On definite lattices bounded by a homology 3-sphere
and Yang-Mills instanton Floer theory

Christopher Scaduto
Simons Center for Geometry and Physics
cscaduto@scgp.stonybrook.edu

Abstract

Using instanton Floer theory, extending methods due to Frøyshov, we determine the definite
lattices that arise from smooth 4-manifolds bounded by certain homology 3-spheres. For exam-
ple, we show that for +1 surgery on the (2,5) torus knot, the only non-diagonal lattices that
can occur are E_8 and the indecomposable unimodular definite lattice of rank 12, up to diagonal
summands. We require that our 4-manifolds have no 2-torsion in their homology.

1 Introduction

Let X be a smooth, closed and oriented 4-manifold. The intersection of 2-cycles defines the structure
of a unimodular lattice on the free abelian group $H_2(X;\mathbb{Z})/\text{Tor}$. Donaldson’s celebrated Theorem
A of [Don86] says that if this lattice is definite, then it is equivalent over the integers to a diagonal
form $(\pm 1)^n$. Donaldson’s original proof used instanton gauge theory, and alternative proofs were
later given using Seiberg-Witten and Heegaard Floer theory [OS03, Thm.9.1], in conjunction with
a lattice-theoretic result due to Elkies [Elk95a].

For a given integer homology 3-sphere Y, which definite lattices arise as the intersection forms
of smooth 4-manifolds with boundary Y? Donaldson’s theorem may be viewed as the solution to
this problem in the case of the 3-sphere. To date, there is only one result in which the set of def-
nite lattices is determined and does not consist of only diagonal lattices: under the assumption
that the 4-manifolds are simply-connected, Frøyshov showed in his PhD thesis [Frøb] that the only
non-diagonalizable definite lattices bounded by the Poincaré sphere are $-E_8 \oplus (-1)^n$. The proof uses
instanton gauge theory, and no other proofs are yet available.

In this article we extend and reformulate some of Frøyshov’s methods in [Frøb, Frø04] to obtain
further results in this direction. The central new application is the following.

Theorem 1.1. Let Y be an integer homology 3-sphere $\mathbb{Z}/2$-homology cobordant to +1 surgery on
a knot with smooth 4-ball genus 2. If a smooth, compact, oriented and definite 4-manifold with no
2-torsion in its homology has boundary Y, then its intersection form is equivalent to one of

$$(\pm 1)^n \quad E_8 \oplus (+1)^n \quad \Gamma_{12} \oplus (+1)^n$$

where Γ_{12} is the unique indecomposable unimodular positive definite lattice of rank 12.

The author was supported by NSF grant DMS-1503100
If a non-diagonal lattice in this list occurs, then \((-1)^n\) for \(n \geq 0\) does not: if the former arises from \(X_1\) and the latter from \(X_2\), both with boundary \(Y\), then the closed 4-manifold \(X_1 \cup X_2\) has a non-diagonal form, contradicting Donaldson’s Theorem A. An example realizing all the positive forms on the list is +1 surgery on the \((2, 5)\) torus knot, which is the Brieskorn sphere \(-\Sigma(2, 5, 9)\).

Corollary 1.2. If a smooth, compact, oriented and definite 4-manifold with no 2-torsion in its homology has boundary \(-\Sigma(2, 5, 9)\), then its intersection form is equivalent to one of

\[
(+1)^n \quad (n \geq 1), \quad E_8 \oplus (+1)^n \quad (n \geq 0), \quad \Gamma_{12} \oplus (+1)^n \quad (n \geq 0)
\]

and all of these possibilities occur.

The realizations of these lattices are straightforward, except perhaps for the case of \(E_8\); see e.g. [GS18]. A slightly more general statement of Theorem 1.1 follows from Corollary 4.3 below. Theorem 1.1 may be viewed as the next installment of the following, which itself is a kind of successor to Donaldson’s Theorem A cited above.

Theorem 1.3. Let \(Y\) be an integer homology 3-sphere \(\mathbb{Z}/2\)-homology cobordant to +1 surgery on a knot with smooth 4-ball genus 1. If a smooth, compact, oriented and definite 4-manifold with no 2-torsion in its homology has boundary \(Y\), then its intersection form is equivalent to one of

\[
(+1)^n \quad (n \geq 1), \quad E_8 \oplus (+1)^n \quad (n \geq 0)
\]

A corollary is a slight improvement of Frøyshov’s theorem, obtained by applying the result to +1 surgery on the \((2, 3)\) torus knot, the orientation-reversal of the Poincaré sphere \(\Sigma(2, 3, 5)\):

Corollary 1.4 (cf. [Frøb]). If a smooth, compact, oriented and definite 4-manifold with no 2-torsion in its homology has boundary \(-\Sigma(2, 3, 5)\), then its intersection form is equivalent to one of

\[
(+1)^n \quad (n \geq 1), \quad E_8 \oplus (+1)^n \quad (n \geq 0),
\]

and all of these possibilities occur.

We give more examples in Section 5. We expect the methods used to provide further applications. A good candidate to consider next is \(-\Sigma(3, 4, 11)\), which is +1 surgery on the \((3, 4)\) torus knot of genus 3. In [GS18] we show that this manifold bounds the unimodular lattices \(+1\), \(E_8\), \(\Gamma_{12}\), \(E_7^2\) and \(A_{15}\), the last two being the indecomposable positive definite unimodular lattices of ranks 14 and 15, respectively; we exhibit some of these in Section 5.

A straightforward Mayer-Vietoris argument shows that the statements of both Theorems 1.1 and 1.3 hold for 3-manifolds that are not integer homology 3-spheres, as long as the lattice is assumed to be unimodular. In joint work with Marco Golla [GS18] we provide analogues of the above results for non-unimodular lattices.

Other than Donaldson’s Theorem A and Frøyshov’s work in instanton Floer theory, restrictions on the possible definite lattices bounded by a fixed homology 3-sphere have previously been established using Seiberg-Witten and Heegaard Floer theory. In particular, there is a fundamental inequality for both the Heegaard Floer \(d\)-invariant of Oszváth and Szabó [OS03, Thm.1.11] and Frøyshov’s Seiberg-Witten correction term [Frø10, Thm.4]. A lattice theoretic result of Elkies [Elk95b] implies...
that if an integer homology 3-sphere has either of these invariants the same as that of the Poincaré sphere, then there are only 14 possible definite lattices that occur, up to diagonal summands; see Table 1. While our proofs of all results stated above depend only on instanton theory, we will see in Section 3.2 that for Theorem 1.3 these restrictions from other theories can replace some, but not all, of the instanton theoretic input of the argument. The same is true for Theorem 1.1, as discussed at the end of Section 4.

To prove Theorems 1.1 and 1.3 we provide partial analogues of Frøyshov’s instanton inequality from [Frø04] in which the coefficients used are the integers modulo two and four. The inequalities provide new lower bounds for the genus of an embedded surface in a smooth closed 4-manifold in terms of data from the intersection form. Part of the input for these inequalities are relations in the instanton Floer cohomology ring of a circle times a surface, taken with the coefficient rings \(\mathbb{Z}/2 \) and \(\mathbb{Z}/4 \). We only prove the relevant relations for low genus, which is more than what is needed for our applications. We also reduce the verification of the general case to an arithmetic problem that we plan to return to in a separate article.

Apart from the determination of the relations just mentioned, the proofs of the inequalities we use are straightforward adaptations of the characteristic zero case from [Frø04], as explained in Section 7. Alongside our \(\mathbb{Z}/2 \) and \(\mathbb{Z}/4 \) adaptations we also digress in Section 7.3 to discuss analogues of Frøyshov’s inequality for odd characteristic coefficients. The reader should also have no trouble formulating adaptations for coefficients \(\mathbb{Z}/2^k \) where \(k \geq 3 \). However, these other variations are not utilized for any applications in this article.

Frøyshov has announced in several public lectures over the years the construction of two homology cobordism invariants, denoted \(q_2 \) and \(q_3 \), defined using the second and third Stiefel-Whitney classes of the basepoint fibration in the context of mod two instanton Floer theory, in a fashion similar to his construction of the \(h \)-invariant of [Frø02]. We expect the mod two inequality, Theorem 2.1 below, to be completed to one which allows the 4-manifold to have homology 3-sphere boundary, by perhaps involving the invariant \(q_2 \), in analogy with Frøyshov’s inequality of [Frø04]. Similarly, the homology cobordism framework of [Frø02] might be adapted to enrich the mod four inequality, Theorem 2.2 below. We rather indirectly touch upon these matters in Section 8, where we replace our first arguments with some using instanton Floer theory for homology 3-spheres.

Outline. In Section 2 we state the inequalities obtained from instanton theory, our main technical tools. The proofs of these, which are adaptations of Frøyshov’s argument to the settings of \(\mathbb{Z}/2 \) and \(\mathbb{Z}/4 \) coefficients, are presented in Section 7. In Section 3 we prove Theorem 1.3 and Corollary 1.4. In Section 4 we prove Theorem 1.1 and Corollary 4.3. More examples are presented in Section 5. In Section 6 we prove some relations in the instanton cohomology of a circle times a surface. An alternative proof of Corollary 1.2, closer in spirit to Frøyshov’s proof of Corollary 1.4, and emphasizing the role of instanton Floer homology for homology 3-spheres, is presented in Section 8. Finally, in Section 9 we discuss an example of a rank 14 definite unimodular lattice \(E_8 \) which illustrates the necessity of the mod 4 data used in the proof of Theorem 1.1.

Acknowledgments. The author thanks Kim Frøyshov for his encouragement and several informative discussions. The work here owes a great debt to his foundational work in instanton homology. Thanks to Motoo Tange for being the first to inform the author that \(-\Sigma(2,5,9) \) bounds \(E_8 \). The author also thanks Marco Golla, Ciprian Manolescu, Matt Stoffregen and Josh Greene for helpful correspondences. The author was supported by NSF grant DMS-1503100.
2 The inequalities

In this section we state partial analogues of Frøyshov’s instanton inequality from \cite{Frø04} when the coefficients used are the integers modulo two and four. The proofs are presented in Section \textsection 7. In addition, for context, we recall Frøyshov’s inequality of \cite{Frø04}. The reader interested in the applications may wish to skip this section and refer back when needed.

Let \(V_g \) denote the \(\mathbb{Z}/4 \)-graded instanton cohomology of a circle times a surface of genus \(g \) equipped with a \(U(2) \)-bundle having odd determinant line bundle. The 4D cobordism defined by a 2D pair of pants cobordism crossed with the surface induces a map \(V_g \otimes V_g \rightarrow V_g \) endowing \(V_g \) with the structure of an associative ring with unit. Muñoz \cite{Mn99} determined a presentation for this ring over \(\mathbb{Q} \) structure of an associative ring with unit. \(\beta \)-corresponds to the element \(\beta \) of \(\mathbb{Z}/4 \)-graded instanton cohomology of a circle times a surface of genus \(g \) which satisfies \(\beta^2 \equiv 0 \pmod{4} \) and \(\beta \neq 0 \) extremal, since then \(\beta \) acts freely on it. We call \(\beta \)-extremal if it is of degrees 2 and 0 mod 4, respectively. Define

\[
N^2_\beta(g) := \min \{ n \geq 1 : \alpha^n \equiv 0 \pmod{\nabla_g \otimes \mathbb{Z}/2} \}
\]

for \(g \geq 1 \), and \(N^2_\beta(0) = 0 \). Here \(\nabla_g \) denotes the quotient of \(V_g \) by relative Donaldson invariants involving \(\mu \)-classes of loops; see Sections \textsection 6 and \textsection 7.2 for more details. The element \(\alpha(\mod{2}) \) in \(V_g \otimes \mathbb{Z}/2 \) may be defined using the second Stiefel-Whitney class of the basepoint fibration.

Now we state the inequality that comes from working with mod two coefficients. Given a definite lattice \(\mathcal{L} \) we define a non-negative integer \(m(\mathcal{L}) \) as follows. For a subset \(S \subset \mathcal{L} \) denote by \(\text{Min}(S) \) the elements which have minimal absolute norm among elements in \(S \). Note \(\text{Min}(S) \) is of even cardinality when it is not \(\{0\} \), since then \(-1\) acts freely on it. We call \(w \in \mathcal{L} \) extremal if it is of minimal absolute norm in its index two coset, i.e. \(w \in \text{Min}(w + 2\mathcal{L}) \). If \(\mathcal{L} = 0 \), set \(m(\mathcal{L}) = 0 \). Otherwise,

\[
m(\mathcal{L}) := \max \{ |w|^2 - 1 : w \neq 0 \text{ extremal}, w \equiv \frac{1}{2} \text{#Min}(w + 2\mathcal{L}) \equiv 1 \pmod{2} \}\]

(1)

Theorem 2.1. Let \(X \) be a smooth, closed, oriented 4-manifold with no 2-torsion in its homology. Suppose \(b_2^+(X) = n \geq 1 \). Let \(\Sigma_i \subset X \) for \(1 \leq i \leq n \) be smooth, orientable and connected surfaces in \(X \) of genus \(g_i \) with self-intersection 1 which are pairwise disjoint. Denote by \(\mathcal{L} \subset H^2(X; \mathbb{Z})/\text{Tor} \) the unimodular negative definite lattice of vectors vanishing on the classes \(\{\Sigma_i\} \). Then we have

\[
\sum_{i=1}^{n} N^2_\beta(g_i) \geq f_2(\mathcal{L}),
\]

(2)

where \(f_2(\mathcal{L}) \) is a non-negative integer invariant of the unimodular lattice \(\mathcal{L} \) defined below in \cite{Frø04}, which satisfies \(f_2(\mathcal{L}) \geq m(\mathcal{L}) \), and vanishes if and only if \(\mathcal{L} \) is diagonalizable.

As mentioned in the introduction, the proof is an adaptation of the characteristic zero case in \cite{Frø04}. Rather than cutting down moduli spaces of instantons using the first Pontryagin class of the basepoint fibration, we use the second Stiefel-Whitney class. If we define \(N^4_\beta(0) = 0 \) and

\[
N^4_\beta(g) := \min \{ n \geq 1 : \beta^n \equiv 0 \pmod{\nabla_g \otimes \mathbb{Z}/4} \}
\]

for \(g \geq 1 \) then the same technique is applied to the situation of mod 4 coefficients. In this case we cut down moduli spaces using the first Pontryagin class of the basepoint fibration, which in \(V_g \) corresponds to the element \(\beta \), and we obtain the following inequality.
Theorem 2.2. Let X be a smooth, closed, oriented 4-manifold with $b_1^+(X) = n \geq 1$. Let $\Sigma_i \subset X$ for $1 \leq i \leq n$ be smooth, orientable and connected surfaces in X of genus g_i with self-intersection 1 which are pairwise disjoint. Let $T \subset H^2(X;\mathbb{Z})$ denote the torsion subgroup. Let $L \subset H^2(X;\mathbb{Z})/T$ be the unimodular negative definite lattice of vectors vanishing on the classes $[\Sigma_i]$. If $\#T$ is odd then

$$
\sum_{i=1}^{n} N^2_{\Sigma_i}(g_i) \geq f_4(L),
$$

where $f_4(L)$ is a non-negative integer invariant of the unimodular lattice L defined below in (6), which satisfies $f_4(L) \geq \lfloor f_2(L)/2 \rfloor \geq \lfloor m(L)/2 \rfloor$, and vanishes if and only if L is diagonalizable. If $\#T$ is twice an odd number, then the same inequality holds upon replacing $f_4(L)$ with $\lfloor f_2(L)/2 \rfloor$.

If X is negative definite, all inequalities above apply to $X\#\mathbb{CP}^2$ with the genus zero exceptional sphere; in this case, L is the lattice of X. The vanishing of the left side of either inequality forces L to be diagonal, implying Donaldson's diagonalization theorem [Don86] under some hypothesis on the 2-torsion of X. In fact, the term $m(L)$, which also vanishes if and only if L is diagonal (see Prop. 2.4), essentially appears in Fintushel and Stern's proof of Donaldson's theorem [FS88].

The effectiveness of the inequalities towards our applications comes from the determination of $N^2_{\Sigma_i}(g_i)$ and $N^4_{\Sigma_i}(g_i)$. In Section 6 we give evidence that the relations $\alpha^2 \equiv 0 \pmod{2}$ and $\beta^{(g/2)} \equiv 0 \pmod{4}$ hold in \mathbb{V}_g for all g. For our applications, we only need verify this for $g \leq 128$. To this end:

Proposition 2.3. For $g \leq 128$ we have $N^2_{\Sigma_i}(g) = g$ and $N^4_{\Sigma_i}(g) = \lfloor g/2 \rfloor$.

We will in fact reduce the verification of this proposition for general g to an elementary arithmetic problem which we do not attempt to solve in this article. The threshold $g = 128$ is significant, and is the extent to which we have verified the formulas with a computer. We now proceed to define the lattice terms $f_2(L)$ and $f_4(L)$ appearing in Theorems 2.1 and 2.2.

Let L be a definite unimodular lattice. Given $x, y \in L$ write $x \cdot y \in \mathbb{Z}$ for their inner product, and x^2 for $x \cdot x$. For $w \in L$ write $L^w \subset L$ for the sublattice of elements $x \in L$ satisfying $w \cdot x \equiv 0 \pmod{2}$. Given $z \in L$, define a linear form $L_z : \text{Sym}^4(L) \to \mathbb{Z}$ by first letting $L_z(a_1 \cdots a_m) = (z \cdot a_1) \cdots (z \cdot a_m)$ where each $a_i \in L$, and then extending linearly over \mathbb{Z}. Next, define

$$
f_2(L) := \max \{|w^2| - m - 1 : 2^{-m} \eta \equiv 1 \pmod{2}\} \in \mathbb{Z}_{\geq 0}
$$

(4)

where the maximum is over triples (w, m, a) where $w \in L$ is nonzero and extremal, $m \in \mathbb{Z}_{\geq 0}$, $a \in \text{Sym}^m(L^w)$, and, as indicated in [4] above, $2^{-m} \eta(L, w, a, m) \equiv 1 \pmod{2}$, where

$$
\eta(L, w, a, m) := \frac{1}{2} \sum_{z \in \text{Min}(w+2L)} (-1)^{(w+z)/2} L_z(a).
$$

(5)

In [4] we use the convention that $\max(\emptyset) = 0$. The conditions $a \in \text{Sym}^m(L^w)$ and $w \neq 0$ imply that $\eta(L, w, a, m)$ is an integer divisible by 2^m. The signs appearing in η do not actually matter for the definition of $f_2(L)$, but do matter for the definitions to follow. When $m = 0$ we interpret $L_z(a) = 1$; in this case we simply write $\eta(L, w)$. Note that when L is an even lattice the signs appearing in η are all positive. We remark that our definition of η is essentially that of [Frø02] and one half of that in [Frø04], except that in those references, only $a = a_0^m$ is used. Note that $\eta(L, w) \equiv 1 \pmod{2}$ is equivalent to the condition that $\frac{1}{2} \#\text{Min}(w+2L) \equiv 1 \pmod{2}$, and thus $f_2(L) \geq m(L)$. We do not
have an example for which \(f_2(\mathcal{L}) > m(\mathcal{L}) \), but we include \(f_2(\mathcal{L}) \) in the statement of Theorem 2.1 because it arises naturally in the proof. However, for all of our applications that use Theorem 2.1 we will only bound \(m(\mathcal{L}) \) from below.

Moving on to the lattice term in the mod 4 setting, we define

\[
f_4(\mathcal{L}) := \max \left\{ \frac{|w^2| - m}{2} : 2^{-m_0}\eta \not\equiv 0 \pmod{4} \right\} \in \mathbb{Z}_{\geq 0}
\]

(6)

where the maximum is over triples \((w, m, a)\) where \(w \in \mathcal{L}\) is nonzero and extremal, \(m \in \mathbb{Z}_{\geq 0}\) with \(w^2 \equiv m \pmod{2}\), \(a \in \text{Sym}^m(\mathcal{L}^w) \otimes \text{Sym}^{m_1}(\mathcal{L})\) with \(m_0 + m_1 = m\), and \(2^{-m_0}\eta(\mathcal{L}, w, a, m) \not\equiv 0 \pmod{4}\), as is indicated in (6). As claimed in Theorem 2.2, we have the following:

\[
f_4(\mathcal{L}) \geq \lceil f_2(\mathcal{L})/2 \rceil.
\]

This follows directly from the definitions if \(f_2(\mathcal{L}) = |w^2| - m - 1 \) for an extremal vector \(w\) with \(a \in \text{Sym}^m(\mathcal{L}^w)\) and \(\eta(\mathcal{L}, w, a, m) \equiv 1 \pmod{2}\) where \(w^2 - m\) is even. If instead \(w^2 - m\) is odd, we use that \(\eta(\mathcal{L}, w, wa, 1 + m) \equiv \eta(\mathcal{L}, w) \equiv 1 \pmod{2}\), which holds since all vectors in \(\text{Min}(w + 2\mathcal{L})\) have the same mod 2 inner product with \(w\).

Proposition 2.4. Each of \(m(\mathcal{L})\), \(f_2(\mathcal{L})\) and \(f_4(\mathcal{L})\) vanish if and only if \(\mathcal{L}\) is diagonalizable.

Proof. Assume for simplicity that \(\mathcal{L}\) is positive definite, and write \(\mathcal{L} = (+1)^n \oplus L\) where \(L\) contains no vectors of square 1. If \(\mathcal{L}\) is non-diagonalizable, then \(L \neq 0\). Let \(w \in L\) be of minimal nonzero norm in \(L\). Suppose \(v \in w + 2\mathcal{L}\) and \(v \neq \pm w\). Without loss of generality suppose \(v \cdot w \geq 0\). Then \((w - v)^2 = w^2 - 2w \cdot v + v^2 \leq w^2 + v^2\). On the other hand, \(w - v \in 2L - \{0\}\), and so \((w - v)^2 \geq 4w^2\) since \(w\) is minimal in \(L - \{0\}\). We obtain \(v^2 \geq 3w^2\). We conclude that \(v \notin \text{Min}(w + 2\mathcal{L})\) and \(\text{Min}(w + 2\mathcal{L}) = \{w, -w\}\), and thus \(m(\mathcal{L}) \geq w^2 - 1 \geq 1\). The converse may be proved by direct computation, or we can apply Theorems 2.1 and 2.2 with \(X = \mathbb{C}P^2 \# k\mathbb{C}P^2\) and \(\Sigma_1\) the exceptional sphere in \(\mathbb{C}P^2\) to obtain that \(f_2(\mathcal{L}) = f_4(\mathcal{L}) = m(\mathcal{L}) = 0\) for the diagonal lattice \(\mathcal{L} = (+1)^k\). \(\square\)

These lattice terms should be compared to the analogous term appearing in Frøyshov’s inequality for the instanton \(h\)-invariant, which we now recall. In fact, we will state a slightly more general result. We define for a definite unimodular lattice \(\mathcal{L}\) the following quantity:

\[
c_0(\mathcal{L}) := \max \left\{ \left[\frac{|w^2| - m}{4} \right] : \eta \neq 0 \right\} \in \mathbb{Z}_{\geq 0}
\]

(7)

where the maximum is over triples \((w, m, a)\) where \(w \in \mathcal{L}\) is extremal, \(m \in \mathbb{Z}_{\geq 0}\), \(w^2 \equiv m \pmod{2}\), \(a \in \text{Sym}^m(\mathcal{L})\), and \(\eta(\mathcal{L}, w, a, m) \neq 0\), as is abbreviated in (7). From the definitions we have

\[
c_0(\mathcal{L}) \geq \lceil f_4(\mathcal{L})/2 \rceil \geq \lceil f_2(\mathcal{L})/4 \rceil.
\]

Denote by \(h(Y)\) Frøyshov’s instanton \(h\)-invariant defined in [Fro92]. We next define

\[
N^2_0(g) := \min \{ n \geq 1 : (\beta^2 - 64)^n = 0 \in \mathbb{N}_g \otimes \mathbb{Q} \}
\]

6
for $g \geq 1$ and $N^0_{\beta}(0) = 0$. The computation $N^0_{\beta}(g) \leq [g/2]$ due to Muñoz [Mn99] Prop.20] is used in Frøyshov’s inequality, and determines the left hand sum in the following.

Theorem 2.5 (cf. [Frø04] Thm.2). Let X be a smooth, compact, oriented 4-manifold with homology 3-sphere boundary Y and $b_2^+(X) = n \geq 1$. Let $\Sigma_i \subset X$ for $1 \leq i \leq n$ be smooth, orientable, connected surfaces in X of genus g_i, with $\Sigma_i \cdot \Sigma_i = 1$ which are pairwise disjoint. Denote by $\mathcal{L} \subset H^2(X; \mathbb{Z})/\text{Tor}$ the unimodular lattice of vectors vanishing on the classes $[\Sigma_i]$. Then

$$h(Y) + \sum_{i=1}^{n} [g_i/2] \geq e_0(\mathcal{L}).$$

(8)

We have lifted the restriction in [Frø04] that all but one of the surfaces have genus 1. This follows from a minor technical improvement of the proof, which uses the existence of a perfect Morse function on the moduli space of projectively flat $U(2)$ connections on a surface with fixed odd determinant. This is explained in Section 7.

Each of the lattice terms defined above arises from adapting the proof of Frøyshov’s inequality; each such adaptation has a choice of coefficient ring, a corresponding relation in the instanton cohomology ring of a circle times a surface, and a possible assumption on the torsion group $T \subset H^2(X; \mathbb{Z})$ of the 4-manifold. We summarize the expected scheme for all cases considered above as follows:

<table>
<thead>
<tr>
<th>Lattice term</th>
<th>Coefficients</th>
<th>Relation</th>
<th>Torsion assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_0(\mathcal{L})$</td>
<td>\mathbb{Q}</td>
<td>$\langle \beta^2 - 64 \rangle^{[g/2]} = 0$</td>
<td>none</td>
</tr>
<tr>
<td>$f_2(\mathcal{L})$</td>
<td>$\mathbb{Z}/2$</td>
<td>$\alpha^g \equiv 0 \pmod{2}$</td>
<td>$2 + #T$</td>
</tr>
<tr>
<td>$f_4(\mathcal{L})$</td>
<td>$\mathbb{Z}/4$</td>
<td>$\beta^{[g/2]} \equiv 0 \pmod{4}$</td>
<td>$2 + #T$</td>
</tr>
<tr>
<td>$[f_2(\mathcal{L})/2]$</td>
<td>$\mathbb{Z}/4$</td>
<td>$\beta^{[g/2]} \equiv 0 \pmod{4}$</td>
<td>$4 + #T$</td>
</tr>
</tbody>
</table>

The relations are to be understood within V_g, although we expect the mod 2 and mod 4 relations, which are listed are only verified for $g \leq 128$ in this paper, to hold in V_g. The first row corresponds to Theorem 2.5, the second row to Theorem 2.1, and the third and fourth rows to Theorem 2.2.

We have only included in our discussion the variations of Frøyshov’s inequality we have found useful for our applications. However, the proof of Theorem 2.5 is easily adapted to any coefficient ring. We discuss this to some extent in Section 7.3.

We will not use the inequality of Theorem 2.2 with $\#T$ equal to twice an odd number, corresponding to the last row in the above table. In the absence of 2-torsion, this inequality is in fact implied by that of Theorem 2.1. However, since the torsion hypothesis in the former inequality is weaker than that of the latter, the two inequalities provide different information.

In Section 9 we will show that the indecomposable unimodular positive definite lattice of rank 14 has $f_4(\mathcal{L}) = 2$, while $e_0(\mathcal{L}) = 1$ and $f_2(\mathcal{L}) = 2$. This example shows that Theorems 2.1 and 2.5 cannot alone prove Theorem 1.1. We will show, on the other hand, that Theorem 1.3 can be proven with Theorem 2.1 and some input from Seiberg-Witten or Heegaard Floer theory.
3 Genus 1 applications

In this section we prove Theorem 1.3 and Corollary 1.4 assuming the inequalities of Theorems 2.1 and 2.2. We then give another proof of Theorem 1.3 using the Heegaard Floer d-invariant and only Theorem 2.1. We begin with a corollary of our main inequalities that follows [Frø04, Cor. 1].

For a link L in an integer homology 3-sphere Y_0, we define $g_{4,2}(L)$ to be the minimum over all g such that there exists a $\mathbb{Z}/2$-homology 4-ball W with $\partial W = Y_0$ and an oriented, genus g surface Σ smoothly embedded in W with $\partial \Sigma = L$ and $H_0(L) \rightarrow H_0(\Sigma)$ an isomorphism. If no such data exists, we set $g_{4,2}(L) = \infty$. If L is a knot in the 3-sphere, note that $g_{4,2}(L)$ is the smooth 4-ball genus of L.

Corollary 3.1. Let Y be the result of performing (-1)-surgery on each component of a link L in an integer homology 3-sphere. If Y bounds a smooth, compact, oriented 4-manifold X with no 2-torsion in its homology and negative definite intersection form, then for $g \leq 128$ we have

$$f_2(L) \leq g_{4,2}(L), \quad f_4(L) \leq \lfloor g_{4,2}(L)/2 \rfloor.$$

To obtain the corollary, let Z be the orientation reversal of the negative definite surgery cobordism from Y_0 to Y. Then apply Theorems 2.1 and 2.2 to the closed 4-manifold $X \cup_Y Z \cup Y_0 W$, which has $b_2^+ = b_0(L)$, and contains b_2^+ disjoint surfaces of self-intersection 1 formed by capping off the components of a surface $\Sigma \subset W$ bounded by L as above with disks from the 2-handles of the surgery cobordism Z. Proposition 2.3 determines the left hand sides of (2) and (3) for $g \leq 128$, and the corollary follows. A similar corollary can be obtained by slightly weakening the 2-torsion assumption on X and using only $\lfloor f_2(L)/2 \rfloor$, but we will not need this variation; however, see Remark 3.5.

3.1 The proof of Theorem 1.3 using Theorems 2.1 and 2.2

We recall some basic notions from the theory of lattices. Let us call a definite lattice reduced if there are no elements of squared norm ± 1. A root in a reduced definite lattice L is an element with squared ± 2. A root lattice is a reduced positive definite lattice generated by its roots. Examples are A_n, D_n, E_6, E_7 and E_8, each associated to a Dynkin diagram:

```
A_n  o---o---o---o
D_n  o---o---o---
E_6  o---o---o   E_7  o---o---
E_8  o---o---o
```

The root lattice is obtained by taking as basis the vertices, each having square 2; if two vertices are joined by an edge, their inner product is -1, and is otherwise 0. For A_n, we require $n \geq 1$, and for $D_n, n \geq 4$. In each case, n is the number of vertices, or the rank of the lattice. It is well-known that any positive definite root lattice can be written as a direct sum of these given lattices.

To simplify the notation below, we assume henceforth that L is a positive definite unimodular lattice. Any such lattice can be written as $L = (\pm 1)^n \oplus L$ where L is reduced and $n \geq 0$. We write $R \subset L$ for the root lattice generated by the roots of L, and also call R the root lattice of L. In general, L is not determined by R, but it is common in many cases to notate L by the data R.
Lemma 3.2. If \(f_4(\mathcal{L}) = 1 \) then the root lattice \(R \subset \mathcal{L} \) is indecomposable.

Proof. Write \(\mathcal{L} = (+1)^n \oplus L \) as above, so that \(R \subset \mathcal{L} \). Suppose \(w \in R \) is extremal in \(R \) and \(w^2 = 4 \). We first claim that \(\operatorname{Min}(w + 2\mathbb{L}) = \operatorname{Min}(w + 2R) \). Let \(v \in \operatorname{Min}(w + 2\mathbb{L}) \) with \(v \notin R \), and suppose without loss of generality that \(v \cdot v \geq 0 \). Then \((w-v)^2 = 4 - 2w \cdot v + v^2 \leq 4 + v^2 \). On the other hand, \(w-v \in 2(L-R) \) implies \((w-v)^2 \geq 4 \cdot 3 = 12 \), since \(L-R \) has vectors only of square \(\geq 3 \). We conclude \(v^2 \geq 8 \), contradicting the assumption that \(v \) is extremal. This proves the claim.

Now suppose that \(R \) is decomposable. Then there are \(u, v \in R \) both of square 2 and \(u \cdot v = 0 \). Set \(w = u + v \in R \), which has \(w^2 = 4 \). Then \(\operatorname{Min}(w + 2\mathbb{L}) = \{ \pm u \pm v \} \) contains 4 elements, and \(\eta(L,w) = 2 \equiv 0 \) (mod 4). Thus \(f_4(\mathcal{L}) \geq w^2/2 = 2 \).

Lemma 3.3. If \(m(\mathcal{L}) = 1 \) and \(R \subset \mathcal{L} \) is indecomposable, then \(\mathcal{L} = E_8 \oplus (+1)^n \) for some \(n \geq 0 \).

Proof. We claim the map \(\pi: R \otimes \mathbb{Z}/2 \to L \otimes \mathbb{Z}/2 \) induced by inclusion is an isomorphism. (This is essentially the proof of [Frob].) Suppose \(w \) is not in the image of \(\pi \). In particular, \(w \) is extremal. Now suppose \(v = w + 2u \) is extremal with \(v \cdot w \geq 0 \) and \(v \neq \pm w \). If \([u] \notin \operatorname{im}(\pi) \) then \(2u^2 \geq w^2 - 2v \cdot v + v^2 = (w-v)^2 = 4u^2 \geq 4w^2 \), the last inequality by minimality of \(w \). This is a contradiction, and so \([u] \in \operatorname{im}(\pi) \). In particular, \([w \pm u] \notin \operatorname{im}(\pi) \). Then \((w \pm u)^2 \geq w^2 \) implies \(2|w \cdot u| \leq w^2 \). But \(w^2 = u^2 = 4w \cdot u = 4u^2 \) implies \(|w \cdot u| = u^2 \), whence \(u = 0 \). It follows that \(\operatorname{Min}(w+2\mathbb{L}) = \{ w,-w \} \). Then \(m(\mathcal{L}) \geq w^2 - 1 \geq 2 \), since \(w \) is not a root, contradicting our hypothesis on \(m(\mathcal{L}) \).

Thus \(\pi \) is an isomorphism. In particular, \(\operatorname{rank}(R) = \operatorname{rank}(L) \) and \(\det(R) \) is odd. If \(R \) is indecomposable, the latter condition implies that \(R \) is either zero, \(E_6 \), \(E_8 \) or \(A_n \) for \(n \geq 2 \) even. That \(m(\mathcal{L}) = 1 \) when \(L = R = E_8 \) follows from direct computation, or by applying Corollary 3.3 to +1 surgery on the (2,3) torus knot, which bounds \(E_8 \).

If \(R \) is zero, so is \(L \), since the ranks are equal. But then \(\mathcal{L} \) is diagonal, contradicting \(m(\mathcal{L}) = 1 \). Next, suppose \(R = A_n \). A standard model of \(A_n \) is the sublattice of \(\mathbb{Z}^{n+1} \) spanned by vectors whose coordinates add up to zero. Suppose \(n \geq 3 \), and let \(w = (1,1,-1,0,\ldots,0) \in A_n \). Then \(w \) is extremal in \(A_n \) with square 4, and \(\operatorname{Min}(w+2\mathbb{L}) = \operatorname{Min}(w+2A_n) \) consists of the 6 vectors obtained from \(w \) by permuting the two signs. Thus \(1/2 \# \operatorname{Min}(w+2\mathbb{L}) = 3 \), implying \(m(\mathcal{L}) \geq w^2 - 1 = 3 \). Finally, the cases \(E_8 \) and \(A_2 \) are ruled out by \(\operatorname{rank}(R) = \operatorname{rank}(L) \); it is well-known that there are no unimodular, non-diagonal definite lattices of rank \(< 8 \).\(\square \)

The only non-diagonal lattices that occur under the hypotheses of both lemmas above are those with reduced part \(E_8 \). From Corollary 3.3 we obtain the following, which, along with the observation that the statement is \(\mathbb{Z}/2 \)-homology cobordism invariant (see Section 5), implies Theorem 1.3

Corollary 3.4. Let \(Y \) be the result of (+1) surgery on the components of a link \(L \) in a homology 3-sphere with \(g_3(L) = 1 \). If \(X \) is a smooth, compact, oriented and definite 4-manifold bounded by \(Y \) with non-diagonal lattice \(\mathcal{L} \) and no 2-torsion in its homology, then \(\mathcal{L} = (+1)^n \oplus E_8 \) for some \(n \geq 0 \).
Proof of Corollary 1.4 The manifold $-\Sigma(2,3,5)$ is $+1$ surgery on the $(2,3)$ torus knot of genus 1. By Theorem 1.3 it remains to realize the listed lattices. The corresponding surgery cobordism provides the form $(+1)$, and $-\Sigma(2,3,5)$ bounds a plumb manifold with lattice E_8. After connecting summing with copies of \mathbb{CP}^2 we obtain from these $(+1)^{n+1}$ and $(+1)^n \oplus E_8$ for $n \geq 0$. Finally, $(-1)^n$ cannot occur; for if it did, gluing the orientation reversed 4-manifold to the E_8 plumbing would yield a non-diagonal definite lattice $E_8 \oplus (+1)^n$, contradicting Donaldson’s diagonalization theorem.

As mentioned in the introduction, Corollary 1.4 is a slight improvement on the main result of Frøyshov’s PhD thesis [Frøb]. The proof is much the same as far as the lattice theoretic input is concerned, and has only been repackaged and presented differently. We next prove the same result in a different way, making use of some input from Heegaard Floer theory.

3.2 The proof of Theorem 1.3 using Theorem 2.1 and the d-invariant

The fundamental inequality for the Heegaard Floer d-invariant of Oszváth and Szabó [OS03, Thm. 1.11] states that if Y is an integer homology 3-sphere, and X is a smooth, negative definite 4-manifold bounded by Y, then for any characteristic vector $\xi \in H^2(X;\mathbb{Z})/\text{Tor}$, we have

$$d(Y) \geq \frac{1}{4} \left(b_2(X) - |\xi|^2 \right).$$

(9)

Recall that a characteristic vector ξ is an element that satisfies $\xi \cdot x \equiv x^2 \pmod{2}$ for every x in the lattice. It is classically known that the square of any characteristic vector is modulo 8 the rank of the lattice. Elkies showed in [Elk95b] that, up to adding diagonal summands $(+1)^n$, there are a finite number of positive definite unimodular lattices with no characteristic vectors of squared norm less than $n - 8$, where n is the rank of the lattice. There are in fact 14:

<table>
<thead>
<tr>
<th>n</th>
<th>8</th>
<th>12</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_8</td>
<td>D_{12}</td>
<td>E_7^2</td>
<td>A_{15}</td>
<td>D_8^2</td>
<td>$A_{11}E_6$</td>
<td>D_6^3</td>
<td>$A_3^2D_5$</td>
<td>D_4^5</td>
<td>A_5^4</td>
<td>A_3^7</td>
<td>A_1^{22}</td>
</tr>
</tbody>
</table>

Thus by (9), if a non-diagonal definite lattice is bounded by Y with $d(Y) = -2$, as is the case for the orientation-reversal of the Poincaré homology 3-sphere, it must be one of these 14 lattices, possibly upon adding $(+1)^n$. We remark that Seiberg-Witten theory can also be used make this reduction, as Frøyshov’s monopole invariant (rescaled) also satisfies (9), see [Fre10, Thm. 4]. It is known that if Y is $+1$-surgery on a knot of slice genus 1 we have $d(Y) \in \{0,-2\}$, see (24). According to Elkies [Elk95a], if $d(Y) = 0$, the only possible definite lattices that Y can bound are diagonal.

With this input, the proof of Theorem 1.3 follows using only the inequality in Corollary 3.1 that comes from Theorem 2.1. It suffices to show that $m(L) \geq 2$ for all lattices on Elkies’ list which are not E_8. This follows from the fact that the lattices on the list other than E_8 have a vector w of square 3. In fact, if a_i is the number of vectors of squared norm i in a lattice of rank n in Table 1, then $a_1 = 0$, $a_2 = 2n(23 - n)$ and $a_3 = 8n(28 - n)(n - 8)/3$, see [Elk95b, Thm. 1] and also [NV03, eq. U3]. Using the by now familiar argument, for any w with $w^2 = 3$ we have $\text{Min}(w + 2L) = \langle w, -w \rangle$, whence $m(L) \geq 2$, completing our second proof of Theorem 1.3.
Remark 3.5. An analogue of Corollary \([\ref{Corollary3.1}]\) states \([f_2(\mathcal{L})/2] \leq [g_4(L)/2]\) when 4 does not divide the order of the torsion of \(H^2(X; \mathbb{Z})\). This and the above constraints of the \(d\)-invariant slightly extend Theorem \([\ref{Theorem1.3}]\) to hold for 4-manifolds whose 2-torsion in \(H^2(X; \mathbb{Z})\) is a single copy of \(\mathbb{Z}/2\).

4 Genus 2 applications

In this section we prove Theorem \([\ref{Theorem1.1}]\). We continue our notation of lattices from Section \([\ref{Section3}]\). We begin with a family of examples for later reference. Using the notation of \([\text{Frø04}]\) we set

\[
\Gamma_{4k} = \left\{(x_1, \ldots, x_{4k}) \in \mathbb{Z}^{4k} \cup \left(v + \mathbb{Z}^{4k}\right) : \sum x_i \equiv 0 \pmod{2}\right\}
\]

where \(v = (\frac{1}{2}, \ldots, \frac{1}{2}) \in \mathbb{R}^{4k}\). We remark that \(\Gamma_4\) is diagonalizable, and \(\Gamma_8 = E_8\). The lattice \(\Gamma_{4k}\) is even precisely when \(k\) is even. We note that \(\Gamma_{12}\) is the same as \(D_{12}\) from Table \([\ref{Table1}]\), the latter notation indicating that the root lattice of \(\Gamma_{12}\) is \(D_{12}\). The lattice \(\Gamma_{4k}\) is isomorphic to the intersection form of the positive definite plumbing with boundary the orientation-reversed Brieskorn sphere \(-\Sigma(2, 2k - 1, 4k - 3)\):

![Figure 1](image)

Via \([\ref{10}]\), the node \(k\) corresponds to the vector \((\frac{1}{2}, \ldots, \frac{1}{2})\), while the other nodes correspond to \((1, 1, 0, \ldots, 0)\) and \((1, -1, 0, \ldots, 0), \ldots, (0, \ldots, 1, -1, 0)\). Replacing \((\frac{1}{2}, \ldots, \frac{1}{2})\) by \((0, \ldots, 0, 1, -1)\) in this collection yields the root lattice \(D_{4k} \subset \Gamma_{4k}\).

Proposition 4.1. \(N^2_\beta(g) \geq m(\Gamma_{4g+4}) \geq g\ and \ N^3_\beta(g) \geq f_4(\Gamma_{4g+4}) \geq [g/2]\).

Proof. It is shown in \([\text{FS01}, \sec{2}]\) that \(R(k) = \mathbb{C}P^2 \# (4k + 1)\mathbb{C}P^2\) can be decomposed as \(W \cup N\), where \(W\) is the negative definite plumbing of \(\Sigma(2, 2k - 1, 4k - 3)\) with intersection form \(-\Gamma_{4k}\) and \(N\) is obtained from attaching to the 4-ball a 0-framed 2-handle along the \((2, 2k - 1)\) torus knot and a \((-1)\)-framed 2-handle along a meridian of the torus knot. Blowing down the meridian 2-handle yields \(X(k)\) such that \(R(k) = \mathbb{C}P^2 \# \mathbb{C}P^2\), with a decomposition \(W \cup N'\) where \(N'\) is obtained by attaching only a \((+1)\)-framed 2-handle to the torus knot. Since the \((2, 2k - 1)\) torus knot has genus \(k - 1\), the 2-handle can be capped off to form a surface \(\Sigma(k) \subset X(k)\) of genus \(k - 1\). The lattice of vectors vanishing on \([\Sigma(k)]\) is isomorphic to \(-\Gamma_{4k}\).

The vector \(w = (\frac{1}{2}, \ldots, \frac{1}{2}) \in \mathcal{L} := \Gamma_{4g+4}\) is extremal with \(w^2 = g + 1\) and \(\min(w, 2\mathcal{L}) = \{w, -w\}\). Thus \(m(\mathcal{L}) \geq w^2 - 1 = g\). It also follows that \(f_4(\mathcal{L}) \geq [m(\mathcal{L})/2] \geq [g/2]\). Now given \(g\) we take as our 4-manifold \(X = X(g + 1)\) with genus \(g\) surface \(\Sigma = \Sigma(g + 1)\). Then the left side of \([\ref{2}]\) is \(N^2_\beta(g)\) while that of \([\ref{3}]\) is \(N^3_\beta(g)\), and the result follows from these inequalities. \(\square\)
This should be compared to Proposition 2.3. There it is shown that \(c_0(\Gamma_{4g+4}) = [g/2] \). Thus the family of 4-manifolds with surface just given achieve sharpness in Freysho's inequality of Theorem 4, and [2.2] shows that the same family achieves sharpness in the inequalities of Theorems 2.1 and 2.2 for low \(g \), and we expect this to be true for all \(g \). We remark that the same 4-manifolds are used by Behrens and Golla [BG] in the Heegaard Floer context.

We now move on to the main line of argument for Theorem 1.1. Recall that for the proof of Theorem 1.3, we used Lemma 3.2 which says \(f_4(L) = 1 \) implies the root lattice of \(L \) is indecomposable. The key algebraic input towards the proof of Theorem 1.1 is the following upgrade.

Lemma 4.2. If \(f_4(L) = 1 \) then \(L \) is one of \(E_8 \) or \(\Gamma_{12} \).

Proof. From Lemma 3.2 we know \(R \) is indecomposable, and hence one of \(A_1, D_4, E_6, E_7, E_8 \) or zero.

We will again use that \(w \in R \) with \(w^2 = 4 \) has \(\min(w + 2\mathcal{L}) = \min(w + 2R) \), as shown in the proof of Lemma 3.2. All extremal vectors \(w \) chosen below have the property that the elements in \(\min(w + 2\mathcal{L}) \) have the same signs in the expression for \(\eta \) when \(m = 0 \).

Suppose \(R = E_7 \). A standard model for \(E_7 \) is the sublattice of \(E_8 = \Gamma_8 \) consisting of vectors whose coordinates add to zero. Let \(w = (1, 1, 1, 0, 0, 0, 0) \). Then \(w \) is extremal in \(E_7 \) of square 4, and \(\min(w + 2\mathcal{L}) = \min(w + E_7) \) consists of the 12 vectors obtained by permuting the signs of \(w \) and those of \((0, 0, 0, 1, 1, 1, 1, 1) \). Thus \(\eta(\mathcal{L}, w) = 5 \neq 0 \) (mod 4), and \(f_4(L) \approx \omega^2/2 = 5 \).

Suppose \(R = E_6 \). A standard model for \(E_6 \) is the sublattice of \(E_8 = \Gamma_8 \) consisting of vectors whose last three coordinates are equal. Consider \(w = (1, 1, 1, 0, 0, 0, 0) \in E_6 \), extremal and of square 4. Then \(\min(w + 2\mathcal{L}) = \min(w + 2E_6) \) consists of the 8 vectors \((\pm 1, \pm 1, \pm 1, 0, 0, 0, 0) \) with an even number of signs, as well as the 2 vectors \(\pm (0, 0, 0, 1, 1, 1, 1, 1) \). Thus \(\eta(\mathcal{L}, w) = (8 + 2)/2 = 5 \neq 0 \) (mod 4), and \(f_4(L) \approx \omega^2/2 = 2 \).

Suppose \(R = \mathbb{A}_n \), \(n \geq 3 \). As in the proof of Lemma 3.3 take \(w = (1, 1, -1, 0, \ldots, 0) \in \mathbb{A}_n \), for which \(w + 2\mathbb{A}_n \) has 6 extremal vectors. Then \(\eta(\mathcal{L}, w) = 3 \neq 0 \) (mod 4), and \(f_4(L) \approx \omega^2/2 = 2 \).

Suppose \(R = \mathbb{A}_2 \). Let \(\pi: R \otimes \mathbb{Z}/2 \to L \otimes \mathbb{Z}/2 \) be the map induced by inclusion. This map cannot be onto, since any unimodular lattice of rank 2 is diagonal. Choose \(w \in L \) of minimal norm such that \([w] \notin \im(\pi) \). We showed in the proof of Lemma 3.3 that \(\min(w + 2\mathcal{L}) = \{w, -w\} \). Since \(w \notin R \), \(w^2 \geq 3 \). If \(w^2 \geq 4 \) then \(f_4(L) \approx \omega^2/2 \geq 2 \). So suppose \(w^2 = 3 \). Further suppose \(w \perp R \). Then \(w + r \) is extremal of square 5 and \(\min(w + r + 2\mathcal{L}) = \{w + r\} \). We compute \(\eta(\mathcal{L}, w + r, w) = -2w^2 = -6 \neq 0 \) (mod 4).

It follows that \(f_4(L) \approx \{(w + r)^2 - 1)/2 = 2 \). Now instead suppose \(w \) is not orthogonal to \(R \). From \(5 \leq 2w \cdot r = (w + r)^2 \geq 0 \) and the assumption that \(L \) has no vectors of square 1 we obtain \(|w \cdot r| \leq 1 \) for each root \(r \). Let \(r_1, r_2, r_3 \) be roots satisfying \(r_1 + r_2 + r_3 = 0 \), so that \(\{r_1, r_2, r_3\} \) is the set of all roots. The condition \(|w \cdot r| \leq 1 \) implies, after possibly relabeling, that \(w \cdot r_1 = 0, w \cdot r_2 = 1 \) and \(w \cdot r_3 = -1 \). Then \(w + r_1 \) is an extremal vector of square 5, \(\min(w + r_1 + 2\mathcal{L}) = \{w + r_1 + 2r_3\} \), and \(\eta(\mathcal{L}, w + r_1, w, 1) = -7 \neq 0 \) (mod 4), again implying \(f_4(L) \approx \omega^2/2 \).

Suppose \(R = \mathbb{A}_1 \). Again, \(\pi \) is not onto, and its cokernel has rank at least 2, since no unimodular lattice of rank \(\leq 3 \) has root lattice \(\mathbb{A}_1 \). Again choose \(w \) of minimal norm such that \([w] \notin \im(\pi) \). If \(w^2 \geq 4 \) we are done; so suppose \(w^2 = 3 \). Let \(r \) be the unique root in \(\mathbb{A}_1 \) up to sign. If \(w \cdot r = 0 \), then as in the case for \(\mathbb{A}_2 \) we can use \(r + w \) to conclude \(f_4(L) \approx \omega^2 \). So assume \(w \cdot r = 0 \). As before, \(|w \cdot r| \leq 1 \), so in fact \(|w \cdot r| = 1 \). Let \(v \) be of minimal norm such that \([v] \notin \im(\pi) + [w] \). Then the same argument as in the proof of Lemma 3.3 shows \(\min(v + 2\mathcal{L}) = \{v, -v\} \). If \(v^2 \geq 4 \) we are done; so suppose \(v^2 = 3 \). If \(v \cdot r = 0 \), then take \(v + r \) as in the case of \(\mathbb{A}_2 \). Suppose instead \(v \cdot r \neq 0 \). As with \(w \),
we have $|v \cdot r| \leq 1$, so $|v \cdot r| = 1$. Since $[v \pm w] \not\in \text{im}(\pi) + [w]$, by minimality of v we have $(w \pm v)^2 \geq v^2$, from which it follows that $|w \cdot r| \leq 1$. If $w \cdot v = 0$, then for some choice of signs, $w \pm r \pm v$ has square 4; if $w \cdot v = \pm 1$, then one of $v \pm w$ has square 4. In either case we obtain a vector of square 4, and take this as our extremal vector to obtain $f_4(L) \geq 2$.

Next, suppose $R = D_n$ for some $n \geq 4$. Suppose D_n has full rank within L, i.e. the map \(\iota: D_n \otimes \mathbb{R} \rightarrow L \otimes \mathbb{R} \) induced by inclusion is an isomorphism. The only full rank embeddings of D_n into a non-diagonal unimodular lattice L are those inside Γ_k with $n \geq 2$ (see e.g. \[\text{Ebe13}, \text{Sec.1.4}\]), and we have computed $f_4(\Gamma_k) \geq \lfloor n/2 \rfloor$. If $f_4(L) = 1$ then either $n = 2$, in which case $L = E_8$, contradicting the assumption that $R = D_8$, or $n = 3$, in which case $L = \Gamma_1$. Thus we may assume that r is not onto. It follows also that r is not onto, since $n = \text{rank}(R) < \text{rank}(L)$. We will see that the arguments below generalize those for the cases of A_1 and A_2 given above.

We begin as in the case for A_2. Let $w \in L$ be of minimal norm such that $[w] \not\in \text{im}(\pi)$. If $w^2 \geq 4$ we are done, as argued in the above cases, and so we may assume $w^2 = 3$. We may also assume $w \not\in \text{im}(\iota)$.

Indeed, consider the map $L \rightarrow (L/D_n)/\text{Tor}$. The codomain here is a free abelian group of rank equal to $\text{rank}(L) - n > 0$. The argument in Lemma \[\text{[Ebe13, Sec.1.4]}\] shows that for a given proper subspace $S \subset L \otimes \mathbb{Z}/2$, any $w \in L$ of minimal norm among vectors such that $[w] \not\in S$ has $\text{Min}(w + 2L) = \{w, -w\}$; in Lemma \[\text{3.3}\] $S = \text{im}(\pi)$. In particular, we may choose S to be the kernel of $p: L \otimes \mathbb{Z}/2 \rightarrow (L/D_n)/\text{Tor} \otimes \mathbb{Z}/2$. By construction, $w \not\in \text{im}(\iota)$.

Choose a root $r \in L$ such that $w \cdot r = 0$, following the argument as in the case of A_2. Then $w + r$ is extremal of square 5. Let $v \in \text{Min}(w + r + 2L)$. Assume $v \neq \pm (w + r)$ and $v \cdot (w + r) \geq 0$. Write $v - w - r = 2u$ where $u \in L$. Then $0 \not\in 4u^2 = (v - w - r)^2 \leq (w + r)^2 + r^2 = 10$ implies u is a root. Recall for any root u that from $(w \pm u)^2 \geq 0$ we have $|w \cdot u| \leq 1$, and $|r \cdot u| \leq 1$ if $u \neq \pm r$. Then

$$5 = v^2 = (w + r + 2u)^2 = 13 + 4(w \cdot u + r \cdot u)$$

implies either $w \cdot u = r \cdot u = -1$ or $u = -r$. Let N be the set of roots u such that $w \cdot u = r \cdot u = -1$. We conclude $\text{Min}(w + r + 2L) = \{\pm w \pm r\} \cup \{\pm (w + r + 2u): u \in N\}$. Let $a \in \mathcal{L}$. We compute

$$\eta(\mathcal{L}, w + r, a, 1) = -2|N|w \cdot a - |N|r \cdot a - 2 \sum_{u \in N} a \cdot u. \quad (11)$$

If we set $a = w$, using $w^2 = 3$, $w \cdot r = 0$ and the definition of N, from (11) we compute

$$\eta(\mathcal{L}, w + r, w, 1) = -6 - |N|. \quad (12)$$

If (12) is nonzero modulo 4, then $f_4(\mathcal{L}) \geq ((w + r)^2 - 1)/2 = 2$ and we are done. So henceforth assume $|N| \equiv 2 \pmod{4}$.

We represent D_n as the sublattice of \mathbb{Z}^n of vectors whose coordinates sum to zero. Henceforth we identify the vectors in this representation of D_n with those in the root lattice of L. We may suppose that $r = (1, 1, 0, \ldots, 0) = e_1 + e_2$, since the automorphism group of D_n acts transitively on roots. Here we write e_1, \ldots, e_n for the standard basis vectors of \mathbb{Z}^n. Then the vectors

$$r_{h,i}^2 := -e_h \pm e_i, \quad h \in \{1, 2\}, \quad 3 \leq i \leq n \quad (13)$$

make up the set of roots u such that $r \cdot u = -1$. For a fixed i we have the two relations

$$r^2 r_{1,i}^2 + r_{2,i}^2 = 0 \quad (14)$$

$$r^2 r_{1,i}^2 + r_{2,i}^2 = 0 \quad (15)$$

13
Pairing \([14]\) with \(w\), we see that either \(w \cdot r_{1,i}^* = w \cdot r_{2,i}^* = 0\), or \(w \cdot r_{1,i}^* = -w \cdot r_{2,i}^* = \pm 1\). Similarly for \([15]\). Thus \(N_i := N \cap \langle r_{1,i}^*, r_{1,i}^*, r_{2,i}^*, r_{2,i}^* \rangle\) has 0, 1 or 2 elements. Furthermore, \(N = \cup_{i=3}^n N_i\).

Now let \(I \subset \{3, \ldots, n\}\) with \(|I|\) even. Then there exists \(a \in \mathcal{L}\) such that
\[\eta(\mathcal{L}, w + r, a, 1) \equiv 2 \sum_{i \in I} |N_i| \pmod{4}.\] (16)

To see this, let \(a\) be the vector corresponding to \((a_1, \ldots, a_n) \in D_n\) which has \(a_i = 1\) if \(i \in I\) and \(a_i = 0\) otherwise, and then compute \([16]\) using \([11]\). From \([16]\) we may assume that either (I) \(|N_i| = 1\) for all \(i\) or (II) \(|N_j| \in \{0, 2\}\) for all \(j\). Indeed, if \(|N_j| = 1\) and \(|N_k| \in \{0, 2\}\) for some \(j, k\) then setting \(I = \{j, k\}\) in \([16]\) yields \(\eta(\mathcal{L}, w + r, a, 1) \equiv 2 \neq 0 \pmod{4}\).

Case (I). Suppose \(|N_i| = 1\) for all \(3 \leq i \leq n\). Then \(|N| = \sum |N_i| = n - 2\). Having assumed \(|N| \equiv 2 \pmod{4}\), we conclude \(n \equiv 0 \pmod{4}\). Set \(r_1 := e_1 - e_2 \in D_n\). Since \(r_1 + r_{1,i}^* = r_{2,i}^*\), and \(|N_i| = 1\) implies one of \(r_{1,i}^*\) or \(r_{2,i}^*\) is orthogonal to \(w\) and the other has inner product \(\pm 1\) with \(w\), we obtain \(w \cdot r_1 = 1\).

In a similar fashion, for each \(3 \leq i \leq n\) let \(s_{1,i}, t_i \in \langle r_{1,i}^*, r_{1,i}^* \rangle\) be such that \(|w \cdot s_1| = 1\) and \(w \cdot t_i = 0\). For \(2 \leq i \leq n/2\) set \(r_i := s_{2,i-1} - l_{2,i}\). This is a vector in \(D_n\) whose \((2i - 1)\)th and \(2i\)th entries are \(\pm 1\), with all other coordinates zero. Then \(r_{1,1}, \ldots, r_{n/2}\) are orthogonal roots all satisfying \(|w \cdot r_i| = 1\). Since \(w \not\in \text{Im}(\tau)\), its length is strictly greater than that of its projection onto the span of the subspace in \(D_n \otimes \mathbb{R}\) generated by the \((r_i):\)
\[3 = w^2 > \sum_{i=1}^{n/2} \frac{|w \cdot r_i|^2}{r_i^2} = n/4.\] (17)

Recalling \(n \geq 4\) and \(n \equiv 0 \pmod{4}\), we must have \(n \in \{4, 8\}\), i.e. \(R \in \{D_4, D_8\}\). Before considering these two cases separately, we determine one more constraint. Suppose \(N_j = \{r_{1,j}^*, r_{1,j}^*\}\) and \(N_k = \{r_{2,k}^*, r_{2,k}^*\}\) for some \(j \neq k\); the superscripts here are not important. Then \(u = r_{1,j}^* - r_{1,k}^*\) is a root for which \(u \cdot w = -2\), a contradiction. Thus \(N_i = \{r_{i}^*, r_{i}^*\}\) for each \(i\), for some uniform \(h \in \{1, 2\}\), and each \(s_t \in \{\pm\}\). We conclude that after perhaps reflecting some coordinates in the range \(3 \leq i \leq n\) and permuting the first two coordinates in our representation of \(D_n\) we have \(N = \{r_{1,3}^*, \ldots, r_{1,n}^*\}\).

Now suppose \(R = D_4\). Setting \(w_1 = w\), we choose \(w_2, \ldots, w_k\) of minimal norm such that \([w_1] \notin \ker(p) + \sum_{j < i}\{w_{j}\}\). We may suppose each \(w_i^2 = 3\), or else we are done. Our previous arguments show \([w_1, w_j] \leq 1\) for \(i \neq j\) and \([w_1, u] \leq 1\) for all roots \(u\). We only need to do this for \(k = 3\), which is possible because there are no definite unimodular lattices of rank \(< 4 + 3\) with root lattice \(D_4\); the first non-diagonal definite unimodular lattice, by rank, is \(E_8\). By our assumption from the previous paragraph, \(N = \{r_{1,3}^*, r_{1,4}^*\}\). Define the dual lattice \(D_n^* = \{x \in D_n \otimes \mathbb{R} : x \cdot y \in \mathbb{Z}, \forall y \in D_n\}\), and set
\[L \rightarrow D_n^*, \quad w \mapsto \overline{w}\]
denote projection. The values \(w \cdot u\) for all roots \(u \in D_4\) are determined and given by column (i) in Table \(2\), which lists one root for each pair \(\{u, -u\} \in \text{Roots}(D_4)/\mathbb{Z}\). In particular, we see that \(\overline{w} = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}) \in D_4^*\). Note \(w\) is orthogonal to exactly half the roots in \(D_4\). We may also assume case (I) for \(w_2\) and \(w_3\), each with respect to some orthogonal root. Then, just as was established for \(w\), each of \(w_2, w_3\) is orthogonal to half the roots of \(D_4\). Thus two of \(w_1, w_2, w_3\) are orthogonal to a common root. Without loss of generality, suppose these two vectors are \(w = w_1\) and \(v \in \{w_2, w_3\}\), and that the orthogonal root is \(r\). Recalling \(|N| \equiv 2 \pmod{4}\), formula \([11]\) yields
\[\eta(\mathcal{L}, w + r, v, 1) \equiv 2(r_{1,3}^* + r_{1,4}^*) \cdot v \pmod{4}.\] (18)
Thus we may assume that v is either orthogonal to N or pairs non-trivially to ± 1 with both of its vectors. Combining this with the constraints for w previously determined for w, the pairings of v with the roots of D_4 must be given by one of columns (i)-(iv) in Table 2. In particular, $\overline{v} = \pm \overline{w}$ or $\overline{v} = \pm (\frac{1}{4}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. The case of D_4 will now be completed by constructing an extremal vector x of square 4 such that $\eta(L, x) \neq 0 \pmod{4}$, following the cases of A_1 and A_2 above. There are two cases to consider: $w \cdot v = 0$ and $w \cdot v = \pm 1$.

First, suppose $w \cdot v = 0$. Upon possibly replacing v with $-v$, the pairings of v with D_4 are given by either (i) or (iii) in Table 2. Then $x = w + v + s$ is of square 4, where $s = -r_1 = e_2 - e_1$. As usual, if $x + 2u$ is extremal, then u is a root, and the condition $(x + 2u)^2 = 4$ implies $u \cdot x = -2$, and thus

$$\text{Min}(x + 2L) = \{ \pm x \cup \{ \pm (x + 2u) : u \cdot (w + v + s) = -2, u^2 = 2, u \in L \} \}.$$ \hspace{1cm} (19)$$

Now each of $y \in \{ w, v, s \}$ has $|y \cdot u| \leq 1$ for any root $u \neq r_1$, and so u in (19) must be orthogonal to one of the three, and have pairing -1 with the other two. If v has pairings given by (i) in Table 2 then the set of such u is given by $\{ e_3 + e_4 \}$. Thus $\text{Min}(x + 2L)/\pm$ has 2 elements, implying $f_2(L) \geq 2$. If instead v corresponds to column (iii) in Table 2, then there are no solutions to $u \cdot (w + v + s) = -2$, and $\text{Min}(x + 2L)/\pm$ has 1 element, again implying $f_2(L) \geq 2$.

Next, suppose $|w \cdot v| = 1$. Upon possibly replacing v with $-v$ we may suppose $w \cdot v = -1$. Then $x = w + v$ is extremal of square 4. Further, if $w + v + 2u$ is extremal, then $(w + v + 2u)^2 = 4$ implies $u \cdot (w + v) = -2$. Since for $y \in \{ w, v \}$ and any root u we have $|y \cdot u| \leq 1$, it follows that

$$\text{Min}(x + 2L) = \{ \pm x \cup \{ \pm (x + 2u) : u \cdot w = u \cdot v = -1, u^2 = 2, u \in L \} \}.$$ \hspace{1cm} (20)$$

If v has pairings with D_4 the same as that of w, in (i) of Table 2 then there are 6 such roots u; for (ii) there are zero; and for (iii) and (iv) there is 1. Thus $\text{Min}(x + 2L)/\pm$ has either 7, 1 or 2 elements, all nonzero modulo 4. Thus $f_2(L) \geq 2$. This completes the case of D_4 within case (I).

Now suppose $R = D_8$. In this case we have assumed $N = \{ r_{1,3}, r_{1,4}, r_{1,5}, r_{1,6}, r_{1,7}, r_{1,8} \}$. This implies in particular that $\overline{w} = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}) \in D_8$. As in the case of D_4 we can find $v \in L$ of minimal squared norm, which we may assume is 3, such that $[v] \in \ker(p) + [w]$ and $v \cdot r = 0$. Indeed, to adapt the above argument, where $v \in \{ w_2, w_3 \}$, we only need to note that there are no unimodular definite lattices of rank $< 8 + 3$ with root system D_8; this is well-known, and is verified.

<table>
<thead>
<tr>
<th>$\text{Roots}(D_4)/\pm$</th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1, 0, 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1,-1, 0, 0)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(-1, 0, 1, 0)</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(-1, 0,-1, 0)</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(-1, 0, 0, 1)</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(-1, 0, 0,-1)</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(0,-1,1, 0)</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0,-1,-1, 0)</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0,-1, 0, 1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(0,-1, 0,-1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(0, 0, 1, 1)</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(0, 0, 1,-1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2
for example, by [CS99, Table 16.7]. The analogue of (18) here is

$$\eta(L, w + r, v, 1) \equiv 2 \sum_{i=3}^{8} r_{1,i}^* \cdot v \pmod{4}$$

(21)

The constraint that (21) is zero modulo 4, along with the constraints previously determined for w, imply, after possibly an automorphism of our representation of D_8 permuting and reflecting coordinates, that $\overline{w} = v_1$ and $\overline{v} \in \{ \pm v_1, \pm v_2, \pm v_3, \pm v_4 \}$ where

$$v_1 = (\frac{1}{2} - \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$
$$v_2 = (\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$
$$v_3 = (\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$
$$v_4 = (\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$

Observe that $w - \overline{w} \in L \otimes \mathbb{R}$ has square 1, and is orthogonal to $\text{im}(i)$. Projecting v onto the subspace spanned by $\text{im}(i)$ and $w - \overline{w}$ we obtain the following:

$$3 = v^2 > (v \cdot (w - \overline{w}))^2 + v^2 = (v \cdot w - \overline{w})^2 + 2.$$

(22)

First suppose $w \cdot v = 0$. Then (22) implies $\overline{w} = v_3$. We must have $\overline{v} = \pm v_3$. Upon possibly replacing v by $-v$ we may assume $\overline{v} = v_3$. Then $x = w + v + s$ with $s = -r_1$ is extremal of square 4. The only root $u \in D_8$ satisfying $u \cdot (w + v + s) = -2$ is $e_3 + e_4$, and by (19) we have that $\text{Min}(x + 2L)/\pm$ is of cardinality 2, implying $\eta(L, x) \equiv 2 \not\equiv 0 \pmod{4}$ and $f_4(L) \geq 2$.

Now suppose $|w \cdot v| = 1$. Upon possibly replacing v with $-v$ we may assume $w \cdot v = -1$. Then (22) implies $\overline{w} = -v_2$ or $\overline{w} = v_4$. When $\overline{w} = v_3$ and $\overline{v} = -v_2$ the only root $u \in D_8$ satisfying $u \cdot w = u \cdot v = -1$ is $e_7 + e_8$. When $\overline{w} = v_1$ and $\overline{v} = v_4$, the only such root is $-e_1 + e_2$. In either case, (20) implies $\text{Min}(w + v + 2L)/\pm$ has 2 elements, and thus $\eta(L, w + v) \equiv 2 \not\equiv 0 \pmod{4}$ and $f_4(L) \geq 2$. This completes the case of D_8 within case (I), and of case (I) entirely.

Case (II). Suppose $|N_i| \in \{0, 2\}$ for $3 \leq i \leq n$. Let $I_w \subset \{3, \ldots, n\}$ be the set of i such that $|N_i| = 2$. Since $|N| = 2|I_w| \equiv 2 \pmod{4}$, I_w is nonempty. Recall $r_1 = e_1 - e_2$. Let $i \in I_w$. As w pairs non-trivially with all of $r_{1,i}^*, r_{2,i}^*, r_{1,i}^2, r_{2,i}^2$, and $r_1 + r_{1,i}^* = r_{2,i}^*$, we have $w \cdot r_1 = 0$. Then $w \cdot r = w \cdot r_1 = 0$ implies $w \cdot e_1 = w \cdot e_2 = 0$, the latter computation holding in $L \otimes \mathbb{R}$. As $e_1 = e_1 + r_{1,i}^*$, we have $|w \cdot e_i| = 1$ for $i \in I_w$ within $L \otimes \mathbb{R}$. Because $w \not\equiv \text{im}(i)$ we have the strict inequality

$$3 = w^2 > \overline{w}^2 = \sum_{i \in I_w} |w \cdot e_i|^2 = |I_w|.$$

(23)

With the constraint that $|I_w|$ is odd, this implies $|I_w| = 1$. Without loss of generality we may assume $N = N_3$. After an automorphism of our representation of D_n we may assume $N = \{r_{1,3}, r_{2,3}^2\}$. In particular, $\overline{w} = -e_3 = (0, 0, -1, 0, \ldots, 0) \in D_3$.

Next, we claim $L \otimes \mathbb{Z}/2 \cong \text{im}(\pi) + [w]$. Suppose to the contrary equality holds here. Then, since by assumption rank$(L) > n$, as follows from i having kernel, we must have rank$(L) = n + 1$, and that π is injective. Note, however, that $[2e_1] \not= 0 \in D_n \otimes \mathbb{Z}/2$ and $\pi([2e_1])$ pairs trivially with $\text{im}(\pi) + [w]$, contradicting the non-degeneracy of the pairing on $L \otimes \mathbb{Z}/2$, the latter of which follows from the unimodularity of L. This verifies the claim. Thus we may choose a vector v of minimal norm such that $[v] \not\equiv \text{im}(\pi) + [w]$, which, as usual, we may suppose has $v^2 = 3$.

16
Now \(v\) satisfies \([23]\) with the provision that strict inequality may not hold, and with \(|I_v|\) on the right side defined using some root orthogonal to \(v\) in place of \(r\). The inequality is not necessarily strict because we have not claimed \(v \notin N(i)\). We conclude \(|I_v| \in \{1,3\}\). If \(|I_v| = 3,\) then \(v = \varpi\).

Furthermore, after an automorphism of \(D_\alpha\), we may suppose \(\varpi = e_i - e_j - e_k\) for some distinct \(i, j, k\), similar to the determination \(\varpi = -e_3\) above. But then \(v + e_j + e_k = \varpi + e_j + e_k\) is a vector of square 1 in \(L\), a contradiction. Thus we may assume \(|I_v| = 1\).

Let \(R_w\) be the number of roots orthogonal to \(w\). Then \(\varpi = -e_3\) implies \(R_w = 2(n-1)(n-2)\). Similarly, since \(|I_w| = 1\), we have \(R_v = R_w\). If \(n \geq 5\), then \(R_w + R_v = 4(n-1)(n-2) > 2n(n-1)\), the total number of roots in \(D_\alpha\), so that \(w\) and \(v\) must share a common orthogonal root. If \(n = 4\) we may argue as in case (I), using that there are no unimodular lattices with root lattice \(D_\alpha\) of rank less than 3 + 4, to sequentially choose \(w_2, w_3\) and then choose \(v \in \{w_2, w_3\}\). Thus without loss of generality, \(v\) and \(w\) are both orthogonal to a common root, which we may suppose is \(r\).

It follows then that \(\varpi = \pm e_i\) for some \(3 \leq i \leq n\). First suppose \(i \neq 3\). Without loss of generality we may assume \(\varpi = -e_3\). Our minimality assumption on \(v\) implies \(|w \cdot v| \leq 1\). Suppose \(w \cdot v = 0\). Consider the extremal vector \(x = w + v + s\) of squared norm 4, where \(s = e_3 + e_4\). There are no roots \(u\) satisfying \(u \cdot (w + v + s) = -2\) and so \([19]\) implies \(\text{Min}(x + 2L) /w\) has 2 elements, whence \(f_4(L) \geq 2\).

Now suppose \(\varpi = \pm e_3\). Consider the case \(w \cdot v = 0\). Upon perhaps replacing \(v\) by \(-v\) we may assume \(\varpi = -e_3\). Then \(x = w + v + s\), with \(s\) as before, is an extremal vector of square 4. The only root \(u\) satisfying \(u \cdot (w + v + s) = -2\) is \(e_3 - e_4\), so \([19]\) implies \(\text{Min}(x + 2L) /w\) has 2 elements, whence \(f_4(L) \geq 2\).

Now consider \(\varpi = \pm e_3\) and \(|w \cdot v| = 1\). Upon perhaps replacing \(v\) with \(-v\) we may suppose \(w \cdot v = 1\). Then \(x = w + v\) is an extremal vector of square 4. The roots \(u\) satisfying \(u \cdot (w + v + s) = -2\) are (i) none, if \(\varpi = +e_3\), or (ii) \(e_3 \pm e_i\) for \(i \neq 3\), if \(\varpi = -e_3\), of which there are \((n-1)(n-2)\) many. Then \([20]\) implies \(\text{Min}(x + 2L) /w\) has either (i) 1 element or (ii) \(1 + (n-1)(n-2)\) elements, both of which are odd numbers, and hence imply \(f_4(L) \geq 2\). This completes case (II), and of the case \(D_\alpha\) \((n \geq 4)\) entirely.

Finally, suppose \(L\) has no roots. Let \(w \in L\) be of minimal nonzero norm. Then \(w^2 \geq 3\) and by the usual argument \(\text{Min}(w + 2L) = \{w, -w\}\). If \(w^2 \geq 4\) then \(f_4(L) \geq [f_2(L)/2] \geq 2\). So suppose \(w^2 = 3\). Let \(v \in L\) be of minimal norm such that \(|v| \notin \{0, |w|\} \subset L \otimes \mathbb{Z}/2\). Then \(v\) is extremal and \(\text{Min}(v + 2L) = \{v, -v\}\) as in the proof of Lemma \([3,3]\) if \(v^2 \geq 4\) we are again done. So suppose \(v^2 = 3\).

For \(s, t \in L\) of square 3 and \(s \cdot t \leq 0\) we have \((s + t)^2 = 6 + 2s \cdot t \leq 6\). Because \(L\) has no vectors of square 2, the vector \(s + t\) has square 4 or 6. In the former case, \(\text{Min}(s + t + 2L) = \{\pm(s + t)\}\) and \(f_2(L) \geq 2\). So we may assume \((s + t)^2 = 6,\) or equivalently \(s \cdot t = 0\). In particular, we may assume that any two vectors \(s, t \in L\) of square 3 with \(s \cdot s \cdot t\) are orthogonal.

Now consider \(x = w + v\). This is extremal of square 6. If \(z = x + 2u \in \text{Min}(x + 2L)\) and \(z \neq \pm x, z \cdot x \geq 0, \) then \(0 \neq 4u^2 = (x - z)^2 \leq 12\) implies \(u^2 = 3\), and \(6 = (x + 2u)^2\) implies \(u \cdot w + u \cdot v = -3\). By the assumption made at the end of the previous paragraph, we must have \(u = -w\) or \(u = -v\). Thus \(\text{Min}(x + 2L) = \{\pm w \pm v\}\). We then compute

\[
\eta(L, x, xx, 2) = (-1)\left(\frac{w \cdot v}{2}\right)^2 (x \cdot (w + v))^2 + (-1)\left(\frac{w \cdot v}{2}\right)^2 (x \cdot (w - v))^2 = 6 \not\equiv 0 \pmod{4}.
\]

Thus \(f_2(L) \geq (x^2 - 2)/2 = 2\). This completes the case of \(L\) having no roots, and, having completed all cases, concludes the proof of the lemma. \(\square\)
Figure 2: The (2,3) torus knot, depicted on the left, is transformed into the (2,5) torus knot, on the right, by changing the encircled negative crossing to a positive one.

Corollary 4.3. Suppose Y is (+1) surgery on the components of a link L in a homology 3-sphere with $g_2(L) = 2$. If X is a smooth, compact, oriented and definite 4-manifold bounded by Y with non-diagonal lattice \mathcal{L} and no 2-torsion, then the reduced part of \mathcal{L} is either E_8 or Γ_{12}.

Proof. Corollary 3.1 implies $f_4(\mathcal{L}) \leq 1$. Since \mathcal{L} is not diagonal, $f_4(\mathcal{L}) = 1$. By Lemma 4.2, the reduced part of \mathcal{L} must be one of E_8 or Γ_{12}. □

Proof of Corollary 1.2. The manifold $-\Sigma(2,5,9)$ is +1 surgery on the (2,5) torus knot of genus 2. The corresponding surgery cobordism provides the form $(+1)$. As we saw at the start of this section, the canonical positive definite plumbing bounded by $-\Sigma(2,5,9)$ is isomorphic to Γ_{12}. Next, we observe from Figure 2 that the (2,5) torus knot is obtained from the (2,3) torus knot by a positive crossing change. This induces a cobordism from +1 surgery on the latter to that of the former with intersection form $(+1)$. (This is a technique used extensively in [CG88].) Attaching to this cobordism the E_8 plumbing bounded by $-\Sigma(2,3,5)$ yields $E_8 \oplus (+1)$. Finally, connect summing these three examples with copies of $\mathbb{C}P^2$ yields all lattices listed in Theorem 1.1, except for E_8.

The author is aware of two constructions realizing E_8. The first has been communicated to the author by Motoo Tange and uses Kirby calculus. The second appears in the author’s work with Golla [GS18], and uses the topology of rational cuspidal curves. □

The proof of Theorem 1.1 only uses input from instanton theory and some algebra. Some of the work may be supplemented by the d-invariant, as done in Section 3.2 for Theorem 1.3. Combining work of Ni and Wu [NW15, Prop.1.6] and Rasmussen [Ras04, Thm.2.3] gives the inequalities

$$0 \leq -d(Y)/2 \leq [g_4(K)/2]$$ \hspace{1cm} (24)

where Y is +1 surgery on the knot K. If $g_4(K) = 2$, then as in the case $g_4(K) = 1$, the only possible non-diagonal definite lattices that can occur, up to diagonal summands, are the 14 listed in Table 1. Using Corollary 3.1 and Lemma 3.2 of those 14 only E_8, $D_{12} = \Gamma_{12}$, A_{15} and O_{23} can possibly occur.
We then only need to compute $f_4(A_{15}), f_4(O_{23}) \geq 2$, both of which are short computations contained in the proof of Lemma 4.2. Alternatively, we may just as easily compute $f_2(A_{15}), f_2(O_{23}) \geq 3$.

5 More examples

The question of which unimodular definite lattices arise from smooth 4-manifolds with no 2-torsion in their homology bounded by a fixed homology 3-sphere Y only depends on the $\mathbb{Z}/2$ homology cobordism class of Y. It is natural to wonder whether we can find linearly independent elements in the $\mathbb{Z}/2$ homology cobordism group $\Theta^3_{\mathbb{Z}/2}$ all of which bound the same set of definite unimodular lattices. If one restricts to homology cobordism classes that only bound diagonal lattices, one needs only examine the infinitely generated kernels of the invariants d and h, for example.

We may then consider classes that bound the same lattices as the Poincaré sphere. For this, recall that Furuta [Fur90] and Fintushel and Stern [FS90] used instantons to show that the family $[\Sigma(2,3,6k-1)]$ for $k \geq 1$ is an infinite linearly independent set in $\Theta^3_{\mathbb{Z}/2}$. The manifold $-\Sigma(2,3,6k-1)$ is $+1$ surgery on a genus 1 twist knot with $2k-1$ half twists. However, not all of these classes can bound the same lattices as $[\Sigma(2,3,5)]$. Indeed, the Rochlin invariant of $-\Sigma(2,3,6k-1)$ is congruent to $k \pmod{2}$, so the lattice E_8 cannot occur when k is even. In fact, here is an example where the list of lattices is the same as that of the Poincaré sphere except for E_8:

Corollary 5.1. If a smooth, compact, oriented and definite 4-manifold with no 2-torsion in its homology has boundary $-\Sigma(2,3,11)$, then its intersection form is equivalent to one of

$$ (+1)^n \ (n \geq 1), \quad E_8 \oplus (+1)^n \ (n \geq 1), $$

and all of these possibilities occur.

There are two ways to see that $-\Sigma(2,3,11)$ bounds the lattice $E_8 \oplus (+1)$. For one, its canonical positive definite plumbing graph is given as follows:

```
```

The unmarked nodes represent vectors of square 2, and together form a sublattice isomorphic to E_8; thus the lattice must be isomorphic to $E_8 \oplus (+1)$. Alternatively, we note that the twist knot with 3 half twists is obtained from the $(2,3)$ torus knot by changing a positive crossing to a negative crossing, and argue as in the proof of Corollary 4.3. We note that both arguments generalize to show that $-\Sigma(2,3,6k-1)$ bounds $E_8 \oplus (+1)^{k-1}$.

One might hope for examples of $-\Sigma(2,3,6k-1)$ bounding E_8 when k is odd other than $k=1$. The determination of all such k seems to be an open problem, but has been studied by Tange, who shows [Tan16, Thm. 1.7] that this is the case for $k = 3, 5, \ldots, 23, 25$ and $k = 29$.

Corollary 5.2. The linearly independent elements $[\Sigma(2,3,12n+5)] \in \Theta^3_{\mathbb{Z}/2}$ for $0 \leq n \leq 12, n = 14$ bound the same definite unimodular lattices arising from smooth 4-manifolds with no 2-torsion.
Tange has informed the author that this list may be enlarged to include \(n = 13, 15 \). Yet another example that bounds the same set of lattices as the Poincaré sphere \(-\Sigma(2, 3, 5)\) is the Brieskorn sphere \(-\Sigma(3, 4, 7)\), whose positive definite plumbing graph is \(E_8 \), and which is \(+1\) surgery on the knot \(10_{132} \) of smooth 4-ball genus 1.

In the introduction it was mentioned that \(-\Sigma(3, 4, 11)\), obtained from \(+1\) surgery on the \((3, 4)\) torus knot of genus 3, is a natural candidate to consider beyond Theorem 1.1. Here the Heegaard Floer \(d\)-invariant is \(-2\), so the only possible non-diagonal reduced definite lattices that can occur are those in Table 1. We expect most of these lattices are ruled out by Theorem 2.1. We show in \[GS18\] that the lattices \(E_8 \oplus (+1) \), \(\Gamma_{12} \oplus (+1) \), \(E_8 \oplus (+1) \) and \(A_{15} \) occur. As the proofs there use the topology of rational cuspidal curves, here we only explain how to realize \(E_8 \oplus (+1) \), \(\Gamma_{12} \oplus (+1) \) and \(A_{15} \).

First, \((+1) \) is realized by the surgery cobordism as in all previous examples. Next, the rank 15 lattice \(A_{15} \) arises as the lattice of the positive definite plumbing bounding \(-\Sigma(3, 4, 11)\), given by:

![Figure 3: The (3,4) torus knot, also known as 8_{19} in Rolfsen notation, is transformed into the (2,5) torus knot by changing the encircled positive crossing to a negative crossing.](image)

\[
A_{15} = A_{15} \cup (g + A_{15}) \cup (2g + A_{15}) \cup (3g + A_{15})
\]

where \(g = \frac{1}{4}(-1^{12}, 3^4) \in A_{15}^* \) and superscripts denote repeated entries. Then the top weight 3 node in the plumbing graph represents \(g \), and the other nodes are the 14 roots of \(A_{15} \) of the form \((0, \ldots, 0, 1, -1, 0, \ldots, 0)\) with the far left entry equal to zero. Finally, the lattices \(E_8 \oplus (+1) \) and \(\Gamma_{12} \oplus (+1) \) occur because there is a 2-handle cobordism from \(-\Sigma(2, 5, 9)\) to \(-\Sigma(3, 4, 11)\) with intersection form \((+1) \). Indeed, the \((3,4)\) torus knot is transformed into the \((2,5)\) torus knot by changing a positive crossing as in Figure 3 as similarly done in the proof of Corollary 1.4.

Finally, consider again the family \(-\Sigma(2, 2k - 1, 4k - 3)\), obtained from \(+1\) surgery on the family of \((2, k)\) torus knots. The initial cases \(k = 2 \) and \(k = 3 \) provided our main examples for Theorems
The methods in this article alone seem unable to treat the general case. However, we know that the definite lattices

\[\alpha_i \in \mathbb{Z} \text{ for } 0 \leq i \leq k \]

and their sums with \((+1)^n\) are bounded by \(-\Sigma(2,2k-1,4k-3)\); the first is the surgery cobordism, and the rest follow from the fact that the \((2,k-i)\) torus knot is obtained from the \((2,k)\) torus knot by changing \(i\) positive crossings. These are certainly not all the possible lattices: because \(-\Sigma(2,5,9)\) bounds \(\Gamma_8 = \mathbb{Z}_8\), for \(k \geq 3\) the 3-manifold \(-\Sigma(2,2k-1,4k-3)\) bounds \(\Gamma_8 \oplus (+1)^{k-3}\). Even if we ignore the issue of diagonal summands, the list is not complete. For example, it is shown in [GS18, Prop.4.14] that \(-\Sigma(2,7,13)\) bounds the lattice \(A_{15}\).

6 Relations for a circle times a surface

In this section we discuss the relations that appear in the table of Section 2 and in the proofs of Theorems 2.1 and 2.2. In particular, we prove Proposition 2.3 and reduce the verification of the general relations \(\alpha \equiv 0 \pmod{2}\) and \(\beta \equiv g/2 \equiv 0 \pmod{4}\) to a concrete arithmetic problem.

We define \(V_g\) to be the instanton homology, with integer coefficients, of a circle times a surface \(\Sigma\) of genus \(g\) with a \(U(2)\)-bundle that has second Stiefel-Whitney class Poincaré dual to the circle factor. More precisely, \(V_g\) is the \(\mathbb{Z}/4\)-graded group of Muñoz, which is the quotient of the \(\mathbb{Z}/8\)-graded group \(V_g'\) by an involution \(\tau\); see the discussion in [Fro01] §10. Each of these is endowed with a ring structure using the maps induced by pairs of pants cobordisms times \(\Sigma\). There is a map

\[
\Psi : \text{Sym}^* (H_0(\Sigma; \mathbb{Z}) \oplus H_2(\Sigma; \mathbb{Z})) \otimes \Lambda^* (H_1(\Sigma; \mathbb{Z})) \rightarrow V_g
\]

which defines relative Donaldson invariants for the 4-manifold \(\Sigma \times D^2\) with suitable bundle data. Let \(x \in H_0(\Sigma; \mathbb{Z})\) be the point class and \(\{\gamma_i\}_{i=1}^{2g}\) be a symplectic basis of \(H_1(\Sigma; \mathbb{Z})\) such that \(\gamma_i \cdot \gamma_{i+g} = 1\). The mapping class group of \(\Sigma\) acts on \(V_g\), and the three elements

\[
\alpha = 2\Psi([\Sigma]), \quad \beta = -4\Psi(x), \quad \gamma = -\sum_{i=1}^{g} \Psi(\gamma_i \gamma_{i+g})
\]

generate the invariant part over the rationals; Muñoz gives a presentation which is recursive in the genus [Mn99] §4. Our definition of \(\gamma\) is one half of that from loc. cit.; see Section 7.2 for this justification. The ring \(V_g'\) has similarly defined elements, which we denote by \(\alpha', \beta', \gamma'\), of respective \(\mathbb{Z}/8\)-gradings 2, 4, 6. The involution \(\tau\) acting on \(V_g'\) is a ring homomorphism and shifts gradings by 4 (mod 8); the equivalence classes of \(\alpha', \beta', \gamma'\) in \(V_g\) are of course \(\alpha, \beta, \gamma\).

Lemma 6.1. Suppose a polynomial \(r(\alpha, \beta, \gamma)\) is a relation in \(V_g\). If the corresponding polynomial \(r(\alpha', \beta', \gamma')\) in \(V_g'\) is of homogeneous \(\mathbb{Z}/8\)-grading, then it is a relation in \(V_g'\).

Proof. If the quotient polynomial \(r(\alpha, \beta, \gamma)\) is a relation, \(r(\alpha', \beta', \gamma') = (1 - \tau) \phi\) for some \(\phi\) within \(V_g'\). Since \(\tau\) is of degree 4, and \(r(\alpha', \beta', \gamma')\) has homogeneous \(\mathbb{Z}/8\)-grading, \(\phi = 0 \in V_g'\). \(\square\)
When proving our inequalities, we will need to use relations in V_g'. Lemma 6.1 says that so long as they are homogeneously $\mathbb{Z}/8$-graded in V_g' it suffices to show the corresponding relations in V_g. This is the case for the relations we consider, and henceforth we restrict our attention to V_g.

Let N_g be the moduli space of projectively flat connections on a $U(2)$-bundle with fixed odd determinant over a surface of genus g. Muñoz’s work shows that $V_g \otimes \mathbb{C}$ is isomorphic to $H^*(N_g; \mathbb{C})$, and in fact the ring structure of the former is a deformation of the latter. More precisely, the product in V_g is equal to the cup product in $H^*(N_g; \mathbb{C})$ up to lower order terms of equal mod 4 gradings. Furthermore, the isomorphism is well-defined over the rationals, so we may replace \mathbb{C} by \mathbb{Q}. There is also a Morse-Bott spectral sequence, due to Fukaya [Fuk96], starting at $H^*(N_g; \mathbb{Z})$ and converging to V_g. Since $H^*(N_g; \mathbb{Z})$ is torsion-free, as proven by Atiyah and Bott [AB83, Thm. 9.10], and the spectral sequence collapses over \mathbb{Q}, it must collapse for all coefficient fields. Thus we obtain

Proposition 6.2. V_g is torsion-free.

However, the ring structure of V_g is substantially more complicated than that of $V_g \otimes \mathbb{Q}$, since α, β, γ do no generate the invariant part of V_g. This is already true for $H^*(N_g; \mathbb{Z})$, which requires more generators than does $H^*(N_g; \mathbb{Q})$, see [AB83, §9]. Nonetheless, the relations we are interested in can be extracted from Muñoz’s presentation, which we now recall: set $\zeta_0 = 1$, and recursively define

$$\zeta_{r+1} = \alpha \zeta_r + r^2(\beta + (-1)^r 8)\zeta_{r-1} + 4r(r-1)\gamma \zeta_{r-2}.$$

Each $\zeta_r = \zeta_r(\alpha, \beta, \gamma)$ is a polynomial with integer coefficients in α, β, γ. Then the ideal $(\zeta_0, \zeta_0+1, \zeta_0+2)$ is a complete set of relations for the invariant part of $V_g \otimes \mathbb{Q}$, see [Mn99, Thm. 16, Prop. 20].

Lemma 6.3. $\beta \equiv \alpha^2 \pmod{8}$.

Proof. The corresponding relation holds in $H^4(N_g; \mathbb{Z})$. Indeed, the degree 4 element

$$\left(\frac{g-1}{2}\right)^2 \alpha^2 + (2g-1)\frac{\alpha^2 - \beta}{8}$$

is integral, see [SS, Eq. (7), Prop. 2.4]; it is the second Chern class of the push-forward of a universal bundle. Multiplying both sides by 8, and a mod 8 inverse for $(2g-1)$, yields $\beta \equiv \alpha^2 \pmod{8}$ in the ring $H^4(N_g; \mathbb{Z})$. Since the product in V_g is a deformation of the product in $H^*(N_g; \mathbb{Z})$ respecting mod 4 gradings, within V_g we have $\alpha^2 - \beta + c \equiv 0 \pmod{8}$, where c is some constant. There is a map $r_k : V_g \to V_{g-k}$ induced by a cobordism which contracts k handles, cf. [Mn99, Lemma 9]. For $g \geq 1$, we have $0 \equiv r_{g-1}(\alpha^2 - \beta + c) \equiv c \pmod{8}$ since in V_1 the relations $\alpha = 0$ and $\beta = 8$ follow from ζ_1 and ζ_2. Thus $c \equiv 0 \pmod{8}$ and the relation follows. \hfill \Box

This lemma allows us to write $\beta = \alpha^2 + 8c$ for some element $c \in V_g$. Define the double factorial $n!! = n(n-2)(n-4)\cdots 1$ for $n > 0$ odd. We propose the following.

Conjecture 6.4. $(2g-3)!!\zeta_0(\alpha, \alpha^2 + 8c, \gamma)/g!$ is a polynomial in α, c, γ with integer coefficients. Furthermore, the reduction of this polynomial modulo 4 is congruent to $\pm \alpha^g$.

22
proof to the first part of Lemma 4.1, which says $N \equiv 0 \pmod{4}$ also holds in \mathbb{P}^1. Indeed, the ring H verify the rest of the cases $g = 0$ in the recursive definition of ζ. Indeed, the polynomial in the conjecture is a relation in \mathbb{P}^1. In

The verification of this conjecture implies the relations $\alpha^g \equiv 0 \pmod{2}$ and $\beta^{g/2} \equiv 0 \pmod{4}$ within \mathbb{P}^1. Indeed, the polynomial in the conjecture is a relation in \mathbb{P}^1, since according to Muñoz it is a relation in $\mathbb{P}^1 \otimes \mathbb{Q}$, and \mathbb{P}^1 is torsion-free. Its reduction modulo 4 implies the relation $\alpha^g \equiv 0 \pmod{2}$ (mod 4), which is odd.

In fact, for the purposes of Theorems [2.1] and [2.2] less is required: one only needs to show that the desired relations hold in the quotient ring \mathbb{P}^1 defined by modding out the elements $\Psi(\gamma_i)$ from \mathbb{P}^1. Thus we may set $\gamma = 0$ in the recursive equation to define $\zeta_{i+1} = \zeta_i + r^2(\beta + (-1)^i)\zeta_{i-1}$ with $\zeta_0 = 1$. Then $\xi = \zeta(\alpha, \alpha^2 + 8\epsilon)$ is a polynomial in α and ϵ. As we only are concerned with relations modulo 2 and 4, to prove that $N_{\alpha}^g(g) \equiv 0$ and $N_{\beta}^g(g) \equiv [g/2]$ it suffices to show that the rational coefficients of $\xi/r!$ all have reduced fraction forms with odd denominators, and have numerators divisible by 4, except for the coefficient in front of α^g, which is odd.

Proof of Proposition [2.3]. The first few instances of Conjecture [6.4] are verified by hand, and we verify the rest of the cases $g \leq 128$ by computer. The first 8 polynomials defined in Conjecture [6.4] are given in Table 2 for illustration.

Finally, we remark that $\alpha^g \equiv 0 \pmod{2}$ is a relation in the ring $H^\ast(N_{\alpha}; \mathbb{Z}/2)$ by work of the author with M. Stoffregen [SS]. The above scheme suggests an alternative route to proving this relation. Indeed, the ring $H^\ast(N_{\alpha}; \mathbb{Q})$ has its own recursive presentation, which inspired the work of Muñoz: in the recursive definition of ζ, above, simply remove the term $(-1)^i$. Then Conjecture [6.4] may be formulated with these modified polynomials. In particular, we suspect that the relation $\alpha^g \equiv 0 \pmod{4}$ (mod 4) also holds in $H^\ast(N_{\beta}; \mathbb{Z}/4)$.

In [SS] it is also proven that $\alpha^{g-1} \not\equiv 0 \pmod{2}$ within $H^\ast(N_{\alpha}; \mathbb{Z}/2)$. This provides an alternative proof to the first part of Lemma [4.1] which says $N_{\alpha}^g(g) \not\equiv 0$. Indeed, since $\mathbb{P}^1 \otimes \mathbb{Z}/2$ is a deformation of the ring $H^\ast(N_{\alpha}; \mathbb{Z}/2)$, the deformations being of lower degree but homogeneous mod 4, then if α^{g-1} is nonzero in the latter, it must also be so in the former.
7 Adapting Frøyshov’s argument

We now proceed to the proofs of Theorems 2.1 and 2.2. These are adaptations of Frøyshov’s argument as given in [Frø04], which we closely follow and modify accordingly to the settings of \(\mathbb{Z}/2 \) and \(\mathbb{Z}/4 \) coefficients. For the technical details of the argument we refer to loc. cit. In the final subsection we discuss some other adaptations.

7.1 Proofs of Theorems 2.1 and 2.2

Let \(X \) be a smooth, closed, oriented 4-manifold. For now we also assume \(b_1(X) = 0 \). Suppose \(b_2^+(X) = n \geq 1 \) and let \(\Sigma_1, \ldots, \Sigma_n \) be pairwise disjoint embedded surfaces with \(g_i \) such that \(\Sigma_i \cdot \Sigma_i = 1 \). Let \(W \) be the result of replacing a tubular neighborhood \(N_i \) of \(\Sigma_i \subset X \) with \(N_i \cup \mathbb{C}P^2 \) for each \(i \). Upon orienting \(\Sigma_i \) and the exceptional sphere \(S_i \) in the corresponding copy of \(\mathbb{C}P^2 \), we form two internal connected sums \(\Sigma_i \) between \(\Sigma_i \) and \(S_i \), one preserving orientations, the other reversing. Now define a smooth \(n \)-dimensional family of metrics \(g(t) \) where \(t = (t_1, \ldots, t_n) \in \mathbb{R}^n \) on the closed 4-manifold \(W \), which as \(t_i \to \pm \infty \) stretches along a link of \(\Sigma_i^+ \). Since \(\Sigma_i^+ \cdot \Sigma_i^- = 0 \), each such link may be identified with \(S^1 \times \Sigma_i^+ \).

Let \(E_k \to W \) be the \(U(2) \)-bundle with \(c_1(E_k) = w + \sum \text{PD}[S_i] \) and \(c_2(E_k) = k \). We require \(w \) to be induced from an element in \(H^2(X; \mathbb{Z}) \) which is extremal. Denote by \(M_{k,t} \) the moduli space of projectively \(q(t) \)-anti-self-dual connections on \(E_k \), and let \(\mathcal{M}_k \) denote the disjoint union of \(M_{k,t} \) over \(t \in \mathbb{R}^n \). After perturbing, the irreducible stratum \(\mathcal{M}_k^* \subset \mathcal{M}_k \) is a smooth and possibly non-compact manifold of dimension \(8c_2 - 2c_1^2 - 3(1 - b_1 + b_2^+) + n \). Thus

\[
\dim \mathcal{M}_k^* = 8k + 2|w^2| - 3 \tag{28}
\]

If \(k < 0 \), then \(\mathcal{M}_k \) has no reducibles, while \(\mathcal{M}_0 \) contains a finite number. Denote by \(\mathcal{M}_k' \) the result of removing small neighborhoods of each reducible; in particular, \(\mathcal{M}_k' = \mathcal{M}_k \) if \(k < 0 \). The assumption that \(w \) is extremal rules out bubbling off of reducible solutions in these moduli spaces.

We now introduce some notation. Recall from [DK90] §5.1.2 that the \(\mu \)-map is given by

\[
\mu : H_2(W; \mathbb{Q}) \to H^{4-i}(\mathcal{B}_E^*; \mathbb{Q}), \quad \mu(a) = -\frac{1}{4}p_1(E)/a. \tag{29}
\]

Here \(E \) is a \(U(2) \)-bundle over a 4-manifold \(W \), and \(E \) is the universal adjoint \(SO(3) \) bundle over \(\mathcal{B}_E \times W \), where \(\mathcal{B}_E \) is the configuration space of connections on \(E \). The basepoint fibration associated to \(x \in W \) is the restriction of \(E \) to a slice \(\mathcal{B}_E \times \{x\} \). For later use, we also write

\[
\nu(x) = w_2(E)/1 = \epsilon H^2(\mathcal{B}_E^*; \mathbb{Z}/2). \tag{30}
\]

When defining (relative) Donaldson invariants on 4-manifolds, one cuts down moduli spaces inside \(\mathcal{B}_E^* \) using geometrically constructed divisors representing \(\mu \)-classes. Henceforth we write \(x \in H_0(W; \mathbb{Z}) \) for the point class. Returning to the setup of the previous paragraph, to any \(a_1, \ldots, a_k \in \{x\} \cup \mathcal{L}^* \subset H_*(W; \mathbb{Z}) \), subset \(S \subset \mathcal{M}_k' \) and nonnegative integers \(j_i \geq 0 \) for \(i = 1, \ldots, k \) we use the shorthand \(\mu(a_1)^{j_1} \cdots \mu(a_k)^{j_k} S \) for the intersection of \(S \) with \(j_i \) generic geometric representatives for \(\mu(a_i) = -p_1(E)/4a_i \), supported away from where \(g(t) \) varies, as \(i \) runs over 1, \ldots, \(k \). Also, let \(\mu(x)^i S \) denote the intersection of \(S \) with a geometric representative depending on \(t \) for \(-p_1(E)/4pt \), where the basepoint is in the location of the stretched link of \(\Sigma_i^+ \) as \(t_i \to \pm \infty \). For the constructions see [Frø04] §7, where \(\mu(x)_i \) is called \(x_i \). We similarly define the intersections \(\nu(x)^i S \) and \(\nu(x)^j S \) for
the second Stiefel-Whitney class. For the geometric representative of \(\nu(x) \) see [59]. For the proof of Theorems 2.1 and 2.2 we need the following, for a general 4-manifold \(W \) with \(U(2) \) bundle \(E \).

Lemma 7.1. If \(a \in H_2(W; \mathbb{Z}) \) has \((w, a) \equiv 0 \) (mod 2), then \(\mu(a) \) defines a class in \(H^2(\mathcal{B}_E^2; \mathbb{Z}) \).

Proof. This follows from [AMR95, Lemma 3]. The proof is short so we include it. By assumption, \((w_2(E), a) \equiv 0 \), so we can lift \(E \to \mathcal{B}_E^2 \times W \) to a \(U(2) \) bundle \(F \) such that \(\langle c_1(F), a \rangle = 0 \). Now use \(-p_1(\mathcal{E}) = 4c_2(F) - c_1^2(F) \) and the decomposition \(c_1(F) = c_1(F,x) \times 1 + 1 \times c_1(E) \) to compute \(-p_1(\mathcal{E})/a = 4c_2(F)/a \). The result follows.

This lemma reduces to Corollary 5.2.7 of [DK90] when \(w \equiv 0 \) (mod 2). When cutting down moduli spaces by \(\mu(a) \), for \(a \) as in the lemma, the geometric representatives we have in mind are those constructed as in loc. cit. using line bundles of coupled twisted Dirac operators over the surface.

Proof of Theorem 2.2. Let \(a_1, \ldots, a_m \in H_2(W; \mathbb{Z}) \) be in the complement of the \([\Sigma_i] \) classes, and such that \((w, a_i) \equiv 0 \) (mod 2) for each \(i \); in the notation of Section 2, the duals of the \(a_i \) are contained in \(\mathcal{L}^\omega \). Further assume that \(2^{-m} \eta(\mathcal{L}, w, a, m) \equiv 1 \) (mod 2) where \(a = a_1 \cdots a_m \). Now suppose for contradiction that the statement of Theorem 2.1 is not true for this data, i.e.

\[
\sum_{i=1}^n N_i^2(g_i) < |w^2| - m - 1.
\]

(31)

Set \(n_i = N_i^2(g_i) \). Using the notation for geometric intersections introduced above, we define the following smooth, unoriented 1-manifold with boundary and a finite number of non-compact ends:

\[
\hat{\mathcal{M}} := \nu(x)^{|w^2| - m - 2 - \Sigma n_i} \prod_{k=1}^m \mu(a_k) \prod_{i=1}^n \nu(x)_i \cdot \mathcal{M}_0'
\]

(32)

Indeed, the dimension is computed using (28) and the fact that cutting down by each of the classes \(\mu(a_i) \), \(\nu(x) \) and \(\nu(x)_i \) reduces dimension by 2. It makes sense to cut down by \(\mu(a_i) \) in this setting of \(\mathbb{Z}/2 \) coefficients by Lemma 7.1.

The boundary points of \(\hat{\mathcal{M}} \) arise from the deleted neighborhoods of reducibles in \(\mathcal{M}_0 \). Denote by \(\mathcal{T} \) the torsion subgroup of \(H^2(X; \mathbb{Z}) \). Then each pair \(\{z, -z\} \in \text{Min}(w + 2\mathcal{L}) \) corresponds to \(\# \mathcal{T} \) many reducibles; here, \(z = z_{1}(L_1 \oplus L_2)^{\pm 1} \) for a splitting \(E_0 = L_1 \oplus L_2 \) into line bundles. The neighborhood of each reducible in \(\mathcal{M}_0 \) is a cone on a complex projective space of dimension \(d = 2|w^2| - 4 \). To a reducible associated to \(z \), let \(h \) be the degree two generator of the projective space \(\mathbb{CP}^d \) which is the link of this cone. Then by [DK90] Prop. 5.1.21] we have

\[
\mu(x)_{|\mathbb{CP}^d} = \pm \frac{1}{4} h^2, \quad \mu(a_i)_{|\mathbb{CP}^d} = \pm \frac{1}{2}(z, a_i) h, \quad \nu(x)_{|\mathbb{CP}^d} \equiv h \pmod{2},
\]

(33)

From this information and (32) we compute the number of boundary points:

\[
\# \partial \hat{\mathcal{M}} \equiv 2^{-m} \# \mathcal{T} \cdot \eta(\mathcal{L}, w, a, m) \equiv 1 \pmod{2},
\]

(34)

the last congruence holding by our assumptions. Although the signs in the definition of \(\eta \) do not matter here, for later cases they do; we refer to [Pre04] for more details regarding orientations.
Now we discuss the ends of (32). These arise as the metric family parameters t_i go off to $\pm \infty$. Transversality ensures that at most one such parameter can stay unbounded for a given sequence of instantons in \mathcal{M}. The part of \mathcal{M} with fixed $\pm t_i = \tau \gg 0$ is a finite number of points, which by gluing theory is a product of instantons over $\mathbb{R}^2 \times \Sigma_i^+$ and over $W \setminus \Sigma_i^+$. We may write
\[
\# \mathcal{M}_{st,=\tau} = \phi_i^+ \cdot \psi_i^+ \tag{35}
\]
where $\phi_i^+ \in V_{g_i} \otimes \mathbb{Z}/2$ counts instantons over $\mathbb{R}^2 \times \Sigma_i^+$, and $\psi_i^+ \in (V_{g_i} \otimes \mathbb{Z}/2)^*$ over $W \setminus \Sigma_i^+$. Here V_{g_i} is the $Z/8$-graded instanton cohomology of a circle times a surface as discussed in Section 6.

A priori, the elements ψ_i^+ and ϕ_i^+ only define cochains in their Floer cochain complexes. The unperturbed Chern-Simons functional for the restricted bundle over $S^1 \times \Sigma_i^+$ is Morse-Bott along its critical set, which is two copies of N_g where $g = g_i$. According to Thaddeus [Tha00], the manifold N_g has a perfect Morse function. We perturb the Chern-Simons functional so that its critical set consists of two copies of the critical points of such a function. The rank of the instanton Floer cochain complex coincides with that of \mathcal{V}_{g_i}, and so has zero differential. Thus ψ_i^+ and ϕ_i^+ may also be viewed as Floer cohomology classes, as claimed in the previous paragraph. In this way we remove the restriction in [Fro04] that all but one of the surfaces have genus 1.

The class ϕ_i^+ comes from $\nu(x)^{n_i}$ in the expression (32), and so $\phi_i^+ \equiv (\alpha')^{n_i} \pmod 2$, in the notation of Section 6. By the definition of $n_i = N_g^2(g_i)$ and Lemma 6.1, the element ϕ_i^+ is in the ideal of $V_{g_i} \otimes \mathbb{Z}/2$ generated by μ classes of loops. Just as in the argument of [Fro04] §10, we conclude that (35) vanishes mod 2, essentially because (relative) Donaldson invariants involving μ-classes of loops vanish for 4-manifolds with $b_1 = 0$; see Section 7.2 for this justification. But then our cut down moduli space (32) has an even number ends and, by (34), an odd number of boundary points, a contradiction.

We make two final remarks. First, although we worked with a homogeneous element $a = a_1 \cdots a_m$ in the dual of $\text{Sym}^m(L^\infty)$, the argument easily extends to any linear combination of such elements. This allows the argument to go through for all the data included in the definition of $f_2(L)$. Second, the general case reduces to that of $b_1(X) = 0$ by surgering loops as in [Fro04] Prop. 2.

Proof of Theorem 2.2. We explain how to modify the proof of Theorem 2.1. First, assume $\# T$ is odd and $b_1(Y) = 0$. Let $a_1, \ldots, a_m, \in L^\infty$ be such that $(w, a_i) \equiv 0 \pmod 2$, and $a'_1, \ldots, a'_m, \in L^\infty$, where $m = m_0 + m_1$ and $w \equiv m \pmod 2$. Lemma 7.1 says that each $\mu(a_i)$ is integral; a similar computation shows that $2\mu(a'_i)$ is integral, since $-p_1(F)/a = 4c_2(F)/a - 2c_1(E,F) \times c_1(E)/a$ is divisible by two.

Suppose as in the definition of $d_4(L)$ that $2^{-m_0}g(L, w, a, m) \not\equiv 0 \pmod 4$, where $a = a_1 \cdots a_1 \cdots a'_m$. Next, in place of (31), we suppose for contradiction that
\[
\sum_{i=1}^n N_3^2(g_i) < (|w|^2 - m)/2. \tag{36}
\]
Set $n_i = N_g^2(g_i)$. In place of (32) we define the following smooth, orientable 1-manifold with boundary and a finite number of non-compact ends:
\[
\mathcal{M} := (4\mu(x)^2)^{|w|^2 - m}/2 - 1 - \Sigma n_i \prod_{k=1}^{m_0} \mu(a_k) \prod_{j=1}^{m_1} 2\mu(a'_j) \prod_{i=1}^n (4\mu(x_i))^n_i \cdot \mathcal{M}'_0. \tag{37}
\]
The boundary points of (37) are counted via (33) to be $2^{-m_0} \# T \cdot \eta(L, w, a, m) \not\equiv 0 \pmod 4$. On the other hand, using the gluing relation (35) with $\mathbb{Z}/4$ coefficients, the definition of $n_i = N_g^2(g_i)$, and that ϕ_i^+, which comes from $4\mu(x_i)^{n_i}$, equals $(\beta')^{n_i} \in V_{g_i} \otimes \mathbb{Z}/4$, the number of ends of (37) is zero.

26
modulo 4, a contradiction. Finally, the two remarks made at the end of the proof of Theorem 2.1 carry over to this situation.

Now we consider the second part of Theorem 2.2. In this case we suppose \(\# \mathcal{T} \) is twice an odd number. In the above paragraph, set \(m_1 = 0 \). Now suppose (36) holds and that \(2^{-m}q(L, w, a, m) \equiv 1 \pmod{2} \). Then the count of boundary points becomes \(2 \pmod{4} \), while, as before, the number of ends is zero modulo 4, contradicting our assumptions, and completing the proof.

7.2 \(\mu \)-classes of loops

We now take a moment to make more precise which geometric representatives for \(\mu \)-classes of loops are to be used in the above constructions. We refer to the simplified situation described in [Frø04, Sec.11]. There, a Riemannian 4-manifold \(X \) with tubular end \([0, \infty) \times Y\) is considered, equipped with a \(U(2) \)-bundle that restricts to some oriented surface non-trivially within the tubular end. Fix a loop \(\lambda : S^1 \to X \). Following constructions from [KM95], Frøyshov then associates to \(\lambda \) three classes \(\Phi, \Psi_+, \Psi_- \) in the instanton Floer cohomology of \(P \to Y \), the restriction of the bundle over \(X \) to \(Y \). Roughly, \(\Phi \) cuts down moduli by the locus of connection classes with holonomy \(1 \in \text{SO}(3) \), and \(\Psi_\pm \) cuts down by holonomy \(\pm 1 \in SU(2) \). These classes satisfy the relation \(\Phi = \Psi_+ + \Psi_- \). It is observed in [Frø04, Sec.11] that \(\Psi_\pm \) are to \(\text{SU}_2 \)-classes of loops \(\mod 2 \)-torsion. However, in our constructions above, \(J(P; \mathbb{Z}) \) arises as \(\mathcal{V}' \), which is torsion-free. Thus \(\Phi/2 = \Psi_\pm \) is an unambiguously defined class over the integers, and is the one which we have in mind when cutting down by \(\mu \)-classes of loops over arbitrary coefficient rings.

According to [KM95, §2(ii)], with rational coefficients \(\Phi \) is equal to what is usually denoted \(\mu(\lambda)/2 \). Thus \(\Psi_\pm \) is an integral class that agrees with \(\mu(\lambda) \), the latter, in general, a priori only defined over the rationals. The map \(\Psi \) of [26] on a 1-dimensional homology class \([\lambda] \) is now more precisely defined using \(\Psi_\pm = \Psi_\pm(\lambda) \), from the 4-manifold \(D^2 \times \Sigma \) with appropriate bundle. The independence of the chosen representative \(\lambda \) for the class follows from [Frø04, Prop.7]. We have now justified our claim, in Section 6, that the class \(\gamma \), as we have normalized it, is integral.

We can now also be more precise about the definition of the ring \(\mathcal{V}_\lambda \) from Sections 2 and 6; it is the quotient of \(\mathcal{V}_\lambda \) by the ideal generated by elements \(\Psi_\pm(\lambda) = \Psi(\lambda) \), defined using the 4-manifold \(D^2 \times \Sigma \) with appropriate bundle, and allowing \(\lambda \) to range over a symplectic basis of loops \(\{\gamma_i\} \) for the surface \(\Sigma \). In particular, this ideal contains \(\gamma \).

Finally, we note that with these conventions the proof that \(\phi_\pm^i \) vanishes in the proof of Theorem 2.1 now adapts from the argument in [Frø04]; by definition of \(N^3_\lambda(g) \), we have \(\phi_\pm^i \equiv \sum \Psi_\pm(\lambda) \chi_i \pmod{2} \) for some loops \(\lambda_i \) in the 4-manifold at hand, and from [Frø04, Prop.7] the latter quantity vanishes. Indeed, in our proof it is assumed that \(b_1(X) = 0 \) and that \(X \) has no 2-torsion in its homology, and thus also \(H_1(X; \mathbb{Z}/2) = 0 \), implying that the homology class of each \(\lambda_i \) is zero mod 2. Similar remarks hold for the proof of Theorem 2.3.

7.3 Other adaptations

Let us first compare the above arguments to that of Theorem 2.5. Set \(n_i = N^3_\lambda(g_i) \). We then consider the 1-dimensional part of the \(\mathbb{Q} \) linear combination of oriented manifolds
\[
\mu(x)^{([w^2] - m)/2} \sum_{j=1}^{m} \mu(a_j) \prod_{i=1}^{n} (\mu(x)_i^2 - 64)^{n_1} \sum_{k \leq 0} \mathcal{M}_k
\]
The number of boundary points, which only appear within \mathcal{M}_0^1, is equal to a power of two times $\# \mathcal{T} \cdot \eta(\mathcal{L}, w, a, m)$, while the number of ends is zero. Here $a = a_1 \cdots a_m$ where each $a_j \in \mathcal{L}$. With these modifications, the argument is much the same as before. This handles the case of Theorem 2.3 for a closed 4-manifold, or that for which Y is the 3-sphere. The more general case follows from this with minor modifications as in [Prø04].

The above argument is also easily adapted to the case in which \mathcal{Q} is replaced by \mathbb{Z}/p for p an odd integer. We will not make use of these variations, but state them out of curiosity. Define

$$N^p_\beta(g) := \min \{ n \geq 1 : (\beta^2 - 64)^n \equiv 0 \pmod{\nabla_g} \}$$

for $g \geq 1$ and $N^p_\beta(0) = 0$. Upon setting $n_i = N^p_\beta(g_i)$, we may consider the 1-dimensional part of (38) a formal \mathbb{Z}/p linear combination of 1-manifolds; the powers of two in the definitions of the μ-classes are invertible modulo p. The number of boundary points is again $\# \mathcal{T} \cdot \eta(\mathcal{L}, w, a, m)$ up to a power of two, and the number of ends is zero mod p. Define $e_p(\mathcal{L})$ by modifying the condition in the definition of $e_0(\mathcal{L})$ that $\eta \equiv 0$ to $\eta \equiv 0 \pmod{p}$. Then we obtain the following.

Theorem 7.2. Assume the hypotheses of Theorem 2.3 for a closed 4-manifold, and let p be an odd integer. Suppose that the order of the torsion subgroup $\# \mathcal{T}$ is relatively prime to p. Then

$$\sum_{i=1}^n N^p_\beta(g_i) > e_p(\mathcal{L}).$$

If p is prime, and the 4-manifold has instead a homology 3-sphere boundary Y, then the same inequality holds upon adding to the left side $h_p(Y)$, Froyshov’s instanton invariant defined over \mathbb{Z}/p.

The modifications needed to deduce the case with a homology 3-sphere boundary from the closed 4-manifold case are completely analogous to those in [Prø04]. Further, we have:

Proposition 7.3. Let p be odd. Then $N^p_\beta(g) \equiv [g/2]$. Equality holds if p is prime and $p > g$.

Proof. The proof of the first statement is similar to that of Proposition 4.1. It suffices to show that $e_p(\mathcal{L}) \geq g/2$ where $\mathcal{L} = \Gamma_{4g+4}$. We follow [Prø04] Prop. 1. Consider the extremal vector $w = (1, \ldots, 1, 0, \ldots, 0) \in \mathcal{L}$ having $4 \lfloor g/2 \rfloor$ entries equal to 1. If g is odd then $\text{Min}(w + 2\mathcal{L})$ consists of $\{\pm 1, \ldots, \pm 1, 0, \ldots, 0\}$ and $\{0, \ldots, 0, \pm 1, \ldots, \pm 1\}$ where there number of signs is even; if g is even it consists of $\{\pm 1, \ldots, \pm 1, 0, \ldots, 0\}$ where again the number of signs is even. In either case, the signs in $\eta(\mathcal{L}, w)$ are all equal, and $\eta(\mathcal{L}, w) = \pm 1 \cdot \# \text{Min}(w + 2\mathcal{L})$ is a power of 2, and in particular nonzero mod p. Since $w^2 = 4 \lfloor g/2 \rfloor$, we conclude that $e_p(\mathcal{L}) \geq \lfloor w^2/4 \rfloor = [g/2]$.

For the second statement, we follow [Mn99] Prop. 20, and use our notation from Section 6. The recursive equation defining ζ_{g+1} yields $g^2(\beta + (-1)^g)\zeta_{g-1} \equiv \zeta_{g+1} - \alpha \zeta_g \pmod{\gamma}$. Thus we have $g^2(\beta + (-1)^g)J_{g-1} \subset J_g + (\gamma)$ where $J_g = (\zeta_{g}, \zeta_{g+1}, \zeta_{g+2})$. Inductively, in \mathcal{V}_g we obtain the relation

$$\prod_{r=1}^R r^2(\beta + (-1)^g) = \gamma \phi$$

for some $\phi \in \mathcal{V}_g$. Now since p is prime and $p > g$, the factor $1^2 2^2 \cdots g^2$ has an inverse mod p. After multiplying both sides by this inverse, and, if g is odd, multiplying by $(\beta + 8)$, we obtain the relation $(\beta^2 - 64)^{\lfloor g/2 \rfloor} \equiv 0 \pmod{\gamma}$ within $\mathcal{V}_g \otimes \mathbb{Z}/p$, implying $N^p_\beta(g) \leq [g/2]$. □
8 Alternative proofs

The only instanton Floer theory used in the above proofs of Theorems 1.1 and 1.3 is the input from certain relations in the instanton Floer cohomology of a circle times a surface via Theorems 2.1 and 2.2; the instanton homology of homology 3-spheres is not required at all. In this Section we deduce Corollaries 1.2 and 1.4 with this latter framework at heart, with some help from Floer’s exact triangle. While the two approaches complement one another, they also perhaps belong together in a more natural framework as suggested by Frøyshov’s inequality in characteristic zero, Theorem 2.5; we merely scratch the surface here for \(\mathbb{Z}/2 \) and \(\mathbb{Z}/4 \) coefficients.

For an integer homology 3-sphere \(Y \), denote by \(I^*(Y; \mathbb{F}_2) \) Floer’s instanton (co)homology from \[\text{Flo88}, \text{ defined with } \mathbb{F}_2 = \mathbb{Z}/2 \text{ coefficients, and using the conventions of } \text{Frø02}. \] This is a \(\mathbb{Z}/8 \)-graded vector space over \(\mathbb{F}_2 \). There are elements \(\delta_2 \in I^4(Y; \mathbb{F}_2)^\ast \) and \(\delta' \in CI^4(Y; \mathbb{F}_2) \) defined using moduli spaces of instantons with a trivial flat limit at either end of \(Y \times \mathbb{R} \). There is also a degree 2 endomorphism on \(I^*(Y; \mathbb{F}_2) \), denoted \(v_2 \), and defined using the second Stiefel-Whitney class of the \(SO(3) \) basepoint fibration, analogous to how the degree 4 endomorphism \(u \) is defined in \[\text{Frø02} \] on \(I^*(Y; \mathbb{Z}) \) for certain gradings using the first Pontryagin class.

The elements \(\delta_2 \in I^4(Y; \mathbb{F}_2)^\ast \) and \(\delta' \in CI^4(Y; \mathbb{F}_2) \) are induced by (co)chains \(\delta \in CI^4(Y; \mathbb{F}_2)^\ast \) and \(\delta' \in CI^4(Y; \mathbb{F}_2) \) defined just as in \[\text{Frø02}, 2.1 \], but with \(\mathbb{F}_2 \)-coefficients, which we now review. Recall that the cochain complex \(CI^*(Y; \mathbb{F}_2) \) is generated by (perturbed) flat irreducible \(SU(2) \) connections modulo gauge. We will follow the notation of \[\text{Frø02} \] and write \(M(\alpha, \beta) \) for the moduli space of finite-energy instantons on \(\mathbb{R} \times Y \) with flat limit \(\alpha \) at \(+\infty \) and \(\beta \) at \(-\infty \), and with expected dimension lying in \([0, 7]\). Write \(M(\alpha, \beta) = M(\alpha, \beta)/\mathbb{R} \). The cochain \(\delta' \) is then defined to be \(\sum \# M(\beta, \theta) \beta \), where \(\beta \) runs through the generators of \(CI^4(Y; \mathbb{F}_2) \), and \(\theta \) is the trivial connection. Similarly, \(\delta_2 = \# M(\theta, \alpha) \) for a generator \(\alpha \in CI^4(Y; \mathbb{F}_2) \).

The map \(v_2 \) is induced by a degree 2 cochain map \(v \) on \(CI^*(Y; \mathbb{F}_2) \), defined as follows. Let \(\alpha \) and \(\beta \) be generators such that \(M(\alpha, \beta) \) is 2-dimensional. Let \(E_0 \to M(\alpha, \beta) \) be the natural euclidean 3-plane bundle associated to a basepoint \((0, y_0) \). Choose sections \(\sigma_1 \) and \(\sigma_2 \) of this bundle which are pulled back from the basepoint fibration over the configuration space of connections on \((-1, 1) \times Y \). We arrange that \(\sigma_1 \) and \(\sigma_2 \) are linearly dependent at finitely many points, and transversely. Set

\[
\langle v(\beta), \alpha \rangle = \# \{ [A] \in M(\alpha, \beta) : \sigma_1([A]) \in \mathbb{R} \cdot \sigma_2([A]) \}.
\]

That \(v \) is a chain map, and is independent of any choices made, follows from the proof of \[\text{Frø02}, \text{ Thm. 4} \], except there are no trajectories that break at the reducible. Indeed, since \(\dim M(\alpha, \beta) = 2 \), the relation \(dv + vd = 0 \) comes from counting the ends of a 3-dimensional moduli space, cut down by two sections as above; such a moduli space has ends approaching trajectories broken at a trivial connection if its dimension is \(\geq 5 \), see \[\text{Don02}, \S 5.1 \]. The construction of \(v_2 \) and its interactions with the analogous map for the third Stiefel-Whitney class of \(E_0 \) was sketched by Frøyshov \[\text{Frøa} \].

Proposition 8.1. Let \(X \) be a smooth, compact, oriented 4-manifold with negative definite lattice \(\mathcal{L} = H^2(X; \mathbb{Z})/\text{Tor} \) and boundary an integer homology 3-sphere \(Y \). If \(H^*(X; \mathbb{Z}) \) has no 2-torsion, then

\[
\min \{ j \geq 0 : \delta_2 v_2^j = 0 \} > f_2(\mathcal{L}).
\]

The left-hand side is defined entirely in terms of the instanton homology of \(Y \). The proof is a variation of that for Theorem 2.1. In fact, all that one needs is an analogue of Proposition 1 in \[\text{Frø02} \] which uses the additional assumption that \(b_1(X) = 0 \). The analogue is as follows: for \(w \in H^2(X; \mathbb{Z}) \) descending to an extremal vector of the same name in \(\mathcal{L} \), and \(a \in \text{Sym}^m H_2(X; \mathbb{Z}) \)

29
descending to an element of the same name in \(\text{Sym}^m(\mathcal{L}^w) \) for some \(m \geq 0 \), there is defined a relative Donaldson invariant \(D_X^0(a) \in I^{4-4n}(Y; \mathbb{F}_2) \) where \(n = |w^2| - m - 2 \), and we have

\[
\delta_2 v_{1}^{j} \cdot D_X^0(a) = \begin{cases}
0 & \text{for } 0 \leq j < n \\
2^{-m \eta(L, w, a, m)} \pmod{2} & \text{for } j = n.
\end{cases}
\]

The statement of Proposition 8.1 follows for \(b_1(X) = 0 \) from this formula and the definition of \(f_2(\mathcal{L}) \); the condition that \(b_1(X) = 0 \) is then handled by surgering loops, cf. [Frø04, Prop.2].

We have a similar inequality for \(\mathbb{Z}/4 \) coefficients. Here we let \(u \) denote the degree 4 map defined on \(\text{Cl}^*(Y; \mathbb{Z}) \) as in [Frø02], which in general is not a chain map, but satisfies \(du - ud + 2 \delta \otimes \delta' = 0 \). The map \(\delta u^n : \text{Cl}^{4-4n}(Y; \mathbb{Z}) \to \mathbb{Z} \) is a chain map, and we denote by \(\delta_1 u_{1}^{j} \) the map \(I^{4-4n}(Y; \mathbb{Z}/4) \to \mathbb{Z}/4 \) obtained after tensoring with \(\mathbb{Z}/4 \) and taking homology. This may depend on auxiliary choices, such as perturbation and metric; in the following we assume such choices are fixed.

Proposition 8.2. Let \(X \) be a smooth, compact, oriented 4-manifold with negative definite lattice \(\mathcal{L} = H^2(X; \mathbb{Z})/\text{Tor} \) and boundary an integer homology 3-sphere \(Y \). If \(H^*(X; \mathbb{Z}) \) has no 2-torsion,

\[
\min \{ j \geq 0 : \delta_1 u_{1}^{j} = 0 \} \geq f_4(\mathcal{L}).
\]

The proof is similar to that of Proposition 8.1, but more directly uses the formula of [Frø02, Prop.1], the statement of which is the following, assuming \(b_1(X) = 0 \); the proposition uses its mod 4 reduction. For \(w \in H^2(X; \mathbb{Z}) \) descending to an extremal vector of the same name in \(\mathcal{L} \), and \(a \in \text{Sym}^m H_3(X; \mathbb{Z}) \) descending to an element of the same name in \(\text{Sym}^m(\mathcal{L}) \) for \(m \geq 0 \), there is a relative invariant \(D_X^0(a) \in I^{4-4n}(Y; \mathbb{Z}[1/2^m]) \) where \(n = (|w^2| - m)/2 - 1 \), and

\[
\delta u_{1}^{j} \cdot D_X^0(a) = \begin{cases}
0 & \text{for } 0 \leq j < n \\
2^{-m \# T \cdot \eta(L, w, a, m)} & \text{for } j = n.
\end{cases}
\]

For both Propositions 8.1 and 8.2 we use the knowledge from Section 7.1 of what kinds of classes \(a \) can cut down moduli spaces when working over the appropriate coefficient ring. For example, if \(a \in \text{Sym}^m(\mathcal{L}^w) \) then \(D_X^0(a) \) is an element in \(I^{4-4n}(Y; \mathbb{Z}) \), and the factor \(1/2^m \) is unnecessary in the coefficient ring. A similar statement to that of Proposition 8.2 holds if the 2-torsion in \(H^2(X; \mathbb{Z}) \) consists of one \(\mathbb{Z}/2 \) summand upon replacing \(f_2(\mathcal{L}) \) with \([f_2(\mathcal{L})]/2 \).

We expect that the left-hand sides of the inequalities of Propositions 8.1 and 8.2 can be replaced by more natural quantities. For example, the first of these should be a weaker form of a general inequality involving Freyshov’s homology cobordism invariant \(q_2 \) mentioned in the introduction. Similarly, the second is related to Freyshov’s framework as developed in [Frø02], but with \(\mathbb{Z}/4 \) coefficients. We are now in a position to give an alternative proof of Corollary 1.4.

Another proof of Corollary 1.4 Let \(Y = \Sigma(2, 3, 5) \). It is well-known that \(\text{Cl}^*(Y; \mathbb{Z}) \) is generated by two flat \(SU(2) \) connections in degrees 0 and 4. The differential on \(\text{Cl}^*(Y; \mathbb{Z}) \) is zero, and hence \(u \) is a chain map, and induces a map on \(I^*(Y; \mathbb{Z}) \) which we also call \(u \). By [Frø02, Prop.2], \(\delta u \) is divisible by 8, and in particular \(\delta_1 u_{1}^{j} \equiv \delta u \pmod{4} \) vanishes. The degree two map \(v_{2} \) on \(I^*(Y; \mathbb{Z}/2) \) is zero for grading reasons. Thus the left-hand sides of the inequalities in Propositions 8.1 and 8.2 are equal to 1, and the result follows from Lemmas 3.2 and 3.3 or from the argument in Section 3.2. \(\square\)
The computation $\delta u \equiv 0 \pmod{8}$ used above is computed in [Fro02] via basic gluing formulae for relative Donaldson invariants, using an embedding of the negative definite E_8 plumbing into a $K3$ surface. The same procedure may be attempted for $\Sigma(2,5,9)$, the boundary of a negative definite plumbing with intersection form $-\Gamma_{12}$ which itself embeds in the elliptic surface $E(3)$, as follows from [FS01, Sec.2], and builds on the construction explained at the beginning of Section 3. However, we can obtain the congruence $\delta u \equiv 0 \pmod{8}$ for the Poincaré sphere by another method, which will also lead to another proof of Corollary 1.2 for $\Sigma(2,5,9)$, without resorting to gluing formulae for Donaldson invariants. We proceed to explain this.

As in the above proof, let $Y = \Sigma(2,3,5)$, and denote by P the non-trivial $SO(3)$-bundle over 0-surgery on the $(2,3)$-torus knot. Then for any coefficient ring we have the long exact sequence

$$\cdots \xrightarrow{} I^*(S^3) \xrightarrow{W_\ast} I^*(Y) \xrightarrow{W} I^*(P) \xrightarrow{\delta u} I^*(S^3) \xrightarrow{} \cdots$$

(41)

This is Floer’s exact triangle. The map W_\ast is induced by a surgery 2-handle cobordism $W : Y \to Y_0$. Because the instanton cohomology of the 3-sphere vanishes, W_\ast is an isomorphism. For the non-trivial bundle P, the map u is also defined on instanton cohomology. The map W_\ast does not commute with u; in fact $W_\ast u - uW_\ast = 2\delta \otimes \delta_\ast'$ where δ_\ast' counts isolated instantons on W with trivial limit at Y. From this it follows, however, that $W_\ast u = uW_\ast$ on $I^0(Y; \mathbb{Z})$. Thus to show that $\delta u \equiv 0 \pmod{8}$ on $I^0(Y; \mathbb{Z})$ it suffices to show that $u \equiv 0 \pmod{8}$ on $I^0(P; \mathbb{Z})$.

The $(2,3)$ torus knot has genus 1. Consequently, there is a genus 1 surface embedded in the 0-surgery over which the bundle P restricts non-trivially; this is formed by capping off a Seifert surface in the complement of the surgery neighborhood with a disk glued in from 0-surgery. Following [Fro02, §6] we stretch along a link of this surface in \mathbb{R}^3 cross the 0-surgery diffeomorphic to a 3-torus T^3 to conclude that u factors through the corresponding map on V_1'. However, on this latter group, $u = \beta' \equiv 0 \pmod{8}$, establishing the claim. We note that essentially the same argument shows that $\delta u \equiv 0 \pmod{8}$ for the family of Brieskorn spheres $\Sigma(2,3,6k \pm 1)$, and so we obtain alternative proofs for Corollaries 5.1 and 5.2 as well.

Another proof of Corollary 1.2. Let $Y = \Sigma(2,5,9)$. The exact sequence (41) now applies to surgery on the $(2,5)$ torus knot. As for $\Sigma(2,3,5)$, the Floer complex for Y has zero differential and u is chain map. Again, although u and W_\ast do not commute in general, they do on $I^0(Y; \mathbb{Z})$. Furthermore, v_2 and the mod 2 reduction of W_\ast commute. Next, the $(2,5)$ torus knot is of genus 2, and $I^*(P; \mathbb{Z})$ has $u \equiv 0 \pmod{4}$ and $v_2 \equiv 0 \pmod{2}$ since $\beta' \equiv 0 \pmod{4}$ and $(\alpha')^2 \equiv 0 \pmod{2}$ within V'_2. Now the left-hand sides of the inequalities in Propositions 8.1 and 8.2 are 2 and 1, respectively, and with Lemma 4.2 the result follows.

9 The lattice E_7^2

The root lattice E_7 may be described as the subset of $\frac{1}{2} \mathbb{Z}^8$ consisting of vectors $x = (x_1, \ldots, x_8)$ with $\sum x_i = 0$ and all x_i in one of \mathbb{Z} or $\frac{1}{2} + \mathbb{Z}$. The positive definite unimodular lattice E_7^2 is defined by

$$E_7^2 = E_7 \oplus E_7 \cup (g + E_7 \oplus E_7),$$

$$g = (\frac{3^2}{2}, \frac{1^6}{4}, \frac{3^2}{2}, -\frac{1^6}{4}) \in E_7$$

We note that E_7^2/E_7 is cyclic of order 2 generated by $[g]$. In this section we show
Proposition 9.1. $e_0(E_7^2) = 1$, $f_2(E_7^2) = 2$ and $f_4(E_7^2) = 2$.

Consequently, the inequalities of Theorems 2.1, 2.2 and 2.5 give different genus bounds for the lattice $L := E_7^2$. In the course of the proof to follow we leave some of the computations to the reader.

Proof. We need to understand the index two cosets of L and their extremal vectors. We divide the cosets into two types: those in the image of the inclusion-induced map

$$\pi : \frac{E_7 \oplus E_7}{2(E_7 \oplus E_7)} \rightarrow L / 2L$$

and those that are not. To better understand the former case, we list the index two cosets of E_7. These are easily found by hand, and are also listed in [CS99] p. 169. First define

$$x = (1, -1, 0^6), \quad y = (1^2, -1^2, 0^4), \quad z = (\frac{3^2}{4}, \frac{-1^6}{2}).$$

Note that $x^2 = 2, y^2 = 4$ and $z^2 = 6$. Consider the cosets $w + 2E_7$ for $w \in \{0, x, y, z\}$. After applying automorphisms of E_7 to these we obtain all cosets in $E_7/2E_7$. There are 63 cosets in the orbit of $x + 2E_7$, each represented by a vector of square 2, unique up to sign, and there are similarly 63 cosets in the orbit of $y + 2E_7$, each having 12 square 4 vectors. There are only two other cosets, represented by 0 and \mathcal{I}, which are fixed under the action of the automorphism group. Thus the total number of cosets is $1 + 63 + 63 + 1 = 27^2$, as expected.

The cosets in L that lie in the image of π are therefore represented by (u, v) for $u, v \in \{0, x, y, z\}$ and some cosets obtained from these by applying automorphisms. The case (z, z) can be ignored; indeed, $(z, z) = 2g$, so this vector represents the zero coset. Next we note $(y, z) - 2g = (t, 0)$ where $t = (-1/2^3, 1/2^3)$ has square 2, and $(y, y) - 2g = (t, t)$, a vector of square 4. Similarly, (x, z) is mod 2 equivalent to a vector of square 4 supported in $E_7 \oplus 0$. Thus by symmetry, when maximizing over the data defining $e_0(L)$, $f_2(L)$ and $f_4(L)$ which has w extremal and $w + 2L$ contained in the image of π, we may restrict our attention to w being among $(x, 0)$, $(y, 0)$, $(z, 0)$, (x, x) and (x, y).

Now we consider cosets not contained in the image of π. We claim that upon defining

$$a = (\frac{3^2}{4}, -\frac{1^6}{4}), \quad b = (\frac{3^3}{4}, -\frac{5}{4}, -\frac{1^4}{4}), \quad c = (\frac{7^1}{4}, -\frac{1^7}{4}),$$

all elements in $L/2L - \text{im}(\pi)$ are obtained from the cosets represented by (a, a), (a, b), (a, c), (b, b), (b, c) and (c, c) after perhaps applying an automorphism of L. The claim is verified by counting. First note that π has 1-dimensional kernel. Indeed, a basis for E_7^2 is given by the rows of the matrix:

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -3 & -3 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -3 & -3 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 \\
0 & 0 \\
\end{bmatrix}$$

32
Every row in the matrix except for the first lies in $E_7 \oplus E_7$, and the first row is equivalent modulo $2\mathcal{L}$ to the vector $g \in \mathcal{L}$. Thus every coset not in the image of π is of the form $[g] + [w]$ where $[w] \in \text{im}(\pi)$, and there are $2^{13} = 8192$ such cosets.

We consider orbits of the automorphism group acting on $[w] = w + 2\mathcal{L}$ as w varies through the above representatives. Let G be the subgroup of $\text{Aut}(\mathcal{L})$ generated by automorphisms that permute the first 8 or last 8 coordinates, the automorphism that swaps the first and last 8 coordinates, and the automorphism σ that negates the first 8 coordinates. First consider

$$w = (a, b) = \left(\frac{3}{4}, \frac{3}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}\right)$$

Then $G \cdot w$ consists of vectors obtained from w by permuting the placement of the $3/4$ terms within each E_7-factor and changing signs on each E_7-factor. Thus $\#G \cdot w = 4 \cdot \binom{4}{2} \cdot \binom{4}{2} = 3316$. The only mod 2 congruences among $v \in G \cdot w$ are $v \equiv -v$, and so $\#G \cdot [w] = \frac{1}{2} #G \cdot w = 1568$. Next, consider

$$w = (a, b) = \left(\frac{3}{4}, \frac{3}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}\right)$$

We compute $\#G \cdot w = 4 \cdot 2 \cdot \binom{4}{2} \cdot \binom{4}{2}$. However, the stabilizer for G acting on $[w]$ consists of σ, the automorphism swapping the first and last 4 coordinates of the second E_7-factor, and any permutation preserving the first 12 coordinates. Taking this into account, we compute $\#G \cdot [w] = 2 \cdot \binom{4}{2} \cdot \binom{4}{2} = 3920$.

We proceed in this manner to find that $\#G \cdot [w]$ for w among $(a, a), (a, b), (a, c), (b, b), (b, c)$ and (c, c) is equal to 1568, 3920, 112, 2450, 140 and 2, respectively. These add up to 8192, and this verifies the claim stated in the previous paragraph.

In summary, when maximizing over the data defining $e_0(\mathcal{L}), f_2(\mathcal{L})$ and $f_3(\mathcal{L})$ we may restrict our attention to computing $\eta(\mathcal{L}, w, a, m)$ for which w is in the following table.

<table>
<thead>
<tr>
<th>w</th>
<th>$(x, 0)$</th>
<th>(a, a)</th>
<th>(x, x)</th>
<th>$(y, 0)$</th>
<th>(a, b)</th>
<th>(a, c)</th>
<th>(x, y)</th>
<th>$(z, 0)$</th>
<th>(b, b)</th>
<th>(b, c)</th>
<th>(c, c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w^2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

In each case w is extremal. We next claim the following, where in each case w runs over the vectors in the table: (i) $\eta(\mathcal{L}, w) = 0$ for $w \in \{(x, y), (z, 0)\}$ and $\eta(\mathcal{L}, w, e, 1) = 0$ for $w \in \{(b, b), (b, c), (c, c)\}$ as e runs over a basis for \mathcal{L}; and (ii) $2^{m+1} \eta(\mathcal{L}, w, e_1, \ldots, e_m, 0) \equiv 0 \pmod{2}$ for each $m \geq 0$ with $w^2 - m \geq 4$, where e_1, \ldots, e_m are arbitrary elements of a basis for \mathcal{L}^w. It is straightforward to verify these claims by computer once one knows $\text{Min}(w + 2\mathcal{L})$ for each w above. For example, if $w = (c, c)$, this set consists of the 64 vectors obtained by permuting the placement of the 7/4 terms within each E_7-summand. Claim (i) implies $e_0(\mathcal{L}) = 1$ and $f_2(\mathcal{L}) = 2$. More precisely, for the latter, it establishes that $f_2(\mathcal{L}) \leq 2$, and Lemma 3.2 implies equality. Claim (ii) implies $f_2(\mathcal{L}) = 2$.

The following result collects the lattices that occur in Elkies’ List, Table 1 above, under the constraint $f_2(\mathcal{L}) \leq 2$. In terms of our topological tools, it combines the restrictions of having d-invariant 2 and the mod two inequality of Theorem 2.1 having left-hand side equal to 2. We do not know if the lattice E_8^2 ever occurs under the hypotheses given.

Proposition 9.2. Suppose Y is an integer homology 3-sphere with $d(Y) = 2$ and $\delta_2 v_2 = 0$. If a smooth, compact, oriented 4-manifold with no 2-torsion in its homology has boundary Y and reduced negative-definite non-diagonal intersection form \mathcal{L}, then $-\mathcal{L}$ is one of E_8, Γ_{12}, E_7^2.

33
Suppose \(L = D^2_8 \). This lattice is generated by \(D_8 \oplus D_8 \) along with \(g_1 = ((1/2^8),(-1^1,0^7)) \) and \(g_2 = ((-1^1,0^7),(1/2^8)) \). As before, superscripts denote repeated entries. Then \(w = g_1 + g_2 \) is extremal of square 4, and \(\text{Min}(w + 2L) = \{w,-w\} \), implying \(m(L) \geq w^2 - 1 = 3 \).

Next, suppose \(L = D^3_6 \). Then \(L \) is generated by \(D_6 \oplus D_6 \oplus D_6 \) and \(g_1 = (0,(1/2^6),(1/2^5,-1/2^1)) \), \(g_2 = ((1/2^5,-1/2^1),0,(1/2^6)) \) and \(g_3 = ((1/2^6),(1/2^5,-1/2^1),0) \). Then \(w = g_1 - g_2 \) is extremal of square 4 and as before \(m(L) \geq 3 \).

Next, suppose \(L = D^5_4 \). Then \(L \) is generated by \(D_4 \oplus D_4 \oplus D_4 \oplus D_4 \) along with \(g = ((1/2^4)^5) \) and \(g_1 = (0,(0^3,1^1),(1/2^3,-1/2^1),(1/2^4,-1/2^2),(0^3,1^1)) \), and cyclic permutations \(g_2,g_3,g_4,g_5 \) of \(g_1 \). Then \(w = g \) is extremal of square 5 with \(\text{Min}(w + 2L) = \{w,-w\} \), implying \(m(L) \geq 4 \).

Now suppose \(L = A_{22}^2 \). We sketch the construction of this lattice following Construction A of [CS99, Ch.7] using the shortened Golay code \(C_{22} \). Let \(S \) be the subspace of the Golay code \(C_{24} \) consisting of vectors with first two coordinates 00 or 11, where \(C_{24} \subset \mathbb{F}_{24}^2 \) is spanned by the rows of Fig. 3.4 in [CS99, p.84]. Then \(C_{23} \) is the subspace of \(\mathbb{F}_{22}^2 \) obtained by projecting \(S \) onto the last 22 coordinates, and \(A^2_{22} \) is the subset of \(\mathbb{R}^{22} \) consisting of vectors \(\bar{x}/\sqrt{2} \) such that \(\bar{x} \mod 2 \) lies in \(C_{22} \). Let \(\bar{v} \in \{(0,1)^{22} \} \) descend to the code word \(\bar{v} \mod 2 \) in \(C_{22} \) with 10 entries equal to 1, obtained by summing the first 11 rows of Fig. 3.4 in [CS99, p.84], ignoring the first two coordinates. Then \(w = \bar{v}/\sqrt{2} \in A^2_{22} \) is extremal of square 5. It is straightforward to verify that any extremal vector equivalent to \(w \) is of the form \(w + 2r \) for a root \(r \). The roots are the elements with one nonzero entry equal to \(\pm 2/\sqrt{2} \). From this we obtain \(\text{Min}(w + 2L) = \{w,-w\} \), implying \(m(L) \geq 4 \).

Finally, suppose \(L = O_{23} \), the shorter Leech lattice. Let \(w \) be any vector of square 5; such a vector exists by inspecting the theta-series of \(O_{23} \), as given in (7) of [CS99, p.443]. Using that \(O_{23} \) has no roots, \(\text{Min}(w + 2L) = \{w,-w\} \), and \(m(L) \geq 4 \). \(\square \)

References

