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Abstract

Given a rank 2 hermitian bundle over a 3-manifold that is non-trivial admissible in the
sense of Floer, one defines its Casson invariant as half the signed count of its projectively flat
connections, suitably perturbed. We show that the 2-divisibility of this integer invariant is
controlled in part by a formula involving the mod 2 cohomology ring of the 3-manifold. This
formula counts flat connections on the induced adjoint bundle with Klein-four holonomy.

1 Introduction

Let E be a U(2) bundle over a closed, oriented and connected 3-manifold Y with the property
that w2(E) has no torsion lifts to H2(Y ;Z). Following Floer [Flo95], we call such bundles non-
trivial admissible. Floer defined the instanton homology I∗(Y,E), which is an abelian group that is
Z2-graded. Define λ(Y,E) to be half the euler characteristic of the instanton homology:

λ(Y,E) = 1

2
χ [I∗(Y,E)] .

This number is a signed count of suitably perturbed projectively flat connections on E. It is well-
known that λ(Y,E) is an integer. Define the subset of triples

VY = {{a, b, c} ⊂H1(Y ;Z2) ∶ a + b + c = 0}.

This set is naturally in correspondence with the set of subspaces of the Z2-vector space H1(Y ;Z2)
of dimension at most two. Write b1(2) for the Z2-dimension of H1(Y ;Z2). Define for any given
x ∈H2(Y ;Z2) the following non-negative integer:

vY (x) = ∣{{a, b, c} ∈ VY ∶ ab + bc + ac = x}∣ .

For the case in which x = w2(E) we simply write vY (E).

Theorem 1. Suppose E is a non-trivial admissible U(2) bundle over a closed, oriented, connected
3-manifold Y with b1(2) ≥ 3. Then λ(Y,E) is divisible by 2b1(2)−3. Furthermore, we have

23−b1(2)λ(Y,E) ≡ vY (E) mod 2. (1)

If b1(2) = 2, this congruence also holds, implying that vY (E) is even. If b1(2) = 1, then the integer
vY (E) is zero. In these two cases vY (E) (mod 2) yields no information about λ(Y,E).
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Note that Y supports a non-trivial admissible bundle if and only if b1(Y ) ≥ 1, where b1(Y ) denotes
the rank of H1(Y ;Z). In general we have b1(2) ≥ b1(Y ), with strict inequality if and only if H1(Y ;Z)
has 2-torsion. Theorem 1 and its proof are generalizations of a rather simple idea due to Ruberman
and Saveliev [RS04]. Their result is the case of Theorem 1 when H1(Y ;Z) is free abelian of rank 3,
i.e., when Y is a homology 3-torus. To obtain their statement, one identifies vY (E) with the triple
cup product modulo 2, which for a homology 3-torus is a simple computation. (More generally, see
the corollary below.) Our adaptation of Ruberman and Saveliev’s argument is summarized, modulo
perturbations, as follows.

The invariant λ(Y,E) is one half of a signed count of projectively flat connections on the bundle
E. There is an action of H1(Y ;Z2) on this set of connections, and the quotient is identified with
flat connections on the adjoint SO(3) bundle induced by E. The only possible stabilizers of this
action are {1}, Z2, and V4, the Klein-four group isomorphic to Z2 × Z2. Further, the connections
with stabilizer V4 are flat connections with holonomy group V4. The number vY (E) is the number
of connections on the induced SO(3) bundle with holonomy V4, up to gauge equivalence. The proof
of Theorem 1 follows from counting the H1(Y ;Z2)-orbits with stabilizer V4.

Vanishing conditions, and relation to Lescop’s invariant. The quantity vY (E) (mod 2) of
congruence (1) is often, but not always, equal to zero. The parity also turns out to be independent
of our choice of non-trivial admissible bundle E. To state the result,

k(Y ) ∶= dimZ2{a ∈H1(Y ;Z2) ∶ a2 = 0} = dimZ2 ker(β1).

Here β1 is the Bockstein homomorphism defined on H1(Y ;Z2) associated to the coefficient exact
sequence 0→ Z2 → Z4 → Z2 → 0. As is well-known, β1(a) = a2. We note that if H1(Y ;Z) is written
as a direct sum of prime-power order cyclic summands and copies of Z, then k(Y ) is just the number
of Z2k summands with k > 1, plus the number of Z summands. In particular, k(Y ) ≥ b1(Y ).

Theorem 2. Let Y be a closed, oriented and connected 3-manifold with k(Y ) ≥ 1. Let x ∈H2(Y ;Z2)
be any element that is not a cup-square. Then vY (x) (mod 2) is independent of the choice of such
x. If furthermore k(Y ) ≥ 4 then we have vY (x) ≡ 0 (mod 2).

Note that the statement holds for a larger class of elements x ∈ H2(Y ;Z2) than those just coming
from admissible bundles. The conditions are best understood through examples. The simplest in-
teresting examples are certain surgeries on the Borromean rings, see Figure 1. These examples are
chosen such that b1(Y ) = 0 and b1(2) = 3.

Example 1. Consider the 3-manifold Y obtained by doing (2,2,4) surgery on the Borromean rings.
Such a manifold has first homology group isomorphic to Z2 ⊕ Z2 ⊕ Z4. Then k(Y ) = 1. The rank 3
vector space H1(Y ;Z2) has basis a, b, c with

c2 = 0, a2 = bc, b2 = ac,

and for which ab, bc, ac form a basis for H2(Y ;Z2). Now, ab is not a square, as are not ab+bc, ab+ac
or ab+ ac+ bc. All four of these elements have vY (x) = 1 ∈ Z. On the other hand, all other elements
in H2(Y ;Z2) have vY (x) ∈ {0,2,4}. This illustrates the necessity of the non-square condition on x.

Example 2. Next, consider (2,4,4) surgery on the Borromean rings. The Z2-cohomology ring is
much the same as before, except now b2 = 0, and k(Y ) = 2. All non-zero x ∈ H2(Y ;Z2) have vY (x)
odd. In fact, if x ≠ 0, then vY (x) = 1, while vY (a2) = 5 and vY (0) = 4. Here a2 is a cup-square, but
does not have a different parity from the other non-zero elements.
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Figure 1: Surgery on the Borromean rings with framings (j, k, l) on the three components. When j, k, l are

either 0 or various powers of 2, these surgeries yield non-vanishing examples of the congruence in Theorem

1, in which vY (E) ≡ 1 (mod 2) and k(Y ) = 1,2,3.

Example 3. Finally, the (4,4,4) surgery on the Borromean rings has the same Z2-cohomology ring
as that of the 3-torus. Here k(Y ) = 3. In this case vY (x) = 1 for x ≠ 0, all of which are not squares,
while vY (0) = 8.

To make use of Theorem 1, one can replace the 4-framings in the above three examples by 0-
framings, to get manifolds with the same Z2-cohomology rings but b1(Y ) > 0, ensuring that they
support non-trivial admissible bundles.

In what follows, we describe how to deduce Theorem 2 using Theorem 1 and related results of
Poudel [Pou15] and Turaev [Tur83]. By Poudel [Pou15], the Casson invariant λ(Y,E) may be iden-
tified with Lescop’s invariant of [Les96], slightly modified. The proof utilizes Floer’s exact triangle
for instanton homology and Dehn surgery techniques à la Lescop [Les96]. As a result, the parity of
vY (E) is independent of E, the choice of non-trivial admissible bundle. After some substitutions,
the congruences resulting from Theorem 1 and [Pou15] may be summarized as follows.

Corollary 1. Suppose x ∈H2(Y ;Z2) has no torsion lifts to H2(Y ;Z). Then modulo 2 we have

vY (x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

22−b1(2)∆′′
Y (1), b1(Y ) = 1

23−b1(2)#(γ ∩ F ), b1(Y ) = 2

23−b1(2)N ⋅ (a ∪ b ∪ c)[Y ], b1(Y ) = 3

0, b1(Y ) ≥ 4

(2)

where N is the cardinality of TorH1(Y ;Z) and other terms are defined below. In particular, if
b1(Y ) = 3 and H1(Y ;Z) has an element of order 4, then vY (x) ≡ 0 mod 2.

The right hand sides are defined as follows. First, for b1(Y ) = 1, ∆Y (t) is the Alexander polynomial
of Y , normalized so that ∆Y (1) = 1. If Y is 0-surgery on a knot K in an integral homology 3-sphere
Σ, then ∆Y (t) is just the Alexander polynomial ∆K⊂Σ(t). Next, suppose b1(Y ) = 2. Take two
oriented surfaces in Y that generate H2(Y ;Q). Let γ be their intersection, and γ′ the curve parallel
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to γ that induces the trivialization of the tubular neighborhood of γ given by the surfaces. Then
N ⋅ γ′ has a Seifert surface F in Y , and #(γ ∩ F ) is the count of intersection points, in general
position. Finally, in the b1(Y ) = 3 case, the triple a, b, c generates H1(Y ;Z) up to torsion, and [Y ]
is the fundamental class of Y .

The vanishing implications of the corollary above look rather similar to that of Theorem 2, except
that the role of k(Y ) is weakened to that of b1(Y ). In other words, the role of counting summands of
the form Z and Z2k for k > 1 is replaced by that of just counting Z summands. From the perspective
of the Z2-cohomology ring, these kinds of summands are all the same. With this thought in mind,
it is a rather straightforward task to establish Theorem 2 from Corollary 1 using realization results
for the Z2-cohomology structure of 3-manifolds due to Turaev. See Section 7. We remark that,
a posteriori, the divisibility properties of the quantities listed in the above corollary should imply
Theorem 2. However, the authors prefer to mostly argue with the Z2-cohomology ring structure, in
line with the definition of vY (x).

Some more examples. For any abelian group H containing an element of order 4 or ∞, there is a
3-manifold Y with H1(Y ;Z) isomorphic to H and vY (x) = 0, in which x is any non-cup-square. For
this, just consider integer-framed surgeries on unlinks. Note also that the integer vY (x) is stable
under connect sums with RP3, which increases b1(2) by 1 while fixing k(Y ). This operation, applied
to the three Borromean surgeries examples above, gives examples where vY (x) ≡ 1 mod 2 for any
pair b1(2), k(Y ) such that b1(2) ≥ 3 and k(Y ) ∈ {1,2,3}. In fact, it is straightforward to produce
non-vanishing examples with H1(Y ;Z) any isomorphism class of abelian group with those same two
constraints. We also have examples from Seifert-fibered spaces, with orientable base orbifold:

Proposition 1. Let Y be a Seifert-fibered space with Seifert invariants (g, b, (α1, β1), . . . , (αr, βr)),
where g is the genus of the base orbifold. Suppose x ∈ H2(Y ;Z2) is not a square. Then vY (x) ≡ 1
(mod 2) if and only if g = 1, all αi are odd, and b +∑βi ≡ 0 (mod 2).

We note that such Seifert fibered spaces have b1(Y ) ∈ {2,3} and b1(2) = 3. Included in this list is of
course the 3-torus. This proposition is easily proven using the description of the mod 2 cohomology
ring of a Seifert fibered space given in [ADHL+03]. See Section 8.

We mention that the Seifert-fibered spaces considered here for genus g = 0 are double branched
covers of Montesinos links. However, by the above proposition, the relevant invariant vY (x) in these
cases is always even. In Section 8 we give an example of a double branched cover for which Theorem
1 has a non-vanishing congruence.

Discussion. The integers vY (x), and not just their parities, are interesting in the context of SO(3)
gauge theory. Indeed, as is evident in the sequel, the V4-connection classes counted by vY (E)
are persistent (unmoved) under a large class of perturbations. As such, they form a distinguished
set of generators in the instanton Floer chain complex for the pair (Y,E), defined using any such
perturbation. Klein-four connections also play a pivotal role in Kronheimer and Mrowka’s SO(3)
instanton homology for webs and its relation to the Four-Color Theorem [KM15].

The authors did not see how to provide a general algebraic proof of Theorem 2, but we believe
it can be done. Our main purpose in this article is to exhibit how the congruence in Theorem 1
requires hardly any work, once the picture for the relevant moduli spaces is established.

Finally, it should be mentioned that although we refer to the invariant λ(Y,E) as a ‘Casson
invariant,’ we are using Taubes’ interpretation [Tau90] of Casson’s invariant for integral homology
3-spheres, applied to non-trivial admissible bundles.
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Outline. In Section 2 we review the notion of non-trivial admissibility and the suitable generaliza-
tion which motivates the hypotheses of Theorem 2. Sections 3 and 4 provide the background for the
main argument of Theorem 1, which was sketched above and is presented concisely in Section 5. The
issue of perturbations is ignored here, and then taken up in Section 6. In Section 7 we complete the
proof of Theorem 2. Finally, in Section 8 we prove Proposition 1, record a connected sum formula
for the parity of vY (x), and discuss double branched covers.

Acknowledgments. The authors would like to thank Danny Ruberman and Nikolai Saveliev for
helpful discussions. The first author was supported by NSF grant DMS-1503100.

2 Non-trivial admissible bundles

Here we briefly discuss Floer’s non-trivial admissibility condition. A good reference for this material
is [BD95]. As in the introduction, we let Y be a closed, oriented and connected 3-manifold. An
SO(3) bundle over Y is non-trivial admissible if its second Stiefel-Whitney class x ∈ H2(Y ;Z2)
satisfies the following three equivalent conditions, cf. [BD95, Lemma 1.1]:

• The image of x under h ∶H2(Y ;Z2)→ Hom(H2(Y ;Z),Z2) is non-zero.

• There is an orientable surface Σ ⊂ Y such that ⟨x, [Σ]⟩ /≡ 0.

• The element x ∈H2(Y ;Z2) has no torsion lifts to H2(Y ;Z).

One then defines a U(2) bundle to be non-trivial admissible if its induced adjoint SO(3) bundle is
non-trivial admissible. The definition is motivated by the fact that a non-trivial admissible U(2)
bundle admits no reducible flat connections. This avoids complications in instanton Floer theory.
Using that h is surjective, and the fact that SO(3) bundles over a 3-manifold are characterized by
the second Stiefel-Whitney class, we count the number of non-trivial admissible SO(3) bundles:

(2b1(Y ) − 1)2b1(2)−b1(Y ).

According to Theorem 1 and Poudel’s result mentioned in the introduction, the parity of vY (E) is
the same for all non-trivial admissible bundles E. However, Theorem 2 indicates that the parity of
vY (E) is invariant under a larger collection of bundles. Such bundles are characterized by having a
second Stiefel-Whitney class x ∈H2(Y ;Z2) that satisfies the following equivalent conditions:

• The image of x under g ∶H2(Y ;Z2)→ Hom(PD(ker(β1)),Z2) is non-zero.

• There is a surface Σ ⊂ Y such that ⟨x, [Σ]⟩ /≡ 0 and Σ ⋅Σ ≡ 0 ∈H1(Y ;Z2).

• The element x ∈H2(Y ;Z2) has no order 2 lifts to H2(Y ;Z).

• The element x ∈H2(Y ;Z2) is not the cup-square of an element from H1(Y ;Z2).

Note that here Σ is not necessarily orientable. Also, PD ∶ H1(Y ;Z2) → H2(Y ;Z2) is the Poincaré
duality isomorphism. These conditions are the natural extensions of the prior three conditions
when one wants to treat Z-summands and Z2k -summands for k > 1 the same. We note that the
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ring H∗(Y ;Z2) cannot see the difference between such summands. The map g is surjective, so the
number of SO(3) bundles of this more general type is

(2k(Y ) − 1)2b1(2)−k(Y ).

The most basic example of such a bundle that is not non-trivial admissible is the non-trivial SO(3)
bundle over the lens space L(4,1).

3 Configuration spaces and stabilizers

Fix a connection A0 on det(E), and let CE be the space of connections A on E with determinant
connection Tr(A) = A0. Let GE be the gauge transformation group consisting of smooth unitary
automorphisms of E that are determinant 1. The configuration space is the quotient BE = CE/GE .
The non-trivial admissibility of E implies that all points in BE are irreducible, meaning that the
GE-stabilizer of every connection in CE is as small as possible:

StabGE(A) = {±1}.

The U(2) bundle E induces an SO(3) bundle su(E), which may be defined as the sub-bundle
of End(E) consisting of trace-free, skew-hermitian endomorphisms. We let Gsu(E) denote the full
SO(3) gauge transformation group of su(E). Any A ∈ CE induces a connection Aad ∈ Csu(E), and
this induces a bijection between CE and Csu(E). Indeed, any U(2) connection A on E is uniquely
determined by Tr(A) on det(E) and Aad on su(E). In contrast to the U(2) case, we have

StabGsu(E)(Aad) ∈ {{1}, Z2, V4}.

Indeed, the difference between the determinant 1 unitary gauge group and the SO(3) gauge group
is described by an action of H1(Y ;Z2) on BE that gives Bsu(E) as its quotient space. The action
is as follows: H1(Y ;Z2) parametrizes the isomorphism classes of flat complex line bundles (with
connection) χ with holonomy {±1}. Then [χ] acts on [A] ∈ BE by tensoring the bundle-with-
connection (E,A) with χ. We then have the more precise statement that StabGsu(E)(Aad) is naturally

a subspace of H1(Y ;Z2), with the constraint that

dimZ2 StabGsu(E)(Aad) ∈ {0,1,2}.

In summary, we see that even though any connection in BE is irreducible, its image in Bsu(E) may
not be irreducible. Connections on su(E) with stabilizer Z2 are exactly those connections whose
holonomy is contained in O(2) and properly contains a Klein-4 group. Equivalently, these are
connections that are compatible with a splitting

su(E) = λ⊕L

where λ is a non-trivial real line bundle and L is an unoriented real 2-plane bundle, and for which
the connection on L is irreducible. Connections with stabilizer V4 are those whose holonomy is also
isomorphic to V4. Equivalently, these are connections compatible with a splitting

su(E) = λ1 ⊕ λ2 ⊕ λ3

into a sum of three non-trivial real line bundles. We write Bsu(E) as a disjoint union

Bsu(E) = B∗su(E) ∪ B
Z2

su(E)
∪ BV4

su(E)

in terms of irreducible connections, connections with Z2-stabilizer, and those with V4-stabilizer. We
refer to this last set as Klein-four connections.
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Remark 1. If the assumption of non-trivial admissibility is removed, three other kinds of stabilizers
in the SO(3)-gauge group can occur: SO(2), O(2) and SO(3).

4 Klein-four connections

The subset of Klein-four connections, unlike the other two subsets of Bsu(E), is a finite, discrete set.
As the elements are characterized by having holonomy V4, a finite group, they must all be flat, as a
simple continuity argument shows. Alternatively, each splitting su(E) = λ1⊕λ2⊕λ3 into non-trivial
real line bundles supports a unique compatible connection, which of course must be flat. For a
moment, let us consider the larger set

B≥V4 = { connections over Y on any SO(3)
bundle with holonomy inside a V4

}/gauge.

Then B≥V4 is parametrized by SO(3) bundles of the form λ1 ⊕ λ2 ⊕ λ3 over Y . Noting that
w1(su(E)) = 0, sending such a bundle to the triple {w1(λ1),w1(λ2),w1(λ3)} sets up a bijection

B≥V4
1∶1←→ { {a, b, c} ⊂H1(Y ;Z2)

with a + b + c = 0
} =∶ VY .

Yet another description of B≥V4 is as the set of homomorphisms Hom(π1(Y ), V4) modulo the action
of S3 = Aut(V4). A simple counting argument shows that B≥V4 has cardinality

2b1(2)−1 + 1

6
(4b1(2) + 2) .

Now, the elements of B≥V4 that live on su(E) are the ones with

w2(E) = w2(λ1 ⊕ λ2 ⊕ λ3) = a1a2 + a2a3 + a1a3, ai = w1(λi).

Thus we have the following bijection describing Klein-four connections on the bundle su(E):

BV4

su(E)

1∶1←→ { {a, b, c} ∈ VY with
ab + bc + ac = w2(E) } .

We see now that vY (E) = ∣BV4

su(E)
∣, and the statement of the main theorem is the congruence

λ(Y,E) ≡ 2b1(2)−3 ⋅ ∣BV4

su(E)
∣ mod 2b1(2)−2. (3)

5 The argument modulo perturbations

We now prove the theorem under the assumption that all moduli spaces to follow are nondegenerate,
so that no perturbations are needed. The argument uses the most basic information we have from
the H1(Y ;Z2)-action. Consider the moduli space of projectively flat connections on E:

ME ∶= {[A] ∈ BE ∶ FA = 1

2
FA0 ⋅ idE} .

This is a finite set, and each of its points is irreducible. This moduli space is invariant under the
H1(Y ;Z2)-action, and its quotient is the moduli space of flat connections on su(E):
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Msu(E) ∶= {[B] ∈ Bsu(E) ∶ FB = 0} .

We need the following observation. An element w ∈ H1(Y ;Z2) affects the relative mod 8 Floer
grading gr[A] of a connection [A] ∈ME by the formula (see [BD95, Prop. 1.9])

gr (w ⋅ [A]) − gr[A] ≡ 4 (w2(E)w +w3) mod 8,

so the H1(Y ;Z2)-action preserves the Z2-gradings. In particular, each H1(Y ;Z2)-orbit lies in a
single Z2-grading. The proof is now completed by counting orbit sizes. Each connection in Msu(E)

with stabilizer at most Z2 gives an orbit of size either

∣H1(Y ;Z2)∣ = 2b1(2) or ∣H1(Y ;Z2)/Z2∣ = 2b1(2)−1

lying upstairs inME . Thus 2b1(2)−1 divides the signed count ofME , with the prior observation about
gradings in mind. The remaining connections downstairs inMsu(E) are Klein-four connections, and

so in fact are given by the set BV4

su(E)
. Each point in this set contributes an orbit of size

∣H1(Y ;Z2)/V4∣ = 2b1(2)−2

upstairs in ME . Recalling that λ(Y,E) is half the signed count of points in ME , we recover the
congruence (3), proving the theorem under the assumption of non-degeneracy.

6 Including holonomy perturbations

In general, the moduli spaceME is degenerate and we need to perturb the projectively flat equation
to achieve the transversality we want. Henceforth we assume that our 3-manifold Y is equipped with
a Riemannian metric. The standard class of perturbations used are known as holonomy perturbations
[Her94, RS04]. The input for such a perturbation is an embedding Γ = {γk}mk=1 into Y of solid tori
γk ∶ S1 ×D2 → Y . We require that the embedded tori γk have a common normal disk, meaning that
the image of {1} ×D2 under γk is the same for all k. We also require that the images of the core
loops S1 × {0} are disjoint away from the normal disk. Fix a trivialization of det(E) over the image
of Γ, which is homotopically a wedge (bouquet) of circles. This allows us to consider the holonomy
around the γk as living in SU(2). Let f ∶ SU(2)m → R be a conjugation invariant function, i.e.,

f(ga1g
−1, . . . , gamg

−1) = f(a1, . . . , am)

for all g ∈ SU(2). We also choose a smooth 2-form µ on D2 with compact support in the interior
and integral 1. From this data one constructs a holonomy perturbation h, given as follows:

h(A) = ∫
D2
f (Holγ1,z(A), . . . ,Holγm,z(A))µ(z).

Here γk,z is the loop t ↦ γk(t, z) in Y . Fixing only the data Γ, we define HΓ to be the space of
perturbations constructed as above. Each h ∈HΓ yields a well-defined function h ∶ BE → R.

One way to guarantee that the perturbation h is H1(Y ;Z2)-equivariant is to require that each
loop im(γk) is zero as a class in H1(Y ;Z2). We call such Γ mod-2 trivial , following [RS04], where
this condition is introduced. We record their observation:

Lemma 1. If Γ is mod-2 tivial, then each h ∈HΓ is H1(Y ;Z2)-equivariant.
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Now, the perturbed U(2) moduli space Mh
E is the set of critical points of the perturbed Chern-

Simons functional CS + h. Specifically, for a suitable normalization of CS, we obtain

Mh
E = {[A] ∈ BE ∶ FA −

1

2
FA0 ⋅ idE + ⋆∇h = 0} .

If Γ is mod-2 trivial, this perturbed moduli space inherits the H1(Y ;Z2)-action from BE , and its
quotient space is the perturbed SO(3) moduli space for su(E). We also record the following:

Lemma 2. Suppose Γ is mod-2 trivial. For any h ∈HΓ, Klein-four connections are unmoved in the
SO(3) moduli space. More precisely, we always have the relation

Mh
su(E) ∩ B

V4

su(E)
= BV4

su(E)
.

As such perturbations are H1(Y ;Z2)-equivariant, a similar statement holds for the connections in
the U(2) moduli space Mh

E lying above Klein-four connections.
Our goal is to find a mod-2 trivial Γ such that for small, generic h ∈ HΓ the moduli space

Mh
E is non-degenerate. Section 5 of [RS04] shows that this can be achieved if Γ is abundant at

each projectively flat [A] ∈ME . We need to slightly generalize the definition of abundancy given
in [RS04], which only considers stabilizers isomorphic to {1} and Z2. To begin, note thatH1(Y ;Aad),
the Zariski tangent space to [A] in ME , carries an action by the stabilizer, denoted

SA ∶= StabH1(Y ;Z2)[A] = StabGsu(E)(Aad). (4)

We remark that the second equality in (4) is not true in general, and is contingent upon the non-
trivial admissibility of E. Recall that SA is one of {1}, Z2 or V4. Now, decompose the tangent space
into its SA-invariant subspace VA, and the SA-equivariant orthogonal complement to VA:

H1(Y ;Aad) = VA ⊕ V ⊥A .

The space VA is the Zariski tangent space of [A] internal to the stratum of ME consisting of con-
nection classes with stabilizer isomorphic to SA. The complement V ⊥A is the Zariski normal bundle
fiber inME at [A] relative to the aforementioned stratum. For a vector space W we write Sym(W )
for the space of symmetric bilinear forms on W . If W has a linear G-action by some group G, we
write Sym(W )G for the forms that are G-invariant.

Definition 1. A mod-2 trivial Γ is abundant at a projectively flat [A] ∈ME if there exist pertur-
bations {hi}ni=1 ⊂HΓ and some k such that Dhi(A) = 0 for k + 1 ≤ i ≤ n, and such that the following
map that is defined from Rn to Hom(VA,R)⊕ Sym(V ⊥A)SA is surjective:

(x1, . . . , xn) z→ (
k

∑
i=1

Dhi(A),
n

∑
i=k+1

xi Hess hi(A) ) . (5)

Note that if SA is trivial, then VA accounts for the entire tangent space, and in particular V ⊥A = 0.
Thus only the left-hand factor of the map (5) is relevant. This is the condition of ‘first order
abundancy,’ and is sufficient to achieve non-degeneracy for small, generic perturbations when there
are no other (lower) strata to consider. At the other extreme, when SA is isomorphic to V4, we have
VA = 0. In this case (5) reduces to a condition purely of ‘second order abundancy.’

If SA is isomorphic to Z2, then VA and V ⊥A are the +1 and −1 eigenspaces of the Z2-action,
respectively, and are V+ and V− in the notation of [RS04]. In this case Sym(V ⊥A)SA is the same
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Sym(V−). Our choice of Sym(V ⊥A)SA in Defn. 1 is sufficient for the arguments of Section 5 in [RS04]
to go through in part because a generic element therein is non-degenerate, cf. the proof of Prop. 5.4
in [RS04]. When SA is isomorphic to {1} or Z2, our definition agrees with that of [RS04].

We are left with producing a mod-2 trivial Γ which is abundant for all [A] ∈ME . To this end,
the work of Ruberman and Saveliev implies the following:

Lemma 3 ( [RS04, Prop. 5.2]). There exists a mod-2 trivial Γ that is abundant for all connections
in ME that do not descend to SO(3) Klein-four connections.

This allows us to focus on the situations in which SA is isomorphic to V4, the case in which Aad is
a Klein-four connection. We have the following facts, used in [RS04, §5.5], stated informally:

• If Γ is abundant, and Γ′ is close to Γ, then Γ′ is abundant.

• If Γ is abundant and Γ ⊂ Γ′, then Γ′ is abundant.

In these situations, we are assuming that Γ and Γ′ have the same fixed normal disk with basepoint.
Now suppose we can show, for each A with SA isomorphic to V4, the existence of a mod-2 trivial Γ
abundant at [A]. Then it is straightforward to conclude, using these two facts and Lemma 3, that
there exists a mod-2 trivial Γ′ abundant at all [A] ∈ME . Thus the following lemma completes the
proof of Theoerem 1:

Lemma 4. There is an abundant mod-2 trivial Γ for any [A] ∈ ME that descends to an SO(3)
Klein-four connection.

Proof. We follow the method used in [RS04] of passing to a finite cover. Let A be a projectively
flat connection on E with stabilizer SA isomorphic to V4. The SO(3) connection Aad is compatible
with a splitting su(E) = λ1 ⊕ λ2 ⊕ λ3 in which the λi are non-trivial and distinct real line bundles.
The stabilizer SA is given explicitly by

SA = {0, a1, a2, a3} ⊂H1(Y ;Z2), ai = w1(λi).

Here, ai corresponds to the gauge transformation of su(E) that simultaneously reflects λi+1 and
λi+2, while fixing λi, where indices are taken mod 3. Define a homomorphism π1(Y )→ SA by

γ z→ a1(γ)a1 + a2(γ)a2 + a3(γ)a3.

Let p ∶ Y ′ → Y be the covering space corresponding to this homomorphism. Under this covering
Aad pulls back to a trivial connection, denoted A′

ad, cf. [RS04, Lemma 5.6]. In particular, each of
λi pulls back under p to a trivial real line bundle λ′i. Note that the covering transformation group
of Y ′ → Y is the Klein-four group SA.

It is known [Her94, Prop. 67 & Lemma 58] that there is some Γ′, a collection of embedded
solid tori in Y ′, that is abundant at the trivial connection A′

ad in the following sense: there exist
perturbations {hi}ni=1 ⊂HΓ′ such that the map from Rn to Sym(H1(Y ′;A′

ad))SO(3) given by

(x1, . . . , xn) z→
n

∑
i=1

xi Hess hi(A′
ad) (6)
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is surjective. The appearance of the SO(3) here is the gauge stabilizer of the connection A′
ad. Let

Γ be the image of Γ′ under p, slightly perturbed in Y so that it is of the form described at the
beginning of this section. By construction, Γ is mod-2 trivial. Consider the following map:

Sym(H1(Y ′;A′
ad))SO(3) Ð→ Sym(H1(Y ;Aad))V4 . (7)

Here the V4 refers to SA. The map (5) is the composition of (6) with (7). Thus, to show abundancy
of Γ at A, it suffices to show that (7) is surjective. The map (7) is induced by the pull-back map:

V4 ⤿H1(Y ;Aad)
p∗ÐÐÐÐ→ H1(Y ′;A′

ad)⤾ SO(3) (8)

This map is equivariant with respect to the indicated gauge stabilizer actions, upon considering V4

as a subgroup of SO(3). More precisely, V4 refers to the Gsu(E)-stabilizer of Aad, while SO(3) refers
to the Gp∗su(E)-stabilizer of A′

ad.
To show that (7) is surjective, consider the following two decompositions:

H1(Y ;Aad) =
3

⊕
i=1

H1(Y ;λi), H1(Y ′;A′
ad) =H1(Y ′;R)⊗R3. (9)

Implicit here is a trivialization for each λ′i, and the R3 should be thought of as coming from the
induced trivialization of λ′1 ⊕ λ′2 ⊕ λ′3. The map (8) respects these decompositions. In the left-hand
decomposition of (9), the V4 action is as follows: ai acts as −1 on H1(Y ;λi+1) ⊕H1(Y ;λi+2), and
+1 on H1(Y ;λi). In the tensor product appearing in (9), the SO(3)-action on R3 is standard,
and is trivial on H1(Y ′;R). From these descriptions, it is straightforward to verify that these
decompositions induce identifications between the domain and codomain of (7) with Sym(H1(Y ′;R))
and ⊕3

i=1 Sym(H1(Y ;λi)), respectively. The map (7) can then be seen as the map

Sym(H1(Y ′;R))Ð→
3

⊕
i=1

Sym(H1(Y ;λi)), (10)

in which each of the three components is the map induced by pull-back, after trivializing λ′i. Now,
(10) is surjective because the three relevant pull-back maps are injective, and their three images
pairwise intersect at 0. This is evident from the decomposition

H1(Y ′;R) =H1(Y ;R)⊕H1(Y ;λ1)⊕H1(Y ;λ2)⊕H1(Y ;λ3),

which is induced by the covering transformation group SA acting on H1(Y ′;R). This action should
not to be confused with the gauge stabilizer action of SA on H1(Y ;Aad) which was used above. The
summand H1(Y ;R) is the invariant subspace under this action, while H1(Y ;λi) is the complement
of H1(Y ;R) inside the invariant subspace for the subgroup {0, ai}.

Remark 2. For a discussion of some of the technical assumptions used here, see Section 5.6 of
[RS04]. For a detailed study of the abundancy of holonomy perturbations in the context of the
equivariant Kuranishi method, see [Her06].
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7 Establishing the vanishing result

Here we complete the proof of Theorem 2. The remaining step is to use a realization result for the
Z2-cohomology ring due to Turaev in conjunction with Corollary 1. Recall that for a closed, oriented
and connected 3-manifold we have the triple cup product form

uY ∶H1(Y ;Z2)⊗H1(Y ;Z2)⊗H1(Y ;Z2)Ð→ Z2,

uY (a, b, c) = (a ∪ b ∪ c) [Y ].
The trilinear form uY determines the Z2-cohomology ring of Y . It was originally proven by Postnikov
that any symmetric trilinear form satisfying u(a, a, b) = u(b, b, a) is realized by a closed, oriented and
connected 3-manifold. Recall also that we have the linking form

LY ∶ TorH1(Y ;Z)⊗TorH1(Y ;Z)Ð→ Q/Z,

which is a non-degenerate symmetric bilinear form. The linking form interacts with the Z2-cohomology
ring in the following way. Let ψ ∶ Z2 → Q/Z be the injection defined by ψ(k (mod 2)) = k/2. Then
for all a, b ∈H1(Y ;Z2) we have the relation

ψ (uY (a, a, b)) = LY (a†, b†), (11)

where for any a ∈ H1(Y ;Z2) the element a† ∈ TorH1(Y ;Z) is defined by the condition that
LY (a†, c) = ψ(a(c)) for all c ∈ TorH1(Y ;Z). Here we are of course identifying H1(Y ;Z2) with
Hom(H1(Y ;Z),Z2). An implication of Turaev’s work is the following:

Theorem 3 ( [Tur83]). Let H be a finitely generated abelian group, and let u ∶ Hom(H,Z2)⊗3 → Z2

be a symmetric trilinear form. There exists a closed, orientable and connected 3-manifold Y such
that the pair (H,u) is equivalent to (H1(Y ;Z), uY ) if and only if there exists a non-degenerate sym-
metric bilinear form L ∶ TorH⊗2 → Q/Z such that (11) holds with uY = u and LY = L.

Proof of Theorem 2. Let Y be such that k(Y ) ≥ 4, and suppose x is not a cup-square. Equivalently, x
has no order 2 lift to H2(Y ;Z). We aim to show that vY (x) ≡ 0 (mod 2). We choose an isomorphism

H1(Y ;Z) ≃
4

⊕
i=1

Ai ⊕B

where Ai is an abelian group of the form Z2k for k > 1 or a copy of Z. Make these choices so that x
has a lift to H2(Y ;Z) with support in A1, not of order 2, which can be done by our assumption on
x. Recall that TorH1(Y ;Z) is the torsion of H2(Y ;Z) by the Universal Coefficients Theorem. Now
define H by replacing the Ai summands with copies of Z:

H ∶=
4

⊕
i=1

A′
i ⊕B, A′

i ∶= Z

With our identifications we have a natural isomorphism between H1(Y ;Z2) and Hom(H,Z2), and
with this understood we set u ∶= uY . Also, noting that TorH is simply TorH1(Y ;Z) with some
summands possibly thrown away, we define L to be the restriction of LY . With our identifications,
the terms appearing in (11) are unchanged. Thus Theorem 3 implies the existence of a closed,
oriented and connected 3-manifold Z with first homology and triple cup product form given by
(H,u). By our choices, x has no torsion lifts, and is thus equal to w2(E) for a non-trivial admissible
U(2) bundle E over Z. Now Poudel’s result in the guise of Corollary 1 says vZ(x) ≡ 0 (mod 2), since
b1(Z) ≥ 4. Since the Z2-cohomology rings of Y and Z are the same, we then get vY (x) ≡ 0 (mod
2). The independence of x as a choice having no order 2 lift to H2(Y ;Z) is established in much the
same way as the vanishing.
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8 Examples and properties

In this section we prove Proposition 1, which yields examples of vY (x) (mod 2) for Seifert fibered
spaces. We then produce a connected sum formula for the parity of vY (x). Finally, we illustrate
how to compute vY (x) for double branched covers of links.

Seifert fibered spaces. Let Y be a Seifert fibered 3-manifold over an oriented base orbifold, with
Seifert invariants (g, b, (α1, β1), . . . , (αr, βr)). Here g is the genus of the base orbifold. The mod 2
cohomology ring of Y is completely described in [ADHL+03].

Lemma 5. Suppose x ∈ H2(Y ;Z2) is not a square. If any of the αi are even, or if all αi are odd
and b +∑βi ≡ 1 mod 2, then vY (x) = 0.

Proof. We begin with the following easily verified observation. In general, we have

{a2 ∶ a ∈H1(Y ;Z2)} ⊂ {ab ∶ a, b ∈H1(Y ;Z2)}. (12)

When these sets are equal, then vY (x) = 0. For if the triple {a, b, a + b} ∈ VY had a2 + b2 + ab = x,
then x would in fact be a square, contradiction. Now we appeal to [ADHL+03, Thm. 2.9]. When
there is some even αi (“case n = 0” in [ADHL+03]), we easily check that these two sets in (12) are
equal. This is particularly immediate when there is an αi divisible by 4, and the mod 2 cohomology
ring of Y is isomorphic to that of a connect sum of some copies of RP3 and some copies of S1 × S2.
Finally, if all αi are odd and b +∑βi ≡ 1 mod 2, then the ring is isomorphic to that of a connect
sum of 2g copies of S1 × S2, whence by the same reasoning vY (x) = 0.

Proof of Proposition 1. First, since b1(Y ) is equal to either 2g or 2g + 1, vY (x) is even by Corollary
1 unless g = 1. By the above lemma, it remains to check that vY (x) ≡ 1 mod 2 when g = 1 and
all αi are odd and b +∑βi ≡ 0 mod 2. One can conclude from [ADHL+03] that H1(Y ;Z2) has a
basis a, b, c with a2 = b2 = 0 and non-zero products ab, bc, ac, the three of which provide a basis
for H2(Y ;Z2). Depending on some divisibility conditions on the βi, either c2 = 0 or c2 = ab. The
element ac, for one, is never a square, so we set x = ac. In either case we compute vY (x) = 1.

Connected sums. Now let x be any element of H2(Y ;Z2). Recall that VY may be viewed as
Hom(π1(Y ), V4) modulo the action of S3 = Aut(V4). As such, it makes sense to keep track of the
S3-stabilizers of the orbits. For a set X with S3-action we define the triple v̌(X) = (v̌1, v̌2, v̌3) where
v̌1, v̌2, v̌3 are the numbers of orbits with stabilizers of orders 1, 2, 6, respectively. For two such sets
X1 and X2 with S3-actions we have

v̌(X1 ×S3 X2) = v̌(X1) × v̌(X2)

where we define the product × on triples as follows:

v̌ × ǔ ∶= (6v̌1ǔ1 + 3v̌1ǔ2 + 3v̌2ǔ1 + v̌1ǔ3 + v̌3ǔ1 + v̌2ǔ2, v̌2ǔ2 + v̌2ǔ3 + v̌3ǔ2, v̌3ǔ3).
Define the norm of a triple to be the L1-norm: ∣v̌∣ = v̌1 + v̌2 + v̌3. Write v̌Y (x) for the triple v̌(X),
with X the subset of Hom(π1(Y ), V4) that lives on an SO(3) bundle E with x = w2(E). Thus X/S3

is the subset of {a, b, c} ∈ VY such that ab + bc + ac = x. With our new notation, we have

vY (x) = ∣v̌Y (x)∣.
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Now, given xi ∈H2(Yi;Z2) it is easy to verify the connect sum relation

vY1#Y2(x1 + x2) = ∣v̌Y1(x1) × v̌Y2(x2)∣.

Note also that if x is not a cup-square, then v̌Y (x) has the form

v̌Y (x) = (v̌1,0,0).

In general, the third entry v̌3 is equal to 1 if and only if x = 0, and is otherwise 0. Also, the second
entry v̌2 is the number of non-trivial cup-square-roots of x:

v̌2 = ∣{a ∈H1(Y ;Z2) ∶ a ≠ 0, a2 = x}∣, where v̌Y (x) = (v̌1, v̌2, v̌3).

In particular, the sum v̌2 + v̌3 is either zero or the cardinality of the kernel of the Bockstein map
H1(Y ;Z2) → H2(Y ;Z2), which is by definition 2k(Y ). Putting these observations together, and
using our freedom to choose x that is not a square (below choose x2 = 0), we compute the following:

Proposition 2. Suppose xi ∈H2(Yi;Z2) and that x1 is not a cup-square. Then

vY1#Y2(x1 + x2) ≡
⎧⎪⎪⎨⎪⎪⎩

vY1(x1) mod 2, k(Y2) = 0

0 mod 2, otherwise

In particular, we recover the fact (mod 2) that vY (x) is stable under connect summing with RP3.
More generally, these statements clearly hold when the decompositions are only algebraic, instead
of geometric: for example, if there is a decomposition H1(Y ;Z2) = A ⊕B where A ∪B = 0 and B
has an element of order 4 or ∞, then vY (x) ≡ 0 (mod 2) for any x not a cup-square.

Double branched covers. The above Seifert-fibered examples for genus g = 0 are double branched
covers of Montesinos links, but in all of those cases vY (x) vanishes (mod 2) for non-squares x. Here
we compute a non-vanishing example in which Y is a double branched cover Σ(L) of a link L in
S3. First, we describe the Z2 cohomology rings of such manifolds. Let L be a link with components
L1, . . . Ln, and let Si be a Seifert surface for Li. Then Si lifts to a closed surface Fi in the branched
cover Σ(L). Write ai ∈H1(Σ(L);Z2) for the Poincaré dual of [Fi].

Proposition 3. Let L be an n component link. The vector space H1(Σ(L);Z2) has dimension n−1,
and it is generated by the n classes ai subject to the one relation

a1 +⋯ + an = 0. (13)

The triple cup product form on H1(Σ(L);Z2) is determined by the values

(ai ∪ aj ∪ ak)[Σ(L)] ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑`≠i lk(Li, L`) mod 2, i = j = k,
lk(Li, Lk) mod 2, i = j ≠ k,
0 mod 2, i, j, k distinct
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Figure 2: The link L =L8n8 with its four components labelled by {1,2,3,4}. This link has determinant

zero and thus its branched double cover supports non-trivial admissible bundles.

This proposition is proved for two-component links in [PS15, Prop. 9.2], and the proof easily
generalizes. We sketch the argument. To begin, we mention that H1(Σ(L);Z2) is in bijection with
the subsets of {1, . . . , n} of even cardinality:

H1(Σ(L);Z2)
1∶1←→ { S ⊂ {1, . . . , n}

∣S∣ ≡ 0 mod 2
} . (14)

The bijection goes as follows. Given such a subset, pair off elements. For the pair {i, j}, draw an
arc in S3 between components Li and Lj , otherwise missing L. Lift the arcs to a union of loops in
Σ(L) to obtain a class in H1(Σ(L);Z2). Now, assume the Fi are transverse to one another. Then
it is not hard to see, when i ≠ j, that Fi ∩ Fj is mod 2 homologous to

lk(Li, Lj) ⋅ {i, j}

where we view {i, j} as an element of H1(Σ(L);Z2) via the above bijection. Upon taking Poincaré
duals, this yields the proposition. We note that addition on the subsets appearing on the right side
of (14) is the symmetric difference of sets.

Let Y = Σ(L), and let f be the function from VY to H1(Y ;Z2) that sends a flat Klein-four
connection class to the Poincaré dual of its second Stiefel-Whitney class:

f{a, b, c} = PD(ab + bc + ac).

Let L be the four component link L8n8 depicted in Figure 2, and let ai be the classes described in
Proposition 3 for L, so that ai is dual to the lifted Seifert surface of Li. In particular, a1, a2, a3 form
a basis for H1(Y ;Z2). For illustration, using Proposition 3 we compute:

PD(a2
1) = PD (a1(a2 + a3 + a4)) =

4

∑
i=2

lk(L1, Li) ⋅ {1, i} = {1,2} + {1,3} = {2,3}.

The bijection (14) is implicit in our notation, aligning subsets of {1,2,3,4} of even size with elements
of H1(Y ;Z2). We then compute f on all fifteen of the Klein-four connection classes in VY :
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f{0,0,0} = 0, f{a1, a2, a1 + a2} = {3,4},
f{a1, a1,0} = {2,3}, f{a1, a3, a1 + a3} = {2,4},
f{a2, a2,0} = {1,4}, f{a2, a3, a2 + a3} = 0,

f{a3, a3,0} = {1,4}, f{a1, a2 + a3, a1 + a2 + a3} = 0,

f{a1 + a2, a1 + a2,0} = {1,2,3,4}, f{a2, a1 + a3, a1 + a2 + a3} = {1,3},
f{a1 + a3, a1 + a3,0} = {1,2,3,4}, f{a3, a1 + a2, a1 + a2 + a3} = {1,2},
f{a2 + a3, a2 + a3,0} = 0, f{a1 + a2, a1 + a3, a2 + a3} = 0,

f{a1 + a2 + a3, a1 + a2 + a3,0} = {2,3}.

We find that the cup-squares form a 2-dimensional subspace of H2(Y ;Z2), appearing as the outputs
of the left-hand column. Thus k(Y ) = 1. We have four non-squares, appearing as the non-zero
entries (in red) in the right-hand column. Each has one Klein-four class, and so vY (x) ≡ 1 (mod 2)
when x is not a cup-square. The link L has determinant zero, i.e. b1(Y ) > 0, so Y has a non-trivial
admissible U(2) bundle E. By Theorem 1 we conclude

λ(Y,E) ≡ 1 mod 2.

Proposition 3 similarly computes the parity of 24−nλ(Y,E), when det(L) = 0, from only knowing
the mod 2 linking matrix of L.
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