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Abstract
Using instanton Floer theory, extending methods due to Frøyshov, we determine the defi-

nite lattices that arise from smooth 4-manifolds bounded by certain homology 3-spheres. For
example, we show that for +1 surgery on the (2,5) torus knot, the only non-diagonal lattices that
can occur are E8 and the indecomposable unimodular definite lattice of rank 12, up to diagonal
summands. We require that our 4-manifolds have no 2-torsion in their homology.

1 Introduction

Let X be a smooth, closed and oriented 4-manifold. The intersection of 2-cycles defines the struc-
ture of a unimodular lattice on the free abelian group H2pX;Zq{Tor. Donaldson’s celebrated The-
orem A of [Don86] says that if this lattice is definite, then it is equivalent over the integers to
a diagonal form x˘1yn. Donaldson’s original proof used instanton gauge theory, and alternative
proofs were later given using Seiberg-Witten and Heegaard Floer theory [OS03, Thm.9.1], in con-
junction with a lattice-theoretic result due to Elkies [Elk95a].

For a given integer homology 3-sphere Y , which definite lattices arise as the intersection forms
of smooth 4-manifolds with boundary Y ? Donaldson’s theorem may be viewed as the solution to
this problem in the case of the 3-sphere. To date, there is only one result in which the set of definite
lattices is determined and does not consist of only diagonal lattices: under the assumption that the
4-manifolds are simply-connected, Frøyshov showed in his PhD thesis [Frøb] that the only non-
diagonalizable definite lattices bounded by the Poincaré sphere are ´E8 ‘ x´1yn. The proof uses
instanton gauge theory, and no other proofs are yet available.

In this article we extend and reformulate some of Frøyshov’s methods in [Frøb,Frø04] to obtain
further results in this direction. The central new application is the following.

Theorem 1.1. Let Y be an integer homology 3-sphere Z{2-homology cobordant to `1 surgery on
a knot with smooth 4-ball genus 2. If a smooth, compact, oriented and definite 4-manifold with no
2-torsion in its homology has boundary Y , then its intersection form is equivalent to one of

x˘1yn E8 ‘ x`1yn Γ12 ‘ x`1yn

where Γ12 is the unique indecomposable unimodular positive definite lattice of rank 12.
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If a non-diagonal lattice in this list occurs, then x´1yn for n ě 0 does not: if the former arises
from X1 and the latter from X2, both with boundary Y , then the closed 4-manifold X1 Y X2 has
a non-diagonal form, contradicting Donaldson’s Theorem A. An example realizing all the positive
forms on the list is `1 surgery on the p2, 5q torus knot, which is the Brieskorn sphere ´Σp2, 5, 9q.

Corollary 1.2. If a smooth, compact, oriented and definite 4-manifold with no 2-torsion in its
homology has boundary ´Σp2, 5, 9q, then its intersection form is equivalent to one of

x`1yn pn ě 1q, E8 ‘ x`1yn pn ě 0q, Γ12 ‘ x`1yn pn ě 0q

and all of these possibilities occur.

The realizations of these lattices are straightforward, except perhaps for the case of E8; see
e.g. [GS18]. A slightly more general statement of Theorem 1.1 follows from Corollary 4.3 below.
Theorem 1.1 may be viewed as the next installment of the following, which itself is a kind of
successor to Donaldson’s Theorem A cited above.

Theorem 1.3. Let Y be an integer homology 3-sphere Z{2-homology cobordant to `1 surgery on
a knot with smooth 4-ball genus 1. If a smooth, compact, oriented and definite 4-manifold with no
2-torsion in its homology has boundary Y , then its intersection form is equivalent to one of

x˘1yn E8 ‘ x`1yn

A corollary is a slight improvement of Frøyshov’s theorem, obtained by applying the result to
`1 surgery on the p2, 3q torus knot, the orientation-reversal of the Poincaré sphere Σp2, 3, 5q:

Corollary 1.4 (cf. [Frøb]). If a smooth, compact, oriented and definite 4-manifold with no 2-torsion
in its homology has boundary ´Σp2, 3, 5q, then its intersection form is equivalent to one of

x`1yn pn ě 1q, E8 ‘ x`1yn pn ě 0q,

and all of these possiblities occur.

We give more examples in Section 5. We expect the methods used to provide further applica-
tions. A good candidate to consider next is ´Σp3, 4, 11q, which is `1 surgery on the p3, 4q torus
knot of genus 3. In [GS18] we show that this manifold bounds the unimodular lattices x`1y, E8,
Γ12, E2

7 and A15, the last two being the indecomposable positive definite unimodular lattices of
ranks 14 and 15, respectively; we exhibit some of these in Section 5.

A straightforward Mayer-Vietoris argument shows that the statements of both Theorems 1.1 and
1.3 hold for 3-manifolds that are not integer homology 3-spheres, as long as the lattice is assumed to
be unimodular. In joint work with Marco Golla [GS18] we provide analogues of the above results
for non-unimodular lattices.
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Other than Donaldson’s Theorem A and Frøyshov’s work in instanton Floer theory, restric-
tions on the possible definite lattices bounded by a fixed homology 3-sphere have previously been
established using Seiberg-Witten and Heegaard Floer theory. In particular, there is a fundamen-
tal inequality for both the Heegaard Floer d-invariant of Oszváth and Szabó [OS03, Thm.1.11]
and Frøyshov’s Seiberg-Witten correction term [Frø10, Thm.4]. A lattice theoretic result of Elkies
[Elk95b] implies that if an integer homology 3-sphere has either of these invariants the same as that
of the Poincaré sphere, then there are only 14 possible definite lattices that occur, up to diagonal
summands; see Table 1. While our proofs of all results stated above depend only on instanton the-
ory, we will see that for Theorem 1.3 these restrictions from other theories can replace some, but not
all, of the instanton theoretic input of the argument. The same is true for Theorem 1.1, as discussed
at the end of Section 4.

To prove Theorems 1.1 and 1.3, we provide partial analogues of Frøyshov’s instanton inequality
from [Frø04] in which the coefficients used are the integers modulo a power of 2, with an emphasis
on the cases of 2 and 4. The inequalities provide new lower bounds for the genus of an embedded
surface in a smooth closed 4-manifold in terms of data from the intersection form. Part of the input
for these inequalities are relations in the instanton Floer cohomology ring of a circle times a surface,
taken with the coefficient rings Z{2k. We only prove the relevant relations for low genus and small
k, which is more than what is needed for our applications.

Apart from the determination of the relations just mentioned, the proofs of the inequalities we
use are straightforward adaptations of the characteristic zero case from [Frø04], as explained in
Section 7. We also digress in Section 7.3 to discuss analogues of Frøyshov’s inequality for odd
characteristic coefficients. However, these other variations do not appear to be useful.

Frøyshov has announced in several public lectures over the years the construction of two ho-
mology cobordism invariants, denoted q2 and q3, defined using the second and third Stiefel-Whitney
classes of the basepoint fibration in the context of mod two instanton Floer theory, in a fashion sim-
ilar to his construction of the h-invariant of [Frø02]. We expect that the inequalities studied here are
relevant to this framework. We rather indirectly touch upon these matters in Section 8, where we
replace our first arguments with some using instanton Floer theory for homology 3-spheres.

Outline. In Section 2 we state the inequalities obtained from instanton theory, our main techni-
cal tools. The proofs of these, which are adaptations of Frøyshov’s argument to the settings of Z{2k

coefficients, are presented in Section 7. In Section 3 we prove Theorem 1.3 and Corollary 1.4. In
Section 4 we prove Theorem 1.1 and Corollary 1.2. More examples are presented in Section 5. In
Section 6 we prove some relations in the instanton cohomology of a circle times a surface. An alter-
native proof of Corollary 1.2, closer in spirit to Frøyshov’s proof of Corollary 1.4 and emphasizing
the role of instanton Floer homology for homology 3-spheres, is presented in Section 8. Finally, in
Section 9, we discuss an example of a rank 14 definite unimodular lattice E2

7 which illustrates the
necessity of the mod 4 data used in the proof of Theorem 1.1.

Acknowledgments. The author thanks Kim Frøyshov for his encouragement and several in-
formative discussions. The work here owes a great debt to his foundational work in instanton
homology. Thanks to Motoo Tange for being the first to inform the author that ´Σp2, 5, 9q bounds
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E8. The author also thanks Marco Golla, Ciprian Manolescu, Matt Stoffregen and Josh Greene for
helpful correspondences. The author was supported by NSF grant DMS-1503100.

2 The inequalities

In this section we state partial analogues of Frøyshov’s instanton inequality from [Frø04] when the
coefficients used are the integers modulo certain powers of 2. Our primary focus will be the case of
Z{4; we also discuss the case of Z{2, which is most relevant to Sections 8 and 9. In addition, we
make one use of the case Z{8. The proofs of the results in this section are presented in Section 7.
For context, we also recall Frøyshov’s inequality of [Frø04]. The reader interested in the applica-
tions may wish to skip this section and refer back when needed.

Let Vg denote the Z{4-graded instanton cohomology of a circle times a surface of genus g
equipped with a Up2q-bundle having odd determinant line bundle. The 4D cobordism defined by a
2D pair of pants cobordism crossed with the surface induces a map Vg b Vg Ñ Vg endowing Vg

with the structure of an associative ring with unit. Muñoz [Mn99] determined a presentation for this
ring over Q which is recursive in the genus, and we will see later that Vg is torsion-free. There are
two distinguished elements in Vg, denoted α and β, of degrees 2 and 0 mod 4, respectively. Define

N2
αpgq :“ min

␣

n ě 1 : αn ” 0 P Vg b Z{2
(

for g ě 1, and N2
αp0q “ 0. Here Vg denotes the quotient of Vg by relative Donaldson invariants

involving µ-classes of loops; see Sections 6 and 7.2 for more details. The element α(mod 2) in
Vg b Z{2 may be defined using the second Stiefel-Whitney class of the basepoint fibration, while
β P Vg is defined using the first Pontryagin class of the basepoint fibration. Let k be a power of 2.
Define Nk

β p0q “ 0, and for g ě 1, set

Nk
β pgq :“ min

␣

n ě 1 : βn ” 0 P Vg b Z{k
(

.

In Section 6 we will see that α2 ” β pmod 8q, and it follows, for example, that 2N4
βpgq ě N2

αpgq.
Further, β2 ´ 64 is nilpotent in Vg, and so N2

αpgq is finite, as is Nk
β pgq for k a power of 2 at most

64. Our primary focus will be on the case k “ 4.

Given a definite lattice L we define a non-negative integermpLq as follows. For a subset S Ă L
denote by MinpSq the elements which have minimal absolute norm among elements in S. Note that
MinpSq is of even cardinality when it is not t0u and when S is closed under negation, for in this
case multiplication by ´1 acts freely. We call w P L extremal if it is of minimal absolute norm in
its index two coset, i.e. w P Minpw ` 2Lq. If L “ 0, set mpLq “ 0. Otherwise, define

mpLq :“ max
␣

|w2| ´ 1 : w ‰ 0 extremal, 1
2#Minpw ` 2Lq ” 1 (mod 2)

(

. (1)

It is straightforward to show that mpLq “ 0 for a diagonal lattice. In many examples in the sequel
we bound mpLq from below, and in some cases compute it.

Theorem 2.1. Let X be a smooth, closed, oriented 4-manifold with no 2-torsion in its homology
and b`

2 pXq “ 1. Let Σ Ă X be a smooth, orientable and connected surface in X of genus g with
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self-intersection 1. Let L Ă H2pX;Zq{Tor be the unimodular negative definite lattice of vectors
vanishing on rΣs. Then we have the inequality

N4
βpgq ě f4pLq, (2)

where f4pLq is a non-negative integer invariant of the unimodular lattice L defined below in (7),
satisfying f4pLq ě rmpLq{2s, and which vanishes if and only if L is diagonalizable.

As mentioned in the introduction, the proof is an adaptation of the characteristic zero case in
[Frø04]. Replacing Z{4 with other coefficient rings yields similar results, which we comment on
below and at various points throughout the article. However, Theorem 2.1 is all that is needed to
prove Theorem 1.1.

If X is negative definite, the inequality above applies to X#CP2 with the genus zero excep-
tional sphere; in this case, L is the lattice of X . The vanishing of the left side of the inequality
forces L to be diagonal, implying Donaldson’s diagonalization theorem [Don86] assuming that X
has no 2-torsion in its homology. In fact, mpLq, which also vanishes if and only if L is diagonal
(see Prop. 2.3), essentially appears in Fintushel and Stern’s proof of Donaldson’s theorem [FS88].

The effectiveness of the inequality in Theorem 2.1 towards our applications comes from the
determination of N4

βpgq. In Section 6 we give evidence that the relations αg ” 0 (mod 2) and
βrg{2s ” 0 (mod 4) hold in Vg for all g. For our applications, we only need verify this for g ď 2.

Proposition 2.2. For g ď 128 we have N2
αpgq “ g and N4

βpgq “ rg{2s.

We will in fact reduce the verification of this proposition for general g to an elementary arith-
metic problem which we do not attempt to solve in this article. The threshold g “ 128 is insignifi-
cant, and is the extent to which we have verified the formulas with a computer.

A partial analogue of Theorem 2.1 with β replaced by α, and with coefficients Z{4 replaced by
Z{2, is obtained as follows. Below we will define a lattice invariant f2pLq which arises naturally
when counting reducibles mod 2 in instanton moduli spaces cut down by the divisor associated to
the second Stiefel–Whitney class of the basepoint fibration. The invariant f2pLq satisfies

2f4pLq ě f2pLq ě mpLq. (3)

Now assume that the hypotheses of Theorem 2.1 hold. Then Theorem 2.1, the inequality (3), and
Proposition 2.2 together imply the inequality

g ě f2pLq (4)

if g is even and at most 128. If g is odd we still have g ` 1 ě f2pLq. However, our computations
suggest the possibility that (4) is true for all g. In Section 7 we explain the issue with directly adapt-
ing the argument for Theorem 2.1 to this case.

While the full generality of (4) is left open, we will see that the invariants f2pLq and mpLq arise
as sometimes more useful invariants than f4pLq in the setting of instanton homology with mod 2
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coefficients, as is explored in Sections 8 and 9.

We now define the lattice terms f2pLq and f4pLq. Let L be a definite unimodular lattice. Given
x, y P L write x ¨ y P Z for their inner product, and x2 for x ¨ x. For w P L write Lw Ă L for
the sublattice of elements x P L satisfying w ¨ x ” 0 (mod 2). Given z P L, define a linear form
Lz : Sym˚pLq Ñ Z by first letting Lzpa1 ¨ ¨ ¨ amq “ pz ¨ a1q ¨ ¨ ¨ pz ¨ amq where each ai P L, and
then extending linearly over Z. Next, define

f2pLq :“ max
␣

|w2| ´m´ 1 : 2´mη ” 1 (mod 2)
(

P Zě0 (5)

where the maximum is over triples pw,m, aq where w P L is nonzero and extremal, m P Zě0,
a P SymmpLwq, and, as indicated in (5) above, 2´mηpL, w, a,mq ” 1 (mod 2), where

ηpL, w, a,mq :“
1

2

ÿ

zPMinpw`2Lq

p´1qppz`wq{2q2Lzpaq. (6)

In (5) we use the convention that maxpHq “ 0. The conditions a P SymmpLwq and w ‰ 0
imply that ηpL, w, a,mq is an integer divisible by 2m. The signs appearing in η do not actually
matter for the definition of f2pLq, but do matter for the definitions to follow. When m “ 0 we
interpret Lzpaq “ 1; in this case we simply write ηpL, wq. Note that when L is an even lattice the
signs appearing in η are all positive. We remark that our definition of η is essentially that of [Frø02]
and one half of that in [Frø04], except that in those references, only a “ am0 is used. Note that
ηpL, wq ” 1 (mod 2) is equivalent to the condition that 1

2#Minpw ` 2Lq ” 1 (mod 2), and thus
f2pLq ě mpLq. We do not have an example for which f2pLq ą mpLq, but we include f2pLq in our
discussions because whatever we can prove for mpLq also holds for f2pLq.

Moving on to the lattice term in the mod 4 setting, we define

f4pLq :“ max

"

|w2| ´m

2
: 2´m0η ı 0 (mod 4)

*

P Zě0 (7)

where the maximum is over triples pw,m, aq where w P L is nonzero and extremal, m P Zě0 with
w2 ” m (mod 2), a P Symm0pLwq b Symm1pLq with m0 `m1 “ m, and 2´m0ηpL, w, a,mq ı 0
(mod 4), as is indicated in (7). As claimed in (3), we have

f4pLq ě rf2pLq{2s.

This follows directly from the definitions if f2pLq “ |w2| ´ m ´ 1 for an extremal vector w with
a P SymmpLwq and ηpL, w, a,mq ” 1 (mod 2) where w2 ´ m is even. If instead w2 ´ m is odd,
we use that ηpL, w, va, 1 `mq ” ηpL, w, a,mq ” 1 (mod 2) for any vector v P L with v ¨ w odd.

Proposition 2.3. Each of mpLq, f2pLq, f4pLq vanish if and only if L is diagonalizable.

Proof. Assume for simplicity that L is positive definite, and write L “ x`1yn‘Lwhere L contains
no vectors of square 1. If L is non-diagonalizable, then L ‰ 0. Let w P L be of minimal nonzero
norm in L. Suppose v P w ` 2L and v ‰ ˘w. Without loss of generality suppose v ¨ w ě 0. Then
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pw´vq2 “ w2´2w ¨v`v2 ď w2`v2. On the other hand, w´v P 2L´t0u, and so pw´vq2 ě 4w2

since w is minimal in L ´ t0u. We obtain v2 ě 3w2. We conclude that v R Minpw ` 2Lq and
Minpw`2Lq “ tw,´wu, and thusmpLq ě w2 ´1 ě 1, and them same holds for f2pLq and f4pLq

by (3). The converse may be proved by direct computation, or we can apply Theorem 2.1 with
X “ CP2#kCP2 and Σ the exceptional sphere in CP2 to obtain that f2pLq “ f4pLq “ mpLq “ 0
for the diagonal lattice L “ x`1yk.

For the proof of Theorem 1.3 we will also make use of one inequality which arises from instan-
ton constructions in the setting of mod 8 coefficients.

Proposition 2.4. Define f8pLq by replacing “mod 4” in the definition of f4pLq with “mod 8”.
Assume the hypotheses of Theorem 2.1, and that g “ 1. Then f8pLq P t0, 1u.

The proof is similar to that of Theorem 2.1, with the additional input that N8
βpgq “ 1.

The lattice terms appearing above should be compared to the analogous term appearing in
Frøyshov’s inequality for the instanton h-invariant, which is defined in the setting of Q-coefficients.
We now recall his result. In fact, we will state a slightly more general result. We define for a definite
unimodular lattice L the following quantity:

e0pLq :“ max

"R

|w2| ´m

4

V

: η ‰ 0

*

P Zě0 (8)

where the maximum is over triples pw,m, aq where w P L is extremal, m P Zě0, w2 ” m (mod 2),
a P SymmpLq, and ηpL, w, a,mq ‰ 0, as is abbreviated in (8). From the definitions we have

e0pLq ě rf4pLq{2s ě rf2pLq{4s.

Denote by hpY q Frøyshov’s instanton h-invariant defined in [Frø02]. We next define

N0
βpgq :“ min

␣

n ě 1 : pβ2 ´ 64qn “ 0 P Vg b Q
(

for g ě 1 and N0
βp0q “ 0. The computation N0

βpgq ď rg{2s due to Muñoz [Mn99, Prop.20] is used
in Frøyshov’s inequality, and determines the left hand sum in the following.

Theorem 2.5 (cf. [Frø04] Thm.2). Let X be a smooth, compact, oriented 4-manifold with homology
3-sphere boundary Y and b`

2 pXq “ n ě 1. Let Σi Ă X for 1 ď i ď n be smooth, orientable,
connected surfaces in X of genus gi with Σi ¨ Σi “ 1 which are pairwise disjoint. Denote by
L Ă H2pX;Zq{Tor the unimodular lattice of vectors vanishing on the classes rΣis. Then

hpY q `

n
ÿ

i“1

rgi{2s ě e0pLq. (9)

We have lifted the restriction in [Frø04] that all but one of the surfaces have genus 1. This
follows from a minor technical improvement of the proof, which uses the existence of a perfect
Morse function on the moduli space of projectively flat Up2q connections on a surface with fixed

7



odd determinant. This is explained in Section 7.

Each of the lattice terms defined above arises from adapting the proof of Frøyshov’s inequality;
each such adaptation has a choice of coefficient ring, a corresponding relation in the instanton
cohomology ring of a circle times a surface, and a possible assumption on the torsion group T Ă

H2pX;Zq of the 4-manifold. We summarize the expected scheme for some of the cases above:

Lattice term Coefficients Relation Torsion assumption

e0pLq Q pβ2 ´ 64qrg{2s “ 0 none

f2pLq Z{2 αg ” 0 (mod 2) 2 ∤ #T

f4pLq Z{4 βrg{2s ” 0 (mod 4) 2 ∤ #T

rf2pLq{2s Z{4 βrg{2s ” 0 (mod 4) 4 ∤ #T

The relations are to be understood within Vg, although we expect the mod 2 and mod 4 relations,
which as listed are only verified for g ď 128 in this paper, to hold in Vg. The first row corresponds
to Theorem 2.5, the second row to inequality (4) (which is established for g even and g ď 128), and
the third row to Theorem 2.1. The fourth row is the result of slightly relaxing the torsion assumption
in the proof of Theorem 2.1. However, we will make no use of it and will not mention it further.

We have only included in our discussion the variations of Frøyshov’s inequality we have found
useful for our applications. However, the proof of Theorem 2.5 is easily adapted to any coefficient
ring. We discuss this to some extent in Section 7.3.

In Section 9 we show that the indecomposable unimodular positive definite lattice of rank 14
has f4pLq “ 2, while e0pLq “ 1 and f2pLq “ 2. This example shows the necessity of the inequality
associated to mod 4 coefficients in proving Theorem 1.1.

3 Genus 1 applications

In this section we prove Theorem 1.3 and Corollary 1.4 assuming the results of Section 2, and using
Heegaard Floer d-invariants. Next section we will show that these results can be proved without
Heegaard Floer theory, using only our instanton obstructions. We begin with a corollary of our
inequalities that follows [Frø04, Cor. 1].

For a knot K in an integer homology 3-sphere Y0, we define g4,2pKq to be the minimum over
all g ě 0 such that there exists a Z{2-homology 4-ball W with BW “ Y0 and an oriented, genus g
surface Σ smoothly embedded in W with BΣ “ K. If no such data exists, we set g4,2pKq “ 8. If
K is a knot in the 3-sphere, note g4,2pKq ď g4pKq, the latter being the smooth 4-ball genus of K.

Corollary 3.1. Let Y be an integer homology 3-sphere resulting from p´1q-surgery on a knot K in
an integer homology 3-sphere. Suppose Y bounds a smooth, compact, oriented 4-manifold X with
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no 2-torsion in its homology and negative definite intersection form L. If g4,2pKq ď 128, then

f4pLq ď rg4,2pKq{2s.

Furthermore, if g4,2pKq “ 1, then f8pLq P t0, 1u.

To obtain the corollary, let Z be the orientation-reversal of the negative definite surgery cobor-
dism from Y0 to Y . Then apply Theorem 2.1 to the closed 4-manifold X YY Z YY0 W , which has a
surface of self-intersection 1 formed by capping off the component of a surface Σ Ă W bounded by
K as above with a disk from the 2-handle of the surgery cobordism Z. Proposition 2.2 determines
the left hand side of (2) for g ď 128, and the inequality for f4pLq follows. Apply Proposition 2.4 to
obtain the last statement regarding f8pLq.

We recall some basic notions from the theory of lattices. Let us call a definite lattice reduced if
there are no elements of squared norm ˘1. A root in a reduced definite lattice L is an element with
square ˘2. A root lattice is a reduced positive definite lattice generated by its roots. Examples are
An,Dn,E6,E7 and E8, each associated to a Dynkin diagram:

¨ ¨ ¨An E6

¨ ¨ ¨Dn E7

E8

The root lattice is obtained by taking as basis the vertices, each having square 2; if two vertices are
joined by an edge, their inner product is ´1, and is otherwise 0. For An we require n ě 1, and for
Dn, n ě 4. In each case, n is the number of vertices, or the rank of the lattice. It is well-known that
any positive definite root lattice can be written as a direct sum of these given lattices.

To simplify the notation below, we assume henceforth that L is a positive definite unimodular
lattice. Any such lattice can be written as L “ x`1yn ‘ L where L is reduced and n ě 0. We
write R Ă L for the root lattice generated by the roots of L, and also call R the root lattice of
L. In general, L is not determined by R, but it is common in many cases to notate L by the data
R, cf. [CS99, Ch.16]. For example, we write A15 for the rank 15 unimodular positive definite
lattice whose root lattice R is isomorphic to A15. For this reason we have used different fonts for
unimodular lattices and root lattices, although E8 “ E8. The presence of an “O” indicates an empty
root lattice; for example, the lattice O23, called the shorter Leech lattice, has no roots.

Lemma 3.2. If f4pLq “ 1 then the root lattice R Ă L is indecomposable.

Proof. Write L “ x`1yn ‘ L as above, so that R Ă L. Suppose w P R is extremal in R and
w2 “ 4. We first claim that Minpw ` 2Lq “ Minpw ` 2Rq. Let v P Minpw ` 2Lq with v R R, and
suppose without loss of generality that w ¨ v ě 0. Then pw ´ vq2 “ 4 ´ 2w ¨ v ` v2 ď 4 ` v2. On
the other hand, w ´ v P 2pL´Rq implies pw ´ vq2 ě 4 ¨ 3 “ 12, since L´R has vectors only of
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square ě 3. Thus v2 ě 8, contradicting the assumption that v is extremal. This proves the claim.

Now suppose R is decomposable, i.e. R “ R1 ‘ R2. Then there are u P R1 and v P R2 both
of square 2. Set w “ u ` v P R, which has w2 “ 4. Then Minpw ` 2Lq “ t˘u ˘ vu contains 4
elements, and ηpL, wq “ 2 ı 0 (mod 4). Thus f4pLq ě w2{2 “ 2.

The following lemma is not needed for what follows, but serves as a warmup for the next section.
Furthermore, it will be used in Section 8 to give an alternate proof of Corollary 1.4.

Lemma 3.3. If mpLq “ 1 and R Ă L is indecomposable, then L “ E8 ‘ x`1yn for some n ě 0.

Proof. We claim the map π : R b Z{2 Ñ L b Z{2 induced by inclusion is an isomorphism. (This
is essentially the proof of [Frøb, Lemma 4.3].) Suppose it is not. Choose w of minimal norm such
that rws is not in the image of π. In particular, w is extremal. Now suppose v “ w` 2u is extremal
with v ¨w ě 0 and v ‰ ˘w. If rus R impπq then 2w2 ě w2 ´2w ¨v`v2 “ pw´vq2 “ 4u2 ě 4w2,
the last inequality by minimality of w. This is a contradiction, and so rus P impπq. In particular,
rw ˘ us R impπq. Then pw ˘ uq2 ě w2 implies 2|w ¨ u| ď u2. But w2 “ v2 “ w2 ` 4w ¨ u` 4u2

implies |w ¨ u| “ u2, whence u “ 0. It follows that Minpw ` 2Lq “ tw,´wu. Then mpLq ě

w2 ´ 1 ě 2, since w is not a root, contradicting our hypothesis on mpLq.

Thus π is an isomorphism. In particular, rankpRq “ rankpLq and detpRq is odd. If R is inde-
composable, the latter condition implies that R is either zero, E6, E8 or An for n ě 2 even. That
mpLq “ 1 when L “ R “ E8 follows from direct computation, or by applying Corollary 3.1 to `1
surgery on the p2, 3q torus knot, which bounds E8.

If R is zero, so is L, since the ranks are equal. But then L is diagonal, contradicting mpLq “ 1.
Next, supposeR “ An. A standard model of An is the sublattice of Zn`1 spanned by vectors whose
coordinates add up to zero. Suppose n ě 3, and let w “ p1, 1,´1,´1, 0, . . . , 0q P An. Then w is
extremal in An with square 4, and Minpw`2Lq “ Minpw`2Anq consists of the 6 vectors obtained
from w by permuting the two signs. Thus 1

2#Minpw ` 2Lq “ 3, implying mpLq ě w2 ´ 1 “ 3.
Finally, the cases E6 and A2 are ruled out by rankpRq “ rankpLq; it is well-known that there are no
unimodular, non-diagonal definite lattices of rank ă 8.

We next recall the fundamental inequality for the Heegaard Floer d-invariant of Oszváth and
Szabó [OS03, Thm. 1.11]. This states that if Y is an integer homology 3-sphere, andX is a smooth,
negative definite 4-manifold bounded by Y , then for any characteristic vector ξ P H2pX;Zq{Tor,

dpY q ě
1

4

`

b2pXq ´ |ξ2|
˘

. (10)

Recall that a characteristic vector ξ is an element that satisfies ξ ¨ x ” x2 (mod 2) for every x in the
lattice. It is classically known that the square of any characteristic vector is modulo 8 the rank of the
lattice. Elkies showed in [Elk95b] that, up to adding diagonal summands x`1yn, there are a finite
number of positive definite unimodular lattices with no characteristic vectors of squared norm less
than n ´ 8, where n is the rank of the lattice. There are in fact 14: Thus by (10), if a non-diagonal
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Table 1: Elkies’ list

n 8 12 14 15 16 17 18 19 20 21 22 23

E8 D12 E2
7 A15 D2

8 A11E6 D3
6, A2

9 A2
7D5 D5

4, A4
5 A7

3 A22
1 O23

definite lattice is bounded by Y with dpY q “ ´2, as is the case for the orientation-reversal of the
Poincaré homology 3-sphere, it must be one of these 14 lattices, possibly upon adding x`1yn. We
remark that Seiberg-Witten theory can also be used make this reduction, as Frøyshov’s monopole
invariant (rescaled) also satisfies (10), see [Frø10, Thm. 4]. It is known that if Y is `1-surgery on a
knot of slice genus 1 we have dpY q P t0,´2u, see (25). According to Elkies [Elk95a], if dpY q “ 0,
the only possible definite lattices that Y can bound are diagonal.

We obtain the following, which, along with the observation that the statement is Z{2-homology
cobordism invariant (see Section 5), implies Theorem 1.3.

Corollary 3.4. Let Y be an integer homology 3-sphere resulting from p`1q surgery on a knot K
in an integer homology 3-sphere with g4,2pKq “ 1. If X is a smooth, compact, oriented and
definite 4-manifold bounded by Y with non-diagonal lattice L and no 2-torsion in its homology,
then L “ x`1yn ‘ E8 for some n ě 0.

Proof. From the above remarks regarding d-invariants and Elkies’ result, the reduced part L of L is
among the 14 lattices in Table 1. By Corollary 3.1 we have f4pLq ď 1. We may assume f4pLq “ 1,
for otherwise L is diagonal. By Lemma 3.2, L must be one of E8, D12 “ Γ12, A15, or O23. We
must rule out the last 3 possibilities.

Suppse L “ A15. As in Lemma 3.3, we take w “ p1, 1,´1,´1, 0, . . . , 0q P A15, which is
extremal and has w2 “ 4, with ηpL, wq “ 3 ı 0 pmod 4q. Thus f4pLq ě w2{2 “ 2, ruling this
possibility out.

Suppose L “ O23. Minimal vectors in O23 have square 3. Take any w P O23 with w2 “ 4.
Such vectors exist by inspecting the theta series of O23, given in (7) of [CS99, p.443]. Then w is
extremal and Minpw`2Lq “ tw,´wu, so again we are led to f4pLq ě w2{2 “ 2, eliminatingO23.

Finally, consider the case L “ D12. Here f4pLq “ 1 (see Proposition 4.1), and we use instead
the constraint from Corollary 3.1 that f8pLq “ 1. To this end we take w “ p1, 1, 1, 1, 0, . . . , 0q P

D12 as our extremal vector. Then Minpw ` Lq “ Minpw ` D12q consists of the vectors of the form
p˘1,˘1,˘1,˘1, 0, . . . , 0q where the number of signs is even. Thus ηpL, wq “ 1

2#Minpw ` Lq “
1
28 “ 4 ı 0 pmod 8q. Thus f8pLq ě w2{2 “ 2, which rules out D12 and completes the proof.

Proof of Corollary 1.4. The manifold ´Σp2, 3, 5q is `1 surgery on the p2, 3q torus knot of genus
1. By Theorem 1.3 it remains to realize the listed lattices. The corresponding surgery cobordism
provides the form x`1y, and ´Σp2, 3, 5q bounds a plumbed manifold with lattice E8. After connect
summing with copies of CP2 we obtain from these x`1yn`1 and x`1yn ‘ E8 for n ě 0. Finally,
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x´1yn cannot occur; for if it did, gluing the orientation reversed 4-manifold to the E8 plumbing
would yield a non-diagonal definite lattice E8 ‘ x`1yn, contradicting Donaldson’s theorem.

As mentioned in the introduction, Corollary 1.4 is a slight improvement on the main result of
Frøyshov’s PhD thesis [Frøb]. Although the proof above used some Heegaard Floer theory, we will
remove this dependency in the next section. In Section 8 we provide another proof of Corollary 1.4
which is closer to Frøyshov’s proof.

4 Genus 2 applications

In this section we prove Theorem 1.1. We continue our notation of lattices from Section 3. We
begin with a family of examples for later reference. Using notation of [Frø04] set

Γ4k “

!

px1, . . . , x4kq P Z4k Y

´

v ` Z4k
¯

:
ÿ

xi ” 0 (mod 2)
)

(11)

where v “ p12 , . . . ,
1
2q P R4k. We remark that Γ4 is diagonalizable, and Γ8 “ E8. The lattice

Γ4k is even precisely when k is even. We note that Γ12 is the same as D12 from Table 1, the
latter notation indicating that the root lattice of Γ12 is D12. The lattice Γ4k is isomorphic to the
intersection form of the positive definite plumbing with boundary the orientation-reversed Brieskorn
sphere ´Σp2, 2k ´ 1, 4k ´ 3q: Via (11), the node k corresponds to the vector p12 , . . . ,

1
2q, while the

k 2 2 2

2

2

¨ ¨ ¨

2

Figure 1

other nodes correspond to p1, 1, 0 . . . , 0q and p1,´1, 0, . . . , 0q, . . . , p0, . . . , 1,´1, 0q. Replacing
p12 , . . . ,

1
2q by p0, . . . , 0, 1,´1q in this collection yields the root lattice D4k Ă Γ4k.

Proposition 4.1. mpΓ4g`4q ě g and N4
βpgq ě f4pΓ4g`4q ě rg{2s.

Proof. It is shown in [FS01, §2] that Rpkq “ CP2#p4k ` 1qCP2 can be decomposed as W Y N ,
where W is the negative definite plumbing of Σp2, 2k´1, 4k´3q with intersection form ´Γ4k and
N is obtained from attaching to the 4-ball a 0-framed 2-handle along the p2, 2k ´ 1q torus knot and
a p´1q-framed 2-handle along a meridian of the torus knot. Blowing down the meridian 2-handle
yields Xpkq such that Rpkq “ Xpkq#CP2, with a decomposition W YN 1 where N 1 is obtained by
attaching only a p`1q-framed 2-handle to the torus knot. Since the p2, 2k´ 1q torus knot has genus
k ´ 1, the 2-handle can be capped off to form a surface Σpkq Ă Xpkq of genus k ´ 1. The lattice
of vectors vanishing on rΣpkqs is isomorphic to ´Γ4k.

The vector w “ p12 , . . . ,
1
2q P L :“ Γ4g`4 is extremal with w2 “ g ` 1 and Minpw ` 2Lq “

tw,´wu. Thus mpLq ě w2 ´ 1 “ g. It also follows that f4pLq ě rmpLq{2s ě rg{2s. Now given
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g we take as our 4-manifold X “ Xpg ` 1q with genus g surface Σ “ Σpg ` 1q. Then the left side
of (2) is N4

βpgq, and the result follows.

This should be compared to [Frø04, Prop.1]. There it is shown that e0pΓ4g`4q “ rg{2s. Thus the
above family of 4-manifolds with surface achieve sharpness in Frøyshov’s inequality of Theorem
2.5. Proposition 2.2 shows that the same family achieves sharpness in the inequality of Theorem 2.1
for low g, and we expect this to be true for all g. If inequality (4) in the context of mod 2 coefficients
were to hold in general, then this family would achieve sharpness there as well. We remark that the
same 4-manifolds are used by Behrens and Golla [BG] in the Heegaard Floer context.

We now move on to the main line of argument for Theorem 1.1. Recall that for the proof of
Theorem 1.3, we used Lemma 3.2, which says f4pLq “ 1 implies the root lattice of L is indecom-
posable. The key algebraic input towards the proof of Theorem 1.1 is the following upgrade.

Lemma 4.2. If f4pLq “ 1 then L is one of E8 or Γ12.

Proof. From Lemma 3.2 we know R is indecomposable, and hence one of An, Dn, E6, E7, E8 or
zero. We will again use that w P R with w2 “ 4 has Minpw ` 2Lq “ Minpw ` 2Rq, as shown in
the proof of Lemma 3.2. All extremal vectors w chosen below have the property that the elements
in Minpw ` 2Lq have the same signs in the expression for η when m “ 0.

Suppose R “ E7. A standard model for E7 is the sublattice of E8 “ Γ8 consisting of vectors
whose coordinates add to zero. Letw “ p1, 1,´1,´1, 0, 0, 0, 0q. Thenw is extremal in E7 of square
4, and Minpw` 2Lq “ Minpw` 2E7q consists of the 12 vectors obtained by permuting the signs of
w and those of p0, 0, 0, 0, 1, 1,´1,´1q. Thus ηpL, wq “ 6 ı 0 (mod 4), and f4pLq ě w2{2 “ 2.

Suppose R “ E6. A standard model for E6 is the sublattice of E8 “ Γ8 consisting of vectors
whose last three coordinates are equal. Consider w “ p1, 1, 1, 1, 0, 0, 0, 0q P E6, extremal and of
square 4. Then Minpw`2Lq “ Minpw`2E6q consists of the 8 vectors p˘1,˘1,˘1,˘1, 0, 0, 0, 0q

with an even number of signs, as well as the 2 vectors ˘p0, 0, 0, 0, 1, 1, 1, 1q. Thus ηpL, wq “

p8 ` 2q{2 “ 5 ı 0 (mod 4), and f4pLq ě w2{2 “ 2.

Suppose R “ An, n ě 3. As in the proof of Lemma 3.3, take w to be the vector given by
p1, 1,´1,´1, 0, . . . , 0q P An, for which w ` 2An has 6 extremal vectors. Then ηpL, wq “ 3 ı 0
(mod 4), and f4pLq ě w2{2 “ 2.

Suppose R “ A2. Let π : R b Z{2 Ñ L b Z{2 be the map induced by inclusion. This map
cannot be onto, since any unimodular lattice of rank 2 is diagonal. Choose w P L of minimal norm
such that rws R impπq. We showed in the proof of Lemma 3.3 that Minpw`2Lq “ tw,´wu. Since
w R R, w2 ě 3. If w2 ě 4 then f4pLq ě tw2{2u ě 2. So suppose w2 “ 3. Further suppose
w K R. Then w ` r is extremal of square 5 and Minpw ` r ` 2Lq “ t˘w ˘ ru. We compute
ηpL, w ` r, w, 1q “ ´2w2 “ ´6 ı 0 (mod 4). It follows that f4pLq ě ppw ` rq2 ´ 1q{2 “ 2.
Now instead suppose w is not orthogonal to R. From 5 ˘ 2w ¨ r “ pw ˘ rq2 ě 0 and the as-
sumption that L has no vectors of square 1 we obtain |w ¨ r| ď 1 for each root r. Let r1, r2, r3 be

13



roots satisfying r1 ` r2 ` r3 “ 0, so that t˘r1,˘r2,˘r3u is the set of all roots. The condition
|w ¨ r| ď 1 implies, after possibly relabeling, that w ¨ r1 “ 0, w ¨ r2 “ 1 and w ¨ r3 “ ´1. Then
w ` r1 is an extremal vector of square 5, Minpw ` r1 ` 2Lq “ t˘w ˘ r1,˘pw ` r1 ` 2r3qu, and
ηpL, w ` r1, w, 1q “ ´7 ı 0 (mod 4), again implying f4pLq ě 2.

Suppose R “ A1. Again, π is not onto, and its cokernel has rank at least 2, since no unimodular
lattice of rank ď 3 has root lattice A1. Again choose w of minimal norm such that rws R impπq. If
w2 ě 4, we are done; so suppose w2 “ 3. Let r be the unique root in A1 up to sign. If w ¨ r “ 0,
then as in the case for A2 we can use w` r to conclude f4pLq ě 2. So assume w ¨ r ‰ 0. As before,
|w ¨ r| ď 1, so in fact |w ¨ r| “ 1. Let v be of minimal norm such that rvs R impπq ` rws. Then
the same argument as in the proof of Lemma 3.3 shows Minpv ` 2Lq “ tv,´vu. If v2 ě 4, we are
done; so suppose v2 “ 3. If v ¨r “ 0, then take v`r as in the case of A2. Suppose instead v ¨r ‰ 0.
As with w, we have |v ¨ r| ď 1, so |v ¨ r| “ 1. Since rv ˘ ws R impπq ` rws, by minimality of v
we have pw ˘ vq2 ě v2, from which it follows that |w ¨ v| ď 1. If w ¨ v “ 0, then for some choice
of signs, w ˘ r ˘ v has square 4; if w ¨ v “ ˘1, then one of v ˘ w has square 4. In either case we
obtain a vector of square 4, and take this as our extremal vector to obtain f4pLq ě 2.

Next, suppose R “ Dn for some n ě 4. Suppose Dn has full rank within L, i.e. the map
ι : Dn bR Ñ LbR induced by inclusion is an isomorphism. The only full rank embeddings of Dn

into a non-diagonal unimodular latticeL are those inside Γ4n with n ě 2 (see e.g. [Ebe13, Sec.1.4]),
and we have computed f4pΓ4nq ě tn{2u. If f4pLq “ 1 then either n “ 2, in which case L “ E8,
contradicting the assumption that R “ D8, or n “ 3, in which case L “ Γ12. Thus we may assume
that ι is not onto. It follows also that π is not onto, since n “ rankpRq ă rankpLq. We will see that
the arguments below generalize those for the cases of A1 and A2 given above.

We begin as in the case for A2. Let w P L be of minimal norm such that rws R impπq. If
w2 ě 4 we are done, as argued in the above cases, and so we may assume w2 “ 3. We may
also assume w R impιq. Indeed, consider the map L Ñ pL{Dnq{Tor. The codomain here is a free
abelian group of rank equal to rankpLq ´n ą 0. The argument in Lemma 3.3 shows that for a given
proper subspace S Ă L b Z{2, any w P L of minimal norm among vectors such that rws R S has
Minpw ` 2Lq “ tw,´wu; in Lemma 3.3, S “ impπq. In particular, we may choose S to be the
kernel of p : Lb Z{2 Ñ pL{Dnq{Tor b Z{2. By construction, w R impιq.

Choose a root r P L such that w ¨ r “ 0, following the argument as in the case of A2. Then
w`r is extremal of square 5. Let v P Minpw`r`2Lq. Assume v ‰ ˘pw`rq and v ¨ pw`rq ě 0.
Write v ´w´ r “ 2u where u P L. Then 0 ‰ 4u2 “ pv ´w´ rq2 ď pw` rq2 ` v2 “ 10 implies
u is a root. Recall for any root u that from the condition pw ˘ uq2 ě 0 we have |w ¨ u| ď 1, and
|r ¨ u| ď 1 if u ‰ ˘r holds. Then we have

5 “ v2 “ pw ` r ` 2uq2 “ 13 ` 4pw ¨ u` r ¨ uq

implies eitherw ¨u “ r ¨u “ ´1 or u “ ´r. LetN be the set of roots u such thatw ¨u “ r ¨u “ ´1.
We conclude Minpw` r` 2Lq “ t˘w˘ ru Y t˘pw` r` 2uq : u P Nu. Let a P L. We compute

ηpL, w ` r, a, 1q “ ´p2 ` |N |qw ¨ a´ |N |r ¨ a´ 2
ÿ

uPN

a ¨ u. (12)
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If we set a “ w, using w2 “ 3, w ¨ r “ 0 and the definition of N , from (12) we compute

ηpL, w ` r, w, 1q “ ´6 ´ |N |. (13)

If (13) is nonzero modulo 4, then f4pLq ě ppw ` rq2 ´ 1q{2 “ 2 and we are done. So henceforth
assume |N | ” 2 (mod 4).

We represent Dn as the sublattice of Zn of vectors whose coordinates sum to zero modulo 2.
Henceforth we identify the vectors in this representation of Dn with those in the root lattice of
L. We may suppose that r “ p1, 1, 0, . . . , 0q “ e1 ` e2, since the automorphism group of Dn acts
transitively on roots. Here we write e1, . . . , en for the standard basis vectors of Zn. Then the vectors

r˘
h,i :“ ´eh ˘ ei, h P t1, 2u, 3 ď i ď n (14)

make up the set of roots u such that r ¨ u “ ´1. For a fixed i we have the two relations

r ` r`
1,i ` r´

2,i “ 0 (15)

r ` r´
1,i ` r`

2,i “ 0 (16)

Pairing (15) with w, we see that either w ¨r`
1,i “ w ¨r´

2,i “ 0, or w ¨r`
1,i “ ´w ¨r´

2,i “ ˘1. Similarly
for (16). Thus Ni :“ N X tr`

1,i, r
´
1,i, r

`
2,i, r

´
2,iu has 0, 1 or 2 elements. Furthermore, N “ Yn

i“3Ni.

Now let I Ă t3, . . . , nu with |I| even. Then there exists a P L such that

ηpL, w ` r, a, 1q ” 2
ÿ

iPI

|Ni| pmod 4q. (17)

To see this, let a be the vector corresponding to pa1, . . . , anq P Dn which has ai “ 1 if i P I and
ai “ 0 otherwise, and then compute (17) using (12). From (17) we may assume that either (I)
|Ni| “ 1 for all i or (II) |Ni| P t0, 2u for all i. Indeed, if |Nj | “ 1 and |Nk| P t0, 2u for some j, k
then setting I “ tj, ku in (17) yields ηpL, w ` r, a, 1q ” 2 ı 0 (mod 4).

Case (I). Suppose |Ni| “ 1 for all 3 ď i ď n. Then |N | “
ř

|Ni| “ n ´ 2. Having assumed
|N | ” 2 (mod 4), we conclude n ” 0 (mod 4). Set r1 :“ e1 ´ e2 P Dn. Since r1 ` r`

1,i “ r`
2,i,

and |Ni| “ 1 implies one of r`
1,i or r`

2,i is orthogonal to w and the other has inner product ˘1 with
w, we obtain |w ¨ r1| “ 1. In a similar fashion, for each 3 ď i ď n let si, ti P tr`

1,i, r
´
1,iu be such

that |w ¨ si| “ 1 and w ¨ ti “ 0. For 2 ď i ď n{2 set ri :“ s2i´1 ´ t2i. This is a vector in Dn

whose p2i ´ 1qth and 2ith entries are ˘1, with all other coordinates zero. Then r1, . . . , rn{2 are
orthogonal roots all satisfying |w ¨ ri| “ 1. Since w R impιq, its length is strictly greater than that of
its projection onto the span of the subspace in Dn b R generated by the ri:

3 “ w2 ą

n{2
ÿ

i“1

|w ¨ ri|
2

r2i
“ n{4. (18)

Recalling n ě 4 and n ” 0 (mod 4), we must have n P t4, 8u, i.e. R P tD4,D8u. Before con-
sidering these two cases separately, we determine one more constraint. Suppose Nj “ tr`

1,ju and
Nk “ tr`

2,ku for some j ‰ k; the superscripts here are not important. Then u “ r`
1,j ´ r´

1,k is a root
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for which u¨w “ ´2, a contradiction. ThusNi “ trσi
h,iu for each i, for some uniform h P t1, 2u, and

each σi P t˘u. We conclude that after perhaps reflecting some coordinates in the range 3 ď i ď n
and permuting the first two coordinates in our representation of Dn we have N “ tr`

1,3, . . . , r
`
1,nu.

Now suppose R “ D4. Setting w1 “ w, we choose w2, . . . , wk of minimal norm such that
rwis R kerppq `

ř

jăirwjs. We may suppose each w2
i “ 3, or else we are done. Our previous

arguments show |wi ¨ wj | ď 1 for i ‰ j and |wi ¨ u| ď 1 for all roots u. We only need to do
this for k “ 3, which is possible because there are no definite unimodular lattices of rank ă 4 ` 3
with root lattice D4; the first non-diagonal definite unimodular lattice, by rank, is E8. By our
assumption from the previous paragraph, N “ tr`

1,3, r
`
1,4u. Define the dual lattice of Dn to be

D˚
n “ tx P Dn b R : x ¨ y P Z, @y P Dnu, and let

L ÝÑ D˚
n, w ÞÝÑ w

denote projection. The values w ¨ u for all roots u P D4 are determined and given by column (i)
in Table 2, which lists one root for each pair tu,´uu P RootspD4q{˘. In particular, we see that
w “ p12 ,´

1
2 ,´

1
2 ,´

1
2q P D˚

4 . Note w is orthogonal to exactly half the roots in D4. We may also
assume case (I) for w2 and w3, each with respect to some orthogonal root. (If either is case (II),
move to case (II).) Then, just as was established for w, each of w2, w3 is orthogonal to half the
roots of D4. Thus two of w1, w2, w3 are orthogonal to a common root. Without loss of generality,
suppose these two vectors arew “ w1 and v P tw2, w3u, and that the orthogonal root is r. Recalling
|N | ” 2 (mod 4), formula (12) yields

ηpL, w ` r, v, 1q ” 2pr`
1,3 ` r`

1,4q ¨ v pmod 4q. (19)

Thus we may assume that v is either orthogonal to N or pairs non-trivially to ˘1 with both of its
vectors. Combining this with the constraints for v previously determined for w, the pairings of v
with the roots of D4 must be given by one of columns (i)-(iv) in Table (2). In particular, v “ ˘w or
v “ ˘p12 ,´

1
2 ,

1
2 ,

1
2q. The case of D4 will now be completed by constructing an extremal vector x

of square 4 such that ηpL, xq ı 0 (mod 4), following the cases of A1 and A2 above. There are two
cases to consider: w ¨ v “ 0 and w ¨ v “ ˘1.

First, suppose w ¨v “ 0. Upon possibly replacing v with ´v, the pairings of v with D4 are given
by either (i) or (iii) in Table 2. Then x “ w ` v ` s is of square 4, where s “ ´r1 “ e2 ´ e1. As
usual, if x` 2u is extremal, then u is a root, and px` 2uq2 “ 4 implies u ¨ x “ ´2, and thus

Minpx` 2Lq “ t˘xu Y t˘px` 2uq : u ¨ pw ` v ` sq “ ´2, u2 “ 2, u P Lu. (20)

Now each of y P tw, v, su has |y ¨u| ď 1 for any root u ‰ ˘r1, and so u in (20) must be orthogonal
to one of the three, and have pairing ´1 with the other two. If v has pairings given by (i) in Table
2, then the set of such u is given by te3 ` e4u. Thus Minpx ` 2Lq{˘ has 2 elements, implying
f4pLq ě 2. If instead v corresponds to column (iii) in Table (2), then there are no solutions to
u ¨ pw ` v ` sq “ ´2, and Minpx` 2Lq{˘ has 1 element, again implying f4pLq ě 2.

Next, suppose |w ¨ v| “ 1. Upon possibly replacing v with ´v we may suppose w ¨ v “ ´1.
Then x “ w` v is extremal of square 4. Further, if w` v`2u is extremal, then pw` v`2uq2 “ 4
implies u ¨ pw ` vq “ ´2. Since for y P tw, vu and any root u we have |y ¨ u| ď 1, it follows that

Minpx` 2Lq “ t˘xu Y t˘px` 2uq : u ¨ w “ u ¨ v “ ´1, u2 “ 2, u P Lu. (21)
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RootspD4q{˘ (i) (ii) (iii) (iv)
p 1, 1, 0, 0q 0 0 0 0
p 1,´1, 0, 0q 1 ´1 1 ´1
p´1, 0, 1, 0q ´1 1 0 0
p´1, 0,´1, 0q 0 0 ´1 1
p´1, 0, 0, 1q ´1 1 0 0
p´1, 0, 0,´1q 0 0 ´1 1
p 0,´1,´1, 0q 1 ´1 0 0
p 0,´1, 1, 0q 0 0 1 ´1
p 0,´1, 0,´1q 1 ´1 0 0
p 0,´1, 0, 1q 0 0 1 ´1
p 0, 0, 1, 1q ´1 1 1 ´1
p 0, 0, 1,´1q 0 0 0 0

Table 2

If v has pairings with D4 the same as that of w, in (i) of Table 2, then there are 6 such roots u; for (ii)
there are zero; and for (iii) and (iv) there is 1. Thus Minpx ` 2Lq{˘ has either 7, 1 or 2 elements,
all nonzero modulo 4. Thus f4pLq ě 2. This completes the case of D4 within case (I).

Now suppose R “ D8. In this case we have assumed N “ tr`
1,3, r

`
1,4, r

`
1,5, r

`
1,6, r

`
1,7, r

`
1,8u. This

implies in particular that w “ p12 ,´
1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2q P D˚

8 . As in the case of D4 we
can find v P L of minimal squared norm, which we may assume is 3, such that rvs R kerppq ` rws

and v ¨ r “ 0. Indeed, to adapt the above argument, where v P tw2, w3u, we only need to note that
there are no unimodular definite lattices of rank ă 8 ` 3 with root system D8; this is well-known,
and is verified, for example, by [CS99, Table 16.7]. The analogue of (19) here is

ηpL, w ` r, v, 1q ” 2
8
ÿ

i“3

r`
1,i ¨ v pmod 4q (22)

The constraint that (22) is zero modulo 4, along with the constraints previously determined for
w, imply, after possibly an automorphism of our representation of D8 permuting and reflecting
coordinates, that w “ v1 and v P t˘v1,˘v2,˘v3,˘v4u where

v1 “ p`1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2q

v2 “ p`1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,`

1
2 ,`

1
2q

v3 “ p`1
2 ,´

1
2 ,´

1
2 ,´

1
2 ,`

1
2 ,`

1
2 ,`

1
2 ,`

1
2q

v4 “ p`1
2 ,´

1
2 ,`

1
2 ,`

1
2 ,`

1
2 ,`

1
2 ,`

1
2 ,`

1
2q

Observe thatw´w P LbR has square 1, and is orthogonal to impιq. Projecting v onto the subspace
spanned by impιq and w ´ w we obtain the following:

3 “ v2 ą pv ¨ pw ´ wqq
2

` v2 “ pv ¨ w ´ v ¨ wq
2

` 2. (23)

First suppose w ¨ v “ 0. Then (23) implies w ¨ v “ 0. We must have v “ ˘v3. Upon possibly
replacing v by ´v we may assume v “ v3. Then x “ w ` v ` s with s “ ´r1 is extremal of
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square 4. The only root u P D8 satisfying u ¨ pw` v` sq “ ´2 is e3 ` e4, and by (20) we have that
Minpx` 2Lq{˘ is of cardinality 2, implying ηpL, xq ” 2 ı 0 (mod 4) and f4pLq ě 2.

Now suppose |w ¨ v| “ 1. Upon possibly replacing v with ´v we may assume w ¨ v “ ´1.
Then (23) implies v “ ´v2 or v “ v4. When w “ v1 and v “ ´v2 the only root u P D8 satisfying
u ¨ w “ u ¨ v “ ´1 is e7 ` e8. When w “ v1 and v “ v4, the only such root is ´e1 ` e2. In either
case, (21) implies Minpw` v ` 2Lq{˘ has 2 elements, and thus ηpL, w` vq ” 2 ı 0 (mod 4) and
f4pLq ě 2. This completes the case of D8 within case (I), and of case (I) entirely.

Case (II). Suppose |Ni| P t0, 2u for 3 ď i ď n. Let Iw Ă t3, . . . , nu be the set of i such that
|Ni| “ 2. Since |N | “ 2|Iw| ” 2 (mod 4), Iw is nonempty. Recall r1 “ e1 ´ e2. Let i P Iw. As
w pairs non-trivially with all of r`

1,i, r
´
1,i, r

`
2,i, r

´
2,i, and r1 ` r`

1,i “ r`
2,i, we have w ¨ r1 “ 0. Then

w ¨ r “ w ¨ r1 “ 0 implies w ¨ e1 “ w ¨ e2 “ 0, the latter computation holding in L b R. As
ei “ e1 ` r`

1,i, we have |w ¨ ei| “ 1 for i P Iw within Lb R. Because w R impιq we have

3 “ w2 ą w2 “
ÿ

iPIw

|w ¨ ei|
2 “ |Iw|. (24)

With the constraint that |Iw| is odd, this implies |Iw| “ 1. Without loss of generality we may assume
N “ N3. After an automorphism of our representation of Dn we may assume N “ tr`

1,3, r
`
2,3u. In

particular, w “ ´e3 “ p0, 0,´1, 0, . . . , 0q P D˚
n.

Next, we claim L b Z{2 ‰ impπq ` rws. Suppose to the contrary equality holds here. Then,
since by assumption rankpLq ą n, as follows from ι having kernel, we must have rankpLq “ n` 1,
and that π is injective. Note, however, that r2e1s ‰ 0 P Dn b Z{2 and πpr2e1sq pairs trivially with
impπq`rws, contradicting the non-degeneracy of the pairing on LbZ{2, the latter of which follows
from the unimodularity of L. This verifies the claim. Thus we may choose a vector v of minimal
norm such that rvs R impπq ` rws, which, as usual, we may suppose has v2 “ 3. We assume v has
the type of case (II) as well; otherwise move to the paragraph following case (II).

Now v satisfies (24) with the provision that strict inequality may not hold, and with |Iv| on the
right side defined using some root orthogonal to v in place of r. The inequality is not necessarily
strict because we have not claimed v R impιq. We conclude |Iv| P t1, 3u. If |Iv| “ 3, then v “ v.
Furthermore, after an automorphism of Dn, we may suppose v “ ei ´ ej ´ ek for some distinct
i, j, k, similar to the determination w “ ´e3 above. But then v ` ej ` ek “ v ` ej ` ek is a vector
of square 1 in L, a contradiction. Thus we may assume |Iv| “ 1.

Let Rw be the number of roots orthogonal to w. Then w “ ´e3 implies Rw “ 2pn´1qpn´2q.
Similarly, since |Iv| “ 1, we haveRv “ Rw. If n ě 5, thenRw`Rv “ 4pn´1qpn´2q ą 2npn´1q,
the total number of roots in Dn, so that w and v must share a common orthogonal root. If n “ 4
we may argue as in case (I), using that there are no unimodular lattices with root lattice Dn of rank
less than 3 ` 4, to sequentially choose w2, w3 and then choose v P tw2, w3u. Thus without loss of
generality, v and w are both orthogonal to a common root, which we may suppose is r.

It follows then that v “ ˘ei for some 3 ď i ď n. First suppose i ‰ 3. Without loss of generality
we may assume v “ ´e4. Our minimality assumption on v implies |w ¨ v| ď 1. Suppose w ¨ v “ 0.

18



Consider the extremal vector x “ w ` v ` s of squared norm 4, where s “ e3 ` e4. There are no
roots u satisfying u ¨ pw` v` sq “ ´2, and so (20) implies Minpx`2Lq{˘ has 1 element, whence
f4pLq ě x2{2 “ 2. If instead |w ¨ v| “ 1, then consider x “ w ˘ v, with the sign chosen so that x
is extremal of square 4. There is only one root u such that u ¨ w “ u ¨ v “ ´1, and so (21) implies
Minpx` 2Lq{˘ has 2 elements, whence f4pLq ě 2.

Now suppose v “ ˘e3. Consider the case w ¨ v “ 0. Upon perhaps replacing v by ´v we may
assume v “ ´e3. Then x “ w ` v ` s, with s as before, is extremal of square 4. The only root u
satisfying u ¨ pw` v` sq “ ´2 is e3 ´ e4, so (20) implies Minpx` 2Lq{˘ has 2 elements, whence
f4pLq ě x2{2 “ 2. Now consider v “ ˘e3 and |w ¨ v| “ 1. Upon perhaps replacing v with ´v we
may suppose w ¨ v “ ´1. Then x “ w` v is an extremal vector of square 4. The roots u satisfying
u ¨ v “ u ¨ w “ ´1 are (i) none, if v “ `e3, or (ii) e3 ˘ ei for i ‰ 3, if v “ ´e3, of which there
are 2pn´ 1q many. Then (21) implies Minpx` 2Lq{˘ has either (i) 1 element or (ii) 1 ` 2pn´ 1q

elements, both of which are odd numbers, and hence imply f4pLq ě 2. This completes case (II).

In the above treatment we assumed the vectors of square 3 used were all in either case (I) or case
(II). Suppose we encounter at least one of each type. Then by the argument in case (I), n P t4, 8u.
As there are no unimodular definite lattices with root lattice D4 or D8 of rank ă 16 other than E8

and Γ12, we can sequentially choose square 3 extremal vectors so that we have 3 such vectors in
either case (I) or case (II), which is enough to make either of the above arguments go through. This
completes the case Dn (n ě 4) entirely.

Finally, suppose L has no roots. Let w P L be of minimal nonzero norm. Then w2 ě 3 and by
the usual argument Minpw` 2Lq “ tw,´wu. If w2 ě 4 then f4pLq ě rf2pLq{2s ě 2. So suppose
w2 “ 3. Let v P L be of minimal norm such that rvs R t0, rwsu Ă LbZ{2. Then v is extremal and
Minpv ` 2Lq “ tv,´vu as in the proof of Lemma 3.3. If v2 ě 4 we are done. So suppose v2 “ 3.

For s, t P L of square 3 and s ¨t ď 0 we have ps`tq2 “ 6`2s ¨t ď 6. Because L has no vectors
of square 2, the vector s ` t has square 4 or 6. In the former case, Minps ` t ` 2Lq “ t˘ps ` tqu

and f4pLq ě 2. So we may assume ps ` tq2 “ 6, or equivalently s ¨ t “ 0. In particular, we may
assume that any two vectors s, t P L of square 3 with s ‰ ˘t are orthogonal.

Now consider x “ w ` v. This is extremal of square 6. If z “ x ` 2u P Minpx ` 2Lq and
z ‰ ˘x, z ¨ x ě 0, then 0 ‰ 4u2 “ px ´ zq2 ď 12 implies u2 “ 3, and 6 “ px ` 2uq2 implies
u ¨ w ` u ¨ v “ ´3. By the assumption made at the end of the previous paragraph, we must have
u “ ´w or u “ ´v. Thus Minpx` 2Lq “ t˘w ˘ vu. We then compute

ηpL, x, wv, 2q “ p´1qpx`w`v
2 q

2

pw ¨ pw ` vqqpv ¨ pw ` vqq

` p´1qpx`w´v
2 q

2

pw ¨ pw ´ vqqpv ¨ pw ´ vqq

“ 9 ` 9 “ 18 ı 0 (mod 4).

Thus f4pLq ě px2´2q{2 “ 2. This completes the case of L having no roots, and, having completed
all cases, concludes the proof of the lemma.

We obtain the following, which implies Theorem 1.1.
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Figure 2: The (2,3) torus knot, depicted on the left, is transformed into the (2,5) torus knot, on the right, by
changing the encircled negative crossing to a positive one.

Corollary 4.3. Suppose Y is an integer homology 3-sphere which is p`1q surgery on a knot K in
an integer homology 3-sphere with g4,2pKq “ 2. If X is a smooth, compact, oriented and definite
4-manifold bounded by Y with non-diagonal lattice L and no 2-torsion, then the reduced part of L
is isomorphic to either E8 or Γ12.

Proof. Corollary 3.1 implies f4pLq ď 1. Since L is not diagonal, f4pLq “ 1. By Lemma 4.2, the
reduced part of L must be one of E8 or Γ12.

Proof of Corollary 1.2. The manifold ´Σp2, 5, 9q is `1 surgery on the p2, 5q torus knot of genus 2.
The corresponding surgery cobordism provides the form x`1y. As we saw at the start of this sec-
tion, the canonical positive definite plumbing bounded by ´Σp2, 5, 9q is isomorphic to Γ12. Next,
we observe from Figure 2 that the p2, 5q torus knot is obtained from the p2, 3q torus knot by a pos-
itive crossing change. This induces a cobordism from +1 surgery on the latter to that of the former
with intersection form x`1y. (This is a technique used extensively in [CG88].) Attaching to this
cobordism the E8 plumbing bounded by ´Σp2, 3, 5q yields E8 ‘ x`1y. Finally, connect summing
these three examples with copies of CP2 yields all lattices listed in Theorem 1.1, except for E8.

The author is aware of two constructions realizing E8. The first has been communicated to the
author by Motoo Tange and uses Kirby calculus. The second appears in the author’s work with
Golla [GS18], and uses the topology of rational cuspidal curves.

The proof of Theorem 1.1 only uses input from instanton theory and some algebra. It is now
clear that Heegaard Floer d-invariants were not necessary to prove Theorem 1.3: starting from
Theorem 1.1, the extra input is our computation f8pΓ12q ě 2 from the previous section, and the
constraint for f8pLq given in Corollary 3.1.
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On the other hand, some of the work in proving Theorem 1.1 may be supplemented by the d-
invariant, as done in the previous section for Theorem 1.3. Combining work of Ni and Wu [NW15,
Prop.1.6] and Rasmussen [Ras04, Thm.2.3] gives the inequalities

0 ď ´dpY q{2 ď rg4pKq{2s (25)

where Y is `1 surgery on the knot K. If g4pKq “ 2, then as in the case g4pKq “ 1, the only possi-
ble non-diagonal definite lattices that can occur, up to diagonal summands, are the 14 listed in Table
1. Using Corollary 3.1 and Lemma 3.2, of those 14 onlyE8,D12 “ Γ12,A15 andO23 can occur. As
already listed in the proof of Theorem 1.3 of the previous section, we have f4pA15q, f4pO23q ě 2,
both of which are special cases of the computations in the proof of Lemma 4.2.

5 More examples

The question of which unimodular definite lattices arise from smooth 4-manifolds with no 2-torsion
in their homology bounded by a fixed homology 3-sphere Y only depends on the Z{2 homology
cobordism class of Y . It is natural to wonder whether we can find linearly independent elements in
the Z{2 homology cobordism group Θ3

Z{2 all of which bound the same set of definite unimodular
lattices. If one restricts to homology cobordism classes that only bound diagonal lattices, one needs
only examine the infinitely generated kernels of the invariants d and h, for example.

We may then consider classes that bound the same lattices as the Poincaré sphere. For this,
recall that Furuta [Fur90] and Fintushel and Stern [FS90] used instantons to show that the fam-
ily rΣp2, 3, 6k ´ 1qs for k ě 1 is an infinite linearly independent set in Θ3

Z{2. The manifold
´Σp2, 3, 6k ´ 1q is `1 surgery on a genus 1 twist knot with 2k ´ 1 half twists. However, not
all of these classes can bound the same lattices as rΣp2, 3, 5qs. Indeed, the Rochlin invariant of
´Σp2, 3, 6k ´ 1q is congruent to k (mod 2), so the lattice E8 cannot occur when k is even. In fact,
here is an example where the list of lattices is the same as that of the Poincaré sphere except for E8:

Corollary 5.1. If a smooth, compact, oriented and definite 4-manifold with no 2-torsion in its
homology has boundary ´Σp2, 3, 11q, then its intersection form is equivalent to one of

x`1yn pn ě 1q, E8 ‘ x`1yn pn ě 1q,

and all of these possiblities occur.

There are two ways to see that ´Σp2, 3, 11q bounds the latticeE8‘x`1y. For one, its canonical
positive definite plumbing graph is given as follows:

3

The unmarked nodes represent vectors of square 2, and together form a sublattice isomorphic toE8;
thus the lattice must be isomorphic to E8 ‘ x`1y. Alternatively, we note that the twist knot with
3 half twists is obtained from the p2, 3q torus knot by a changing a positive crossing to a negative
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Figure 3: The (3,4) torus knot, also known as 819 in Rolfsen notation, is transformed into the (2,5) torus
knot by changing the encircled positive crossing to a negative crossing.

crossing, and argue as in the proof of Corollary 4.3. We note that both arguments generalize to show
that ´Σp2, 3, 6k ´ 1q bounds E8 ‘ x`1yk´1.

One might hope for examples of ´Σp2, 3, 6k´1q bounding E8 when k is odd other than k “ 1.
The determination of all such k seems to be an open problem, but has been studied by Tange, who
shows [Tan16, Thm. 1.7] that this is the case for k “ 3, 5, . . . , 23, 25 and k “ 29.

Corollary 5.2. The linearly independent elements rΣp2, 3, 12n ` 5qs P Θ3
Z{2 for 0 ď n ď 12,

n “ 14 bound the same definite lattices arising from smooth 4-manifolds with no 2-torsion.

Tange has informed the author that this list may be enlarged to include n “ 13, 15. Yet another
example that bounds the same set of lattices as the Poincaré sphere ´Σp2, 3, 5q is the Brieskorn
sphere ´Σp3, 4, 7q, whose positive definite plumbing graph has associated lattice isomorphic to E8,
and which is `1 surgery on the knot 10132 of smooth 4-ball genus 1.

In the introduction it was mentioned that ´Σp3, 4, 11q, obtained from `1 surgery on the p3, 4q

torus knot of genus 3, is a natural candidate to consider beyond Theorem 1.1. Here the Heegaard
Floer d-invariant is ´2, so the only possible non-diagonal reduced definite lattices that can occur
are those in Table 1. We expect most of these lattices are ruled out by our obstructions. We show in
[GS18] that the lattices x`1y, E8, Γ12, E2

7 and A15 occur. As the proofs there use the topology of
rational cuspidal curves, here we only explain how to realize x`1y,E8‘x`1y, Γ12‘x`1y andA15.

First, x`1y is realized by the surgery cobordism as in all previous examples. Next, the rank 15
lattice A15 arises as the lattice of the positive definite plumbing bounded by ´Σp3, 4, 11q, given by:

3

The unmarked nodes have weight 2. Indeed, viewing A15 as the subset of Z16 consisting of vectors
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whose coordinates sum to zero, the lattice A15 may be defined as

A15 “ A15 Y pg ` A15q Y p2g ` A15q Y p3g ` A15q

where g “ 1
4p´112, 34q P A˚

15 and superscripts denote repeated entries. Then the top weight 3
node in the plumbing graph represents g, and the other nodes are the 14 roots of A15 of the form
p0, . . . , 0, 1,´1, 0, . . . , 0q with the far left entry equal to zero. Finally, the lattices E8 ‘ x`1y and
Γ12 ‘ x`1y occur because there is a 2-handle cobordism from ´Σp2, 5, 9q to ´Σp3, 4, 11q with
intersection form x`1y. Indeed, the (3,4) torus knot is transformed into the p2, 5q torus knot by
changing a positive crossing as in Figure 3, as similarly done in the proof of Corollary 1.4.

Finally, consider again the family ´Σp2, 2k´1, 4k´3q, obtained from `1 surgery on the family
of p2, kq torus knots. The initial cases k “ 2 and k “ 3 provided our main examples for Theorems
1.1 and 1.3. The methods in this article alone seem unable to treat the general case. However, we
know that the definite lattices given by

x`1y, Γ4pk´iq ‘ x`1yi p0 ď i ď kq (26)

and their sums with x`1yn are bounded by ´Σp2, 2k´1, 4k´3q; the first is the surgery cobordism,
and the rest follow from the fact that the p2, k´iq torus knot is obtained from the p2, kq torus knot by
changing i positive crossings. These are certainly not all the possible lattices: because ´Σp2, 5, 9q

bounds Γ8 “ E8, for k ě 3 the 3-manifold ´Σp2, 2k ´ 1, 4k ´ 3q bounds Γ8 ‘ x`1yk´3. Even
if we ignore the issue of diagonal summands, the list is not complete. For example, it is shown in
[GS18, Prop.4.14] that ´Σp2, 7, 13q bounds the lattice A15.

6 Relations for a circle times a surface

In this section we discuss the relations that appear in the table of Section 2 and in the proof of Theo-
rem 2.1. In particular, we prove Proposition 2.2, and reduce the verification of the general relations
αg ” 0 (mod 2) and βrg{2s ” 0 (mod 4) to a concrete arithmetic problem.

We define Vg to be the instanton homology, with integer coefficients, of a circle times a surface
Σ of genus g with a Up2q-bundle that has second Stiefel-Whitney class Poincaré dual to the circle
factor. More precisely, Vg is the Z{4-graded group of Muñoz, which is the quotient of the Z{8-
graded group V1

g by an involution τ ; see the discussion in [Frø04, §10]. Each of these is endowed
with a ring structure using the maps induced by pairs of pants cobordisms times Σ. There is a map

Ψ : Sym˚ pH0pΣ;Zq ‘H2pΣ;Zqq b Λ˚ pH1pΣ;Zqq ÝÑ Vg (27)

which defines relative Donaldson invariants for the 4-manifold Σ ˆ D2 with suitable bundle data.
Let x P H0pΣ;Zq be the point class and tγiu

2g
i“1 be a symplectic basis of H1pΣ;Zq such that

γi ¨ γi`g “ 1. The mapping class group of Σ acts on Vg, and the three elements

α “ 2ΨprΣsq, β “ ´4Ψpxq, γ “ ´

g
ÿ

i“1

Ψpγiγi`gq (28)

generate the invariant part over the rationals; Muñoz gives a presentation which is recursive in
the genus [Mn99, §4]. Our definition of γ is one half of that from loc. cit.; see Section 7.2 for
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this justification. The ring V1
g has similarly defined elements, which we denote by α1, β1, γ1, of

respective Z{8-gradings 2, 4, 6. The involution τ acting on V1
g is a module homomorphism and

shifts gradings by 4 (mod 8); the equivalence classes of α1, β1, γ1 in Vg are of course α, β, γ.

Lemma 6.1. Suppose a polynomial rpα, β, γq is a relation in Vg. If the corresponding polynomial
rpα1, β1, γ1q in V1

g is of homogeneous Z{8-grading, then it is a relation in V1
g.

Proof. If the quotient polynomial rpα, β, γq is a relation, rpα1, β1, γ1q “ p1´τqϕ for some ϕwithin
V1
g. Since τ is of degree 4, and rpα1, β1, γ1q has homogeneous Z{8-grading, ϕ “ 0 P V1

g.

When proving our inequalities, we will need to use relations in V1
g. Lemma 6.1 says that so long

as they are homogeneously Z{8-graded in V1
g it suffices to show the corresponding relations in Vg.

This is the case for the relations we consider, and henceforth we restrict our attention to Vg.

LetNg be the moduli space of projectively flat connections on a Up2q-bundle with fixed odd de-
terminant over a surface of genus g. Muñoz’s work shows that Vg bC is isomorphic to H˚pNg;Cq,
and in fact the ring structure of the former is a deformation of the latter. More precisely, the product
in Vg is equal to the cup product in H˚pNg;Cq up to lower order terms of equal mod 4 gradings.
Furthermore, the isomorphism is well-defined over the rationals, so we may replace C by Q. There
is also a Morse-Bott spectral sequence, due to Fukaya [Fuk96], starting at H˚pNg;Zq and converg-
ing to Vg. Since H˚pNg;Zq is torsion-free, as proven by Atiyah and Bott [AB83, Thm. 9.10], and
the spectral sequence collapses over Q, it must collapse for all coefficient fields. Thus we obtain

Proposition 6.2. Vg is torsion-free.

However, the ring structure of Vg is substantially more complicated than that of Vg b Q, since
α, β, γ do no generate the invariant part of Vg. This is already true for H˚pNg;Zq, which requires
more generators than does H˚pNg;Qq, see [AB83, §9]. Nonetheless, the relations of interest can
be extracted from Muñoz’s presentation, which we now recall: set ζ0 “ 1, and recursively define

ζr`1 “ αζr ` r2pβ ` p´1qr8qζr´1 ` 4rpr ´ 1qγζr´2.

Each ζr “ ζrpα, β, γq is a polynomial in the variables α, β, γ with integer coefficients. Then the
ideal pζg, ζg`1, ζg`2q is a complete set of relations for the part of VgbQ invariant under the mapping
class group action, see [Mn99, Thm.16, Prop.20].

Lemma 6.3. β ” α2 (mod 8).

Proof. The corresponding relation holds in H4pNg;Zq. Indeed, the degree 4 element
ˆ

g ´ 1

2

˙

α2 ` p2g ´ 1q
α2 ´ β

8

is integral, see [SS, Eq.(7), Prop.2.4]; it is the second Chern class of the push-forward of a universal
bundle. Multiplying both sides by 8, and a mod 8 inverse for p2g´1q, yields β ” α2 (mod 8) in the
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ring H4pNg;Zq. Since the product in Vg is a deformation of the product in H˚pNg;Zq respecting
mod 4 gradings, within Vg we have α2 ´ β ` c ” 0 (mod 8), where c is some constant. There is
a map rk : Vg Ñ Vg´k induced by a cobordism which contracts k handles, cf. [Mn99, Lemma 9].
For g ě 1, we have 0 ” rg´1pα2 ´ β ` cq ” c (mod 8) since in V1 the relations α “ 0 and β “ 8
follow from ζ1 and ζ2. Thus c ” 0 (mod 8) and the relation follows.

This lemma allows us to write β “ α2`8ε for some element ε P Vg. Define the double factorial
n!! “ npn´ 2qpn´ 4q ¨ ¨ ¨ 1 for n ą 0 odd. We propose the following.

Conjecture 6.4. p2g ´ 3q!!ζgpα, α2 ` 8ε, γq{g! is a polynomial in α, ε, γ with integer coefficients.
Furthermore, the reduction of this polynomial mod 4 is congruent to ˘αg.

The verification of this conjecture implies the relations αg ” 0 (mod 2) and βrg{2s ” 0 (mod 4)
within Vg. Indeed, the polynomial in the conjecture is a relation in Vg, since according to Muñoz it
is a relation in Vg b Q, and Vg is torsion-free. Its reduction modulo 4 implies the relation αg ” 0
(mod 4), which by Lemma 6.3 implies the two desired relations.

In fact, for some of our applications in mind, less is required. For example, we consider what
is required to prove the conjectural inequality obtained from Theorem 2.1 by replacing the left
hand side with rg{2s. Define N4

βpgq1 to be the nilpotency degree of β in the ring pVg{Torq b Z{4.
The argument given for Theorem 2.1 in the next section is easily seen to work for N4

βpgq1 in place
of N4

βpgq. Of course N4
βpgq1 ď N4

βpgq, although they are likely equal. The point of using this
alternative definition is as follows. We may set γ “ 0 in the recursive equation to define ζ 1

r`1 “

ζ 1
r ` r2pβ ` p´1qr8qζ 1

r´1 with ζ 1
0 “ 1. Then ξr “ ζ 1

rpα, α2 ` 8εq is a polynomial only in α and
ε. As we only are concerned with relations mod 4, to prove that N4

βpgq1 “ rg{2s it suffices to show
that the rational coefficients of ξr{r! all have reduced fraction forms with odd denominators, and
have numerators divisible by 4, except for the coefficient in front of αg, which should be odd.

Proof of Proposition 2.2. The first few instances of Conjecture 6.4 are verified by hand, and we
verify the rest of the cases g ď 128 by computer. The first 8 polynomials defined in Conjecture 6.4
are given in Table 3 for illustration.

Finally, we remark that αg ” 0 (mod 2) is a relation in the ring H˚pNg;Z{2q by work of the
author with M. Stoffregen [SS]. The above scheme suggests an alternative route to proving this re-
lation. Indeed, the ring H˚pNg;Qq has its own recursive presentation, which inspired the work of
Muñoz; in the recursive definition of ζr above, simply remove the term p´1qr8. Then Conjecture
6.4 may be formulated with these modified polynomials. In particular, we suspect that the relation
αg ” 0 (mod 4) also holds in H˚pNg;Z{4q.

In [SS] it is also proven that αg´1 ı 0 (mod 2) within H˚pNg;Z{2q. This implies N2
αpgq ě g,

which aligns with the first part of Lemma 4.1 and inequality (4). Indeed, since Vg b Z{2 is a
deformation of the ring H˚pNg;Z{2q, the deformations being of lower degree but homogeneous
mod 4, then because αg´1 is nonzero in the latter, it must also be so in the former.
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Table 3
g p2g ´ 3q!!ζgpα, α2 ` 8ε, γq{g!

1 α

2 α2 ` 4ε´ 4

3 3α3 ` 20αε` 12α ` 4γ

4 15α4 ` 160α2ε´ 120α2 ` 20αγ ` 360ε2 ´ 720ε` 360

5 105α5`1456α3ε`840α3`224α2γ`4984αε2`6160αε`1232γε`3192α`560γ

6 945α6 `16884α4ε´11340α4 `2016α3γ`93576α2ε2 ´146160α2ε`14448αγε`

151200ε3 ` 74088α2 ´ 5040αγ ` 840γ2 ´ 453600ε2 ` 453600ε´ 151200

7 10395α7 ` 221364α5ε ` 124740α5 ` 28116α4γ ` 1558392α3ε2 ` 1851696α3ε `

342672α2γε` 3621024αε3 ` 957528α3 ` 144144α2γ` 9240αγ2 ` 6852384αε2 `

978912γε2 ` 7061472αε` 931392γε` 1929312α ` 522720γ

8 135135α8 ` 3418272α6ε ´ 2162160α6 ` 365508α5γ ` 31141968α4ε2 ´

43531488α4ε ` 5319600α3γε ` 118472640α2ε3 ` 22177584α4 ´ 1873872α3γ `

264264α2γ2 ´285597312α2ε2 `19260384αγε2 `151351200ε4 `288699840α2ε´

14030016αγε ` 1633632γ2ε ´ 605404800ε3 ´ 89945856α2 ` 7948512αγ ´

480480γ2 ` 908107200ε2 ´ 605404800ε` 151351200

7 Adapting Frøyshov’s argument

We now proceed to the proofs of Theorem 2.1 and Proposition 2.4. These are adaptations of
Frøyshov’s argument as given in [Frø04], which we closely follow and modify accordingly to our
choices of coefficient rings. For most of the technical details we refer to loc. cit. In the final
subsection we discuss some other adaptations.

7.1 Proofs of Theorem 2.1 and Proposition 2.4

Let X be a smooth, closed, oriented 4-manifold. For now we also assume b1pXq “ 0. Suppose
b`
2 pXq “ n ě 1 and let Σ1, . . . ,Σn be pairwise disjoint connected and oriented embedded surfaces

with Σi of genus gi such that Σi ¨ Σi “ 1. We will eventually specialize to the case n “ 1. Let W
be the result of replacing a tubular neighborhood Ui of Σi Ă X with Ui#CP2 for each i. Upon ori-
enting the exceptional sphere Si in the corresponding copy of CP2, we form two internal connected
sums Σ˘

i between Σi and Si, one preserving the orientation of Si, the other reversing. Now define a
smooth n-dimensional family of metrics gptq where t “ pt1, . . . , tnq P Rn on the closed 4-manifold
W , which as ti Ñ ˘8 stretches along a link of Σ˘

i . Since Σ˘
i ¨ Σ˘

i “ 0, each such link may be
identified with S1 ˆ Σ˘

i .

Let si “ PDrSis, and let Ek Ñ W be the Up2q-bundle with c1pEkq “ w `
ř

si and c2pEkq “

k. Write L Ă H2pX;Zq{Tor for the lattice of vectors vanishing on the rΣis. We choose w so
that modulo torsion it is an element in L which is extremal. Denote by Mk,t the moduli space of
projectively gptq-anti-self-dual connections on Ek, and let Mk denote the disjoint union of Mk,t

over t P Rn. After perturbing, the irreducible stratum M ˚
k Ă Mk is a smooth and possibly non-
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compact manifold of dimension 8c2 ´ 2c21 ´ 3p1 ´ b1 ` b`
2 q ` n. Thus

dimM ˚
k “ 8k ` 2|w2| ´ 3. (29)

If k ă 0, then Mk has no reducibles, while M0 contains a finite number. Denote by M 1
k the result

of removing small neighborhoods of each reducible; in particular, M 1
k “ Mk if k ă 0. The as-

sumption that w is extremal rules out bubbling off of reducible solutions in these moduli spaces.

Recall from [DK90, §5.1.2] that the µ-map is given by

µ : HipW ;Qq ÝÑ H4´ipB˚
E ;Qq, µpaq “ ´

1

4
p1pEq{a. (30)

Here E is a Up2q-bundle over a 4-manifold W , and E is the universal adjoint SOp3q bundle over
B˚

E ˆ W , where B˚
E is the configuration space of connections on E. The basepoint fibration

associated to x P W is the restriction of E to a slice B˚
E ˆ txu. For later use, we also introduce

notation for the second Stiefel–Whitney class:

νpxq “ w2pEq{1 P H2pB˚
E ;Z{2q. (31)

When defining (relative) Donaldson invariants on 4-manifolds, one cuts down moduli spaces in-
side B˚

E using geometrically constructed divisors representing µ-classes. Henceforth we write
x P H0pW ;Zq for the point class.

Returning to our above setup, to any a1, . . . , ak P txuYH2pW ;Zq which descend to L˚, subset
S Ă M 1

k, and nonnegative integers ji ě 0 for i “ 1, . . . , k, we use the shorthand µpa1qj1 ¨ ¨ ¨µpakqjkS
for the intersection of S with ji generic geometric representatives for µpaiq “ ´p1pEq{4ai sup-
ported away from where gptq varies, as i runs over 1, . . . , k. Also, let µpxq

j
iS denote the intersec-

tion of S with a geometric representative depending on t for ´p1pEq{4pt, where the basepoint is in
the location of the stretched link of Σ˘

i as ti Ñ ˘8. For the constructions see [Frø04, §7], where
µpxqi is called xi. The following lemma is for a general 4-manifold W with Up2q bundle E.

Lemma 7.1. For a P H2pW ;Zq, 2µpaq defines a class in H2pB˚
E ;Zq. If further xw2pEq, ay ” 0

(mod 2), then µpaq defines a class in H2pB˚
E ;Zq.

Proof. This follows from [AMR95, Lemma 3]. The proof is short so we include it. If xw2pEq, ay ”

0, we can lift E Ñ B˚
E ˆ W to a Up2q bundle F such that xc1pFq, ay “ 0. Now use ´p1pEq “

4c2pFq ´ c21pFq and c1pFq “ c1pF|B˚q ˆ 1 ` 1 ˆ c1pEq to compute ´p1pEq{a “ 4c2pFq{a. In
general, 2µpaq is integral, as ´p1pEq{a “ 4c2pFq{a´ 2c1pF|B˚q ˆ c1pEq{a is even.

This lemma reduces to Corollary 5.2.7 of [DK90] when w2pEq ” 0 (mod 2). When cutting
down moduli spaces by µpaq, for a as in the lemma, the geometric representatives we have in mind
are those constructed as in loc. cit. using line bundles of coupled Dirac operators over the surface.
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Proof of Theorem 2.1. Assume the setup above. Let a1, . . . , am0 , a
1
1, . . . , a

1
m1

P H2pW ;Zq be such
that each class descends to L˚, and xw, aiy ” 0 (mod 2) for each ai. Further, settingm “ m0 `m1,
assume w2 ” m (mod 2). Lemma 7.1 says each µpaiq and 2µpa1

iq are integral. Suppose as in the
definition of f4pLq that 2´m0ηpL, w, a,mq ı 0 (mod 4), where a “ a1 ¨ ¨ ¨ am0a

1
1 ¨ ¨ ¨ a1

m1
. Suppose

for contradiction that the following inequality holds:

n
ÿ

i“1

N4
βpgiq ă p|w2| ´mq{2. (32)

Set ni “ N4
βpgiq. We define the following smooth, orientable 1-manifold with boundary and a finite

number of non-compact ends:

M̂ :“ p4µpxqq
p|w2|´mq{2´1´

ř

ni

m0
ź

k“1

µpakq

m1
ź

j“1

2µpa1
jq

n
ź

i“1

p4µpxqiq
ni M 1

0 (33)

Here it is important that we cut down by divisors associated to integral cohomology classes. The
boundary points of M̂ arise from the deleted neighborhoods of reducibles in M0. Denote by T the
torsion subgroup of H2pX;Zq. Then each pair tz,´zu Ă Minpw ` 2Lq corresponds to 2n ¨ #T
many reducibles. Indeed, as shown in [Frø04, Lemma 1], the family of metrics may be chosen such
that the reducibles in M0 correspond to splittings E0 “ L1 ‘ L2 into line bundles such that

c1pL1 b L´1
2 q “ z ´

n
ÿ

i“1

ϵisi (34)

where each ϵi “ ˘1 and the projection of z to H2pW ;Zq{T is some z P Minpw ` 2Lq. The
symmetry of swapping L1, L2 in (34) leads to the consideration of the pair tz,´zu, and for each
such pair the freedom of torsion multiplies the number of reducibles by #T , while the possibilities
for the signs ϵi multiply the number by 2n.

The neighborhood of each reducible in M0 is a cone on a complex projective space of dimension
d “ 2|w2| ´ 4. To a reducible associated to a class r as in (34), let h be the degree two generator of
the projective space CPd which is the link of this cone. Then by [DK90, Prop. 5.1.21] we have

µpxq|CPd “ ˘
1

4
h2, µpaiq|CPd “ ˘

1

2
xr, aiyh (35)

where the second relation of course also holds for a1
i. Frøyshov shows that the moduli space can be

oriented such that each of the 2n ¨ #T reducibles in (34) associated to tz,´zu Ă Minpw ` 2Lq

have the same orientations for their cones. We compute

#BM̂ “ 2n´m0 ¨ #T ¨ ηpL, w, a,mq, (36)

which is a rescaling of [Frø04, Proposition 5].

Now we discuss the ends of the moduli space (33). These arise as the metric family parameters
ti go off to ˘8. Transversality ensures that at most one such parameter can stay unbounded for a
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given sequence of instantons in M̂ . The part of M̂ with fixed ˘ti “ τ " 0 is a finite number of
points, which by gluing theory is a pair of instantons over R2 ˆΣ˘

i and over W zΣ˘
i . We may write

#M̂˘ti“τ “ ϕ˘
i ¨ ψ˘

i (37)

where ϕ˘
i P V1

gi counts instantons over R2 ˆ Σ˘
i , and ψ˘

i P pV1
giq

˚ over W zΣ˘
i in the family of

metrics with ˘ti “ τ fixed. Here V1
g is the Z{8-graded instanton cohomology of a circle times a

surface as discussed in Section 6.

A priori, the elements ϕ˘
i and ψ˘

i only define cochains in their Floer cochain complexes. The
unperturbed Chern-Simons functional for the restricted bundle over S1ˆΣ˘

i is Morse-Bott along its
critical set, which is two copies of Ng where g “ gi. According to Thaddeus [Tha00], the manifold
Ng has a perfect Morse function. We perturb the Chern-Simons functional so that its critical set
consists of two copies of the critical points of such a function. (See for example [BD95, Proposition
6] and the surrounding discussion for this sort of perturbation.) The rank of the instanton Floer
cochain complex coincides with that of Vg, and so has zero differential. Thus ϕ˘

i and ψ˘
i may

also be viewed as Floer cohomology classes, as claimed in the previous paragraph. In this way we
remove the restriction in [Frø04] that all but one of the surfaces have genus 1.

Now we make a futher simplification which effectively removes a factor of 2 appearing in (36).
Fix 1 ď i ď n. Let ρi be a diffeomorphism of W which is reflection in the exceptional class
in CP2zB4 Ă Ui#CP2 and is the identity elsewhere. We arrange that ρi interchanges Σ`

i and
Σ´
i , and fixes all other Σ˘

j . We may choose the family of metrics such that for |ti| ě τ , the
map ρi interchanges the metrics gpt1, . . . , ti, . . . , tnq and gpt1, . . . ,´ti, . . . , tnq. Consequently, ρi
interchanges M`tiěτ and M´tiěτ in an orientation-preserving fashion. To see this last point, we
note that ρ˚

i preserves the orientation of H`pW ;Rq, reverses the orientation of the metric family,
and reverses the orientation rule for the moduli space with a fixed metric constructed in [Don87]:

p´1q

ˆ

ρ˚
i

pc1pE0qq´c1pE0q

2

˙2

“ p´1qs
2
i “ ´1.

We may arrange that cutting down the moduli space by the divisors is also compatible with ρi, so
that ρi also interchanges ϕ`

i ¨ ψ`
i and ϕ´

i ¨ ψ´
i in a sign-preserving way. The number of ends of M̂

is then counted to be the following:

n
ÿ

i“1

ϕ´
i ¨ ψ´

i ` ϕ`
i ¨ ψ`

i “ 2
n
ÿ

i“1

ϕ`
i ¨ ψ`

i . (38)

The number of boundary points and the number of ends of the 1-manifold M̂ counted with signs
must be zero, and so from (36) and (38) we obtain the relation

2n´m0 ¨ #T ¨ ηpL, w, a,mq ` 2
n
ÿ

i“1

ϕ`
i ¨ ψ`

i “ 0

Now take n “ 1 and divide this relation by 2. Then we have

2´m0 ¨ #T ¨ ηpL, w, a,mq ` ϕ`
1 ¨ ψ`

1 “ 0 (39)
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The class ϕ`
1 comes from 4µpxq

n1
1 in the expression (33), and so ϕ`

1 “ pβ1qn1 , in the notation of
Section 6. By the definition of n1 “ N4

βpg1q and Lemma 6.1, the element ϕ`
1 is in the ideal of

V1
g b Z{4 generated by µ-classes of loops. Here g “ g1. Similar to the argument of [Frø04, §10],

we conclude ϕ`
1 ¨ψ`

1 vanishes mod 4, essentially because (relative) Donaldson invariants involving
µ-classes of loops vanish for 4-manifolds with b1 “ 0; see Section 7.2 for this justification. But the
left term in (39) is by assumption non-zero mod 4, a contradiction.

We make two final remarks. First, although we worked with a homogeneous element a “

a1 ¨ ¨ ¨ am0a
1
1 ¨ ¨ ¨ a1

m1
such that xai, wy ” 0 pmod 2q, the argument easily extends to any linear

combination of such elements. This allows the argument to go through for all the data included in
the definition of f4pLq. Second, the general case reduces to that of b1pXq “ 0 by surgering loops
as in [Frø04, Prop.2].

Proof of Proposition 2.4. The proof is almost the same, except that every instance of mod 4 co-
efficients is replaced with mod 8 coefficients. We are led to the inequality N8

βpgq ě f8pLq, and
N8

βp1q “ 1 because β is multiplication by 8 on V1.

As the proof of Theorem 2.1 is not particular to Z{4, we may also apply it to the case of Z{2
coefficients. However, our computations suggest that N4

βpgq “ N2
βpgq, in which case the resulting

inequality is implied by Theorem 2.1.

On the other hand, in the setting of mod 2 coefficients, we may replace the role of β with
α, which is implemented by replacing every instance of the class 4µpxq with νpxq, including the
metric-dependent divisors. However, in this case, the cut down moduli space is not a priori naturally
oriented, and the division by 2 in obtaining (39) is problematic. Perhaps further insights or other
methods can overcome this obstacle. Nonetheless, in Section 8 we will exhibit instances where
cutting down by the second Stiefel–Whitney class gives rise to useful inequalities in the setting of
mod 2 instanton homology for homology 3-spheres.

7.2 µ-classes of loops

We now take a moment to make more precise which geometric representatives for µ-classes of
loops are to be used in the above constructions. We refer to the simplified situation described in
[Frø04, Sec.11]. There, a Riemannian 4-manifold X with tublular end r0,8q ˆ Y is considered,
equipped with a Up2q-bundle that restricts to some oriented surface non-trivially within the tubular
end. Fix a loop λ : S1 Ñ X . Following constructions from [KM95], Frøyshov then associates to λ
three classes Φ,Ψ`,Ψ´ P I˚pP ;Zq in the instanton Floer cohomology of P Ñ Y , the restriction
of the bundle over X to Y . Roughly, Φ cuts down moduli by the locus of connection classes with
holonomy 1 P SOp3q, and Ψ˘ cuts down by holonomy ˘1 P SUp2q. These classes satisfy the
relation Φ “ Ψ` ` Ψ´. It is observed in [Frø04, Sec.11] that Ψ` “ Ψ´ and Φ “ 2Ψ˘ modulo
2-torsion. However, in our constructions above, I˚pP ;Zq arises as V1

g, which is torsion-free. Thus
Φ{2 “ Ψ˘ is an unambiguously defined class over the integers, and is the one which we have in
mind when cutting down by µ-classes of loops over arbitrary coefficient rings.
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According to [KM95, §2(ii)], with rational coefficients Φ is equal to what is usually denoted
2µpλq. Thus Ψ˘ is an integral class that agrees with µpλq, the latter, in general, a priori only de-
fined over the rationals. The map Ψ of (27) on a 1-dimensional homology class rλs is now more
precisely defined using Ψ˘ “ Ψ˘pλq, from the 4-manifold D2 ˆ Σ with appropriate bundle. The
independence of the chosen representative λ for the class follows from [Frø04, Prop.7]. We have
now justified our claim, in Section 6, that the class γ, as we have normalized it, is integral.

We can now also be more precise about the definition of the ring Vg from Sections 2 and 6: it is
the quotient of Vg by the ideal generated by elements Ψ˘pλq “ Ψpλq, defined using the 4-manifold
D2 ˆ Σ with appropriate bundle, and allowing λ to range over a symplectic basis of loops tγiu for
the surface Σ. In particular, this ideal contains γ.

Finally, we note that with these conventions the proof that ϕ˘
i vanishes mod 4 in the proof of

Theorem 2.1 now adapts from the argument in [Frø04]: by definition of N4
αpgq, we have ϕ`

i ”
ř

Ψ˘pλiqχi (mod 4) for some loops λi in the 4-manifold at hand, and from [Frø04, Prop.7] the
latter quantity vanishes. Indeed, in our proof it is assumed that b1pXq “ 0 and thus λi torsion; then
Ψ˘pλiq is torsion in Vg, so must be zero.

7.3 Other adaptations

Let us first compare the above arguments to that of Theorem 2.5. We return to the setup in the proof
of Theorem 2.1, before specializing to n “ 1. Set ni “ N0

βpgiq. We then consider the 1-dimensional
part of the Q linear combination of oriented manifolds

µpxqp|w2|´mq{2´1´2
ř

ni

m
ź

j“1

µpajq
n
ź

i“1

`

µpxq2i ´ 64
˘ni

ÿ

kď0

M 1
k (40)

The number of boundary points, which only appear within M 1
0, is equal to a power of two times

#T ¨ ηpL, w, a,mq, while the number of ends is zero. Here a “ a1 ¨ ¨ ¨ am where each aj mod
torsion is in L˚. With these modifications, the argument is much the same as before. This handles
the case of Theorem 2.5 for a closed 4-manifold. The more general case follows from this with mi-
nor modifications as in [Frø04]. Note that we have slightly improved Frøyshov’s Theorem 2 from
[Frø04] by removing the restriction that all but one of the surfaces has genus 1.

The above argument is also easily adapted to the case in which Q is replaced by Z{p for p an
odd integer. To begin, we define

Np
βpgq :“ min

␣

n ě 1 : pβ2 ´ 64qn ” 0 P Vg b Z{p
(

for g ě 1 and Np
βp0q “ 0. Upon setting ni “ Np

βpgiq, we may consider the 1-dimensional part
of (40) a formal Z{p linear combination of 1-manifolds; the powers of two in the definitions of the
µ-classes are invertible modulo p. The number of boundary points is again #T ¨ ηpL, w, a,mq up
to a power of two, and the number of ends is zero mod p. Define eppLq by modifying the condition
in the definition of e0pLq that η ‰ 0 to η ı 0 (mod p). Then under the hypotheses of Theorem 2.5,
if #T is relatively prime to the odd integer p, we obtain

n
ÿ

i“1

Np
βpgiq ě eppLq.
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Furthermore, if p is prime, and the 4-manifold has instead a homology 3-sphere boundary Y , then
the same inequality holds upon adding to the left side hppY q, Frøyshov’s instanton invariant defined
over Z{p. The modifications needed to deduce the case with a homology 3-sphere boundary from
the closed 4-manifold case are completely analogous to those in [Frø04]. However, e0pLq ě eppLq,
and the following shows that we do not improve upon what is already known from Theorem 2.5.

Proposition 7.2. Let p P Z be odd. Then Np
βpgq ě rg{2s. Equality holds if p is prime and p ą g.

Proof. The proof of the first statement is similar to that of Proposition 4.1. It suffices to show
that eppLq ě rg{2s where L “ Γ4g`4. We follow [Frø04, Prop.1]. Consider the extremal vector
w “ p1, . . . , 1, 0, . . . , 0q P L having 4rg{2s entries equal to 1. If g is odd then Minpw ` 2Lq

consists of p˘1, . . . ,˘1, 0, . . . , 0q and p0, . . . , 0,˘1, . . . ,˘1q where the number of signs is even;
if g is even it consists of p˘1, . . . ,˘1, 0, . . . , 0q where again the number of signs is even. In either
case, the signs in ηpL, wq are all equal, and ηpL, wq “ ˘1

2#Minpw ` 2Lq is a power of 2, and in
particular nonzero mod p. Since w2 “ 4rg{2s, we conclude that eppLq ě rw2{4s “ rg{2s.

For the second statement, we follow [Mn99, Prop. 20], and use our notation from Section 6.
The recursive equation defining ζg`1 yields g2pβ ` p´1qgqζg´1 ” ζg`1 ´ αζg (mod γ). Thus we
have g2pβ ` p´1qg8qJg´1 Ă Jg ` pγq where Jg “ pζg, ζg`1, ζg`2q. Inductively, in Vg we obtain

g
ź

r“1

r2pβ ` p´1qr8q “ γϕ

for some ϕ P Vg. Now since p is prime and p ą g, the factor 1222 ¨ ¨ ¨ g2 has an inverse mod p.
After multiplying both sides by this inverse, and, if g is odd, multiplying by pβ ` 8q, we obtain the
relation pβ2 ´ 64qrg{2s ” 0 (mod γ) within Vg b Z{p, implying Np

βpgq ď rg{2s.

8 Alternative proofs

The only instanton Floer theory used in the above proofs of Theorems 1.1 and 1.3 is the input from
certain relations in the instanton Floer cohomology of a circle times a surface via Theorem 2.1 and
Proposition 2.4; the instanton homology of homology 3-spheres is not required at all. In this Sec-
tion we deduce Corollaries 1.2 and 1.4 with this latter framework at heart, with some help from
Floer’s exact triangle. While the two approaches complement one another, they also perhaps belong
together in a more natural framework as suggested by Frøyshov’s inequality in characteristic zero,
Theorem 2.5; we merely scratch the surface here for Z{2 and Z{4 coefficients.

For an integer homology 3-sphere Y , denote by I˚pY ;F2q Floer’s instanton (co)homology from
[Flo88], defined with F2 “ Z{2 coefficients, and using the conventions of [Frø02]. This is a Z{8-
graded vector space over F2. There are elements δ2 P I4pY ;F2q˚ and δ1

2 P I1pY ;F2q defined using
moduli spaces of insantons with a trivial flat limit at either end of Y ˆ R. There is also a degree 2
endomorphism on I˚pY ;F2q, denoted v2, and defined using the second Stiefel-Whitney class of the
SOp3q basepoint fibration, analogous to how the degree 4 endomorphism u is defined in [Frø02] on
I˚pY ;Zq for certain gradings using the first Pontryagin class.
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The elements δ2 P I4pY ;F2q˚ and δ1
2 P I1pY ;F2q are induced by (co)chains δ P CI4pY ;F2q˚

and δ1 P CI1pY ;F2q defined just as in [Frø02, 2.1], but with F2-coefficients, which we now review.
Recall that the cochain complex CI˚pY ;F2q is generated by (perturbed) flat irreducible SUp2q

connections mod gauge. We will follow the notation of [Frø02] and write Mpα, βq for the moduli
space of finite-energy instantons on Rˆ Y with flat limit α at `8 and β at ´8, and with expected
dimension lying in r0, 7s. Write M̌pα, βq “ Mpα, βq{R. The cochain δ1 is then defined to be
ř

#M̌pβ, θqβ, where β runs through the generators of CI1pY ;F2q, and θ is the trivial connection.
Similarly, δα “ #M̌pθ, αq for a generator α P CI4pY ;F2q.

The map v2 is induced by a degree 2 cochain map v on CI˚pY ;F2q, defined as follows. Let
α and β be generators such that Mpα, βq is 2-dimensional. Let E0 Ñ Mpα, βq be the natural
euclidean 3-plane bundle associated to a basepoint p0, y0q. Choose sections σ1 and σ2 of E0 which
are pulled back from the basepoint fibration over the configuration space of connections on p´1, 1qˆ

Y . We arrange that σ1 and σ2 are linearly dependent at finitely many points, and transversely. Set

xvpβq, αy “ # trAs P Mpα, βq : σ1prAsq P R ¨ σ2prAsqu . (41)

That v is a chain map, and is independent of any choices made, follows the proof of [Frø02, Thm.
4], except there are no trajectories that break at the reducible. Indeed, since dimMpα, βq “ 2, the
relation dv ` vd “ 0 comes from counting the ends of a 3-dimensional moduli space, cut down
by two sections as above; such a moduli space has ends approaching trajectories broken at a trivial
connection if its dimension is ě 5, see [Don02, §5.1]. The construction of v2 and its interactions
with the analogous map for the third Stiefel-Whitney class of E0 was sketched by Frøyshov [Frøa].

Proposition 8.1. Let X be a smooth, compact, oriented 4-manifold with negative definite lattice
L “ H2pX;Zq{Tor and boundary an integer homology 3-sphere Y . If H˚pX;Zq has no 2-torsion,

min
!

j ě 0 : δ2v
j
2 “ 0

)

ě f2pLq.

The proof is an adaptation of Proposition 1 in [Frø02], which uses the additional assumption
b1pXq “ 0. Fix w P H2pX;Zq descending to an extremal vector of the same name in L, and
a P SymmH2pX;Zq descending to an element of the same name in SymmpLwq for some m ě 0.
For simplicity assume a “ a1 ¨ ¨ ¨ am where ai P H2pX;Zq. Form X` by attaching a cylindrical
end r0,8q ˆ Y to the boundary of X , and fix a metric g on X`which is a product along the end.
Consider the moduli space M0 of suitably perturbed instantons on pX`, gq on a Up2q-bundle with
c1 “ w and relative second Chern number k “ 0 which are asymptotic to the trivial connection.
Removing neighborhoods of reducibles we have a smooth moduli space M 1

0 of dimension 2|w2|´3.
Cut this down as follows to obtain an unoriented 1-manifold:

νpxq|w2|´m´2
m
ź

k“1

µpakqM 1
0

Similar to [Frø02], counting the boundary points yields 2´mηpL, w, a,mq pmod 2q. The ends con-
tribute the term δ2v

j
2 ¨Dw

Xpaq whereDw
Xpaq is a relative Donaldson invariantDw

Xpaq P I4´4npY ;F2q

where n “ |w2| ´m´ 2. We obtain the second equality in

δ2v
j
2 ¨Dw

Xpaq “

#

0 for 0 ď j ă n

2´mηpL, w, a,mq pmod 2q for j “ n.
(42)
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The first equality follows from the same argument but with k ă 0, where there are no reducibles (and
in some cases is true for degree reasons). The statement of Proposition 8.1 follows for b1pXq “ 0
from this formula and the definition of f2pLq; the condition that b1pXq “ 0 is then handled by
surgering loops, cf. [Frø04, Prop.2].

We have a similar inequality for Z{4 coefficients. Here we let u denote the degree 4 map
defined on CI˚pY ;Zq as in [Frø02], which in general is not a chain map, but satisfies du ´ ud `

2δ b δ1 “ 0. The map δun : CI4´4npY ;Zq Ñ Z is a chain map, and we denote by δ4un4 the map
I4´4npY ;Z{4q Ñ Z{4 obtained after tensoring with Z{4 and taking homology. This may depend
on auxiliary choices, such as perturbation and metric; in the following assume choices are fixed.

Proposition 8.2. Let X be a smooth, compact, oriented 4-manifold with negative definite lattice
L “ H2pX;Zq{Tor and boundary an integer homology 3-sphere Y . If H˚pX;Zq has no 2-torsion,

min
!

j ě 0 : δ4u
j
4 “ 0

)

ě f4pLq.

The proof is similar to that of Proposition 8.1, but more directly uses the formula of [Frø02,
Prop.1], the statement of which is the following, assuming b1pXq “ 0; the proposition uses its
mod 4 reduction. For w P H2pX;Zq descending to an extremal vector of the same name in L, and
a P SymmH2pX;Zq descending to an element of the same name in SymmpLq for m ě 0, there is a
relative invariant Dw

Xpaq P I4´4npY ;Zr1{2msq where n “ p|w2| ´mq{2 ´ 1, and

δuj ¨Dw
Xpaq “

#

0 for 0 ď j ă n

2´m#T ¨ ηpL, w, a,mq for j “ n.
(43)

For both Propositions 8.1 and 8.2 we use the knowledge from Section 7.1 of what kinds of classes
a can cut down moduli spaces when working over the appropriate coefficient ring. For example, if
a P SymmpLwq then Dw

Xpaq is an element in I4´4npY ;Zq, and the factor 1{2m is unnecessary in
the coefficient ring.

We expect that the left-hand sides of the inequalities of Propositions 8.1 and 8.2 can be replaced
by more natural quantities. For example, the first of these should be a weaker form of a general
inequality involving Frøyshov’s homology cobordism invariant q2 mentioned in the introduction.
Similarly, the second is related to Frøyshov’s framework as developed in [Frø02], but with Z{4
coefficients. We are now in a position to give an alternative proof of Corollary 1.4.

Another proof of Corollary 1.4. Let Y “ Σp2, 3, 5q. It is well-known that CI˚pY ;Zq is generated
by two flat SUp2q connections in degrees 0 and 4. The differential on CI˚pY ;Zq is zero, and hence
u is a chain map, and induces a map on I˚pY ;Zq which we also call u. By [Frø02, Prop.2], δu is
divisible by 8, and in particular δ4u4 ” δu (mod 4) vanishes. The degree two map v2 on I˚pY ;Z{2q

is zero for grading reasons. Thus the left-hand sides of the inequalities in Propositions 8.1 and 8.2
are equal to 1, and the result follows from Lemmas 3.2 and 3.3.

Alternatively, we can also formulate the mod 8 analogue of Proposition 8.2 together with the
computation f8pΓ12q “ 2, and use this with Proposition 8.2 and Lemma 4.2. However, the above
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proof illustrates that constraints from inequalities arising from the mod 2 and mod 4 coefficient
cases are sufficient. Further, the use of only Lemmas 3.2 and 3.3 shows that there is a minimal
amount of algebra needed.

The computation δu ” 0 (mod 8) in the proof of Corollary 1.4 is computed in [Frø02] via basic
gluing formulae for relative Donaldson invariants, using an embedding of the negative definite E8

plumbing into a K3 surface. The same procedure may be attempted for Σp2, 5, 9q, the boundary of
a negative definite plumbing with intersection form ´Γ12 which itself embeds in the elliptic surface
Ep3q, as follows from [FS01, Sec.2], and builds on the construction explained at the beginning of
Section 4. However, we can obtain the congruence δu ” 0 (mod 8) for the Poincaré sphere by an-
other method, which will also lead to another proof of Corollary 1.2 for Σp2, 5, 9q, without reverting
to gluing formulae for Donaldson invariants. We proceed to explain this.

As in the above proof, let Y “ Σp2, 3, 5q, and denote by P the non-trivial SOp3q-bundle over
0-surgery on the p2, 3q-torus knot. Then for any coefficient ring we have the long exact sequence

¨ ¨ ¨ I˚pS3q ÝÑ I˚pY q
W˚
ÝÝÑ I˚pP q ÝÑ I˚pS3q ¨ ¨ ¨ (44)

This is Floer’s exact triangle [Flo95, BD95]. The map W˚ is induced by a surgery 2-handle cobor-
dism W : Y Ñ Y0. Because the instanton cohomology of the 3-sphere vanishes, W˚ is an isomor-
phism. For the non-trivial bundle P , the map u is also defined on instanton cohomology. The map
W˚ does not commute with u; in fact W˚u´uW˚ “ 2δb δ1

W where δ1
W counts isolated instantons

on W with trivial limit at Y . (This follows from a version of [Frø02, Theorem 6].) From this it
follows, however, that W˚u “ uW˚ on I0pY ;Zq. Thus to show that δu ” 0 (mod 8) on I0pY ;Zq it
suffices to show that u ” 0 (mod 8) on I˚pP ;Zq.

The (2,3) torus knot has genus 1. Consequently, there is a genus 1 surface embedded in the
0-surgery over which the bundle P restricts non-trivially; this is formed by capping off a Seifert
surface in the complement of the surgery neighborhood with a disk glued in from 0-surgery. Fol-
lowing [Frø02, §6] we stretch along a link of this surface in R cross the 0-surgery diffeomorphic to a
3-torus T 3 to conclude that u factors through the corresponding map on V1

1. However, on this latter
group, u “ β1 ” 0 (mod 8), establishing the claim. We note that essentially the same argument
shows that δu ” 0 (mod 8) for the family of Brieskorn spheres Σp2, 3, 6k ˘ 1q, and so we obtain
alternative proofs for Corollaries 5.1 and 5.2 as well.

Another proof of Corollary 1.2. Let Y “ Σp2, 5, 9q. The exact sequence (44) now applies to surgery
on the (2,5) torus knot. As for Σp2, 3, 5q, the Floer complex for Y has zero differential and u is chain
map. Again, although u and W˚ do not commute in general, they do on I0pY ;Zq. Furthermore, v2
and the mod 2 reduction of W˚ commute. Next, the p2, 5q torus knot is of genus 2, and I˚pP ;Zq

has u ” 0 (mod 4) and v22 ” 0 (mod 2) since β1 ” 0 (mod 4) and pα1q2 ” 0 (mod 2) within V1
2.

Now the left-hand sides of the inequalities in Propositions 8.1 and 8.2 are 2 and 1, respectively, and
with Lemma 4.2 the result follows.
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9 The lattice E2
7

The root lattice E7 is the subset of 1
2Z

8 consisting of vectors x “ px1, . . . , x8q with
ř

xi “ 0 and
all xi in one of Z8 or 1

2 ` Z8. The positive definite unimodular lattice E2
7 is defined by

E2
7 “ E7 ‘ E7 Y pg ` E7 ‘ E7q ,

g “

´

p34
2
,´1

4

6
q, p34

2
,´1

4

6
q

¯

P E˚
7

We note that E˚
7{E7 is cyclic of order 2 generated by rgs. In this section we show

Proposition 9.1. e0pE7
2q “ 1, f2pE7

2q “ 2 and f4pE7
2q “ 2.

These computations show that even if the mod 2 inequality (4) were true in general, it would
not be sufficient to prove Theorem 1.1. In the course of the proof to follow we leave some of the
computations to the reader.

Proof. We need to understand the index two cosets of L and their extremal vectors. We divide the
cosets into two types: those in the image of the inclusion-induced map

π :
E7 ‘ E7

2 pE7 ‘ E7q
ÝÑ

L
2L

and those that are not. To better understand the former case, we list the index two cosets of E7.
These are easily found by hand, and are also listed in [CS99, p.169]. First define

x “ p1,´1, 06q, y “ p12,´12, 04q, z “ p32
2
,´1

2

6
q.

Note that x2 “ 2, y2 “ 4 and z2 “ 6. Consider the cosets w ` 2E7 for w P t0, x, y, zu. After
applying automorphisms of E7 to these we obtain all cosets in E7{2E7. There are 63 cosets in the
orbit of x` 2E7, each represented by a vector of square 2, unique up to sign, and there are similarly
63 cosets in the orbit of y ` 2E7, each having 12 square 4 vectors. There are only two other cosets,
represented by 0 and z, which are fixed under the action of the automorphism group. Thus the total
number of cosets is 1 ` 63 ` 63 ` 1 “ 27, as expected.

The cosets in L that lie in the image of π are therefore represented by pu, vq for u, v P t0, x, y, zu

and some cosets obtained from these by applying automorphisms. The case pz, zq can be ignored;
indeed, pz, zq “ 2g, so this vector represents the zero coset. Next we note py, zq´2g “ pt, 0q where
t “ p´1{24, 1{24q has square 2, and py, yq ´ 2g “ pt, tq, a vector of square 4. Similarly, px, zq is
mod 2 equivalent to a vector of square 4 supported in E7 ‘ 0. Thus by symmetry, when maximizing
over the data defining e0pLq, f2pLq and f4pLq which has w extremal and w ` 2L contained in the
image of π, we may restrict our attention to w being among px, 0q, py, 0q, pz, 0q, px, xq and px, yq.

Now we consider cosets not contained in the image of π. We claim that upon defining

a “ p34
2
,´1

4

6
q, b “ p34

3
,´5

4 ,´
1
4

4
q, c “ p74

1
,´1

4

7
q,
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all elements in L{2L´impπq are obtained from the cosets represented by pa, aq, pa, bq, pa, cq, pb, bq,
pb, cq and pc, cq after perhaps applying an automorphism of L. The claim is verified by counting.
First note that π has 1-dimensional kernel. Indeed, a basis for E2

7 is given by the rows of the matrix:
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
4

1
4

1
4

1
4

1
4

1
4 ´3

4 ´3
4

1
4

1
4

1
4

1
4

1
4

1
4 ´3

4 ´3
4

1
2

1
2

1
2

1
2 ´1

2 ´1
2 ´1

2 ´1
2 0 0 0 0 0 0 0 0

1 ´1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 ´1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 ´1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 ´1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 ´1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 ´1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 ´1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 ´1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 ´1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 ´1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 ´1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Every row in the matrix except for the first lies in E7 ‘ E7, and the first row is equivalent modulo
2L to the vector g P L. Thus every coset not in the image of π is of the form rgs ` rws where
rws P impπq, and there are 213 “ 8192 such cosets.

We consider orbits of the automorphism group acting on rws “ w` 2L as w varies through the
above representatives. Let G be the subgroup of AutpLq generated by automorphisms that permute
the first 8 or last 8 coordinates, the automorphism that swaps the first and last 8 coordinates, and the
automorphism σ that negates the first 8 coordinates. First consider

w “ pa, aq “
``

3
4 ,

3
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4

˘

,
`

3
4 ,

3
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4

˘˘

Then G ¨w consists of vectors obtained from w by permuting the “3{4” terms within each E7-factor
and changing signs on each E7-factor. Thus #G ¨ w “ 4 ¨

`

8
2

˘

¨
`

8
2

˘

“ 3136. The only mod 2
congruences among v P G ¨ w are v ” ´v, and so #G ¨ rws “ 1

2#G ¨ w “ 1568. Next, consider

w “ pa, bq “
``

3
4 ,

3
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4

˘

,
`

3
4 ,

3
4 ,

3
4 ,´

5
4 ,´

1
4 ,´

1
4 ,´

1
4 ,´

1
4

˘˘

We compute #G ¨ w “ 4 ¨ 2 ¨
`

8
2

˘

¨ 4
`

8
4

˘

. However, the stabilizer for G acting on rws con-
sists of σ, the automorphism swapping the first and last 4 coordinates of the second E7-factor,
and any permutation preserving the first 12 coordinates. Taking this into account, we compute
#G ¨ rws “ 2 ¨

`

8
2

˘

¨
`

8
4

˘

“ 3920. We proceed in this manner to find that #G ¨ rws for w among
pa, aq, pa, bq, pa, cq, pb, bq, pb, cq and pc, cq is equal to 1568, 3920, 112, 2450, 140 and 2, respec-
tively. These add up to 8192, and this verifies the claim stated in the previous paragraph.

In summary, when maximizing over the data defining e0pLq, f2pLq and f4pLq we may restrict
our attention to computing ηpL, w, a,mq for which w is in the following table.
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w px, 0q pa, aq px, xq py, 0q pa, bq pa, cq px, yq pz, 0q pb, bq pb, cq pc, cq

w2 2 3 4 4 5 5 6 6 7 7 7

In each case w is extremal. We next claim the following, where in each case w runs over
the vectors in the table: (i) ηpL, wq “ 0 for w P tpx, yq, pz, 0qu and ηpL, w, e, 1q “ 0 for w P

tpb, bq, pb, cq, pc, cqu as e runs over a basis for L; and (ii) 2´mηpL, w, e1 ¨ ¨ ¨ em,mq ” 0 (mod 2)
for each m ě 0 with w2 ´ m ě 4, where e1, . . . , em are arbitrary elements of a basis for Lw. It is
straightforward to verify these claims by computer once one knows Minpw`2Lq for each w above.
For example, if w “ pc, cq, this set consists of the 64 vectors obtained by permuting the placement
of the 7{4 terms within each E7-summand. Claim (i) implies e0pLq “ 1 and f4pLq “ 2. More
precisely, for the latter, it establishes that f4pLq ď 2, and Lemma 3.2 implies equality. Claim (ii)
implies f2pLq “ 2. This completes the proof.

The following result collects the lattices that occur in Elkies’ List, Table 1 above, under the
constraint f2pLq ď 2. In terms of our topological tools, it combines the restrictions of having d-
invariant 2 and the inequality of Proposition 8.1 having left-hand side equal to 2. We do not know
if the lattice E2

7 ever occurs under the hypotheses given.

Proposition 9.2. Suppose Y is an integer homology 3-sphere with dpY q “ 2 and δ2v2 “ 0. If
a smooth, compact, oriented 4-manifold with no 2-torsion in its homology has boundary Y and
reduced negative-definite non-diagonal intersection form L, then ´L is one of E8, Γ12, E2

7 .

Proof. By Proposition 8.1 it suffices to show that mpLq ě 3 for the lattices in Table 1 other than
the three given. As in the proof of Lemma 3.3, if the the root lattice R Ă L contains An for n ě 3,
then w “ p1, 1,´1,´1, 0, . . . , 0q P An shows that mpLq ě 3. This leaves D2

8, D3
6, D5

4, A22
1 , O23

in Table 1. The following descriptions of the first three of these lattices are from [CS82].

Suppose L “ D2
8. This lattice is generated by D8 ‘ D8 along with g1 “ pp1{28q, p´11, 07qq

and g2 “ pp´11, 07q, p1{28qq. As before, superscripts denote repeated entries. Then w “ g1 ` g2 is
extremal of square 4, and Minpw ` 2Lq “ tw,´wu, implying mpLq ě w2 ´ 1 “ 3.

Next, suppose L “ D3
6. Then L is generated by the root lattice D6 ‘ D6 ‘ D6 and g1 “

p0, p1{26q, p1{25,´1{21qq, g2 “ pp1{25,´1{21q, 0, p1{26qq and g3 “ pp1{26q, p1{25,´1{21q, 0q.
Then w “ g1 ´ g2 is extremal of square 4 and as before mpLq ě 3.

Next, suppose L “ D5
4. Then L is generated by D4 ‘ D4 ‘ D4 ‘ D4 ‘ D4 along with

g “ pp1{24q5q and g1 “ p0, p03, 11q, p1{23,´1{21q, p1{23,´1{21q, p03, 11qq, and cyclic permu-
tations g2, g3, g4, g5 of g1. Then w “ g is extremal of square 5 with Minpw ` 2Lq “ tw,´wu,
implying mpLq ě 4.

Now suppose L “ A22
1 . We sketch the construction of this lattice following Construction A of

[CS99, Ch.7] using the shortened Golay code C22. Let S be the subspace of the Golay code C24

consisting of vectors with first two coordinates 00 or 11, where C24 Ă F24
2 is spanned by the rows
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of Fig. 3.4 in [CS99, p.84]. Then C22 is the subspace of F22
2 obtained by projecting S onto the last

22 coordinates, and A22
1 is the subset of R22 consisting of vectors x⃗{

?
2 such that x⃗ (mod 2) lies in

C22. Let v⃗ P t0, 1u22 descend to the code word v⃗ (mod 2) in C22 with 10 entries equal to 1, obtained
by summing the first 11 rows of Fig. 3.4 in [CS99, p.84], ignoring the first two coordinates. Then
w “ v⃗{

?
2 P A22

1 is extremal of square 5. It is straightforward to verify that any extremal vector
equivalent to w is of the form w`2r for a root r. The roots are the elements with one nonzero entry
equal to ˘2{

?
2. From this we obtain Minpw ` 2Lq “ tw,´wu, implying mpLq ě 4.

Finally, suppose L “ O23, the shorter Leech lattice. Let w be any vector of square 5; such a
vector exists by inspecting the theta-series of O23, see (7) in [CS99, p.443]. Using that O23 has no
roots, Minpw ` 2Lq “ tw,´wu, and mpLq ě 4.
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