
ON DEFINITE LATTICES BOUNDED BY INTEGER SURGERIES ALONG

KNOTS WITH SLICE GENUS AT MOST 2

MARCO GOLLA AND CHRISTOPHER SCADUTO

Abstract. We classify the positive definite intersection forms that arise from smooth 4-manifolds
with torsion-free homology bounded by positive integer surgeries on the right-handed trefoil. A

similar, slightly less complete classification is given for the (2, 5)-torus knot, and analogous results

are obtained for integer surgeries on knots of slice genus at most two. The proofs use input from
Yang–Mills instanton gauge theory and Heegaard Floer correction terms.

1. Introduction

A lattice is a free abelian group of finite rank equipped with a symmetric bilinear form. A lattice
is integral if the pairing has values in Z. Let Y be a rational homology 3-sphere, that is, a closed,
oriented and connected 3-manifold with b1(Y ) = 0. Let X be a smooth, compact and oriented 4-
manifold bounded by Y with no torsion in its homology. The intersection of 2-dimensional cycles in
X induces the structure of an integral lattice on H2(X;Z), which we denote by LX , the intersection
form of X. This situation is summarized in:

Definition 1.1. We say a rational homology 3-sphere Y bounds a lattice L and that L fills Y if
L = LX for a smooth, compact, oriented 4-manifold X with no torsion in its homology and ∂X = Y .

What are the possible definite fillings of a fixed rational homology 3-sphere Y ? When Y is the
3-sphere, Donaldson’s Theorem [Don86] says any such filling is diagonal. When Y is the Poincaré
sphere, Frøyshov’s Theorem [Frø95] says the only such non-diagonal fillings are −E8⊕〈−1〉k. These
theorems are reproved in [Scab], where further results in this direction are provided, all for integer
homology 3-spheres. The purpose of the current article is to provide analogous results for when Y
has non-trivial first homology, and in particular when Y is a positive, integral surgery along a knot.
For a knot K in the 3-sphere, write S3

n(K) for n-surgery on K.

Theorem 1.2. (i) Let K ⊂ S3 be a knot of slice genus at most 1, and n ∈ Z>0. If a positive definite
lattice fills S3

n(K), then it is isomorphic to one of the following, for some k > 0:

n = 1 : 〈1〉k or E8 ⊕ 〈1〉k

n = 2 : 〈2〉 ⊕ 〈1〉k or E7 ⊕ 〈1〉k

n = 3 : 〈3〉 ⊕ 〈1〉k or E6 ⊕ 〈1〉k

n = 4 : 〈4〉 ⊕ 〈1〉k or D5 ⊕ 〈1〉k

n = 5 : 〈5〉 ⊕ 〈1〉k or A4 ⊕ 〈1〉k

n = 6 : 〈6〉 ⊕ 〈1〉k or A1 ⊕A2 ⊕ 〈1〉k

n = 7 : 〈7〉 ⊕ 〈1〉k or Λ(2, 4)⊕ 〈1〉k

n > 8 : 〈n〉 ⊕ 〈1〉k

(ii) Furthermore, when the knot is the right-handed trefoil, all of these possibilities are realized.

Here we write An (n > 1), Dn (n > 4), and E6, E7, E8 for the positive definite root lattices
corresponding to Dynkin diagrams of type ADE, and 〈n〉 for the rank one lattice generated by a
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vector v with v · v = v2 = n. Note that A1 = 〈2〉. We write Λ(a1, . . . , an) for the linearly plumbed
lattice with basis e1, . . . , en whose only nonzero pairings are ei · ei+1 = −1 for 1 6 i 6 n − 1 and
ei · ei = ai for 1 6 i 6 n. When a1 = · · · = an = 2 we recover An.

The lattices in the right-hand column of Theorem 1.2 are obtained by starting with a root diagram
for E8 and successively plucking off the last root from the end of the long leg, as in Figure 1. The
exception to this procedure is passing from A1 ⊕A2 to Λ(2, 4).

T1

E8

T2

E7

T3

E6

T4

D5

T5

A4

T6

A1 ⊕A2

T7

4

Λ(2, 4)

Figure 1. The trefoil lattices Tn.

A description of this process in terms of successively taking orthogonal complements of vectors
of squared norm n(n+ 1) is given in Section 2. We next provide a partial analogue of Theorem 1.2
for knots of slice genus at most 2, building on the main result of [Scab].

Theorem 1.3. (i) Let K ⊂ S3 be a knot of slice genus at most 2, and n ∈ Z>0. If a positive
definite lattice fills S3

n(K), then it is either isomorphic to a lattice in Theorem 1.2 (i), or to one of
the following lattices, for some k > 0:

Cn ⊕ 〈1〉k (1 6 n 6 11), E8 ⊕ 〈2〉 ⊕ 〈1〉 ⊕ 〈1〉k (n = 2), E8 ⊕ 〈3〉 ⊕ 〈1〉k (n = 3),

or possibly Γ12 ⊕ 〈n〉 ⊕ 〈1〉k with n ∈ {2, 3}. Here Cn for 1 6 n 6 11 are the lattices defined by the
plumbing diagrams in Figure 2 below.
(ii) Furthermore, when the knot is the right-handed cinquefoil, i.e. the positive (2, 5)-torus knot, all
of these possibilities are realized, except possibly Γ12 ⊕ 〈n〉 ⊕ 〈1〉k where n ∈ {2, 3}.

3 3 3 3 3 3 3 3 3 3 3
4

C1 = Γ12 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Figure 2. The cinquefoil lattices Cn.

The lattice Cn is the positive definite lattice of determinant n and rank 13 − n formed from the
above indicated graph with n vertices; the basis vectors are indexed by the vertices, with squared
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norm indicated by the weights. Two vectors have pairing −1 if their vertices are connected by
an edge, and 0 otherwise. Unmarked vertices have weight 2. The lattice C1 is the unique positive
definite indecomposable unimodular lattice of rank 12, and is called Γ12. Note also C9 = Λ(3, 2, 2, 2),
C10 = A1 ⊕ Λ(2, 3) and C11 = Λ(3, 4).

Theorem 1.3 is incomplete in that the authors do not know if the lattices Γ12 ⊕ 〈n〉 ⊕ 〈1〉k with
n ∈ {2, 3} ever occur under the given hypotheses. The obstructions used in this article do not rule
these out, but constructions have not yet been found (see Section 4.4).

The case n = 1 in Theorem 1.2 is a generalization of Frøyshov’s Theorem, as given in [Scab],
while the case n = 1 in Theorem 1.3 follows from [Scab, Theorem 1.1]. The cases n > 8 in Theorem
1.2 and n > 12 in Theorem 1.3, for which only 〈n〉 ⊕ 〈1〉k occur, also follow by a computation of
d-invariants and a theorem of Owens and Strle [OS12b]; we give a different argument.

The problem of existence of negative definite fillings for positive surgeries on knots, without the
assumption of having torsion-free homology, was studied by Owens and Strle [OS12a]; among other
things, they give explicit necessary and sufficient conditions for a Dehn surgery along a torus knot
to bound a negative definite 4-manifold. In contrast, our results concern the classification of positive
definite fillings for positive integral surgeries along certain knots. As for the results in Owens–Strle,
our results are in fact invariant under knot concordance and, more generally, integral homology
cobordism of rational homology spheres; for example, the conclusion of Theorem 1.2 (ii) holds for
any 3-manifold Y that is integer homology cobordant to S3

n(T2,3), e.g. Y is obtained as n-surgery
along a knot K concordant to T2,3.

We also observe that the assumption that the 4-manifolds have torsion-free homology in Theo-
rem 1.2 is essential: indeed, for instance, both S3

4(T2,3) and S3
9(T2,3) bound rational homology 4-balls

(e.g. see [AG17, Theorem 1.4]), which have trivial intersection form, since H2 is torsion. By means
of Kirby calculus, it is easy to exhibit such rational homology 4-balls with first homology isomophic
to Z/2Z and Z/3Z, respectively.

The main content of the article naturally falls under the purview of two headers: obstructions
and constructions. The obstructions, derived from instanton Floer and Heegaard Floer theory,
prove parts (i) of Theorems 1.2 and 1.3. In fact, the only input from instanton theory in the proof
of Theorem 1.2 (i) is the above-mentioned result [Scab, Theorem 1.3], which covers the case n = 1.
We then proceed as follows. Between two consecutive positive integer surgeries there is a 2-handle
cobordism; this allows us to argue inductively, realizing a given positive definite lattice bounded by
n-surgery as the orthogonal complement of a vector with squared norm n(n − 1) within a positive
definite lattice bounded by (n − 1)-surgery. This algebraic constraint is not enough: the Heegaard
Floer correction terms of Ozsváth and Szabó finish the job; in fact, this input is only needed for
the case n = 2. We use the surgery formula for the Ozsváth–Szabó d-invariants due to Ni and
Wu [NW15, Proposition 1.6] and an inequality of Rasmussen [Ras04, Theorem 2.3] along the way.
The proof of Theorem 1.3 (i) is similar; the only input from instanton theory is for the case n = 1,
from [Scab, Theorem 1.1], and the Heegaard Floer correction terms are used for the case n = 4.

To prove parts (ii) of Theorems 1.2 and 1.3 we construct smooth 4-manifolds with prescribed
boundary and intersection form. While the constructions realizing the lattices in Theorem 1.2 (ii)
are standard, those for some lattices in Theorem 1.3 (ii) seem new, and use ideas coming from the
topology of plane algebraic curves with cuspidal singularities.

Finally, we remark on the incompleteness of Theorem 1.3 (ii). The relevant instanton theory is
rather undeveloped for rational homology 3-spheres with non-zero H1. The authors were able to use
some of the partially developed theory from [Frø95] to define obstructions in special cases, but could
not obstruct the lattices Γ12 ⊕ 〈n〉 ⊕ 〈1〉k with n ∈ {2, 3}. It is possible that further development of
the theory yields useful obstructions not obtained in this paper.

Outline. In Section 2 we describe basic properties of the lattices Tn and Cn that appear in Theo-
rems 1.2 and 1.3. In Section 3 we use obstructions to prove parts (i) of Theorems 1.2 and 1.3, and
in Section 4 we provide our constructions to prove parts (ii) of Theorems 1.2 and 1.3.
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2. Distinguished lattices

Let L be an integral lattice. Write x ·y ∈ Z for the pairing on L applied to x, y ∈ L, and x2 = x ·x.
The dual lattice L∗ is defined to be the subset of L⊗Q consisting of vectors x such that x · y ∈ Z
for all y ∈ L. The determinant or discriminant of L is the number [L∗ : L] = |L∗/L|, and agrees
with the absolute value of the determinant of a matrix representation for the pairing defined on L.
Henceforth, a lattice should be assumed integral, unless it arises as the dual of an integral lattice.

One of the lattices that we will encounter is the odd, unimodular, indefinite lattice Ia,b; this
is diagonalizable, and more precisely it admits an orthogonal basis h1, . . . , ha, e1, . . . , eb such that
h2i = 1 and e2j = −1. If a = 1, we will simply write h instead of h1.

Let L be a positive definite lattice. We say L is reduced if it has no vectors of norm 1. We may
always write L = L′ ⊕ 〈1〉k where k > 0 and L′ is reduced; we call L′ the reduced part of L. A root
in L′ is a vector of squared norm 2. The root lattice R(L) ⊂ L′ is the sublattice generated by roots.
A classical result of Witt says any root lattice is a direct sum of the lattices An (n > 1), Dn (n > 4),
E6, E7, E8. For the basic properties of these lattices, see [CS99, Chapter 4].

A coordinate system for E8 is obtained by taking the lattice in R8 generated by (x1, . . . , x8) ∈ Z8

with
∑
xi ∈ 2Z and (1/2, . . . , 1/2). A corresponding root diagram for E8 is:

(−1/2, 1/26,−1/2)

(06,−1, 1)

(05,−1, 1, 0)

(04,−1, 1, 02)

(03,−1, 1, 03)

(02,−1, 1, 04)

(1/24,−1/24)

(0,−1, 1, 05)

Superscripts are to be interpreted as repeated entries. In the above graph, all vertices have weight
2. The lattice E8 is unimodular, i.e. det(E8) = 1.

The lattice E7 is obtained by taking the complement of (1/28) ∈ E8. A root diagram for E7 is
obtained by removing the far left node of the above graph, and det(E7) = 2. The lattice E6 is
obtained as the complement of (3/2,−1/26, 3/2) ∈ E7, a vector of squared norm 6. A root diagram
for E6 is obtained by removing the two far left nodes in the above graph for E8, and det(E6) = 3.

The lattice Dn (n > 4) is defined to be the set of (x1, . . . , xn) ∈ Zn such that
∑
xi ∈ 2Z. Writing

e1, e2, . . . for the standard orthonormal basis of Euclidean space, a root diagram for Dn is:

. . .
e1 − e2

e2 − e3

e3 − e4 en−2 − en−1

en−1 − en

en−1 + en

We have det(Dn) = 4. In fact, D∗n/Dn is isomorphic to Z/4Z if n is odd and Z/2Z ⊕ Z/2Z if n is
even. Next, D5 is isomorphic to the complement of (−3/2, 1/25,−5/2, 3/2) ∈ E6, a vector of square 12;
a basis of roots is obtained from the above graph for E8 by removing the three far left nodes.

The lattice An is the set of (x1, . . . , xn+1) ∈ Zn+1 with
∑
xi = 0. A root diagram for An is given

by n vertices in a straight line graph, represented by, say, the roots ei− ei+1 for 1 6 i 6 n. We have
det(An) = n + 1. Furthermore, A4 is isomorphic to the orthogonal complement of (2, 2, 2, 2, 2) ∈
D5, a vector of squared norm 20. Next, A1 ⊕ A2 is isomorphic to the complement of the vector
(3, 3,−2,−2,−2) ∈ A4 of squared norm 30. Finally, Λ(2, 4) is isomorphic to the complement of the
vector ((3,−3), (2, 2,−4)) ∈ A1 ⊕A2 of square 42.
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The above descriptions are unique in the following sense. Recall that we write T1, . . . ,T7 for the
above distinguished lattices E8, E7, E6, D5, A4, A1 ⊕A2,Λ(2, 4). Note det(Tn) = n. It is convenient
for the following statement to set T8 = 〈8〉.

Lemma 2.1. Let 1 6 n 6 7. If L = v⊥ ⊂ Tn, where v2 = n(n+1), det(L) = n+1, then L ∼= Tn+1.

Proof. It is well-known that the automorphism group of E8 acts transitively on roots, so the com-
plement of any root is isomorphic to E7. This covers the case n = 1. The remaining cases may be
seen directly. For example, let n = 4. A vector in D5 of squared norm 20 is equivalent to one of
(25), (4, 14), (32, 12, 0), or (4, 2, 03). The first case yields A4. For the cases (4, 14) and (32, 12, 0),
note that the complements taken within the larger lattice Z5 have determinant 20. Since v⊥ ⊂ D5

is a full-rank sublattice of this larger complement, the determinant is divisible by 20, hence cannot
be 5. For the case of (4, 2, 03) = 2(2, 1, 03), the complement in Z5 has determinant 5. As v⊥ ⊂ D5

is a proper full rank sublattice therein, its determinant must be strictly larger than 5.
The other cases are also straightforward. Alternatively, the lemma follows from Lemma 2.2 below,

which follows from the classification of positive definite integral lattices of low determinant and rank,
as given in [CS88, Table 0], and reproduced in Table 2. �

Lemma 2.2. If L is an even positive definite lattice with det(L) = 9− rk(L), then L ∼= Tdet(L).

Now we consider the lattices Cn. The unimodular lattice in this family, C1 = Γ12, may be defined
as the lattice in R12 generated by D12 along with the vector (1/2, . . . , 1/2). The plumbing description
is obtained from this by choosing the vertices to be the following vectors:

(1/212)

(−1,−1, 010)

(0, 1,−1, 09)

(02, 1,−1, 08)

(03,−1, 1, 07)

(04,−1, 1, 06)

(1,−1, 010)

(05, 1,−1, 05)

(06, 1,−1, 04)

(07, 1,−1, 03)

(08, 1,−1, 02)

(09, 1,−1, 0)

The only node not of weight 2 is the far left node of weight 3. It is convenient for the following
statement to set C12 = 〈12〉.

Lemma 2.3. Let 1 6 n 6 11. If L = v⊥ ⊂ Cn, where v2 = n(n + 1), det(L) = n + 1, and n 6= 3,
then L ∼= Cn+1. If n = 3 then L ∼= C4 or L ∼= D9. There is no v ∈ D9 with v2 = 20 and det(v⊥) = 5.

Proof. We refer again to Table 2, now for the classification of reduced positive definite integral
lattices with determinant n and rank 13− n. Note that the table only lists indecomposable lattices,
and that all lattices therein are listed by their root lattices. When the root lattice is of positive
codimension i, the symbol Oi is included in the notation. Observe that, for 2 6 n 6 8, the root
lattice of Cn is D12−n.

We start with n = 1. The lattice listed in Table 2 as D12 is none other than C1 = Γ12, and there
is only one possibility for L = v⊥; indeed, according to the table, there is a unique positive definite
lattice of rank 11 and determinant 2, D10O1, which must be isomorphic to C2. Similarly, for n = 2,
the only possibility for L is C3 = D9O1. For n = 3, however, there are several possibilities for L,
namely C4 = D8O1, D9, E7A1O1, and E8 ⊕ A1 ⊕ A1. The latter two lattices cannot occur, as E7

and E8 do not embed into D9, the root lattice of C3. To see that D9 can occur, view C3 as the
lattice generated by (1/212), (−12, 010), (1,−1, 010), . . ., (07, 1,−1, 03). Then v = (09, 23) ∈ C3 has
v2 = 12 and v⊥ ∼= D9; indeed, v⊥ is spanned by (−12, 010), (1,−1, 010), . . ., (07, 1,−1, 03).

Next, if n = 4, there are a priori two possibilities for L according to Table 2, C5 = D7O1 and E7O1.
However, the latter cannot occur, as E7 does not embed into D8, the root lattice of C4 = D8O1.
Similarly, if n ∈ {5, 6, 7, 8}, there are in each case two possibilities: for n = 5, C6 = D6O1 or E6⊕A1;
for n = 6, C6 = D5O1 or A6; for n = 7, C8 = D4O1 or D4 ⊕ A1; and for n = 8, C9 = A3O1 and
A2 ⊕ A2. In each case, the lattice listed after Cn+1 cannot occur, because it has a root lattice that
does not embed into D12−n, the root lattice of Cn.
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〈n〉

+1

n− 1

Figure 3. The surgery cobordism Wn is obtained by attaching a +1-framed meridian to
n-surgery onK (left), and the outgoing boundary ofWn is homeomorphic to (n−1)-surgery

(right).

If n = 9, then L is either C10 = A1 ⊕ Λ(2, 3) or A2O1 = Λ(2, 2, 4). We claim that the latter
lattice cannot occur. Note that C9 = Λ(2, 2, 2, 3) embeds into Z6 as the sublattice generated by
(12,−1, 03), (02, 1,−1, 02), (03, 1,−1, 0), (04, 1,−1). From this description, it is easily seen that the
vectors of squared norm 4 in C9 are in the root lattice A3 ⊂ C9. Consequently, if L were isomorphic
to Λ(2, 2, 4), then Λ(2, 2, 4) would embed into A3. However, the determinant of Λ(2, 2, 4) is 10, which
is not divisible by det(A3) = 4, a contradiction, verifying the claim.

If n = 10, then L is either C11 = O2 or A1O1 = Λ(2, 6). If the latter were to occur, it would embed
into the Λ(2, 3)-summand of C10. However, the determinant of A1O1 is 11, and is not divisible by
det(Λ(2, 3)) = 5. Thus A1O1 cannot occur. If n = 11, the only possibility for L is 〈12〉.

Finally, if v ∈ D9 with v2 = 20 and det(v⊥) = 5, then v⊥ must be one of D7O1 or E7O1. However,
the lattice C4 = D7O1 cannot occur because it is odd, while v⊥ must be even; and the lattice E7O1

cannot occur because E7 does not embed into D9. Thus there is no such vector v. �

3. Obstructions

In this section we prove Theorem 1.2 (i) and Theorem 1.3 (i). The obstructions used are introduced
in Sections 3.1–3.3, and the proofs are completed in Section 3.4. All homology groups are taken
with integer coefficients, unless specified otherwise.

Let X and Y be as in Definition 1.1, so that the intersection form LX = H2(X) fills Y . As
H2(Y ) = 0, the long exact sequence for the pair (X,Y ) yields the exact sequence

(1) 0 −→ H2(X) −→ H2(X,Y ) −→ H1(Y ) −→ H1(X)

Since H∗(X) has no torsion, the right-most map in (1) goes from the torsion group H1(Y ) to the
free abelian group H1(X), so it must be zero. The map H2(X)→ H2(X,Y ) is an isomorphism over
the rationals, and so the pairing on H2(X) may be extended as a Q-valued pairing on H2(X,Y ).
An application of Poincaré–Lefschetz duality shows that H2(X,Y ) may be identified with the dual
lattice L∗X . In this way, (1) induces an isomorphism between H1(Y ) and the discriminant group
L∗X/LX , and in particular detLX = |H1(Y )|.

3.1. Algebraic constraints from surgery cobordisms. We now discuss constraints imposed by
surgery 2-handle cobordisms. Let K be a knot in the 3-sphere, and let Yn = S3

n(K) be the result of
n-surgery on K where n ∈ Z, and Kn ⊂ Yn be the dual knot. For n > 2 there is a positive definite
surgery cobordism Wn : Yn → Yn−1 obtained by attaching a 2-handle to a meridian of the surgered
neighborhood of Kn ⊂ Yn × {1} ⊂ Yn × [0, 1] with framing +1, as in Figure 3. From the long exact
sequence of the pair (Wn, Yn), using the fact that H∗(Wn, Yn) is free abelian of rank 1, supported in
degree 2, by Poincaré–Lefschetz duality we see that the group Ln := H2(Wn), too, is free abelian of
rank 1. Observe that L∗n/Ln is isomorphic to H1(Yn)⊕H1(Yn−1), which is cyclic of order n(n− 1).
As Ln is rank 1 and positive definite, it must be isomorphic to 〈n(n− 1)〉.
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Now suppose a positive definite smooth 4-manifold X with no torsion in its homology has bound-
ary Yn. Then the Mayer–Vietoris sequence for the composite Z = X ∪Wn yields

0 −→ H2(X)⊕H2(Wn) −→ H2(Z) −→ H1(Yn) −→ 0.

Via Poincaré–Lefschetz duality we obtain an embedding of lattices LX ⊕ Ln ↪→ LZ .

Lemma 3.1. Let n > 2. Suppose S3
n(K) bounds a positive definite lattice L. Then detL = n and

L = v⊥ ⊂M where M is positive definite, fills S3
n−1(K), and v ∈M has v2 = n(n− 1).

Proof. As seen at the beginning of the section detL = n.
Suppose L = LX ; we will show we can choose M = LZ and v to be the image of the generator of

Ln under the map induced by the inclusion Wn ↪→ Z, as constructed above.
We begin by showing that Z has torsion-free homology, which shows that LZ fills Yn−1, and in

particular that detLZ = n − 1. Indeed, we can look at the long exact sequence of the pair (Z,X);
note that H∗(Z,X) = H∗(Wn, Yn) ∼= Z, supported in degree 2, by excision. Therefore, the inclusion
X ↪→ Z induces an isomorphism in degrees different from 1 and 2; in those degrees, we have:

0 −→ H2(X) −→ H2(Z) −→ H2(Z,X) −→ H1(X) −→ H1(Z) −→ 0.

However, since H2(Z,X) ∼= Z, and H2(X) has co-rank 1 in H2(Z), we immediately see that the map
H2(Z) → H2(Z,X) is surjective, hence H1(X) ∼= H1(Z); at the same time, H2(Z) sits in an exact
sequence between two free groups, hence it is itself free.

We also have that LX ⊂ v⊥ as a full rank sub-lattice, since we have an embedding LX ⊕ Ln ↪→
LZ and LX has co-rank 1 in LZ . Finally, since LZ/v

⊥ = (LZ/LX)/(v⊥/LX) and LZ/LX ∼= Z,
v⊥/LX = 0, i.e. LX = v⊥. �

Lemma 3.2. Suppose M is a lattice, v ∈M has v2 6= 0, and let d = gcd {v · w : w ∈M}. Then

det(v⊥) =
v2

d2
· det(M).

Proof. Write ` = v2 = v · v. Define N ⊂M as N = {m+ kv : m ∈ v⊥, k ∈ Z}. As v is orthogonal to
v⊥, N is isomorphic to v⊥⊕〈`〉; it follows that det(N) = ` det(v⊥). Define f : M → Z by f(w) = w·v;
then ker f = v⊥, and f(M) = dZ, while f(N) = `Z. It follows by the third isomorphism theorem
that M/N = Z/(`/d)Z, and in particular [M : N ] = `/d. We now recall that

det(N) = [N∗ : N ] = [N∗ : M∗] · [M∗ : M ] · [M : N ]

= [N∗ : M∗] · det(M) · [M : N ]

= [M : N ]2 · det(M),

from which we obtain det(v⊥) = det(N)/` = (`/d2) · det(M), as claimed. �

3.2. Heegaard Floer correction terms. We now recall the relevant background for Heegaard
Floer d-invariants defined by Ozsváth and Szabó [OS03], building on analogous work of Frøyshov in
the monopole setting [Frø96]. Each such correction term d(Y, t) ∈ Q is an invariant of (Y, t) where Y
is an oriented 3-manifold Y and t is a spinc structure for Y . Oszváth and Szábo prove the following
inequality [OS03, Theorem 9.6]: if X is a smooth, compact, oriented, positive definite 4-manifold
bounded by a rational homology 3-sphere Y , and s is a spinc structure on X, then

(2) − 4d(Y, t) > b2(X)− c1(s)2,

where t is the restriction of s to Y . A characteristic covector for a lattice L is an element ξ ∈ L∗
such that ξ · x ≡ x2 (mod 2) for all x ∈ L. Let Char(L) denote the set of characteristic covectors
for L. A characteristic vector is a characteristic covector in L. If the 4-manifold X has no torsion
in its homology, then c1(s) ranges over the set of characteristic covectors for LX as s varies.

Definition 3.3. For a rational homology 3-sphere Y , we set δ(Y ) = −4 mint∈Spinc(Y ) d(Y, t). For a

positive definite lattice L, we set δ(L) = rk(L)−minξ∈Char(L) |ξ2|.
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For a positive definite lattice L that fills a rational homology 3-sphere Y inequality (2) implies

(3) δ(Y ) > δ(L).

The lattice invariant δ(L) satisfies the following, as is easily verified: δ(L1⊕L2) = δ(L1) + δ(L2);
δ(L) = rk(L) if L is even; δ(〈n〉) = (n − 1)/n if n is odd. Furthermore, δ(Γ12) = 8. Indeed, using
the description of Γ12 from Section 2, a minimal characteristic vector for Γ12 is given by (2, 011).

A family of knot invariants Vi(K) ∈ Z>0, indexed by i ∈ Z>0, was introduced by Rasmussen [Ras03]
(who used the notation hi(K) instead of Vi(m(K)), wherem(K) is the mirror ofK), and later studied
by Rasmussen [Ras04], and Ni and Wu [NW15]. The invariants satisfy Vi(K)−1 6 Vi+1(K) 6 Vi(K)
for every i > 0, and vanish for large enough i. Let U denote the unknot. Then Ni and Wu prove
the following [NW15, Proposition 1.6]:

(4) d
(
S3
p/q(K), i

)
= −2 max

{
Vbi/qc(K), Vd(p−i)/qe(K)

}
+ d

(
S3
p/q(U), i

)
Here p/q is a positive rational number and i is a non-negative integer less than p, corresponding

to a spinc structure. On the other hand, Rasmussen shows in [Ras04, Theorem 2.3] that

Vi(K) 6

⌈
g4(K)− |i|

2

⌉
if |i| < g4(K),

while Vi(K) = 0 if |i| > g4(K). Here g4(K) is the slice genus of K. In particular, if g4(K) 6 2,
there are three possibilities: either Vi(K) = 0 for all i > 0; V0(K) = 1 and Vi(K) = 0 for i > 1;
or V0(K) = V1(K) = 1 and Vi(K) = 0 for i > 2. These three cases are realized, respectively, by
the unknot U , the right-handed trefoil T2,3, and the (2, 5)-torus knot T2,5. Together with (4), this
implies the following.

Lemma 3.4. Let K be a knot of slice genus at most 2. Then d(S3
p/q(K), i) = d(S3

p/q(K
′), i) for all

0 6 i < p and p/q > 0, where K ′ is either the unknot U , T2,3 or T2,5.

By [OS03, Proposition 4.8] we have d(S3
n(U), i) = ((2i − n)2 − n)/4n for 0 6 i < n, and along

with (4) this computes d(S3
n(K), i) for K ∈ {T2,3, T2,5}. Relevant to our arguments below are:

δ(S3
2(T2,3)) = max

i∈{0,1}
−4d

(
S3
2(T2,3), i

)
= 7,(5)

δ(S3
4(T2,5)) = max

i∈{0,1,2}
−4d

(
S3
4(T2,5), i

)
= 8.(6)

Further, we also have δ(S3
4(K)) < 8 when K ∈ {U, T2,3}.

3.3. Input from instanton theory. Finally, the most important obstruction we use is the fol-
lowing result from Yang–Mills instanton theory. The g4(K) = 0 case follows from Donaldson’s
Theorem [Don86], and the g4(K) = 1 case is a generalization of [Frø95, Theorem 4.1].

Theorem 3.5 ([Scab, Theorems 1.1 and 1.3]). Suppose a smooth, compact, oriented, and positive
definite 4-manifold X with no 2-torsion in its homology has boundary S3

n(K) for some knot K with
slice genus g4(K) 6 2. Then LX is isomorphic, for some k > 0, to one of the following:

g4(K) = 0 : 〈1〉k;

g4(K) = 1 : 〈1〉k, E8 ⊕ 〈1〉k;

g4(K) = 2 : 〈1〉k, E8 ⊕ 〈1〉k, Γ12 ⊕ 〈1〉k.
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3.4. Proofs of parts (i) of Theorems 1.2 and 1.3.

Proof of Theorem 1.2 (i). The case n = 1 is implied by Theorem 3.5. Let n > 2. Suppose a positive
definite lattice fills Yn = S3

n(K). By Lemma 3.1, this lattice is isomorphic to a determinant-n lattice
v⊥ ⊂ M for some v ∈ M with v2 = n(n − 1), where M is positive definite, fills S3

n−1(K), and has

determinant n − 1. Write M = M ′ ⊕ 〈1〉k where M ′ is reduced, and v = (x, y) where x ∈ M ′ and
y =

∑
yiei ∈ 〈1〉k. Write d = gcd{v · w : w ∈M}. Then by Lemma 3.2 we have

(7) n = det(v⊥) =
v2

d2
· det(M) =

n(n− 1)2

d2
=⇒ d = n− 1.

On the other hand, as ei ·y = yi, d divides gcd{yi}, and so there are bi ∈ Z such that yi = (n−1)bi.
Consequently, y = (n−1)b where b =

∑
biei. Observe that n(n−1)− (n−1)2b2 = v2−y2 = x2 > 0.

In particular, if n > 3, after an automorphism of M , we are in one of the following two cases:

(8) y = 0 or y = (n− 1)e1 (n > 3).

Note that in the first case x2 = v2 = n(n− 1), while in the latter case x2 = v2 − y2 = n− 1.
Consulting Lemma 3.4, first suppose the d-invariants of S3

n(K) agree with those for S3
n(U). We

claim the only lattices that occur are 〈n〉 ⊕ 〈1〉k. Let us look at the case n = 1 first; we already
know that M ′ is either zero or E8. However, δ(E8) = rk(E8) = 8 and δ(S3

1(U)) = −4d(S3) = 0,
contradicting (3). Thus M = 〈1〉k. We now look at n = 2. After an automorphism of M we may
write v = y = e1 + e2, and v⊥ ∼= 〈2〉 ⊕ 〈1〉k−2. Now suppose n > 3 and M ′ = 〈n − 1〉. From (8),
either y = 0 or y = (n− 1)e1. First suppose y = 0. Then x is a multiple of a generator for 〈n− 1〉
and v⊥ = 〈1〉k−1, contradicting det(v⊥) = n. Next suppose y = (n− 1)e1. Then x2 = n− 1 and so
x is a generator for 〈n− 1〉. The complement v⊥ is generated by x− e1 and ej (j 6= 1), isomorphic
to 〈n〉 ⊕ 〈1〉k−1. Our claim follows by induction.

Next, suppose the d-invariants of S3
n(K) agree with those of S3

n(T2,3). The proof is again by
induction. At each step, M ′ is either 〈n− 1〉 or Tn−1. However, the arguments involving the former
cases are the same as in the previous paragraph, so we may always assume M ′ 6= 〈n−1〉. Let n = 2.
Then M ′ = E8. Then either v = x ∈ E8 is a root, or v = y ∈ 〈1〉k. In the first case, v⊥ ∼= E7⊕〈1〉k.
In the second case, after an automorphism, v = y = e1+e2, and so v⊥ ∼= E8⊕〈2〉⊕〈1〉k−2. However,
δ(E8 ⊕ 〈2〉 ⊕ 〈1〉k−2) = δ(E8) + δ(〈2〉) = 8 + 1 = 9, and according to (5) we have δ(S3

2(T2,3)) = 7, in
contradiction to inequality (3)). Next suppose n > 3 and M ′ 6= 〈n− 1〉; thus n 6 8. By (8), either
y = 0 or y = (n− 1)e1. If y = 0, then v = x ∈ Tn−1 and v⊥ ∼= Tn ⊕ 〈1〉k by Lemma 2.1.

It remains to rule out the cases in which y = (n − 1)e1. Here x2 = n − 1. As M ′ = Tn−1 is
even, we must have n odd. Furthermore, the reduced part of v⊥ has rank 10−n, and its root lattice
R(v⊥) = R(x⊥)⊕ R(y⊥) = R(x⊥) is not of full rank (recall that, by definition, the root lattice only
sees the minimal part of the lattice). According to Table 2, there are no such lattices of determinant
n unless n = 7 and R(v⊥) = A2. This would require R(x⊥) = A2, where x ∈ T6 = A1 ⊕ A2;
consequently x ∈ A1, contradicting the condition that x2 = 6. �

Proof of Theorem 1.3 (i). The case n = 1 is implied by Theorem 3.5. We continue the notation
from the proof of Theorem 1.2(i), so that the lattice under consideration is v⊥ where v = (x, y) ∈
M ′ ⊕ 〈1〉k = M with v2 = n(n− 1), det(v⊥) = n and det(M) = n− 1.

Case n = 2. By the case n = 1 we have that M ′ is either zero, E8 or Γ12. If M ′ = 0, then
v = y = e1 + e2 and v⊥ ∼= 〈2〉 ⊕ 〈1〉k−1. If M ′ = E8, then either y = 0 and x2 = 2, in which case
v⊥ ∼= E7 ⊕ 〈1〉k, or x = 0 and y = e1 + e2, in which case v⊥ = E8 ⊕ 〈2〉 ⊕ 〈1〉k−2. Lemma 3.8 below
shows that we must have k− 2 > 1 here, as required by the statement of the theorem. If M ′ = Γ12,
then either y = 0 and x2 = 2 or v = y = e1 + e2. In the first case, v⊥ ∼= C2 ⊕ 〈1〉k by Lemma 2.3. If
instead v = e1 + e2, then v⊥ ∼= Γ12 ⊕ 〈2〉 ⊕ 〈1〉k−2. This completes the case n = 2.

Case n = 3. By the case of n = 2, M ′ is among 〈2〉, E7, E8 ⊕ 〈2〉, Γ12 ⊕ 〈2〉, C2. The cases 〈2〉
and E7 are handled as in the proof of Theorem 1.2 (i), and yield the possibilities 〈3〉 ⊕ 〈1〉k−1 and
E6 ⊕ 〈1〉k. Suppose M ′ = E8 ⊕ 〈2〉. Write x = (x1, x2) where x1 ∈ E8 and x2 ∈ 〈2〉. First suppose
y = 0. Then x2 = x21 + x22 = 6. Suppose x2 = 0. Then v⊥ contains an orthogonal copy of 〈2〉 and
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so cannot have determinant 3. The only other possibility is that x2 generates 〈2〉. Then x1 ∈ E8 is
of square 4, and hence it is primitive; therefore, there exists w ∈ E8 with w · x1 = 1, contradicting
d = 2 from (7). Thus y 6= 0. By (8) we may suppose y = 2e1. Then either x = x1 ∈ E8 is a
root or x = x2 generates 〈2〉. In the first case, there is again some w ∈ E8 such that w · x1 = 1,
contradicting (7). In the latter case, v⊥ ∼= E8 ⊕ 〈3〉 ⊕ 〈1〉k−1.

Essentially the same argument shows that if M ′ = Γ12⊕〈2〉 then v⊥ ∼= Γ12⊕〈3〉⊕〈1〉k−1. Finally,
suppose M ′ = C2. If y = 0 then v⊥ ∼= C3 ⊕ 〈1〉k by Lemma 2.3. If y = 2e1 then x is a root in C2,
and as argued above, we obtain that d = 1, a contradiction to (7). This completes the case n = 3.

Case n = 4. By the case of n = 3, M ′ is among 〈3〉, E6, E8 ⊕ 〈3〉, Γ12 ⊕ 〈3〉, C3. The cases 〈3〉
and E6 are handled as in the proof of Theorem 1.2 (i), and yield the possibilities 〈4〉 ⊕ 〈1〉k−1 and
D5 ⊕ 〈1〉k.

Suppose M ′ = E8 ⊕ 〈3〉. Write x = (x1, x2) where x1 ∈ E8 and x2 ∈ 〈3〉. Suppose y = 0. Then
x2 = x21 + x22 = 12. We may assume x2 6= 0. Then either x2 generates 〈3〉 or x = x2 is twice a
generator for 〈3〉. However, as x1 ∈ E8, and x2 = x21 + x22, the former case contradicts that x21 is
even; the latter case implies v⊥ is unimodular. Thus we must have y 6= 0. By (8) we may assume
y = 3e1. Then x2 = 3, and x = x2 must generate 〈3〉. In this case v⊥ ∼= E8⊕〈4〉⊕ 〈1〉k−1. However,

δ(E8 ⊕ 〈4〉 ⊕ 〈1〉k−1) = δ(E8) + δ(〈4〉) = 8 + 1 = 9 > δ(S3
4(K))

for K ∈ {U, T2,3, T2,5}, in contradiction to (3). In summary, we cannot have M ′ = E8 ⊕ 〈3〉.
Next, suppose M ′ = Γ12 ⊕ 〈3〉. The argument to rule this case out is much the same as for

M ′ = E8⊕〈3〉. The only difference is that we must rule out the possibility that y = 0 and x22 = 3 in
a different way, as Γ12 is not an even lattice. Note here that x21 = x2 − x22 = 12− 3 = 9. All vectors
in Γ12 of squared norm 9 are primitive, hence there exists w ∈ Γ12 such that w · x1 = w · x = 1,
contradicting d = 3 from (7).

Next suppose M ′ = C3. If y = 0 then v⊥ ∼= D9⊕〈1〉k or v⊥ ∼= C4⊕〈1〉k by Lemma 2.3. However,
in the case that v⊥ ∼= D9 ⊕ 〈1〉k, we have

9 = rk(D9) = δ(D9 ⊕ 〈1〉k) > δ(S3
4(K))

for K ∈ {U, T2,3, T2,5}, in contradiction to (3) and (6). Thus D9 ⊕ 〈1〉k cannot occur. Next suppose
y 6= 0. Then by (8) we may assume y = 3e1, so that x = x1 ∈ C3 has square 3. Now, if there exists
w ∈ C3 such that w · x = 1, then we contradict d = 3 from (7). On the other hand, if there is no
such w, then by Lemma 3.2, the orthogonal complement x⊥1 ⊂ C3 is unimodular. However, Cn does
not have any unimodular summands when n > 1, for it is a sublattice of Γ12, an indecomposable
unimodular lattice. Thus we cannot have y 6= 0. This completes the case n = 4.

Case n > 5. In each case, M ′ is among 〈n− 1〉, Tn−1, Cn−1. The first two cases are dealt with
as in the proof of Theorem 1.2 (i). The third case is dealt with as was the case M ′ = C3 when n = 4
above. That is, we rule out the possibility of y 6= 0 using (7) and the fact that Cn does not have any
unimodular summands when n > 1; and when y = 0, we have v⊥ ∼= Cn ⊕ 〈1〉k by Lemma 2.3. �

Lemma 3.6. Let L be an odd lattice, and v ∈ L∗ a primitive covector. Then v⊥ ⊂ L is even if and
only if v is characteristic.

Both directions are probably well-known in the lattice community. The ‘if’ direction was also
observed in the proof of [BG18, Proposition 6.2].

Proof. We first prove that if v is characteristic, then v⊥ is even. Indeed, if w ∈ v⊥, then

w · w ≡ v · w = 0 (mod 2).

We now prove the converse. Since v is primitive, there exists z in L such that v · z = 1. We claim
that v⊥ and z span L: indeed, for any w ∈ L, we can write w = (w − (v · w)z) + (v · w)z, and the
first summand satisfies v · (w− (v ·w)z) = v ·w− (v ·w)(v · z) = 0, hence lives in v⊥. By assumption,
v⊥ is even and L is odd; since v⊥ and z span L, z · z must be odd, hence

z · z ≡ v · z = 1 (mod 2);
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Surgery Other name Seifert invariants Binary Polyhedral Lattice

S1(T2,3) −Σ(2, 3, 5) (2; 1
2 ,

2
3 ,

4
5 ) −SU(2)/I∗ T1 = E8

S3
2(T2,3) −Σ(2, 3, 4) (2; 1

2 ,
2
3 ,

3
4 ) −SU(2)/O∗ T2 = E7

S3
3(T2,3) −Σ(2, 3, 3) (2; 1

2 ,
2
3 ,

2
3 ) −SU(2)/T ∗ T3 = E6

S3
4(T2,3) P (3, 1) (2; 1

2 ,
1
2 ,

2
3 ) −SU(2)/D∗12 T4 = D5

S3
5(T2,3) L(5, 1) (2; 1

2 ,
2
3 ) −SU(2)/Z5 T5 = A4

S3
6(T2,3) L(2, 1)#L(3, 1) T6 = A1 ⊕A2

S3
7(T2,3) L(7, 5) (−2;− 1

2 ,−
1
3 ) T7 = Λ(2, 4)

Table 1. The first several positive integer surgeries on the right-handed trefoil,
with the distinguished positive definite lattices Tn that they bound.

on the other hand, for each w ∈ v⊥ we have v ·w = 0 ≡ w ·w (mod 2). That is, v ·u ≡ u ·u (mod 2)
for all u in v⊥ and u = z, and since L is spanned by v⊥ and z, we obtain that v is characteristic. �

Remark 3.7. If v is characteristic and primitive in the odd, indefinite, unimodular lattice Ia,b, then,
with respect to a diagonal basis h1, . . . , ha, e1, . . . , eb, all coefficients of v are odd. Indeed, in general,
Char(L) has a transitive action by 2L, and it is immediate to check that h1 + · · ·+ha + e1 + · · ·+ eb
is characteristic for Ia,b.

Lemma 3.8. Let K be a knot in S3. Then S3
2(K) does not bound E8 ⊕ 〈2〉.

Proof. Suppose the contrary, and let W be a filling of Y , with torsion-free homology and intersection
form E8 ⊕ 〈2〉. Let X2(K) denote the 4-manifold with boundary S2(K) obtained by attaching a
2-handle to S3 = ∂B4 along K with framing +2. Let X = −W ∪ X2(K). Since H1(W ) and
H1(X2(K)) are torsion-free, so is H1(X); then X is spin if and only if LX is even. But LX has
signature −8, so X cannot be spin by Rokhlin’s theorem. It follows that LX = I1,9.

The generator of H2(X2(K)) is sent to an element x ∈ LX of square 2, and LW = x⊥ ⊂ LX ,
since detLW = 2 (see Lemma 3.2). As LW is even, by Lemma 3.6 and Remark 3.7, all coordinates
of x must be odd, i.e. x = ah − (b1e1 + · · · + b9e9) with a, b1, . . . , b9 odd; but then we obtain a
contradiction, as 2 = x2 = a2 −

∑
b2i ≡ 1− 9 ≡ 0 (mod 8). �

4. Constructions

In this section we provide the constructions for parts (ii) of Theorems 1.2 and 1.3. We first
note that for n-surgery S3

n(K) on a knot K, there is a simply-connected smooth 4-manifold Xn(K)
filling it with intersection form 〈n〉, obtained by attaching an n-framed 2-handle to the boundary
of a 4-ball. Upon connect-summing with copies of CP2, we obtain the lattices 〈n〉 ⊕ 〈1〉k listed in
Theorems 1.2 and 1.3. Next, we recall some standard constructions that prove Theorem 1.2 (ii).

Given a knot K, we will write mK as a shorthand for the connected sum of m copies of K.

4.1. Seifert spaces and binary polyhedral spaces. The n-surgeries of T2,3 for 1 6 n 6 7 are
listed in Table 1. The Seifert-fibered descriptions of these manifolds are from Moser [Mos71], who
showed that (p/q)-surgery on an (r, s)-torus knot is −L(r, s)#−L(s, r) if p/q = rs, −L(|p|, qs2) if
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b
a1/b1 a3/b3a3/b3

b

t1,1 t1,2
. . .

t1,m1

t2,1 t2,2
. . .

t2,m2

t3,1 t3,2
. . .

t3,m3

Figure 4.

|p − qrs| = 1, and is otherwise a Seifert-fibered space with at most three singular fibers and base
orbifold the 2-sphere. (For us, L(p, q) is (−p/q)-surgery along the unknot.) For n 6= 6,

S3
n(T2,3) = M

(
−1;−1

2
,−1

3
,

1

n− 6

)
,

the right-hand side denoting the Seifert-fibered space with Seifert invariants b = (b; b1/a1, . . . , bk/ak).
Here b ∈ Z and bi/ai are reduced fractions with ai > 0. The homeomorphism class of a Seifert-fibered
space is classified by the Euler number e = b−

∑
bi/ai and the reductions of bi/ai modulo 1. Thus

(−1;−1/2,−1/3,−1/5) and (2; 1/2, 2/3, 4/5) both determine S3
1(T2,3). Further, M(b; b1/a1, . . . , bk/ak)

bounds a plumbed 4-manifold Xb as described in Figure 4 for k = 3, which also determines a surgery
diagram. Here the integers ti,j come from the Hirzebruch–Jung continued fraction for ai/bi:

ai
bi

= ti,1 −
1

ti,2 −
1

· · · − 1
ti,mi

The lattices appearing in the right-hand column of Table 1 are realized by the plumbings Xb where
b is given in the corresponding row of Table 1. Upon connect summing these examples with copies
of CP2 we obtain all lattices listed in Theorem 1.2. This completes the proof of Theorem 1.2.

Six of the seven surgeries in Table 1 are distinguished for admitting spherical geometry. In fact,
each is realized, after possibly reversing orientation, as a binary polyhedral space, i.e. a quotient of
SU(2) by a finite subgroup Γ, see e.g. [Sav02, Section 1.2.1]. Each such space is the boundary of a
minimal resolution of a Kleinian singularity C2/Γ and its intersection form is a negative definite root
lattice. For n 6 5, each such resolution is orientation-reversing diffeomorphic to the corresponding
plumbing from above.

Similar to the Seifert descriptions for surgeries on T2,3, Moser’s results imply that for 1 6 n 6 9,
S3
n(T2,5) = M(−1;−1/2,−2/5, 1/(n−10)), and the plumbings Xb with b = (2; 1/2, 3/5, (9−n)/(10−
n)) realize the lattices Cn. For n = 10, we have S3

10(T2,5) = L(2, 1)#L(5, 3); as A1 fills L(2, 1) and
Λ(3, 2) fills L(5, 3), the lattice C10, defined as the direct sum thereof, fills S3

10(T2,5). Finally, for
n = 11 we have S3

11(T2,5) = L(11, 7), and Λ(3, 4) fills this lens space. After connect-summing these
examples with copies of CP2, we obtain all the lattices Cn ⊕ 〈1〉k listed in Theorem 1.3.

4.2. Fillings constructed from PL spheres. There is an alternative perspective one can take
on the trefoil lattices Tn, which shows that they also fill surgeries along the cinquefoil knot T2,5.
Indeed, we describe here a more general framework to realize lattices as fillings.

Consider an embedded PL sphere S in a closed, oriented, 4-manifold X that has H1(X) =
0, b+(X) = 1, and odd intersection form; for instance, a blow-up of CP2 gives an example of
such a manifold. The surface S is smooth away from a finite number of points p1, . . . , pm; at a
neighborhood of pi, S is the cone over a knot Ki ⊂ S3. We say that the singularity at pi is of type
Ki. Call n = [S] · [S] the self-intersection of S; then it is a good exercise to show that a regular
(closed) neighborhood N of S is diffeomorphic to Xn(K), the trace of n-surgery along the knot
K := K1# . . .#Km. In particular, WS = −(X \ Int(N)) has boundary S3

n(K). Furthermore, if
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−1

Figure 5. A rational homology ball filling S3
9(T3,4). Adding a −1-framed meridian

to the dotted circle gives an embedding of −X9(T3,4) in CP2.

n > 0, then WS is positive definite. With a conscious abuse of terminology, we will refer to WS as
the complement of S.

A good source of PL spheres comes from complex plane curves, and more specifically rational
cuspidal curves. A classical reference is, for instance, [Nam84]; we also suggest [Moe08] for a more
modern, and more topologically flavored, exposition.

Clearly, the intersection form LS of WS is the orthogonal of [S] in H2(X). Furthermore, by
Lemma 3.2, if [S] is primitive, detLS = n, and, using excision for the pairs (X,N) and (WS , ∂WS)
and the long exact sequence for a pair, one sees that WS has torsion-free homology. (Note that in
general detLS divides n.)

Vice-versa, fix n > 0 and a knot K ⊂ S3. If W is a positive definite filling of S3
n(K) with

torsion-free homology, then X = Xn(K) ∪ −W is a closed 4-manifold with torsion-free homology,
which contains a PL embedded sphere of square n, whose unique singularity is a cone over K. (If K
is a connected sum, one can split the singularity into singularities that are cones over the connected
summands of K.) By surgery along loops in X, we can also ensure that H1(X) = 0. By construction,
b+(X) = 1, and by Donaldson’s Theorem B of [Don86, Don87], X is not spin. Since H1(X) = 0,
this implies that the intersection form of X is odd, and hence diagonal.

In the following statement, write h for a generator of H2(X), where X is any homology CP2.

Proposition 4.1. Let K be either T2,3, T2,5, or T3,4. Then there is a PL sphere S in a homotopy
CP2 in the homology class 3h with a unique singularity of type K.

Proof. When K = T2,3, we may take S to be the cuspidal cubic in CP2, i.e. the zero set of the
polynomial x2z − y3.

When K = T2,5, S3
9(K) = L(9, 4); L(9, 4) bounds a rational homology ball W constructed with

one 1-handle and 2-handle [BBL16], and gluing X9(K) and −W along their common boundary yields
X, a homotopy CP2; indeed, X has a handle decomposition with no 1-handles, and χ(X) = 3.

When K = T3,4, S3
9(K) bounds the rational homology ball shown in Figure 5, and the same

argument as above shows that X9(K) embeds in a homotopy CP2. �

Remark 4.2. In the case when K = T2,5 and K = T3,4 one can show using Kirby calculus that we
can choose the gluing diffeomorphism in such a way as to obtain CP2.

Given X and S as in Proposition 4.1, we can produce primitive homology classes in blow-ups
of X, by blowing up along points of S. Recall that we write h for the generator of H2(X). When
blowing up, we will write e1, e2, . . . for the classes of exceptional divisors. The lattice of X blown
up ` times is then isomorphic to I1,`, the unimodular odd lattice of rank 1 + ` and signature 1− `,
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with diagonalizing basis h, e1, . . . , e` such that h2 = 1 and e2i = −1. Henceforth this isomorphism
between I1,` and the lattice of X#`CP2

will be implicit.
Let 1 6 n 6 8. We realize a PL sphere Sn in a (9 − n)-fold blow-up X by blowing up at 9 − n

generic points along the surface S provided by Proposition 4.1. The PL sphere Sn has the same
type of singularity as S. The primitive homology class [Sn] = 3h − e1 − · · · − e9−n ∈ I1,9−n has
[Sn]·[Sn] = n > 0, and in particular its complement is negative definite. For the following statement,
we recall our convention from Section 2 that T8 = 〈8〉.

Lemma 4.3. For 1 6 n 6 8, the orthogonal complement of [Sn] ∈ I1,9−n is isomorphic to −Tn.

Proof. When 1 6 n 6 6, [Sn]⊥ is spanned by e1 − e2, . . . , e8−n − e9−n and h − e1 − e2 − e3, which
generate the root lattice −Tn. When n = 7, it is spanned by h−2e1−e2 and e1−e2, which generate
the lattice −Λ(2, 4). Finally, when n = 8, [Sn]⊥ is spanned by h− 3e1, which has square −8. �

Corollary 4.4. For 1 6 n 6 8, Tn fills S3
n(K) for K = T2,3, T2,5, T3,4.

After connect-summing the realizations in this corollary with copies of CP2, we obtain the lattices
Tn ⊕ 〈1〉k listed in Theorem 1.3. We have also recovered all non-diagonal lattices in Theorem 1.2.

We now turn to realising E8⊕〈2〉⊕〈1〉 and E8⊕〈3〉 as intersection forms of fillings of S3
2(K) and

S3
3(K) respectively, for K = T2,5. We consider a few other knots along the way. For the following

statement, when k 6 `, we view I1,k as the sublattice of I1,` spanned by h, e1, . . . , ek.

Lemma 4.5. Suppose v ∈ I1,k with v2 = 1, whose orthogonal complement is Λ ⊂ I1,k; then:

(i) the orthogonal of 2v − ek+1 in I1,k+1 is isomorphic to Λ⊕ 〈−3〉;
(ii) the orthogonal of 2v − ek+1 − ek+2 in I1,k+2 is isomorphic to Λ⊕ 〈−2〉 ⊕ 〈−1〉.

Proof. We only prove (ii); (i) is analogous. Pick a basis w1, . . . , wk for Λ; we claim that w1, . . . , wk,
ek+1 − ek+2, v − ek+1 − ek+2 is a basis for the orthogonal of 2v − ek+1 − ek+2 exhibiting the
orthogonal decomposition. Indeed, it is easy to see that wj , ek+1 − ek+2, and v − ek+1 − ek+2 are
pairwise orthogonal for every j, that (ek+1 − ek+2)2 = −2, and that (v − ek+1 − ek+2)2 = −1,
and hence they span Λ ⊕ 〈−2〉 ⊕ 〈−1〉. Since both the determinant of this lattice and the square
of 2v − ek+1 − ek+2 are equal to 2, in fact the orthogonal to 2v − ek+1 − ek+2 is isomorphic to
Λ⊕ 〈−2〉 ⊕ 〈−1〉, as claimed. �

In light of Lemmas 4.3 and 4.5 above, in order to realize E8 ⊕ 〈2〉 ⊕ 〈1〉 and E8 ⊕ 〈3〉 as fillings
of S3

2(K) and S3
3(K), it suffices to find a homotopy CP2#8CP2

and realize the homology class
6h− 2e1 − · · · − 2e8 ∈ I1,8 in its lattice as the class of a PL sphere with a singularity of type K.

Proposition 4.6. Let K be either 2T2,3, T2,5, T2,7, or T3,4. Then there is a PL sphere S in a
homotopy CP2#8CP2

in the homology class 6h−2e1−· · ·−2e8 with a unique singularity of type K.

Proof. We start with K = T2,5. There is a singular degree-4 complex curve C in CP2 that is rational
and has one singularity of type T2,5 and one of type T2,3, see e.g. [Nam84, Theorem 2.2.5(2)]. We
add two generic lines `, `′ to C and smooth two of the resulting double intersections, one on each
line. So far we have constructed an immersed PL sphere in CP2 with the two singularities of C and
seven additional double points: indeed, there are eight intersections points between C and ` ∪ `′,
and one intersection between ` and `′, but two of these intersections have been smoothed. Blowing
up at the remainaing double points and at the trefoil cusp yields a PL sphere whose only singularity
is of type T2,5, and whose homology class is the desired one.

Blowing up once at the T2,5-singularity instead of at the T2,3-singularity in the last step, we obtain
a PL sphere with two singular points of type T2,3. Thus the same result holds for 2T2,3.

When K = T3,4, we observe that there is an immersed concordance from K to T3,5, given by a
positive crossing change; in Lemma 4.7 we then exhibit a 3-band cobordism Σ from T3,5 to T4,4 in
S3 × I; if we view S3 as the boundary of the disc bundle E over S2 with Euler number +1 (i.e. a
neighbourhood of a line in CP2), we can cap off T4,4 in E with four disjoint disks, each intersecting
the 0-section of E transversely and positively once. We can build an immersed PL sphere in CP2 by
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Figure 6. The band attachments of Lemma 4.7.

gluing the cone over K, the immersed concordance to T3,5, Σ, and the four discs in E; this sphere
lives in the homology class 4h, since it meets a line (the 0-section in E) algebraically four times.
The same argument as above now concludes the proof.

The same argument works for K = T2,7: there is a (positive-to-negative) crossing change to T2,9,
and we apply Lemma 4.7 as above. �

Lemma 4.7. There are genus-0 cobordisms from T3,5 and T2,9 to T4,4.

Proof. We are going to exhibit a ribbon cobordism from T3,5 to T4,4 obtained by attaching three
(orientation-coherent) bands to T3,5. An Euler characteristic computation immediately shows that
such a cobordism has genus 0.

We will write x, y, z for the three standard generators of the 4-braid group B4, which satisfy the
relations xyx = yxy, yzy = zyz, xz = zx; we denote with x̄ (ȳ, z̄) the inverse of x (y, z, respectively).
We also call ∆ the full twist on four strands, i.e. ∆ = (xyz)4. The knot T3,5 is the closure of the
4-braid (xy)5z (which is a positive Markov stabilisation of the 3-braid (xy)5), and T4,4 is the closure
of the braid ∆.

Observe that we can write

∆−1 = (z̄ȳx̄)2(z̄ȳx̄z̄ȳx̄) = (z̄ȳx̄)2(z̄ȳz̄x̄ȳx̄) = (z̄ȳx̄)2(ȳz̄ȳx̄ȳx̄).

We then have

(xy)5z = (xy)5z∆−1∆ = (xy)5zz̄ȳx̄z̄ȳx̄ȳz̄ȳx̄ȳx̄∆ ∼ xyxyz̄ȳx̄ȳz̄∆,
where ∼ denotes conjugation in the braid group, and we have used that ∆ is in the center of B4.
We now attach three bands to this braid by cancelling three factors in the above expression; this
corresponds to adding the inverses of the corresponding generator, which is indeed an oriented band:

(xy)5z ∼ xyxyz̄ȳx̄ȳz̄∆ �xyxy�̄zȳx̄ȳ�̄z∆ = ∆.

For the cobordism from T2,9, we view T2,9 as the (2, 9)-cable of the unknot, viewed as the (2, 1)-
torus knot. The attaching three bands as in Figure 6, we get the desired cobordism; see [Baa12].
In braid terms, this corresponds to viewing T2,9 as the closure of the 4-braid (xyz)2(xz)2x (with x
interchanging the two top strands in the figure, y the two central ones, and z the two bottom ones),
and adding three generators (two y and one x̄) as follows:

(xyz)2(xz)2x (xyz)2(xyz)(xyz)xx̄ = ∆. �

Corollary 4.8. E8 ⊕ 〈2〉 ⊕ 〈1〉 fills S3
2(K) and E8 ⊕ 〈3〉 fills S3

3(K) for K = 2T2,3, T2,5, T2,7, T3,4.

We have now completed the proof of Theorem 1.3 (ii), having realized all lattices listed therein
for S3

n(T2,5). Nevertheless, we continue our discussion and show how to realize the lattices Cn in the
same fashion as the others.

Lemma 4.9. For 1 6 n 6 11, the orthogonal complement of the vector v = 4h−2e1−e2−· · ·−e13−n
in I1,13−n is isomorphic to −Cn.

Proof. When n 6 10, we can exhibit a basis of v⊥ as follows: e2−e3, . . . , e12−n−e13−n, 2e1−h, and
h− e1 − e2 − e3. When n = 11, we can choose the basis 2e1 − h and h− e1 − 2e2. One immediately
verifies that these bases realize the defining plumbing graphs for −Cn, as in shown in Figure 2. �
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Proposition 4.10. Let K be either 2T2,3, T2,5, or T3,4. Then there is a PL sphere S in a homotopy
CP2#CP2

in the homology class 4h− 2e1 with a unique singularity of type K.

Proof. This follows from the constructions provided in the proof of Proposition 4.6. For example,
for the case of K = T2,5, we omit the addition of the two additional lines ` and `′, and only blow up
at the trefoil cusp singularity. �

Corollary 4.11. For 1 6 n 6 11, Cn fills S3
n(K) for K = 2T2,3, T2,5, T3,4.

4.3. Further examples. The above constructions concern the lattices appearing in Theorems 1.2
and 1.3, but the method is clearly very general. Here we offer a few more examples involving other
lattices, including some related to the discussion in [Scab, Section 5].

If we go by rank, the first reduced unimodular positive definite lattice that is neither isomorphic
to E8 nor Γ12 is the rank-14 lattice E2

7 , which is labelled by its root lattice E7 ⊕ E7. This lattice
is isomorphic to the complement of the vector 6h − 2e1 − · · · − 2e7 − e8 − · · · − e14 ∈ I1,14, see
e.g. [Scaa, Section 4] for this and later such claims. This motivates us to define En for 1 6 n 6 7
as the orthogonal complement of the vector 6h − 2e1 − · · · − 2e7 − e8 − · · · − e15−n ∈ I1,15−n. It is
readily verified that En is a lattice of rank 15− n, determinant n, and E1 = E2

7 .

Proposition 4.12. For 1 6 n 6 7, En fills S3
n(K) where K = T2,3#T2,5, 3T2,3, T2,7, or T3,4.

Proof. Begin with a rational quartic in CP2 with cuspidal singularities of types K1, . . . ,Km. Add a
generic conic, so that there are 8 double points. Smooth one double point, blow up at the remaining
7 double points, and blow up at 8 − n generic points. The resulting PL sphere is in the homology
class 6h − 2e1 − · · · − 2e7 − e8 − · · · − e15−n. This shows that En fills S3

n(K1# · · ·#Km). Finally,
a rational cuspidal quartic either has one singularity of type T3,4 or T2,7; two cusps of types T2,5
and T2,3; or three singularities each of type T2,3. See [Nam84, Theorem 2.2.5] and the discussion
thereafter, or [Moe08, Section 3.1]. �

Remark 4.13. A similar argument works for K = T3,5, T2,9, and T4,5, since in both cases there is a
genus-0 cobordism to T4,4, which is exactly what we are using to construct the required homology
class.

The next reduced positive definite unimodular lattice, by rank, is the rank 15 lattice A15, again
labelled by its root lattice. This lattice is isomorphic to the orthogonal complement of 4h − e1 −
· · · − e15 ∈ I1,15. We thus define An for 1 6 n 6 15 to be the orthogonal complement of 4h − e1 −
· · · − e16−n ∈ I16−n. Then An is a lattice of rank 16− n, determinant n, and A1 = A15. Taking any
rational cuspidal quartic as in the proof of Lemma 4.12, and blowing up 16 − n generic times, we
are led to the following proposition.

Proposition 4.14. For 1 6 n 6 15, An fills S3
n(K) where K = T3,4, T2,7, T2,3#T2,5, 3T2,3, T2,9,

T3,5, or T4,5

Note that the last three cases above do not come from algebraic geometry; for instance, as in
Figure 5, one can show that the trace of 16-surgery along T4,5 embeds in CP2, and the same argument
outlined above applies in this case, too.

For the remaining two cases, we know from [AG17] that 16-surgery along both knots bound
rational homology ball, and in fact it is not hard to show that one can construct such rational balls
using only handles of index at most 2 (since S3

16(T3,5) is a lens space, this follows from [BBL16]), so
that gluing the rational homology ball with the trace of the surgery yields a homotopy CP2.

Finally, we consider the unique reduced positive definite lattice of rank 16 that is odd: D2
8. This

is isomorphic to the orthogonal complement of 8h−4e1−3e2−2e3−· · ·−2e10−e11−· · ·−e16 ∈ I1,16.
Thus we define Dn for 1 6 n 6 7 to be the orthogonal complement of 8h− 4e1 − 3e2 − 2e3 − · · · −
2e10 − e11 − · · · − e17−n ∈ I1,17−n, a lattice of rank 17− n, determinant n, and D1 = D2

8. We have:

Proposition 4.15. For 1 6 n 6 7, Dn fills S3
n(K), where K is among T2,3#T3,4, T3,5, T2,9,

T2,3#T2,7, 2T2,5, 4T2,3 and 2T2,3#T2,5.
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Proof. According to [Fen99, Theorem 1.1] Case 4 with a = d = 2, there exists a rational septic in
CP2 with two cuspidal singularities: one has multiplicity sequence [4, 2, 2, 2], and the other [3, 3].
Add a line to this curve, introducing seven double points, and smooth one of them. Blow up at
the first singularity three times, the second singularity once, the remaining 6 double points, and
7 − n generic points. The multiplicity sequence [4, 2, 2, 2] has been reduced to [2], which is of
type T2,3, and that of [3, 3] to [3], of type T3,4. The resulting PL sphere is in the homology class
8h− 4e1− 3e2− 2e3− · · · − 2e10− e11− · · · − e17−n ∈ I1,17−n and has singularities of types T2,3 and
T3,4, from which the result follows for K = T2,3#T3,5.

From [Fen99, Theorem 1.1] Case 5 with a = d = 2, there also exists a rational septic in CP2

with two cuspidal singularities, one with multiplicity sequence [4, 2, 2], and the other with [3, 3, 2].
Repeating the above construction on this curve yields a PL sphere in the same homology class
having one singularity with multiplicity sequence [3, 2], which has type T3,5. This proves the result
for K = T3,5.

Next, by [Fen99, Theorem 1.1] Case 1 with a = d = 2 and b = 1, there is a rational sextic C in
CP2 with two cuspidal singularities, having multiplicity sequences [4, 2, 2, 2] and [2]. Add two lines
`, `′ to C that intersect at a point of C, forming a triple point, and otherwise intersect C in a total
of 10 double points. Smooth a double point intersecting `, and another intersecting `′. Then blow
up the remaining 8 double points and the triple point. Finally, blow up once at the first singularity.
The multiplicity sequences of the singularities are now [2, 2, 2] and [2], which are of type T2,7 and
T2,3, respectively. Our PL sphere is in the required homology class, and the result follows for the
case of T2,3#T2,7 after blowing up at 7− n generic points.

Similarly, by [Fen99, Theorem 1.1] Case 1 with a = d = 2 and b = 0, there is a sextic with two
singularities, with multiplicity sequences [4, 2, 2] and [2, 2]; and by [Fen99, Theorem 1.1] Case 8 with
a = 4, a sextic with two singularities with multiplicity sequences [4] and [2, 2, 2, 2]. Repeating the
construction from the previous paragraph for these two sextics proves the result for K = 2T2,5 and
K = T2,9, respectively.

Next, consider a quintic C with four cusps p1, . . . , p4, with p1 of type T2,7, and the other three of
type T2,3; see [Nam84, Theorem 2.3.10] or [Moe08, Section 6.1.4]. Pick a generic point p on C. Let
`1 be the line passing through p and p1, and let `2 and `3 be two generic lines passing through p.
Smooth out one generic point of intersection of `i with C for i = 1, 2, 3, and then blow up at p, once
at p1, and at the other intersection points of `i with C. (There are three such points on each of `2
and `3, and one on `1.) In total, we have blown up at one quadruple point, p, a triple point, p1, and
seven double points. By blowing up at either cusp we obtain the class 8h−4e1−3e2−2e3−· · ·−2e10:
blowing up at p1 again yields a curve with four T2,3 cusps, while blowing up at p2 yields one T2,5
and two T2,3 cusps. Blowing up at 7−n generic points shows that Dn fills Sn(K) for K = 4T2,3 and
K = 2T2,3#T2,5. �

4.4. Final remarks. We conclude this section with some comments on the limitations of this
approach. One can try to use Lemma 4.5 to produce fillings of S3

2(K) and S3
3(K), where K is

either T2,5 or 2T2,3, with intersection form Γ12⊕〈2〉⊕ 〈1〉 and Γ12⊕〈3〉, respectively; while we have
attempted to employ this strategy, we haven’t succeeded. We will focus on the case of +3-surgery
and of Γ12 ⊕ 〈3〉, the other case being analogous. For one thing, the adjunction inequality shows
that the homology class 8h−4e1−2e2−· · ·−2e12− e13 cannot be represented by a genus-2 surface,
so it certainly cannot be represented by a PL sphere with a singularity of type T2,5 or 2T2,3. We
have tried with several other classes, obtained from 8h − 4e1 − 2e2 − · · · − 2e12 − e13 by applying
reflection automorphisms of I1,13; some of them passed the adjunction formula test, but we were
unable to produce singular complex curves with the required multiplicities at the singularities.
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rk\det 1 2 3 4 5 6 7 8 9 10 11

1 – A1 O1 O1 O1 O1 O1 O1 O1 O1 O1

2 – – A2 – A1O1 – A1O1 O2 A1O1 –
O2

A1O1

3 – – – A3 – – A2O1 A2
1O1 – A2O1

4 – – – D4 A4 – – A3O1 A3O1

5 – – – D5 – A5 – D4O1

6 – – E6 D6 – –
D5O1

A6

7 – E7 – D7 E6O1 D6O1

8 E8 – E7O1 D8
D7O1

E7O1

9 – – –
D8O1

E7A1O1

D9

10 – – D9O1

11 – D10A1

12 D12

Table 2. Reduced indecomposable positive definite integral lattices of low rank
and determinant taken from [CS88]. A dash “–” indicates that there are no lattices
of the associated rank and determinant. The lattices Tn and Cn have been boxed.
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