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Abstract

Consider the moduli space of framed flat U(2) connections with fixed odd determinant over
a surface. Newstead combined some fundamental facts about this moduli space with the Mayer-
Vietoris sequence to compute its betti numbers over any field not of characteristic two. We
adapt his method in characteristic two to produce conjectural recursive formulae for the mod
two betti numbers of the framed moduli space which we partially verify. We also discuss the
interplay with the mod two cohomology ring structure of the unframed moduli space.

1 Introduction

Let Σg be a compact surface of genus g, and let Ng be the moduli space of flat SU(2) connections
on Σg having holonomy −1 around a single puncture p. If we write A1,B1, . . . ,Ag,Bg for the usual
generators of the free group π1(Σg ∖ p), then Ng is homeomorphic to f−1g (−1)/SU(2), in which

fg ∶ SU(2)2g Ð→ SU(2), fg(A1,B1, . . . ,Ag,Bg) =
g

∏
i=1

[Ai,Bi],

and the action of SU(2), which descends to a free SO(3) action, is by simultaneous conjugation of
the 2g factors. By a classical result of Narasimhan-Seshadri, Ng may be identified with the moduli
space of rank two stable holomorphic bundles over a Riemann surface of genus g with fixed odd
determinant. The moduli space of framed flat connections is given by

N#
g = f−1g (−1)

and forms an SO(3)-principal bundle over the moduli space Ng.

The betti numbers of the moduli space Ng have been computed in a variety of ways. The first way,
which was originally done for any coefficient field not of characteristic 2, is due to Newstead [New67].
The argument, which is quite elementary, uses a Mayer-Vietoris sequence to compute formulae for
the betti numbers of the framed moduli space which are recursive in g, and then uses the Gysin
sequence for the SO(3)-fibration N#

g to obtain the betti numbers for Ng. Subsequently, Harder-
Narasimhan [HN75] and Atiyah-Bott [AB83] gave very different and more sophisticated proofs,
respectively: the first number-theoretic, and the latter using infinite-dimensional Morse theory on
the Yang-Mills functional. These two methods work for higher rank moduli as well. Finally, we
mention the elegant proof of Thaddeus [Tha00], which shows that (Ai,Bi) z→ tr(Ag) is a perfect
Morse-Bott function on Ng, as was observed by Jeffrey-Weitsman [JW97].
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Newstead’s original proof shows that the integral cohomology groups of Ng and N#
g have no

torsion other than 2-torsion. In their work, Atiyah-Bott showed that the integral cohomology of Ng
is in fact torsion-free, which can also be seen from the proof of Thaddeus. However, the space N#

g

generally has 2-torsion, as is indicated by the fact that the g = 1 framed moduli space, which is a
bundle over the point N1, is homeomorphic to SO(3).

In this article we investigate Newstead’s argument in characteristic 2 with the goal of computing
the cohomology of N#

g with Z/2 coefficients. Although we cannot completely compute the betti
numbers from the elementary methods used here, we provide evidence for simple recursive formu-
lae similar to Newstead’s formulae for the rational betti numbers from [New67]. Specifically, we
conjecture that equality holds in all the inequalities appearing in the following:

Theorem 1. Write hgr = dimHr(N#
g ;Z/2). Then we have the following:

hg+1r ⩾ hgr−2 + 2hgr−3 + h
g
r−4 +mg

r −mg
r−4 (r ⩽ 3g − 1) (I)r

hg+1r ⩾ 4hg3g +m
g
3g −m

g
3g−3 (3g ⩽ r ⩽ 3g + 3) (II)r

hg+1r ⩾ hgr−2 + 2hgr−3 + h
g
r−4 +m

g
r−3 −m

g
r+1 (r ⩾ 3g + 4) (III)r

in which mg
r is the coefficient of tr in the polynomial (1 + t3)2g. Further:

(i) Equality holds in (I)r for r ≡ 2 (mod 3) and r ⩽ 3g − 1.

(ii) Equality holds in the expression for hg+1k − hg+1k−1 obtained by assuming equality in (I)r for

r ∈ {k, k − 1} where k ≡ 1 (mod 3) and k ⩽ 3g − 1. Also, hg+13g+1 = h
g+1
3g .

The (in)equalities obtained are immediately doubled: Poincaré duality turns (i) and (ii), which are
statements for r ⩽ 3g + 1, into statements about r ⩾ 3g + 2. Indeed, (I)r is transformed into (III)r
via duality, and (II)3g and (II)3g+1 into (II)3g+3 and (II)3g+2, respectively.

The conjectural recursive equations obtained from imposing equality in (I)r−(III)r are remark-
ably similar to Newstead’s equations for the rational betti numbers of [New67, Thm. 2’]: there,
equality in (I)r is satisfied for r ⩽ 3g + 1, and the rest of the betti numbers follow by Poincaré dual-
ity. This small difference in recursions, however, allows the Z/2 betti numbers to grow much larger
than the rational ones near the middle dimension. For example, the middle two Q betti numbers are
zero, while our conjecture implies that the four middle Z/2 betti numbers are the same and equal to

22g−1 − (2g − 1

g
).

The comparison of these betti numbers is further illustrated in Figure 1. The table for the Z/2
betti numbers was computed using Proposition 1 below along with computations from [SS17], and
confirms the conjectural recursive formulae for g ⩽ 6. Proposition 1 computes the Leray-Serre
spectral sequence for the fibration N#

g Ð→ Ng in terms of the rank of multiplication by α on the

ring H∗(Ng;Z/2), where α is the generator of H2(Ng;Z/2). We mention that another consequence
of the conjecture is the following identity between total ranks:
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Z/2 Betti numbers of N#
g

g = 1 2 3 4 5 6

1 1 1 1 1 1
1 0 0 0 0 0

1 1 1 1 1
5 6 8 10 12
5 1 1 1 1

7 8 10 12
22 29 46 67
22 9 10 12

37 46 67
93 131 232
93 56 67

176 233
386 574
386 299

794
1586
1586

Q Betti numbers of N#
g

g = 1 2 3 4 5 6

1 1 1 1 1 1
0 0 0 0 0 0

1 1 1 1 1
4 6 8 10 12
0 1 1 1 1

6 8 10 12
15 29 46 67
0 8 10 12

28 46 67
56 130 232
0 45 67

120 232
210 561
0 220

495
792
0

Figure 1: Comparison of the Z/2 and Q betti numbers of the framed moduli space. The Z/p betti numbers

for p prime, p ≠ 2 are the same as the Q betti numbers. In each column half the betti numbers are listed;

the rest are obtained by Poincaré duality. For example, the Z/2 betti numbers of N#
2 are 1,0,1,5,5,5,5,1,0,1.

dimZ/2H
∗(N#

g ;Z/2) = 2 ⋅ dimQH
∗(N#

g ;Q), (1)

with the right side known to equal to 2g(2g
g
). In fact, the verification of (1) would together with the

inequalities of Theorem 1 imply the conjectural recursive equalities.

The proofs of (i) and (ii) and the inequalities in Theorem 1 follow an adaptation of Newstead’s
Mayer-Vietoris argument. We also provide evidence for a stronger statement than the above con-
jecture, which may be accessible via geometric methods. The framed moduli space embeds into an
extended moduli space N+

g which contains the singular locus f−1g (+1). If it were the case that the
maps on homology induced by inclusion, written in the sequel as

νgr ∶Hr(N#
g ;Z/2) Ð→Hr(N+

g ;Z/2),

were always of maximal rank , then our method would carry through to prove that equality holds in
Theorem 1. More precisely, we suspect that νgr is surjective for the first half of the 6g − 6 degrees,
and injective for the latter half. We will show that νgr is of maximal rank for all r when g ∈ {1,2},
although we will only sketch our computations in the g = 2 case. The manifold N+

g may be viewed

as a real algebraic deformation of the singular locus f−1g (+1) with generic fiber homeomorphic to

N#
g , and understanding νgr seems an interesting problem in itself.

If the conjectural recursive formulae hold, then H∗(N#
g ;Z) is torsion-free in the first 1/3 and

last 1/3 of its degrees, and has nontrivial 2-torsion in-between. We can say a bit more about this. It
has been mentioned above that our conjectural formulae have been verified for g ⩽ 6 using the Leray-
Serre spectral sequence and the computations of [SS17]. In that paper, we study the cohomology
ring H∗(Ng;Z/2), and a featured result is that the nilpotency degree of α ∈H2(Ng;Z/2) is equal to
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g. This latter point is related to the current work as follows. Consider the Bockstein homomorphism
associated to the short exact coefficient sequence Z→ Z→ Z/2, written

β ∶Hr(N#
g ;Z/2) Ð→Hr+1(N#

g ;Z).

Using a straightforward induction argument, the conjectural formulae imply that the Z/2 betti
numbers and Q betti numbers of the framed moduli space agree up to degree r = 2g − 2. Thus we
expect that β = 0 in degrees r ⩽ 2g − 2. Let y ∈H1(SO(3);Z/2) be a generator. Then αg−1 ⊗ y is an
element in the E2 page of the Leray-Serre spectral sequence for the fibration N#

g . By Proposition 1
below and the nilpotency αg = 0 from [SS17, Thm. 1], it survives to the E∞ page to define a non-zero
element [αg−1 ⊗ y] ∈ H2g−1(N#

g ;Z/2). This element has no integral lift since y has no integral lift,
and thus we obtain the following.

Corollary 1. β ([αg−1 ⊗ y]) ≠ 0.

From the discussion above, we expect this to account for the first difference between the Z/2 betti
numbers and Q betti numbers, which occurs at r = 2g − 1. In fact, the conjectural formulae imply
that the Z/2 betti number at r = 2g − 1 is always exactly one more than the Q betti number, and
thus we expect that the element [αg−1 ⊗ y] entirely accounts for this difference.

Finally, we make a few remarks on other approaches to proving equality in (I)r−(III)r. One might
try to apply Thaddeus’s Morse-theoretic argument of [Tha00] to the framed moduli space. Indeed,
a priori, the function (Ai,Bi) z→ tr(Ag) defined on N#

g , the pullback of Thaddeus’s function, may
be perfect Morse-Bott over Z/2. This is not the case, however: for genus 2, the betti numbers for
the starting page of the Bott-Morse spectral sequence with Z/2 coefficients are 1,1,2,6,6,6,6,2,1,1,

while the Z/2 betti numbers of N#
2 , which constitute the E∞ page, are 1,0,1,5,5,5,5,1,0,1. The

gaps between these pages increases as the genus grows. On a related note, it would be interesting
to see if the ∞-dimensional method of Atiyah-Bott [AB83] has anything to say here.

Outline. In Section 2 we fix our notation and record some useful results from [New67]. In Section
3 we compute some data in the genus 1 case in order to apply Newstead’s Mayer-Vietoris argument
in Section 4 to prove Theorem 1. Finally, in Section 5 we sketch the arguments that show νgr is of
maximal rank for genus 2.

Acknowledgments. The first author thanks Simon Donaldson and Ali Daemi for encouraging
conversations. The first author was supported by NSF grant DMS-1503100.

4



2 Preliminaries

In this section we list some facts from Newstead’s paper [New67] and fix notation and conventions.
All homology groups will be with F = Z/2 coefficients unless otherwise indicated, and we write ∣V ∣
for the dimension of a vector space V . Although we henceforth fix our coefficient field F, it is worth
remarking that the results of this section hold for any coefficient field.

Write SU(2) =D+ ∪D− as a union of two 3-balls, each with boundary the 2-sphere of trace-free
elements, and with ±1 ∈D±. Then define the 6g-dimensional manifolds with boundary

N±
g = f−1g (D±).

Newstead explains that N−
g is homeomorphic to D− ×N#

g . In particular, the boundaries of both N+
g

and N−
g may be identified with S2 ×N#

g . Define the betti numbers

ňgr = ∣Hr(N+
g )∣, n̂gr = ∣Hr(N+

g , ∂N
+
g )∣.

Note that ňg6g−r = n̂gr by Lefschetz duality. Let µgr ∶Hr(∂N+
g ) Ð→Hr(N+

g ) be the map on homology
induced by inclusion. Using the Künneth decomposition for the homology of the boundary of N+

g ,
we can write µgr as the sum of two maps, νgr and ρgr :

H0(S2) ⊗Hr(N#
g ) Hr(N+

g )

H2(S2) ⊗Hr−2(N#
g )

νg
r

ρgr

Note that the domains of νgr and ρgr are naturally isomorphic toHr(N#
g ) andHr−2(N#

g ), respectively.

These two maps play a central role in the sequel. Write mg
r for the betti numbers of SU(2)2g. These

were given in the introduction as the coefficients of (1 + t3)2g. They are explicitly given by:

mg
r = dimHr(SU(2)2g) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

( 2g

r/3), r ≡ 0 (mod 3)

0 , otherwise

We now list some elementary relations between the quantities thus far introduced. To start, the
following says that the betti numbers of N+

g determine those of N#
g and conversely:

Lemma 1.

ňgr =
⎧⎪⎪⎨⎪⎪⎩

hgr−2 +mg
r (r ⩽ 3g + 1)

hgr−2 −m
g
r+1 (r ⩾ 3g + 1)

n̂gr =
⎧⎪⎪⎨⎪⎪⎩

hgr−1 −m
g
r−1 (r ⩽ 3g − 1)

hgr−1 +mg
r (r ⩾ 3g − 1)

5



This lemma follows from Lemmas 2 and 3 in Section 7 of [New67]. There, Newstead shows that
the two maps Hr(N+

g ) Ð→ Hr(SU(2)2g) and Hr(N#
g ) Ð→ Hr(SU(2)2g) induced by inclusion are

surjective for r ⩽ 3g + 2 and r ⩽ 3g − 1, respectively. His arguments for surjectivity are elementary
and easily seen to hold for any coefficient ring. The formula for ňgr with r ⩽ 3g + 1 then follows by
looking at the long exact sequence associated to the pair (SU(2)2g,N+

g ) and observing that excision

identifies the group Hr(SU(2)2g,N+
g ) with Hr−2(N#

g ). The formula for n̂gr with r ⩽ 3g − 1 follows
in a similar way, and the rest of the formulae follow by Lefschetz duality.

Next, we mention that the kernels and cokernels of the maps ρgr and µgr are also determined by
the betti numbers of N#

g . From the long exact sequence of the pair (N+
g , ∂N

+
g ) we have

∣coker(µgr)∣ + ∣ker(µgr−1)∣ = ∣Hr(N+
g , ∂N

+
g )∣ = n̂gr ,

from which the following is easily computed, with help of the above lemma:

∣ker(µgr)∣ =
⎧⎪⎪⎨⎪⎪⎩

hgr −mg
r (r < 3g)

hgr +mg
r+1 (r ⩾ 3g)

And for the map ρgr we may consider the Mayer-Vietoris sequence associated to the decomposition
of SU(2)2g into the union of N+

g and N−
g along their boundaries:

⋯ Hr(S2 ×N#
g ) Hr(N+

g ) ⊕Hr(N−
g ) Hr(SU(2)2g) ⋯χg

r

The fact that N−
g is homeomorphic to D3 × N#

g implies that the kernel and cokernel of χgr are
isomorphic to the kernel and cokernel of ρgr , respectively. From this we have

∣coker(ρgr)∣ + ∣ker(ρgr−1)∣ = ∣Hr(SU(2)2g)∣ = mg
r .

Solving for the kernel and cokernel of ρgr amounts to the following very useful observation:

Lemma 2.

1. If r ⩽ 3g + 1, then ρgr is injective, and its cokernel has dimension mg
r . In particular, if also

r ≡ 1,2 (mod 3), then ρgr is an isomorphism.

2. If r ⩾ 3g + 1, then ρgr is surjective, and its kernel has dimension mg
r+1. In particular, if also

r ≡ 0,1 (mod 3), then ρgr is an isomorphism.

We do not have as easy a way to compute the kernels and cokernels of the maps νgr in general. We
will determine these quantities for low genus examples.
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3 Getting started with the genus 1 decomposition

Now we begin the adaptation of Newstead’s Mayer-Vietoris argument with coefficients in F. It is
from this point onwards that the situation differs from the case of a field that has characteristic not
equal to 2. We begin by decomposing, as does Newstead, the genus g + 1 framed moduli space into
two parts that are built from genus 1 and genus g data:

N#
g+1 = N+

1 ×N#
g ⋃
S2×N#

1 ×N#
g

N#
1 ×N+

g (2)

We refer to [New67, §4] for details. Recall here that N#
1 may be identified with SO(3), with betti

numbers 1,1,1,1, and from Lemma 1, those of N+
1 are 1,0,1,3,1. We can then fill in most of the

data for the maps we considered in the previous section with g = 1 in the following table:

r h1r ň1r µ1
r ρ1r ν1r

0 1 1 111 010 111

1 1 0 001 000 001

2 1 1 112 111 111

3 1 3 132 131 131

4 0 1 111 111 010

5 0 1 001 001 000

Figure 2: Genus 1 data. The notation acb stands for a linear map Fb
Ð→ Fc of rank a. All entries are

computed from the first column from relations in Section 2, except for ν12 and ν13 (boxed) – see Lemma 3.

In fact, all of this data (not including ν12 and ν13) can be deduced from Newstead’s table [New67, §5]
via universal coefficients. Now consider the Mayer-Vietoris sequence corresponding to (2):

⋯ Hr(S2 ×N#
1 ×N#

g ) Hr(N+
1 ×N#

g ) ⊕Hr(N#
1 ×N+

g ) Hr(N#
g+1) ⋯λ1,g

r

Then the exactness of the Mayer-Vietoris sequence yields the following:

hg+1r = ∣coker(λ1,gr )∣ + ∣ker(λ1,gr−1)∣ (3)

To understand λ1,gr we decompose all of the homology groups using the Künneth Theorem. Before
doing this, let us write the two components of λ1,gr as maps in two different directions:

Hr(N+
1 ×N#

g ) Hr(S2 ×N#
1 ×N#

g ) Hr(N#
1 ×N+

g )

7



Write ιgr for the identity map on Hr(N#
g ). From here we expand the map λ1,gr using the Künneth

decompositions of the three homology groups:

H0(N+
1 ) ⊗Hr(N#

g ) H0(S2) ⊗H0(N#
1 ) ⊗Hr(N#

g ) H0(N#
1 ) ⊗Hr(N+

g )

H2(N+
1 ) ⊗Hr−2(N#

g ) H2(S2) ⊗H0(N#
1 ) ⊗Hr−2(N#

g )

H0(S2) ⊗H1(N#
1 ) ⊗Hr−1(N#

g ) H1(N#
1 ) ⊗Hr−1(N+

g )

H3(N+
1 ) ⊗Hr−3(N#

g ) H2(S2) ⊗H1(N#
1 ) ⊗Hr−3(N#

g )

H0(S2) ⊗H2(N#
1 ) ⊗Hr−2(N#

g ) H2(N#
1 ) ⊗Hr−2(N+

g )

H4(N+
1 ) ⊗Hr−4(N#

g ) H2(S2) ⊗H2(N#
1 ) ⊗Hr−4(N#

g )

H0(S2) ⊗H3(N#
1 ) ⊗Hr−3(N#

g ) H3(N#
1 ) ⊗Hr−3(N+

g )

H2(S2) ⊗H3(N#
1 ) ⊗Hr−5(N#

g )

ν1
0 ⊗ ιgr ι10 ⊗νg

r

ρ12 ⊗ ιgr−2
ι10 ⊗ρgr

ι11 ⊗νg
r−1

ρ13 ⊗ ιgr−3
ι11 ⊗ρgr−1

ν1
2 ⊗ ιgr−2

ι12 ⊗νg
r−2

ρ14 ⊗ ιgr−4
ι12 ⊗ρgr−2

ν1
3 ⊗ ιgr−3

ι13 ⊗νg
r−3

ι13 ⊗ρgr−3

Note that each homology group of S2, N#
1 and N+

1 that appears here is isomorphic to F, with the
exception of H3(N+

1 ), which is rank 3. In the sequel, it will be convenient to replace each vector
space that appears in such a diagram by a dot ● as in Figure 5.

Now, if we plug r = 0,1,2 into this diagram, the kernels and cokernels are easy to compute with
what we know thus far; for example, see Figure 4. We obtain the following:

∣coker(λ1,g0 )∣ = ∣coker(λ1,g2 )∣ = ∣ker(λ1,g2 )∣ = 1,

∣ker(λ1,g0 )∣ = ∣ker(λ1,g1 )∣ = ∣coker(λ1,g1 )∣ = 0.

Using equation (3) we then deduce, for all g ⩾ 2, that hg0 = 1, hg1 = 0 and hg2 = 1. The first two
of these equalities alternatively follow from Newstead’s Theorem 1 [New67], which says that the
framed moduli space is simply connected for g ⩾ 2.

In trying to compute the kernel of the next map λ1,g3 to determine hg3, we find that the answer
depends on ν12 , which we have not yet determined. To help solve for the map ν12 we will look at
the genus 2 moduli space. Before proceeding with this, we make a short digression regarding the
Leray-Serre spectral sequence for the framed moduli space.
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3 1⊗ y3 0 α⊗ y3 ⟨ψi⟩ ⊗ y3 δ2 ⊗ y3 0 αδ2 ⊗ y3

2 1⊗ y2 0 α⊗ y2 ⟨ψi⟩ ⊗ y2 δ2 ⊗ y2 0 αδ2 ⊗ y2

1 1⊗ y 0 α⊗ y ⟨ψi⟩ ⊗ y δ2 ⊗ y 0 αδ2 ⊗ y

0 1⊗ 1 0 α⊗ 1 ⟨ψi⟩ ⊗ 1 δ2 ⊗ 1 0 αδ2 ⊗ 1

0 1 2 3 4 5 6

Figure 3: The E2-page in the Leray-Serre spectral sequence for N#
2

The cohomological Leray-Serre spectral sequence for the SO(3)-fibration N#
g with base space Ng

is depicted in Figure 3 for g = 2, the details of which will be explained shortly. Write y for the degree
1 generator of H∗(SO(3)). Now recall H1(N2) = 0; in fact, Ng is simply connected [New67, Cor.
1]. Since also hg1 = 0 from above, the d2 differential on the E2-page of the spectral sequence must be
non-zero on the element 1 ⊗ y. Thus d2(1 ⊗ y) = α ⊗ 1, and using the Leibniz rule, we obtain that
for any x ∈H∗(N2) we have d2(x⊗ yi) = αx⊗ yi−1 for i ∈ {1,3}, and d2 is otherwise 0.

From here, the only possible element in E2 to survive to H2(N#
2 ) is represented by 1 ⊗ y2.

However, we already computed above that h22 = 1, necessitating its survival. Thus the Ei-page
differential di for i ⩾ 3 is zero on the class of 1 ⊗ y2. Since di for i ⩾ 3 vanishes on the bottom two
rows of the Ei-page for degree reasons, and every element in the top two rows is a multiple of the
class of 1⊗ y2, the Leibniz rule implies that di vanishes everywhere. Thus we have:

Proposition 1. For g ⩾ 2, the E2-page differential in the cohomological Leray-Serre spectral sequence
for N#

g sends x ⊗ yi to the element αx ⊗ yi−1 for i ∈ {1,3} and any x ∈ H∗(Ng), and is otherwise
zero. The spectral sequence collapses at the E3-page. Consequently, we have the formula

hgr = ∣coker(αgr−2)∣ + ∣ker(αgr−1)∣ + ∣coker(αgr−4)∣ + ∣ker(αgr−3)∣

where αgr ∶Hr(Ng) Ð→Hr+2(Ng) is the map defined by cup product with α.

Now we explain the genus 2 case more fully. The moduli space N2 is 6-dimensional, and its
cohomology ring over F is generated be a degree 2 element α, degree 3 elements ψ1, ψ2, ψ3, ψ4, and
a degree 4 element δ2. The ring structure is determined by the following: the only top degree
monomials that pair nontrivially with the fundamental class [N2] are the following:

αδ2, ψ1ψ3, ψ2ψ4.

In particular, α2 = 0. This ring, and in fact the corresponding ring with integer coefficients, is
described in Remark 2 of Section 10 in [New67].

9



Figure 4: The maps λ1,1
2 , λ1,1

3 and λ1,1
4 . Each vector space has been replaced by a dot ●. The dimension

of each vector space is written as a superscript of each ●. The notation ⊕2 in the lower left pane indicates

that the map λ1,1
3 consists of two copies of the depicted map. The lone lower dot in the upper left pane of

λ1,1
2 comes from the domain of ι11 ⊗ ν

1
1 .

Now Figure 3 is obtained from this description of the ring and Proposition 1. The arrows drawn
represent the non-trivial E2 differentials. Note that we have written ⟨ψi⟩ for the 4-dimensional
vector space with basis the ψi classes. The numbers h2r are then computed from Figure 3 to be

1, 0, 1, 5, 5, 5, 5, 1, 0, 1. (4)

We are now in a position to compute ν12 . Consider the map λ1,13 . Referring to Figure 4, we find that
the cokernel of this map is 4 or 6, depending on whether ν12 is an isomorphism or not, respectively.
Since we now know that h23 = 5, and from above ∣ker(λ1,12 )∣ = 1, equation (3) implies that ν12 must in
fact be an isomorphism. We now have the first part of:

Lemma 3. The maps ν12 and ν13 are injective.

To compute ν13 we next consider λ1,14 . Referring again to Figure 4, we find that the cokernel of λ1,14

has dimension equal to 5 or 6 depending on whether ν13 is injective or not, respectively. We are
using our knowledge that the image of ν13 is contained in that of ρ13, as follows from µ1

3 having rank
1. From above, the kernel of λ1,13 has dimension 0. Finally, from (4) we have h24 = 5, and this forces

10



Figure 5: In the left hand pane, we have simply redrawn the above expansion of λ1,g
r with a dot ● replacing

the name of each vector space. The computation of all the left hand (red) maps in this pane allows us to

replace λ1,g
r with the map ψ1,g

r defined in the right hand pane.

via (3) the dimension of the cokernel of λ1,14 to be 5, implying that ν13 is injective. This completes
the proof of the lemma.

4 Applying the Mayer-Vietoris argument

With all of the genus 1 data computed, we are now in a position to prove Theorem 1. Referring
to Figure 5, we first replace λ1,gr with a map ψ1,g

r that has the same kernel and cokernel. We will
shortly focus on this latter map.

Going from λ1,gr to its simplification ψ1,g
r is only a matter of linear algebra over F. In fact, from

the diagrammatic perspective, it is a standard manipulation in the context of computing homology
groups over F, usually referred to there as Gaussian elimination. For example, when an arrow is an
isomorphism and no other arrow touches its codomain, then we can eliminate the arrow, along with
its domain and codomain. This rule allows us to erase from λ1,gr the top left arrow ν10 ⊗ ιgr as well
as the arrow corresponding to ρ14 ⊗ ι

g
r−4. Next, the fact that ν12 and ρ12 are isomorphisms allows us

to join the domains of ι10 ⊗ ρgr and ι12 ⊗ ν
g
r−2. We can do the same for ν13 and ρ13 to join the domains

of ι11 ⊗ ρ
g
r−1 and ι13 ⊗ ν

g
r−3, except that ν13 and ρ13 are only isomorphisms onto their common images:

we must also save a complement of this image in their codomain, which will be of dimension 2hgr−1.
The result after doing these manipulations is the diagram defining ψ1,g

r .
Now Lemma 2 allows us to compute the kernel and cokernel of ψ1,g

r in many cases. For example,
suppose that r ⩽ 3g+1 and r ≡ 1,2 (mod 3). Then the part of the map consisting of ρgr and νgr−2 in the
diagram for ψ1,g

r does not contribute to the kernel, since ρgr is injective. Also, ρgr is an isomorphism,

11



so it along with its domain and codomain can be eliminated from consideration. After this, as far
as the kernel goes, we are left only with the part of the map consisting of νgr−1 and ρgr−1, which is
exactly µgr−1. For r ⩽ 3g we have ∣ker(µgr−1)∣ = h

g
r−1 −m

g
r−1, while for r = 3g + 1 we have instead

∣ker(µg3g)∣ = h
g
3g. We have deduced the first two parts of:

Lemma 4.

1. If r < 3g + 1 and r ≡ 1,2 (mod 3), then ∣ker(λ1,gr )∣ = hgr−1 −m
g
r−1.

2. If r = 3g + 1 then ∣ker(λ1,g3g+1)∣ = h
g
3g.

3. If r ⩾ 3g + 4 and r ≡ 0,1 (mod 3), then ∣ker(λ1,gr )∣ = hgr−1 +mg
r .

4. If r < 3g + 1 and r ≡ 1,2 (mod 3), then ∣coker(λ1,gr )∣ = 2hgr−3 + h
g
r−4 +m

g
r−2.

5. If r = 3g + 1 then ∣coker(λ1,g3g+1)∣ = 2hg3g−2 + h
g
3g−3 +m

g
3g.

6. If r ⩾ 3g + 4 and r ≡ 0,1 (mod 3), then ∣coker(λ1,gr )∣ = 2hgr−3 + h
g
r−4 −m

g
r−1.

The third item in the lemma is proven similarly: in this range, ρgr is an isomorphism, so again the
top part of the diagram for ψ1,g

r contributes no kernel. The map ρgr−3 is also an isomorphism, and
in the same way as before we identify the kernel of ψ1,g

r with that of µgr−1. The only difference is
that in this range we have ∣ker(µgr−1)∣ = h

g
r−1 +mg

r . The latter three items of the lemma follow from
the first three by simply inspecting the dimensions of the domain and codomain of λ1,gr .

Proof of (i)-(ii) in Thm. 1. Substitute the items of Lemma 4 into (3).

Lemma 5. For all r, the inequalities (I)r−(III)r are valid. Equality holds if and only if for all r,

∣ker(ρgr) ∩ ker(νgr−2)∣ = 0. (5)

Proof. We first note that (5) holds whenever ρgr is injective. Thus Lemma 2 implies (5) for the
ranges r ⩾ 3g + 1 with r ≡ 0,1 (mod 3), and r ⩽ 3g + 1. We now focus on the cases in which r ⩾ 3g + 2
and r ≡ 2 (mod 3). First suppose r ⩾ 3g + 4 and r ≡ 2 (mod 3). Referring to the diagram for ψ1,g

r in
Figure 5, and using the fact that ρgr−3 is surjective, the kernel is seen to have dimension

∣ker(λ1,gr )∣ = ∣ker(ρgr−3)∣ + ∣ker(µgr−1)∣ + ∣ker(ρgr) ∩ ker(νgr−2)∣. (6)

Using our formulae from Section 2, this kernel is equal to mg
r−2 + h

g
r−1 if and only if (5) holds. In

case ∣ker(ρgr) ∩ ker(νgr−2)∣ = 0 does hold, the cokernel is given by

∣coker(λ1,gr )∣ = 2hgr−3 + h
g
r−4 −m

g
r+1.

Together with items 3 and 6 from Lemma 4 we derive (III)r for r ⩾ 3g + 5 with equality holding,
and by Poincaré duality, (I)r for r ⩽ 3g − 2 with equality. The case of r = 3g + 2 is similarly handled.
From this argument it is clear that (5) holds if and only if (I)r−(III)r are equalities, and that more
generally ∣ker(ρgr) ∩ ker(νgr−2)∣ ⩾ 0 implies the inequalities (I)r−(III)r for all r.

12



Figure 6: The E2 page in the Leray-Serre spectral sequence for N#
3 .

Recall from the introduction our claim that equality in (I)r−(III)r follows if νgr has maximal rank
for all r. We explain this here for (I)r. For the range beyond the middle dimension, this asks for
νgr to be injective, and thus our claim from the introduction follows from Lemma 5. However, we
can also see how surjectivity of νgr in the range below the middle dimension would suffice: here the
kernel of ψ1,g

r is computed to have dimension hgr−1−m
g
r−1−m

g
r−3. This is obtained by splitting off the

kernel of νgr−1, which contributes hgr−1 − ň
g
r−1, then cancelling the remaining isomorphic part of νgr−1

against ρgr−1, and accounting for the kernel of µgr−3 = ν
g
r−3 ⊕ ρ

g
r−3 left over. Computing the cokernels

and applying (3) yields equality in (I)r.

5 Computations for the genus 2 decomposition

In this final section we sketch the computations that show νgr is of maximal rank for all r with g = 2.
None of these are needed for the results stated in the introduction.

One might try to prove equality in (I)r−(III)r by using other Mayer-Vietoris decompositions.
For example, moving a level down from (2), we may consider the genus 2 decomposition

N#
g+1 = N+

2 ×N#
g−1 ⋃

S2×N#
2 ×N#

g−1

N#
2 ×N+

g−1 (7)

which may be described in a similar manner as was the genus 1 decomposition (2) in [New67, §4].
Just as in the previous case, we consider the Mayer-Vietoris sequence associated with (7). We have
a map λ2,g−1r which we decompose into two parts, as follows:

Hr(N+
2 ×N

#
g−1) Hr(S2 ×N#

2 ×N#
g−1) Hr(N#

2 ×N+
g−1)

We also have the analogue of (3) from the exactness of the Mayer-Vietoris sequence:

hg+1r = ∣coker(λ2,g−1r )∣ + ∣ker(λ2,g−1r−1 )∣ (8)

As before, we expand λ2,g−1r into its various Künneth components, and obtain the diagram in Figure
7. Here we note that the betti numbers ňg−1r of N+

g−1 are easily computed from our knowledge of h2r
from Section 3 and the equations in Section 2. These are listed in Figure 8. All of the unboxed data
in the table is computed from the formulae in Section 2. We will momentarily sketch how one can
fill in the boxed data. Here we remark that after computing this data and attempting to adapt the
Mayer-Vietoris argument of Section 4 to this situation, it becomes apparent that more information
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Figure 7: The map λ2,g−1
r expanded using the Künneth Theorem.

about the maps νgr and their interactions with the ρgr is required in order to compute the relevant
kernels and cokernels.

We can compute the data in Figure 8 by specializing to the 2 + 1 and 2 + 2 Mayer-Vietoris
decompositions, setting g = 2 and g = 3 in (7). To carry this out we need the Z/2 betti numbers of

the moduli spaces N#
3 and N#

4 . These are computed via Proposition 1, which uses the Leray-Serre
spectral sequence, and the ring structures of H∗(Ng;F) for g ∈ {3,4}, which are available from [SS17].
See Figure 3 for an illustration of the genus 3 case. The numbers obtained are of course what appear
in Figure 1, and agree with the general conjectural recursions.

The 2 + 1 Mayer-Vietoris decomposition of the genus 3 moduli space, which can also be viewed
as one of the genus 1 decompositions (2), can be used to compute the following, in the listed order:

1. Use λ1,23 to conclude that ν22 is an isomorphism.

2. Use λ1,211 to conclude that ν29 is an isomophism.

3. Use λ1,26 to conclude that ∣ker(ν23) ∩ ker(µ2
5)∣ = 1, implying that ν25 has rank 4 or 5.

4. Use λ1,28 to conclude that ∣ker(ν26) ∩ ker(ρ18)∣ = 0, implying that ν26 has rank 4 or 5.

In each step we use the diagram of maps in Figure 7 with g = 2, the appropriate value of r, and
linear algebra over F just as in Section 4. In particular, the key device is our use of the relation
(8) along with our aforementioned knowledge of the betti numbers h3r, which constrains the possible
dimensions of the kernels and cokernels of λ1,2r . We mention that we can deduce a bit more than
what is listed in item 3, from its computation: the kernel of the map ν23(ρ25)−1ν25 is 1-dimensional.
This information is useful for the reader who wishes to complete the subsequent steps.
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r h2r ň2r µ2
r ρ2r ν2r

0 1 1 111 010 111

1 0 0 000 000 000

2 1 1 112 111 111

3 5 4 445 040 445

4 5 1 116 111 115

5 5 5 5510 555 555

6 5 11 51110 5115 5115

7 1 5 556 555 151

8 0 1 115 115 010

9 1 1 112 111 111

10 0 0 000 000 000

11 0 0 001 001 000

Figure 8: Genus 2 data.

We may then proceed to use the 2 + 2 decomposition of the genus 4 moduli space in a similar
fashion to complete the following two steps:

5. Use λ2,27 to conclude that ν24 is non-zero, and hence surjective.

6. Use λ2,213 to conclude that ν27 is non-zero, and hence injective.

It then remains to show that the ranks of ν25 and ν26 are 5, instead of 4. This computation is less
direct. However, the joint constraints imposed by inspecting λ2,2r for r = 8,9,10,12 lead to the
resolution of this claim, which, although entirely elementary, is somewhat tedious. For the reader
interested in following this computation through we include the following table, which lists the final
dimensions for some of the relevant kernels and cokernels.

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

h4
r 1 0 1 8 1 8 29 9 37 93 93 93 93 37 9 29 8 1 8 1 0 1

∣cok(λ2,2
r )∣ 1 0 1 8 1 8 29 8 29 68 85 68 85 20 1 12 0 0 0 0 0 0

∣ker(λ2,2
r )∣ 0 0 0 0 0 0 1 8 25 8 25 8 17 8 17 8 1 8 1 0 1 0
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