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Equivariant aspects of singular instanton Floer homology

Aliakbar Daemi* Christopher Scaduto

Abstract

We associate several invariants to a knot in an integer homology 3-sphere using SU(2) singular
instanton gauge theory. There is a space of framed singular connections for such a knot, equipped with
a circle action and an equivariant Chern—Simons functional, and our constructions are morally derived
from the associated equivariant Morse chain complexes. In particular, we construct a triad of groups
analogous to the knot Floer homology package in Heegaard Floer homology, several Frgyshov-type
invariants which are concordance invariants, and more. The behavior of our constructions under
connected sums are determined. We recover most of Kronheimer and Mrowka’s singular instanton
homology constructions from our invariants. Finally, the ADHM description of the moduli space
of instantons on the 4-sphere can be used to give a concrete characterization of the moduli spaces
involved in the invariants of spherical knots, and we demonstrate this point in several examples.
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1 Introduction

Instanton Floer homology [Flo88] and Heegaard Floer homology [OS04b] provide two
powerful invariants of 3-manifolds, each of which have knot-theoretic variations: singular
instanton Floer homology [KM11b] and knot Floer homology [OS04a, Ras03]. These knot
invariants share many formal properties: they are both functorial with respect to surface
cobordisms, they each have skein exact triangles, and it is even conjectured that some
versions of the theories agree with one another [KM10b, Conjecture 7.25]. Despite their
similarities, each of the two theories have some advantage over the other.

On the one hand, singular instanton Floer homology is more directly related to the
fundamental group of the knot complement. For example, this Floer homology can be used
to show that the knot group of any non-trivial knot admits a non-abelian representation into
the Lie group SU(2) [KMO04, KM 10b]. On the other hand, knot Floer homology currently
has a richer algebraic structure which can be used to obtain invariants of closed 3-manifolds
obtained by surgery on a knot [OS08, OS11]. Moreover, knot Floer homology is more
computable, and in fact has combinatorial descriptions [MOS09, OS19].

A natural question is whether there is a refinement of singular instanton Floer homology
that helps bridge the gap between the two theories. An important step in this direction was
recently taken by Kronheimer and Mrowka [KM19c]. The main goal of the present paper
is to propose a different approach to this question. Like [KM11b, KM11a], we construct
invariants of knots in integer homology spheres using singular instantons. However, in
contrast to those constructions, we do not avoid reducibles, and instead exploit them to
derive equivariant homological invariants. As we explain below, the relevant symmetry
group in this setting is S*.

The knot invariants in this paper recover various versions of singular instanton Floer
homology in the literature, including all of the ones constructed in [KM11a, KM 13, KM19c].
Moreover, some of the structures of our invariants do not seem to have any obvious analogues
in the context of Heegaard Floer invariants. For instance, a filtration by the Chern-Simons
functional and a Floer homology group categorifying the knot signature can be derived from
the main construction of the present work.

Motivation

The basic idea behind the main construction of the present paper is to construct a config-
uration space of singular connections with an S!'-action. Let K be a knot in an integer
homology sphere Y and fix a basepoint on K. Consider the space of connections on the
trivial SU(2)-bundle E over Y which are singular along K and such that the holonomy
along any meridian of K is asymptotic to a conjugate of

—1

[é 0 ] e SU(2) (L.1)

as the size of meridian goes to zero. (See Section 2 for a more precise review of the definition
of such singular connections.) A framed singular connection is a singular connection with a
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trivialization of E at the basepoint of K such that the holonomy of the connection along a
meridian of K at the basepoint is asymptotic to (1.1) (rather than just conjugate to it). The
space of automorphisms of E acts freely on the space of framed singular connections and
we denote the quotient by (Y, K). There is an S'-action on %(Y, K) given by changing
the framing at the basepoint.

An important feature of this S!-action is that the stabilizers of elements in B (Y, K) are
not all the same. The element —1 € S* acts trivially on @(Y, K). Thus the action factors
through S* = S'/{+1} which acts freely on a singular framed connection in 7 (Y, K) unless
the underlying singular connection is S'-reducible, namely, it respects a decomposition of
E into a sum of two (necessarily dual) complex line bundles. Although framed connections
do not appear in the sequel, our constructions are motivated by the above S'-action and the
interactions between framed singular connections with different stabilizers. An important
source of inspiration for the authors was a similar story for non-singular connections which
is developed in [Don02, Frg02, Mil19].

S-complexes associated to knots

The fundamental object that we associate to a knot X < Y in an integer homology 3-sphere
is a chain complex (C (Y, K), d) which is a module over the graded ring Z[x]/(x?), where
x has degree 1. The ring Z[x]/(x?) should be thought of as the homology ring of S* where
the ring structure is induced by the multiplication map. In particular, one expects a similar
structure arising from the singular chain complex of a topological space with an S!-action.
In our setup, singular homology is replaced with Floer homology. In fact, the chain complex
5’*(Y, K) we associate to a knot K decomposes as:

Cu(Y,K) = Co(Y, K) @ Cy (Y, K)[1] @ Z. (1.2)

Here C, (Y, K) is Z/4-graded, C, (Y, K)[1] is the same complex as Cy (Y, K) with the
grading shifted up by 1, and Z is in grading 0. The action of x on C, (Y, K) maps the
first factor by the identity to the second factor, and maps the remaining two factors to zero.
We call a chain complex over the graded ring Z[x]/(x?) of the form (1.2) an S-complex.
Although the complex C. (Y, K) depends on some auxiliary choices (e.g. a Riemannian
metric), the chain homotopy type of C. (Y, K) in the category of S-complexes is an invariant
of (Y, K). (See Section 3 for more details.) In particular, the homology

L(Y.K) = H(C.(Y, K),d)

is an invariant of the pair (Y, K'). We will see below that this homology group is naturally
isomorphic to Kronheimer and Mrowka’s 1%(Y, K) from [KM11a].

By applying various algebraic constructions to the S-complex C. (Y, K') we can recover
various knot invariants and also construct new ones. One of the invariants we recover is
a counterpart of Floer’s instanton homology for integer homology spheres, and may be
compared to a version of Collin and Steer’s orbifold instanton homology from [CS99].
The differential d gives rise to a differential d on C,(Y, K), and we write I, (Y, K) for



the homology of the complex (Cy (Y, K),d). The Euler characteristic of I,.(Y, K) was
essentially computed by Herald [Her97], generalizing the work of Lin [Lin92]. In summary,
we have the following:

Theorem 1.3. Let K < Y be a knot embedded in an integer homology 3-sphere Y. The
Z/4-graded abelian group 1.(Y, K) is an invariant of the equivalence class of the knot
(Y, K). Its Euler characteristic satisfies

1

KLY, K)) = AX(Y) + 5o (K)

where \(Y) is the Casson invariant of Y and o (K) is the signature of the knot K C Y.

~ ~

Another chain complex that can be constructed from (C (Y, K), d) is given by:

~ ~ ~

ColY,K) = Co(Y, K) ®z Z[] di=—d+xz-x

The homology of this complex can be regarded, morally, as the S*-equivariant homology
of 337()/, K). This equivariant complex inherits a Z/4-grading from the tensor product
grading of C,(Y, K) and Z[z], where the latter has z° in grading —2i. The homology
of (6’* (Y, K), J) gives a counterpart of H F'K~ in the context of singular instanton Floer
homology.

Theorem 1.4. The homology of the complex (Cj’* (Y, K), c’i\), denoted by I, (Y,K), is a
topological invariant of the pair (Y, K) as a Z/4-graded Z[x]-module. Moreover, one can
construct Z,/A-graded Z[x]-modules I, (Y, K) and I.(Y, K) from (6'* (Y, K), c/l\) which are
invariants of the pair (Y, K). These modules fit into two exact triangles:

LOVK) — 5 I.(Y,K) L(V,K) — 5 I(Y,K)
I.(Y,K) (1.5) T.(Y, K) (1.6)

The top arrow in (1.6) is induced by multiplication by x. Furthermore, 1,(Y, K) is isomor-
phic to Z[[z~!, x] as a Z[z]-module.

The invariants I, (Y, K), T, (Y, K) and I, (Y, K) are analogues of the Heegaard Floer knot
homology groups HFK* (Y, K), HFK®(Y, K) and H/ﬁ((Y, K). The exact triangles in
(1.5) and (1.6) are also counterparts of similar exact triangles for the knot Floer homology
groups in Heegaard Floer theory.

Remark 1.7. Recently, Li introduced K H 1~ in [Li19] as another approach to define the
instanton counterpart of H F'K ~ using sutured manifolds. We expect that K HI~ for a knot
K in an integer homology 3-sphere Y can be recovered from C. (Y, K) using an algebraic
construction similar to what appears in Subsection 8.3. ¢



There are even further refinements of (5* (Y, K), cT) which can be constructed following
ideas contained in [KM11b,Dael8]. The refinements come from equivariant local coefficient
systems on the framed configuration space ,@(Y, K) that can be used to define twisted
versions of the complex (C (Y, K),d). The universal local coefficient system A that we
consider is defined over the two-variable Laurent polynomial ring

R = Z[U', TH,

and it gives rise to an S-complex (Cy (Y, K; A), d). Roughly, the variable T is related to
the holonomy of flat connections around the knot and the “monopole charge” of instantons,
while the variable U is related to the Chern—Simons functional on flat connections and
the topological energy, or action, of instantons. All of the invariants in this paper may be
derived from (C, (Y, K; A), CT) assuming one keeps track of all of its relevant structures.
(See Section 7 for more details.)

If .7 is an Z-algebra, we can change our local coefficient system by a base change and
define an S-complex (é* (Y,K;Ay), 67) over the ring .#, and its chain homotopy type as
an S-complex over . is again an invariant of the knot. We then obtain, for example, an
#-module I(Y, K; A ) and an .#[x]-module I(Y, K; A ) which are also knot invariants.
Evaluation of 7" and U at 1 defines an #-algebra structure on Z, and the associated S-
complex recovers the untwisted complex (C (Y, K), d). Another case of interest is the base
change given by .7 =17 [T*1], which is an J-algebra by evaluation of U at 1, and this

gives the S-complex (Cx (Y, K;A5),d).

A connected sum theorem

Given two pairs (Y, K) and (Y, K’) of knots in integer homology spheres, we may form
another such pair (Y#Y', K# K') by taking the connected sum of 3-manifolds and knots.
It is natural to ask if the S-complex associated to (Y #Y’, K#K') can be related to those
of (Y, K) and (Y’, K'). The following theorem answers this question affirmatively, and
should be compared with the connected sum theorem for instanton Floer homology of
integer homology spheres [Fuk96]. In fact, our proof is inspired by the treatment of Fukaya’s
connected sum theorem in [Don02, Section 7.4].

Theorem 1.8. There is a chain homotopy equivalence of Z/4-graded S-complexes
CY#Y' K#K') ~C(Y,K)®z C(Y', K').

More generally, in the setting of local coefficients, we have a chain homotopy equivalence of
Z/A-graded S-complexes over # = Z[U*!, T+!]:

CY#Y  K#K';A) ~ C(Y,K;A) @5 C(Y', K'; A).

We remark that the tensor product of two S-complexes is naturally an S-complex and
refer the reader to Section 4 for more detailAs. The above theorem allowNS us to recover
the invariants of [(Y#Y' K#K';Ag)and [(Y#Y', K#K'; A &) from C(Y, K; A) and

~

C(Y’, K'; A). In particular, if the ring .’[ ] is a PID, then there is Kiinneth formula relating

~ ~ ~

IY#Y' , K#K';Ay)to (Y, K; Ay)and I(Y', K'; Ay).



Recovering invariants of Kronheimer and Mrowka

Kronheimer and Mrowka have defined several versions of singular instanton Floer homology
groups. There are the reduced invariants I%(Y, K), first defined as abelian groups in [KM 1 1a],
and later defined using local coefficients as modules over the ring F[Tlil,TQil,Tg—rl]
where F is the field of two elements [KM19c]. There are also the unreduced invariants
I#(Y, K), first defined as abelian groups in [KM]11a], then defined using local coeffi-
cients as modules over the ring Q[T*!] in [KM13], and finally as modules over the ring
F[T5, T, T, T8 in [KM19c].

The definition of each of these invariants follows a similar pattern. To avoid working
with reducible singular connections, one firstly picks (Yp, K() such that there is no reducible
singular connection associated to this pair. This assumption requires working in a set up
that allows K to be a link or more generally a web [KM19a], equipped with a bundle of
structure group SO(3), instead of SU(2). Then the invariant of the pair (Y, K) is defined
by applying Floer theoretical methods to the configuration space of singular connections on
the pair (Y #Yp, K#Kjy). A variation of our connected sum theorem allows us to prove the
following theorem. (For more details, see Section 8.)

Theorem 1.9. All the different versions of the invariants 1 Y, K) and I #(Y,K) can be
recovered from the homotopy type of the chain complex (C«(Y, K; A),d) over %|x]. For

~

instance, I(Y, K), defined as in [KM11a], is isomorphic to H(C(Y, K), d):
INY,K) =~ I(Y,K).
Furthermore, I(Y, K), with local coefficients defined as in [KM19c), is isomorphic to
I(Y,K;Ag) @71 FITH, T, T3 (1.10)

where the 7 |x]|-module structure on F[T 14;1’ TQﬂ, Tgﬂ] is given by mapping T € T =
Z[T*'] to Ty and x to the element

Pi=TTTs + T7 Ty ' Ty + T Ty + T Ty Ty
Similarly, I (Y, K), with local coefficients defined as in [KM19c], is isomorphic to
I(Y,K; A7) @71 FITH, T, T3, 51192 (1.11)
where the 7 [x]-module structure on F[T; ", T T Ty sends T v Tp, © — P.

The isomorphisms between the local coefficients versions of I%(Y, K) and I#(Y, K)
and the modules (1.10) and (1.11) are given more precisely in Corollaries 8.41 and 8.37.

Although it is not clear from its definition, Theorem 1.9 suggests that the most recent
version of I%(Y, K) from [KM19c] can be regarded as an S'-equivariant theory, and similar
results hold for the other versions of singular instanton Floer homology in an appropriate
sense. The knot homology I n(Y, K) is defined in [KM19c] only for characteristic 2 rings



because of a feature of instanton Floer homology for webs. On the other hand, the above
theorem suggests that this restriction is not essential. The above theorem also asserts that
I%(Y, K) is given by applying a base change to a module defined over the subring F[Tf—rl, P]
of F[T{Y, Tyt T4, Thus I°(Y, K) is essentially a module over this smaller ring, and the
F[Tf—rl , Tzil, Tgil]—module structure is obtained by applying a formal algebraic construction.
Furthermore, while I*(Y, K) as defined in [KM19¢] only has a Z/2-grading, our invariant
(1.10) comes equipped with a Z/4-grading.

Spherical knots and ADHM construction

For a spherical knot K, the moduli spaces of singular instantons involved in the defini-
tion of the chain complex (é*(Y, K;A), J) can be characterized in terms of the moduli
spaces of (non-singular) instantons on S*. In particular, it is reasonable to expect that the
ADHM description of instantons on S* can be used to directly compute the S-complex
(Co(Y,K;A),d). To manifest this idea, let K, , be the (p,q) two-bridge knot whose
branched double cover is the lens space L(p, q). Using the results of [Aus95, Fur90] we
can compute part of the S-complex (é*(an; A), 67) In particular, a specialization of
our instanton homology for K, , recovers a version of instanton homology for the lens
space L(p, q) defined by Sasahira in [Sas13] (see also [Fur90]), which takes the form of a
Z /4-graded F-vector space I.(L(p, q)). For the following, let F := F[z]/(2% + = + 1) be

the field with four elements. (See Subsection 9.2.2 for more details.)

Theorem 1.12. There is an isomorphism of Z/4-graded vector spaces over F
Li(Kpg; Ar,) = L(L(p, —q)) ® F4

where the local system Ag, is obtained from A 7 ® F via the base change sending T to x.

Concordance invariants

We say a knot K in an integer homology sphere Y is homology concordant to a knot K’ in
another integer homology sphere Y if there is an integer homology cobordism W from Y’
to Y/ and a properly and smoothly embedded cylinder S in W such that S = —K u K'.
In particular, a classical concordance for knots in S produces a homology concordance.
The collection of knots modulo this relation defines an abelian group Cz, where addition is
given by taking the connected sum of the knots within the connected sum of the ambient
homology spheres. The S-complex C (Y, K; A) can be used to define various algebraic
objects invariant under homology concordance.

The simplest version of our concordance invariants is an integer-valued homomor-
phism from the homology concordance group, and its definition is inspired by Frgyshov’s
homomorphism h from the homology cobordism group to the integers [Frg(02], a prede-
cessor to the Heegaard Floer d-invariant of Ozsvath and Szabé [OS03] and Frgyshov’s
monopole h-invariant [Frg10]. In fact, we obtain a homology concordance homomorphism
for each (C4(Y, K; A ), d) that depends on the choice of an Z-algebra . and is denoted
by h# (Y, K) € Z. Its basic properties are summarized as follows.



Theorem 1.13. Let . be an integral domain %-algebra. The invariant h o satisfies:
(i) ho(Y#Y', K#K') = hy(Y,K) + hy (Y, K').

(i) Suppose (W, S) : (Y, K) — (Y', K') is a cobordism of pairs such that H;(W;Z) = 0,
the homology class of S is divisible by 4, and the double cover of W branched over S
is negative definite. Then we have:

hy(Y, K) < hy(Y/, K/).

In particular, h.& induces a homomorphism from the homology concordance group to the
integers, which in turn induces a homomorphism from the smooth concordance group of
knots in the 3-sphere to the integers.

The cobordism (W, S) appearing in (ii) is an example of what we call a negative definite
pair in the sequel. When K is a knot in the 3-sphere, we simply write h.o (K) for the
invariant h »(S3, K), and similarly for the other invariants we define. The two choices of
. that we focus on are Z and .7 = Z[T*!]. For the former choice we simply write h:

WY, K) i= hg (Y, K)

The two invariants h and h 5 take on different values for simple knots in the 3-sphere. Some
of our computations from Section 9 are summarized as follows.
Theorem 1.14. We have the following computations for the invariants h and h 7 :
(i) For any two-bridge knot we have h = (.
(ii) For the positive (right-handed) trefoil we have h o = 1.
(iii) For the positive (3,4) and (3, 5) torus knots we have h = 1.

(iv) For the following families of torus knots, we have h = (:

(p, 2pk + 2), k=1
(p,2pk £ (2—-p)), k=1

Although Theorem 1.14 computes h » only for one knot, we expect that h » (K) for a
general knot can be evaluated in terms of classical invariants of K. We will address this
claim in a forthcoming work.

Remark 1.15. Recently, a version of the invariant 4 (K') and a 1-parameter family variation
of it is used in [Ech19] to study a Furuta-Ohta type invariant for tori embedded in a 4-
manifold with the integral homology of S x S3. ¢

A refinement of h o (Y, K) has the form of a nested sequence of ideals of .,

(VLK) SIS (Y, K) S JZ(V,K) S-S ..

)

This sequence depends only on the homology concordance of (Y, K), and recovers the
invariant h o (Y, K). Its basic properties are summarized as follows.
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Theorem 1.16. The nested sequence of ideals {J; (Y, K)}iez in &/ satisfy:

Q) J7 (Y, K)-J7 (Y, K') < JL(Y#Y' K#K')

Gi) If (W, S) : (Y, K) — (Y, K') is a negative definite pair, J7 (Y, K) = JZ (Y’ K").
(iii) ho(Y,K) =max{ie Z: J7(Y,K) # 0}.

All of the constructions discussed thus far are derived from the chain homotopy type of
the S-complex 5‘(Y, K; A o). However, there is more structure to exploit on this complex,
coming from a filtration induced by the Chern—Simons functional. (The terminology that we
use for S-complexes with this extra structure is an enriched S-complex. We refer the reader
to Subsection 7.3 for a more precise definition.)

The Chern—Simons filtration can also be used to define homology concordance invariants.
To illustrate this, we associate F& K L~ R> U o to a pair (Y, K) by adapting the
construction of [Dael8] to our setup. Here R is any integral domain which is an algebra over
the ring Z[T*!]. The function F& K) depends only on the homology concordance class
of (Y, K). Some other properties are mentioned in the following theorem. For a slightly
stronger version see Theorem 7.24.

Theorem 1.17. Let (Y, K) be a knot in an integer homology 3-sphere.

(i) The function FFY, K) is an invariant of the homology concordance class of (Y, K).
(ii) For eachi € Z, we have F&K) (1) < o ifand only if i < hr(Y, K).

(iii) Foreachie€ Z, ifI’fY K) (1) ¢ {0, 00}, then it is congruent (mod Z) to the value of the
Chern-Simons functional at an irreducible singular flat SU(2) connection on (Y, K).

A traceless SU (2)-representation for a pair (Y, K) is a representation of 1 (Y'\ K) into
SU (2) such that a (and hence any) meridian of K is mapped to an element of SU(2) with
vanishing trace. For instance, the unknot has a unique conjugacy class of such representations
which, of course, has an abelian image. Similarly, for a given homology concordance
(W, S) : (Y,K) — (Y', K'), a traceless representation is a homomorphism of 71 (W\S)
into SU(2) such that a meridian of S is mapped to a traceless element of SU(2). In
particular, any traceless representation of the pair (Y, K') (resp. (W, .S)) induces an SO(3)-
representation of the orbifold fundamental group of the Z/2-orbifold structure on Y (resp.
W) with singular locus K (resp. S).

The following is a corollary of the invariance of F'g% K) under homology concordances.
(Compare to the case for integer homology 3-spheres in [Dae18, Theorem 3].)

Corollary 1.18. Ler (W,S) : (Y,K) — (Y',K') be a homology concordance with
FFY, K 7 nggy). Then there exists a traceless representation of (W, S) that extends
non-abelian traceless representations of (Y, K) and (Y', K'). In particular, the images of

m (Y\K) and 71 (Y'\K") in 71 (W\S) are non-abelian.

Note that the condition Fg/ K) 7 Fﬁqg ) is satisfied if hr(Y, K) # 0, examples for
which can be found in Theorem 1.14 (and more examples may be generated by additivity).

11



Further discussion

Functoriality of the S-complex 6’(Y, K; A) with respect to homology concordances plays
the key role in proving the desired properties of the above concordance invariants. In
fact, if (W, S) : (Y,K) — (Y’, K’) is a negative definite pair, then there is an induced
morphism C(W, S; A) : C(Y,K;A) — C(Y',K’; A) in the category of S-complexes,
which preserves the Chern-Simons filtration, in the sense of enriched S-complexes. This
notion of functoriality implies that the chain complexes and homology groups constructed
from C(Y, K;A), such as C(Y, K; A), I(Y, K; A) and I(Y, K; A), are functorial with
respect to such negative definite pairs.

The main reason that we develop the functoriality for this limited family of cobordisms
is to avoid working with moduli spaces of singular instantons that have reducible elements
that are not cut out transversely. To achieve a regular moduli space, one cannot simply
perturb these connections, due to the well-known phenomenon that equivariant transversality
does not hold generically. However, there is enough evidence to believe that at least the
equivariant theory C (Y, K; A) (and hence the homology theory (Y K; A)) is functorial
with respect to more general cobordisms. We plan to return to this issue elsewhere.

In addition to extending the theory to include more general cobordisms, the authors also
expect that an Alexander grading may be constructed on the homology groups studied here,
perhaps adapting the ideas used in [KM10a].

In [KM19d, KM 13], Kronheimer and Mrowka introduce various concordance invariants
out of the singular instanton homology groups I#(S3, K') and I°(S%, K). In fact, they show
that their invariants can be used to obtain lower bounds for the slice genus, unoriented slice
genus, and unknotting number. Due to our limited functoriality, at this point we cannot
examine our concordance invariants in this generality here. We hope that our conjectured
functoriality for C (Y, K; A) allows us to achieve this goal. In light of Theorem 1.9, we
believe that this extended functoriality would be useful to answer the following:

Question 1.19. Is there any relationship between the concordance invariants in [KM19d,
KM 13] and the ideals {J;” (Y, K)}icz appearing in Theorem 1.16?

In Subsection 8.8 we propose an approach to construct yet another family of concordance
invariants which we argue should recover Kronheimer and Mrowka’s invariants in [KM19d].
Moreover, if K is a knot in S? satisfying the following slice genus identity:

g4(K) = —0o(K)/2, (1.20)

such as the right-handed trefoil, then the functoriality developed in this paper allows us
to carry out the proposed construction. In particular, we show that the concordance in-
variants obtained from the unreduced theory 7% (S, K) and the reduced theory I%(S?, K)
in [KM19d] are essentially equal to each other, a relation which is not obvious from the
constructions of [KM19d]. For the knots satisfying (1.20), we also give a partial answer to
Question 1.19 by providing some relations between the concordance invariants of [KM19d]
and the ideals {J; (Y, K)}cz.
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Organization. The necessary background on the gauge theory of singular connections,
which was developed by Kronheimer and Mrowka, is reviewed in Section 2. In particular,
we devote Subsection 2.7 to analyzing reducible singular ASD connections, which play an
important role in our construction. The definition of negative definite pair arises naturally
from this analysis. The geometrical setup of Section 2 allows us to define the S-complex
(C(Y,K),d) in Section 3. Some technical constructions involving holonomy maps of
singular connections used in Section 3 are explained in Appendix A at the end of the paper.

We make a digression in Section 4 to develop the homological algebra of S-complexes.
In Subsections 4.2 and 4.3, we give two models for the chain complexes underlying the
equivariant homology groups I , I and T. We also define tensor products (needed for Theorem
7.10) and duals of S-complexes in Section 4. We use these operations to define a local
equivalence group following the construction of [Sto17]. The algebraic framework for the
ideals J; (Y, K) is defined in Subsection 4.7. Next, in Section 5, the algebraic constructions
of Section 4 are used to define equivariant Floer homology groups I, (Y, K), I (Y,K) and
1.(Y, K) and the concordance invariant i(Y, K).

Theorem 7.10 on invariants of connected sums is proved in Section 6. In Section 7 we
explain how one can obtain additional algebraic structures on C (Y, K) using local coefficient
systems. Here the general concordance invariants h_» (Y, K), {J7 (Y, K)} and Ff%y, K) are
defined. Theorem 1.9 is discussed in detail in Section 8. In the final section of the paper, we
focus on computations, where proofs of Theorems 1.12 and 1.14 are given.
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mistakes and providing comments on an earlier version of the paper.
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2 Background on singular SU(2) gauge theory

In this section we survey the relevant aspects of singular SU(2) gauge theory. The objects
we begin with are SU(2) connections on a homology 3-sphere which are singular along
a knot, with limiting holonomies of order 4 around small meridional loops. Most of the
definitions and results are due to Kronheimer and Mrowka [KM11b]. The main difference
in our setup is the presence of a distinguished flat reducible . In particular, we modify the
holonomy perturbation scheme of [KM11b] so as to not disturb #, which is isolated and
non-degenerate in the moduli space of singular flat connections.

Next, we consider ASD connections on cobordisms of homology spheres which are
singular along an embedded cobordism of knots. We start with the product case, and then
move to the arbitrary case. To any such connection, we can associate an elliptic operator,
called the ASD operator. We study the index of such operators for reducible singular
connections on a cobordism, which motivates the definition of negative definite pairs. We
also use the ASD operator to define an absolute Z/4-grading for irreducible critical points
using #, analogous to Floer’s grading in the non-singular setting.

We review a formula due to Herald [Her97] that expresses the signed count of singular
flat SU(2) connections in terms of the Casson invariant of the homology 3-sphere and the
signature of the knot. Finally, we review the data needed to fix orientations on moduli spaces
of singular ASD connections.

2.1 Singular SU(2) connections

Let Y be an integer homology 3-sphere, and K < Y a smoothly embedded knot. Fix a
rank 2 Hermitian vector bundle E over Y with structure group SU(2), with a reduction
E|x = L @ L* over the knot for some Hermitian line bundle L. Note that E and L
are necessarily trivializable bundles. The pair (Y, K') determines a smooth 3-dimensional
Z/2-orbifold Y, with underlying topological space Y and singular locus K.

Choose a regular neighborhood of K < Y diffeomorphic to S* x D?, in which K is
identified with S1 x {0}. Let (r, ) € D? be polar coordinates normal to K. Define

1
No = b(r) 7idf

where b(r) is a bump function equal to 1 for » < 1/2 and zero for » > 1. Then )\ is a
1-form on Y\ K with values in iR = u(1). Using trivializations of E and L that respect the
splitting E|x = L@ L*, we view By := Ao @ \§ as a connection on E|y\ . The holonomy
of this connection is of order 4 around small meridional loops of K.

The adjoint bundle of E, written gz, is the subbundle of End(F) consisting of skew-
Hermitian endomophisms, and has structure group SO(3) = Aut(su(2)). The singular
connection By induces a connection on gg denoted Bgd. It has holonomy of order 2 around
small meridional loops of K, and so it extends to an orbifold connection Bgd on an orbifold
bundle gz over Y whose underlying topological bundle is gz.
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Fix k = 3, and choose a Riemannian metric g, on Y with cone angle 7 along K, which
induces a Riemannian metric on the orbifold Y. The space of SU(2) connections on Y with
singularities of order 4 along K is defined as follows:

C(Y,K) = Bo + L} (VA" ® )

The function space on the right-hand side consists of sections b of A* ® g5 such that Vb
are L? for 0 < i < k, where the orbifold connection V is defined using the Levi-Civita
derivative induced by g, and the covariant derivative induced by the adjoint of By. We have
written A* for the orbifold bundle of exterior forms on Y.

The gauge transformation group ¥(Y, K) consists of the orbifold automorphisms g
of the bundle E such that Vg g € Lz’B(a]d- Write (Y, K) = ¢ (Y, K)/9(Y, K) for the
quotient configuration space. The homotopy type of 4 (Y, K) is the same as that of the space
of continuous automorphisms of E that preserve each factor of E|x = L @ L*, and this
latter group may be identified with the space of continuous maps g : Y — SU(2) such that
g(K) < U(1). We have an isomorphism

d:m(@(Y,K) > Z@Z, dg) = (k1) @.1)
With the above homotopy identifications understood, the number £ is the degree of the map
g:Y — SU(2), and [ is the degree of the restriction g|x : K — U(1).

2.2 The Chern-Simons functional and flat connections

There is defined a Chern-Simons functional CS : (Y, K) — R, uniquely characterized up

to a constant as the functional whose formal L? gradient is given by

1
(grad CS)p = ot Fg

for each B € ¥ (Y, K), where Fp is the curvature of B. For a gauge transformation
g € 9(Y, K) with homotopy invariants d(g) = (k,[) as in (2.1), we have

CS(B) — CS(g(B)) = 2k + L.

We thus obtain a circle-valued functional CS : Z(Y, K) — R/Z, defined up to the addition
of a constant, denoted by the same name. The critical points of CS are flat connections on
E|y\k with prescribed holonomy around meridians of K. We denote by € = #(Y, K) the
set of gauge equivalence classes of flat connections.

By choosing a basepoint in Y\ K and taking holonomy around based loops in Y\ K, we
obtain a homeomorphism between ¢ and the traceless SU(2) character variety,

Z(Y.K) = {p: m(Y\K) — SU(2) : trp(ys) = 0} /SU(2). 2.2)

Here p is any meridional loop around K, and the action of SU (2) is by conjugation. This
correspondence does not depend on the chosen basepoint.
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There is a distinguished class 6 € ZA(Y, K), the (flat) reducible, characterized as the
orbit of flat connections in %'(Y, K') corresponding to the unique conjugacy class of represen-
tations in (2.2) that factor through H, (Y\K;Z) =~ Z - u. We call a class of flat connections
[B] € € non-degenerate if the Hessian of CS at B is non-degenerate. The following result is
implied by [KM11b, Lemma 3.13]. See also Proposition 2.32.

Proposition 2.3. The reducible 0 € € is isolated and non-degenerate.

Flat connections in the class § have ¢ (Y, K )-stabilizer isomorphic to U(1). Indeed, gauge
stabilizers arise as centralizers of holonomy groups, and the holonomy group of a connection
in the class 6 is conjugate to the subgroup {+1, +i} < SU(2), with centralizer U(1).

We note that 6 is not the only gauge equivalence class of reducible connections: any
connection in ¢'(Y, K') compatible with a reduction of E|y k into a sum of line bundles
also has stabilizer U(1). However, among such reducibles, the connections in the orbit ¢
are the only ones that are flat. As the other reducibles are not relevant to the sequel, we feel
justified in calling 6 the reducible, with “flat” being implicit.

We see now that € may be written as the disjoint union {#} L €™ where €' consists of
flat irreducible connection classes, each with ¢ (Y, K)-stabilizer {+1}. Finally, we may fix
the ambiguity in the definition of CS : A(Y, K') — R/Z by declaring that CS(6) = 0.

2.3 The flip symmetry

There is an involution ¢ on the configuration space A(Y, K), defined as follows. Consider a
flat Z/2 bundle-with-connection £ over Y\ K with holonomy —1 around meridians of K,
corresponding to a generator of H'(Y\K;Z/2). Then for [B] € Z(Y, K) we have

B] = [B®¢] 24

The involution ¢ is the “flip symmetry” considered, for example, in [KM93, Section 2(iv)].
(The flip symmetry there is in fact in the 4-dimensional setting, but is defined similarly.)
Although the involution ¢ will not play an essential role in most of the sequel, it inevitably
appears in the structure of our examples in Section 9. In a forthcoming work, we give a
more systematic study of the interaction of + with the S'-equivariant theories introduced
throughout this paper.

The flip symmetry ¢ restricts to an involution on the critical set €. In terms of the
character variety 2 (Y, K), the action of ¢ is induced by the assignment which sends a
representation p : w1 (Y'\K) — SU(2) to the representation x, - p, where x/, is the unique
non-trivial representation x, : m1(Y\K) — {£1}, again corresponding to a generator of
HY(Y\K;Z/2). (In particular, note y,, itself does not define a class in 2°(Y, K).) From
this it is clear that +(f) = 6. More generally, the following elementary lemma is observed in
[PS17], where this involution on the character variety is studied:

Lemma 2.5. An element of the critical set € is fixed by the flip symmetry v if and only if its
corresponding representation class in 2 (Y, K) has image in SU(2) conjugate to a binary
dihedral subgroup.
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2.4 Perturbing the critical set

In general, the critical set €' is degenerate. To fix this, we add a small perturbation to the
Chern-Simons functional. Kronheimer and Mrowka use holonomy perturbations in [KM11b,
Section 3] modelled after those used in the non-singular setting, see [Tau90, Don87, Flo88].
Although not essential, we would like to have a class of perturbations that leave the reducible
alone, just as in Floer’s instanton homology for integer homology 3-spheres.

We first describe the pertubations used in [KM 1 1b, Section 3]. Let ¢ : S' x D? — Y\K
be a smooth immersion. Let s and z be the coordinates of S* = R/Z and D?, respectively.
Consider the bundle Gg — Y whose sections are gauge transformations in ¢4 (Y, K'), and
for each B € € (Y, K) and z € D? let Hol,(_ ,y(B) € (GE)y0,») be the holonomy of B
around the corresponding loop based at ¢(0, z). As z varies we obtain a section Hol,(B) of
the bundle ¢* (G g) over the disk D2,

Suppose we have a tuple of such immersions, q = (g1, . . ., g, ), with the property that
they all agree on [—n,n] x D? for some > 0. The bundles q; (Gg) are canonically
isomorphic over this neighborhood, and for each B € €'(Y, K), the holonomy maps define a
section Holg(B) : D* — ¢}(G%). Choose a smooth function h : SU(2)" — R invariant
under the diagonal adjoint action on the factors. Then  also defines a function on ¢} (Gg).
Choose a non-negative 2-form . supported on the interior of D? with integral 1. Define

falB) = | hHolq(B))n
Kronheimer and Mrowka call such functions cylinder functions. The space of perturbations
they consider is a Banach space completion of sums of cylinder functions where q and A run
over a fixed dense set. This Banach space is called Z.

When adding a cylinder function to the Chern-Simons functional, the reducible § may be
perturbed. To avoid this, consider the point in SU(2)" obtained by choosing a representative
connection for # and taking its holonomy around the loops ¢y, ..., q,. The orbit of this
point under the conjugation action of SU(2) defines a subset Oy — SU(2)" independent
of the choice of the representative for . Note that if h : SU(2)" — R is constant on
a neighborhood of Oy then any associated cylinder function fy which is small leaves
the reducible 6 unperturbed, isolated and non-degenerate. We may form a Banach space
P’ < P of such perturbations. We write €, for the critical set of the Chern-Simons
functional perturbed by 7 € .

Proposition 2.6. There is a residual subset of &' such that for all sufficiently small 7 in this
subset, the set of irreducible critical points €' of the perturbed Chern-Simons functional is
finite and non-degenerate, and €, = {0} L €, where 0 remains non-degenerate.

Sketch of the proof. This is analogue of [KM11b, Proposition 3.10] and the the proof is
similar. The essential point is that for any compact finite dimensional submanifold M of the

space of irreducibles in B(Y, K) the restrictions of the perturbation functions in &’ form a
dense subset of C™(M). O
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Remark 2.7. In [Don02, Section 5.5], Donaldson uses a different class of holonomy perturba-
tions to deform the ordinary, non-singular flat equation. As mentioned in [KM11b, Section
3], this approach may also be adapted to the singular setting. The above perturbations
are modified as follows: each immersion g; from above is assumed to be an embedding,
but we no longer require that the ¢;’s agree on [—n,n] X D?; and we now require that
h: SU(2)" — R is invariant under the adjoint action on each factor separately. Following
the discussion in [Don02, Section 5.5], we may proceed just as in the non-singular case,
ensuring that the reducible remains unmoved and non-degenerate. ¢

Remark 2.8. Although not needed in the sequel, we may actually perturb the Chern-Simons
functional, keeping the reducible isolated and non-degenerate, and achieving non-degeneracy
at the remaining elements of the critical set, by a perturbation which is invariant with respect
to the flip symmetry ¢. If @ = (q1,...,¢,) is as above, the involution ¢ either fixes the
holonomy of a singular connection along a loop g; or changes it by a sign, depending on
whether the homology class of g; is an even or odd multiple of the meridian of K. This
induces an action of Z/2 on SU(2)" and we consider functions » : SU(2)" — R which are
additionally invariant with respect to this Z/2-action. The induced function on A(Y, K) is
invariant with respect to the action of .. We may proceed as above to define a space 2"
and an analogue of Proposition 2.6 holds for this more constrained space of perturbations.
Indeed, in this new set up we must show that for M a compact (-invariant submanifold
of irreducibles in A(Y, K), the restrictions of functions in #” is dense in the space of
t-invariant smooth functions on M ; this can be done as in [Was65]. ¢

2.5 Gradient trajectories and gradings

Solutions to the formal L? gradient flow of the Chern-Simons functional satisfy the anti-self-
duality (ASD) equations on the cylinder Z = R x Y. To describe the latter, we consider
connections A = B + Cdt on Z, where B is a t-dependent singular SU (2) connection
on (Y, K), and C is a t-dependent section in L2(Y'; §). Then the 4-dimensional ASD
equations on R x Y, perturbed by a holonomy perturbation 7, are

Fi 4+ Vi(A) =0. 2.9)

Here V,.(A) is the projection of dt A Vi (A) to the self-dual bundle-valued 2-forms, where
V: is the pull-back of the gradient of the perturbation 7 of the Chern-Simons functional.
Solutions A to (2.9) are called (singular) instantons on the cylinder.

Let 7 € 22’ be a perturbation such that €I is finite and non-degenerate. Consider
irreducible classes o; = [B;] € €l fori = 1,2. Let Ag be a connection on R x Y as written
above, which agrees with pullbacks of B and B; for large negative and large positive ¢t € R,
respectively. The connection A determines a path v : R — A(Y, K), constant outside of a
compact set. From this we have a relative homotopy class z = [y] € 71 (ZA(Y, K); 51, B2).
We then have a space of connections

©,(Z,S: By, By) = {A A= Age L2 u(Z;ir ®[\1)}
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where S = R x K, and Z is the Z /2-orbifold with the underlying space Z and singular
locus S. The corresponding gauge transformation group %, (Y, K; By, B2) consists of
orbifold automorphisms g of E with V 4,9 € ﬂ; Ao+ We then have the quotient space
%Z(Y, K; a1, 012) = %W(Z, S; Bl, BQ)/%W(Z, S; Bl, BQ).

The associated moduli space of ASD connections on the cylinder is defined as

M. (a1, a0) = {[A] e BV, K; a1, a0) : Ff + Vy(A) = o}

We write M (a1, ap) for the disjoint union of the M, (a1, ag) as z ranges over all relative
homotopy classes from «; to ap. There is an R-action on M (a1, arz) induced by translation
in the R-factor of the cylinder R x Y. This action is free on non-constant trajectories; we
write M (ar1, org) for the subset of the quotient M (a1, az) /R which excludes the constant
trajectories. We have a relative grading

gr, (a1, a2) = ind(Z4) = vdimM, (a1, a2) € Z

Here A is any connection in ¢, (Z, S; B1, B2), for example A = Ag; and the elliptic operator
P4 = —d¥ @ (d}; + DV;) is the linearized (perturbed) ASD operator with gauge fixing:

Da: Ly pa(Ziar @A) — L) 4u(Z;8r @ (A @ AT)) (2.10)

We have written v.dimM,, (a1, ag) for the virtual dimension of the moduli space; when
dz + D‘A/7r is surjective, we say that [A] € M, (o, o) is a regular solution, and when this
is true for all [A] € M, (a1, ag), we say that the moduli space is regular. When M, (a1, o)
is regular, it is a smooth manifold of dimension gr, (a1, o). We write M (o, arg)4 for the
disjoint union of moduli spaces M (a1, az) with gr, (a1, a2) = d, and M(al, a9)g—1 =
M (aq, a2)q/R. In general, our conventions will be compatible with the rule that a subscript
d € Z in the notation for a moduli space is equal to its virtual dimension.

Now we slightly diverge from [KM11b] and consider moduli spaces with reducible flat
limits. This is done exactly as in [Flo88]. When one or both of «; are reducible, then in the
definition of M (a1, aa) we consider classes [A] such that A — Ag is in

0L} yu(Z:6r ® AY), @11)

a weighted Sobolev space. The weight ¢ : Z — R is a smooth function equal to e~ It for
some sufficiently small ¢ > 0 and |¢| » 0. In particular, our sections decay exponentially
along the ends of the cylinder. With this modification, we may define Z4 and gr, (a1, a2) =
ind(Z4) when one or both of «; are reducible.

The following is adapted from [KM11b, Proposition 3.8], and differs by our inclusion
of the reducible 6 and our restrictions on perturbations from the previous subsection. The
essential point is that the only reducible element of M, («1, as) is the constant solution
associated to 6, which we already know is regular by Proposition 2.32. Now similar
arguments as in [Don02, Chapter 5] can be used to verify the following proposition.
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Proposition 2.12. Suppose g € 2’ is a perturbation such that the critical points of

Cry = {0} L Qﬁi{; are non-degenerate. Then there exists m € &' such that

(1) fr = fr, in a neighborhood of the critical points of CS + fr,;
(i1) the critical sets for the two perturbations are the same, €, = €, ;

(iii) all moduli spaces M. («q, 2) for the perturbation m are regular.

Remark 2.13. The involution ¢ may be defined on the singular connection classes we consider
here on R x (Y, K), just as in (2.4), using the pullback of £. Following the discussion at the
end of Subsection 2.4, we may in fact choose a perturbation which is invariant under the
involution ¢ and such that the conclusions of Proposition 2.12 hold. The key point is that
before perturbing, there are no non-constant gradient flow lines invariant under ¢. ¢

From now on we assume that the perturbation 7 in the definition of the moduli spaces
M (a1, az) is chosen such that the claims in Propositions 2.6 and 2.12 hold. Some other
important properties of the moduli spaces are summarized as follows. The first is essentially
Proposition 3.22 of [KM11b].

Proposition 2.14. Let oy, s € €. If M. (aq,2) is of dimension less than 4, then the
space of unparametrized broken trajectories M} (aq, as) is compact.

Recall that an element of M (av1, ova), an unparametrized broken trajectory, is by definition
a collection [4;] € Mzi (Biy Big1) fori =1,...,1 — 1 with 1 = oy and 5; = «a, and such
that the concatenation of the homotopy classes z; is equal to z. We use the standard approach
to topologize M (a1, a).

The second result follows from Corollary 3.25 of [KM11b], and is special to our hypoth-
esis that our model singular connection has order 4 holonomy around meridians.

Proposition 2.15. Given d = 0, there are only finitely many o1, o € &, and z such that
M. (o, ag) is non-empty and gr, (o, ag) = d.

In particular, M (a1, a2)p is a finite set of points.

We now discuss some aspects of these gradings. Let g € 4 (Y, K) have homotopy invari-
ants d(g) = (k,l) asin (2.1). Choose = [B] € A(Y, K), and let z € 71 (AB(Y, K); o) be
the homotopy class induced by a path from B to g(B). Then

gr,(a, ) = 8k + 41, (2.16)

see [KM11b, Lemma 3.14]. From standard linear gluing theory, as in [Don02, Chapter 3],
when a9 is non-degenerate and irreducible we have

gr, (a1, a0) +gr, (az,a3) = gr, (a1,a3) (2.17)

where z13 is the concatenation of z19 and 293. Using (2.16) and (2.17) we conclude that
gr, (a1, ) modulo 4 does not depend on the homotopy class z, and we set

gr(ag, az) := gr(ai,a2) mod 4.
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This defines a relative Z/4-grading on the irreducible ciritical set €', We lift this to an
absolute Z /4-grading using the reducible, analogous to Floer [Fl088]: for v € €1 set

gr(a) := gr,(a,0) mod 4 (2.18)

for any choice of homtopy class z. Now (2.17) does not hold when aip = 6; as the dimension
of the gauge stabilizer of 6 is 1 = dim U(1), by [Don02, Section 3.3.1] we instead have

gr,,(a1,0) +1+gr, (0,a3) = gr, (a1, a3). (2.19)

In particular, if we write gr(«) = gry («) € Z/4 to emaphasize the underlying 3-manifold
Y, we obtain the orientation-reversing property

gr y(a) =3 —gry(a) mod 4. (2.20)

From (2.19) we deduce the following, which is analogous to part of the compactness
principle in the non-singular setting, see Section 5.1 of [Don02].

Proposition 2.21. Let oy, a0 € €. If M (a1, ) is of dimension less than 3, then
M (o, ) has no broken trajectories that factor through 6.

Indeed, suppose a broken trajectory ([A1],. .., [A;—1]) factors through the reducible N > 1
times. Note that [ > 3. Then from our discussion thus far we have

-1
gr,(on,a9) = Y gr, (B, Bix1) + N>1—-1+ N >3,
=1

where we use gr, (8, Bi+1) = ind(Z4,) = 1 because A; is a non-constant singular instan-
ton. Thus we must have gr, (a1, a2) = dim M, (a1, az) = 3 for such a factoring to occur.
Note that in the non-singular setting, the dimension of the moduli space must be less than
5 to avoid breaking at the reducible. This is because the dimension of the stabilizer of the
reducible in that setting is 3 = dim SO(3) instead of 1.

2.6 Moduli spaces for cobordisms

We next discuss moduli spaces of instantons on cobordisms. Suppose we have a cobordism
of pairs (W, S) : (Y,K) — (Y’, K’) between two homology 3-spheres Y and Y’ with
embedded knots K and K, respectively. More precisely, W is an oriented 4-manifold
with boundary Y’ L1 —Y, and S < W is an embedded surface intersecting the boundary
transversely with 0S = S n dW = K 1 K'. Although it is possible to consider unoriented
surfaces as in [KM 1 1a], in this paper we will only be concerned with the case in which S is
connected and oriented. For a pair of composable cobordisms (W7, .S1) and (W3, S2) we
write (Wa, S2) o (W1,S1) = (Wy 0 Wy, Sy 0 S1) for the composite cobordism.

Given a cobordism (W, S) : (Y, K) — (Y',K’), equip W with an orbifold metric
that has a cone angle 7 along S, and which is a product near the boundary. Let W+
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(resp. ST) be obtained from W (resp. S) by attaching cylindrical ends to the boundary,
and extend the metric data in a translation-invariant fashion. Given classes a € A(Y, K)
and o/ € B(Y',K'), choose an SU(2) connection A on W singular along S* such
that the restrictions of A to the two ends are in the gauge equivalence classes of o and
o/. The homotopy class of A mod gauge rel «, o’ will be denoted by z. Similar to the
definition of %, (Y, K; ay, ) in the cylindrical case, we may form %,(W, S; a, o), the
gauge equivalence classes of singular connections on W whose representatives differ from
A by elements of regularity L%. Just as in the cylindrical case, when either of « or o' is
reducible, we use an appropriately weighted Sobolev norm for the end(s).

Remark 2.22. For a general discussion of the possibilities for the model connection and the
associated “singular bundle data” see [KM11a, Section 2]. However, the construction of
[KM93, Section 2] suffices for our purposes. In particular, we restrict our attention to the
case of structure group SU(2). ¢

We may then form the moduli space of instantons M (W, S; a, o) < B, (W, S; o, o).
The perturbed instanton equation defining the moduli space M (W, S; «, @) is of the fol-
lowing form along the incoming end (—o0,1] x Y < W:

Fi 4+ () Va(A) + 1o(t) Vg (A) = 0.

Here 7 and 7 are perturbations on R x Y as in (2.9),and ¢)(¢t) = 1 fort < OandOatt = 1,
while 1o (t) is supported on (0,1). We always choose 7 € &’ such that €, < AB(Y, K)
is as in Propositions 2.6 and 2.12. Similar remarks hold for the other end. For generic
choices of 7y and its analogue at the end of Y’ the irreducible part of the moduli space
M, (W, S;a,a’) is cut out transversally, and is a smooth manifold of dimension d, where
d=ind(Z4) =: gr,(W,S;a,d). (See [KM11b] and [KMO7, Section 24] for more details.)
Here 2, is the linearized ASD operator on (W, S™), analogous to (2.10), defined using
Sobolev spaces with exponential decay at the ends with reducible limits, as in (2.11). Write

MW, S;a,a)g = U M, (W, S;a,d).
gr, (W,S;a,0/)=d

Note that gr, (I x (Y, K); a1, a2) = gr, (a1, az). Furthermore, the linear gluing formulae
for gr, (aq, a2) in the cylindrical case extend in this more general context. In particular,
for cobordisms (W, S) : (Y,K) — (Y',K')and (W',5") : (Y',K') — (Y",K") with
composite cobordism (W”,S”) = (W', 5") o (W, S), we have

gr,(W, S;a,a’) + dim Stab(a') + gr,, (W', 5";/, ") = gr,,(W",S"; o, ")

where Stab(o/) < 4 (Y, K') is isomorphic to {+1} if ¢ is irreducible, and U (1) if it is
reducible. Just as in the cylindrical case, the mod 4 congruence class of gr, (W, S; «, ) is
independent of z, and for this we write gr(W, S; o, ') € Z /4.

An unparametrized broken trajectory for M, (W, S; «, ) is a triple consisting of an
instanton in M., (W, S; 3, 3’) and unparametrized broken trajectories in M (o, ) and
M +(B',a’), where 3 and 3’ are critical points for Y and Y, and z = 23 0 23 0 z1. The space
of such broken trajectories is denoted M (W, S; a, ).
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Remark 2.23. When z is dropped from either A, (W, S; o, o) or M, (W, S; a, @), it should
be understood that we are considering the union over all homotopy classes z. ¢

Suppose [A] € B, (W, S; «, ) is a singular connection for the pair (W, S). Then the
action, or topological energy, of [ A] is defined to be the Chern-Weil integral

1

A) = —
w(4) 82 WH\S+

Tr(Fa A Fjy).
Instantons [A] are characterized as having energy equal to 872 (A), and in particular
k(A) = 0, with equality if and only if A is flat. Furthermore,

25(A) = CS(a) — CS(a’) — %5 .S (mod Z). (2.24)

In this paper we will focus on the case in which the homology class of S is divisible by 4, in
which case we can ignore the term %S - S in this formula. Next, we define the monopole
number of [A], denoted v(A), by the following integral:
y(A) =L f Q.
™ Js+
The connection F4 extends to the singular locus S, and € in the above formula is a 2-form
with values in the orientation bundle of ST such that the restriction of F4 to the singular
locus has the following form:
Q 0
Fals+ = { 0 —Q ]

The numbers x(A) and v(A) are invariants of the homotopy class z, and determine it.
Moreover, the dimension d of a moduli space M (W, S; a, ') is determined by x(A), and
the homotopy classes z of the components of M (W, S; «, o) 4 are distinguished by their
monopole numbers v(A).

The flip symmetry of Subsection 2.3 extends to the case in which the homology class
of S is a multiple of 2 within Hy(WW;Z). In this case, there exists a flat Z/2 bundle-
with-connection ¢ over W\ S™ with holonomy —1 around small circles linking .S; then
L[A] := [A ® &] as before. We have the relations

k(tA) = k(A), v(LA) = —v(A), (2.25)

see [KM93, Lemma 2.12]. In particular, note that when (W', S™) is a cylinder, the
monopole number is negated under ¢.

2.7 Reducible connections and negative definite pairs

The goal of this subsection is to study the reducible solutions of the ASD equation on
a cobordism of pairs (W, S) : (Y,K) — (Y’, K’) between knots in integer homology
3-spheres. Any such connection is necessarily asymptotic to the reducibles associated
to (Y, K) and (Y’, K'). The following lemma gives a formula for the index of the ASD
operator associated to a connection that is asymptotic to reducibles:
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Lemma 2.26. Suppose the connection A represents an element of B,(W, S;0,6"). Then:

3 1
ind(Z4) = 8k(A) — i(U(W) +x(W)) + x(5) + 55’ S+o(K)—o(K')—1 (2.27)
where o (W) and o (K) are respectively the signature of the 4-manifold W and the signature
of the knot K, and for a topological space X, x(X) denotes the Euler characteristic of X.

Proof. We first compute the index for a slightly simpler case. Suppose that (X, ) has only
one outgoing end (Y, K'), the homology class of ¥ is trivial, and X denotes a branched
double cover of X branched along ¥ with covering involution 7 : X — X. There is a flat
singular connection associated to the pair (X, ) such that after lifting up to X and taking
the induced SO(3) adjoint connection, it can be extended to the trivial connection over X.
As an alternative description, we may consider the involution on the trivial bundle R* over
X which lifts the involution 7 and is given by:

((v1,v2,v3), %) € R® x X — ((v1, —vg, —v3), (). (2.28)

The quotient by this involution sends the trivial connection to an orbifold SO(3) connection
on X which lifts to our desired SU (2) reducible singular connection Ay.

We define the ASD operator Z4, in the same way as before using weighted Sobolev
spaces with exponential decay at the end. From the description of Ay, it is clear that
ker(Z.4,) is isomorphic as a vector space to the subspace of

H'(X;R) = H'(X)®R?

which is invariant under the involution induced by (2.28), which may be identified with
7* @ diag(1, —1, —1) where 7* acts on H'(X) and the diagonal matrix acts on R3. We
obtain that ker(Z4,) is isomorphic to H1 (X) @ H: (X)®2 where H A (X) denotes the
(+1)-eigenspace of the action of 7 on the cohomology group H Z()Z ). A similar argument
applies to the cokernel. In summary, we obtain:

ker(Z4,) =~ H (X)@® H! (X)®? (2.29)
coker(Z4,) = H{ (X)® H* (X)®2 @ H(X) (2.30)
A straightforward calculation shows that
] ~ ~ 1 1
ind(Z4,) = —(0(X) + x(X) + o (X) + x(X) - 5 231)

We further specialize to the case that (X, X)) is obtained by firstly pushing a Seifert surface
for K < {1} x Y into [0, 1] x Y and then capping the incoming end of [0, 1] x Y with a
4-manifold X with boundary Y. The signature of the 4-manifold obtained as the branched
double cover of the Seifert surface > pushed into [0, 1] x Y is equal to the signature of K.
Therefore, in this case we have:

o(X) = 20(X) + o(K) X(X) = 2x(X) = x(%)
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and the formula in (2.31) simplifies to:

3 1
—5(@(X) + x(X)) —o(K) + x(%) - 5.
Applying a similar construction as above to the pair (Y’, K”) and then changing the orienta-
tion of the underlying 4-manifold produces a pair (X', >’) with boundary (—Y”, K’) and a
reducible singular flat connection Ajf,. A similar argument as above shows:

3 1
ind(Z;) = =5(o(X") + x(X)) + o (K) + x(¥) - 5.
Gluing (X, X), (W, S) and (X', S”) produces a closed pair (W, S). We may also glue
Ay, A and Aj) to obtain a singular connection A on (W, S) with the same topological energy
as A. Additivity of the ASD indices implies that:

ind(Z3) = ind(%Z4,) + ind(Z4) + ind(Zy;) + 2

where the appearance of the term 2 on the left hand side is due to reducibility of the
connections # and #’. Now we can obtain (2.27) using the index formula in the closed case
[KM93] and our calculation of the indices of Ay and Aj,. ]

The same elementary observation which was used in (2.29)—(2.30) implies that:

Proposition 2.32. Suppose a cobordism of pairs (W, S) has a double branched cover
m:W — W. Let Abe a singular connection on (W, S) for some singular bundle data. If
the non-singular connection 7w A* is a regular ASD connection on W, then A is regular. In
particular, if 7% A* is trivial and b* (WN/) = 0, then A is regular.

To simplify our discussion about reducible singular instantons, we henceforth assume
H{(W;Z) = 0,b"(W) = 0, and S is an orientable surface of genus g whose homology
class is divisible by 4. By a slight abuse of notation, we write S for both the homology
class of S and its Poincaré dual. The space of reducible elements of the moduli spaces
M, (W, S;6,60") (with the trivial perturbation term) is in correspondence with the set of
isomorphism classes of U (1)-bundles on 1. For any line bundle L on W, there is a U(1)
reducible singular ASD connection Ay, := 1 @ n™* such that 7 is a singular ASD connection
on L, defined over W1\ S™. The connection 7 has the property that its holonomy along a
meridian of S is asymptotic to ¢ (rather than —2) as the size of the meridian goes to zero.
The topological energy and the monopole number of Ay, are given as follows:

R(AL) = —(er(L) + %S) (er(L) + iS) v(Ar) =2¢1(L) - S + %s .S

In particular, the topological energy is strictly positive unless ¢; (L) + iS is a torsion
cohomology class. By requiring H1(W;Z) = 0, we guarantee that there is a unique
reducible instanton with vanishing topological energy and monopole number.
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The index formula of Lemma 2.26, under the current assumptions, simplifies to:

ind(24,) = 85(A1) 29 + 55 -5 + o (K) — oK) 1
= 8k(AL) + 2(by (W) — b (W)) — 1

where W denotes the double cover of W branched along S, and the second identity can be
derived from the following standard identities:

~

o(W)=20(W)—-0(K)+o(K') — %S =S, X(W) =2x(W) — x(5).

As another observation about the topology of W, note that bl(ﬁ//) = 0. This is shown, for
example, in [Roh71] for the case that the pair (W, S) is a closed pair and the homology class
of S is non-trivial and a similar argument can be used to verify the same identity in our case.
In fact, we can reduce our case to the closed case by gluing the pairs (X, X)) and (X’,Y) as
in the proof of Lemma 2.26. We may also assume that the homology class of S is non-trivial
by taking the connected sum with the pair (@2, B) where B is a surface representing a
non-trivial homology class.

Definition 2.33. A cobordism of pairs (W, S) : (Y, K) — (Y’, K') between knots in integer
homology 3-spheres is a negative definite pair if H;(W;Z) = 0, b" (W) = 0, the homology

class of S is divisible by 4, and b* (W) = 0. The latter condition about the branched double
cover can be replaced with the following identity:

o(K') = o(K) + %s S4x(S). o

For a negative definite pair (W, S), ind(Z24, ) is equal to 8x(Ar) — 1. In particular,
the flat reducible Ag has index —1, and it is regular and has 1-dimensional stabilizer. All
remaining reducibles have higher indices. In fact, we may assume that all the other reducibles
are also regular [DCX 17, Subsection 7.3]. However, we do not need this fact in the sequel.
As the moduli space M (W, S;6,60")y defined with trivial perturbation contains a unique
regular reducible with vanishing x and v, the same is true for a small enough perturbation.

Example 2.34. For any pair (Y, K) of a knot in an integer homology sphere, the product
([0,1] x Y,[0,1] x K) is a negative definite pair. We fix two perturbations of the Chern-
Simons functional for (Y, K') and a perturbation of the ASD connection on the cobordism
associated to the product cobordism. The above discussion shows that if the perturbation of
the ASD equation is small enough, then M (W, S;6,6')y contains a unique regular reducible
with vanishing topological energy and monopole number. Here the ASD equation is defined
with respect to an orbifold metric, which is not necessarily a product metric. ¢

Example 2.35. Any homology concordance (W, S) : (Y, K) — (Y, K'), as defined in the
introduction, is a negative definite pair. ¢
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For a negative definite pair (W, .S), we may use the discussions of the previous and
present sections to ensure the regularity of the moduli spaces M (W, S; a, o), of expected
dimension at most 3. The analogues of Propositions 2.14 and 2.15 carry over as stated to the
setting of non-cylindrical cobordisms. However, we note that the analogue of Proposition
2.21 requires M, (W, S; v, @) to be regular and of dimension less than 2, instead of 3.

We close this subsection with some remarks on compactness and gluing theory for
singular instantons. Let (W, .S) be a cobordism with auxiliary data as in Subsection 2.6. For
simplicity of notation to follow we assume (W, S) : & — (Y, K), i.e. it has one boundary
component (Y, K'). We assume that the critical set €, is non-degenerate, and all moduli
spaces M, (W, S; a) for a € € are unobstructed and smooth.

Suppose « is irreducible, and let 31,..., 3 € € with ; = a. For any homotopy
classes z1, . . ., 2; with concatenation equal to z, there is a gluing map of the form

M., (W, S; 81) x Rao x M., (81, B2) x Rag x - - - X Rag X M, (Bi—1, B1) — M.(W, S; )

which is an embedding. In many cases we consider, the moduli space M (W, S;«) is
compact away from the image of this gluing map. There are only two other sources of
non-compactness that might occur. The first is from bubbling, which can occur only when
ind(Z24) = 4 for instantons [A] € M, (W, S;a). We will always be in a situation where
bubbling can be avoided.

The other source of non-compactness comes from reducible connections. This case is
important for us in the sequel. Suppose above that some ; for 1 < j < [l is reducible, i.e.
B = 6. Then the relevant gluing map in this situation takes the form

s x M, (Bj-1,0) x S* x Rag x M., (0, Bj41) x -+ — M.(W,S; )

where the rest of the domain is as before. The factor S* of “gluing parameters” may be
identified with the stabilizer of . In general one can glue along multiple reducibles, but in
the sequel we will only see the above case.

Finally, consider the case in which 51 = 6 is reducible, and M., (W, S;0) = {[A1]}
contains a unique regular reducible [A;] and no irreducibles. There is a gluing map

{[A1]} X Rag X M, (6, B2) X Rag % -+ X Rug x M, (Bi_1, 1) — M.(W, S; )

where as before 3; for j > 1 are irreducible. Here there is no gluing parameter as in the
previous case; from another viewpoint, the gluing parameter cancels with the stabilizer of
Aj. Compare the discussion in [DK90, p.325].

The situations we encounter below are all minor variations of the above. We will allow
(W, S) to have multiple boundary components, for example. Further, for M, (W, S;6), a
moduli space of irreducible singular instantons, the same constructions are available.

The compactness principle underlying our arguments in the sequel is as follows: if bub-
bling can be ruled out (as will always be the case), a sequence of instantons in M, (W, S; «)
which does not have a convergent subsequence does have a subsequence that eventually lies
in the image of one of the types of gluing maps described above.
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The moduli spaces M (W, S; «) which contain broken trajectories are topologized as
follows. Let a = ([A],[B1],...,[Bi—1]) € M} (W, S;«a) be a broken trajectory of the
first type considered above, where [A] is an instanton on (W, S) and [B;] on R x (Y, K),
with all limits irreducible. Then any neighborhood N of a € M (W, S; «) contains the
image under the gluing map of U x (T, 0) x Uy x -+ x (T, 00) x U;_; for some T » 0
depending on NV, and neighborhoods U and U; of [A] and [B;] in their respective moduli
spaces, which also depend on V. The other cases are similar. Note that the gluing parameter
factors involved in breakings at reducibles are forgotten in the completion of M (W, S; ).
Furthermore, if bubbling does not occur, then M (W, S; ) is compact.

The above summary relies on a substantial amount of technical work which is by now
standard or treated elsewhere. Gluing theory in instanton theory began with Taubes [Tau82],
and Floer developed the case of R x Y with Y an integer homology 3-sphere in his original
construction of instanton homology [Flo88]. In the singular setting, the machinary developed
in [KM11b], which also references [KMO07], handles the cases in which reducibles can
be avoided, and also describes the conditions under which bubbling occurs. The results
are similar to the case of non-singular instanton homology as treated in [Don02, 4.4,5.1].
The cases involving breaking at reducibles are also analogous to the non-singular case as
in [Don02, 4.4.1] and [Frg02, Theorem 5], except that instances of SO(3) (the stabilizer
of the reducible) are replaced by S'. All of the above fits into the general framework of
unobstructed gluing theory.

2.8 Counting critical points

In the non-singular SU (2) gauge theory setting, Taubes showed in [Tau90] that the signed
count of (perturbed) irreducible flat connections on an integer homology 3-sphere is equal
to 2\(Y'), twice the Casson invariant. Here “signed count” means that a critical point « is
counted with sign (—1)gr(a) where gr(«) is defined analogously to (2.18). In the singular
setting, we have the following, which is essentially a special case of a result due to Herald
[Her97], which followed the work of Lin [Lin92].

Theorem 2.36 (cf. Theorem 0.1 of [Her97]). Let Y be an integer homology 3-sphere and
K c Y aknot. Suppose 7 is a small perturbation such that € is non-degenerate. Then

3 (-)F = (Y) + Lo(K) (2.37)

aegir
where \(Y) is the Casson invariant of Y and o (K) is the signature of the knot K C Y.

As our setup is different from Herald’s, we explain how the work in [Her97] implies
Theorem 2.36. Suppose, as in the statement, that 7 is a small perturbation such that € is
non-degenerate. In particular, €' is a finite set. Let a1, i € €17 and write o; = [B;]. The
orientation, or sign, associated to «; is determined by the parity of gr(«;). In particular, the
signs for the two critical points o1 and a9 agree if and only if

gr(ag) — gr(ag) = gr(ag, az) =ind(Z4) mod 4
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is even. Here A is a connection on the cylinder R x Y with limits By and Bs, as in Subsection
2.5. In fact, we may arrange that the operator %4 is of the form % + Dpt), where B(t)isa
path of connections R — (Y, K) equal to By and B; for ¢t « 0 and ¢ » 0, respectively,
and Dp is the extended Hessian of CS + f, at B. It is well-known, in this situation, that
ind(Z24) is equal to the spectral flow of the path of operators D B(t)-

Now, consider a closed tubular neighborhood N < Y of the knot K, which as an orbifold
is isomorphic to the pair (S* x D?,S'). Extend the reduction of the bundle E|; = L @ L*
over N. We may assume that 7 is compactly supported. In particular, we may assume
that NV is chosen small enough so that 7 is supported on Y\N. The boundary of N is
a 2-torus. Write .#,x for the moduli space of flat U(1) connections on L|sx, which is
naturally identified with the dual torus of d/N. The torus .#zy is a 2-fold branched cover
over the moduli space of flat SU(2) connections on E|sp.

Let S € My be the embedded circle consisting of flat connections which are trace
free at the meridian of K. Let Y ° be the closure of Y\ V. Denote by

M = Moy

the image of the moduli space of 7-perturbed flat irreducible connections on F|y~ which
preserve the U (1) bundle L — E|yy. After perhaps changing our small perturbation 7, we
can assume that /\/li{/ro is immersed in M and also that Mi{fo intersects S transversely,
away from self-intersection points of i{/ro. We orient these manifolds as in [Her97].

Proposition 2.38. Let o; = [B;] € € for i = 1,2. As points in M, 1S = Moy, the
local orientations for c.y and az agree if and only if the spectral flow of Dpy) is even.

A proof of Proposition 2.38 follows by essentially repeating the proof of Proposition
7.2 in [Her97], which itself is a modification of Proposition 5.2 from [Tau90]. In the proof
of Proposition 7.2 in [Her97], the spectral flow of D B(t) is related to data on Y° and N
by analyzing a Mayer—Vietoris sequence of Fredholm bundles. While Proposition 7.2 in
[Her97] treats the case of flat connections with trivial holonomy around meridians of K, so
that IV is instead, as an orbifold, simply S* x D2, the argument easily adapts to our situation.

The main result of [Her97], Theorem 0.1, with o = /2, tells us that the intersection
number i{/ro - S is equal, up to a sign + which depends on our conventions, to the
quantity +(4A(Y) + o(K)). Together with Proposition 2.38, this implies equation (2.37)
of Theorem 2.36 up to the ambiguity +. An adaptation of [Her97, Lemma 7.5] shows that
the sign =+ is universal, i.e. independent of (Y, K). Finally, we determine that the sign is in
fact + by computing a non-trivial example, see e.g. Subsection 9.3.

2.9 Orienting moduli spaces

In this subsection, we fix our conventions for the orientation of ASD moduli spaces based on
[KM11b]. A similar discussion about the orientation of moduli spaces in the non-singular
case appears in [Don02, Section 5]. For any cobordism of pairs (W, S) : (Y, K) — (Y, K'),
and a path z along (W, S) between the critical points «, o for Y, Y’, the moduli space
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M, (W, S;a, ) is orientable. In fact, the index of the family of ASD operators %4 associ-
ated to connections [A] € Z#.(W, S; a, ') determines a trivial line bundle 1, (W, S; o, )
on A.(W,S; a,a’) and the restriction of this bundle to M, (W, S; v, @) is the orientation
bundle of the moduli space M, (W, S; a, o).

In the case that either «v or o is reducible, we may form a variation of the bundle
1,(W,S;a, o). For example, in the case that « = 6, we may change the definition of the
weighted Sobolev spaces of the domain and codomain of the ASD operator by allowing
exponential growth for an exponent ¢ rather than the exponential decay condition that we
used earlier. If € is non-zero and small enough, then this new ASD operator is still Fredholm
and its index is independent of €. Thus when «’ is irreducible, we have two choices of
determinant line bundles, both trivial, denoted by 1. (W, S;6_,a’) and ,(W,S; 04, '),
depending on whether we require exponential decay or exponential growth. We use a similar
notation in the case that o’ is reducible.

We denote the set of orientations of the bundle I, (W, S; «, ') by A, [W, S; «, &'], which
is a Z/2-torsor. For a composite cobordism, there is a natural isomorphism:

D . Azl [Wl, Sl; «, Oé/] ®Z/2Z AZQ [WQ, SQ; O/, Oé”] — A220z1 [Wg o} Wl, SQ o Sl; «, Oé”].

In the case that o is reducible, we require that one of the appearances of o/ in the domain
of @ is A, and the other #_. The isomorphism ® is associative when we compose three
cobordisms. Moreover, there is also a natural isomorphism between A,[W, S; «, /] and
A [W, S; a, ] for any two paths z, 2z’ from « to o/ and this isomorphism is compatible
with ®@. This allows us to drop z from our notation for A,[W, S; «, ']. We also drop (W, .S)
from our notation whenever the choice of (W, S) is clear from the context.

For a cobordism of pairs (W, S), an element in A[W, S;6_, 6" ] is identified with an ori-
entation of the determinant line [, (W, S;6_, 60" ) over any connection in the homotopy class
of paths z. Assuming S is oriented and A represents a reducible element of %, (W, S;6,6'),
this line may be identified as follows:

L(W, 80,00 )[4y = AP(H' (W)@ H(W)* @ HO(W)*). (2.39)

This holds because the connection A3¢ decomposes into a trivial connection on a trivial real
line bundle and an S'-connection on a complex line bundle Lg. The index of the operator
94, decomposes accordingly. The contribution from L can be oriented canonically as it is
a complex vector space, and the orientation of the contribution from the trivial line bundle
can be identified with the right hand side of (2.39). Similarly, we have an isomorphism

(W, S;01,00)[ag = A'P(H (W)@ H (W)*). (2.40)

A homology orientation for (W, S) is defined to be an element of A[W, S;6.,6" ], which
by (2.40) amounts to an orientation of the vector space

HW)® HY(W).

In particular, if (W, S) is a negative definite pair, we may take A, to be the unique flat
reducible on (W, S), and we have a canonical element of A[W, S;60.,6"].
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Changing the orientation of .S changes the orientation of the trivial real line bundle and
dualizes the complex line bundle L. In particular, the identifications in (2.39) and (2.40)
change sign respectively according to the parities of d + d’ — 1 and d + d’, where:

ind(Za,) —d+1

d=b'(W)—b"(W), d = 5

In the case that (¥, S) is a negative definite pair and Ay is the unique flat reducible, then the
identification in (2.39) changes by a sign whereas the identification in (2.40) is preserved. In
particular, the canonical homology orientation is independent of the orientation of .S.

Given (Y, K) and a € €, let Ala] := A[l x Y, I x K;«,6_] if « is irreducible, and
Ala] :=A[I xY,I x K;0,,0_]if a = 0. From the discussion in the previous paragraph,
because the cobordism (I x Y, I x K) has b! = b* = 0, it has a canonical homology
orientation, and there is thus a canonical element of A[f#]. We use this canonical choice
whenever we need an element from this set.

Given a homology orientation oy for (W, .S) and o, € Al and og € A[3], we can fix
oW, 850,00y € A[W, S; v, o'], and hence an orientation of M (W, S; o, o), by requiring:

(I)<0a ® OW) = q)(O(I/V,S;a,a/) ® Oo/)'

As a special case, we may apply this rule to orient a cylinder moduli space M., («, az) from
the data of o,, € Ala;] and 0,, € Afaz]. Let 75 be the translation on R x Y defined by
Ts(t,y) = (t — s,y). Then 74 acts on M, (a1, ag) by pull-back, and the identification

M, (a1, 00) = R x M, (a1, o) (2.41)

is such that the action of 7, is by addition by s on the R-factor. Then we may orient

M. (a1, arg) using an orientation of M («aq, a2), and requiring that the identification (2.41)
is orientation-preserving, with the ordering of factors as written.
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3 Instanton Floer homology groups for knots

In this section we introduce instanton homology groups for based knots in integer homology
3-spheres. Although we first introduce an analogue of Floer’s instanton homology for
homology 3-spheres, our main object of interest is a “framed” instanton homology, or rather
its chain-level manifestation, analogous to Donaldson’s theory for homology 3-spheres in
[Don02, Section 7.3.3]. The framed theory incorporates the reducible critical point and
certain maps defined via holonomy.

3.1 An analogue of Floer’s instanton homology for knots

Let (Y, K) be an integer homology 3-sphere with an embedded knot, as in Section 2. We
now also choose an orientation of the knot K, which will be required for some of the later
constructions. Equip Y with a Riemannian metric g, with cone angle 7 along K. Choose a
holonomy perturbation as in Propositions 2.6 and 2.12, so that the critical set &, = {0} U €I
is a finite set of non-degenerate points, and the moduli spaces M («v, ag) are all regular. We
define C' = C(Y, K) to be the free abelian group generated by the irreducible critical set:

CY,K)= P Z- (3.1

aegur

The mod 4 grading gr(«) of (2.18) gives C the structure of a Z/4-graded abelian group. As
usual, the grading will be indicated as a subscript, Cx, = C, (Y, K), but is often omitted.
The differential d on the group C is defined as follows:

d(a1) = Z #M (01, 02)p - . (3.2)
chGCi,\r.r
gr(ag,a2)=1
In the sequel we depict the map d by an undecorated cylinder () which should be thought
of as I x K. By Propositions 2.14 and 2.15, the moduli space M(al, ag)p is a finite set of
points. The coefficient #]\Zf (a1, a9)g is a signed count of these points. More precisely, we
may more invariantly define the chain group to be

C(Y,K) = @ ZA[q] (3.3)

aedlr

where ZA[a] is the rank 1 free abelian group with generators the elements of A[«] and the
relation that the sum of the two elements in A[«] is equal to zero. Recall that A[«] is defined
in Subsection 2.9. A choice of an element in each A[«] identifies (3.3) with (3.1). Then,
given on, € A[oy] and 04, € Alas], the moduli space M (a1, ap)g is oriented using the
rules given in Subsection 2.9, and #]\Zf (a1, a2)g is the count of this oriented 0-manifold.
Now (C(Y, K), d) is a chain complex, as follows from the usual argument by virtue of
Propositions 2.14, 2.15 and 2.21. Specifically, the boundary of a compactified 1-dimensional
moduli space M*(al, ai2)1 consists of the components M*(al, Bo % ]\ZJF(@’, a3)o. The
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relation d?> = 0 is depicted as 0 _D=o. Although not reflected in the notation,
C(Y, K) and d depend on the choices of metric g, and perturbation 7. Define

L(Y,K) = H,(C(Y, K),d).

Then I(Y, K) is a Z/4-graded abelian group. We call I(Y, K) the irreducible instanton
homology of (Y, K), as it only takes into account the irreducible critical points of the Chern-
Simons functional. It is a singular, or orbifold, analogue of Floer’s Z/8-graded instanton
homology I(Y") for homology 3-spheres from [Flo88].

Now suppose we have a cobordism of pairs (W, S) : (Y, K) — (Y’, K') with metric
and perturbations compatible with ones chosen for the boundaries. Suppose further that our
cobordism (W, S) is a negative definite pair in the sense of Definition 2.33. Then we have a
map A = Agy,s) : C(Y, K) — C(Y’, K') defined by

Ma)= > #MW,S;0,d)- o
a/GEi:,
er(W,S;a,0/)=0

where € and € are the corresponding critical sets, and o € e:i:f. More precisely, using the
complexes (3.3), we orient M (W, S; o, ') using o, € Ala] and 0, € A[c/] as described
in Subsection 2.9, and # M (W, S; a, )¢ is defined using this orientation. Note that because
b (W) = b* (W) = 0, we have a canonical homology orientation of (W, S).

Although the map A in general depends on the metric and perturbations, we have omitted

these dependencies from the notation. We depict the map A by an undecorated picture of S,
given for example by ©_ <~ . Write d’ for the differential of C'(Y”, K'). Then we have

dol—Xod=0

with the two terms representing factorizations @D and D@ correspond-
ing to the boundary points of M (W, S; a, /)1 from M (W, S; a, ')o x M(ﬁ’, a)o and
M(a, B)o x M(W, S; 3, a)o respectively.

We mention three standard properties of these cobordism maps. First, the composition of
two cobordism maps is chain chomotopic to the map associated to the composite cobordism.
That is, if we write (W, .S) = (W5 o W7, S9 0 .S7), then there exists ¢ such that

A(Wa,S2) © AWh,51) — Aw,s) =do¢ —¢od (3.4)

where on the composite cobordism W one takes the composite metric and perturbation data.
The second property is similar: there is a chain homotopy between two cobordism maps
Aw,s) that are defined using different perturbation and metric data on the interior of W.
Finally, the third property says that if (W,S) : (Y, K) — (Y, K) is diffeomorphic to a
cylinder with equal auxiliary data at the ends, then A(yy, sy is chain homotopic to the identity
map on C(Y, K). The chain homotopy in (3.4) is defined by counting isolated points in the
moduli space of G-instantons, where G is a 1-parameter family of metrics with perturbations
interpolating between the composite auxiliary data on W and the result of stretching W™
along the 3-manifold at which W; and W5 are glued. The other two properties are proven
similarly. See e.g. [Don02, Section 5.3].
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Remark 3.5. In the verification of equation (3.4) it is important that there is only one
reducible and that it remains unobstructed and isolated in the moduli space of G-instantons,
where G is the 1-parameter family of auxiliary data. This follows from our assumption that
the cobordisms are negative definite pairs and the discussion in Subsection 2.7. This is in
contrast to the analogous situation in Seiberg—Witten theory for 3-manifolds, where in the
same situation one might encounter degenerate reducibles. ¢

We write I(W, S) : I(Y, K) — I(Y', K") for the map induced by A(yy,5) on homology.
Following [Don02, Section 5.3], the above properties imply that (Y, K) is an invariant of
(Y, K), i.e., its isomorphism class does not depend on the metric and perturbation chosen
to define C(Y, K). Along with Theorem 2.36, we obtain the following result, stated as
Theorem 1.3 in the introduction.

Theorem 3.6. Let Y be an integer homology 3-sphere and K < Y a knot. Then the Z/4-
graded abelian group 1..(Y, K) is an invariant of the equivalence class of the knot (Y, K).
The euler characteristic of the irreducible instanton homology I.(Y, K) is

X (L:(Y,K)) =4XY) + %O’(K).

where \(Y') is the Casson invariant and o (K) is the knot signature.

3.2 The operators 9, and d,

The chain complex (C, d) is defined only using irreducible critical points. To begin in-
corporating the reducible flat connection, we define two chain maps 6; : C; — Z and
02 1 Z — (C_o, analagous to maps defined in the non-singular setting using the trivial
connection, see [Frg02] and [Don02, Ch. 7]. We define

01(e) = #M(a,0)0,  6a(1) = D #M(6, ).
aedl’
gr(a)=2
More precisely, the signs of these maps are defined, using the complexes (3.3), as follows.
The map 9, is straightforward: a choice o, € A[a] in the chain complex C (Y, K') determines
an orientation of M (a,0)o and hence of M (e, )y as described in Subsection 2.9, and
4M (a, 6)g is defined by using this orientation. For d2, we use the following rule. Given
0q € Ala], the moduli space M (6, «) obtains an orientation o’ by requiring that

Do/ ®0a) EA[I xY, I x K;0_,0_] 3.7

is the negative of the preferred element in this set. (Our particular choice of convention is not
important, but gives the signs that we use in our relations below.) Then M (6, o) is oriented
from M (6, a)g as in Subsection 2.9, from which #M (6, ) is defined.

Remark 3.8. Recall that elements in the set appearing in (3.7) may be identified with
orientations of (2.39) upon setting (W, S) = (I x Y, I x K). From the discussion there,
a preferred orientation depends on the orientation of S = I x K. This is the first point at
which we use our chosen orientation of K. ¢
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Just as in the non-singular case, see [Don02, Section 7.1], we have the chain relations
dhod=0, dody =0, 3.9

which follow by counting the boundary points of 1-manifolds of the form M+ (a1, 9)1
where one of o1 or ap is the reducible #. We depict 6; and 62 as(]__ ) and’(]__ ) respectively,
placing a dot at the end of the cylinder that has a reducible flat limit. Then the relations in
(3.9)are(] ] =0and"(__ )] )= 0, respectively.

Now suppose (W, S) : (Y,K) — (Y’,K’) is a cobordism of pairs. Then we define
maps Ay = Ay ,5): C(Y, K) — Zand Ay = Ay ) : Z — C(Y', K') as follows:

Ai(a) = #M(W, S;0,60")0,  Do(1)= >, #M(W,5;6,a").
o/e@i:/
er(W,S;0,a’)=0
The signed counts are determined as follows. Identify the chain complexes as generated
by orientations as in (3.3). First, for the map Aj, an element o, € A[«] determines an
orientation o of the moduli space M (W, S; a, 8')¢ by the requirement

b (0, ® o) = 0

where oyy is the canonical homology orientation of (W, S). Next, for Ay, we define an
orientation o' of M (W, S;0,a’)o given o, € A[a/] by requiring that

D0 ®on) € A[W,S;0_,0"]

is the canonical element. Note that this rule for Ay depends on the orientation of S, just as
when we defined the orientation rule for Js.

The maps A; and A, are depicted by placing dots at the appropriate ends of a picture
for S, e.g. ©_ > Jand T . The following is an analogue of [Frg02, Lemma 1].

Proposition 3.10. Suppose (W, S) : (Y, K) — (Y', K') is a negative definite pair. Then
(i) Ajod+d1—0joA=0,
(i1) d,OAQ—(Sé+)\O(52 = 0.

Proof. Consider (i). This relation can be verified by counting the ends of the 1-dimensional
moduli space M (W, S; «, 6')1. Studying the ends of such moduli spaces relies on the on
the compactness and gluing theory of the moduli spaces of singular instantons, which were
reviewed in Subsection 2.7. There are three types of ends in this moduli space. The first two
types are cylinders on components of M(a, B)o x M(W,S;3,0")o and M (W, S; «, )g
M (8',a’)o, corresponding to instantons approaching trajectories that are broken along
irreducible critical points. Counting these contributions gives Aj o d(a) — &} o A(«).

The third type of end in M (W, S; v, 0); consists of singular instantons which factorize
into an instanton [A] € M (v, 6) grafted to a reducible instanton on (W, S). The condition
that (W, S) is a negative definite pair implies that there is a unique such reducible connection
class, and by our discussion in Subsection 2.7 it is unobstructed, so that the standard gluing
theory applies. This third type of end thus contributes the term 1 ().

The proof of (ii) is similar. O]
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Figure 1: The relations (i) (left) and (ii) (right) of Proposition 3.10 .

Remark 3.11. The verification of the signs in the above relations is straightforward given our
conventions for orienting moduli spaces. The argument is similar, for example, to the proof
of [KMO7, Proposition 20.5.2]. The same remark holds for the relations that appear below. ¢

For a depiction of the relations in Proposition 3.10, see Figure 1. A shaded picture such
as @ is to be understood as representing a reducible singular instanton, and as a map
sends the reducible to the reducible, each represented by a dot, as before.

3.3 Holonomy operators and v-maps

In this section we describe maps that are obtained by taking the holonomies of instantons
along an embedded curve v < S, see e.g. [KM11a, Section 2.2]. We treat the following
cases: (i) vy is a closed loop and (W, S) is a negative definite pair; (ii) (W, S) and -y are
cylinders, i.e. (W, S) = (I x Y) and vy = I x {y}, which yields the v-map; and (iii) y is a
properly embedded interval intersecting both ends of a negative definite pair (1, S).

3.3.1 The case of closed loops

Consider a negative definite pair (W, S) : (Y, K) — (Y’, K’) and an associated configu-
ration space B(W, S; a, o) where « and o are irreducible critical points for (Y, K) and
(Y', K'), respectively. Let ~y be a closed loop lying on the interior of the surface S. Suppose
vg denotes the S'-bundle associated to the normal bundle of S and fix a trivialization of
this bundle over . Given [A] € (W, S; a, ), the adjoint connection A% can be used to
define an S'-connection over v, as described in the following paragraph.

The boundary of an ¢ tubular neighborhood of S in W is naturally isomorphic to the
S'-bundle vg over S, and by pulling back we obtain a connection A%} on vg. The limit of
these connections as € goes to zero defines a connection Agd on vg such that the curvature of
Agd has the fiber of vg in its kernel. Fixing an orientation for the fiber of g (or equivalently
an orientation for S) determines an S'-reduction of this bundle over vg. In particular, the
holonomy of this connection along a lift of v to vg, given by the trivialization of vg over 7,
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defines a map which depends only on the gauge equivalence class of A:
. : 1
Rl BW,S;a,d) — S (3.12)

Note that to make sense of the holonomy, we must choose a basepoint, an orientation of the
loop 7, an orientation of the fiber of v/g and a lift of v to vg. As S is abelian, the map hla,
is independent of the choice of basepoint defining the holonomy around ~y. If we change the
orientation of v, then hla, is post-composed with the conjugation S* — S'. Changing the
orientation of S has the same effect. Finally, changing the chosen lift of v would multiply
R} ., by +1.

Remark 3.13. In the sequel, we slightly abuse the description of this holonomy map by
saying that we take the holonomy of A% along , and do not refer to the limiting process. ©

Using this holonomy map we define p = py,5.) : C(Y, K) — C(Y’, K') by:

p(Br) = Z deg (h’oyza’|M(VV,SQC¥7al)l) o
a’e@i:,
er(W,S;a,a’)=1

This deserves some explanation, as the moduli space M (W, S; «, /)1 is in general not
compact. The boundary components of the compactified moduli space M (W, S; a, o')1
come from two types of factorizations:

v

M(avﬁ)o X M(W/’ S;ﬂaa/)()v
MW, S;, 80 x M(8',a/)o.

As each of the maps hg . and hzé j are defined on 0-dimensional moduli spaces and transverse
to some generic h € S*, the preimage (h} ,)~*(h) restricted to M (W, S;a, &)y is sup-
ported on the interior of M* (W, S; 31, B2)1. We may then define deg(h ., |n1(w,s:a,07), ) tO
be the oriented count of this preimage. We depict the map u by a picture of the surface S
containing the closed loop 7, such as .

Let us be more precise about our sign conventions for p. As usual, when determining
signs, our complexes are given by (3.3). The moduli space M (W, S; «, @’); is then oriented
from o, € Ala] and o, € A[&/] as described in Subsection 2.9. In this paper, we use the
convention that if f : M — N is a smooth map of oriented manifolds with regular value
y € N, then f~!(y) is oriented by the normal-directions-first convention. This orients the
submanifold (] )1 (h) € M(W,S;a,a)1.

Now consider a holonomy map hl . Testricted to a 2-dimensional space M (W, S; a, ).
The codimension-1 faces of M (W, S; «, o), are

M+(a7/8)i—1 X MJF(I/Va S;ﬁva/)Q—iu
M+(VV7 S;aaﬁ/)%z X MJF(B,»O/%A
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Figure 2: On the left is depicted relation (3.14); on the right, the relation of Proposition 3.16.

where i € {1,2}. Consider the l-manifold (k] ,)~'(h) = M*(W,S;a,a');. Again,
because +y is supported on the interior of .S, this 1-manifold is supported away from the
codimension-1 faces with ¢ = 2. Counting the contributions from ¢ = 1 gives the relation

dopu—pod=0, (3.14)

showing that p is a chain map. See Figure 2.

3.3.2 The case of a cylinder: the v-map

We move on to the cases in which -y is not closed. We first consider the case of the cylinder
R x (Y, K). The output of the construction is a degree —2 (mod 4) endomorphism on
Cs = C4(Y, K). Choose a basepoint y € K and a lift of each a € €I to (Y, K) once and
forever. Following a similar construction as above, we obtain a translation-invariant map

ha1a2 . %(Y,K;Oq,az) —> Sl

for each pair of irreducible critical points ; € €™ on (Y, K). To be more detailed, we define
B(Y, K; a1, az) using the chosen lifts of a; and «vg, and for a given [A] € (Y, K; a1, a2),
the holonomy of A along R. x {y} determines hq,a, ([A]). (A lift of o;’s to the space of
framed connections @(Y, K) suffices for the definition of A4, «,.) The induced map hq, o,
on M (a1, ag) g extends to the moduli space of unparametrized broken trajectories which
break along irreducible critical points, and on the codimension-1 faces M Tag,B)i—1 X
M+ (B, a2)q—; with /3 irreducible, factors accordingly as hq, 5 - hgas,-

For hg, «, to be well-defined we also require that meridians have preferred directions;
this is true because the knot K is oriented. Changing the orientation of K alters hq,q, by
post-composition with the conjugation map S' — S*.

To define a well-behaved map on C in this situation, in general we must modify the
above holonomy maps, similar to what is done in [Don02]. In particular, we define maps

Hoyjan J\Zf(al,ag)d — St

by modifying the maps hq,q, near broken trajectories. Since we need these modified
holonomy maps only for moduli spaces of up to dimension 2, we may assume that d < 2.
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The maps H,,, o, extend to unparametrized broken trajectories which break along irreducible
critical points, and satisfy the following properties.

(H1) Hy,q, = 1if the dimension d of the unparametrized moduli space M (a1, ) g on
which H, o, is defined is equal to zero.

(H2) For a given sequence of instantons [ B;] in M (a1, a2) 4 converging to a broken instanton
([B],[B']) € M (a1, 8)i—1 x M (3, 2)q—; where 3 is an irreducible critical point, the
holonomies Hy, o, (B;) converge to the product Hy, 3(B) - Hga, (B’).

(H3) If gr(oy) = 1 and gr(ay) = 2, there is an end of M (o, a9)a, corresponding to
trajectories broken along the reducible 6, which by standard gluing theory can be
identified with M (a1,0)9 x S x Rg x M (0, a2)o. We require that the restriction
of Hyy oy tO M(al, 0)o x {T} x St x M(Q, a)o for some (and hence any) 7' € R~
is a degree 1 map on each circle component.

The unmodified holonomy maps hq,q, satisfy the properties (H2) and (H3) but do not
necessarily satisfy (H1). The modified holonomy maps are constructed in a way that is
inspired by what is done in [Don02, Section 7.3.2]. See Appendix A for details on the
contruction of the modified holonomy maps H,,, , which satisty (H1)—-(H3).

We may now define an operator v : C'y — C,_o as follows:

vl = Y deg (Havoaliian ), ) - 02 (3.15)
el
gr(o ,a0)=2
The degree may be computed by taking the preimage of a generic h € S'\{1}. By property
(H1), such a preimage is supported away from the ends of M (a1, a2)1, and generically is
a finite set of oriented points. The expression deg(H oy, as,| M(a1,a2)1) is defined to be the
signed count of these points.

The following proposition is a singular instanton analogue of [Don02, Proposition 7.8]
and [Frg02, Theorem 4], and its proof is analogous. The main difference is that SO(3),
which in the non-singular setting plays both the role of the stabilizer of the trivial connection
and the codomain of the (adjoint) holonomy maps, is replaced in the singular setting by S'.

Proposition 3.16. dov —vod—ds 04y =0.
Proof. Consider the 1-dimensional moduli space
M := {[A] € M(a1, a2)z : Haya,([A]) = h)

for some generic h € S'\{1}. Studying the ends of M will lead to the desired relation.
As the dimension of M («, ag)s is 3, there is no bubbling, and M+ (a1, ag)9 is compact.
Thus an end of M contains a sequence of instantons that approaches an unparametrized
broken trajectory a = ([A1], ..., [A;_1]) where I = 3, [A;] € M(B;, Bis1)q, and By = a1,
B; = . By index additivity and dimension considerations, [ < 4.

First suppose that each f; is irreducible. Then H,,, ., factors as Hi;% Hg,p, , near a, as
follows inductively from property (H2) above. If [ = 4, then each [A4;] is of index 1, and
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since Hg,p, , = 1 for such instantons by property (H1), this case does not occur. From now
on we may assume [ = 3, so that a = ([A;], [A2]). Write 8 = [a.

Suppose [A1] is of index 1 and [As] of index 2, i.e. a € M(av, 8)o x M(S, az)1. For
these types of breakings, consider a corresponding gluing map

vg : M(ar,B)o x Reg x M(B,a2)1 — M(ar,az2)s

which is a diffeomorphism onto its image. Let Ng | © M be the image of this map, with
R restricted to some (7', c0), intersected with A/. Here and in what follows, 7" > 0 is
some large generic number to be specified later. Consider the map

f : M(alaﬁ)o X M(BaoQ)l - Sl

given by f([A1],[A2]) = Haiao(¥s([A1],T,[A2])). With T generically chosen, h is
a regular value of f. Then f~!(h) consists of the boundary points of M \Noﬁ’ , that are

adjacent to N(’ﬁl. Taking 7" — oo and using (H2), f is homotopic to ([41],[A2]) —
Hy,3(A1)Hga,(As2). For [A1] fixed, this latter map has the same degree as Hpg,,,, which is
+(v(B), az). There are +{d(a), ) many choices for [A;] € M (a1, 8)o. Ranging over all
possibilities for 3, and using our orientation conventions, we find that the total number of
boundary points of this type is given by —(vd(a), a2).

For breakings where instead [A;] is of index 2 and [A3] of index 1, we define a corre-
sponding subset V. 16 o © M using the image of a gluing map and intersecting with M. A
similar argument to the above shows that the number of boundary points in this situation,
again ranging over all relevant irreducible 3, is given by (dv(a1), ag).

There is also the case in which there is a sequence of instantons in M approaching
an unparametrized broken trajectory a = ([A;1], [Az2]) that factors through the reducible 6.
Such a sequence eventually lies in the image of a gluing map

wg : M(a1,9>0 X Sl X R>0 X M(@,ag)o i M(al,QQ)Q

Let N? be the image of this map, with R restricted to the interval (T, o0), intersected with
the moduli space M. Consider the boundary points of M\ N that are adjacent to N?. These
are in (f")~1(h) where

f/ : M(Ozl,e)o X Sl X M(e,ag)o — Sl

is defined by f'([A1],[A2]) = Hajao(Vo([A1], 9,7 [A2])). Using (H3), the map f” is
homotopic to a map which for each point in M (a1, 60)g x M (6, aa)g restricts to a degree 1
map S’ — S'. The number of boundary points, using our orientation conventions, is equal
to —<5251 (041), 042>.

Now consider M’, the complement in M of the open sets Ng LNV iB 0 N 9 defined above,
where 3 ranges over irreducible critical points with appropriate index in each case. We
choose T large enough so that these open sets are disjoint, and generic so that M’ is a 1-
manifold with boundary. By the discussion in Subsection 2.7, M" is compact. The boundary
points have been counted above, and yield the desired relation. This completes the proof.
The three types of factorizations are depicted in Figure 2. O
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Remark 3.17. Ideally, the compactified moduli space would have the structure of a smooth
manifold with corners near broken trajectories, induced by the natural compactifications of
the domains of the gluing maps. In the above proof, we would then define a smooth manifold
with boundary M+ < M (a1, a2)2 and simply count its boundary points. (Technically, in
this strategy, we would also modify our compactification to include gluing parameters for
reducibles.) However, proving that the compactified moduli space indeed has such structure
is a technical issue which also arises in other Floer theories, and we would like to avoid it.
This is why, in the above proof, we consider a truncation of the moduli space to obtain a
compact manifold with boundary. A similar approach is employed in [SS10]. In the sequel,
we will often ignore this subtlety, with the understanding that one should always really
truncate the moduli spaces as done in the proof above. ¢

Remark 3.18. By properties (H1) and (H2), the map H,,, is defined on the compactified
1-manifold M+ (a1, a2)1 and sends the boundary components M(al, Bo x M(ﬂ, ag)p to
the identity 1 € S1. Thus H,,, descends to a map M — S', where M is the disjoint
union of circles obtained by identifying the boundary points of M+ (a1, )1 in pairs. Then
the degree of Hy,q, appearing in (3.15) is nothing more than the degree of M — S'. In
particular, this shows that the map v : Cy, — Cjy_» is independent of the choice of h € S*.
Changing the choice of modified holonomy maps will alter v by a chain homotopy. The
proof is a standard continuation map argument. See also Theorem 3.34 below. ¢

Remark 3.19. Our construction of v depends on the orientation of K. If the orientation is
reversed, then v changes sign. Similar remarks hold for J2, following Remark 3.8. However,
the maps d and 41 do not depend on the orientation of K. It follows that the relation of
Proposition 3.16 is invariant under orientation-reversal of K. ¢

3.3.3 Curves with boundary in cobordisms

Now consider any negative definite pair (W, S) : (Y, K) — (Y’, K’). We assume that
is an embedded interval in (W, S) with its boundary intersecting both (Y, K') and (Y’, K”).
Denote by p € K and p’ € K’ the boundary points of «y in S. Recall that W is obtained
from W by attaching cylindrical ends (—o0,0] x Y and [0,00) x Y”, and S* is obtained
from S similarly, by attaching (—o0, 0] x K and [0, ) x K’. We extend ~y to a non-compact
curve v© < ST by attaching (—o0, 0] x {p} and [0, 0) x {p’}. We obtain a map

Rl BW,S;a,a') — S

by taking as before the holonomy of the adjoint connection A% along v+ compatible with
the S! reduction of the bundle along S*. Modified holonomy maps Hg o of Appendix A
give

pla) = Z deg (Hza/|M(W,S;a,a’)1) -al.

a'ecl,
er(W,S;a,a0’)=1

The relation in the following proposition is depicted in Figure 3 in the case that the curve
~v < S looks like . It is an analogue of the relation in the non-singular setting of
[Frg02, Theorem 6], and the proof is similar to that of Proposition 3.16.
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Figure 3: The relation of Proposition 3.20.

Proposition 3.20. d' o+ pod+ Ago0d; —dho Ay —v oA+ Aow =0.

Similar to Remark 3.19, in this situation, the maps d, d’, A1, A do not depend on the
orientations of K, K', S, while v, v', u, 2, 05, Ay do, and change sign under orientation-
reversal. Thus the relation of Proposition 3.20 is invariant under orientation-reversal.

3.4 A framed instanton homology for knots

~

We now assemble the above data to define a framed instanton chain group (C(Y, K), d).
The main apparatus is the following.

Definition 3.21. A chain complex (5’*, J) is an S-complex if there are a finitely generated
free chain complex (Cy,d) and graded maps v : Cy — Cy_9,01 : C1 —> Z and 09 : Z —
C_g such that C, = Cy @ Cy—1 @ Z, and such that the differential is given by

[d 0 o0
d=| v —d & |. (3.22)
5 0 0

The copy of Z in the decomposition of C, is supported in grading 0. ¢

~

Because (Cy, d) is a chain complex, d o d = 0, which is equivalent to d o d = 0 and

d1o0d=0 (3.23)
dody =0 (3.24)
dov—vod—09001 =0 (3.25)

Remark 3.26. More generally, if R is any commutative ring, an S-complex over R is defined
to be a finitely generated free chain complex over R, with the same structure as in the
definition above, replacing each instance of Z with R. If no ring is specified, the reader can
safely assume that we are working over the integers. ¢
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Remark 3.27. In the above definition of an S-complex, the chain complex comes with a
Z-grading which decreases the differential by 1. However, in the sequel we will consider S-
complexes graded by Z/2N for some positive integer N, in which case all grading subscripts
in the above definition should be taken modulo 2/N. For technical reasons, an S-complex
with no grading must be defined over a ring of characteristic two. ¢

Definition 3.28. A morphism X : (Cy,d) — (C.,d’) of S-complexes is a degree zero chain
map that may be written in the form

R A0 0
A= u X Ay (3.29)
Ay 0 1

with respect to decompositions Co=0C,®Cy 1®7Z and 5’; =C,®C,_{®Z.o
The condition of X being a chain map is equivalent to the following relations:

Aod—d oX=0

Ajod+d61—80oX=0

d oAy —8,+Xody =0

pod+dov+Asod —vod+dou—560A1 =0

Definition 3.30. An S-chain homotopy (Cy,d) — (C.,d') of S-complexes is a chain
homotopy of complexes that when written with respect to decompositions Cy = Ci @
Cy—1@®Zand C, = C, ® C,_, @ Z takes the following form:

K 0 0
L —-K M,
M; O 0

A chain homotopy equivalence of S-complexes is a pair of morphisms f : Cy — C~’; and
g : Cl, — C, of S-complexes with the property that f o g and g o f are S-chain homotopy
equivalent to identity morphisms. ¢

Let Y be an integer homology 3-sphere containing a knot K, and (C, d) = (Cy(Y, K), d)
its irreducible instanton chain complex for some choice of metric and perturbation. Choose
a basepoint p € K. We define Cy (Y, K) = Cy(Y, K) ® Cy_1 (Y, K) ® Z, and d by (3.22)
using the maps from the previous subsections; note that the choices of basepoint and modified
holonomy maps are required to define v. Then (3.9) verifies (3.23)—(3.24), and Proposition

~ ~

3.16 gives (3.25). Thus (Cy (Y, K), d) is a Z/4-graded S-complex. Its homology,

I*(Y7K) = H*(C(Y>K)7 )a

is a Z/4-graded abelian group, which we call the framed instanton homology of (Y, K).
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Remark 3.31. Our framed instanton chain complex should be distinguished from what
is called framed instanton homology for knots in [KM11b]. However, the relationships
established in Section 8 justify the overlapping use of terminology. ¢

Remark 3.32. In the non-singular set up, Donaldson introduces a similar object for any integer
homology sphere Y called an (F, o)-complex [Don02]. This object, denoted by (C*( ),d),

is essentially an S-complex. The main differences are that the complex (Cx(Y), d) is defined
over Q, and C,(Y) = C4(Y) ® Cy_3(Y) @ Q, where C,(Y) is a Z/8-graded complex.
The complex C, (Y) is defined out of a theory which is SO(3)-equivariant, rather than S-
equivariant. This is the primary reason for the appearance of a degree shift by 3 (dimension
of SO(3)) instead of 1 (dimension of S!). o

Now suppose (W, S) : (Y, K) — (Y’, K’) is a negative definite pair. We also assume
that a properly embedded arc v in S is fixed such that it forms a cobordism from the
basepoint of K to the basepoint of K’. We slightly abuse terminology and refer to the data of
(W, S) with  a negative definite pair, and omit y from our notation. Upon choosing metric,
perturbation data, framings of critical points and modified holonomy maps, we define a map

A=Xws) : C(V,K) — C(Y',K')

by the expression (3.29), using the maps previously defined for (W, S) and ~. By virtue of
Propositions 3.10 and 3.20, A is a morphism of S-complexes.

Definition 3.33. Define H to be the category whose objects are pairs (Y, K') where Y is an
integer homology 3-sphere and K < Y is an oriented based knot, and whose morphisms
are negative definite cobordisms of pairs (W, S) : (Y,K) — (Y’,K’) in the sense of
Definition 2.33, equipped with an embedded arc on .S connecting the basepoints of K and
K’. Composition of morphisms in this category is defined by composing cobordisms. ¢

For any category with a notion of chain homotopy, we define the associated homotopy
category to be the category with the same objects, but whose morphisms are chain homotopy
equivalences of morphisms. We have the following analogue of [Don02, Theorem 7.11].

Theorem 3.34. The assignments (Y, K) — (C(Y, K),d) and (W, S) — X(W,S) induce a
functor of categories from H to the homotopy category of Z/4-graded S-complexes.

Proof. Let (W,S) : (Y,K) — (Y',K’) be a negative definite pair with an embedded
arc v on .S connecting the basepoints. Fix the required auxiliary choices (Riemannian
metric, perturbation and modified holonomy maps) and let C'(Y, K) and C(Y”, K') be the
S-complexes associated to (Y, K) and (Y’, K'). As explained above, we obtain a morphism

Aw,s) 1 C(Y,K) — C(Y', K)

after fixing a metric, perturbation data and modified holonomy maps for (W, .S) compatible
with the auxiliary data of (Y, K') and (Y’, K'). For any two sets of auxiliary choices for
(W, S), a standard argument shows that the resulting morphism differs from X by an S-
chain homotopy of S-complexes. To be a bit more specific, one first connects the two

44



collections of auxiliary choices for (W, S) using a 1-parameter family of orbifold metrics
on W, perturbation data and modified holonomy maps. Then the associated family moduli
spaces can be used to define the required S—Nchain homotopy. In fact, one can use a similar
proof to show that homotoping ~ changes A(y,5) by an S-chain homotopy. We may also
check that the morphism associated to a composition of negative definite pairs is S-chain
homotopic to the composition of the morphisms associated to the cobordism pairs in the
same way as in (3.4).

Using another standard argument involving continuation maps we see that the S-chain
homotopy type of the S-complex C'(Y, K) of (Y, K) does not depend on the orbifold Rie-
mannian metric on Y, perturbation of the Chern—Simons functional and modified holonomy
maps. This uses connectedness of the spaces of these auxiliary choices (see Proposition
A.12 for the relevant result for modified holonomy maps). Technically, the assignment
(Y,K) — (5’(Y, K), cT) only determines an object in the homotopy category up to canonical
isomorphism. However, this is remedied as follows.

Let C be a category of modules closed under taking arbitrary products and submodules.
A transitive system in C is the data (C, ¢, I) where C' = {C"},c/ is a set of objects in C and
¢ = {¢] : C* — O}, jes is a set of isomorphisms such that ¢! = id and ¢, o ¢¥ = ¢/.
A morphism of transitive systems (C,¢,I) — (D,,.J) is a collection of morphisms
{X 1 C* — D3}icq jes such that i \F = Aé-d)f fori,j € I and k,[ € J. Transitive systems
form a category Cryans. There is a functor Cryans — C that sends (C, ¢, I) to the submodule
of [ [,e; C" consisting of {¢;};cr with ¢; € C* and ¢j = ¢)(c;) forall i, j € I.

Thus to a based knot (Y, K) we actually assign a transitive system of Z/4-graded
S-complexes in the homotopy category, indexed by admissible metric, perturbation and
modified holonomy maps data, and to this transistive system we may then assign a Z/4-
graded S-complex in the homotopy category as described in the previous paragraph. Similar
remarks hold for the morphisms, and this is precisely how the functor in Theorem 3.34 is
defined. The situation is essentially the same as in any other construction of Floer homology,
see e.g. [KMO7, p. 453]. O

~

Remark 3.35. The isomorphism class of (Y, K') does not depend on the basepoint on K.
Indeed, the identity cobordism of (Y, K') with an arbitrary path from one choice of the
basepoint on K to another choice induces an isomorphism between the Floer homology

~

groups I (Y, K) for different choices of basepoints. ©
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4 The algebra of S-complexes

The goal of this section is to further develop the algebraic aspects of S-complexes. In
particular, we associate various equivariant homology theories to an S-complex and discuss
how they give rise to Frgyshov-type invariants. We also study the behavior of S-complexes
with respect to taking duals and tensor products. Although we work over Z throughout this
section, all of the constructions carry over for any commutative ring .

We also introduce the set @‘19% of local equivalence classes of S-complexes over any
commutative ring R, following [Sto17]. This set has the structure of a partially ordered
abelian group. When R is an integral domain, the Frgyshov invariant i may be viewed as a
homomorphism £ : @‘1% — 7 of partially ordered abelian groups.

The constructions here are applied to the setting of singular instanton Floer theory in
the next section. However, the material in this section is entirely algebraic, and much of it
fits into the framework of S'-equivariant algebraic topology. In particular, the equivariant
chain complexes we consider are particular models of the borel, co-borel, and Tate homology
theories; see e.g. the discussions in [Manl6, Stol17, Mil19]. Although much of the material
is standard in some circles, we include it here for completeness.

4.1 An equivalent formulation of S-complexes
In this subsection, we first give another definition of S-complexes:

Definition 4.1. An S- complex is a finitely generated free abelian graded group C. together
with homomorphisms d:Cy— Cy_yand X: Cy — C'*H which respectively have degree
—1 and 1, and which satisfy the following properties:

(1) dod = O,XoxzoandxocT—FJOX:O.

(i1) There is a subgroup Z of Cj such that ker(x) is equal to image(x) ® Z.
Remark 4.2. Remarks 3.26 and 3.27 about coefficient rings and gradings for S-complexes
still apply here. The algebraic results in this section will hold for Z /2N -graded S-complexes
over any commutative ring, and S-complexes with arbitrary grading Z/N (in particular no

grading) over any commutative ring of characteristic two. However, for concreteness we
will typically work with Z-graded S-complexes over Z. ¢

This definition of S-complexes essentially agrees with the definition from the previous
section. Let C, be image(x) after shifting down the degree by 1 and d := —(ﬂc .- The
identities in (i) imply that d is an endomorphism of C,, and defines a differential on C'. The
assumption (ii) implies that C, fits into a short exact sequence with degree preserving maps:

0—Co 1®Z—Cy 250, — 0 (4.3)

By splitting this exact sequence, we have an identification of C. with Cy @ Cy_1 ® Z, with
respect to which y has the following form:

x(a, 8,r) = (0,a,0).
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Since the map x anti-commutes with d, and d has degree —1, it is easy to see that d has the
form given in (3.22).

The notions of morphism and homotopy of S- >-complexes can be also reformulated using
the new definition of S-complexes. Suppose (Cy,d, ) and (CL,d',X') are - S-complexes
and /\ Cy — C’ is a degree 0 homomorphism of abelian groups such that Xod=d o)\
and)\ox = oM OncewesphtC’* andC asCi ®@C1@Zand C,®C,_DZ

following the above strategy, the map X has the form

N A0 0
A= 1% A AQ
Al 0 C

for a constant ¢ € Z. Thus Xisa morphism of S-complexes if we require that ¢ = 1. If
NGy — C is another morphism of S-complexes, an S-chain homotopy of Xand X isa
degree1maphsuchthatd’oh+hod X— )\’andx oh+hox=0.

Remark 4.4. Suppose we have two different splittings of C',. Then the identity map of C.
induces a map between the two splittings which have the form in (3.29) and is a morphism
in the sense of Definition 3.28. Moreover, this morphism defines an S-chain homotopy
equivalence. This shows that the S-chain homotopy equivalences of S-complexes with
respect to Definitions 3.21 and 4.1 coincide with one another. This justifies our switching
between Definitions 3.21 and 4.1. ¢

Remark 4.5. Let X be a finite CW complex on which S' acts cellularly, and freely away
from a unique fixed point, a O-cell €. The CW chain complex of S* is a differential graded
algebra isomorphic to Z[x]/(x?) with trivial differential. This dg-algebra acts on (Cl, d),
the CW chain complex of X, making it into a dg-module over Z[ 1/(x?). Then (C, d, x)
is an S-complex, with Z C generated by the fixed point e’

In what follows, we freely switch between the two equivalent formulations of S-
complexes. If we wish to use Definition 4.1, we also assume that a splitting of the sequence
(4.3) has been chosen. This allows us to obtain a splitting of 5’* as Cy ® Cy_1 ® Z and
hence we can talk about the maps v : Cy — Cy—_9, 01 : C1 — Z, 03 : Z — C_9. We denote
a typical element of Cy by (. Typical elements of the summand C'; of C are denoted by «a,
{3 and the corresponding elements in the summand Cx 1 are denoted by a, 3.

4.2 Equivariant homology theories associated to S-complexes

Suppose (6’*, J, X) is as above. In what follows, we will write Z[x] for the ring of polyno-
mials with integer coefficients. Let also Z[[z ™!, =] be the ring of Laurent power series in the
variable z 1. That is to say, any element of Z[[z !, x] has finitely many terms with positive
powers of x and possibly infinitely many terms with negative powers of . We shall regard
Z[[x~1, 2] as a module over the ring Z[z].
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We associate chain complexes (6'*, d), (Cs, ) to (C, d, x) defined as follows:
Oy 1= Z|z] ® C, d(azl ) —zt. JC + 2 x(0)
Gy i= (2", 2]/Z[2]) ® C. d(z'-¢) = a'-d¢—z"" - x(C)
We may define a chain map j : Cv’* — CA’*,l as follows:
j(ahe) = { (;X(f) I;z :1
We can then define the mapping cone of j, which takes the following form:
C,:=Cy ® Z[z ", ] d(z'-¢) = —2'- d¢ + '+ -x(€)

These complexes inherit Z-gradings as follows: we declare that « has grading —2, and use
the natural tensor product gradings. In particular, if ¢ € C;, then 27 - ¢ has grading —25 + 3.
With this convention, the differentials on the three complexes defined above have degree —1.
By definition, we have a triangle of chain maps between chain complexes which induces an
exact triangle at the level of homology:

~ J A~

Ci Cy (4.6)
A

C

Here 7 is the inclusion map and p is given by the composition of the projection map and the
sign map ¢ associated to the graded vector space C:

Definition 4.7. For a Z-graded vector space Vi, the sign homomorphism ¢ : V, — V, is
defined by £(a) = (—1)¥a where a is a homogeneous element of V; with grading k. ©

While 7 and p in (4.6) preserve gradings, j has degree —1. It is clear from the definitions
that all chain complexes here are defined over the graded ring Z[x| and all chain maps are
Z[x]-module homomorphisms, up to homotopy. We call (4.6) the large equivariant triangle
associated to the S-complex (Cy, d).

There is another exact triangle associated to an S-complex Ch. Multiplication by x
defines an injective chain map from (C*, d) to itself and the quotient complex is isomorphic
to (C*, ) In particular, we have a triangle of the following form which induces an exact
triangle at the level of homology:

O, z C, (4.8)

A

Cy

Here x denotes the map given by multiplication by z € Z[x], y is the composition of the
projection to the constant term and the sign map, and z is given by x. In particular, x, y and
z have respective degrees —2, 0 and 1.
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PropOSItlon 4.9. For any morphzsm X:Cy — C' of S-complexes, there are maps X Cy —
C’,’k, X:Cy — C’ and \ : Cy — C which satisfy the following properties:

(i) X A and \ are chain maps over Z|x], andpreserve gradings.

(ii) If K is an S-chain homotopy of morphzsms )\ )\ Cy — C’*, there are Z|x]-module

homomorphzsmsK C —>C*, :C — C K:C, —>C such that:
X'—/V\zl?oc?—i—c?of?
N — X—I?og—i—c/l\o[?
N-A=Kod+doK

(i) If X : Cx — CLand X' : C', — C" are morphisms and N o A : Cy, — C" is the
composed morphism, then the following identities hold:

)\\’_o/)\:X/OX, mzx/oj\, Nod=XNo\
If id : 5’* — 6’ is the identity morphism, then 1?1 id and id are also identity maps.

Proof. leen a morphlsm P C* — C of S- complexes and an element z* -C e C*, we
define A(z'-¢) = 27-A(¢) € C.. The maps A and \ are defined similarly. It is straightforward
to check that these maps satisfy the required properties. O

4.3 Small equivariant complexes and the /-invariant

Suppose (6’*, d~ X) is an S- complex as above. We introduce two other chain complexes
over Z[x], denoted by (€,,d) and (€, d). Essentially the same complexes are defined in
[Don02]. It is also shown in [Dae18] that homology of these chain complexes and Z[x_l, x]
form an exact triangle. In this subsection, we review these constructions and show that this
information is equivalent to the trlangle 4. 6) up to homotopy.

The chain complexes (€, d 9) and (€4, D) are given as follows:

N
Coi=Co1 @ Z|x] Z a;x (da — Z v'da(a;),0)
=0
~1 -1
¢y = Co @ (Z[[z~ ", 2]/Z[z]) (e, Z a;iz’) = (da, Z s10” " Ha)zh)

The Z-grading on C* is given by the shifted grading on C'; and the grading on Z[x] where
x' has grading —2i. The Z-grading on Qi* is defined similarly, except that we do not shift
the grading on C'.. The Z[z]-module structures on these complexes are defined as follows:

N

Z a;T (va, 01(ar) + Z ;T ’H V(e Z aixi) €,
i=0

-1 -1

z - (a, Z aixi) = (va + da(a—1) Z a;T Z+1 V(a, Z aixi) € E*

i=—0 i=—00 i=—00
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We also define €, = Z[[z~!, z] with the trivial differential and the obvious module structure
again such that 2% has grading —2i.

Next, we define chain maps:
P N L A .
— >, —C, —

(4.10)
by the following formulas:

N -1
a,Zazx = Z v’ x—l—ZaZ
=0 1=—00
-1
j(a, Y aa') = (—a,0)
1=—00
N ‘ N 1 '
P Y, @a') = (Y, v'a(ar), Y, aia'),
i=—00 i=0 i=—o0

We call (4.10) the small equivariant triangle associated to the S-complex (Cy,d). It is
shown in [Dae 18, Subsection 2.3] that the maps i and p are Z[x]-module homomorphisms

and j commutes with the action of = up to chain homotopy. Moreover, the maps at the level
of homology groups induced by i, j and p form an exact triangle:

H(E,,d) s H(E,,d)
[am

We now show that the small and large equivariant chain complexes, and their associated

triangles, are chain homotopy equivalent over Z[x]. To this end, we define linear maps
D C* — 6*, : C — ¢* and @ : C,, — €, as follows:

> al N N N i—1
@(Z aixi’Eﬁiiﬂi,Zaiw‘ Z (Bi)s Zazm + Z 2 85109 (B;)a i)

i=175=0
-1 -1 -1
(> Z Biat, > ah) = (a1, Y. wz'+ Z Zawﬂ(@-)x%—ﬂ—l)
i=—00 i=—00 1=—00 i=—00 1=—00 j=0
N N N N N o
( 2 ;i Z Bix’, Z a;xt) := Z a;z’ + 2 Zélvj(ﬁi)a:i*jfl
1=—00 1=—00 1=—00 1=—00 1=—00 j=0
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We also define linear maps s : é* — 6'*, 0 (71* — 5’* and ¥ : €, — Cl:

N N -1 N
U (a, Z a;xt) = (Z Z v155(a;)z 7L Z a;x’)
i=0 i=1j=0 i=0
—1 —1
¥(a, Z a;x’) = ( v @)zt + Z Zvjég ai)z 7710, Z a;x
1=—00 1=—00 i=—00 j=0 1=—00
N N o
\T’(Zaz ZZUJ(SQCQ ZJlO Zal
1=—00 i=—00j=0 1=—00

The following lemma summarizes the properties of these maps:

Lemma 4.11. The above maps are chain maps, which commute with the action of x and the
maps in the triangles (4.6) and (4.10) up to chain homotopy. We have:

&)o\flzid, E)olflzid, doV =id.

Moreover, the compositions ¥ o ®, W o ® and U o ® are chain homotopic to the identity.

A v — A

Proof. It is straightforward to check that the maps ®, ®, ®, ¥, U and W are chain maps and
they satisfy the following identities:

Moreover, if we define the following four additional maps:

Eaz = (e, 0,0),

N
Ki(ao, 2 a;iz’) = (= Y v'(a)z™710,0),
i=0 '

[v( Z ;T Z ,81 ) Z a;T ):: (5—1,0)7

8

~
Il
o

z—];oo i=—00 z—];oo .
Ky 2 our ; Bia' _Z_] air’) == (— ; v(8:),0), K, =Kjoe

then we have the following relations, which are straightforward to verify:

zo@—@ox:c?f(x—i-f(xﬁ x é—éw:ﬁf{ I?J
Toi—ioW =dK; + K.d dop—pod =03K, + K,d.
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In order to verify the last part of the lemma, define the following maps:

N N N N i—1
K(Z a;xt, Z Bixt, Z a;x’) = (— Z Z v (B)x"71,0,0)
i=0 i=0 i=0 i=035=0
~ -1 ! < ]OO
K( Z a;xt, Z Bixt, Z = Z ng )zt =971 0,0)
i=—00 1=—00 1=—00 1=—00 j=0
(> 2 Bix, 2 aia') = (= > > 0/(8:)2"771,0,0)
1=—00 1=—00 1=—00 1=—00 7=0

Again, it is straightforward to verify the following relations:

Tod—id=dk + Kd,
Bod—id=dK + Kd,
Vod—id=dK + Kd. O

Let C’ be another S-complex and A : C — C’ be a morphism. We write P, PV,
U’ and U’ for the chain homotopy equlvalences associated to C’. These chaln homotopies
can be employed to define mA Qi* — 6*, m)\ 6* — C and mA ¢, — C as follows:

t?lx::(blo)\ollf tﬁ;\::@’o)\o‘li m;\'—q)’o)\o

These homomorphisms agree with the definitions given in [Dael8, Subsection 2.3]. For
example, we have the following explicit formula:

N N
ﬁl:\( Z ai$i) =( Z (1 + Z Al?}l(sg x4 Z 5’ 21
i=—00 i=—00 i=0
+ Z Z 5/ /Jﬂ)k(sg (Dz kj2>
k=075=0

In particular, the map my is an isomorphism of the Z[x]-module Z[[z~!, z]. Therefore, we
have the following consequence of this observation and Lemma 4.11:

Corollary 4.12. The Z[z]-module H (C'*, d) is naturally isomorphic to Z[[z ™! 3 x]. Any
morphism of S-complexes X:Cy — C induces an isomorphism my :Cy — C More-

over, there are b; € Z such that after the zdentzﬁcatlons of H(C*, d) and H(C.,,d') with
Z[x~", x], the map Wy is multiplication by 1 + S b,

i=—00

Consider the Z[x]-submodule J = Z[[x~1, 2] given by the image of i, : H (€, d) —
Z[[z~L, 2], or equivalently the kernel of the map py, : Z[z*, 2] — H(C,,d). Corollary
4.12 implies that if two S-complexes are related to each other by a morphism of S-complexes,
then the associated Z[x]-modules J are related by multiplication by an element of the form
1+ Z;l_ o b;x’. This observation suggests the following definition:
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Definition 4.13. For an S-complex C' as above we define its h-invariant as follows:

h(C) = —Q%g)fej{Deg( (z))}

where for Q(z) € Z[[z™!, z], Deg(Q(z)) denotes the degree of Q(z).
The following result is an immediate consequence of Corollary 4.12:
Corollary 4.14. If there is a morphism of S-complexes from C to C', then h(CN‘) < h(CN" ).

The following proposition gives an alternative definition for h(é’), and it can be easily
verified from the definitions. It is also closely related to Proposition 4 in [Frg02].

Proposition 4.15. The constant h(é*) is positive if and only if there is o € C such that
d(a) = 0and 61(c) # 0. If h(Cy) = k for a positive integer k, then k is the largest integer
such that there exists o € C,. satisfying the following properties:

do =0, 5108 (a) # 0, §1v'(@) =0 fori<k—2. (4.16)
If h(C~’ «) = k for a non-positive integer k, then k is the largest integer such that there are
elements ay, . ..,a_y € Z and o € Cy such that
da = Z v'2(a;), a_g # 0. 4.17)
=0

4.4 Dual S-complexes

Let (V4, d) be an arbitrary Z-graded chain complex. Our convention is that the dual complex
Hom(Vj, Z) has differential f — —&(f) o d, with the Z-grading that declares f : V; — Z
to be in grading —i. Recall that the sign map ¢ is given in Definition 4.7.

Now let (C’*, d, x) be an S-complex. Let C’T be the dual chain complex Hom(C\, Z)
with differential d'. The endomorphism ' of C is defined similarly, so that we have:

d'(f) = —e(f) o d,
X'(f) == —e(f)ox.

These clearly satisfy property (i) of Definition 4.1. The spaces ker(x') and image (') are
given by the subspaces of C’ which vanish respectlvely on image(x) and ker(x). Thus
property (11) of Definition 4.1 is also satisfied, and (C’*, dT, x1) is an S-complex.

Let C] be glven by image(x') after shifting gradings down by 1, and d' be the dif-
ferential on C’* given by the restriction of —d'. The space C’T can be identified with
Hom(Cy, Z)[1] and the differential d' of f : C; — Z, which has degree —i — 1, is equal to
(—1)if od. If we split C] as the sum Cl ® C’Ll @ Z using a corresponding splitting of Ch
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then the S-complex structure on CN'l determines maps v’ : Cl — C’LQ, 61 : C’I — Z and

5; VAR C’g which are given by the following formulas:

o (f) = fou, S1(f) := —f 0 8y(1), 85 (m) := md.

In what follows, for an S-complex (C,d, x) write ¢* = Hom(€,, Z), ¢* = Hom(@*, Z),
and ¢ = Hom(€&,, Z) for the duals of the small equivariant chain complexes associated to
C, and call these the equivariant cohomology chain complexes. We write

@,3h, @3, @,

for the small equivariant homology chain complexes associated to the dual S-complex
(5’ f, JT, xT), and i, jT, p' for the maps in the associated small equivariant triangle. We write
iv,jY, pV for the duals of the maps i, j, p in the small equivariant triangle for (C~' ,d,x). The
relationship between these is summarized as follows.

Lemma 4.18. We have a commutative diagram of small equivariant exact triangles, where
the vertical maps are isomorphisms of graded chain complexes over Z|x]:

if it pf if

&t &t ol

N

E* iv &* iv E* pY

(4.19)

Proof. The vertical maps, written from left to right as F, F5 and F3, are defined by:

N —1 N
F(f, Y bal)(a, D) a') = fla)+ D bja 1,
j=0 i=—00 Jj=0
-1

-1 N
f\‘;(f, 2 bj$j)(0é7 Z aixi) = f(Oé) + Z bja_j_l,
=0

j=—00 j=—N-1
F( Z bjl'])( Z az-:L'Z) = Z bja_j_l.
j=—00 1=—00 j=—N'—-1

It is straightforward to check that these are isomorphisms of chain complexes, and fit into
the diagram (4.19) above, matching the two small equivariant triangles. O

Remark 4.20. An analogous statement holds for the large equivariant triangles. ¢

Proposition 4.21. h(CN’l) = —h(C,).
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Proof. First assume that h(C,,) = k > 0. By Proposition 4.15 there is a € Cy such that
da = 0 and the smallest integer 4 such that §;v°(c) is non-zero is equal to k — 1. This

implies that there isno f : Cy — Z and ag, .. .,ar_1 € Z such that a;_; # 0 and
k—1 A
fd + Z ;010" = 0,
i=0

because we can apply this linear form to a.. This implies that h(CN’l) < —k.

Next, we consider the set {01, d1v, ..., 51vk_1}. By restriction, elements of this set
define linearly independent maps on ker(d). Our assumption implies that we obtain linearly
dependent elements by adding 6;v". Therefore, there are aq, . . ., aj, such that aj, # 0 and:

k
Z CLi(()‘lfUZ|ker(d) =0
=0

This implies that there is f : Cx — Z such that after multiplying all constants a; by a
non-zero integer, we have:

k
fd+ > aidw’ =0
i=0
Consequently, we have h(ﬁ’l) > —Fk which completes the proof in the case that h(CN‘*) is
positive. The case that h(C ) is negative can be verified similarly. 0
Remark 4.22. An alternative proof of Proposition 4.21 may be obtained using the perspective
of Definition 4.13 and directly applying Lemma 4.18. ¢
4.5 Tensor products of S-complexes

Here we show that the tensor product of two S-complexes is naturally isomorphic to an
S-complex. Let (Cy,d,y) and (C,,d’,X’) be two S-complexes. We also fix splittings
Cr =C®Ch_1 ®Z and 5’; =C,®C,_;®Zandlet d,v, 1,52 and d’', ', 0}, 0% be
the associated maps. From this data we define an S-complex (C®,d®, x®). Firstly let
5’5? —C,® 5’;, and then define d® and x® as follows:

Poigitead
X®:=x®1+€®x'

It is clear that d® and \® satisfy property (i) of Definition 4.1. To see (ii) of Definition 4.1,
note that image(x®) is generated by the elements of the following form:

a®d +e(a)®, a®d, a®1, 1®d, (4.23)

and the kernel of \® is generated by the above elements and 1 ® 1.
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The subgroup of CN'S? generated by the elements in (4.23), after shifting down the degree
by 1, is denoted by C®. We also write d® for the differential on C® defined as —d®| .
The four types of elements in (4.23) determine a natural decomposition of C® as follows:

C2=(CRCN):®(CRC)1®C,®Cl

The differential d® with respect to this decomposition is given by

dR1+e@d 0 0 0

0 — —ev®14+e®v d®1—ec®d e®0, —0h®1
B £® 0] 0 d 0
I ®1 0 0 d

As in (4.3), we have a short exact sequence of the following form:

0——>C®1C)ZL—+C®———»C® — 0
We may split this sequence using the following right inverse of the map x®:
a®d' +e(a)®d — a®d’,  a®d - a®d,  a®l - a®l, 1Qd — 1Qd.

This gives rise to a splitting of CNZ'S? as C® @ C’® | @ Z and the maps v® : Cy, — Cy_o,
62 :C1 — Z,0% : Z — C_5. The endomorphism v® : C¥ — C? , is given as follows:

v®1 0 0 ®l
0 v®l 0 0

® _

v = 0 0 v 0 (4.24)
0 h®1l 0 v’

We also have 62 = [0,0, 61, 81] and 65 = [0,0, da, 5]T.

Remark 4.25. The non-symmetrical form of v® is due to our non-symmetrical choice of
the right inverse for the map x®. In the case that we replace the integers with a ring in
which 2 is invertible, we can modify the above right inverse for x® by mapping a ® o/ to
(@ ® o + e(a) ® ). Then the new map v® with respect to the induced splitting of Cc®
has the following form:

vR1+1®v 0 1®6 6ol
1 0 1R1I+1®0V 0 0
2 0 1®0; 2v 0
0 5H®1 0 20

which is symmetrical with respect to switching C, and 6‘; o

Remark 4.26. Suppose (C?,d°, x°) is the trivial S-complex with C0 = Z, d° = 0 and
x" = 0. Our sign convention for tensor products and duals of S- complexes implies that the
following natural pairing on C and C,, defines a morphism Q) : C QCy — C’O

(f, ) — fla). o
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In Subsection 4.2, to any S-complex we associated a series of equivariant theories which
fit into an exact triangle. For example, (Cy, d, x) gives rise to the complex (C*, d) over Z[z].
We denote the corresponding objects associated to the S-complexes (CL,d') and (C®, d®)
by (C”, d ) and (C@, d®) We follow a similar terminology for the other objects introduced
in Subsection 4.2. Our goal is to study how h(C®) is related to h(C,) and h(C%).

Lemma 4.27. There are Z[x]-module isomorphisms:
T:C®g Ch—CP  T:Cu@gp1,4Ch— Oy

which are chain maps, and the following diagram commutes:

Cy @z C, c® (4.28)
-~ |
6>l< ®Z[[x_1,:):] 6; B 6(3

Moreover, we have TQ T < %,

Note that although we have previously considered C', and 6; as Z[z]-modules, they
are also modules over the larger ring Z[[z~!, x] in the obvious way, and this is used in the
above statement.

Proof. We define T and T to be the isomorphism of chain complexes which are induced by
the following natural isomorphisms:

Z[r] ®z[y) Z[7] = Z[x], Z[[z7t, ] ®z[z-1 2] Z[z7t z] = Z[[z71, z).

The definition of the S-complex structure on CN’S,? immediately implies that T and T are chain
maps. It is also straightforward to check that Diagram (4.28) commutes.

Suppose > gt e Jand YN dlat e
Then Lemma 4.11 implies that we have

N
(Z 21)752( —I=1o, Z a;x') € image(iy),

1=—00j=0 1=—00

such that a) and ag\,, are non-zero.

and there is a corresponding element in image(7/, ), replacing  a; and N by a; and N'. The
tensor product of these two elements, using the isomorphism 7', gives rise to an element in
the image of the map i® : H(C®) — H(C?), which is of the following form:

Z Zaz””

i=—00 j=—00

where A € C® ® Z[[a:_ ; z]. By Lemma 4.11, the map ® sends this element to J® which

has the form Zz_ - Z "2t Consequently, T ® J' < J%. O

aia]

j=—00
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Corollary 4.29. h(C®) = h(C,) + h(C).

Proof. Lemma 4.27 implies that h(C@) h(C'*) + h(C?). The morphism () in Remark
4.26 induces a morphism from Cle C® to C’ Then we have:

h(Ch) = h(CL® CP) = —h(Cy) + h(CP).

The first inequality frollows from Corollary 4.14, while the second inequality follows from
Proposition 4.21 and another application of Lemma 4.27. O

4.6 Local equivalence groups

We next introduce an equivalence relation on the set of S-complexes, essentially that of
“(chain) local equivalence” as defined in [Stol17]; see also [HMZ18, HHL18]. In those
references, the focus is on equivariant homological algebra over Pin(2) and Z/4. In this
sense our setup, which is in principle that of S!-equivariant homological algebra, is more
basic. However, we allow for more general coefficient rings, and will later consider a filtered
analogue of these constructions, providing a broader context.

A preorder on a set S is a binary relation < which is reflexive and transitive. The
quotient set S/ ~ obtained by identifying elements s, € S with s <t and ¢ < s is a partially
ordered set with the induced binary relation, denoted <

To any category, we may define a preorder on objects as follows: two objects s and ¢
have s <t if there is a morphism from s to t. We apply this to the category of Z-graded
S-complexes over a commutative ring R, and call the resulting set @‘1%:

= {S-complexes over R} / ~
(C.dx)~(Cdx) = 3f:CcnC f:CL—0C,

Here f and f’ are morphisms of S-complexes. We refer to the equivalence relation ~ as
local equivalence. An equivalence class in ©% will be denoted [(Cy, d, x)]. Then

[(Cod )] < [(CLd X)] — 3[:C—C,
Thus @fz is a partially ordered set. Our above work implies the following:

Proposition 4.30. The set @‘z has the natural structure of an abelian group, compatible
with the partial order <, making it a partially ordered abelian group.

Proof. Addition is given by the tensor product of S-complexes. Associativity follows
because the natural tensor product associativity isomorphism, written

(Ce®C®CL = C®(CLeCY),

is an isomorphism of S-complexes. Slmllarly, commutativity follows because the map
C’>X< ® C” — C’ ® C* defined by a ® o — (—1)”(1 ® a, where « and o’ have respective
gradings ¢ and j, is an isomorphism of S-complexes.
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Next, the addition operation is well-defined on ©%, as it is straightforward to verify that
the tensor product of two S-chain homotopy equivalences is again an S-chain homotopy
equivalence. The identity element is represented by the trivial S- complex CO R with
d" = 0, and the inverse of an S- -complex C is given by its dual C1. Indeed, the natural
pairing of Remark 4.26 and the morphism R = CO — C’T ® C, sending 1 to the identity
show that Cf @ C is equivalent to CO O

When we want to consider Z/2N-graded S-complexes over R, we may form an analo-
gous partially ordered group, and we denote this by @‘}% 72N

@‘;yz/zN := {Z/2N-graded S-complexes over R}/ ~

When our S-complexes are graded by Z/N and R has characteristic 2, we similarly have
@‘IS% Z/N" If in this latter case N = 1 (i.e. there are no gradings) then we write @‘]%7 o
The h-invariant of Definition 4.13 extends to the case when the coefficient ring is any

commutative ring R. In the case that R is an integral domain, £ is a homomorphism:

Proposition 4.31. Let R be an integral domain. The h-invariant induces a homorphism
h: @}9% — Z of partially ordered abelian groups. If R is a field, then h an isomorphism. In
general, the h-invariant factors as follows, where Frac(R) is the field of fractions of R:

(:"') —> @grac( )Z/2 L’ Z Char(R) #+ 2
0F — 05y —— Z char(R) = 2

Proof. That h is a homomorphism follows from Corollaries 4.14 and 4.29 and Proposition
4.21, which directly adapt when Z is replaced by any integral domain R.

Next, suppose that R is a field. Let C, be an S- complex over R such that h(C ) = 0.
Proposition 4.15 implies that there is a € C such that d2(1) = da. Then a morphism
X CO — (4, from the trivial S- complex C’O to Cy, is given in components by A = p =
Al =0 and Ay(1) = a. The same construction applies to the dual, giving a morphism
CO — C] whose dual is a morphism Cy — CO Thus C, is locally equivalent to the trivial
complex. This implies that & is injective. To see that h is surjective, take the complex
C~’* = Cy ®Ci_1 @ R with C, freely generated by a single element v, withd = v = 63 = 0
and &, (a) = 1. Proposition 4.15 implies that h(Cy) = 1, so h is surjective.

Proposition 4.15 also makes it clear that the h-invariant is the same whether we work over
R or Frac(R), and similarly the grading of C. plays no essential role in its determination. [

In particular, the h invariant depends on the weakest possible type of grading we allow
for S-complexes over R, and moreover only sees the field of fractions of R. In particular,
the h invariant defined with Z-coefficients is the same as if it is defined with Q-coefficients,
and in this case only the Z/2-gradings of the complexes are necessary.
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4.7 Nested sequences of ideals

Here we describe a refinement of the invariant h(é’ ) in the form of a sequence of ideals
which in general depends on more than the field of fractions of R.

We begin with the concrete example in which R = Z. In this case, we have another
natural invariant associated to the local equivalence class of an S-complex. Let (5’*, CT, X)
be an S-complex over Z, and let J = Z[[z ™!, z] be the associated Z[x]-module im(i,). Set

a(C) := ged{m | m is the leading factor of Q(z) € J with Deg(Q(z)) = —h(C)} € Z=g

An application of Corollary 4.12 shows that if there is a morphism from C to C', then g(C)
is divisible by g(C"). From Subsection 4.5 we gather that a(C ® C") divides g(C)g(C").
There is also an analogue of Proposition 4.15 for g(C)

(&) = ged{61v" 1 (a) | « satisfies (4.16)}, h(C) >0
B ged{a_g | agp,...,a_y and « satisfy (4.17)}, h(C~’) <0

We have an induced map g : @‘% — Z- of partially ordered sets, where Z~ g is given the
partial order of divisibility. More generally, for any commutative ring 12, we obtain a similar
map from @‘IS% to the set of ideals of R.

We expand on the above construction in the case that R is a general integral domain.
Let (Cy, d, x) be an S-complex over R, and again let 3 ¢ R[[z™!, ] be the associated
R[x]-submodule im(i). Then we make the following:

Definition 4.32. For an S-complex C' as above we define its associated ideal sequence
~cJncd,cdioic-- SR (4.33)
where we also write J; = Jl(CN’) as follows:
JZ(CN’) = {ao eR|Japz +az7 "+ € 3} .o (4.34)

The ideals J; defined by (4.34) are nested as in (4.33) by virtue of the fact that J is
an R[z]-submodule. The maximum i € Z such that J; # 0 is by definition the invariant
h := h(C), and so we may write

Jh I 1S JIp o< -CR (4.35)

Note Jh(CN’) = 9(5' ). Corollary 4.12 implies that the nested sequence of ideals (4.35) is an
invariant of the local equivalence class of the S-complex (C~' , cz X)- More generally, for a
morphism C' — C’, with associated ideals J; and .J/, respectively, we have J; < .J/. Lemma
4.27 implies that these ideals behave with respect to tensor products as follows:

Ji(C)- () < Ty (Co ).
With respect to taking duals of S-complexes, we have
J(CHh =0 =  J,.1(C)#0,

which follows from the characterization of the h-invariant in terms of .J; mentioned above.

60



S Equivariant invariants from singular instanton theory

In this section we apply the machinary of the previous section to the framed instanton
S-complex defined in Section 3, associated to a based knot in an integer homology 3-sphere
(Y, K). The output is a triangle of equivariant Floer homology groups, I. (Y, K), I. (Y, K)
and I, (Y, K), the Frgyshov-type invariant hz(Y, K ), and a nested sequence of ideals.

5.1 Equivariant Floer homology groups

For an oriented based knot K in an integer homology sphere Y, we constructed a Z /4-graded
S-complex (6'* (Y, K), d) whose S-chain homotopy type is a natural invariant of the pair
(Y, K). Associated to this S-complex, we have equivariant chain complexes (C(Y, K), d)
(C(Y, K), d) and (C,(Y, K), d) as defined in Subsection 4.2. We write

L(V,K), L(YV,K), T.(Y,K) (5.1)

for the homology groups of these chain complexes and call them the equivariant singular
instanton homology groups of (Y, K'). These homology groups are Z[x]-modules. Our
notation is motivated by the notation in the monopole Floer homology of [KMO07], and the
three groups (5.1) are respectively called “I-from”, “I-to” and “I-bar”.

We may alternatively use the small model for equivariant Floer homology groups in
Subsection 4.3 to define equivariant singular instanton homology groups. In particular,

I.(V,K) = Z[[z7', z]

Invariance of the S-chain homotopy type of (C (Y, K), d) implies that these Z[x]-modules
are invariants of (Y, K'). Moreover, we have exact triangles:

1.V, K) I L.V, K) (5.2)
T.(Y, K)

T K) (5.3)
I.(Y, K)

induced by (4.6) and (4.8). The equivariant singular instanton homology groups are Z/4-
graded over the graded ring Z[z], where x has grading —2. With respect to these gradings,
the maps p. and 7, have degree zero, while j, has degree —1. Moreover, the maps x.., ¥
and z, have respective degrees —2, 0 and 1.
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We may similarly define the equivariant singular instanton cohomology groups T (Y, K),
I* (Y, K) and T (Y, K). These satisfy similar properties. In the triangles (5.2) and (5.3), the
arrows are reversed and the maps are replaced by ¢*, j*, p*, z*, y* and z*.

Equivariant singular instanton homology groups are functorial with respect to nega-
tive definite pairs. A negative definite pair (W, S) : (Y, K) — (Y”, K') induces a mor-
phism A(Wﬂ) C.(Y,K) — C.(Y’,K’). The discussion of Subsection 4.2 shows that

this morphism induces morphisms of Z[z]-modules LW,S) : L(Y,K) — L(Y',K),
LWV, S): L(V,K) - L(Y",K") and T (W, S) : To(Y, K) — T.(Y", K").

Theorem 5.4. The equivariant singular instanton homology groups define functors

Z/4
Z[z]
Z/4
Z[z]
Z/4
Z[x]

: H —> Mod,,
: H —> Mod,,
: H — Mod,,

from the category H of based knots in homology 3-spheres to the category of Z/4-graded
modules over the graded ring Z[x]. The maps i, js, psx determine natural transformations.
Similarly, we have cohomology functors, satisfying the same properties:

Z/4
Z[z]
Z/4
Z[z]
Z/4
Z[z]

Remark 5.5. In this article, we have restricted our attention to negative definite pairs, in the
sense of Definition 2.33. However, we hope that the functoriality of the equivariant singular
instanton homology groups can be extended to other cobordisms. ¢

: H —> Mod,,
: H — Mod,,
T 7—[—>Mod

Remark 5.6. Technically, our constructions assign to a pair (Y, K) a transitive system of
equivariant singular instanton homology modules, indexed by the choices of auxiliary data,
and to a cobordism (T, S) a morphism of such transitive systems. We may then assign to
each transitive system a module, as discussed after Theorem 3.34. ¢

Let (Y, K) be a based knot in an integer homology 3-sphere and let (—Y, —K) be its
orientation reversal. From (2.20) and the discussion in Subsection 4.4 we conclude that the
Z /4-graded S-complex associated to (—Y, —K) is naturally identified with the dual of the
Z/4-graded S-complex of (Y, K'). This implies the following:

Proposition 5.7. Let r : H — H denote the functor which reverses orientations, i.e.
r(Y,K) = (=Y, —K), and r(W,S) = (=W, —S). Then we have the following equalities:

*or=1I,, T*or=1I,, T or=T1,,
Iv*or:IA*, f*or:f*, Teor=1".
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Remark 5.8. Observe that we are working over the coefficient ring Z, and yet we do not need
homology orientations, as is necessary, for example, in [KMO7]. This is because we have
restricted our attention to knots in homology 3-spheres and cobordisms which are negative
definite pairs, which have canonical homology orientations. ¢

Remark 5.9. All of the above works if Z is replaced by any commutative ring R. ¢

5.2 Local equivalence and the concordance invariant h

Recall the category #H, whose objects are based knots in integer homology 3-spheres, and
whose morphisms are negative definite pairs. Consider the set @%1 obtained from H by the
general procedure described in Subsection 4.6. We obtain the following description:

@%1 = {(Y, K) : Y an integer homology 3-sphere, K — Y aknot} / ~

3 negative definite pairs

(V,K)~ (Y K') = (Y, K) - (Y, K"), (Y',K') > (Y, K)

The partially ordered set @%’1 has a group operation: the identity is represented by the
unknot in the 3-sphere, the group operation is connected sum of knots, and inverses are
obtained by reversing orientation. This abelian group is also a partially ordered group, with
[(Y,K)] < [(Y’', K')] if and only if there is a negative definite pair from (Y, K) to (Y, K').
Furthermore, there is a natural homomorphism to @%1 from the homology concordance
group defined in the introduction. We will prove the following:

Theorem 5.10. Let R be a commutative ring. The assignment (Y, K) — (Cy(Y, K; R), d, x)
induces a homorphism = : @%1 — @ﬁ,z /4 of partially ordered abelian groups.

That the assignment induces a well-defined map @%1 — @‘; 74 of partially ordered sets
follows from the discussion in Subsection 3.4. That the map is a homomorphism will follow
from our connected sum theorem, to be proved in Section 6.

Definition 5.11. For a based knot in an integer homology 3-sphere (Y, K), we define
hY, K) = hz(Y, K) to be the Frgyshov invariant of the S-complex (C(Y, K), d). That is,
h is the invariant of the equivalence class [(Y, K)] € @%’1 obtained from the composition

31 = h
h:07 — 054, ——Z

When Y is the 3-sphere, we simply write h(K'). More generally, we write hr (Y, K) for the
Frgyshov invariant obtained using a coefficient ring R which is an integral domain. ¢

Remark 5.12. In Section 7, we will generalize this invariant to the collection of invariants
ho (Y, K) for .7-algebras over Z = Z[U*!, T*+1] using local coefficient systems. These
more general versions are the ones discussed in the introduction. ¢
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Let Cz be the homology concordance group. There is a natural homomorphism
Cz — O3

In this way, any integer valued function defined on 9‘15% 74 gives rise to a homology concor-
dance invariant for knots. We use the same notation hg : Cz — Z for the homomorphism
induced by hp, in this way.

Theorem 5.13. Let R be an integral domain. Then hp induces a homology concordance
invariant which is a homomorphism of partially ordered groups:

hr :Cz — Z.
If(W,S): (Y,K) — (Y, K') is a negative definite pair, then hg(Y, K) < hg(Y', K').
We may refine the invariants hr using Definition 4.32 to obtain a sequence of ideals
JAY,K)cJR (V,K)c-- SR

where h = hr(Y, K), the construction of which again factors through 6%1. The properties
of these ideals carry over from the discussion in Subsection 4.7. We will also generalize this
construction in Section 7.
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6 The connected sum theorem

Let (Y, K) and (Y, K') be pairs of integer homology 3-spheres with embedded oriented
based knots. Then the connected sum (Y#Y', K#K'), performed at the distinguished
basepoints of K and K, is also an oriented based knot. The main result of this section is:

Theorem 6.1. (Connected Sum Theorem for Knots) In the situation described above,
there is a chain homotopy equivalence of Z /4-graded S-complexes:

CY#Y'  K#K') ~C(Y,K)®C(Y', K') (6.2)

The statement holds over any coefficient ring. This equivalence is natural, up to S-chain
homotopy, with respect to split cobordisms.

Each framed instanton chain complex that appears in the statement has some fixed choices
of metric and perturbation, which are as usual suppressed from the notation. The connected
sum theorem, together with Lemma 4.27, implies the following result for /..

Corollary 6.3. Let (Y, K) and (Y', K') be based knots in integer homology 3-spheres.
There is a chain homotopy equivalence of Z/4-graded complexes over Z|x]:

Cu(Y, K) @) Co(Y', K') = Cu(Y#Y', K#K')

natural up to homotopy with respect to split cobordisms. In particular, if R is a field, then
there is a Kiinneth formula relating I.(Y, K; R), I.(Y',K'; R) and I.(Y#Y', K#K'; R).

A similar statement holds for the I, theory, and the two are intertwined by the map 7. We
remark also that Theorem 6.1 completes the proof of Theorem 5.10.

In this section we prove the equivalence (6.2) and its naturality (explained in Subsection
6.3.4) over Z, as the case for arbitrary coefficients follows from this.

Theorem 6.1 is a singular instanton homology analogue of Fukaya’s connected sum
theorem for the instanton Floer homology of integer homology 3-spheres [Fuk96]. In fact,
our result goes further than Fukaya’s theorem, which does not determine the full S-complex
for the connected sum. Our proof is an adaptation of the one described by Donaldson
[Don02, Section 7.4] in the non-singular setting. Apart from our having repackaged the
algebra, the main difference between our proof of Theorem 6.1 and Donaldson’s proof in
the non-singular case occurs in the proof of Proposition 6.17, where a singular analogue of
[Don02, Theorem 7.16] is used; see Remark 6.25 for more details.

6.1 Topology of the connected sum theorem

There is a standard cobordism of pairs (Y, K) u (Y, K') — (Y#Y', K#K') which we
denote by (W, .S). The cobordism W : Y 1Y’ — Y#Y' is obtained by attaching a 4-
dimensional 1-handle H to [0,1] x (Y w Y”) along 3-ball neighborhoods of the basepoints
px {1} and p’ x {1}. The surface cobordism S : K 1 K’ — K#K' is similarly obtained by
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attaching a 2-dimensional 1-handle, embedded inside H. Note that if K and K’ are unknots,
then S is a pair of pants. For this reason we depict (W, S) by a directed pair of pants, i.e. = .
We have a similar cobordism of pairs (W', S") : (Y#Y', K#K') - (Y, K) u (Y, K'),
which is obtained from (W, S) by swapping the roles of incoming and outgoing ends, and
reversing orientation. This is depicted by (E Both surfaces S and S’ admit framings which
are compatible with the Seifert framings of the knots K, K’ and K#K'.

) &
=

yuy uat

'S

ocudo uot

) [
) &

Figure 4

Fix three oriented, piecewise-differentiable paths 7, 7/ and 4# on the surface S — W
in the following way. The path ~y (resp. 7) begins at the base point p of Y (resp. p’ of Y”)
and ends at the base point p7 of Y#Y”. The path v# begins at p and ends at p’. These
three paths together form a graph in the shape of the letter Y as it is shown in Figure 4. The
holonomy of any connection along < is equal to the product of its holonomies along the
paths 7" and v7. Similarly, we denote by &, o’ and o the paths on the surface S’ which are
the mirrors of the paths v, 7/ and v, as depicted in Figure 4.

The composite cobordism (W, S) o (W', S’) has an embedded loop on S o S, depicted
in Figure 5, formed by joining together 4 and 0. A regular neighborhood N of this
loop is diffeomorphic to the pair (S' x D3, S! x D), the boundary of which is the pair
(81 x S2,81 x 2 pts). Excising N and gluing back in a copy of (D? x S2, D% x 2 pts)
produces a cobordism isomorphic to [0, 1] x (Y#Y’, K#K'), the identity cobordism.

(W, 8) o (W', S [0,1] x (Y#Y', K#K')

Figure 5

Now we consider the other composite, (W', S") o (W, S). Within this cobordism there is an
embedded pair (53, S'); in Figure 6 below, this S! is the horizontal circle. Cutting along
this 3-sphere and circle, and gluing in two pairs of the form (B, D?), yields a cobodism
isomorphic to the identity cobordism [0, 1] x (Y, K) u (Y, K')).

66



(W' 5" o (W, S) [0,1] x (Y, K) u (Y',K"))

( )
y )

Figure 6

6.2 Moduli spaces on the cobordisms (1/, S) and (W' S")

Throughout this section, we write o, o/ and o for gauge equivalence classes of critical
points for the perturbed Chern-Simons functionals on (Y, K), (Y, K') and (Y#Y', K#K').
Similarly, we write #, ' and 0% for the corresponding reducible classes. We use the
abbreviated notation M («, o'; o), for the instanton moduli space M (W, S; o, o, o).
Similarly, M (a#; a., o) 4 denotes the moduli space M (W', S"; a?, ar, o).

We can use the paths  and 7/ defined above to define maps as in Subsection 3.3.3:

HY : B(W,S;0,d,a®) — St HY - BW, S;a,d,a?) — St

Note that in contrast to our convention from Section 3.3, for the sake of brevity, we omit the
critical limits from the notation of these holonomy maps. To define H” (resp. H 7"y we need
a (resp. o) to be irreducible, and both maps require o irreducible. By picking generic
points h, b’ € S, we define the following cut-down moduli spaces:

M (a,o'sa%)g = {[A] € M(a,a’;a®)gp1 | HY([A]) = b}, (6.4)

My (a,a';a®) = {[A] € M(a,a/;0%) 441 | HY ([A]) = I}, (6.5)
Moy (o, o';0) g = {[A] € M(a,a’;0%) 440 | HY([A]) = h, HY ([A]) = h'}.  (6.6)
The moduli spaces (6.4), (6.5) and (6.6) are defined only in the case that o™ is irreducible.
Moreover, we need irreducibility of « (resp. ) to define the moduli spaces in (6.4) (resp.
(6.5)) and (6.6). There is another obvious way in which we can define a cut-down moduli
space in the case that « and o’ are both irreducible:

M. % (a, o/;a#)d = {[A] € M(a, a';a#)d+1 | HV#([A]) =hn. hil} (6.7)

We will mainly be concerned with the moduli spaces in (6.4), (6.5), (6.6) and (6.7) in the
case that d = 0 or d = 1. By choosing h and h’ generically, we may assume that all such
moduli spaces are smooth manifolds.

Remark 6.8. We follow similar orientation conventions as before to orient the moduli spaces.
For example, to orient the moduli space M (a, o’; a*), we use the canonical homology
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orientation oy for the pair (W, S), which is an element of A[W, S; 6,6 ; Gfk], defined as
in Subsection 2.9. Given elements o, € Al«], 0, € A[/] and oa# e A[a™], we can fix
Ou.arat € AW, S504,0'; :67], and hence an orientation of M (cv, o/; a*), by demanding:

P(06 ® 0o @0ow) = P(04 o0 ® 0g#). ©

6.3 Proof of the connected sum theorem

Let us write (Cy, d, X), (CL,d’,x') and (C¥ , d#, x#) for the framed instanton S-complexes
for the based knots (Y, K), (Y', K') and (Y#Y', K4 K'), respectively. Write (C®,d®, x®)
for the tensor product S-complex defined using (C*, d, x) and (. ,d’,x') as in Subsection
4.5, so that its underlying chain complex is simply (Cy, d) ® (C’;, d’ ).

The moduli spaces discussed in Subsection 6.2 will be used to define morphisms

X(W,S) :<5§7 C7®7X®) - (éfv d#a X#)v
A0 (CF L d%, x7) — (C2,d%, x%).
In Subsection 6.3.1, we define >\(W 5) and show that it is a morphism of S-complexes. The

definition of )\(W/ sy 1s similar and is given in Subsection 6.3.2. Finally, in Subsection 6.3.3,
we show that these maps are S-chain homotopy equivalences.

6.3.1 Definition of the map X(W7 s)

Using the S-compex decomposition of 6,@ from Subsection 4.5 and the notation of Definition
3.28, giving a morphism

Aw.s) : (C2,d®,x®) — (CF,d¥, x*)
amounts to defining four maps, A : C’® — C’# J C@ — C* VASEE: CE? — 7, and
Ao 7 — Cfﬁl. Upon further decomposing C®, these may be written as maps
A (CR®C®(CRC) i @C,@C, > CF
1 (CRCN®CRC) 1 ®C®C) — CF
A (CRCYHDICRC)_1®CodC) — Z
Ny:Z—C7.

The maps A, p and A; can be further decomposed using the decomposition of their domains
into four components; we write

A=A A0, A3, A, = [ pos pss pals Ar = [Arn, Arg, Av g, Al
We proceed to define these maps. Suppose «, o’ and o are all irreducible. Then define:

M(a®ad),a”) = # M4 (o, s caf)y Api(a®d) = #M, % (o, s 070

Ma(a®a),a) = #M(a o a#) Aj2(a®d’) = #M(a o 9#)
3(@), oy = #M(a,0';a7)g A s(a) = #M(a,0';0% )
Na(a), o) = #M(0,0';0%)g Ara(af) = #M(0,0';6%)
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We also define (Ay(1),a™) = #M (0, 0'; o). Finally, we define y as follows:

<,u1(a ® O‘/)v a#> = #M,W/(Oé, 04/§ a#)O
{pa(a®@a'),a#) = #M, (o, ;)

(us(e), o) = # M, (a, 0';0%)g
{ua(e), a#) = #M. (0, 0'; %)

Using the pictorial calculus introduced in Section 3, we may write these maps as follows:

=[EVE)EVE]] a=[EJET ETET]
Ao="> | p= [ S N %A]

Remark 6.9. There is a unique reducible ASD connection Ap on (W, .S) up to gauge equiva-
lence, which is unobstructed and has index —1, as can be verified using arguments similar to
those in Subsection 2.7. From this one can deduce that \ has degree 0 (mod 4), as is already
implicit in the above notation. ¢

Remark 6.10. We have indicated the convention, as in the case of p1, that a picture involving
more than one path represents a map defined by cutting down moduli spaces by holonomy
constraints 7 ([A]) = h. for each path ~, where h-, € S*. In the generic case, as is always
assumed, the parameters h. are distinct from one another. Thus we have the relation

because this map counts instantons whose holonomy along one path is equal to two distinct
quantities. We note here, in passing, that whenever two paths overlap, our convention is to
draw them slightly separated from one another. ¢

Remark 6.11. Because v is homotopic to v concatenated with the reverse of v/, we have
the relation HY - (HV)~! = H 7" . From this we obtain the relation

This follows from Remark 3.18 and the elementary fact that for two maps f and f’ from a
closed oriented 1-manifold M to S', we have deg(f - f’) = deg(f) + deg(f’). ¢

Proposition 6.12. The maps A\, u, A1 and Ao define a morphism of S-complexes. That is to
say, they satisfy the following identities:

d? o\ = Xod®,
§F o= A1 0d®+ 69,
Ao 6® = 6 —d¥ o A,
d#* op+pod® =vFoX—Xov® + 8 0 Aj — Ay o 2.

69



S NI
ol ) o
Plm )
el &) &

S IEIERTEE
el 2 & ]
s ]2 TE
el 2 1% ] i




el 25 o 2 w-
& ] &l

I b el

Figure 9

Proof. The relations listed will follow by analyzing the ends of certain 1-dimensional moduli
spaces using the gluing theory which is outlined in Subsection 2.7.
First, the relation d” o A = X o d® splits into the equations:

dAM =MdR1) + M(E®d) — Aa(ev®1) + Xa(e®@V) + A3(e®6)) + M(51 ®1)
d#Xg = Xa(d®1) — Xa(e @ d)

d# A3 = Aa(e ® 0%) + Asd

AT = =X(02®1) + \ad’

These relations follow by counting the boundary points of the 1-dimensional manifolds
M;r# (o, 5071, MT (o, o;0%)1, M*(a,0'; %), and M*(0,a/; o), respectively.
The boundary points in the four cases correspond to certain factorizations of instantons
which are depicted by the four rows in Figure 7. The details of this analysis are completely
analogous to the proofs of Propositions 3.10 and 3.20.

Similarly, the relation 5# oA = Ajod®+ (5? splits into four equations, which correspond
to the four rows in Figure 8, obtained by counting boundary points of the moduli spaces
M;r#(a, o5 07) 1, M* (o, a5 0%)1, M*(0,a';0%)1 and M+ (0, a; 07);.

The relation A o (52® = (5# —d# o Asis equivalent to

A3085 4+ Aoy =67 —d¥ o A,
the terms corresponding to the boundary points of moduli spaces M* (6, 6; a™)1:
2] &) &l £l
L) .(D L)

Finally, consider the fourth relation

d*op+pod®=vfoX=Xov®+ 67 0 Aj — Ayod?. (6.13)

This splits into four equations. The first equation follows by counting the boundary points of
1-dimensional moduli spaces M%,(a, o’; ™). See Figure 9. Note that gluing theory gives
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Figure 10

an additional contribution to Figure 9 of the form

el

However, this term vanishes by Remark 6.10. The term in Figure 9 depicted as

el

comes from broken trajectories in M 7ty,(a, o’;a™); which break along a reducible on
Y #Y'. Although the two curves v, 7/ travel through [1,00) x Y#Y”, it is clear that
M%,(a,o/; a#)l = M:#V,(a,a’; a#)l.

Thus from the viewpoint of the latter moduli space, we only need understand how such
trajectories interact with the holonomy map of +/, from which the contribution (6.14) follows
just as in Proposition 3.16. In verifying the relation at hand from Figure 9, we use Remark
6.11 several times, for example:

o)) - £l
o). .

The second equation stemming from (6.13) is obtained from the boundary points of
the moduli space Mj (o, '; o)1, which are represented in Figure 10. The third equation

follows from considering the boundary of Mj (o, 0'; o )1; the fourth and final equation is
similar, and uses M;C 0, ; o)1 and the relation of Remark 6.11. ]

KU
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6.3.2 Definition of the map X(WQ s)

We have a similar decomposition for the map X(W/’ 51y
N:CF - (CRC).®CRC) .1 ®C.®C,
fiCH - (C®C1®(CRC)a®Ci®Ch_y
A C’# —Z
AY:Z—> (CRC)LBICRC)sC il .

The maps X', p/ and A/, can be further decomposed using the decomposition of their
codomains into four components, as seen above; we write

N :[ /17 /27 g’ﬂ)‘il].r? n= [/1’/17N/27M/37:U’£1]T7 /2:[ /2,17 /2,27 /2,37 /2,4]T‘

We proceed to define these maps. Suppose «, o’ and o are all irreducible. Then define:

N (a®),a®a’y = #M(a¥;a,a')g (Ay,(1),a®a’) = HM (07 o, a')g
Qo(a?),a®@a) = # M4 (a¥;a,0')y (Ah,(1),a®@a) = #M4(0%;a,0')o
(), a) = #M(a#;a,0') (AL 5(1), ) = #M(6%;,8)o
Ny(a#), ') = #M(a#;6,a') (AL (1), ") = #M(6%;6,a')o

We also define Af (a#) = #M (a;0,6)o. Finally, we define yi/ as follows:

{ph (), a®a’) = #My(a#; a,a)o
</,L/2(Oé#), a® O/> = #Myq (Oé#; «, O/)O
(s (), @) = # My (a¥; a,6)
<M£1(Oé#), O/> = #My (a#; 0, O/)U

The proof of the following proposition is similar to the proof of Proposition 6.12. All the
relations are obtained from Subsection 6.3.1 by reversing the pictures from right to left.

Proposition 6.15. The maps N, 1/, A} and A, define a morphism of S-complexes. That is
to say, they satisfy the following identities:

d®o N = )Nod”,
820N = A} od? + 6F,
Nodf =62 —d®oAl,

d®op +p od? =v®o N — Nov# + 620 A) — Ao st

6.3.3 Chain homotopies of compositions

We firstly identify the composition X(W, s) © X(W/7 s7)> which is a morphism of S-complexes,
as a morphism associated to (W°, S°) := (W o W', S 0 §'). Let p7 := v# o o7 be the
closed loop embedded in the surface S°, and similarly set p = yo o, p’ = v oo’ Let

~

Ao o gy 1 CF — CF
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be the S-morphism defined by components \°, 1°, A and A3, where

N (a#), B%) = # M (W°, 5% ¥, p7),
(), B7) = # M ,(W°, 5% o B
(A (), 1) = #M o (W°, 5% a# 0#)

(A3(1), %) = #M, #(WO S°0%, 5%)y

In all of these moduli spaces, we use a slightly larger gauge group than usual; this is indicated
by the primed superscripts. To say more, viewing our moduli spaces as consisting of SO(3)
(orbifold) adjoint connections, we mod out by not only determinant-1 gauge transformations,
but all SO(3) (orbifold) gauge transformations. In the case at hand, the determinant-1 gauge
group is of index 2 in this larger group, as H(W°; Z/2) =~ Z/2. The residual Z/2 action is
free and orientation-preserving on the determinant-1 moduli spaces [KM11a, Subsection
5.1], so for example we have

#M (WO, 8% a7, 37)g = 24 M 4 (W°, S° o, B7);
This modification of gauge groups is to avoid factors of 2 in our chain relations below.
Otherwise, our notation is just as before; for example, we have

My, (W2, 8% 0%, B#)y = {[A] € M(W°, 5% a#, 6%), | HP" ([A]) = s, HP([A]) = t}

for generic fixed s,t € S', and H P* and H are modified holonomy maps. In pictures:

That the map X(Wo7 g0 p#) just defined is a morphism of S-complexes follows, for the most
part, from the usual arguments. The one essential difference is that (1¥°,.S°) is not a negative
definite pair in the sense of Definition 2.33, because H; (W °\S°; Z) is free abelian of rank 2.
In considering its reducible traceless representations in .2 (W °, S°), one of these generators,
upon conjugating, must go to i € SU(2), and the other is then of the form e € SU(2).
Thus there is not one reducible, but a circle’s worth. Nonetheless, all the moduli spaces used
in the definition are cut down by holonomy around the loop p#, and this has the effect of
picking out a single reducible which is unobstructed. Similar matters are discussed in the
proof of Proposition 6.17 below.

Proposition 6.16. There is an S-chain homotopy equivalence between the S-morphism
/\(WS) o >‘(W’ 57 and the map )‘(WOW/ SoS! p#):

Proof. Choose a path of metrics G on (W°, S°), starting at gy and ending at a broken metric
g, the latter of which is broken along the gluing region of the composition (W, S)o (W', S").
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Define K°, L°, M7 and M; as follows:

(K°(a#), 3%y = #{[A] € | MO(W°, 8% 0%, 5#), | HP*([A]) = s}

geG

(Lo(at), ) = #{[A] € | ] MOW®, 5% a#, g#); | HP ([A]) = s, H([A]) = t}
geG

(M7 (a#), 1) = #{[A] € [ | MO(W°, 8% 0, 0%) | H ([A]) = s}
geG

o o o, #
(M3 (1), %) = #{[A] € || MI(W*,5%0%, 5%)y | HP" ([A]) = s}
geG
These maps define a chain homotopy as in Definition 3.30 between X(Wo7 oy defined above
and the map )\(WO 50 defined similarly to X(Wo se) but using the broken metric go, in place

of go. That is, if we write the components of /\(WO 50y 88 A%, 1®, AP and AY, then

d*K + Kdf = \* - \°

v K — d¥L + 6% My + Ld¥* — Kv# + Mys? = ™ — 1i°
STK + Myd# = AP — AS
—d* My — K6F = AF — A3

These relations are proved in the usual way; for the first, consider the 1-dimensional moduli
space | J,cq M 9,(W°, 8% a#, #)(. Counting the ends of this moduli space that contain

sequences of palrs ([Ai], gl) where the metrics g; converge to the interior of G yield the left
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hand side of the equation d” K + Kd# = A\* — \°, and ends containing sequences with
gi — go (resp. goo) contribute to A° (resp. A*) on the right side. Finally, we claim that

~

)\[()?/[/075'0) = )‘(WS) (¢] A(W/ﬁ/)
This amounts to straightforward verifications of the following identities:

AZ = AN, Aoy £ s\ £ A,

70 = Ny + oy + paXy + paNy + Mg+ Aoy + Az + Mgy + A Al
AP = AN + A1)y + Aq s\ + Ag g\

AF = MAY 4+ XaAh 5 + A3A5 3 + AAY

The right hand sides are represented by the rows of Figure 11. (If we had not modified
our gauge groups, factors of 2 would appear on the right hand sides, from a discrete gluing
parameter, multiplying by —1 on one of Y or Y”, as in [BD95, Section 3.2].) We also remark
that in verifying the relation for ;* we use the following identity, and its symmetries:

Ie-k=

Proposition 6.17. The morphism X(WO7 g0 p#) Is S-chain homotopic to id.

Proof. Recall from Figure 5 that embedded in the composite (W°,5°) = (W oW’ S0 5’)
is a copy of (S x D3 /81 x D'), surgery on which yields a product cobordism. Write
(We, §¢) for the closure of the complement of (S x D3, S x D), so that

(W°,8°) = (W, 8 u (St x D3, 8 x DY),

where the two pieces are glued along (S x 52, S x {2 pts}). The basic idea of the proof is
to relate the morphism associated to (¥ °, S°) to a morphism associated to the pair in which
(S* x D3, S' x D')is replaced by (D? x S?, D? x 2 pts).

Stretching the metric along a collar neighborhood of the gluing region provides a 1-
parameter family of metrics, starting from our initial choice of metric, and limiting to a
metric broken along S x S2. Along this 1-parameter family of metrics, we homotop the
loops p, p/ and p* and vary the constant s € S continuously such that when the metric
is broken along S* x S2, the loop p* is contained in S' x D', away from the region of
stretching, but that p and p’ are in the interior of W° and s = 1. We also arrange that the
perturbation data both near the gluing region and on the component (S! x D3, St x D)
are zero. (These assumptions will be justified in the course of the proof.) Write AT for the
map defined just as X(W07 g0 p#) Was defined, but using the limiting broken metric; write its
components as AT, p T, AT A; . The family of metrics determines an S-chain homotopy
from X(Woyso7p#) to AT in the usual way.
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We now describe A . First, the critical set € of the unperturbed Chern-Simons functional
on (S! x §2%, S x 2 pts) may be identified via holonomy with the traceless character variety,
similarly to (2.2). This latter set is identified with S I as follows. Let L be a meridian
generator for the fundamentral group of S2\2 pts, and v a generator corresponding to the S*
factor. The condition tr p(p) = 0 implies there is some g, € SU(2) such that g,p(u) g;l = 1.
As p and ¥ commute, we have gpp(u)gp_1 = ¢ € S'. Sending p to gpp(y)gp_1 gives the
bijection. In summary, we have an induced bijection ¢ — S*.

Note that the stabilizer of each point in € is isomophic to U(1). We next claim that € is
Morse—Bott non-degenerate. As € has been identified with the smooth 1-manifold S, this
amounts to showing, for each class in €, that H! of the associated deformation complex has
dimension 1. This in turn is equivalent to

dim H(3; 7* B 7™ = 1 (6.18)

where 7 : & — S' x S§? is the double branched cover, B is the orbifold adjoint connection
associated to [B] € €, and 7* is the action induced by a lift 7 of the covering involution
7 on ¥ to the adjoint bundle. Each class is reducible, and so 7* B is the sum of some
U(1)-connection B’ and a trivial connection. Thus H'(3; 7* B) is given by

HY(S' x 8%, B")® H'(S* x S%;R). (6.19)

The action of 7 is by —1 on the left factor of (6.19) and the identity on the right factor. This
implies the relation (6.18).

Next, let M (S' x D3, S* x D)™ denote the set of reducible instantons on the pair
(S' x D3, 8! x D'), with cylindrical end attached. Then we have the map

M(S' x D3, 8 x phyed _, ¢ (6.20)

which associates to an instanton its flat limit. This is a bijection, as every flat connection on
(81 x 82, S x 2 pts) extends uniquely over (S* x D3, 81 x D).

Note that each flat instanton in M (S x D3, S! x DY) is unobstructed, because
the branched cover S' x D? is negative definite. Furthermore, each such instanton has
dim H' = 0 in the deformation complex, as follows from a similar computation to that of
(6.18). In particular, the index of the ASD operator for any [A] € M (S x D3, 81 x D)red
is equal to —1. Moreover, any instanton on (S x D3, S x D') with index —1 is neccesarily
in M(S' x D3, 8 x D)4, because all such instantons must have the same energy, and
must therefore all be flat.

Write M (W€, S¢; o, 37), for the union of M (W€, S¢; a7, v, f7)4_1 overall vy € €,
and similarly for M (S! x D3, S x D) Then each of these is a smooth manifold whose
dimension is recorded in the subscript. From the above discussion,

M(S' x D3, 8t x DY)IF — d<0ord#0 mod4 (6.21)

We now employ gluing theory in the Morse—Bott case, see e.g. [Don02, Section 4.5.2].

Write Mp#(Sl x D3 51 x DY) for the subspace of [4] € M(S* x D3, S x DY)t
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satisfying a holonomy condition H r* ([A]) = 1. Consider the diagram

M(We, 8¢ a#, B#)y x D3, 81 x D)irr (6.22)

\/

where each of 7 and r’ record the limit v € € along the cylindrical ends. Note that all
instantons in M (W€, S¢; o, 37), are irreducible. Similarly, we have a diagram

M(We, 8¢ a%, p#), x D3, 81 x Dl)red (6.23)

\/

where 7/ is a restriction of the map (6.20). The Morse-Bott gluing theory tells us that for our
limiting broken metric, the moduli space M (W °, S°; a”, 37)y may be identified with
union of the fiber products of (6.22) for d + d’ = 1, along with the fiber product (6.23).
However, (6.21) implies that (6.22) is empty for any pair (d, d") with d + d’ = 1, so we may
restrict our attention to (6.23).

The holonomy constraint H?” ([A]) = 1 picks out exactly two points in the domain of
the bijection (6.20). This is because H /" is defined by first taking the adjoint connection,
which has the effect of squaring the holonomy in S'. We conclude that the map

r ]\4/)#(51 x D3, 81 x Dl)red ¢

is an embedding of two points into € with image being two elements 6+ of ¢ that have
holonomies +1 along the S*-factor. By picking appropriate metric and perturbation on the
interior of (W€, S¢), we may assume that r is transverse to 6+ € €. Thus

#Mg# (Woa SO; Oé#, /B#)O = #M(WC) Sca Oé#, 9+) /B#)O + #M(WC) Sca Oé#, 9—) /B#)O
= 2#M(Wca Sca Oé#, 0+a 5#)0
where g is the metric broken along S' x S2. The second equality holds because there is
again an element of the SO(3) gauge group which maps M (W¢, S¢;a*, 0, , %), into
M(W¢, 8¢ a¥ 0_,37)q in an orientation preserving way. As the map A\* is defined using
the moduli space M;’# (W°, 8% a*, 3#)!, a quotient of Mg# (W°, 8% a, 37)q by a free
involution, the factor of 2 is absorbed and we have the identity
(¥ (a#), B7) = #M(W*, 5% 0%, 0., 5%),.
The other components may be described similarly:
it (o), B%) = #M(W*, S% o™, 0., 5%)o
AT (o) = #M(W*, 5% a0, 6%)o
(A (1), BF) = #M(W*, 5% 0%, 0., 6%)q
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Recall from Figure 5 that replacing (S x D3, 5! x D) with (D? x S2, D? x 2 pts) results
in the product cobordism [0, 1] x (Y#Y’, K#K'). By attaching (D? x S2, D? x 2 pts)
metrically, with a cylindrical end, this product cobordism inherits a broken metric. Then
the associated moduli space M ([0,1] x (Y#Y', K#K'); a7, 7)o may be identified with
union of the following fiber product:

M(We, 8¢ a#, 7)), M(D? x §%,D? x 2 pts)rd

¢

We have ruled out the possibility of fiber products involving M (D? x S%, D? x 2 pts)i as
in the previous case for S' x D3. The moduli space M (D? x 52, D? x 2 pts)™ consists
of one point, the unique flat connection which extends 6 € €. Note that this connection is
unobstructed because the branched cover, also identified with D? x S2, is negative definite,
and it has dim H' = 0 because b1 (D? x S?) = 0. Thus

T (a#), %) = #M([0,1] x (Y#Y', K#K'); o7, %),

and similarly for 4™, A} and AJ . In summary, we may write

)\+ - )\fg,l]X(Y#Y’,K#K’) (624)

where the map on the right side is the usual S-morphism associated to a cobordism, with the
understanding that the auxiliary data involves a metric broken along S! x S2. Finally, using
an S-chain homotopy induced by the family of metrics which starts at this broken metric
and “unstretches” to the product metric, we obtain an S-chain homotopy from the right side
of (6.24) to the S-morphism defined using the product metric, which is the identity. O

Remark 6.25. Consider a negative definite pair (W, S) : (Y, K) — (Y, K') as in Subsection
3.3.1, and an embedded 2-sphere F' with F' - F' = 0, which intersects S transversally
in 2 points, such that £ - § = 0. A neighborhood of F' is diffeomorphic to the pair
(D? x S?, D? x 2 pts), and we can cut this out and reglue a copy of (S* x D3, S* x 2 pts) to
obtain a pair (W', S"). Let~y denote the closed loop which is the core of S* x D3 = W’. From
Subsection 3.3.1 we have a holonomy induced map p 7 o) : C(Y, K) — C(Y', K').
To the original cobordism (W, ') we consider the usual cobordism-induced map Ay, :
C(Y,K) — C(Y', K'), which counts isolated instantons. Then the argument in the proof
of Proposition 6.17 shows:

Proposition 6.26. The maps iy s ~) and 2\yy,s) are chain homotopic.

This is a singular and relative analogue of [Don02, Theorem 7.16]. To remove the factor of
2, we can work with a slightly larger gauge group when defining p(y s ), as done in the
proof of Proposition 6.17. ¢

Next, we analyze the reverse composition.

79



Proposition 6.27. X(W/7 1) © X(W, s) is S-chain homotopic to an isomorphism.
Proof. Set (W', Sh) := (W', 8") o (W, S). We consider an S-chain homotopy H' such that
dEH' + H'd® = X5 © Aawis) — A (6.28)

The moduli spaces for the map H' are defined similarly to the chain homotopy used in the
proof of Proposition 6.16, but this time using a path of metrics G that starts at the broken
metric go for the composite (W1, S) := (W', 8') o (W, S), broken along (Y #Y', K#K'),
and ending at the metric g, broken along the (53, S') from Figure 6. The components of
H'" are defined in a straightforward manner, by looking at the shape of the corresponding
component in /\(W/ 1) © )\(W s)» and defining the component of I'using the same kind of
moduli space but incorporating the metric family GG. For example, if we write

K' 0 o0
H=| ' -K' M]
M0 0

then K'is a 4 x 4 matrix, with entries KZI] Now, the (1,1)-entry of AX is equal to
A1\, which is defined by counting instantons on (W', S!) with metric gy and constrained
holonomy along p*. To define K 1, we use G instead of the single metric go:

(Kl (a®@d), 808 =#{[A] e | | MW, % a,0/;8,8)0 | H' ([A]) = s}

geG

The other components of H' are defined similarly. Although tedious, checking that H'
is indeed an S-chain homotopy as in (6.28) is straightforward and analogous to previous
computations. N

We claim that the map /\??/VI, s is S-chain homotopic to an isomorphism. Write its

S-morphism components as A, u!, Al and AL. Then A\! is depicted in the bottom left
matrix of Figure 12. To see this, it is convenient to also have in mind the map obtained
halfway through the homotopy from A\ to A, depicted in the top right matrix of Figure 12.
The vanishing entries of A! in Figure 12 are instances of standard vanishing theorems. For
example, consider the component A} ;. By gluing theory, the instantons under consideration
correspond to pairs of instantons [A], [A’] and a gluing parameter in S'. Here [A] and [A’]
are connections on the punctured cylinders R x Y and R x Y, respectively, where A has
limits v and §3 at the ends of the cylinder and the reducible 6 at the puncture, while A’ has
limits o/ and 3’ along its cylinder, and 6 at the puncture. As \}; counts index 0 instantons,
the relevant moduli spaces containing [A] and [A’] are empty. The vanishing of the other
entries is argued similarly.

An argument similar to that in the proof of Proposition 6.17 shows that A is equal to
the map defined using moduli spaces on the unpunctured cylinder R x (Y 1 Y”) using a
metric g which is broken along chosen 3-spheres (surrounding the prior punctures) in each

80



SISENSESEE| O o oo an
CREEREIR| |OE oE o o
SREESRER| |92 oo oton
BISEESEIEEE| |0 25 2505

—  —

o ) —

[—— [—— —
i — —

Figure 12: A homotopy from A\’ to the identity is depicted in stages, from left to right, top
to bottom. The top left matrix represents A\, the top right matrix a map halfway through
the chain homotopy of K1, the bottom left is the map A!, and the bottom right represents
the identity map. (Our depiction of a cylinder here, for a cobordism map, should not be
confused with our prior use of a cylinder representing the boundary map d.)

of the two cylinders. Using a family of metrics G from ¢ to a translation-invariant metric,
we obtain a homotopy from A! to the identity. Indeed, the off-diagonal terms in A, such as

——
|

go under this chain homotopy to zero, because there are no translation-invariant instantons of
index 0 from a reducible to an irreducible; and the diagonal terms in A' go to identity maps,
because translation-invariant instantons of index 0 with irreducible limits are (perturbed) flat,
and induce the identity maps on the chain level.

In fact, the 1-parameter family of metrics G! induces in the usual manner an S-chain
homotopy between X?V)VI, g1y and an S-morphism which from the previous paragraph has
A-component equal to the identity. The proof is completed by Lemma 6.29 below. O
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Lemma 6.29. Ifx : (5'*, 67) - (CN';, J’) is a morphism of S-complexes with its component
A : Cy — C an isomorphism, then in fact X is an isomorphism of S-complexes.

Proof. After identifying C and C, using A, we are reduced to the case in which Xis a
morphism from (C*, d) to itself, and X has decomposition given in (3.29) where A = 1 is
the identity. The inverse of X in this case is given by

1 0 0
—u+ DA 1 —As
—Aq 0 1

which is of course a morphism of S-complexes. Alternatively, a morphism of S-complexes
Cy — C., after reordering the summands, is an upper triangular matrix whose diagonal
entries are A, 1, A, and the inverse is of the same form. ]

We have established that the compositions

X(W7S) © X(W’,S’)7 X(WCS’) © X(W,S)

are S-chain homotopic to the identity and an isomorphism, respectively. It follows formally
that the second composition is in fact S-chain homotopic to the identity. This completes the
proof of the chain homotopy equivalence (6.2).

6.3.4 Naturality of the equivalences

Finally, we discuss the naturality of (6.2) with respect to split cobordisms. Let us consider
negative definite pairs (X, F)) : (Y1, K1) — (Y2, K2) and (X', F') : (Y], K{) — (Y3, K}).
As usual, our knots are based, and in the cobordisms (X, F) and (X', F’) we choose neatly
embedded arcs whose endpoints are the distinguished basepoints. Using these arcs, we may
form the glued cobordism (X # X', F#F') : V1#Y{, K1#K/{) — (Ya#Y,, Ko#K)) ina
standard manner. This is what is meant by a split cobordism. We consider the square:

~ ~ )\( ’S ) ~
Cu(Y1, K1) ® Cu(Y], K}) — " C(Vi#YY, K1 #K7) (6.30)
7\<X,F)®X<x/,p/>l lj\(X#X',F#F’)
Ci (Y2, K2) ® Cy (Y4, KY) Co(Ya#tY], Ko#KY)
>‘(W2 S2)

The vertical maps are the usual morphisms of S-complexes we associate to given cobordisms,
while the horizontal maps are the maps as constructed in Subsection 6.3.1. We have implicitly
chosen metrics and perturbations for each of the cobordisms. The cobordisms

(X#X/,F#F/) o (Wl,Sl), (WQ,SQ) o ((X, F) L (X/,F/))

are topologically equivalent, an elementary fact which is left to the reader. Thus the two
different compositions obtained in the above square may be viewed as induced by the same
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cobordism, but with different (broken) metrics and perturbation choices. Then, choosing
a l-parameter family of auxiliary data interpolating these choices gives rise, in the usual
manner, to an S-chain homotopy between the two morphisms

~

X(X#X/,F#F’) O A\(W1,51)s X(WQ,52) o (X(X,F) ® X(ng/))

This establishes the commutativity of (6.30) up to S-chain homotopy. There is a similar
square with horizonal arrows reversed, using the morphisms defined in Subsection 6.3.2, and
the same statements hold.
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7 Local coefficient systems and filtrations

In this section we describe how to generalize our previous constructions to the case of
local coefficients. Our general local coefficient system is a hybrid of the one defined by
Kronheimer and Mrowka in [KM 1 1b], which roughly measures the holonomy of connections
along the longitudal direction of the knot, and one the defined by the Chern-Simons func-
tional. The latter ingredient has more structure, inherited from the fact that the Chern-Simons
functional is (almost) non-increasing for (perturbed) instantons. In this context, we carry
over constructions from the non-singular setting given in [Dac18].

7.1 Local coefficients

Let (Y, K) be a based knot in an integer homology 3-sphere. The most general local
coefficient system on B(Y, K) that we consider is defined over the ring

R = Z[U*, T,
To an element of B(Y, K) represented by the connection B, we associate the Z-module
N Z[U*, T {7CS(B)pholic (B)

where holx (B) € R/Z is defined analogously to (3.12), and roughly gives the holonomy
of the S*-connection induced by B! along K. To define hol (B), we must choose a
framing of our knot to fix our procedure for taking the holonomy. For more details see
[KM11b, Section 3.9]. A knot in an integral homology 3-sphere has a canonical framing
induced by a Seifert surface, and we always use this framing.

The holonomy holx (B) is related to the monopole number v(A) in the same way
that the Chern-Simons functional is related to the topological energy x(A). In particular,
we have an analogue of relation (2.24): if A is a connection on a cobordism of pairs
(W, S): (Y,K) — (Y, K') then we have the relation

v(A) = holg:(B') — holg (B) (mod Z) (7.1)

where B and B’ are the limiting connections on (Y, K) and (Y’, K'), respectively.

Let~y :[—1,1] — B(Y, K) be a path from a; to a3. Let A be a singular connection on
R x Y representing vy, and representing the pull-backs of a; and arp fort < —1l and ¢t > 1,
respectively. Then we define A, : A,, — A,, to be multiplication by U —2r(A)v(4),
which is well-defined by relations (2.24) and (7.1). Monomials in A,, can be identified with
homotopy classes of paths v from « to the reducible class . The action and monopole
number of the path « determines a pair of real numbers (CNS(v), holx (7)). We use this
pair to define two (real valued) gradings on A, which are respectively called instanton
and monopole gradings. Moreover, the ASD index of the path « can be used to define a
Z-grading gr on A, which is an integer lift of gr(«). This grading satisfies gr(1) = 0 for
1 € Ag. Further, multiplication by U*! changes the Z-grading by +4 and it is fixed by
multiplication by 7%!.
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Suppose K is a based knot in an integer homology sphere Y. Let (Ci (Y, K; A), d) be
the Z-graded chain complex over Z defined as follows:

ColKiA) = @ Aay  dla) = D) A(A)(a2) (7.2)
aedir Qe
[A]leM (a1,02)0

Here A(A) = +A, such that +y is the path in B(Y, K) from «; to ap determined by A and
the sign is given by the orientation of the moduli space M (a1, a2)o. A discussion similar to
the one in Subsection 3.1 shows that (C (Y, K; A), d) is indeed a chain complex over %,
where d has degree —1.

Suppose (W, S) : (Y, K) — (Y’, K') is a negative definite pair in the sense of Definition
2.33. Choose, as usual, a path from the basepoint of K to the basepoint of K’. By a slight
modification of (7.2), we may define a cobordism map

Aw.s:a) (@) = > AA) - o (7.3)
o/e@:,
[AleM (W,S;a,a’ )0

Here A(A) := +U —26(A)7¥(4) where the sign is determined as usual by the orientation of
the moduli space M (W, S; a, /).

We may continue in this fashion, and adapt all of the constructions in Section 3 to the
setting of local coefficients. We obtain an S-complex

~

(CulY, K; A), d) (74)

over the ring Z. To a negative definite pair (W, S) as above, we may associate a morphism
Aw,s;a) of S-complexes, and so forth. The same arguments as before show that the S-

~ ~

chain homotopy type of the S-complex (C(Y, K; A),d) is independent of the choice of the
orbifold metric on Y and the perturbation of the Chern-Simons functional.

We may recover the S-complex (6‘* (Y, K), CT) over Z from (7.4) using the change of
basis that evaluates U and 7" at 1. Given an #-algebra ., we obtain an S-complex over the

ring . by performing a change of basis on our local coefficient system:

~

(Cu(Y,K;A9),d), Ay :=AQspS

In general, this S-complex is only Z/4-graded. However, it becomes a Z-graded algebra
in the obvious way if .7 is a Z-graded %-algebra, which means that multiplication by U*!
changes the grading by +1 and multiplication by 7%! does not change the grading.

Remark 7.5. If 7 = Z[T*'] is the %-algebra obtained by setting U = 1, then we obtain
an S-complex over .7 denoted (C(Y, K; A7), d). The system A 7 is essentially the local
coefficient system considered in [KM11b, Section 3.9]. ¢

Remark 7.6. 1f % = Z[U=*'] is the Z-algebra obtained by setting 7' = 1, then we obtain

~ ~

an S-complex over % denoted (C(Y, K; Ay ),d). There is an analogous construction in
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the non-singular case, where one can define an S-complex (5'* (Y;A), c?), such that the
local coefficient system A is over the ring Q[U*!]. The definition of A follows a similar
pattern to A, where we use the action x(A) (for a non-singular connection) to define a
homomorphism associated to a path of connections. ¢

Remark 7.7. Strictly speaking the Z-graded complex (CN'* (Y, K; A), 67) does not fit into the
definition of S-complexes that we have been using so far because the coefficient ring %
is graded. However, one can modify the definition to include such S-complexes. On its
face, it might seem that C (Y, K; A) does not give any extra information in comparison
to C (Y, K; A7) of Remark 7.5 because (7*()/'7 K; A) is the periodic Z-graded complex
obtained by unrolling the Z/4Z-graded complex C (Y, K; A ). However, in the remaining
part of this section we shall show that 5‘*(Y, K; A) can be equipped with an “almost-
filtration” which gives rise to additional information. ¢

The machinery of Section 4 applies to this setting: for any Z-algebra . we obtain three
equivariant singular instanton homology groups, denoted

~

These are Z-graded . [z]-modules, and the discussion of Subsection 5.1 carries over to this
setting in a straightforward manner. For each %-algebra . we have a Frgyshov invariant

hey(Y,K)eZ (7.8)

by taking the algebraic Frgyshov invariant of the S-complex (5'* (Y,K;Ay), 67) as given by
Definition 4.13 or equivalently Proposition 4.15. Further, we also have ideals

J/(V,K)c J/ (Y,K)c---c.¥ (7.9)

~ ~

by applying Definition 4.32 to the S-complex (Cy (Y, K;A&),d). Here h = ho (Y, K).
Theorems 1.13 and 1.16 of the introduction about the properties of these invariants follow
from our discussions in Section 4.

The connected sum theorem also generalizes to the setting of local coefficients.

Theorem 7.10. Ler (Y, K) and (Y', K') be based knots in integer homology 3-spheres.
There is a chain homotopy equivalence of Z-graded S-complexes over # = Z[U*', T*+1]:

CY#Y', K#K';A) =~ C(Y,K;A) ®4 C(Y', K'; A)
This equivalence is natural, up to S-chain homotopy, with respect to split cobordisms.

The proof is for the most part the same as that of Theorem 6.1. In particular, all maps
defined in the proof are modified to follow the same pattern as in (7.3), where we now keep
track of the terms x(A) and v(A) for each instanton in the exponents of our formal variables.
The only part of the proof that requires additional commentary is Proposition 6.17. The key
observation is that the instantons in the proof that appear in the moduli spaces

M, (S' x D?, 8" x DYy*d M(D? x S?, D* x 2 pts)™? (7.11)
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have x(A) = v(A) = 0, which follows because all of these instantons are flat. (In fact,
the vanishing of x(A) and v(A) here are not essential for the proof of Theorem 7.10, but
k(A) = 0 will play an important role below.) This shows, in particular, that Proposition
6.26 holds with local coefficients, and that the proof of Section 6 carries through to prove
Theorem 7.10. As a consquence, we have:

Theorem 7.12. Let % be an %-algebra. The assignment (Y, K) — (6’* (Y,K;Ay), CZ X)
induces a homomorphism @%’1 — @gﬁz /4 of partially ordered abelian groups.

In particular, the Frgyshov invariant (7.8) descends to a homomorphism @%’1 — Z of
partially ordered abelian groups, and satisfies the analogue of Theorem 5.13.

7.2 The Chern-Simons filtration

The topological energy x(A) of the elements of our moduli spaces satisfies a positivity
property which gives rise to more structure on (6‘ (Y, K;A), dN) This idea, applied to the
complex (Cy(Y; A),d) of Remark 7.6, was used in [Dac18] to produce invariants of the
homology cobordism group of integral homology 3-spheres. (More precisely, the complex
(C(Y; A), d) there is obtained by the change of basis associated to the inclusion of Q[U*1]
into a Novikov ring.) These constructions can be adapted to the present set up to produce
concordance invariants.

If A is a non-flat ASD connection on a 4-manifold, which determines a path in B(Y, K)

from « to o, then the Chern-Weil integral defining the topological energy is positive:

1 1

/i(A tr(FA A FA) = |FA‘2 > 0.

871'2 WH\S+ 87('2 WH\S+

In particular, if the perturbation of the Chern-Simons functional is trivial in the definition of
the complex C (Y, K; A), the differential d strictly decreases the instanton grading. This
structure may be formalized as follows.

Definition 7.13. An I-graded S-complex (of level §) over R[U*1] is an S-complex (C, d, x)
over R[U*!] with a Z x R-bigrading as an R-module, which satisfies the following proper-
ties. Writing C; ; for the (4, j) € Z x R-graded summand, we have:

i U éi,j - 5i+4,j+1
(i) d Cij < Upejis Cimr
(i) x éi,j c CN”H—Lj
Further, C' is freely, finitely generated as an R[U*!]-module by homogeneously bigraded

elements. The distinguished summand R[U*'] < C has 1 € R[U*'] in bigrading (0, 0).
We denote the integer and the real gradings on C; ; by gr and deg;. ©
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Note that an I-graded S-complex of level § is also one of level ¢’ for all &' > §.
Concretely, an I-graded S-complex over R[U*1] has underlying chain complex of the form:

C = (é R[Uil]w> ® (é R[Uﬂhk> ® R[U*]o (7.14)
k=1 k=1

This gives the S-complex decomposition 5’* =Ci ®@Cx1®R[U il], where the indicated
subscript gradings are the Z-gradings. In particular, vy generates the “trivial” summand, and
the bigrading of ~q is (0, 0). The bigrading (ix, jx) € Z x R of 74 is arbitrary, although it
gives the bigrading of 7, as (ir + 1, k). The real I-grading deg; can be extended to any

element of C as follows:
degy () 1Gx ) = maxideg; (Ge) | 54 # 0}

where the (;, belong to distinct summands (NZ’” of C.

Thus (C. (Y, K; A), d), if defined with a trivial perturbation, has the structure of an
I-graded S-complex (of level 0) over R[U*!], where R = Z[T*]. In the form (7.14), the
generators 7y, (k = 1) are choices of homotopy classes of paths from irreducible critical
points to 6, while ~q is the constant path at 6. In general, in the presence of a perturbation 7
the differential can possibly increase the instanton grading, but only less than some O0r =0

determined by the perturbation. Thus in the general case, (C (Y, K; A), d) is an I-graded
S-complex of level &, over R[U*!]. For morphisms, we have:

Definition 7.15. A morphism X:C — (" oflevel § > 0 of I-graded S-complexes (of any
levels) is an R[U*!]-module homomorphism and morphism of S-complexes such that

XCN'Z"J‘C U é{,k

k<j+6

A level § S-chain homotopy K between morphisms Xand X of I- graded S -complexes is an
R[U*']-module homomorphism and an S-chain homotopy between X and \’ such that

~ o~ ~;
K Cijc U Citip ©
k<j+o

If the perturbation of the ASD equation in the definition of a cobordism map X(W, S;A) 18
trivial, then this morphism does not increase the instanton grading. Hence it is a morphism of
I-graded complexes of level 0. In the general case, the map induced by (W, S) is a morphism
of I-graded complexes of some level determined by the perturbation.

7.3 Enriched S-complexes

Ideally, we would like to associate an I-graded S-complex of level O to (Y, K). As the zero
perturbation is not always admissible, we settle for the following limiting structure.
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Definition 7.16. An enriched S-complex € is a sequenceN{(CN’i, EZNi, x%)}i=1 of I-graded S-
complexes over R[U*!] of levels 6;, and morphisms ¢ : C* — C7 of levels §; ; satisfying:

(i) ¢! =idand d)i o qﬁf is S-chain homotopy equivalent to gf)g via an S-chain homotopy
of some level ¢; 1, ;.

(i) For each § > 0 there exists an /V such that ¢ > N implies §; < §, and 7, j > N (resp.
i,7,k > N)implies d; ; < 0 (resp. d; . ; < 0). ©

For a based knot (Y, K) in an integer homology 3-sphere, we may take a sequence
E(Y, K; A) = {(CL(Y, K; A), ' X))

of I-graded S-complexes associated to a sequence of perturbations of the Chern-Simons
functional that go to zero. Thus (C%(Y, K; A), d7, x) is of some level J; determined by the
chosen perturbation. For any pair 4, j there is a morphism ¢ : CN”(Y, K;A) - Ci (Y,K;A)
of I-graded S-complexes of level ; ;, determined by a path of auxiliary data. Moreover,
@(Y, K; A) satisfies the properties of an enriched S-complex over R[U*!], where here
R = Z[T*']. The proofs of these claims are identical to the proofs of analogous results in
the non-singular setting given in [Dael8]. Next, we define morphisms in this setting:

Definition 7.17. A morphism £ : €(1) — &(2) of enriched complexes, where
€(r) = ({(CL(n). A () X' (L el(r) - re {12},

is a collection of morphisms Xf : C'(1) — CY(2) of I-graded S-complexes of level d;,j such
that the following hold:

(1) X{C o ¢¥(1) and (;SZ;(Q) o Xf are S-chain homotopy equivalent to Xg via an S-chain
homotopy of some level J; ;.

(i) For each 6 > 0, there exists an N such that¢,j > N (resp. i, j, k > N) implies that
(51'7]' <0 (I'CSp. 5i,k,j < 5)

The morphism is a chain homotopy equivalence of enriched S-complexes if each Xz is an
S-chain homotopy equivalence where the involved S-chain homotopy equivalences have
levels which converge to 0. ¢

We have thus constructed the category of enriched S-complexes over R[U*!]. There is a
forgetful functor to the category of S-complexes, that to any enriched S-complex associates
the first S-complex in its sequence, and to any enriched S-morphism as above, we also
associate the S-morphism A{. This forgetful map does not remember the positivity property
of enriched complexes with respect to the instanton gradings.

To a negative definite pair (W, S) : (Y, K) — (Y’, K') we can associate a morphism
£w,s) of enriched S-complexes EE(Y, K;A) — (N’E(Y’ , K'; A) by taking a sequence of
S-morphisms, defined as usual, after choosing an appropriate sequence of auxiliary data.

We obtain the analogue of Theorem 3.34.
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Theorem 7.18. The assignments (Y, K) — (Y, K;A) and (W, S) — £w,s) induce a
functor from H to the homotopy category of enriched S-complexes over Z[T1][U+!].

The enriched S-complex @(Y, K; A) is the “universal” invariant defined in this paper,
in the sense that all of our S-complexes associated to based knots in integer homology
3-spheres may be derived from this invariant by a change of basis (coefficient ring), and by
possibly applying a forgetful functor.

7.4 Local equivalence for enriched complexes

We may apply the general procedure described in Subsection 4.6 to the category of enriched
S-complexes over R[U*]. That is, we declare that two enriched S-complexes ¢ and & are
equivalent ¢ ~ ¢ if there are morphisms ¢ — ¢ and & — €. The resulting set

@}%[Uil] = { enriched S-complexes over R[U 1 b/~

is a partially ordered abelian group, where [@] < [@’] if there is a morphism ¢ — @
The group structure is inherited from that of the local equivalence group for S-complexes,
by performing operations component-wise for each sequence. Furthermore, the forgetful
functor from the category of enriched S-complexes to S-complexes induces a surjective
homomorphism of partially ordered abelian groups:

916%[Ui1] - G}Sz[Uﬂ],z

The target is the local equivalence group of Z-graded S-complexes over R[U*!]. The
grading is inherited from the Z-grading of the I-graded S-complex.

Theorem 7.19. The assignment (Y, K) — gf(Y, K; A) induces a homomorphism of partially
ordered abelian groups ) : @3271 — @%[Uﬂ] where R = Z[T*!].

We also have an analogue of the connected sum theorem in the setting of enriched
S-complexes. For this, we note that the tensor product of two I-graded S-complexes is
naturally an I-graded S-complex, and similarly for enriched S-complexes.

Theorem 7.20. Let (Y, K) and (Y', K') be based knots in integer homology 3-spheres.
There is a chain homotopy equivalence of enriched S-complexes over # = Z[U*!, T+!]:

E(Y#Y K#K';A) ~ €Y, K; A) @z E(Y' K'; A)
This equivalence is natural, up to enriched chain homotopy, with respect to split cobordisms.

The proof follows the remarks after Theorem 7.10, and relies on the fact that x(A) = 0
for the instantons in (7.11). We also use that in the proof we can choose the perturbations on
the two cobordisms as small as we like.
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7.5 The concordance invariant F& K)

The local equivalence class of the enriched S-complex associated to a based knot (Y, K)
is expected to be a strong invariant, as it has the behavior and values of the Chern-Simons
functional built into its structure. Here we describe one way to extract numerical information
from this local equivalence class which leads to a concordance invariant I‘& k) an analogue
of the invariant I'y- for homology 3-spheres from [Dael8].

The definition of the invariant FRY’ K) factors through an algebraic map defined on the
local equivalence group of enriched S-complexes:

I : Ofpy1] — Map. (Z, Rxo) (7.21)

In fact, a similar algebraic map can be used to define I'y-. Here and throughout this section,
R is an integral domain and an algebra over Z[T*!]. The codomain in (7.21) is the set
of non-decreasing functions from Z to the extended positive real line R>o = R>o U .
The map I' is defined as follows. Take an enriched S-complex € defined by a sequence
{(C7,d?,x7)} of I-graded S-complexes over R[U*!]. To each S-complex (C7, d?, x7) we
have the associated chain group C7 and the R[U*!]-module homomorphisms:
&7 C7— Y, v Ol Y,
8 . 7 — R[U*, &8 R[U*Y — 9.
Then for each k € Z~° we define:

[(&)(k) := lim inf (deg;(a)) € Rso

j—0 «
where the infimum is over all « € C7 with bigrading (2k — 1, deg;(c)) such that:
& (o) =0, k—1=min{i e Z>° | & (v7)"(a) # 0}.
For each k € Z<" we define:

F(&)(k) = max ( lim inf (deg;(«)) ,0) e R>o

j—0 o

where the infimum is over all o € C7 with bigrading (2k — 1, deg;(c)) such that there are
{ag,a1,...,a_i} © R[U*] satisfying:

—k

& (a) = > ()8 (ai). (7.22)

i=0

Note that in (7.22), a straightforward degree consideration implies that we can limit ourselves
to the following case, where s; € R:

= siUk;i t=Fk mod 2
' 0 i#k mod 2
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If there is a morphism € — &' between enriched S-complexes then I'(&) (k) > T'(¢') (k)
for any integer k. In particular, locally equivalent enriched complexes have the same

~

I' functions. An equivalent definition of I'(&) can also be given in terms of the small
equivariant complexes associated to the S-complexes. We refer to [Dae 18] for more details.

Definition 7.23. Let R be an integral domain which is an algebra over Z[T+!]. For a based
knot in an integer homology 3-sphere (Y, K'), we define the function FFY K) s follows:

TR =T (e(x K: AR[Uﬂ]))
IfY = S% we write K in place of (Y, K). o

That is, F{éy K is the invariant of the equivalence class [(Y,K)] e @%1 obtained as:

3,1 Q T _
F?YJO 1 07 ’ Q%[Uil] — Map((Z, R>o)

The following summarizes the basic properties of this function. The proofs are entirely
analogous to those of Theorems 1-4 and Proposition 1 of [Dael8].
Theorem 7.24. Let (Y, K) be a based knot in an integer homology 3-sphere.

(i) The function FﬁY,K) is an invariant of [(Y, K)] € @%1.

) T f%Y, K) is a non-decreasing function Z — Rq which is positive for i € Z.

(i) If (W, S) : (Y, K) — (Y', K') is a negative definite cobordism of pairs, then

L 4o (i) = n(W, 8) i>0

TR, (i) <
(YK )(1) {max(rﬁy,f() (i) —n(W,S),0) <0

where n(W, S) € Rxg is an invariant of (W, S). Furthermore, n(W,S) > 0 unless
there is a traceless SU(2) representation of w1 (W\S) which extends irreducible
traceless SU(2) representations of (Y \K) and m (Y'\K").

(iv) For eachi € Z, we have F&K) (1) < wifand only ifi < hr(Y, K).

(v) ForeachicZ, ifrf%Y,K) () ¢ {0, 00} then it is congruent to CS(«) (mod Z) for some
irreducible singular flat SU (2) connection o on (Y, K).

The invariant (W, S) is defined to be the infimum of 2+ (A), as A ranges over all finite
energy singular ASD connections which limit to irreducible flat connections on the ends.

In this subsection, we did not attempt to systematically exploit the Chern-Simons filtra-
tion to study concordances, and we content ourselves with the definition of one homology
concordance invariant. For example, we believe that by a slight modification of our axioma-
tization of enriched complexes one can define analogues of the invariants r introduced in
[NST19]. Another possible direction is to apply the construction of Subsection 4.7 in the
context of enriched S-complexes.
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8 Connections to Kronheimer and Mrowka’s constructions

In [KM11b,KMT11a], Kronheimer and Mrowka defined several instanton Floer homology
groups associated to a given link in a 3-manifold, for cases in which no reducibles are present.
In [KM19a, KM 19b, KM 19c], over rings of characteristic 2 they extended their constructions
to webs, which are embedded trivalent graphs. Here we recall some of these constructions,
and discuss their relationship to the invariants introduced earlier.

8.1 Instanton homology for admissible links

We first recall the instanton homology groups [“(Y, L) construced in [KM11b, KM 11a] for
certain links in 3-manifolds. Special cases of this construction are the singular instanton
groups I*(Y, L) and I# (Y, L), where in this latter case (Y, L) is a pair of any 3-manifold Y’
with an embedded link L. We begin with:

Definition 8.1. An admissible link is a triple (Y, L,w) where L is an unoriented link
embedded in a closed, oriented, connected 3-manifold Y, and w < Y is an unoriented 1-
manifold embedded in Y with dw = w N L, transversely, satisfying the following condition:
there exists a closed oriented surface > — Y such that either

* Y is disjoint from L and intersects w transversely an odd number of times, or
* Y is transverse to L and intersects it an odd number of times.

This condition for w is called the non-integrality condition. ¢

We remark that with this terminology, a knot in an integer homology 3-sphere is not an
admissible link for any choice of w.

Kronheimer and Mrowka associate to an admissible link (Y, L,w) a relatively Z/4-
graded abelian group I* (Y, L), defined as follows. From the 1-manifold w one may construct
an SO(3)-bundle P — Y\L whose second Stiefel-Whitney class is Poincaré dual to
[w] € H1(Y, L; Z/2). Then define a chain complex (C¥ (Y, L), d) by setting

CY=CoY,L)= P Z-a

aelCr

where & are the critical points modulo the determinant-1 gauge group of a suitably perturbed
Chern-Simons functional for P. The non-integrality condition on w ensures that for small 7,
all such critical points on P are irreducible, i.e. €, = @\, The differential d is defined just
as in (3.2), and I¥(Y, L) is defined to be the homology of this chain complex:

I“(Y,L) := Hy (C*(Y, L),d).

As before, unlike the group I“(Y, L), the chain complex (C“(Y, L), d) depends on a choice
of metric and perturbation, which are suppressed from the notation.
Given any link L < Y with a basepoint p € L, Kronheimer and Mrowka define

INY, L) := I*(Y, L#H)
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Figure 13: The Hopf link H with the arc w.

where H — S is the Hopf link and w is a unknotted arc connecting the two components
of H; see Figure 13. The connect sum is taken at the basepoint p € L. The connected sum
L# H may be identified with L U y where p is a small meridional component around L
near p. Note that the resulting w always satisfies the non-integrality condition: take X to
be the 2-torus boundary of a small regular neighborhood of ;. The homology I°(Y, L) is
a relatively Z/4-graded abelian group, and is an invariant of the based link (Y, L, p). Note
that just as before we omit the basepoint p from the notation. The group I%(Y, L) is in fact
absolutely Z/4-graded. In the sequel, we will use the notation

(CEH db) = (CE(Y, L)) dﬂ)

for the chain complex (C¥ (Y, L#H),d), so that I (Y, L) is the homology of (Ci, d*).
In a similar vein, for any link L Y, Kronheimer and Mrowka define the group

I#(Y,L) := I°(Y,L u H).

Here we take the disjoint union of L with the Hopf link H, along with its arc w. In order to
perform this construction, we choose a small ball in Y\ L in which to embed H. We write

(Cfvd#) = (Cf(x L)vd#)

for the chain complex (C¥(Y, L u H),d), so that If(Y, L) is the homology of (CZ', d#).
This group is also absolutely Z/4-graded.

Let (Y, L,w) be an admissible link, and let p € L be a basepoint. The construction of
Subsection 3.3.2 carries through in this setting to define amap v : CY — C}_, associated
to p, using S* holonomy along the cylinder. Here we have:

Proposition 8.2. dov —vod = 0.

The proof is similar to that of Proposition 3.16; the absence of any reducible critical points,
in this case, precludes the appearance of the term &5 o d1.

Remark 8.3. There are at least two other ways that one can define a degree 2 operator on
the complex C¢ (Y, L) using the basepoint p. Connected sum of [—1,1] x L at the point
(0, p) with a standard torus determines a cobordism of pairs ([-1,1] x Y, S) : (Y, L) —
(Y, L) and the induced cobordism map is a degree 2 chain map ¢ acting on C¥(Y, L)
[KM11a, Subsection 8.3]. Alternatively, the standard construction of y-maps [DK90, Chapter
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5] assigns to the point p a cohomology class of degree 2 in the space of singular connections
on the bundle P associated to (Y, L,w) [Kro97]. This cohomology class in [Kro97] is
rational; to obtain an integral class we consider —2 times the 2-dimensional point class in
[Kr097]. Cup product with this cohomology class defines another chain map ¢’ of degree 2
on C¥(Y, L). The argument of [Kro97, Proposition 5.1] shows that the operators ¢ and o’
are chain homotopy equivalent. Moreover, the operator ¢’ is also chain homotopy equivalent
to v. The proof is analogous to the corresponding result in the non-singular setting in
[Don02, Subsection 7.3.2]. ¢

The analogue of the S-complex C (Y, K ) from Subsection 3.4 in this setting is simply a
mapping cone complex of v; we define (C¥(Y, L), d) by

CUY,L) = C¥@C%,,  d- [ j _Od ] (8.4)
We leave it to the interested reader to formulate the analogue of Theorem 3.34 in this
setting, describing a functor from a category whose objects are base-pointed admissible links
(Y, L,w) to a suitable category of mapping cone complexes.

We now describe variations of Theorem 6.1 obtained by replacing one or both of (Y, K)
and (Y, K') by a based admissible link. Let (Y, K) be an integer homology 3-sphere with
an embedded based knot. Let (Y’, L, ') be a based admissible link. Then C'(Y, K) is an
S-complex, while (8.4) defines the chain complex v (Y', L') as a mapping cone complex.

Theorem 8.5. (Connected Sum Theorem for a knot and an admissible link) There is a
chain homotopy equivalence of relatively Z /4-graded chain complexes:

CY(Y#Y' K#L') ~C(Y,K)®@C¥(Y', L)

Furthermore, the tensor product is naturally isomorphic to a mapping cone complex, making
the chain homotopy equivalence one of mapping cone complexes. The equivalence is natural,
up to mapping cone chain homotopies, with respect to split cobordisms.

Remark 8.6. One can generalize the definition of an S-complex to include mapping cone
complexes, the latter being viewed as S-complexes with the distinguished summand Z
replaced by 0, and all maps modified accordingly. The notion of morphisms can be similarly
generalized, and the theorems in this section can then be stated as homotopy equivalences
between S-complexes in this larger category. ¢

Remark 8.7. The naturality in Theorem 6.1, as explained in Subsection 6.3.4, assumes that
the cobordisms involved are negative definite pairs. However, for the naturality in the above
Theorem 8.5, we allow the cobordism on the side of the admissible links to be of the general
sort considered in [KM11b, KM11a]. A similar remark holds for the other variations of the
connected sum theorem stated below. ¢

The proof of this result is very similar to that of Theorem 6.1. If (Y”, L', ') is admissible,
then one modifies the proof above in which (Y”, K”) is a knot by omitting the Z-summand
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in the associated complex (CN';, d ) and all maps that have anything to do with it; in short,
the reducible ¢’ is eliminated. That the tensor product of an S-complex and a mapping cone
complex is naturally a mapping cone complex follows from the discussion in Subsection 4.5
by simply deleting the Z-summand of one S-complex.

There is another variation where (Y, K) is also replaced by a based admissible link
(Y, L,w). The statement in this situation is as follows:

Theorem 8.8. (Connected Sum Theorem for admissible links) Let (Y, L,w), (Y, L', )
be based admissible links. There is a relatively Z/4-graded chain homotopy equivalence

C (Y #Y' L#L) ~ C¥(Y, L)@ C¥ (Y', L)

This equivalence is one of mapping cone complexes, and is natural, up to mapping cone
chain homotopies, with respect to split cobordisms.

These variations have counterparts in non-singular instanton Floer homology, involving
connected sums between homology 3-spheres and 3-manifolds with non-trivial admissible
bundles, see e.g. [Scal5].

8.2 Computing /°(Y, K) and [#(Y, K) from the framed complex

~

We may now relate the framed instanton homology (Y, K'), or more precisely its underlying
chain complex, to Kronheimer and Mrowka’s instanton homology groups I (Y, K) and
I*#(Y, K). We first consider 1%(Y, K). Recall that this group has an absolute Z/4-grading
defined in [KM 1 1a, Section 4.5].

Theorem 8.9. Let (Y, K) be a based knot in an integer homology 3-sphere. There is a
chain homotopy equivalence C*(Y, K) ~ C(Y, K), natural up to chain homotopy, and
homogeneous with respect to Z/4-gradings. In particular, there is a natural isomorphism

INY,K) ~ I(Y,K)
In the case that Y is the 3-sphere, the isomorphism has degree o(K) (mod 4).

The chain homotopy C*(Y, K) ~ C(Y,K ) in the statement of the above theorem is a
chain homotopy of Z /4-graded chain complexes. That is to say, we forget the S-complex
structure of C'(Y, K) given by the endomorphism .

Proof. Recall from Subsection 8.1 that C*(Y, K) is defined to be C*(S3#Y, H# K ) where
H < 83 is the Hopf link and w is a small arc as in Figure 13. We apply Theorem 8.5 in this
situation to obtain a chain homotopy equivalence

C¥(S*#Y, H#K) ~ C*(S%, H) ® C(Y, K). (8.10)

The complex C*(S3, H) is free abelian on one generator, with zero differential. The v-map,
of degree 2 (mod 4), is necessarily zero. Thus the mapping cone complex C (53, H) is free
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abelian of rank two with zero differential. We may then identity the right side of (8.10) with
two copies of C(Y, K); it is the mapping cone for the zero map on C(Y, K). As the chain
homotopy (8.10) is one of mapping cone complexes, we conclude that

CH(Y, K) = C*(S*#Y, H#K) ~ C(Y, K).

Now suppose Y is the 3-sphere. As the established equivalence is homogeneous with
respect to gradings, to compute its degree, it suffices to compare the grading of the reducible
generator on each side. By definition, the reducible generator in C (Y, K) has grading zero
(mod 4). On the other hand, the grading of the reducible in C%(K) is computed by Poudel
and Saveliev in [PS17, Theorem 1] to be o(K') (mod 4). (Note that the signature of a knot is
always even, so we do not have to determine a sign.) 0

Note that under the equivalence of Theorem 8.9, the v-map on the complex C? (Y, K)
corresponds to the map on C (Y,K) = Cy ® Cy_1 ® Z by formula (4.24) to the zero map.
This recovers a special case of [Xiel8, Proposition 4.6].

Next, we observe that Theorem 8.9 combined with Theorem 6.1 recovers the following
connected sum theorem for I*(Y, K):

Corollary 8.11. Let (Y, K) and (Y', K') be knots in integer homology 3-spheres. Then over
a field there is a natural isomorphism of vector spaces

FY#Y' K#K') ~I*(Y,K)® I*(Y', L'). (8.12)
which preserves the Z/4-gradings.

Note that, from our viewpoint, the preservation of the Z/4-gradings in (8.12) follows
from the additivity of the knot signature under connected sums.

We now turn to I# (Y, K). Recall that on the S-complex Cy (Y, K) = Cy ® Cy_1 D Z
the map x : 6’*(Y, K) - C. (Y, K) defined with respect to this decomposition by

0 00
x=1]11 00
0 00

is an anti-chain map. Note that y sends Cy to Cy—_1 idenNtically and is otherwise zero. We
may form Cone(2), the mapping cone of 2 acting on Cy (Y, K).

Theorem 8.13. Let (Y, K) be a based knot in an integer homology 3-sphere. There is a
chain homotopy equivalence C* (Y, K) ~ Cone(2x). This equivalence is natural up to
chain homotopy, and homogeneous with respect to Z/4-gradings.

Proof. Recall from Subsection 8.1 that C# (Y, K) is defined to be C*(S3#Y, H 1K) where
H < S3 is the Hopf link and w is a small arc as in Figure 13. We may view (S3#Y, H 1 K)
as the connected sum of (S, H L1 Uy), a Hopf link with a disjoint unknot (the latter of which
contains the basepoint) with the based knot (Y, K'). Apply Theorem 8.5 to obtain

CY(S3#Y,H LK) ~ C¥(S*, H LU, @ C(Y, K). (8.14)
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Figure 14: The skein triple involving (S3#Y, (H L Up)#K) (left) and two instances of
(S3#Y, H#K) (middle and right). The basepoint on H 11 U lives on the unknot Uy.

The complex C# (Uy) = C*(S3, H L1 Uy) contains two generators, v and v_, which differ
in degree by 2 (mod 4). Indeed, the traceless character variety for (.53, H L1 Uy) is a 2-sphere,
and we may perturb the Chern-Simons functional using a standard Morse function for 52
leaving us with two critical points. The differential on C# (U ) is zero for grading reasons,
and we have a natural identification between C'# (Uy) and its homology 17 (U7).

We may then align our notation of generators vy and v_ with [KM11a], where the
v-map, denoted there by o, is computed on I7 (U} ) as follows (see Remark 8.3):

v(vy) =2v_, v(v_) = 0.

Having determined CN’W(S?’, H 1 Uy) to be the mapping cone of v as above on Zv, @ Zv_,
using Subsection 4.5 we compute C*(S3#Y, H U K) < C¥(S3#Y,H 1 K) to be

Zv, QC(Y,K)®Zv_QC(Y,K)

with differential 1Q@d®1®d—2F where F sends Zv, ®Cj to Zv_®C,_ identically. This
chain complex is clearly the same as Cone(—2y), which is isomorphic to Cone(2y). O

Note that the results above fit together to form an exact triangle:

I(Y,K) I#(Y,K) 'Y, K) INY,K) - - (8.15)

l | l !

K)) — H,(Cone(2x)) — H.(C(Y, K) ¥ 7, (B(v, K)) -

Here, the vertical maps are induced by the equivalences of Theorems 8.9 and 8.13, the bottom
horizontal arrows are induced by the short exact sequence for a mapping cone complex, and
the top horizontal arrows are defined to commute. There is similar long exact sequence
involving I%(Y, K) and I#(Y, K) obtained from Kronheimer and Mrowka’s unoriented
skein exact triangle applied to the situation of Figure 14, see [KM11a, Section 8.7].

The skein triple in Figure 14 may be viewed as obtained from the skein triple for
(S3,H uUy), (S3 H) and (S3, H) (setting (Y, K) = (S3,U1) in Figure 14), and then
connect summing with (Y] K) at a point on U; < H 11 U; away from the crossing resolutions.
The naturality of our equivalences with respect to split cobordisms, together with the
computations in [KM11a, Section 8.7], implies the following:
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Proposition 8.16. The exact triangle (8.15) is isomorphic to the exact triangle obtained
from the unoriented skein exact triangle as described above.

If we work over the coefficient ring F = Z/2, then 2x = 0, and (8.15) splits.

Corollary 8.17. Over the field F = Z/2 there is a natural Z/4-graded isomorphism
TPV, K:F)y 2 INY,K;F)y @ I'(Y, K; F)yyo

This last corollary is essentially [KM19a, Lemma 7.7].

8.3 Local coefficients and the concordance invariant s7 (K)

Let (Y, K) be a based knot in an integer homology 3-sphere. Consider the ring
Tq=70Q=qQ[T*]

of Remark 7.5 tensored by Q, so that Cy (Y K;Agy)isaZ /4-graded S-complex over 7.
Recall that to each critical point [B] we assign the module 7"°'% (B) 7. A variation of our
connected sum theorem with local coefficients and one admissible link implies the following

chain homotopy equivalence of Z/4-graded mapping cone complexes over .7q:
CH(Y,K;Agy) ~ C¥(S% H uUp; Agy) ®gq Cu(Y, K3 A gy

As in Subsection 8.2, the link (.83, H U Uy) has its base point on Uy. The local coefficient
system on (S3, H U Uy) is defined just as for (Y, K) but using only U7.

Thus we are in the situation of (8.14), but with local coefficients. Still we have that
CY(S% H u Up; Ag,) is isomorphic to a rank 2 module Qv @ Jqv_ with trivial
differential. However, the v-map is different here: it is determined by

v(vy) =2v_, v(vo) = (2T? + 2772 — 4)v,.

This follows from the computation of p(u) and ¢(u) in the proof of Proposition 4.1 of
[KM13]. Forus, u = T, and v(vy) = ¢(u)v_ and v(v_) = p(u)v,. This leads to the
following description of C¥ (Y, K; A 7,): itis chain homotopy equivalent to the complex

~ ~ d (T%+2T2-4
(C(Y,K; Aﬂq)* @O(Y7K§A9Q)*+27 2x ( c? )X ]) (8.18)

where x is as defined in the previous subsection. Note that if we set 7' = 1 we obtain the
mapping cone of 2y, as expected.
The following was proved in [KM13] for knots in the 3-sphere.

Proposition 8.19. For (S3, K) any based knot in the 3-sphere, I # (83, K; A7) has rank 2
as a module over 7, with generators in gradings which differ by 2 (mod 4).
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We remark that our grading convention in this case is different from the one of [KM13]
by a shift. The two generators for I7 (53, K; AgQ) are typically denoted z; and z_, and
have gradings 1 and —1 (mod 4) in the convention of [KM13]. This structure is exploited in
[KM13] to define a concordance invariant s7 (K) for knots in S°.

The construction of s# (K) is as follows. Choose a surface cobordism S : U; — K
from the unknot U; to K with a path between basepoints. This induces a map

I*(S;Azy) : T (U Agy) — ITH(K; A g,

where the superscript in I7 (K; Agq )’ indicates that we mod out by torsion. Then there are
elements o4 (S) € Jq such that we have I (S; Az,) (v4) = 0+(5)z+ if g(S) is even,
and otherwise 17 (S; Az,) (v+) = 0+(S)z. Pass to the local ring of Jq at T' = 1, and
let A\ = T — T~L. Then there are I#Jtnique natural numbers mﬁ (S) such that in this local ring
o+ (S) is up to a unit equal to A=) Finally,
SH(K) 1= 29(5) — S (m(S) + m#(S)).

In particular, s7(K) is determined by the cobordism map I7(S; A Jq)- Now suppose
([0,1] x S3,9) is a negative definite pair. From the naturality of our connected sum
theorem with respect to split cobordisms, the map I7(S; A yQ) is induced by the element
(0, A2(1),1) @ (0, Az(1),1) in the chain complex (8.18). We summarize:

Proposition 8.20. Let (Y, K) be a based knot in an integer homology 3-sphere. Then there
is a natural chain homotopy equivalence from Cf (Y, K; A yQ) to the complex (8.18). If
Y = 53 and there is a surface cobordism S : Uy — K in [0, 1] x S with negative definite
branched cover; then the concordance invariant s% (K) is determined by the S-complex
Cy(K; A 7,) and the element Ay(1) therein induced by S.

Remark 8.21. Upon developing our theory for more general cobordism maps, we expect
that the negative definite cobordism condition on S can be removed, and one can obtain
an interpretation of s7 (k) in terms of the S-chain homotopy type of C. (K; Ag) for an
arbitrary knot K. ¢

8.4 Instanton homology for strongly marked webs

In [KM19a], Kronheimer and Mrowka defined a variation of singular instanton homology
for webs in 3-manifolds. A web in a closed, oriented and connected 3-manifold Y is an
embedded trivalent graph L < Y. Let w < Y be an embedded unoriented 1-manifold which
may intersect the edges of L transversely, but misses the vertices of L. We say a web is
admissible if it satisfies the non-integrality condition stated above for admissible links, in
which the link L is replaced by a web.

Given a web (Y, K), there is an associated bifold, denoted Y, which is an orbifold whose
underlying space is Y. The orbifold Y has points with isotropy Z/2 given by the edges of
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K, and points with isotropy the Klein-four group Vj given by the vertices of K; all other
points in the orbifold have trivial isotropy. In [KM19a], the authors pass freely between the
web (Y, L) and its associated bifold Y.

There is a notion of marking data 1 for a web (Y, L), which consists of a pair (U, E,)
where U, < Y is any subset and E,, — U,\L is any SO(3) bundle. When p is strong,
Kronheimer and Mrowka define the instanton homology

J(YVip) = J(Y, L; )

which is a vector space over F = Z /2. This is constructed using SO(3) singular instanton
gauge theory. The marking data specifies a region for which we only allow determinant-1
gauge transformations. When (Y, L, w) is an admissible web, the marking data is strong if it
is all of Y. In particular, when L also has no vertices, in this case

J(Yip) =I1°(Y,L; F) (8.22)

That is to say, in this case (L,w) is an admissible link, and we recover the instanton
homology for admissible links with F-coefficients. We will write (C(Y'; 1), d) for the chain
complex that computes the F-vector space .J(Y'; 11). In general, this is not graded, but see
[KM19a, Section 8.4]. Note in (8.22) that w — Y is determined by the marking data ;. More
generally, (C(Y; 1), d) is defined with coefficients in any ring with characteristic two.

To carry the construction of the map v from Subsection 3.3.2 over to this setting, we
must address the issue of bubbling. For context, we briefly recall why .J(Y'; ) is not
defined with general coefficient rings, as explained in [KM19a, Section 3.3]. In describing
d?, we consider the ends of 1-dimensional moduli spaces M (a1, 2)1. The ends of this
moduli space are as before, unless oy = ao. In this case, in addition to ends of the form
[0, 00) x M(ay,B)o x M(8,ay)o, there is an end of the form

[0,00) x V x Vj (8.23)

where V' < L is the subset of vertices of our web. This end represents bubbling at the
vertices of the web, a phenomenon which is absent in the case for links. However, because
the Klein-four group V has 4 elements, the relation d?> = 0 holds if we work over any ring
of characteristic two, for example.

Now choose a basepoint p € L away from the vertices. We have a holonomy map
hayas : M(a1,az); — S* defined as before. We must address the possibility of bubbling,
represented by the end (8.23). A connection class on this end with ¢ € [0, 00) large is
obtained by gluing, along a vertex in L, an instanton on R*/V} to the flat connection on
R x Y which is the pull-back of a;. The key point is that because our basepoint p € L is
away from the vertices, the holonomy of any such glued instanton is close to the holonomy
of the flat connection on R x Y determined by aq, the latter of which is trivial.

In conclusion, we may modify our holonomy map to a map H,, «, just as in Subsection
3.3.2, without making any modifications along any end where bubbling occurs. Then our
observation from the previous paragraph implies that the cut-down moduli space {[A] €
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Figure 15

M (1, 02)1 : Hay o ([A]) = h} for a generic h € S1\{1} is, as before, a finite set of points.
We may then define the endomorphism v on C'(Y'; ). Proposition 8.2 continues to hold in
this setting, and we may form the mapping cone complex of v:

O, L) = CVs ) ®C(Vi),  d =[d 2} (8.24)

We have the following variation of Theorem 6.1 when one of the based knots is replaced by
a strongly marked web; it generalizes Theorem 8.5 over F.

Theorem 8.25. (Connected Sum Theorem for a knot and a strongly marked web) Let
(Y, K) be a based knot in an integer homology 3-sphere and (Y', L") a based web with
strong marking data 1. containing the basepoint of L'. Let u# be marking data on the
connected sum formed by connect summing the marking data which is all of Y with u. There
is a chain homotopy equivalence of chain complexes over F':

COY#Y, K#L;p#) =~ C(YV, K;F) @ C(Y', L' )

Furthermore, the tensor product is naturally isomorphic to a mapping cone complex, making
the chain homotopy equivalence one of mapping cone complexes. The equivalence is natural,
up to mapping cone chain homotopies, with respect to split cobordisms.

We may also consider the case of a connected sum between two strongly marked webs.
The following generalizes Theorem 8.8 over F.

Theorem 8.26. (Connected Sum Theorem for strongly marked webs) Lez (Y, L), (Y', L)
be based webs with strong marking data i, i’ containing the basepoints of L, L', respectively.
There is a chain homotopy equivalence of mapping cone chain complexes over F:

COHY, L#L ;o ) = C(V, L) @ C(Y', L5 ).

Here 1 U ' is marking data obtained from gluing . and 1/ on the connected sum.
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8.5 Connect summing with a theta web

Let (Y, K) be a based knot in an integer homology 3-sphere. Let (S3, ©) be the theta web, as
given in Figure 15, with edges e, ez and e3. Consider the connected sum (Y #53, K#0).
The marking data = (U, E,), where U, is all of Y #53, and E,, is trivial, is strong. We
use the same notation ;. for the marking data restricted to (.52, ©). The argument in Section
2.2 of [KM19b] provides an isomorphism

J(Y#S3 K#0; 1) ~ IY(K; F). (8.27)

We may recover this, and obtain a chain-level refinement, by applying Theorem 8.25.
The complex C,(©;u) is in fact Z/2-graded, and has one generator in degree 0. By
the computation in Section 4.4 of [KM19b], the v-map on this complex vanishes, and
the mapping cone complex C (O; 11) is thus isomorphic to the Z/2-graded vector space
F o) @ F (1) with trivial differential. In other words, C (©; 1) is identical to the Hopf link

complex 5’;:’ (H;F). Applying Theorem 8.25 gives a chain homotopy equivalence
ColY #5°, K#0: 1) ~ Cu(Y, K F) @ Cu(O; ),

of Z/2-graded mapping cone complexes, similar to the proof of Theorem 8.9. In particular,
we have a chain homotopy equivalence of Z/2-graded complexes over F,

Cu(Y#S% K#0; 1) ~ CL(Y, K F)

which is natural with respect to split cobordism maps up to chain homotopy. Taking
homology, we recover (8.27). Similar reasoning allows us to recover 7 (K; F) by taking
the connected sum of K with an unknot union a theta web.

8.6 Local coefficients from theta webs

More recently, in [KM19d] Kronheimer and Mrowka have used their instanton homology
of webs to extract new concordance invariants. Here we explain how a variation of our
connected sum theorem implies some structural results about these invariants.

Let (Y, K) be a based knot in an integer homology 3-sphere. Consider the ring

Sy = FIT{, T3, T3

Now orient K, and in a small ball surrounding the basepoint p € K, take the connected
sum of K with a theta web. We call the result K. This is a web with three edges e1, €2,
es3, each oriented in a fashion determined by the orientation of K, as in Figure 16. Let p
be the marking data of the previous subsection. The instanton complex C(Y, K % 1) can be
upgraded to a complex with a local coefficient system,

(CH(Y, K; Apn), d) (8.28)
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Figure 16: On the left, we take our oriented knot K and perform a connected sum with a
standard theta web near the basepoint p € K. The result is K7 on the right, and we orient
the three edges of K as indicated.

which is a Z/2-graded chain complex over .#5y. The local coefficient system Apy of
#pn-modules is defined using holonomies along the three edges of the web K ¥: the variable
T is associated to the arc containing the edge formed by the merging of K and e;, while 75
and T3 are associated to the edges ez and es, respectively. We refer to [KM19c¢] for more
details. The homology of the complex (8.28) is denoted

LY, K; Apy) = Hy (C*(Y, K; Apy), d*)

and is a Z/2-graded .#5-module. The recycling of the notation 1 T here is justified, as is in
[KM19c], by the observations from Subsection 8.5. The v-map is defined in this setting, and
there are no reducibles, so we may as usual form the mapping cone complex of v:

(CL(Y, K; Apy), d)

Let 77 = 7 ® F = F[T*!]. A variation of our connected sum theorem implies the
following chain homotopy equivalence of Z/2-graded mapping cone complexes over .5y

CiY, K Apy) ~ CuY, K3 Azy) @5, CL(S®, Ui Apw) (8.29)
where Uj is an unknot. Here and in what follov:{s, BN is viewed as a Jp-algebra by
identifying T' = 77. The mapping cone complex Ci (83,U1; Agy) is computed in Section
4.4 of [KM19b]: there is one irreducible critical point for the theta web, so we have
CE(S?’, Ui; Apn) = T, while the v-map Jx — JF is multiplication by P € J, where

P =TT+ T ' Ty ' T+ Ty Tyt + T Ty, ' Tyt (8.30)

Unravelling the right-hand side of the equivalence (8.29), we obtain

(CA(Y, K; Apy), df) ~ (5*(Y,K;A%)®% SN, d® 1y, +P-X)
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where P - x is multiplication by P between two summands of C. (Y,K;A%) @z BN
That is, according to its decomposition as an S-complex over .5y, we have

0 00
Px=|P 0o (8.31)
000

In conclusion, the complex C'E(Y7 K; Apy) and its homology IE (Y, K; Apy) featured in
[KM19¢, KM 19d], while defined as modules over the ring .“gn = F[Tlil, T;il, T;jl] in
three variables, is entirely determined up to chain homotopy equivalence by the S-complex
6’* (Y, K; A %) over the ring 5 in one variable. In fact, in the next subsection we will see
a more precise statement at the level of homology. A similar argument to that of Proposition
8.19 yields the following, which is proved for Y = S? by a different method in [KM19c].

Proposition 8.32. For (Y, K) any based knot in an integer homology 3-sphere, the homology
group Ii (Y, K; Apn) has rank 1 as a module over /py.

We now assume that Y is the 3-sphere, and omit it from the notation. The importance
of the modules /? (K; Apn), from the viewpoint of [KM19¢, KM 19d], is two-fold. First is
a connection to combinatorial link homology: Corollary 6.6 of [KM19c] gives a spectral
sequence whose Fo-page is a version of Bar-Natan’s Khovanov homology over .y and
which converges to 1 h(K ; Apn). Second, there is defined in [KM19d] a concordance
invariant 253 n (K) in the setting of 1 9(K; Apy), which we now briefly review.

Let Frac(.-“sn) be the quotient field of .“gN. A fractional ideal is an .#pn-module
M < Frac(.pn) such that there is some s € /gy with sM < Spn. Let S : Uy — K bea
cobordism of knots from the unknot to K. We have an induced map of rank-1 .5 -modules

I(S; Apn) : I8(Uy; Apy) — I'(K; Apy)
where I*(K; Agy)’ denotes the .5 y-module I*(K; Agy) modulo torsion. Then
A (K) = P9 [I(K; Apy) - imI*(S; Apn)'] < Frac(pn)
where ¢ is the genus of S, and [V : M| is the generalized module quotient,
[N : M]:={a/be Frac(.pn): aM < bN}.

The ideal zjhg n(K) is a fractional ideal, and is proven in [KM19d, Section 5] to be a
concordance invariant of the knot K.

Now suppose that ([0,1] x S3,S) is a negative definite pair. The existence of S is
equivalent to the assumption in (1.20) on the slice genus of /. Then we have a morphism of
S-complexes C(S; Ag.): C(Uy; Ag) — C(K; A z.). Upon tensoring with C(0; Apy)
and using the naturality of our connected sum theorem, we obtain that C*(S; Apy) is chain
homotopy equivalent to the map

0,A0®1,1) : e Q@ SN — Ca(V, K; A7) @z TN

We summarize some of our observations in the following.
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Proposition 8.33. Ler (Y, K) be a based knot in an integer homology 3-sphere. The
module I°(Y, K; Agn) over N = F[Tlﬂ, TQﬂ, T?)ﬂ] is determined by the S-complex
Cu(Y,K; A z.) over T = F[T{]. Specifically, we have a Z/2-graded isomorphism

(Y, K5 Apn) = He (Co(V, K5 A%) @ Fin, d@ gy + P-X)

where P - x is given by (8.31). Suppose Y = S® and that there is a surface cobordism
S : Uy — K in [0,1] x S? with negative definite double branched cover. Then the image of
the induced map I%(S; Apn) in IY(K; ApN) corresponds to the inclusion of the element

As(1) = (0,A9(1),1) € Co(Y, K; A ).

Thus in this case, the concordance invariant z% N (K) is determined by the S-complex
Cu(Y,K; A z.) over Tp = F[T{] and the element Ao(1) therein.

All of the above may be carried out in the framework of the unreduced theory I# (Y, K)
with local coefficients induced by the theta web. In this case, we consider the ring

R = F[T()illeilaTQJ_rl’Ti;_rl]

The group I# (Y, K; A,#) is a module over Z# and its local coefficient system is defined
by holonomies around K and the three arcs of the theta web; the variable T is associated
with K, and 77, T5, T with the theta web as before. It is the homology of

(CH(Y, K; Ay ), d) (8.34)

which is a chain complex associated to (Y, K)#(S3, U1 L ©) where as before the connected
sum involves Uy, not ©, and which has marking data z containing all of Y'#53, and local
coefficient system A 5% . We form the mapping cone complex with respect to the v-map, and
apply a variation of our connected sum theorem, to obtain the following equivalence:

CHY, K; Ays) ~ Cu(Y, K; Az ® 7 CF(S%,U1; Ay

Here %7 is a Zp-module by identifying T = Ty. Now just as in Subsection 8.2, the
complex Cf (83,U1; Ayp#) may be taken to have two generators in even grading, with
trivial differential. The v-map in this case is multiplication by P. Indeed, this follows from
[KM19c, Proposition 5.9], after identifying the v-map with the map induced by a genus 1
cobordism U; — U; (see Remark 8.3). Then (8.34) is chain homotopy equivalent to

~ ~ @2
(C*(Y, KiAg) @z Z%, d@ 144 + P x) (8.35)

In particular, the theory naturally splits into two chain complexes. Further, when we set
Ty = T} we recover two copies of the chain complex computed above for I*(Y, K; Ap N)-

Similar to Proposition 8.33, we obtain that the module I# (Y, K; A4) over Z7 is
determined by the S-complex C, (Y, K ; A z,) defined over Z» = F[T;!]. Specifically,
we have a Z/2-graded isomorphism between I7 (Y, K; A4 ) and the homology of (8.35).
Furthermore, if Y = S2 and there is a cobordism of pairs ([0, 1] x S3,5) from U to K
which is negative definite, then the concordance invariant z# (K') of [KM19¢] is determined
by the cobordism map on S-complexes.
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8.7 Relations to equivariant homology groups

Several of the constructions of the above chain complexes bare similarities to the equivariant
homology groups discussed in Section 4. To begin making these connections more precise,
recall that given an S-complex (C’*, d, X) over aring R, the equivariant complex (C'*, d)
over R[x] is defined as follows, where d is defined on C' = € and extended R[z]-linearly:

C, = C, ®r R[], d=—d+z-x

We slightly extend this construction to incorporate base changes of R|z], as follows. Suppose
S is another ring, and ¢ : R[z] — S is a ring homomorphism. Define (CY, d*?) by:

Cr=S@rCy,  d?(s5-C) = —s-d¢+ ¢(x)s - x(C)

Here s € S, ( € C, and S is considered an R-module by restriction. In other words, we
have the identification C* =C,® R[] S as chain complexes over S. Note that when

¢ : R[z] — R sends z to zero, the complex éf is naturally identified with Ch.
As a simple example, recall that Theorem 8.13 expresses the chain homotopy type of
ct (Y, K) as the mapping cone of 2x acting on C (Y, K). We may write this as

CH(Y,K) ~ C¢(Y, K)

where ¢ : Z[z] — Z[z]/(x?) is the ring homomorphism which is determined by sending
to the equivalence class 2z (mod z2).

For a more interesting example, we consider I (Y, K'; A+ ) as discussed in the previous
subsection. We saw there that the chain complex for this group is chain homotopy equivalent
to the chain complex given by (8.35). From this we obtain

~ ~ @2
CF (Y K Ags) = CLY, K3 A 53)% = (Cu(Y. K A ) @i #) - (836)

where ¢ : T [x] — Z* = F[T3', TE T5F Ty is the Z = F[T5!]-linear homomor-
phism determined by sending x to P, where P is given as before by (8.30).

Note that F[T{, T3, T3] a free module over F[P]. (This is an immediate conse-
quence of Proposition 8.40 below.) Tensoring with the ring F[Toﬂ] then shows that 27 is a
free module over Z[z] with the above module structure. As a consequence, the relationship
(8.36) holds at the level of homology.

Corollary 8.37. Let (Y, K) be a based knot in an integer homology 3-sphere. The module
T#(Y, K; A ) over Z* is isomorphic to (1(Y, K; A7) @ gufz] 7 )®? where the ring

structure of % over I |x] is given by sending x — P.

Remark 8.38. In [KM19c], an operator A is defined on I# (Y, K; A4 ), associated to the
identity cobordism with a dot placed on the singular surface [0, 1] x K. The Z#-module
structure of 1% (Y, K'; A4 ) then lifts to an .%-module structure, where

F = R7[A]/(A? + PA + Q).
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We can lift the isomorphism of Corollary 8.37 to one of .#-modules. The result is
IF(YV K D) = 1Y, K A gy) @ ooy 17 (Uns D)

where the .%-module structure is induced by that of I#(Uy; Ay#). This follows from
viewing A as induced by a cobordism (with a dot) and the naturality of the connected sum
theorem. As I7(Uy; Ay ) is isomorphic as an .%-module to .%, I#(Y, K; A #) is an
Z-module obtained from I(Y, K; A z.) by the base change Jx[x]| — % which is the base
change of Corollary 8.37 followed by inclusion Z% — .Z. o

Similar results hold for the reduced theory I (Y, K; Apy), starting from Proposition
8.33. The description of the chain homotopy-type of CE(Y, K; A #,) given there may be
represented as a chain homotopy equivalence

CHY, K; Apn) =~ CLY, K; Ag) = Co(Y. K3 A ) ® o] BN (8.39)

where ¢ : Fg[r] — Spy = F[T7Y, T5 T is the & = F[T;"]-linear homomor-
phism determined by sending x to P. This module structure is elucidated by the following.

Proposition 8.40. The ring 5y = F[TT, TS, TS is free as a module over F[T, P).
As a consequence, the relationship (8.39) also holds at the level of homology.

Corollary 8.41. Let (Y, K) be a based knot in an integer homology 3-sphere. The module
INY, K; Apn) over gy is isomorphic to 1(Y, K Ag) ® F[2] /BN Where the ring
structure of SgN over I |x] is given by sending x — P.

The proof of Proposition 8.40 needs some preparation. Firstly, we fix the dictionary
order on Z>( x Zx( by declaring (i, ) > (i, j') if either i > i’ ori = i’, j > j'. Fora
non-zero element @ = > Ri’jTQiTg of the ring By where R; ; € F[Tlil], define

Deg(Q) := Hll%]l.x{(!il, 91) [ Rij # 0} € Z>0 x Zo

where the maximum is defined with respect to the dictionary order. We also define L(Q),
the leading terms of such a non-zero @, to be the following expression:

L(Q) := > R jT3T) € SN
(Iil,l3)=Deg(Q)

Proposition 8.40 is a consequence of the following two lemmas.

Lemma 8.42. Suppose a subset G < .Sy is given such that the set
{L(9P") | g€ G, i>0}

orms a pasis o, BN over | en BN LS Jree over ) wit asis G.
fi basis of .7, F[TF'). Then Sy is fi F[TF!, P) with basis G
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Proof. Let Q € /N be non-zero. By assumption, there are Ry, ..., R, € F[Tlil] and
9o, - - - , gn € G such that the leading terms of () are given as the sum

L(Q) = ZRiL(giP%

In particular, either Q = Y}, R; g; P" or we have the following:
Deg(Q — Z R;giP") < Deg(Q).
i

Thus by induction we can write () as a linear combination of the elements in G over the ring
F[T!, P]. Next, suppose we have a relation of the form

N
> Rngm P =0

m=1

with R, € F[Tf—rl] not all zero, ky, € Zxo, and g,, € G. Then we define (ip,jo) €
Z-0 x Z=q to be the maximum of Deg(g,, P*) among all m that R,,, # 0. Therefore,

> R L(gmP*™) = 0.
Deg(gm Pkm)=(i0,j0)

This contradicts our assumption and implies that R,, = 0 for all m. In particular, G gives
an [T}, P]-basis for py. O

Lemma 8.43. Let G be the following subset of BN
G = {T, T, ToTy Ty Ts, Ty ' Ty, ToTy ™, ToTs | me Z,ne Zx}.
Then {L(gP*) | g € G, k = 0} is an F[T{)-basis for Spy.

Proof. For a given (i, j) € Z> x Zx(, we characterize all the elements of the form gP*
with g € G having Deg(gP*) = (i, ). Because of the symmetrical role of T, and T3, we
assume that i > 5. In the following table we list all such elements g P* with degree (i, 5).

i=j7=0 |1-P°

i>0,7=0|T% PO Ty" PV

7 = ] >0 Pi’ T2T3Pi—l’ T2T3_1Pi_1, T2—1T3Pi—1

i>j>0 |Tyipi, TP, Tyt pist T i pit

It is clear that in each case the leading terms of the listed elements give an F[Tlil]—basis of
F[Tlil] {TQngv T27;T3_j7 T2_ZT§7 TQ_iTS_j}7

the direct sum of which give a decomposition of .”g into F[Tlﬂ]—modules. t
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8.8 Remarks on some concordance invariants

For a knot K whose slice genus satisfies the assumption in (1.20), we have given rather
specific recipes for how to describe the invariants of [KIM 13, KM19d] in terms of our theory
of S-complexes with local coefficients. It is natural to ask whether the concordance invariants
s7(K), 255 (K), 27 (K) are related to the various concordance invariants constructed in
this paper. A closely related question is the following:

Question 8.44. Are the invariants s7 (K), z% ~(K), 27 (K) determined by the local equiva-
lence class of the S-complex C (S 3K A ) with local coefficients?

We now suggest a possible recipe for how the above concordance invariants may be
derived more directly from our equivariant homology theories. We first mimic the definition
of z% N (K), as far as we can, in the setting of I(K’; A 5, ), motivated by Corollary 8.41. To
ensure that we have a cobordism map at our disposal, we assume that there is a connected,
oriented surface cobordism S : U; — K in [0,1] x S? with negative definite branched

double cover. Then we have an induced map
I(S;Az) (U Az — I(K;Ag)

where the prime superscripts indicate that we mod out by the torsion elements over Jg|x].
Let g be the genus of S. We define

2(K) =29 [I[(K;Ag) :imI(S; A )]  Frac(Zx[z]) (8.45)
Because the equivariant homology I (K; A ) is arank 1 module over 5[], it is isomor-
phic as a module to an ideal I ¢ J5[z]. Then Z(K) may be described as

2(K) = 29¢71 - I < Frac(Jx[z])

~

where ¢ = I(S; Az, )(1). Thus Z(K) is a fractional ideal for the ring Jp[z] = F[T*!, z].
Now the ring homomorphism Jx[z] — gy induced by sending 7' — T} and x — P
induces a map from fractional ideals of & [z] to fractional ideals of .5 . By Proposition
8.33 and the naturality of the isomorphism in Corollary 8.41, we conclude that Z(K) is sent
to 2% (K') under this correspondence.

Similar remarks hold for the relationship between Z(K) and 27 (k). Consider the homo-
morphism Jg[x] — %7 induced by sending 7'~ Tp and = — P, and the homomorphism
RH# — Spn which sets Ty = T;. We obtain the commutative diagram on the left:

T[] Z(K)
VAN VRN
B ————— Ipy H(K) ——— 24 (K)

These homomorphisms induce maps between the fractional ideals of the three rings, and via
these correspondences the invariant 2(K) is sent to 27 (K) and 253 ~ (K0), as indicated in the

above diagram on the right.
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There is a relation between z(/K) and the nested sequence of ideals JZQF (K) defined in
(7.9) which can be described as follows. Given any Z[x]-module Z in Frac(%[x]) and
any integer ¢, we define

)7+ aj_i_laﬂ*z*l + -+ ag c

a a
2= 12 ' ; 7\ < Frac(Fp).
‘J( ) {b| bx]+bj_1x3_1+...+b0 }C rac( F)

This is clearly a .Z&-submodule of Frac(.7F).

Proposition 8.46. For any K as above, J;,,k)2(2(K)) < JZT%(K). In particular,
Ji(2(K)) is an ideal of T.

Proof. Suppose a cobordism S : U; — K is chosen as above. Recall that
I(K) = im(is : [(K; Az) — Tellz7), 2]),
JZyF(K) ={ae IF |3 ax ' a4 e J}.
First, with notation as in (8.45), we claim that
[[(K;Az) :imI(S;Az)] = [I(K): I(S;Az)(1)] (8.47)

where 1 € Fp[[x~!, x] in (8.47) is a generator of J(U;) = Z[z] as a module over Z[z].
This claim is a straightforward consequence of the exact triangle in (5.2) and the fact that all

~

elements in I (K; A #,) are JF[z]-torsion. Corollary 4.12 implies that

~1
I(S;A7)1) =1+ > ba'
1=—00
Let a/b € Ji1o(x)/2(2(K)). Then (8.47) implies there are P(x), Q(x) € Jp[z] such that
P(x)(1+ Yo bia')
Q(x)
and the ratio of the leading term of P(z)/Q(x) is equal to . Thus a/b € J?F (K). O

€ J(K),

The above proposition and the preceding discussion provides a partial answer to Question
1.19 for the family of knots with slice genus —o (K)/2.

Question 8.48. Can the definition of Z(K') be extended to all knots in the 3-sphere such that
the relationship to 27 (K') and zjhB ~ (K) described above still holds?

Note that if one constructs general cobordism maps for the equivariant theory, then there
is an obvious way of extending the definition of Z(K) to all knots using (8.45).

A similar discussion holds for s* (K). In particular, if there is a surface cobordism
S : Uy — K as above, we may define 5(K) by replacing 5 in (8.45) with 74, and from
our discussion in Subsection 8.3, s (K ) may be recovered from 5(K).
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9 Computations

In this section we study our invariants for two-bridge knots and torus knots. In particular, we
prove Theorems 1.14 and 1.12 from the introduction.

After discussing the utility of passing to the double branched cover in Subsection 9.1,
we turn to two-bridge knots, where much of the structure of our invariants can be described
combinatorially. We rely on previous results about instantons on R x L(p, ¢), which depend
upon equivariant ADHM constructions. Along the way we describe all of our invariants for
the right-handed trefoil, from which the computation h > = 1 follows. We also make contact
with Sasahira’s instanton homology for lens spaces, from which Theorem 1.12 follows. We
then discuss the (3, 5) and (3, 4) torus knots, making use of Austin’s work [Aus95], which
also relies on equivariant ADHM constructions. Subsection 9.5 discusses the irreducible
Floer homology of torus knots. Finally, in Subsection 9.6, we discuss some more examples
for which h(K) vanishes.

9.1 Passing to the branched cover

The geometrical input involved in the singular instanton Floer complexes C., (K) for a knot
K < S as defined in Section 3 can be related to the corresponding data on the double
branched cover  : ¥ — S3 over K. On the level of critical sets, this is established in
[PS17], and the description extends to the cylinder in a straightforward manner.

Recall that the critical set €(K) = €(S3, K) of the unperturbed singular Chern-Simons
functional for K may be identified with the SU (2) traceless character variety of K from
(2.2), denoted 2" (K) = 2°(S3, K). For a closed oriented 3-manifold Y, we define

Z(Y) = {p: m(Y) - SU(2)}/SU(2),

and via holonomy 2" (Y') may be identified with the critical set €(Y") of flat connections
modulo gauge transformations for the SU(2) Chern-Simons functional on Y. If Y is a
Z/2-homology 3-sphere, as is the case for ¥, then .27 (Y") is naturally identified with the
corresponding SO(3) character variety, by taking adjoints. Note in this case there are unique
SU(2) and SO(3) bundles over Y up to isomorphism.

Let 7 : XX — ¥ be the covering involution of . Fix an SU(2) bundle over 3 and let
gx, be its adjoint bundle. A lift 7 of 7 to gy, is specified by choosing a bundle isomorphism
f : T*gx, — gy, via the relation ¥ = f o p~! where p : 7¥gy, — gy is the pullback map.
Such lifts fall into two types, depending on whether 7| is the identity or of order two. We
restrict our attention here to the latter case; these are locally conjugate to the model given in
(2.28). For such a lift 7, the quotient §x = gx/7 is an SO(3) orbifold bundle over (53, K),
isomorphic to the adjoint orbifold bundle gz considered in Section 2.1. Let €7 (X) denote
the subset of €(X) of classes that are represented by a connection whose adjoint is fixed
under the induced action for some such choice of a lift 7. Now, define a map

II:¢(K) — ¢(2)"
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as follows: given an SU(2) singular connection representing a class in €(K), take its SO(3)
adjoint, pull back the induced orbifold connection to obtain an SO(3) connection on ¥, and
then take the gauge equivalence class of its unique SU (2) lift. In terms of representations,
¢(X)" corresponds to the subset 2 (X)” < 2 '(X) consisting of p : m1(2) — SU(2) such
that 7%p = upu~" for some order four element u € SU(2), up to conjugacy.

The fibers of the map II are either one or two points. More precisely, we may divide the
classes in €(3)7 into three types, determined by their gauge stabilizers:

(i) (trivial) the trivial connection class 0y, with stabilizer SU(2);
(ii) (abelian) non-trivial classes with stabilizer isomorphic to U(1);
(iii) (irreducible) classes with stabilizer {+1}.

The map IT is onto, and I (fx) = {#} where @ is the reducible singular flat connection for
K; the fiber over a class of type (ii) in €(3)7 consists of a unique irreducible class in €(K);
and over a class of type (iii) are rwo irreducible class in €(K). In particular, a non-irreducible
class in €(X)™ may come from an irreducible class in €(K). In terms of representations,
as is described in [PS17, Section 4], (i) corresponds to the trivial homomorphism, (ii) to
non-trivial representations with abelian image, and (iii) to non-abelian representations. An
abelian representation in 2" (X)7 lifts to a unique binary dihedral representation in 2" (K),
and an irreducible representation has two irreducible lifts to .2 (K'). The map II factors as

C(K) — €(K)/t —> &(D)"

where the first map is the quotient map associated to the flip symmetry ¢ of Subsection
2.3, and the second map is a bijection. The fibers of 1I consisting of one point are given
by fixed points of ¢, while the fibers with two points are the free orbits of ¢. In particular,
the involution ¢ restricted to €(K) acts freely on flat connections whose pullbacks to 3 are
irreducible, and fixes all other connection classes.

For «, € €(K) we have an R-invariant flip symmetry ¢ : M(«, 5) — M (1, 1)
between moduli spaces on R x (S3, K), and +? = id. Thus ¢ acts on M (a, 3) U tM (a, B)
as an involution. If either « or (5 is fixed by ¢ we have an identification

) 9]

(M(er, 8) © e (@, B))) /i = N (s, Bs)T

where M (as, Bx)7 is the moduli space of instantons on R x 3 which are fixed by some lift
7 of the branched covering 7 extended to the cylinder. Here oy, = II(«) and By, = I1(3).
We also assume that our metric on ¥ is invariant with respect to the branched covering
involution. (We assume for simplicity that we do no need any holonomy perturbations to
achieve regularity.) Then M (s, By)7 is the fixed point set of a Z/2-action on M (as, By)
induced by 7. If ¢ acts freely on both « and 3 we have instead an identification

¥ v

(M (e, 8) v edl(e, 8) ) Je o (M(ase8) U M (e B)) /o = M (as, B)”

where the two sets on the left hand side are disjoint.
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Lemma 9.1. The involution v acts freely on M (e, ) U tM(c, B), and v(1[A]) = —v([A]).

Proof. Let [A] € M (v, 8) be a (non-constant) instanton fixed by ¢. Then the pull-back of
[A] to R x ¥ is a non-constant reducible. Since there is no such instanton we conclude that
the action of ¢ is free. The behavior of the monopole number with respect to ¢ is given in
(2.25). O

9.2 Two-bridge knots

Let p, ¢ be relative prime, with p odd. Write K, ;, for the two-bridge knot whose two-fold
branched cover is the lens space L(p, q). The critical set €(L(p, q)) is easy to describe.
Write §iL(p7q) for the flat SU(2) connection class on L(p, q) corresponding to the conjugation
class of the representation 71 (L(p, q)) = Z/p — SU(2) defined by ¢ — ¢* @ (". Then

C(L(p,0)) = (€L gy €0 o) )

Our convention is to identify L(p, q) with the quotient of S = C? by the action of Z/p,
where Z/p, viewed as the p" roots of unity, acts as ¢ - (21, z2) = (Cz1, (?22). Furthermore,
the two-bridge knot K, , is the fixed point set of L(p, ¢) under the involution induced by the
conjugation action (z1, 22) — (%1, Z2). Thus the orbifold (53, K, ,) is the quotient of S3
by the action of the dihedral group of order 2p.

As observed in [PS17], all of the classes in €(L(p, q)) are fixed by the action of 7, and
so €(L(p,q)) = €(L(p, q))". Furthermore, each & Lipa) is reducible, and thus uniquely lifts
to a class £ € €(K') which is fixed by t. Each of these is non-degenerate. Note that £¥ = 6
is the flat reducible, while &’ for 1 < i < (p — 1)/2 is irreducible. Thus our irreducible Floer
chain complex has underlying (ungraded) group given by

(p—1)/2

- @ z¢

The gradings may also be computed, as recalled below. Consequently, the framed S-complex
C(Kpy) = C( pq) ® C(Kp4) @ Z has rank p. On the other hand, by Theorem 8.9 the
homology of C/(K. ».q) is isomorphic to Kronheimer and Mrowka’s I%(K, ,), which is also
of rank p by [KM11a, Corollary 1.6]. Thus d = 0, and in particular all the chain-level maps
d, v, 41 and 05 must vanish. Proposition 4.15 implies:

Proposition 9.2. For a two-bridge knot K, , we have h(K 4) = 0.

This result is no longer true if we use local coefficients. The key observation is that some
of the zero-dimensional moduli spaces M (€%,&7) are non-empty, and in fact consist of
exactly two points [ A] and [A], which descend to a unique instanton on R x L(p, q). The flip
symmetry ¢ interchanges these instantons, reversing orientations, and so their contributions
to the differential considered above cancel. However, it will happen that sometimes the
monopole number v([A]) = —v([A’]) is nonzero, in which case the contributions will not
cancel in the setting of the local coefficient system A 5.
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Moduli spaces of instantons on R x L(p, q) were studied in [Aus95, Fur90, FH90]. See
also [Sas13, Section 4.1] for a nice summary. An argument using the Weitzenbock formula
shows that all such moduli are unobstructed and smooth. The 0-dimensional moduli spaces
can be described explicitly, and are determined as follows. First, consider the congruence

a+ gb=0 (mod p) 9.3)
We count solutions (a, b) in a rectangle determined by k1, ko € Z~( as follows:

Nl(klv kQ;p7 Q) = # {(CL?b) € Z2 SOlVil’lg (93)7 |a’ < klv ‘b’ < k2} (94)

. i, |b] = ks or
Na(ky, ki p, q) = b) € Z2 solving (9.3), |4 =k 5
21, ka; p, q) #{(a, ) €27 solving 03), 0 4 bl < ©->

Theorem 9.6 ([Aus95,Fur90]). Let 0 < i,5 < (p — 1)/2, where i # j. Suppose there exists
k1,ko € Z~ and €1, e9 € {+1,—1} such that the following hold:

k1 =e1i+e2j (modp), gko= —c1i+e2j (modp) 9.7)

Ni(k1,koip,q) =1,  Na(ki,kaip,q) =0 (9.8)
Then M(fi(pﬂ), fi(pvq))g defined for R x L(p, q) is a point. Otherwise it is empty.

Furthermore, the positive integers k1, ko above are related to topological energy as
follows: when there exists an instanton [A’] on R x L(p, q) as in the theorem, we have
1 1 ~ kiko

= — tI‘(FA/ A FA’) = —- CQ(E)
872 RxL(p,q) p p

k(A" 9.9)

where £ — S%isan SU (2) bundle that supports an extension of the pullback of the instanton
A’ to the 4-sphere compactification of R x S3. A
We now return to the orbifold (5%, K,q). Consider a moduli space M (&}, 1,€7.¢,.4))d

of instantons on R x L(p, q). It follows from the computations of [PS17, Section 7.1] that
the 7-invariant moduli space has dimension d/2. Thus pullback induces an embedding

(M(gi’ gj)%) fv = M(&(p,q)’ gi(m))d

of smooth manifolds, whose image is the fixed point set of an involution on the codomain.
In particular, setting d = 0, we find that M (£%, &%) is entirely determined by the above
theorem, combined with the behavior of the symmetry ¢ as described in Lemma 9.1.

Corollary 9.10. Let 0 < i,j < (p — 1)/2, where i # j, and consider the corresponding
moduli space M (£%,&7)q of instantons on R x (S3, K, ).

() M(&,&)o = & ifand only if M(&3, 1€ 0. )0 = D-
1) If M (€1,87)g # &, then it consists of two oppositely oriented points.
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In the case that M (£7, &%) # &, Theorem 9.6 implies that M (&%, £7)q consists of two
points. These two points are oppositely oriented because of the vanishing of the maps d, 1
and do. To compute the maps d, §; and J2 with local coefficients, we have:

Proposition 9.11. Suppose M (£, &7)g # &, so that it contains two instantons [A] and
L[A]. Let k = k1ko where ki, ka € Z~ are solutions to (9.7), (9.8). Then

{0} ifk=0 mod 2

{v([A]),v([A])} = {{2’ —2} ifk=1 mod 2

To prove this we utilize the twisted spin Dirac operator. To set this up, let [A] €
M (£%,€7), so that A is a singular instanton on R x (S3, K, ;). Pull back A to an instanton
on R x S3. By Uhlenbeck’s removable singularity theorem, this pull back connection
extends, after possibly gauge transforming, to an instanton A on the > compactified S4. Write
E — $* for the bundle on which A is supported, and set k := ¢, (E).

Recall that (S3, K »,q) 18 the quotient of S3 by the dihedral group Doy, generated by
(eZ/pcU(1)and 7 € Z/2, where ( - (21, 22) = ((21,(%22) and 7 - (21, 22) = (Z1,22)-
Here we view S® — C? as the unit sphere. This action extends to C? U o = S%. We may
lift the action of Dy, to an action of the binary dihedral group D4p of order 4p on the bundle

E. This lift may be chosen such that A is invariant under the action of D4p
The action of Dy, on the 4-sphere also lifts to an action of D4p on the spinor bundles
S* — S§%. Thus we may consider the spin Dirac operator coupled to A:

Dy T(E®S™) —T(E®S)
The group 54p induces actions on the domain and codomain, and 1) j 18 equivariant with
respect to these actions. Write 7 for the lift of the action of 7 to 54p.
Proposition 9.12. Lef(7, ) ;) = v(A)/2.

Proof. We use the Atiyah—Segal-Singer equivariant index theorem, as stated in [BGV04,
Theorem 6.16], applied to the operator lD and the action of 7 € D4p

N 1 A(S%)ch(7, E)
Lef(7, D 3) = Com Lz det(1 — 11 - exp(—Fy))Y/2

Here 52 = R2 U o0 < S% is the fixed point set of 7; the term ch(F, E) is defined to be
Tr(7 - exp(—F;)); Fi is the component of Riemannian curvature form of 5* normal to 52;
and 7y is the action of 7 on the normal bundle over S2. We have A (8?) = 1. The connection
A descends to the singular connection A, and so by assumption there is a preferred reduction
L @ L1 = 82 over the fixed point set, at which A splits as Ao (&) A* Furthermore, the
action of 7 on L @ L~ is of the form diag(i, —i). Thus

~ & i 0 —Fz 0 .
ch(7,E) =Tr <{ 0 —; ] - exXp OAo F ]) = —2iFy
0
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The action of 7 on the normal bundle of S? is by negation, so for the denominator we have

det(1 — 71 - exp(—Fy)) ™2 = det(1 + exp(—Fy)) "2 = % (1 + zllFN>

We find that only the constant term of the denominator contributes to the final integral:
1 1 i 1
Lef(7, D 3) = —— —2%F; - = — F; =-v(A
ef(7, P 3) 27TL2 Wiy 27TL2 4, = 37(4)

The last equality follows because the fixed point set S 2, with 0 and oo removed, is mapped
with the connection A isomorphically to R x K with the connection A. O

The character of I) ; restricted to the subgroup Z/2p < l~)4p, which we write as
indz/Qp(]?g), is computed in [Sas13, Section 4.2]. For 0 < i < 2p — 1, we write x;
for the character of Z/2p defined by sending the generator to e/ /P Then

2p—1
indz0p(D5) = Y, M(j, k1, k2ip,q) - X5 (9.13)
§=0

where the coefficient M (j, k1, ko; p, q) is defined to be the number of solutions (¢, d) € Z>
with) < c <k —1and 0 < d < kg — 1 to the congruence

—ki4+2c+1+q(—ka+2d+1)=j (mod 2p) (9.14)

Here k1 and ko are solutions to (9.7); in the situation we consider, they will be uniquely
determined as also satisfying (9.8). The binary dihedral group 154p has p—1 two-dimensional
representations, whose characters we denote by X; for 1 < j < p — 1; and also 4 one-
dimensional representations, dented %L, )A{;—r. Here X is the trivial representation and ¥,
has 7 acting by —1. The restriction from ﬁ4p to the subgroup Z/2p sends:

Ximxitxm-; 1<ji<p-1, Xrex X~ 9.15)
In particular, if we consider the 154p character of ) > We may write
p—1
indj, (D3) =ngXg +19 X0 + 10y Xy +15 %, + )X
j=1
The operator 1) 7 18 surjective, so each of these coefficients is non-negative. We then have,
combining (9.15) and (9.13), the following:
M(j, k1, kosp,q) + M(2p — j, k1, kosp,q) =ny  (1<j<p-—1)
M(0, k1, ko;p,q) = n;{ +ng
M (p, k1, k2;p,q) = n,y +n,
Observe that ¥;(7) = 0, while X3 () = +1 and X; (F) = +i. Consequently, we have

Lef(7, D 3) = ng — ng . Note that this Lefschetz number is real by Proposition 9.12, so

. + _ p—
necessarily n; =n, .
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Proposition 9.16. Let 0 < <(p— 1)/2 where i # j, satisfying (9.7) and (9.8) for some
k1, ke € Z~y, so that the modull space M(fL () ,fL(p q)) = {[A’]} is a point. Then the
associated coupled spin Dirac operator ID 4 defined over R x L(p, q) is surjective and

dim kerlDA/ =

0 if kK1k1 =0 mod 2
1 if klkg =1 mod 2

Proof. Suppose M (0, k1, k2;p, q) > 0, so that there exists a solution (c, d) to (9.14) with
j=0,where 0 < ¢ <k —1land0 < d < ko — 1. Then (a,b) with a := —k; + 2c¢ + 1
and b := —ka + 2d + 1 is a solution to (9.3) with |a| < k; and |b| < k2. However, the
assumption Ny (k1, k2; p, q¢) = 1 implies the only such solution is (a,b) = (0,0). Thus

C:(kl—l)/Q, d:(kg—l)/2

are uniquely determined, and we must have M (0, k1, k2;p,q) = 1 and k1ko = 1 (mod 2).
The same reasoning shows that if k1,2 = 0 (mod 2) then there is no solution to (9.14). It
remains to observe that M (0, k1, ko; p, q) is precisely indID 5, = dimkerID 4. O

Proof of Proposition 9.11. By Proposition 9.16, na“ +mng = 0if k = k1ko = 0 (mod 2),
and nar +ny = 1if k = kiko = 1 (mod 2). Note na—r € Z>o. By Proposition 9.12,
ng —ng = Lef(7, 1) ;) = v(A)/2, from which the result follows. O

The assumption that [A] € M (€%,¢7) lies in the 0-dimensional component of the moduli
space was only used in the proof of Proposition 9.16, and there we only relied on the relation
Ni(ki, k2;p,q) = 1. In general, [A] € M (€%, &7), where

1
d = Ni(k1, k2;p, q) + §N2(’f1,k2;Pa q)—1

for some ki, k2 satisfying (9.7). Note that the involution (a,b) — (—a, —b) on the sets
appearing in (9.4), (9.5) shows that Ny (k1, k2; p, q) is odd and No(k1, k2; p, ) is even. In
particular, if d = 1, then we must have Ny (k1, k2;p,q) = 1 and Na(k1, k2;p, q) = 2. Thus
the above work carries through in this situation as well.

Corollary 9.17. If[A] € M (€1,£7)1 then the conclusion of Proposition 9.11 still holds.

9.2.1 The irreducible chain complex with local coefficients

We now have an algorithm to compute the irreducible chain complex (C (K, 4; A @ F), d)
which is a module over Z @ F = F[U*!, T+1], along with the maps &; and J,. We have

(p-1)/2 ,
C( pqu®F @ US .F U+l T+1] fz
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Fixing 1 < i < (p — 1)/2, let k1, ky € Z~( be any pair of solutions to (9.7) after setting
j = 0. Using (9.9) the Chern—Simons invariant ¢; associated to £’ is given by

C; = 2. k1k2/2p = k’lkg/p

The factor of 2 appears in the denominator because the orbifold (S3, K, ;) is the quotient
of L(p, q) by the branched cover involution, while the factor of 2 appears in the numerator
because the Chern—Simons functional is related to the scaled action 2x. Furthermore, the
Z /4-grading of the generator &' is given by:

) 1
gr(§') = Ni(k1, k2:p,q) + §N2(k‘1,k‘2;1), q) (mod 4)

Next, fix 0 < 4,5 < (p—1)/2 and i # j. Define a;; € F[U, T*!] to be

U—kke/p(T2 —T=2) if 3k, ky € Z~g solving (9.7), (9.8), k1 kz odd
;i 1=
Y 0, otherwise

Then the maps d, d1, and 2 are determined as follows:
de, &y = ayj, 51(&") = ajo, (52(1),£") = ao;

All that remains, in order to describe the entire S-complex CN’*(Kp,q; A ®F) (and in fact
all of its structure as an enriched S-complex), is to compute the v-maps. Properties of the
2-dimensional moduli spaces M (52(17’[]),52@7(1))2 are described in [Aus95], and it seems
probable that the v-maps can be computed directly, starting from the equivariant ADHM
constructions described therein.

Remark 9.18. Although we have not computed the v-maps here, note that Corollary 9.17
determines the monopole numbers of instantons which contribute to the v-map. ¢

Remark 9.19. If we work over the general local coefficient system A, without tensoring
by F, we have only determined each map d, d1, d2 up to a sign, i.e. each a;; should be
written instead as +a;;. However, as long as there are no “cycles” in the differential, it is
straightforward to verify that these signs do not matter, and our description determines the
equivalence class of the complex over A. ¢

9.2.2 Sasahira’s instanton homology for lens spaces

The complex computed above is closely related to a version of instanton homology for lens
spaces defined by Sasahira [Sas13], the idea for which goes back to Furuta [Fur90]. We first
define the underlying chain group, which is a vector space over F = Z/2, to be

(p—-1)/2

Cu(L(p,) = D F-& oy

i=1
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The minus sign in —q is included to properly align our orientation conventions with [Sas13].
There is of course a natural identification of this group with C' (K, —q; F), via &y, v — &,
and we define a Z/4-grading on C\(L(p, ¢)) using this identification. Next, consider

Fy:= F[z]/(2® + 2 + 1),

the field with four elements. We have a ring homomorphism f : F[U*!, T*!] — F, which
is determined by f(U) = 1 and f(T) = x. Note f(T? — T~2) = 1. Then

<d§2(p,7q)a€£(p’,q)> = f(aij) eFcFy

The homology of the complex (C(L(p, q)), d) is denoted I.(L(p, q)), and is a Z/4-graded
F-vector space. That this is the same as the definition in [Sas] 3% follows from Proposition
9.16. Another notation for I,.(L(p, ¢)) in [Sas13] is given by L&O (L(p,q)).

Theorem 9.20. There is an isomorphism from (Cy(Kp 4; Ar,), d), where the local system
A, is obtained from A ® F via the base change f : F[U', T*'] — Fy, to Sasahira’s
chain complex (Cy(L(p, —q)) ® F4,d) tensored over Fy. As a result,

L(Kp,q; Ar,) = L(L(p, —q)) ® F4
as Z,/4-graded vector spaces over the field F 4.

In particular, the euler characteristics are equal, and given by (K ;)/2. Thus we obtain
a way of computing the signature of K, , from the arithmetic functions Ny (k1, k2; p, —q)
and Na(k1, k2; p, —q), although the authors suspect that this is probably not new.

Remark 9.21. Proposition 9.16 simplifies the construction of (Cy(L(p, q)),d) given by
Sasahira. Indeed, in [Sas13], the coefficient d := <d§i(p,_q),£i(p’fq)> is computed in two
steps: (1) first, check if the relevant O-dimensional moduli space is empty or a point [A’]
using Theorem 9.6; then, (2) compute indJD 4/, and its parity will give the answer for d € F.
However, Proposition 9.16 says that indI) 4+ = k1ko (mod 2), where k; and ko have already
been determined in step (1), via Theorem 9.6. ¢

Corollary 9.22. Let k € Z. Then h.y(Kgj11,—2) = 0 for any coefficient system A .

Proof. Sasahira computes in [Sas13, Proposition 4.9] that I,.(L(8%k + 1,2)) = 0. Essentially
the same computation shows I, (Kgi+1,2; As) = 0, which implies the result. d

9.2.3 Invariants for the right-handed trefoil

We describe the full structure of the our invariant for the right-handed trefoil, which with our
conventions is the (3, —1) two-bridge knot. Recall that we write Z = Z[U*!, T*!]. From
Subsection 9.2.1 and Remark 9.19, we have the following:

Cu(K3_1;0) =U%R - ¢!
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To compute ¢, we note that the solution (k1, k2) to (9.7), (9.8) fori = 1 and j = 0 is
(k1,k2) = (1,1). Thus ¢; = k1kg/p = 1/3. This also gives the usual grading of U/3¢! as
1 (mod 4). Note that there is no room for a v-map, because there is only 1 generator. The
map J3 is zero for grading reasons, while §; is determined by

(') = +UV3(T? —T72),

using the data of k1, ko discussed above. The generator Ui/ 3{ 1 will be identified with the
homotopy class of the path from ¢! to 6 determined by the unique instanton that contributes to
the computation of §;. The instanton grading of this generator is given by the Chern—Simons
invariant of this path, which is 1/3.

Next, the S-complex C,:=C, (K3.-1;A)is

Gy = (Ul/?z@ : 51) @ (U1/392 : Xgl) %0
where the generator U'/3y£! has grading 2 (mod 4), and the differential is simply

R 0 0 0
d= 0 0 0
+U3(T2-T72) 0 0
This determines the I-graded S-complex of the right-handed trefoil, and, as no perturbations
are necessary, also the isomorphism-type of its enriched S-complex.

We may also compute the equivariant homology groups. Let us first continue to work
over our universal coefficient ring Z = Z[T*!, U*!]. The exact triangle (1.5) splits:

0— I(K3_1,A%) 2, T(K3_1,A7) 25 [(K3_1,A4) — 0

More precisely, this is a short exact sequence of Z[z]-modules, and is computed from our
description of the S-complex for K3 _; given above and the definitions in Subsection 4:
Rz~ z]

— 1/3 el Z—*> -1 p_*) —
0—> UY% - ' @ %[z] 2> %!, 2] (R Erey e S UNCED)

Here p, is the obvious projection, i, embeds Z[z] into Z[x~!, x], and
Z-*(Ul/Sgl) _ (T2 _ T_2).T_1.

The Z[z]-module structures on the second and the third groups in the exact sequence (9.23)
are the obvious ones, while on the first group we have

x- UV =12 —T72 € R[], (9.24)

with the usual module structure on the %[ x]-factor. From this description it is clear that the
ideal J = im(i4) introduced in Subsection 4.3 is:

J=(T* -T2z + Z[z) c Z[z ", x].
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Our nested sequence of ideals of %, from (7.9), is given by
J=(T?-T7?), J =0 (=22, J'=2% (i<0).
We summarize some more consequences of these computations.

Proposition 9.25. For the right-handed trefoil we have hgp = 1. The same holds for h
for any integral domain base change . for which U and (T? — T~2) remain nonzero.
Furthermore, the function I‘f}s L, iZ—>RyouoforR= Z[T*"] satisfies the following:

0, k<0
IE, (k)=<1/3, k=
w0, k=2

We turn to the base change 9% = F[T*!]. Using Corollary 8.41 we may recover the
computation of I*(K3 _1; Agy) from [KM19d]. Here we note that

C(K3_1,A%) = (Ks_1,A%) = Tr - £ ® Te[z]

where similar to before the Z&[x]-module structure is the standard one on the summand
T [x], but just as in (9.24) acts on the generator &' as:

- =T? -T2 ¢ Fplz] (9.26)

Now Corollary 8.41 gives us an isomorphism of .%5x-modules

~

INKs_1;Apn) = I(K3 -1 A %) @ ua] BN 9.27)
We have a surjective homomorphism to the right hand side of (9.27):
IBN® SN — (T - & @g[a] IBN) ® IBN (9.28)

which sends (a,b) — (¢! ® a,b). Using relation (9.26) and that the module structure of
BN = F[Tlﬂ, TQﬂ, Tgﬂ] over Jx|x] sends z — P, we find that the kernel of (9.28)
consists of elements (Pa, (T2 — T~2)b). Thus I%(K3 _1; Apy) has the presentation

BN — BN © BN, 1— (P, T?>=T7?).
We have recovered part of [KM19d, Proposition 8.1], proven by an entirely different method:

Corollary 9.29. Let K be the right-handed trefoil. Then I°(K; Apy) is isomorphic as an
Spn-module to the ideal (P, T? — T~2) < Zpn.

Since the slice genus condition in (1.20) is satisfied by the right-handed trefoil, we
can define the ideal (K3 1) and use [KM19d, Proposition 8.1] to see that it is equal to
(z,T% —T72).
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9.3 The (3,5) torus knot

We now turn back to the coefficient ring Z, and study some knots which have non-trivial
h = hgz invariants. We begin with the torus knot K = T3 5, whose double branched cover ¥
is the Poincaré homology sphere (2, 3, 5). Recall that for an integer homology 3-sphere
such as 3, Floer’s chain complex (Cy(X), d) for the Z/8-graded instanton homology I, ()
is generated by the irreducible critical points in €(X), perhaps after a suitable holonomy
perturbation. For the Poincaré sphere, no perturbation is needed, and there are two non-
degenerate irreducibles {ayx, fn} < €(X), so we can write

Cu(S) = Zy D Zz) = L(2).

The Floer gradings are gr(ax) = 1 (mod 8) and gr(f8y) = 5 (mod 8). Our convention is
that gr(ay) is the expected dimension modulo 8 of M (ay, 0y,), the moduli space of finite
energy instantons on R x 3 with limits ay; and 0y, at —co and 400, respectively, where 0y,
is a trivial connection.

From our discussion in Subsection 9.1, and the fact that €(X)” = €(X) (see [Sav99,
Proposition 8]), there are four irreducibles in €(K'), which are non-degenrate: two lifts, «
and v, of ay, and two lifts, 5 and 3, of fx.. We may use the zero perturbation and the
index computations of [PS17, Theorem 7.2] to write

Cu(K) = 23y ® Z(y) = 1«(K) (9.30)

where each Zy) is generated by one of o and v«v, and each Z3) by one of 3 and ¢3. For
grading reasons, as already indicated in (9.30), we have d = 0.

For grading reasons, d, = 0. We now turn to d;. Recall that (2, 3, 5) is a quotient of
the 3-sphere by an action of the binary icosohedral group in SU(2) = S2 of order 120. In
particular, it has a metric of positive scalar curvature, covered by the round metric on the
3-sphere. Using an equivariant ADHM construction, Austin showed that for this metric, all
finite energy instanton moduli on R x X are unobstructed, smooth manifolds, and

M (as,05)0 = {[A]}

consists of one unparametrized instanton up to gauge, see [Aus95, Proposition 4.1]. The
metric may be chosen so that the covering involution 7 that yields the orbifold (53, K) is an
isometry; see [Dun88] for the classification of spherical orbifolds. Again, our discussion
from Subsection 9.1 implies that each of M (o, #)o and M (wa, 0) consist of a unique
instanton, [A] and ¢[A], respectively, which lift [A’]. Consequently, d; : Z%l) — Zis
nonzero, from which h(735) > 1 follows.

By Theorem 8.9, a chain complex computing I*(K) for the (3, 5) torus knot is

~

Cu(K) = (20 @2y ) © (20 @2y ) @200

N 0 0O
d= v 0 0
00 0 0
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On the other hand, it is known that [ h(K ) has rank 7. Indeed, for a general knot K,
Kronheimer and Mrowka’s spectral sequence from [KM 1 1a] provides the rank inequality

rank Kh™®(K) > rank I*(K),

where K h™d(K) is the reduced Khovanov homology of K. For the (3,5) torus knot, the left
hand side is equal to 7. Furthermore, rank/%(K) is bounded below by |A x|, the sum of the
absolute values of the alexander polynomial, see (9.35). For the (3, 5) torus knot |Agx| = 7,
so rank/%(K) = 7 as claimed. It is straightforward to see that §;v = 0, for otherwise the
homology of C. (k') would have rank less than 7. Thus /(T 35) < 1, and we obtain:

Proposition 9.31. For the (3,5) torus knot K we have h(K) = 1.

9.4 The (3,4) torus knot

The case of the (3, 4) torus knot K is similar to that of the (3, 5) torus knot. This is because
the double branched cover is again a finite quotient of 3, this time by the binary tetrahedral
group in SU(2) = S3 of order 24. Again €(X)” = €(X) and there are two classes as,
fs. € €(X) apart from 0y, but in this case one is abelian, say Sy.. Thus there are two
irreducibles «, tav € €(K) that pull back to ax;, and only one 5 € €(K) that pulls back to
Bx. Using [Aus95] and [PS17, Lemma 7.5] we compute

Cu(K) = 2y ® Zs) = 1(K), (9.32)

where each copy of Zy) is generated by one of « and tcv, while Z3) is generated by 3. We
sketch the computation for the reader.

We begin with the algorithm of Austin [Aus95]. We start with the graph G+ of
the extended Dynkin diagram EG for the binary tetrahedral group 7*. By the McKay
Correspondence, this graph encodes the unitary representation theory of the binary tetrahedral
group. We recall that 7% is the subgroup of SU(2), viewed as the unit quaternions, given by

{£1, +i, +7, tk, %(il +itj+k)}.
Let { R;} be the set of unitary representations of 7* up to isomorphism. We let R; be the
trivial representation of 7%, R, the tautological representation including 7* into SU (2),
and R3 = R% the two non-trivial U(1) representations; note that 7* has abelianization
Z/3. Then the vertices of G+ are { R;}, while R; and R; are connected by an edge if upon
writing R; ® Ry = ), n;; R; we have n;; = 1; in general, n;; € {0, 1}.

Next, let G7., be the graph obtained from G'p+ by identifying conjugate representations.
In our case, we only identify R3 and R;. Then form a new graph .7« by extracting the
vertices of G7., that are SU(2) representations, and connecting two vertices by an edge if
there is a path in G’ connecting the representations not passing through any other SU(2)
representations. Austin shows that for a vertex v in .7+ corresponding to «,, € €(X),

dim M (e, 0x) = 4I(v) —3 mod 8,
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Ry =R DR

!

GT* = Eﬁ T* yT*
R2 o = R2

e— O O 0 ® B =Rs® Ry
Ry Ry Rs Re¢ Ry

Figure 17

where I(v) is the length of a shortest path of edges from v to R} @ R; = 0y within
Sr«. From Figure 17 we compute in our case that dim M (ay,0x) = 1 (mod 8) and
dim M (By, fx) = 5 (mod 8).

Finally, from [PS17, Lemma 7.5] we have for any non-trivial v € €(K) the relation

dim M (~,60) = = (dim M(II(y),0x) + 1) mod 4

1
2
from which we conclude that gr(«) = gr(tcr) = 1 (mod 4) and gr(3) = 3 (mod 4). This
verifies the computation of (9.32). Furthermore, from [Aus95, Proposition 4.1] and the fact
that sy is adjacent to fy; in the graph %7+, the moduli space M (as, 05)o is a point. Just as
for the (3, 5) torus knot, we conclude that §; # 0 on C;(K). Now

Ci(K) = (Z%l) ® Z(3)) ® (Z?o) ® Z(2)) ®Z)

has rank 7, while 7%(K) has rank 5, because rank Kh™4(K) = 5 = |Ag|. We again
conclude that h(K') = 1, just as for the (3, 5) torus knot.

Remark 9.33. An alternative approach to computing the gradings replaces Austin’s algorithm
with Fintushel and Stern’s method [FS90]. However, the most important input above is in
showing that ; # 0, which follows from Austin’s equivariant ADHM construction. ¢

9.5 The irreducible homology of torus knots

Fintushel and Stern [FS90] computed 7. (X(p, ¢, 7)), Floer’s Z/8-graded instanton homology
for the Brieskorn integer homology sphere ¥ = X(p, ¢, r). Here p, ¢, r are relatively prime
positive integers. The unperturbed critical set €(3) is non-degenerate, and each generator
has odd grading, so that d = 0 and C,(X) = I.(X).

Let p, g be odd. Then X(p, g, 2) is the double branched cover of the torus knot K = T}, ,.
Just as in Subsections 9.3 and 9.4, €(X)" = €(X) by [Sav99, Proposition 8]. Furthermore,
according to [CSO1, Lemma 4.1], the gradings of the generators in Cy(X) are congruent
mod 2 to the gradings of the corresponding generators in C, (K). Thus here also d = 0 and
C«(K) = I,(K). By Theorem 2.36 we obtain

I(Ty,q) = Z7°Tra)/2 (9.34)
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supported in odd gradings (mod 4). The conjecture in [PS17, Section 7.4] is equivalent to
the rank of I, (7, ) being evenly distributed between gradings 1 and 3 (mod 4).

The isomorphism (9.34) also holds when one of p or ¢ is even. In fact, in this case and
when p and ¢ are odd, one can directly count that the number of irreducible traceless SU(2)
representations in 2" (T}, 4) is equal to —o (T}, 4)/2, using [K1a91, Theorem 1] and formula
(9.38) below. These representations correspond to nondegenerate critical points, and thus
C4(Tp,q) has rank —o (T}, 4)/2, providing an upper bound on the rank of I, (7}, ;). Theorem
3.6 provides the same lower bound, implying the isomorphism (9.34).

9.6 More vanishing results for /(K)

We describe some simple conditions under which h(K) = 0 for a knot K = S3. Write
Ak = > a;t’ for the symmetrized Alexander polynomial with A (1) = 1, and define

A =) ay

J

to be the sum of the absolute values of its coefficients. The instanton homology I%(K)
is isomorphic over C to the sutured instanton knot homology of K [KM1 1a, Proposition
1.4], the latter of which has an additional Z-grading whose graded euler characteristic is the
Alexander polynomial [KM10a, Lim10]. This implies

rank I*(K) > |Ag]|. (9.35)

On the other hand, by Theorem 8.9, I” (K) is isomorphic to the homology of the S-complex
Ci(K) = Co(K) ® Cs_1(K) @ Z. In particular, if the irreducible complex C,, (K) may
be chosen to have % (|Ag| — 1) generators, then the differential of Cy(K) is necessarily
zero by (9.35), and in particular, §; = do = 0, implying h(K) = 0. More precisely, given a
perturbation for which € (K) = €™ U {6} is non-degenerate, if | (K)| = 3(|Ak| + 1),
then A(K') = 0. For the examples we will consider, the perturbation 7 will always be zero,
so that the implication may be written in terms of the traceless character variety 2 (K).

That is, if 27(K) is a finite set of nondegenerate points then:
1
|2 (K)] =§(|AK|+1) = h(K)=0. (9.36)

Applying this to the case of torus knots, we obtain the following:

Proposition 9.37. For K a (p, q) torus knot, if 1 + |o(K)| = |Ag
condition is satisfied by the following two families:

, then h(K') = 0. This

(p, 2pk + 2),
(p, 2pk + (2 - p)),
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Proof. Fora (p, q) torus knot we saw in the previous subsection that 2" (K) is nondegenerate
and has cardinality equal to |o(K)|/2 + 1. So the first part of the claim follows from (9.36).
The signature of torus knots is given by the following expression [Lit79, Kau87]

o(Tpq) = (p—1)(g—1) —4-B(p,q) (9.38)

where, assuming that p is odd, we have

A straightforward computation shows that:

-1 3kp+k—14£3 — p+
B(p, q) p2 pf) q =2k 2
s -1 3p+1 - =
p2 (2k2+1)( p2 ) -%_4— 2) +[§J g=02k+1)p+t2

Thus we can use (9.38) to write

~(p-1)(kp+k+1) q¢=2kp+2
dﬂw*:{_@—1(@k+nctwi2)iﬂﬁ g=(2k+1)p£2

The Alexander polynomial of a torus knot is given by the following formula:

A — (tP1 —1)(t —1)
Tra = (gp —1)(t9 — 1)
In the case that ¢ = Ip + 2 with [ > 1, this formula simplifies as follows:
. o p=1
Lo =) (S SR e e nE ) gt

By = p—1 li—1 4pj—2i B 21
L+ (= 1) 2 2 7 =22 > q=Ip—2

These identities imply that:

p—1
’ATp,zpiz| = <2> ((p + l)l + 2) +1
Form the above identities it is easy to check that the identity 1 + |o(K)| = |Ax| holds for
the mentioned families of torus knots. U

The same method may be applied, for example, to find Montesinos knots K with A(K) =
0. In this case, the double branched cover X of K is again a Brieskorn homology sphere
Y (p, q,r), and by [FS90], the unperturbed critical set €(X) = 2 (%) is non-degenerate and
of cardinality 2|\(X)| + 1, where A is the Casson invariant. For example, the (—2,3,7)
pretzel knot satisfies (9.36), and consequently has h = 0.
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A Modified holonomy maps

In this appendix we construct the modified holonomy maps that are used to define the v-map,
and related maps, first used in Subsection 3.3.2 of the main text. The construction is inspired
by one that is described in [Don02, §7.3.2].

Fix a pair (Y, K) of an integer homology sphere and a knot. Let 7 be a perturbation of the
Chern-Simons functional for the pair (Y, K'), and for any a € €'Y, K) fix a neighborhood
U, of avin A(Y, K) together with a subset W, < € (Y, K) that maps diffeomorphically to
U, via the projection. For instance, we may use a Coulomb chart around « to pick W,,. We
call elements of W, lifts of the elements of {/,. Then for each pair of irreducible critical
points a; € €(Y, K), we obtain the holonomy map

hajas : BY, K;01,a3) — St

that is invariant with respect to translations, as outlined in Section 3. Recall that the
holonomy is of the adjoint connection along R x {p} where p € K is a basepoint. The
preferred reduction of the bundle along the singular locus guarantees that this holonomy
lies in S1 =~ SO(2) = SO(3). Below we implicitly assume that all holonomies are of the
adjoint connection, without further mention. We wish to modify the map h, o, so that
the restrictions of this map to the moduli spaces of instantons have the properties listed in
Subsection 3.3.2. Our key tool in the construction of modified holonomy maps are almost
homomorphisms of S*.

Definition A.1. An almost homomorphism of S* is the data of sequence of continuous maps
hy - [0,00)% x (S1)¥+1 — S for any k > 0 satisfying the following properties.

(i) For1 <i < k,ifs; = 1, then

hi (815, Sim158i5 Sit1y -+ - Sky 905 915 - - - » Gk

= hk—i(si-i-h ey SkyGiy - 7gk) : hi—1(817 ey Si—1,905 - - - 797;—1)‘
(ii) For1 <i < k,if s; < 3, then

hk(sl, o3 8i—1,5iySi+1y--+ySk, 90,915 - - - 7.gk:+l)

= hk—l(sla'-->5i71a5i+17---75k>90a917'--agi72>gi9i7179i+1,---»gk:-i-l)- ¢

Remark A.2. An almost homomorphism of S' is essentially a version of a homotopy diagram
(as defined in [Vog73]) for the category S, where S is viewed as a groupoid. ©

Example A.3. For any k > 0, define Ay, : [0, 0)F x (ST — ST as

hi (51,82, Sk 90,915 -+ 9k) = Gk * Gk—1 " - Go- (A4)

Clearly this sequence of maps defines an almost homomorphism of S', which we call the
canonical almost homomorphism. ¢
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Definition A.5. A homotopy of almost homomorphisms is a family of continuous maps
hi, - [0,1] x [0,00)% x (§1)k+! 5 g1

such that for any ¢ € [0,1], the sequence of maps {h} }x=0 defined by hi(-) = Ry (t, )
is an almost homomorphism. We say that {hy}r>0 is a homotopy between the almost
homomorphisms {h?}>¢ and {hi }x=0. ©

Lemma A.6. Let hg : S' — S! be a continuous map and ho - [0,1] x S — S' be a
homotopy from the identity map to ho. Then ho can be extended to a homotopy of almost
homomorphisms {hy} k=0 such that {h2} >0 is the canonical almost homomorphism.

Proof. We may construct Ay, : [0, 1] x [0, 00)F x (§1)5*1 — S by induction on k. Suppose
hy, is constructed for k < i — 1 such that the maps h'ff satisfy (i) and (ii) of Definition A.1, and
hg is given by (A.4). We wish to extend this construction to h; while the above properties are
still satisfied. The properties in Definition A.1 and the condition on h? uniquely determine
izi(t, $1,82y 48k 90,91, --,9k) When t = 0 or one of s; belongs to [0,1/2] U [1,00).
These points in the domain of &; form a retract of [0, 1] x [0, 00)* x (S*)**1, and hence we
may extend h; to the rest of its domain. O

The inductive argument in the proof of Lemma A.6 can be used in the construction of
almost homomorphisms that satisfy additional properties. The following lemma gives an
instance of such properties.

Lemma A.7. For any k > 0, let S, be a subset of [0,0)* x (SN such that Uj=0Sy, is
finite. Then there is an almost homomorphism {hy} >0 which is homotopic to the canonical
almost homomorphism and such that hy evaluates to 1 at the elements of Sy.

Now for each pair a1, ap € €7(Y, K), we define a modified holonomy map
Hyyoo : BY,K; 01, 00) —> St

that depends on the choice of an almost homomorphism {/ } x>0 which is homotopic to the
canonical almost homomorphism, and the choices of U, and W, for each o € €I (Y, K).
For [A] € (Y, K; a1, a2), let [A:] € B(Y, K) denote the restriction of [A] to {t} x Y.
Let V%, be an open subspace of R such that t € V[, if and only if [A;] belongs to U, for
some choice of o. We also need an open subspace V] 4) of 1/'[?4] consisting of the points ¢
such that ¢ is in an interval I of length at least 1/3 and I < 1/[?4].

The definition of V[ 4] implies that it is a union of finitely many open intervals. Thus
there is a sequence of real numbers

b0<a1<b1<~-<ak<bk<ak+1

such that
Vi) = (=0,b0) L (a1,b1) U -+ U (ag, by) U (ag+1,0).
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For 1 <4 < k, define

a; + b;
5

Since ¢; € V] 4], there is a preferred lift of [A,] to W, < €'(Y, K) for some . In particular,
we may obtain a well-defined g; € S* by taking the holonomy of [A] along {y} x [ci, cit1]
for any 1 < ¢ < k — 1. Here y is the basepoint on the knot K as before. Similarly we may
take the holonomy of [A] along {y} x (—00,c1] and {y} x [ck, 00) to respectively obtain g
and gi. Clearly hq,a,([A]) is equal to the product g - gx—1 - - - go. We define

S; 1= bi — Ay, C; =

Halag([A]) = hk(317 82,...,58k,90,91, - - 7gk‘)

Proposition A.8. The map Hy, o, : B(Y,K;a1,a0) — S is continuous and invariant
with respect to translation action on B(Y, K; a1, as). We may also assume that any given
finite subset S of B(Y, K; a1, ) is mapped into 1 € S*.

Proof. Property (ii) in Definition A.1 implies that if we remove the intervals in V[ 4} with
length at most 1/2 to obtain V[’A], and then follow a similar definition as that of Hy, q, ([A])
with V[’A] we obtain the same value of Hy,q,([A]). For [A'] € B(Y, K; a1, as) that is
close to A, the subspace V[’A,] of R is close to the subspace of V[4) given by intervals of

length at least 1/2. From this and continuity of almost homomorphisms, it is easy to see that
H,, o, is continuous. It is clear from the definition that H,, 4, is invariant with respect to
the translation action. The last part of the proposition is a consequence of Lemma A.7. [J

Singular connections on the cylinder associated to (Y, K') can be glued to each other to
form new singular connections. For instance for any a1, a3 € €-(Y, K) and ay € ¢I'(Y, K)
we have the following gluing map:

Gl: B(Y,K;a1,a2) X Rog x B(Y, K; 2, a3) > B(Y, K; s, a3)

To be more specific, let f : R — [0, 1] be a smooth function such that f(¢) = 0 fort < —1
and f(t) = 1 fort > 1. Suppose [A] € B(Y, K;a1,a2) and [A'] € B(Y, K; aa, ai3). We
may assume that the representative connection A for [A] is chosen such that it is in temporal
gauge and is asymptotic to the fixed lift in W, of as as ¢ — co. This assumption fixes A
uniquely. Similarly, let A’ be in temporal gauge and asymptotic to the lift of o as t — —o0.
Now GI([A], T, [A’]) is the element of A(Y, K; a1, a3) represented by the connection

i) i+ (1-1 (1) ) e

where 75 : RxY — R xY is the translation 74(¢,y) = (t+s, y). The following proposition
describes the behavior of modified holonomy maps with respect to the gluing map GI.

Proposition A.9. For any [A] € B(Y, K;a1,a2) and [A] € B(Y, K; ag, ), we have

i Hooy (G([AL T, [A]) = Hosoy ([A]) - ooz ([A]).
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Proof. For fixed [A],[A’], as T — oo, there is a corresponding index ¢ with parameter
s; — 00, and the result follows immediately from property (i) in Definition A.1. O

The restriction of the maps H,, o, to the moduli spaces M (a1, a2)g can be used to
construct the maps required for the definition of the map v in Subsection 3.3.2. By taking
S in Proposition A.8 to be the union of 0-dimensional moduli spaces, we may assume that
property (H1) in Subsection 3.3.2 is satisfied. Properties (H2) and (H3) hold by similar
arguments as in Proposition A.9. The only missing point is that our maps at this point are
only continuous. (In fact, continuity of these maps would be enough to define the map
v and prove Proposition 3.16.) By induction on d and for d < 2, we may approximate
the constructed maps M (a1,00)g — S ! such that properties (H1)—(H3) still hold and the
restriction of H,,, o, to each stratum of M (a1, ag) g is smooth.

Next, we turn to the definition of modified holonomy maps for a cobordism of pairs
(W, S): (Y,K) — (Y, K') that are compatible with the chosen modified holonomy maps
for (Y, K) and (Y, K') in an appropriate sense. To achieve this, first we introduce the
corresponding notion for almost homomorphisms.

Definition A.10. Suppose {h}r>0 and {h] }r>¢ are almost homomorphisms of S'. A
continuation from {hy}r>0 to {h} } >0 is the data of a sequence of continuous maps

hk,l . [O,OO)kJrl « (Sl)k+l+1 N Sl
for any k, [ > 0 satisfying the following properties.
(i) For1 <7 < k,if s; = 1, then
h ) o ’ ’ ’ no_
k,l(sla---731—1731731+17"'73k7317'"7817917-"7gk7ga917"'7gl) -

/ / / /
hk—i,l(siJrla'"78ka817'"7Slagi+17"'>gk7g7glv"'7gl)'hifl(slw"782'717.917"'791')7
and for 1 < i <1,if s, > 1, then

/ / / / / / /
hk,l(Sb-"askvslv'"asi—178i7si+17"'7817917"'agkvgagla"'vgl) =
/ / / / / / / / /
hl—i(si+la-"7slagia--~7gl) 'hk,i—1(817"'78k7817'"781’—17917'"’gk’agaglv"'vgi—l)'
(ii) For 1 <i < k,if s; < 3, then
/ / / !
hk,l(517"'asiflvsi,SiJrla"'7Sk7515"'75l7917"°7gkag)gla"'7gl) =
/ / / /
hk—l,l(51)°"asi—175i+17"')8/€581)'"aslvgl)~"agi—lagigi+lu"'7gk7g7gla”'7gl)'

In the above identity, if ¢ = k, then g;¢;+1 should be replaced with g;g. Similarly, for
1 <i<1ifs} <3, then

/ / / / / / /
hk,l(slw"askvsla' <8158y Si410 - 5S91y - - -5 9k, 85915 - - - 7gl) =

/ / / / / / / / /
hk,l—1(51>- <3 Sky Sty 3815854105891y, 9k, 85915 - - -5 9i-19i, Git15 - - - 791)7

and if i = 1, then g/_, ¢, should be replaced with gg;. ©
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Example A.11. Given any almost homomorphism {hy } x>0, there is a trivial continuation
from {hy}r>0 to itself given by hy, ; = hy; forany k,1 > 0. o

Lemma A.12. Let {hy}i=0 and {h} }i=0 be homotopic almost homomorphisms of S*. Then
there is a continuation {hy, i }1 >0 from {hj}i=0 to {h} }k>0. Moreover, we can assume that
the continuation maps evaluate to 1 at any finite subset Uy, 1>0S, contained in the union of
the domains of {hy, i }1 >0

Proof. We wish to construct the maps hy,; by induction on k + [. In each step of induction,
the properties in Definition A.10 determine hy; on a subset of the domain. However, there
might be an obstruction to extending the map to the whole domain. To resolve this issue, we
use a similar trick as in Lemma A.6 by constructing a stronger object. Suppose the family
of almost homomorphisms {fz’,;} k=0 gives a homotopy from {hy} x>0 to {h} }r>0. Then we
inductively construct a map

ﬁk,l :[0,1] x [0, 00)F+ x (§1)F+HT g1

such that for any ¢ € [0, 1], the sequence of maps {hj ;}s>o defined by hj ,(-) = hy(t,-) is
a continuation from {hy}r>o to {ﬁ};}kzo and the continuation {hg}l};@o from {hy}r>0 to
{h}k>0 is provided by Example A.11. In particular, {h,lg 1 }k=0 gives a continuation from
{hi}r=0 to {h}}k=0. Now there is no obstruction in carrying out the induction step. A
straightforward examination of the construction shows that the property in the second part of
this lemma can be guaranteed in this inductive argument. O

A similar inductive argument can be used to prove the following lemma.

Lemma A.13. There is a homotopy between any two choices of continuations {hg}l} k=0
and {h,lC 1} i=0 provided by Lemma A.12. To be more precise, there is a continuous map

ﬂk,z :[0,1] x [O’Oo)k-s-l % (Sl)k+l+1 S

for any k,l = 0 such that {hz,l}{k,bO}’ given by hi;J = 1~1k7l(t, -), is a continuation that is
equal to the given continuations for t = 0 and 1. Moreover, for any finite subset S of the
union over k and l of the spaces (0,1) x [0, o)k x (SHEHFL we may assume that the
maps hy, ; evaluate to 1 at the points of S.

Now we are ready to define modified holonomy maps for a cobordism of pairs (I, S) :
(Y,K) — (Y',K’) and a path ~ connecting the basepoints y and y’ of K and K'. For
the pair (Y, K), fix an almost homomorphism {%y} ;> homotopic to the canonical almost
homomorphism, neighborhood U, and a lift W, of U,, for each a € €I"(Y, K). Fix similar
choices for the pair (Y’, K’). Using Lemma A.12, we may find a continuation {hy ;}x ;>0
from {hj}r>0 to {h} }r=0. For [A] € B(W,S;a,d') and t € (—0,0), let [A;] € B(Y, K)
denote the restriction of [A] to {¢} x Y on the cylindrical end associated to (Y, K).

Let V4] © (—0,0) consist of ¢ such that there is an interval I of size at least 1/3
containing t( such that for any ¢ € I, [ A;] belongs to one of U,,. Similarly, we define a subset
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V[’A] c (0, 00) using the restriction of [A] to {¢} x Y’ on the cylindrical end associated to

(Y', K'). There are real numbers
bp<ap <by < <ap<b,<0<a] <b) < <aq<b <ay,
such that the sets V] 4) and V[’A] have the following form:
V[A] = (—OO7 bo)u(al, bl)u- : -u(ak, bk), V[/A] = (a’l, bi)u . ~u(a2, b;)u(aiJrl, OO)
For1 <¢ < kand 1 < j <, define the following real numbers:

/ !
— b _ @it AN VR _ a4+
S; 1= 0 — Ay, C; = 5 s Sj = j—aj, o= T

For2<i<kandl <j<!l—1,letg € S'and g} e S! be respectively the holonomy of
[A] along {y} x [ci—1,¢;] and {y'} x [¢], ¢}, 1]. We also let g1 be the holonomy of [A] along
{y} x (=0, c1], g] be the holonomy of [A] along {y'} x [}, ), and g be the holonomy of
[A] along v from {y} x {cx} to {y/} x {c}}. We define

H ([A]) = hy(s1,. .. S Sk Sy s S Gl s Gl € Ths o5 T))-

Similar to the case of cylinders, Hg w B (W, S;a,0) —> S 'is continuous, and we
assume it maps a given finite subset S of (W, S; o, ') into 1 € S1. There are gluing maps

Gl : B(Y, K; a1, ) x Rag x B(W, S;a0,d') — BW, S;a1,d),

Glout : BW, S; a,a)) x Rag x B(Y', K50/, ab) — B(W, S;a, )

such that the following relations hold:

lim H),,(Gla([A], T, [A]) = HY, , ([A']) - Hayeo ([A]),

T—00
Tim H7, (Gl ([A], T, [A) = Hoor ([4) - 2, ([A])

We use the restriction of the map H;’a, to the moduli spaces M (W, S; o, o)1, after
a smooth approximation, to define the map p in Subsection 3.3.3. Verifying Proposition
3.20 uses compatibility of Hga, with respect to the gluing maps spelled out in the last
paragraph. Lemma A.13 allows us to show that the map p (and the remaining components
of the cobordism map associated to (W, S)) are invariant of the auxiliary choices (including
the choice of the continuation) up to chain homotopy.
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