wpxq.

The Clifford relation u2 “ ´|u|2 implies Clifford multiplication on S by u has eigenvalues ˘i|u|.
Write S˘u for the¯i|u|-eigenspaces. Then for w P S˘u we have Dfu,w “ ˘2π|u|fu,w. By the Stone–
Weierstrass Theorem, the spinors fu,w for u P Λ˚ and w ranging over bases of S˘u give a complete
orthogonal system of L2pT 7;Sq. Thus the eigenspaces of D are E˘µ where

E˘µ “ tfu,w : u P Λ˚, µ “ 2π|u|, w P S˘u u.

In fact, as the model case with u a multiple of e1 shows, S`u and S´u both have dimension 4 when
u ‰ 0, and we recover the fact that the spectrum of D is symmetric.

Now we turn to O “ T 7{Γ. Because the action of Γ on T 7 respects its G2-structure, we have an
induced action on S, to be described shortly, and a resulting action on spinors f defined by pγfqpxq “
γfpγ´1xq. Write Λ˚µ “ tu P Λ˚ : µ “ 2π|u|u andE˘u “ tfu,w : w P S˘u u so thatE˘µ “ ‘uPΛ˚

µ
E˘u .

Fix u and let s˘k be an orthonormal basis for S˘u . Then for γ P Γ we compute

Trpγ|E˘
u
qvolpT 7q “

ÿ

k

xγfu,s˘
k
, fu,s˘

k
yL2 “

ÿ

k

xγs˘k , s
˘
k y

ż

T 7

e2πixu,γ´1xy´2πixu,xy (20)

Write γx “ Bx` b where B is a linear map and b P T 7. Noting γ´1x “ B´1x´B´1b, the integral
on the right hand side of (20) is equal to δBu,uvolpT 7qe´2πixu,by. From this we obtain

Trpγ|E˘µq “
ÿ

uPpΛ˚
µq
B

Trpγ|E˘
u
q “

ÿ

uPpΛ˚
µq
B

e´2πixu,byTrpγ|S˘
u
q

Now we focus on Trpγ|S˘
u
q. We begin by describing S more explicitly. First, we recall that the 3-

form φ defining the G2-structure on R7 determines a cross-product pu, vq ÞÑ u ˆ v via the relation
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φpu, v, wq “ xu ˆ v, wy. We extend the cross-product complex linearly to C7. We then define
S “ pR‘ R7q b C, and Clifford multiplication for u P R7 and pλ, vq P C‘ C7 “ S by

u ¨ pλ, vq “ p´xv, uy, λu` uˆ vq,

where x¨, ¨y is the standard Hermitian inner product on S “ C8; compare [SW17, Section 10.2]. Let
e1, . . . , e7 be the standard basis for R7. With φ as in (17), we compute that

s˘0 “ p1,˘ie7q{
?

2, s˘1 “ p0, e1 ˘ ie2q{
?

2, (21)

s˘2 “ p0, e3 ˘ ie4q{
?

2, s˘3 “ p0, e5 ˘ ie6q{
?

2

form an orthonormal basis for S˘u for u ‰ 0 a real positive multiple of e7. If u is a negative multiple
of e7 then these form bases for S¯u . Note that γ P Γ acts on S by γpλ, vq “ pλ,Bvq. The rotation part
of γ, written here as B, may be conjugated in Spinp7q to an element B1 that fixes e7 and rotates the
pek, ek`1q plane by an angle γk for k P t1, 2, 3u, where γ1`γ2`γ3 ” 0 (mod 2π). Also suppose that
u, after the conjugation, is a real multiple of e7, and let εu “ signpu{e7q P t˘1u. Then B1s˘0 “ s˘0
and B1s˘k “ e¯iγks˘k for k P t1, 2, 3u, so that

Trpγ|S`
u
q ´ Trpγ|S´

u
q “ εu

3
ÿ

k“1

e´iγk ´ eiγk “ ´2iεu

3
ÿ

k“1

sinpγkq.

Recalling that ηγpDT 7qpsq “
ř

˘µ‰0˘Trpγ|E˘µq|µ|
´s we obtain the formula

ηγpDT 7qpsq “ ´2ip2πq´s
ÿ

uPpΛ˚z0qB

|u|´se´2πixu,byεu

3
ÿ

k“1

sinpγkq. (22)

In our next set of examples, every u P pΛ˚z0qB for γ with Fixpγq “ H is an integral multiple of
e7, and this formula simplifies considerably. Note that ε´u “ ´εu. We also mention that the same
approach described here may be used to compute the odd signature η-invariant.

7.4 Dihedral examples

We now consider Examples 7–14 of [Joy96]. The general setup is as follows. Let z1, z2, z3 be
coordinates for C3 and x for R. Let Λ1 Ă C3 be a rank 6 lattice. Then the 7-torus T 7 “ C3ˆR{Λ1ˆZ
has a flat G2-structure induced by the 3-form

φ “ ω ^ dx` ImpΩq

where ω “ i
2

ř3
k“1 dzkdzk and Ω “ dz1dz2dz3. Let u and v be complex roots of unity, and a the

smallest positive integer such that ua “ va “ 1. Let α and β be the isometries of C3 ˆ R defined by

αpz1, z2, z3, xq “ puz1, vz2, uvz3, x`
1
aq

βpz1, z2, z3, xq “ p´z1,´z2,´z3,´xq

If α and β preserve Λ1, they descend to isometries on T 7 that preserve φ. They satisfy αa “ β2 “ 1
and αβ “ βα´1, and thus generate a dihedral group of order 2a:

Γ :“ xα, βy “
 

1, α, α2, . . . , αa´1, β, βα, βα2, . . . , βαa´1
(

(23)
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The elements βαj all have nonempty fixed point sets, while αj for j ı 0 (mod a) has no fixed
points. If we write α as in (18), then c “ 0 and d “ 1{a, and the rotation angles θ1, θ2, θ3 of
A are determined by u “ eiθ1 , v “ eiθ2 and θ1 ` θ2 ` θ3 ” 0 (mod 2π). Upon computing
νpαjq “ detp1´Ajq “ 64

ś3
k“1 sin2pjθk{2q, from (19) we obtain

ηpBOq “
4

a

a´1
ÿ

j“1

cotpjπ{aq
3
ź

k“1

sinpjθkq

“ ´
1

a

a´1
ÿ

j“1

cotpjπ{aq
3
ÿ

k“1

sinp2jθkq “ 2
3
ÿ

k“1

ppθk{πqq. (24)

The second equality follows from the elementary identity´4
ś3
k“1 sinpθkq “

ř3
k“1 sinp2θkq, which

holds whenever θ1 ` θ2 ` θ3 ” 0 (mod 2π), and the third equality follows from the classical identity
of Eisenstein [Eis44], which says that ´ 1

2a

řa´1
j“1 cotpπj{aq sinp2πjx{aq “ ppx{aqq where pptqq “

t´ rts ´ 1{2 if t R Z and pptqq “ 0 otherwise. Let us normalize the angles θj such that θj P r0, 2πq
for each j. Then equation (24) yields

ηpBOq “

$

’

&

’

%

`1, θi ă π for i “ 1, 2, 3

´1, θi ą π for some i
0, θi P t0, πu for some i

(25)

We now turn to the Dirac eta invariants. In (22), when γ “ αj every u P pΛ˚qB is an integer multiple
of e7. We sum over u “ ˘ne7 with n P Zą0 and εu “ ˘1 to obtain

ηαj pDT 7qpsq “ ´4p2πq´s
8
ÿ

n“1

1

ns
sinp2πjn{aq

3
ÿ

k“1

sinpjθkq. (26)

The function
ř8
n“1 sinp2πjn{aqn´s is the imaginary part of the polylogarithm Lspzq “

ř8
n“1 z

n{ns

evaluated at z “ e2πij{a. Using the identity L0pzq “ z{p1´ zq, we evaluate (26) at s “ 0:

ηαj pDT 7q “ ´2 cotpπj{aq
3
ÿ

k“1

sinpjθkq.

Finally, taking the average over the equivariant η-invariants we obtain

ηpDOq “ ´
1

a

a´1
ÿ

j“1

cotpπj{aq
3
ÿ

k“1

sinpjθkq “

#

´1, θi ı 0 pmod 2πq for i “ 1, 2, 3

0, otherwise
(27)

where the second equality follows again from Eisenstein’s identity. We may now compute the ν-
invariants of the torsion-freeG2-manifolds pM,φq as constructed in Examples 7–14 of [Joy96]. Each
of these satisfies Hypothesis 1.1, and is either constructed from a dihedral orbifold as just described,
or is a finite quotient thereof.

Example 7 of [Joy96]. This example has a “ 3, u “ v “ e2πi{3 and Λ1 “ Z3 ‘ e2πi{3Z3 Ă C3. Thus
θ1 “ θ2 “ θ3 “ 2π{3. Then (25) and (27) yield ηpBOq “ 1 and ηpDOq “ ´1. For the resulting
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Ex. No. |Γ| π1 b2 b3 ηpBM q ηpDM q ν (mod 48)
7 6 0 5 13 1 ´1 3
8 12 0 3 11 ´1 ´1 45
9 8 0 11 36 0 ´1 0
10 16 Z{2 6 21 0 ´1 0
11 12 0 4 17 0 ´1 0
12 24 Z{2 2 11 0 ´1 0
13 14 0 2 10 ´1 ´1 45
14 18 0 2 10 1{3 ´1{3 33

Table 1: ν invariants for Examples 7–14 of [Joy96]. Here η :“ η (mod 2Z).

resolution torsion-free G2-manifold pM,φq we have νpM,φq ” 3 (mod 48).

Example 8 of [Joy96]. Here a “ 6, u “ v “ eπi{3 and Λ1 is as in Example 7. Thus θ1 “ θ2 “ π{3
and θ3 “ 4π{3. Then ηpBOq “ ηpDOq “ ´1, and νpM,φq ” 45 (mod 48).

Example 9 of [Joy96]. Here a “ 4, u “ v “ i and Λ1 “ Z3 ‘ iZ3 Ă C3. Thus θ1 “ θ2 “ π{2 and
θ3 “ π. Then ηpBOq “ 0, ηpDOq “ ´1, and νpM,φq ” 0 (mod 48).

Example 10 of [Joy96]. This is obtained from Example 9 by incorporating the involution γ defined by
pz1, z2, z3, xq ÞÑ pz1, z2, z3 `

1`i
2 , xq. Thus the computations are slightly different: when averaging

over the equivariant η-invariants, in addition to the terms associated to αj are those associated to γαj .
It is easily verified that ηγαj pBT 7q “ ηαj pBT 7q, and similarly for the Dirac operator. As the size of
our group has doubled, we obtain the same results as in Example 9.

Example 11 of [Joy96]. This example has a “ 6, u “ eπi{3, v “ e2πi{3 with corresponding lattice
Λ1 “ pZ‘ e2πi{3Zq‘ pZ‘ e2πi{3Zq‘ pZ‘ iZq Ă C3. Thus θ1 “ π{3, θ2 “ 2π{3, θ3 “ π. We have
ηpBOq “ 0, ηpDOq “ ´1 and νpM,φq ” 0 (mod 48).

Example 12 of [Joy96]. This is obtained from Example 11 by incorporating the involution defined in
Example 10, and yields the same results as in Example 11, similar to Example 10.

Example 13 of [Joy96]. This has a “ 7, u “ e2πi{7, v “ u2 and

Λ1 “ xpuj , u2j , u4jq P C3 : j “ 1, 2, 3, 4, 5, 6y.

Thus θ1 “ 2π{7, θ2 “ 4π{7, θ3 “ 8π{7; thus ηpBOq “ ηpDOq “ ´1, and νpM,φq ” 45 (mod 48).

Example 14 of [Joy96]. Consider the dihedral group xα, βy defined in Example 7, and adjoin to it
γpz1, z2, z3, xq “ pe2πi{3z1, e

4πi{3z2, z3 ` i{
?

3, xq. Then α and γ commute, while γβ “ βγ´1.
Thus Γ “ xα, β, γy is a group of order 18. The elements with fixed points are βαjγk. In addition,
the elements g “ αjγk with k P t1, 2u have ηgpBOq “ 0 and ηgpDT 7q ” 0 (mod 2Z), as each
such g has more than one `1 eigenvalue in its associated rotation matrix A from (18). Thus the
computations of the η-invariants differ from Example 7 only in that |Γ| “ 18 instead of |Γ| “ 6. We
have ηpBOq “ 1{3 and ηpDOq “ ´1{3, implying ν ” 33 (mod 48).
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Figure 3: This is a variant of [Joy96, Table 2] listing the betti numbers b2, b3 of all the closed
manifolds constructed in [Joy96] with holonomy G2. Our computations are: : ν ” 0 (mod 48);

: ν ” 0 (mod 24); : ν ” 24 (mod 48); : ν ” 3 (mod 48); : ν ” 45 (mod 48); : there
are two G2-manifolds here, with ν ” 45 and ν ” 33 (mod 48). Some nodes have more than one
manifold; apart from , the values of ν hold for all G2-manifolds from [Joy96] at the given node.

7.5 A few more examples

The remaining examples in [Joy96] satisfy Hypothesis 2.1 with spin isometries, and thus by Propo-
sition 6.3 we may compute ν (mod 24). In fact, the orientation-reversing isometry px1, . . . , x7q ÞÑ

p´x1, . . . ,´x7q is well-defined on O “ T 7{Λ for each of Exs. 15–18 of [Joy96], and commutes
with Γ in each case. Thus ηγpBOq “ 0 and ηγpDOq ” 0 (mod Z) for each γ P Γ, the latter holding
because the isometry reverses the Dirac spectrum. Thus ν ” 0 (mod 24) for Exs. 15–18 of [Joy96].
A summary of all our computations is represented in Figure 3.

8 Twisted connected sum type decompositions

Here we explain another route to some of the above computations. The starting point is as follows:
suppose we can realize a given Joyce orbifold O “ T 7{Γ as a union

O “ O` YO´ (28)

where O˘ are orbifolds with (smooth) boundaries whose collar neighborhoods are isometric to T 6 ˆ

r´ε, εs, and O is obtained by gluing along the T 6 boundaries. See Figure 4. This is similar to the
twisted connected sum picture, with cross-section T 6 replacing K3 ˆ T 2. Assume b1pOq “ 0, and
that O satisfies Hypothesis 1.1 or one of its variations. Then we have shown that the resolution
G2-holonomy manifold pM, gq as constructed by Joyce has ν-invariant given by

νpM,φgq ” 3ηpBOq ´ 24ηpDOq ` 24 mod 48

Instead of computing the terms directly for O as before, we may apply gluing formulas for ηpBOq
and ηpDOq using the decomposition (28). We first explain this for the signature operator term.
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O`

T 6 ˆ r´ε, εs

O´

Figure 4: A twisted connected sum type decomposition of O.

Write L˘ Ă H3pT 6q for the two Lagrangians given by the images of H3pO˘q Ñ H3pT 6q.
Assume O˘ each admit an orientation-reversing isometry. Then Theorem 4.3 yields

ηpBOq “ mpL`, L´;H3pT 3qq

as the relative η-invariants vanish by spectral symmetry. The Maslov index is computed as follows,
see [CGN18a, Section 4.2]. Let A˘ be the isometries of H3pT 6q which anticommute with the Hodge
star whose 1-eigenspaces are L˘. Let E´ Ă H3pT 6;Cq be the p´iq-eigenspace of the Hodge star.
Write the eigenvalues of ´A`A´|E´

as eiφ1 , . . . , eiφ10 where φj P p´π, πs. Then:

mpL`, L´;H3pT 6qq “ ´
ÿ

φj‰π

φj
π

(29)

We apply this to some of the dihedral examples from Section 7.4, so that O “ T 7{Γ where Γ is
the dihedral group (23). Here we have a decomposition as in (28) with

O` “
`

T 6 ˆ r´ 1
4a ,

1
4a s

˘

{β, O´ “
`

T 6 ˆ r 1
4a ,

3
4a s

˘

{αβ

This was pointed out to the author by Sebastian Goette and Johannes Nordström. Write the coordi-
nates of T 6 as pz1, z2, z3q as in Section 7.4. We may identify H3pT 6q “ H3pT 6;Rq with the Hodge
groups H3,0pT 6q ‘H2,1pT 6q Ă H3pT 6;Cq. Concretely,

H3pT 6q “
à

jk`PS

R ¨ Repdzjk`q ‘ R ¨ Impdzjk`q

where S “ t123, 123, 123, 123, 112, 113, 122, 223, 133, 233u. The Lagrangian L` is the subspace of
H3pT 6q invariant under β. We compute

L` “
à

jk`PS

R ¨ Impdzjk`q

Similarly, L´ is the subspace invariant under αβ. It is spanned by Impdz123q, the 3 elements

Impe´iθjdzjk`q “ cospθjqImpdzjk`q ´ sinpθjqRepdzjk`q
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where j, k, ` P t1, 2, 3u are distinct, and the 6 elements

Impeiθk{2dzjjkq “ cospθk{2qImpdzjjkq ` sinpθk{2qRepdzjjkq

where j, k P t1, 2, 3u are distinct. Note each of L˘ is 10-dimensional, coherent with the fact that they
are Lagrangian subspaces inside the 20-dimensional space H3pT 6q.

Turning to the Maslov index, a computation from the above description shows that the 10 eigen-
values of ´A`A´|E´

are ´1, ´e´2iθj , where j P t1, 2, 3u, and 3 conjugate pairs. Thus (29) is

´

3
ÿ

j“1

φj
π

where φj is the value in p´π, πs equal to π ´ 2θj modulo 2π, as long as all θj R t0, πu; otherwise
(29) is zero. This is the same as expression (25), our previous computation of ηpBOq. In particular,
we recover ηpBOq for Examples 7, 8, 9, 11, 13 of [Joy96], previously computed in Table 1.

The same procedure can be carried out for the spin Dirac invariant ηpDOq. Assume, as is the
case in the above examples, that O˘ admit orientation-reversing spin isometries. Then the relative
η-invariants vanish, and the gluing formula [Bun95, Theorem 1.8] yields

ηpDOq ” mpS`, S´;ST 6q mod Z

Here ST 6 is the space of harmonic spinors on the cross-section T 6, which may be identified with
parallel spinors on T 6 ˆ p´ε, εq. The subspaces S˘ consist of those spinors that extend to (orbifold)
harmonic spinors over O˘. The space ST 6 may be identified with the Spinp6q representation R ‘
R7 obtained by restriction from the Spinp7q representation in Section 7.3. As before, ei are the
standard basis vectors for R7. Clifford multiplication by e7 plays the role of the Hodge star here. The
Lagrangian S` is the β-invariant subspace, which is spanned by

p1, 0q, p0, e2q, p0, e4q, p0, e6q.

Next, S´ is the αβ-invariant subspace, spanned by p1, 0q P ST 6 “ R‘ R7 and the 3 elements

p0,´ sinpθ1{2qe1 ` cospθ1{2qe2q,

p0,´ sinpθ2{2qe3 ` cospθ2{2qe4q,

p0,´ sinpθ3{2qe5 ` cospθ3{2qe6q.

The p´iq-eigenspace E´ Ă ST 6 bC in this case is spanned by s`j for j P t1, 2, 3, 4u, from (21). The
matrix ´A`A´|E´

has the 4 eigenvalues ´1 and eipπ´θjq for j P t1, 2, 3u. Then

mpS`, S´;ST 6q “ ´

3
ÿ

j“1

π ´ θj
π

“ ´1

as long as the θj are not all in 2πZ, and otherwise it vanishes. This recovers (27) modulo Z, although
we see that the answers agree as integers as well, which suggests that the mod Z restriction on the
gluing formula may not be neccessary in this setting.
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