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Abstract

We associate several invariants to a knot in an integer homology 3-sphere using SUp2q singular
instanton gauge theory. There is a space of framed singular connections for such a knot, equipped with
a circle action and an equivariant Chern–Simons functional, and our constructions are morally derived
from the associated equivariant Morse chain complexes. In particular, we construct a triad of groups
analogous to the knot Floer homology package in Heegaard Floer homology, several Frøyshov-type
invariants which are concordance invariants, and more. The behavior of our constructions under
connected sums are determined. We recover most of Kronheimer and Mrowka’s singular instanton
homology constructions from our invariants. Finally, the ADHM description of the moduli space
of instantons on the 4-sphere can be used to give a concrete characterization of the moduli spaces
involved in the invariants of spherical knots, and we demonstrate this point in several examples.

*The work of AD was supported by NSF Grant DMS-1812033.
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1 Introduction

Instanton Floer homology [Flo88] and Heegaard Floer homology [OS04b] provide two
powerful invariants of 3-manifolds, each of which have knot-theoretic variations: singular
instanton Floer homology [KM11b] and knot Floer homology [OS04a, Ras03]. These knot
invariants share many formal properties: they are both functorial with respect to surface
cobordisms, they each have skein exact triangles, and it is even conjectured that some
versions of the theories agree with one another [KM10b, Conjecture 7.25]. Despite their
similarities, each of the two theories have some advantage over the other.

On the one hand, singular instanton Floer homology is more directly related to the
fundamental group of the knot complement. For example, this Floer homology can be used
to show that the knot group of any non-trivial knot admits a non-abelian representation into
the Lie group SUp2q [KM04, KM10b]. On the other hand, knot Floer homology currently
has a richer algebraic structure which can be used to obtain invariants of closed 3-manifolds
obtained by surgery on a knot [OS08, OS11]. Moreover, knot Floer homology is more
computable, and in fact has combinatorial descriptions [MOS09, OS19].

A natural question is whether there is a refinement of singular instanton Floer homology
that helps bridge the gap between the two theories. An important step in this direction was
recently taken by Kronheimer and Mrowka [KM19c]. The main goal of the present paper
is to propose a different approach to this question. Like [KM11b, KM11a], we construct
invariants of knots in integer homology spheres using singular instantons. However, in
contrast to those constructions, we do not avoid reducibles, and instead exploit them to
derive equivariant homological invariants. As we explain below, the relevant symmetry
group in this setting is S1.

The knot invariants in this paper recover various versions of singular instanton Floer
homology in the literature, including all of the ones constructed in [KM11a, KM13, KM19c].
Moreover, some of the structures of our invariants do not seem to have any obvious analogues
in the context of Heegaard Floer invariants. For instance, a filtration by the Chern-Simons
functional and a Floer homology group categorifying the knot signature can be derived from
the main construction of the present work.

Motivation

The basic idea behind the main construction of the present paper is to construct a config-
uration space of singular connections with an S1-action. Let K be a knot in an integer
homology sphere Y and fix a basepoint on K. Consider the space of connections on the
trivial SUp2q-bundle E over Y which are singular along K and such that the holonomy
along any meridian of K is asymptotic to a conjugate of

„

i 0
0 ´i

ȷ

P SUp2q (1.1)

as the size of meridian goes to zero. (See Section 2 for a more precise review of the definition
of such singular connections.) A framed singular connection is a singular connection with a
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trivialization of E at the basepoint of K such that the holonomy of the connection along a
meridian of K at the basepoint is asymptotic to (1.1) (rather than just conjugate to it). The
space of automorphisms of E acts freely on the space of framed singular connections and
we denote the quotient by rBpY,Kq. There is an S1-action on rBpY,Kq given by changing
the framing at the basepoint.

An important feature of this S1-action is that the stabilizers of elements in rBpY,Kq are
not all the same. The element ´1 P S1 acts trivially on rBpY,Kq. Thus the action factors
through S1 – S1{t˘1u which acts freely on a singular framed connection in rBpY,Kq unless
the underlying singular connection is S1-reducible, namely, it respects a decomposition of
E into a sum of two (necessarily dual) complex line bundles. Although framed connections
do not appear in the sequel, our constructions are motivated by the above S1-action and the
interactions between framed singular connections with different stabilizers. An important
source of inspiration for the authors was a similar story for non-singular connections which
is developed in [Don02, Frø02, Mil19].

S-complexes associated to knots

The fundamental object that we associate to a knot K Ă Y in an integer homology 3-sphere
is a chain complex p rC˚pY,Kq, rdq which is a module over the graded ring Zrχs{pχ2q, where
χ has degree 1. The ring Zrχs{pχ2q should be thought of as the homology ring of S1 where
the ring structure is induced by the multiplication map. In particular, one expects a similar
structure arising from the singular chain complex of a topological space with an S1-action.
In our setup, singular homology is replaced with Floer homology. In fact, the chain complex
rC˚pY,Kq we associate to a knot K decomposes as:

rC˚pY,Kq “ C˚pY,Kq ‘ C˚pY,Kqr1s ‘ Z. (1.2)

Here C˚pY,Kq is Z{4-graded, C˚pY,Kqr1s is the same complex as C˚pY,Kq with the
grading shifted up by 1, and Z is in grading 0. The action of χ on rC˚pY,Kq maps the
first factor by the identity to the second factor, and maps the remaining two factors to zero.
We call a chain complex over the graded ring Zrχs{pχ2q of the form (1.2) an S-complex.
Although the complex rC˚pY,Kq depends on some auxiliary choices (e.g. a Riemannian
metric), the chain homotopy type of rC˚pY,Kq in the category of S-complexes is an invariant
of pY,Kq. (See Section 3 for more details.) In particular, the homology

rI˚pY,Kq :“ Hp rC˚pY,Kq, rdq

is an invariant of the pair pY,Kq. We will see below that this homology group is naturally
isomorphic to Kronheimer and Mrowka’s I6pY,Kq from [KM11a].

By applying various algebraic constructions to the S-complex rC˚pY,Kq we can recover
various knot invariants and also construct new ones. One of the invariants we recover is
a counterpart of Floer’s instanton homology for integer homology spheres, and may be
compared to a version of Collin and Steer’s orbifold instanton homology from [CS99].
The differential rd gives rise to a differential d on C˚pY,Kq, and we write I˚pY,Kq for
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the homology of the complex pC˚pY,Kq, dq. The Euler characteristic of I˚pY,Kq was
essentially computed by Herald [Her97], generalizing the work of Lin [Lin92]. In summary,
we have the following:

Theorem 1.3. Let K Ă Y be a knot embedded in an integer homology 3-sphere Y . The
Z{4-graded abelian group I˚pY,Kq is an invariant of the equivalence class of the knot
pY,Kq. Its Euler characteristic satisfies

χ pI˚pY,Kqq “ 4λpY q `
1

2
σpKq

where λpY q is the Casson invariant of Y and σpKq is the signature of the knot K Ă Y .

Another chain complex that can be constructed from p rC˚pY,Kq, rdq is given by:

pC˚pY,Kq :“ rC˚pY,Kq bZ Zrxs pd :“ ´rd` x ¨ χ

The homology of this complex can be regarded, morally, as the S1-equivariant homology
of rBpY,Kq. This equivariant complex inherits a Z{4-grading from the tensor product
grading of rC˚pY,Kq and Zrxs, where the latter has xi in grading ´2i. The homology
of p pC˚pY,Kq, pdq gives a counterpart of HFK´ in the context of singular instanton Floer
homology.

Theorem 1.4. The homology of the complex p pC˚pY,Kq, pdq, denoted by pI˚pY,Kq, is a
topological invariant of the pair pY,Kq as a Z{4-graded Zrxs-module. Moreover, one can
construct Z{4-graded Zrxs-modules qI˚pY,Kq and I˚pY,Kq from p pC˚pY,Kq, pdq which are
invariants of the pair pY,Kq. These modules fit into two exact triangles:

qI˚pY,Kq pI˚pY,Kq

I˚pY,Kq (1.5)

pI˚pY,Kq pI˚pY,Kq

rI˚pY,Kq
(1.6)

The top arrow in (1.6) is induced by multiplication by x. Furthermore, I˚pY,Kq is isomor-
phic to Zrrx´1, xs as a Zrxs-module.

The invariants qI˚pY,Kq, I˚pY,Kq and rI˚pY,Kq are analogues of the Heegaard Floer knot
homology groups HFK`pY,Kq, HFK8pY,Kq and {HFKpY,Kq. The exact triangles in
(1.5) and (1.6) are also counterparts of similar exact triangles for the knot Floer homology
groups in Heegaard Floer theory.

Remark 1.7. Recently, Li introduced KHI´ in [Li19] as another approach to define the
instanton counterpart of HFK´ using sutured manifolds. We expect that KHI´ for a knot
K in an integer homology 3-sphere Y can be recovered from rC˚pY,Kq using an algebraic
construction similar to what appears in Subsection 8.3. ˛
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There are even further refinements of p rC˚pY,Kq, rdq which can be constructed following
ideas contained in [KM11b,Dae18]. The refinements come from equivariant local coefficient
systems on the framed configuration space rBpY,Kq that can be used to define twisted
versions of the complex p rC˚pY,Kq, rdq. The universal local coefficient system ∆ that we
consider is defined over the two-variable Laurent polynomial ring

R :“ ZrU˘1, T˘1s,

and it gives rise to an S-complex p rC˚pY,K; ∆q, rdq. Roughly, the variable T is related to
the holonomy of flat connections around the knot and the “monopole charge” of instantons,
while the variable U is related to the Chern–Simons functional on flat connections and
the topological energy, or action, of instantons. All of the invariants in this paper may be
derived from p rC˚pY,K; ∆q, rdq, assuming one keeps track of all of its relevant structures.
(See Section 7 for more details.)

If S is an R-algebra, we can change our local coefficient system by a base change and
define an S-complex p rC˚pY,K; ∆S q, rdq over the ring S , and its chain homotopy type as
an S-complex over S is again an invariant of the knot. We then obtain, for example, an
S -module IpY,K; ∆S q and an S rxs-module pIpY,K; ∆S q which are also knot invariants.
Evaluation of T and U at 1 defines an R-algebra structure on Z, and the associated S-
complex recovers the untwisted complex p rC˚pY,Kq, rdq. Another case of interest is the base
change given by T “ ZrT˘1s, which is an R-algebra by evaluation of U at 1, and this
gives the S-complex p rC˚pY,K; ∆T q, rdq.

A connected sum theorem

Given two pairs pY,Kq and pY 1,K 1q of knots in integer homology spheres, we may form
another such pair pY#Y 1,K#K 1q by taking the connected sum of 3-manifolds and knots.
It is natural to ask if the S-complex associated to pY#Y 1,K#K 1q can be related to those
of pY,Kq and pY 1,K 1q. The following theorem answers this question affirmatively, and
should be compared with the connected sum theorem for instanton Floer homology of
integer homology spheres [Fuk96]. In fact, our proof is inspired by the treatment of Fukaya’s
connected sum theorem in [Don02, Section 7.4].

Theorem 1.8. There is a chain homotopy equivalence of Z{4-graded S-complexes

rCpY#Y 1,K#K 1q » rCpY,Kq bZ
rCpY 1,K 1q.

More generally, in the setting of local coefficients, we have a chain homotopy equivalence of
Z{4-graded S-complexes over R “ ZrU˘1, T˘1s:

rCpY#Y 1,K#K 1; ∆q » rCpY,K; ∆q bR
rCpY 1,K 1; ∆q.

We remark that the tensor product of two S-complexes is naturally an S-complex and
refer the reader to Section 4 for more details. The above theorem allows us to recover
the invariants of IpY#Y 1,K#K 1; ∆S q and pIpY#Y 1,K#K 1; ∆S q from rCpY,K; ∆q and
rCpY 1,K 1; ∆q. In particular, if the ring S rxs is a PID, then there is Künneth formula relating
pIpY#Y 1,K#K 1; ∆S q to pIpY,K; ∆S q and pIpY 1,K 1; ∆S q.
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Recovering invariants of Kronheimer and Mrowka

Kronheimer and Mrowka have defined several versions of singular instanton Floer homology
groups. There are the reduced invariants I6pY,Kq, first defined as abelian groups in [KM11a],
and later defined using local coefficients as modules over the ring FrT˘1

1 , T˘1
2 , T˘1

3 s

where F is the field of two elements [KM19c]. There are also the unreduced invariants
I#pY,Kq, first defined as abelian groups in [KM11a], then defined using local coeffi-
cients as modules over the ring QrT˘1s in [KM13], and finally as modules over the ring
FrT˘1

0 , T˘1
1 , T˘1

2 , T˘1
3 s in [KM19c].

The definition of each of these invariants follows a similar pattern. To avoid working
with reducible singular connections, one firstly picks pY0,K0q such that there is no reducible
singular connection associated to this pair. This assumption requires working in a set up
that allows K0 to be a link or more generally a web [KM19a], equipped with a bundle of
structure group SOp3q, instead of SUp2q. Then the invariant of the pair pY,Kq is defined
by applying Floer theoretical methods to the configuration space of singular connections on
the pair pY#Y0,K#K0q. A variation of our connected sum theorem allows us to prove the
following theorem. (For more details, see Section 8.)

Theorem 1.9. All the different versions of the invariants I6pY,Kq and I#pY,Kq can be
recovered from the homotopy type of the chain complex p pC˚pY,K; ∆q, pdq over Rrxs. For
instance, I6pY,Kq, defined as in [KM11a], is isomorphic to Hp rCpY,Kq, rdq:

I6pY,Kq – rIpY,Kq.

Furthermore, I6pY,Kq, with local coefficients defined as in [KM19c], is isomorphic to

pIpY,K; ∆T q bT rxs FrT˘1
1 , T˘1

2 , T˘1
3 s (1.10)

where the T rxs-module structure on FrT˘1
1 , T˘1

2 , T˘1
3 s is given by mapping T P T “

ZrT˘1s to T1 and x to the element

P :“ T1T2T3 ` T´1
1 T´1

2 T3 ` T´1
1 T2T

´1
3 ` T1T

´1
2 T´1

3 .

Similarly, I#pY,Kq, with local coefficients defined as in [KM19c], is isomorphic to

pIpY,K; ∆T q bT rxs FrT˘1
0 , T˘1

1 , T˘1
2 , T˘1

3 s‘2 (1.11)

where the T rxs-module structure on FrT˘1
0 , T˘1

1 , T˘1
2 , T˘1

3 s sends T ÞÑ T0, x ÞÑ P .

The isomorphisms between the local coefficients versions of I6pY,Kq and I#pY,Kq

and the modules (1.10) and (1.11) are given more precisely in Corollaries 8.41 and 8.37.
Although it is not clear from its definition, Theorem 1.9 suggests that the most recent

version of I6pY,Kq from [KM19c] can be regarded as an S1-equivariant theory, and similar
results hold for the other versions of singular instanton Floer homology in an appropriate
sense. The knot homology I6pY,Kq is defined in [KM19c] only for characteristic 2 rings
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because of a feature of instanton Floer homology for webs. On the other hand, the above
theorem suggests that this restriction is not essential. The above theorem also asserts that
I6pY,Kq is given by applying a base change to a module defined over the subring FrT˘1

1 , P s

of FrT˘1
1 , T˘1

2 , T˘1
3 s. Thus I6pY,Kq is essentially a module over this smaller ring, and the

FrT˘1
1 , T˘1

2 , T˘1
3 s-module structure is obtained by applying a formal algebraic construction.

Furthermore, while I6pY,Kq as defined in [KM19c] only has a Z{2-grading, our invariant
(1.10) comes equipped with a Z{4-grading.

Spherical knots and ADHM construction

For a spherical knot K, the moduli spaces of singular instantons involved in the defini-
tion of the chain complex p rC˚pY,K; ∆q, rdq can be characterized in terms of the moduli
spaces of (non-singular) instantons on S4. In particular, it is reasonable to expect that the
ADHM description of instantons on S4 can be used to directly compute the S-complex
p rC˚pY,K; ∆q, rdq. To manifest this idea, let Kp,q be the pp, qq two-bridge knot whose
branched double cover is the lens space Lpp, qq. Using the results of [Aus95, Fur90] we
can compute part of the S-complex p rC˚pKp,q; ∆q, rdq. In particular, a specialization of
our instanton homology for Kp,q recovers a version of instanton homology for the lens
space Lpp, qq defined by Sasahira in [Sas13] (see also [Fur90]), which takes the form of a
Z{4-graded F-vector space I˚pLpp, qqq. For the following, let F4 :“ Frxs{px2 ` x` 1q be
the field with four elements. (See Subsection 9.2.2 for more details.)

Theorem 1.12. There is an isomorphism of Z{4-graded vector spaces over F4

I˚pKp,q; ∆F4q – I˚pLpp,´qqq b F4

where the local system ∆F4 is obtained from ∆T b F via the base change sending T to x.

Concordance invariants

We say a knot K in an integer homology sphere Y is homology concordant to a knot K 1 in
another integer homology sphere Y 1 if there is an integer homology cobordism W from Y
to Y 1 and a properly and smoothly embedded cylinder S in W such that BS “ ´K Y K 1.
In particular, a classical concordance for knots in S3 produces a homology concordance.
The collection of knots modulo this relation defines an abelian group CZ, where addition is
given by taking the connected sum of the knots within the connected sum of the ambient
homology spheres. The S-complex rCpY,K; ∆q can be used to define various algebraic
objects invariant under homology concordance.

The simplest version of our concordance invariants is an integer-valued homomor-
phism from the homology concordance group, and its definition is inspired by Frøyshov’s
homomorphism h from the homology cobordism group to the integers [Frø02], a prede-
cessor to the Heegaard Floer d-invariant of Ozsváth and Szabó [OS03] and Frøyshov’s
monopole h-invariant [Frø10]. In fact, we obtain a homology concordance homomorphism
for each p rC˚pY,K; ∆S q, rdq that depends on the choice of an R-algebra S and is denoted
by hS pY,Kq P Z. Its basic properties are summarized as follows.
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Theorem 1.13. Let S be an integral domain R-algebra. The invariant hS satisfies:

(i) hS pY#Y 1,K#K 1q “ hS pY,Kq ` hS pY 1,K 1q.

(ii) Suppose pW,Sq : pY,Kq Ñ pY 1,K 1q is a cobordism of pairs such thatH1pW ;Zq “ 0,
the homology class of S is divisible by 4, and the double cover of W branched over S
is negative definite. Then we have:

hS pY,Kq ď hS pY 1,K 1q.

In particular, hS induces a homomorphism from the homology concordance group to the
integers, which in turn induces a homomorphism from the smooth concordance group of
knots in the 3-sphere to the integers.

The cobordism pW,Sq appearing in (ii) is an example of what we call a negative definite
pair in the sequel. When K is a knot in the 3-sphere, we simply write hS pKq for the
invariant hS pS3,Kq, and similarly for the other invariants we define. The two choices of
S that we focus on are Z and T “ ZrT˘1s. For the former choice we simply write h:

hpY,Kq :“ hZpY,Kq

The two invariants h and hT take on different values for simple knots in the 3-sphere. Some
of our computations from Section 9 are summarized as follows.

Theorem 1.14. We have the following computations for the invariants h and hT :

(i) For any two-bridge knot we have h “ 0.

(ii) For the positive (right-handed) trefoil we have hT “ 1.

(iii) For the positive p3, 4q and p3, 5q torus knots we have h “ 1.

(iv) For the following families of torus knots, we have h “ 0:

pp, 2pk ` 2q, k ě 1, p ” 1 pmod 2q

pp, 2pk ˘ p2 ´ pqq, k ě 1, p ” ˘1 pmod 4q

Although Theorem 1.14 computes hT only for one knot, we expect that hT pKq for a
general knot can be evaluated in terms of classical invariants of K. We will address this
claim in a forthcoming work.

Remark 1.15. Recently, a version of the invariant hS pKq and a 1-parameter family variation
of it is used in [Ech19] to study a Furuta-Ohta type invariant for tori embedded in a 4-
manifold with the integral homology of S1 ˆ S3. ˛

A refinement of hS pY,Kq has the form of a nested sequence of ideals of S ,

¨ ¨ ¨ Ď JS
i`1pY,Kq Ď JS

i pY,Kq Ď JS
i´1pY,Kq Ď ¨ ¨ ¨ Ď S .

This sequence depends only on the homology concordance of pY,Kq, and recovers the
invariant hS pY,Kq. Its basic properties are summarized as follows.

10



Theorem 1.16. The nested sequence of ideals tJS
i pY,KquiPZ in S satisfy:

(i) JS
i pY,Kq ¨ JS

j pY 1,K 1q Ă JS
i`jpY#Y 1,K#K 1q

(ii) If pW,Sq : pY,Kq Ñ pY 1,K 1q is a negative definite pair, JS
i pY,Kq Ă JS

i pY 1,K 1q.

(iii) hS pY,Kq “ max
␣

i P Z : JS
i pY,Kq ‰ 0

(

.

All of the constructions discussed thus far are derived from the chain homotopy type of
the S-complex rCpY,K; ∆S q. However, there is more structure to exploit on this complex,
coming from a filtration induced by the Chern–Simons functional. (The terminology that we
use for S-complexes with this extra structure is an enriched S-complex. We refer the reader
to Subsection 7.3 for a more precise definition.)

The Chern–Simons filtration can also be used to define homology concordance invariants.
To illustrate this, we associate ΓR

pY,Kq
: Z Ñ Rě0 Y 8 to a pair pY,Kq by adapting the

construction of [Dae18] to our setup. Here R is any integral domain which is an algebra over
the ring ZrT˘1s. The function ΓR

pY,Kq
depends only on the homology concordance class

of pY,Kq. Some other properties are mentioned in the following theorem. For a slightly
stronger version see Theorem 7.24.

Theorem 1.17. Let pY,Kq be a knot in an integer homology 3-sphere.

(i) The function ΓR
pY,Kq

is an invariant of the homology concordance class of pY,Kq.

(ii) For each i P Z, we have ΓR
pY,Kq

piq ă 8 if and only if i ď hRpY,Kq.

(iii) For each i P Z, if ΓR
pY,Kq

piq R t0,8u, then it is congruent (mod Z) to the value of the
Chern-Simons functional at an irreducible singular flat SUp2q connection on pY,Kq.

A traceless SUp2q-representation for a pair pY,Kq is a representation of π1pY zKq into
SUp2q such that a (and hence any) meridian of K is mapped to an element of SUp2q with
vanishing trace. For instance, the unknot has a unique conjugacy class of such representations
which, of course, has an abelian image. Similarly, for a given homology concordance
pW,Sq : pY,Kq Ñ pY 1,K 1q, a traceless representation is a homomorphism of π1pW zSq

into SUp2q such that a meridian of S is mapped to a traceless element of SUp2q. In
particular, any traceless representation of the pair pY,Kq (resp. pW,Sq) induces an SOp3q-
representation of the orbifold fundamental group of the Z{2-orbifold structure on Y (resp.
W ) with singular locus K (resp. S).

The following is a corollary of the invariance of ΓS
pY,Kq

under homology concordances.
(Compare to the case for integer homology 3-spheres in [Dae18, Theorem 3].)

Corollary 1.18. Let pW,Sq : pY,Kq Ñ pY 1,K 1q be a homology concordance with
ΓR

pY,Kq
‰ ΓR

pS3,Uq
. Then there exists a traceless representation of pW,Sq that extends

non-abelian traceless representations of pY,Kq and pY 1,K 1q. In particular, the images of
π1pY zKq and π1pY 1zK 1q in π1pW zSq are non-abelian.

Note that the condition ΓR
pY,Kq

‰ ΓR
pS3,Uq

is satisfied if hRpY,Kq ‰ 0, examples for
which can be found in Theorem 1.14 (and more examples may be generated by additivity).
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Further discussion

Functoriality of the S-complex rCpY,K; ∆q with respect to homology concordances plays
the key role in proving the desired properties of the above concordance invariants. In
fact, if pW,Sq : pY,Kq Ñ pY 1,K 1q is a negative definite pair, then there is an induced
morphism rCpW,S; ∆q : rCpY,K; ∆q Ñ rCpY 1,K 1; ∆q in the category of S-complexes,
which preserves the Chern-Simons filtration, in the sense of enriched S-complexes. This
notion of functoriality implies that the chain complexes and homology groups constructed
from rCpY,K; ∆q, such as pCpY,K; ∆q, pIpY,K; ∆q and IpY,K; ∆q, are functorial with
respect to such negative definite pairs.

The main reason that we develop the functoriality for this limited family of cobordisms
is to avoid working with moduli spaces of singular instantons that have reducible elements
that are not cut out transversely. To achieve a regular moduli space, one cannot simply
perturb these connections, due to the well-known phenomenon that equivariant transversality
does not hold generically. However, there is enough evidence to believe that at least the
equivariant theory pCpY,K; ∆q (and hence the homology theory pIpY,K; ∆q) is functorial
with respect to more general cobordisms. We plan to return to this issue elsewhere.

In addition to extending the theory to include more general cobordisms, the authors also
expect that an Alexander grading may be constructed on the homology groups studied here,
perhaps adapting the ideas used in [KM10a].

In [KM19d, KM13], Kronheimer and Mrowka introduce various concordance invariants
out of the singular instanton homology groups I#pS3,Kq and I6pS3,Kq. In fact, they show
that their invariants can be used to obtain lower bounds for the slice genus, unoriented slice
genus, and unknotting number. Due to our limited functoriality, at this point we cannot
examine our concordance invariants in this generality here. We hope that our conjectured
functoriality for pCpY,K; ∆q allows us to achieve this goal. In light of Theorem 1.9, we
believe that this extended functoriality would be useful to answer the following:

Question 1.19. Is there any relationship between the concordance invariants in [KM19d,
KM13] and the ideals tJS

i pY,KquiPZ appearing in Theorem 1.16?

In Subsection 8.8 we propose an approach to construct yet another family of concordance
invariants which we argue should recover Kronheimer and Mrowka’s invariants in [KM19d].
Moreover, if K is a knot in S3 satisfying the following slice genus identity:

g4pKq “ ´σpKq{2, (1.20)

such as the right-handed trefoil, then the functoriality developed in this paper allows us
to carry out the proposed construction. In particular, we show that the concordance in-
variants obtained from the unreduced theory I#pS3,Kq and the reduced theory I6pS3,Kq

in [KM19d] are essentially equal to each other, a relation which is not obvious from the
constructions of [KM19d]. For the knots satisfying (1.20), we also give a partial answer to
Question 1.19 by providing some relations between the concordance invariants of [KM19d]
and the ideals tJS

i pY,KquiPZ.
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Organization. The necessary background on the gauge theory of singular connections,
which was developed by Kronheimer and Mrowka, is reviewed in Section 2. In particular,
we devote Subsection 2.7 to analyzing reducible singular ASD connections, which play an
important role in our construction. The definition of negative definite pair arises naturally
from this analysis. The geometrical setup of Section 2 allows us to define the S-complex
p rCpY,Kq, rdq in Section 3. Some technical constructions involving holonomy maps of
singular connections used in Section 3 are explained in Appendix A at the end of the paper.

We make a digression in Section 4 to develop the homological algebra of S-complexes.
In Subsections 4.2 and 4.3, we give two models for the chain complexes underlying the
equivariant homology groups pI , qI and I . We also define tensor products (needed for Theorem
7.10) and duals of S-complexes in Section 4. We use these operations to define a local
equivalence group following the construction of [Sto17]. The algebraic framework for the
ideals JS

i pY,Kq is defined in Subsection 4.7. Next, in Section 5, the algebraic constructions
of Section 4 are used to define equivariant Floer homology groups pI˚pY,Kq, qI˚pY,Kq and
I˚pY,Kq and the concordance invariant hpY,Kq.

Theorem 7.10 on invariants of connected sums is proved in Section 6. In Section 7 we
explain how one can obtain additional algebraic structures on rCpY,Kq using local coefficient
systems. Here the general concordance invariants hS pY,Kq, tJS

i pY,Kqu and ΓR
pY,Kq

are
defined. Theorem 1.9 is discussed in detail in Section 8. In the final section of the paper, we
focus on computations, where proofs of Theorems 1.12 and 1.14 are given.
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treatment of the foundations of the established constructions. In particular, the appendix at
the end of this paper developed after conversations with him. The authors would also like to
thank Peter Kronheimer, Tom Mrowka and Nikolai Saveliev for helpful discussions. The
authors thank Hayato Imori, Kouki Sato and the anonymous referee for pointing out several
mistakes and providing comments on an earlier version of the paper.
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2 Background on singular SUp2q gauge theory

In this section we survey the relevant aspects of singular SUp2q gauge theory. The objects
we begin with are SUp2q connections on a homology 3-sphere which are singular along
a knot, with limiting holonomies of order 4 around small meridional loops. Most of the
definitions and results are due to Kronheimer and Mrowka [KM11b]. The main difference
in our setup is the presence of a distinguished flat reducible θ. In particular, we modify the
holonomy perturbation scheme of [KM11b] so as to not disturb θ, which is isolated and
non-degenerate in the moduli space of singular flat connections.

Next, we consider ASD connections on cobordisms of homology spheres which are
singular along an embedded cobordism of knots. We start with the product case, and then
move to the arbitrary case. To any such connection, we can associate an elliptic operator,
called the ASD operator. We study the index of such operators for reducible singular
connections on a cobordism, which motivates the definition of negative definite pairs. We
also use the ASD operator to define an absolute Z{4-grading for irreducible critical points
using θ, analogous to Floer’s grading in the non-singular setting.

We review a formula due to Herald [Her97] that expresses the signed count of singular
flat SUp2q connections in terms of the Casson invariant of the homology 3-sphere and the
signature of the knot. Finally, we review the data needed to fix orientations on moduli spaces
of singular ASD connections.

2.1 Singular SUp2q connections

Let Y be an integer homology 3-sphere, and K Ă Y a smoothly embedded knot. Fix a
rank 2 Hermitian vector bundle E over Y with structure group SUp2q, with a reduction
E|K “ L ‘ L˚ over the knot for some Hermitian line bundle L. Note that E and L
are necessarily trivializable bundles. The pair pY,Kq determines a smooth 3-dimensional
Z{2-orbifold Y̌ , with underlying topological space Y and singular locus K.

Choose a regular neighborhood of K Ă Y diffeomorphic to S1 ˆ D2, in which K is
identified with S1 ˆ t0u. Let pr, θq P D2 be polar coordinates normal to K. Define

λ0 “ bprq
1

4
idθ

where bprq is a bump function equal to 1 for r ă 1{2 and zero for r ą 1. Then λ0 is a
1-form on Y zK with values in iR “ up1q. Using trivializations of E and L that respect the
splitting E|K “ L‘L˚, we view B0 :“ λ0 ‘λ˚

0 as a connection on E|Y zK . The holonomy
of this connection is of order 4 around small meridional loops of K.

The adjoint bundle of E, written gE , is the subbundle of EndpEq consisting of skew-
Hermitian endomophisms, and has structure group SOp3q “ Autpsup2qq. The singular
connection B0 induces a connection on gE denoted Bad

0 . It has holonomy of order 2 around
small meridional loops of K, and so it extends to an orbifold connection B̌ad

0 on an orbifold
bundle ǧE over Y̌ whose underlying topological bundle is gE .
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Fix k ě 3, and choose a Riemannian metric go on Y with cone angle π along K, which
induces a Riemannian metric on the orbifold Y̌ . The space of SUp2q connections on Y with
singularities of order 4 along K is defined as follows:

C pY,Kq “ B0 ` Ľ2
k,Bad

0
pY̌ ; Λ̌˚ b ǧEq

The function space on the right-hand side consists of sections b of Λ̌˚ b ǧE such that ∇ib
are L2 for 0 ď i ď k, where the orbifold connection ∇ is defined using the Levi-Civita
derivative induced by go and the covariant derivative induced by the adjoint of B0. We have
written Λ̌˚ for the orbifold bundle of exterior forms on Y̌ .

The gauge transformation group G pY,Kq consists of the orbifold automorphisms g
of the bundle E such that ∇B0g P Ľ2

k,Bad
0

. Write BpY,Kq “ C pY,Kq{G pY,Kq for the
quotient configuration space. The homotopy type of G pY,Kq is the same as that of the space
of continuous automorphisms of E that preserve each factor of E|K “ L ‘ L˚, and this
latter group may be identified with the space of continuous maps g : Y Ñ SUp2q such that
gpKq Ă Up1q. We have an isomorphism

d : π0pG pY,Kqq Ñ Z ‘ Z, dpgq “ pk, lq (2.1)

With the above homotopy identifications understood, the number k is the degree of the map
g : Y Ñ SUp2q, and l is the degree of the restriction g|K : K Ñ Up1q.

2.2 The Chern-Simons functional and flat connections

There is defined a Chern-Simons functional CS : C pY,Kq Ñ R, uniquely characterized up
to a constant as the functional whose formal L2 gradient is given by

pgrad CSqB “
1

4π2
˚ FB

for each B P C pY,Kq, where FB is the curvature of B. For a gauge transformation
g P G pY,Kq with homotopy invariants dpgq “ pk, lq as in (2.1), we have

CSpBq ´ CSpgpBqq “ 2k ` l.

We thus obtain a circle-valued functional CS : BpY,Kq Ñ R{Z, defined up to the addition
of a constant, denoted by the same name. The critical points of CS are flat connections on
E|Y zK with prescribed holonomy around meridians of K. We denote by C Ă BpY,Kq the
set of gauge equivalence classes of flat connections.

By choosing a basepoint in Y zK and taking holonomy around based loops in Y zK, we
obtain a homeomorphism between C and the traceless SUp2q character variety,

X pY,Kq :“ tρ : π1pY zKq Ñ SUp2q : tr ρpµq “ 0u {SUp2q. (2.2)

Here µ is any meridional loop around K, and the action of SUp2q is by conjugation. This
correspondence does not depend on the chosen basepoint.
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There is a distinguished class θ P BpY,Kq, the (flat) reducible, characterized as the
orbit of flat connections in C pY,Kq corresponding to the unique conjugacy class of represen-
tations in (2.2) that factor through H1pY zK;Zq – Z ¨ µ. We call a class of flat connections
rBs P C non-degenerate if the Hessian of CS at B is non-degenerate. The following result is
implied by [KM11b, Lemma 3.13]. See also Proposition 2.32.

Proposition 2.3. The reducible θ P C is isolated and non-degenerate.

Flat connections in the class θ have G pY,Kq-stabilizer isomorphic to Up1q. Indeed, gauge
stabilizers arise as centralizers of holonomy groups, and the holonomy group of a connection
in the class θ is conjugate to the subgroup t˘1,˘iu Ă SUp2q, with centralizer Up1q.

We note that θ is not the only gauge equivalence class of reducible connections: any
connection in C pY,Kq compatible with a reduction of E|Y zK into a sum of line bundles
also has stabilizer Up1q. However, among such reducibles, the connections in the orbit θ
are the only ones that are flat. As the other reducibles are not relevant to the sequel, we feel
justified in calling θ the reducible, with “flat” being implicit.

We see now that C may be written as the disjoint union tθu \ Cirr where Cirr consists of
flat irreducible connection classes, each with G pY,Kq-stabilizer t˘1u. Finally, we may fix
the ambiguity in the definition of CS : BpY,Kq Ñ R{Z by declaring that CSpθq “ 0.

2.3 The flip symmetry

There is an involution ι on the configuration space BpY,Kq, defined as follows. Consider a
flat Z{2 bundle-with-connection ξ over Y zK with holonomy ´1 around meridians of K,
corresponding to a generator of H1pY zK;Z{2q. Then for rBs P BpY,Kq we have

ιrBs “ rB b ξs (2.4)

The involution ι is the “flip symmetry” considered, for example, in [KM93, Section 2(iv)].
(The flip symmetry there is in fact in the 4-dimensional setting, but is defined similarly.)
Although the involution ι will not play an essential role in most of the sequel, it inevitably
appears in the structure of our examples in Section 9. In a forthcoming work, we give a
more systematic study of the interaction of ι with the S1-equivariant theories introduced
throughout this paper.

The flip symmetry ι restricts to an involution on the critical set C. In terms of the
character variety X pY,Kq, the action of ι is induced by the assignment which sends a
representation ρ : π1pY zKq Ñ SUp2q to the representation χµ ¨ ρ, where χµ is the unique
non-trivial representation χµ : π1pY zKq Ñ t˘1u, again corresponding to a generator of
H1pY zK;Z{2q. (In particular, note χµ itself does not define a class in X pY,Kq.) From
this it is clear that ιpθq “ θ. More generally, the following elementary lemma is observed in
[PS17], where this involution on the character variety is studied:

Lemma 2.5. An element of the critical set C is fixed by the flip symmetry ι if and only if its
corresponding representation class in X pY,Kq has image in SUp2q conjugate to a binary
dihedral subgroup.
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2.4 Perturbing the critical set

In general, the critical set Cirr is degenerate. To fix this, we add a small perturbation to the
Chern-Simons functional. Kronheimer and Mrowka use holonomy perturbations in [KM11b,
Section 3] modelled after those used in the non-singular setting, see [Tau90, Don87, Flo88].
Although not essential, we would like to have a class of perturbations that leave the reducible
alone, just as in Floer’s instanton homology for integer homology 3-spheres.

We first describe the pertubations used in [KM11b, Section 3]. Let q : S1 ˆD2 Ñ Y zK
be a smooth immersion. Let s and z be the coordinates of S1 “ R{Z and D2, respectively.
Consider the bundle GE Ñ Y whose sections are gauge transformations in G pY,Kq, and
for each B P C pY,Kq and z P D2 let Holqp´,zqpBq P pGEqqp0,zq be the holonomy of B
around the corresponding loop based at qp0, zq. As z varies we obtain a section HolqpBq of
the bundle q˚pGEq over the disk D2.

Suppose we have a tuple of such immersions, q “ pq1, . . . , qrq, with the property that
they all agree on r´η, ηs ˆ D2 for some η ą 0. The bundles q˚

j pGEq are canonically
isomorphic over this neighborhood, and for each B P C pY,Kq, the holonomy maps define a
section HolqpBq : D2 Ñ q˚

1 pGr
Eq. Choose a smooth function h : SUp2qr Ñ R invariant

under the diagonal adjoint action on the factors. Then h also defines a function on q˚
1 pGr

Eq.
Choose a non-negative 2-form µ supported on the interior of D2 with integral 1. Define

fqpBq “

ż

D2

hpHolqpBqqµ

Kronheimer and Mrowka call such functions cylinder functions. The space of perturbations
they consider is a Banach space completion of sums of cylinder functions where q and h run
over a fixed dense set. This Banach space is called P .

When adding a cylinder function to the Chern-Simons functional, the reducible θ may be
perturbed. To avoid this, consider the point in SUp2qr obtained by choosing a representative
connection for θ and taking its holonomy around the loops q1, . . . , qr. The orbit of this
point under the conjugation action of SUp2q defines a subset Oθ Ă SUp2qr independent
of the choice of the representative for θ. Note that if h : SUp2qr Ñ R is constant on
a neighborhood of Oθ then any associated cylinder function fq which is small leaves
the reducible θ unperturbed, isolated and non-degenerate. We may form a Banach space
P 1 Ă P of such perturbations. We write Cπ for the critical set of the Chern-Simons
functional perturbed by π P P .

Proposition 2.6. There is a residual subset of P 1 such that for all sufficiently small π in this
subset, the set of irreducible critical points Cirr

π of the perturbed Chern-Simons functional is
finite and non-degenerate, and Cπ “ tθu \ Cirr

π , where θ remains non-degenerate.

Sketch of the proof. This is analogue of [KM11b, Proposition 3.10] and the the proof is
similar. The essential point is that for any compact finite dimensional submanifold M of the
space of irreducibles in BpY,Kq the restrictions of the perturbation functions in P 1 form a
dense subset of C8pMq.
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Remark 2.7. In [Don02, Section 5.5], Donaldson uses a different class of holonomy perturba-
tions to deform the ordinary, non-singular flat equation. As mentioned in [KM11b, Section
3], this approach may also be adapted to the singular setting. The above perturbations
are modified as follows: each immersion qj from above is assumed to be an embedding,
but we no longer require that the qj’s agree on r´η, ηs ˆ D2; and we now require that
h : SUp2qr Ñ R is invariant under the adjoint action on each factor separately. Following
the discussion in [Don02, Section 5.5], we may proceed just as in the non-singular case,
ensuring that the reducible remains unmoved and non-degenerate. ˛

Remark 2.8. Although not needed in the sequel, we may actually perturb the Chern-Simons
functional, keeping the reducible isolated and non-degenerate, and achieving non-degeneracy
at the remaining elements of the critical set, by a perturbation which is invariant with respect
to the flip symmetry ι. If q “ pq1, . . . , qrq is as above, the involution ι either fixes the
holonomy of a singular connection along a loop qi or changes it by a sign, depending on
whether the homology class of qi is an even or odd multiple of the meridian of K. This
induces an action of Z{2 on SUp2qr and we consider functions h : SUp2qr Ñ R which are
additionally invariant with respect to this Z{2-action. The induced function on BpY,Kq is
invariant with respect to the action of ι. We may proceed as above to define a space P2

and an analogue of Proposition 2.6 holds for this more constrained space of perturbations.
Indeed, in this new set up we must show that for M a compact ι-invariant submanifold
of irreducibles in BpY,Kq, the restrictions of functions in P2 is dense in the space of
ι-invariant smooth functions on M ; this can be done as in [Was65]. ˛

2.5 Gradient trajectories and gradings

Solutions to the formal L2 gradient flow of the Chern-Simons functional satisfy the anti-self-
duality (ASD) equations on the cylinder Z “ R ˆ Y . To describe the latter, we consider
connections A “ B ` Cdt on Z, where B is a t-dependent singular SUp2q connection
on pY,Kq, and C is a t-dependent section in Ľ2

kpY̌ ; ǧEq. Then the 4-dimensional ASD
equations on R ˆ Y , perturbed by a holonomy perturbation π, are

F`
A ` pVπpAq “ 0. (2.9)

Here pVπpAq is the projection of dt^ VπpAq to the self-dual bundle-valued 2-forms, where
Vπ is the pull-back of the gradient of the perturbation π of the Chern-Simons functional.
Solutions A to (2.9) are called (singular) instantons on the cylinder.

Let π P P 1 be a perturbation such that Cirr
π is finite and non-degenerate. Consider

irreducible classes αi “ rBis P Cirr
π for i “ 1, 2. LetA0 be a connection on RˆY as written

above, which agrees with pullbacks of B1 and B2 for large negative and large positive t P R,
respectively. The connection A determines a path γ : R Ñ BpY,Kq, constant outside of a
compact set. From this we have a relative homotopy class z “ rγs P π1pBpY,Kq;β1, β2q.
We then have a space of connections

CγpZ, S;B1, B2q “

!

A : A´A0 P Ľ2
k,Aad

0
pŽ; ǧF b Λ̌1q

)
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where S “ R ˆ K, and Ž is the Z{2-orbifold with the underlying space Z and singular
locus S. The corresponding gauge transformation group GγpY,K;B1, B2q consists of
orbifold automorphisms g of E with ∇A0g P Ľ2

k,A0
. We then have the quotient space

BzpY,K;α1, α2q “ CγpZ, S;B1, B2q{GγpZ, S;B1, B2q.
The associated moduli space of ASD connections on the cylinder is defined as

Mzpα1, α2q “

!

rAs P BzpY,K;α1, α2q : F`
A ` pVπpAq “ 0

)

We write Mpα1, α2q for the disjoint union of the Mzpα1, α2q as z ranges over all relative
homotopy classes from α1 to α2. There is an R-action on Mpα1, α2q induced by translation
in the R-factor of the cylinder R ˆ Y . This action is free on non-constant trajectories; we
write M̆pα1, α2q for the subset of the quotient Mpα1, α2q{R which excludes the constant
trajectories. We have a relative grading

grzpα1, α2q “ indpDAq “ v.dimMzpα1, α2q P Z

HereA is any connection in CγpZ, S;B1, B2q, for exampleA “ A0; and the elliptic operator
DA “ ´d˚

A ‘ pd`
A `DpVπq is the linearized (perturbed) ASD operator with gauge fixing:

DA : Ľ2
k,AadpŽ; ǧF b Λ̌1q Ñ Ľ2

k´1,AadpŽ; ǧF b pΛ̌0 ‘ Λ̌`qq (2.10)

We have written v.dimMzpα1, α2q for the virtual dimension of the moduli space; when
d`
A `DpVπ is surjective, we say that rAs P Mzpα1, α2q is a regular solution, and when this

is true for all rAs P Mzpα1, α2q, we say that the moduli space is regular. When Mzpα1, α2q

is regular, it is a smooth manifold of dimension grzpα1, α2q. We write Mpα1, α2qd for the
disjoint union of moduli spaces Mzpα1, α2q with grzpα1, α2q “ d, and M̆pα1, α2qd´1 “

Mpα1, α2qd{R. In general, our conventions will be compatible with the rule that a subscript
d P Z in the notation for a moduli space is equal to its virtual dimension.

Now we slightly diverge from [KM11b] and consider moduli spaces with reducible flat
limits. This is done exactly as in [Flo88]. When one or both of αi are reducible, then in the
definition of Mzpα1, α2q we consider classes rAs such that A´A0 is in

ϕĽ2
k,Aad

0
pŽ; ǧF b Λ̌1q, (2.11)

a weighted Sobolev space. The weight ϕ : Z Ñ R is a smooth function equal to e´ε|t| for
some sufficiently small ε ą 0 and |t| " 0. In particular, our sections decay exponentially
along the ends of the cylinder. With this modification, we may define DA and grzpα1, α2q “

indpDAq when one or both of αi are reducible.
The following is adapted from [KM11b, Proposition 3.8], and differs by our inclusion

of the reducible θ and our restrictions on perturbations from the previous subsection. The
essential point is that the only reducible element of Mzpα1, α2q is the constant solution
associated to θ, which we already know is regular by Proposition 2.32. Now similar
arguments as in [Don02, Chapter 5] can be used to verify the following proposition.
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Proposition 2.12. Suppose π0 P P 1 is a perturbation such that the critical points of
Cπ0 “ tθu Y Cirr

π0
are non-degenerate. Then there exists π P P 1 such that

(i) fπ “ fπ0 in a neighborhood of the critical points of CS ` fπ0;

(ii) the critical sets for the two perturbations are the same, Cπ “ Cπ0;

(iii) all moduli spaces Mzpα1, α2q for the perturbation π are regular.

Remark 2.13. The involution ιmay be defined on the singular connection classes we consider
here on R ˆ pY,Kq, just as in (2.4), using the pullback of ξ. Following the discussion at the
end of Subsection 2.4, we may in fact choose a perturbation which is invariant under the
involution ι and such that the conclusions of Proposition 2.12 hold. The key point is that
before perturbing, there are no non-constant gradient flow lines invariant under ι. ˛

From now on we assume that the perturbation π in the definition of the moduli spaces
Mzpα1, α2q is chosen such that the claims in Propositions 2.6 and 2.12 hold. Some other
important properties of the moduli spaces are summarized as follows. The first is essentially
Proposition 3.22 of [KM11b].

Proposition 2.14. Let α1, α2 P Cπ. If Mzpα1, α2q is of dimension less than 4, then the
space of unparametrized broken trajectories M̆`

z pα1, α2q is compact.

Recall that an element of M̆`
z pα1, α2q, an unparametrized broken trajectory, is by definition

a collection rAis P M̆zipβi, βi`1q for i “ 1, . . . , l ´ 1 with β1 “ α1 and βl “ α2, and such
that the concatenation of the homotopy classes zi is equal to z. We use the standard approach
to topologize M̆`

z pα1, α2q.
The second result follows from Corollary 3.25 of [KM11b], and is special to our hypoth-

esis that our model singular connection has order 4 holonomy around meridians.

Proposition 2.15. Given d ě 0, there are only finitely many α1, α2 P Cπ and z such that
Mzpα1, α2q is non-empty and grzpα1, α2q “ d.

In particular, M̆pα1, α2q0 is a finite set of points.
We now discuss some aspects of these gradings. Let g P G pY,Kq have homotopy invari-

ants dpgq “ pk, lq as in (2.1). Choose α “ rBs P BpY,Kq, and let z P π1pBpY,Kq;αq be
the homotopy class induced by a path from B to gpBq. Then

grzpα, αq “ 8k ` 4l, (2.16)

see [KM11b, Lemma 3.14]. From standard linear gluing theory, as in [Don02, Chapter 3],
when α2 is non-degenerate and irreducible we have

grz12pα1, α2q ` grz23pα2, α3q “ grz13pα1, α3q (2.17)

where z13 is the concatenation of z12 and z23. Using (2.16) and (2.17) we conclude that
grzpα1, α2q modulo 4 does not depend on the homotopy class z, and we set

grpα1, α2q :“ grzpα1, α2q mod 4.
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This defines a relative Z{4-grading on the irreducible ciritical set Cirr
π . We lift this to an

absolute Z{4-grading using the reducible, analogous to Floer [Flo88]: for α P Cirr
π set

grpαq :“ grzpα, θq mod 4 (2.18)

for any choice of homtopy class z. Now (2.17) does not hold when α2 “ θ; as the dimension
of the gauge stabilizer of θ is 1 “ dimUp1q, by [Don02, Section 3.3.1] we instead have

grz12pα1, θq ` 1 ` grz23pθ, α3q “ grz13pα1, α3q. (2.19)

In particular, if we write grpαq “ grY pαq P Z{4 to emaphasize the underlying 3-manifold
Y , we obtain the orientation-reversing property

gr´Y pαq ” 3 ´ grY pαq mod 4. (2.20)

From (2.19) we deduce the following, which is analogous to part of the compactness
principle in the non-singular setting, see Section 5.1 of [Don02].

Proposition 2.21. Let α1, α2 P Cirr
π . If Mzpα1, α2q is of dimension less than 3, then

M̆`
z pα1, α2q has no broken trajectories that factor through θ.

Indeed, suppose a broken trajectory prA1s, . . . , rAl´1sq factors through the reducible N ě 1
times. Note that l ě 3. Then from our discussion thus far we have

grzpα1, α2q “

l´1
ÿ

i“1

grzipβi, βi`1q `N ě l ´ 1 `N ě 3,

where we use grzipβi, βi`1q “ indpDAiq ě 1 because Ai is a non-constant singular instan-
ton. Thus we must have grzpα1, α2q “ dimMzpα1, α2q ě 3 for such a factoring to occur.
Note that in the non-singular setting, the dimension of the moduli space must be less than
5 to avoid breaking at the reducible. This is because the dimension of the stabilizer of the
reducible in that setting is 3 “ dimSOp3q instead of 1.

2.6 Moduli spaces for cobordisms

We next discuss moduli spaces of instantons on cobordisms. Suppose we have a cobordism
of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q between two homology 3-spheres Y and Y 1 with
embedded knots K and K 1, respectively. More precisely, W is an oriented 4-manifold
with boundary Y 1 \ ´Y , and S Ă W is an embedded surface intersecting the boundary
transversely with BS “ S X BW “ K \K 1. Although it is possible to consider unoriented
surfaces as in [KM11a], in this paper we will only be concerned with the case in which S is
connected and oriented. For a pair of composable cobordisms pW1, S1q and pW2, S2q we
write pW2, S2q ˝ pW1, S1q “ pW2 ˝W1, S2 ˝ S1q for the composite cobordism.

Given a cobordism pW,Sq : pY,Kq Ñ pY 1,K 1q, equip W with an orbifold metric
that has a cone angle π along S, and which is a product near the boundary. Let W`

21



(resp. S`) be obtained from W (resp. S) by attaching cylindrical ends to the boundary,
and extend the metric data in a translation-invariant fashion. Given classes α P BpY,Kq

and α1 P BpY 1,K 1q, choose an SUp2q connection A on W` singular along S` such
that the restrictions of A to the two ends are in the gauge equivalence classes of α and
α1. The homotopy class of A mod gauge rel α, α1 will be denoted by z. Similar to the
definition of BzpY,K;α1, α2q in the cylindrical case, we may form BzpW,S;α, α1q, the
gauge equivalence classes of singular connections on W` whose representatives differ from
A by elements of regularity Ľ2

k. Just as in the cylindrical case, when either of α or α1 is
reducible, we use an appropriately weighted Sobolev norm for the end(s).

Remark 2.22. For a general discussion of the possibilities for the model connection and the
associated “singular bundle data” see [KM11a, Section 2]. However, the construction of
[KM93, Section 2] suffices for our purposes. In particular, we restrict our attention to the
case of structure group SUp2q. ˛

We may then form the moduli space of instantons MzpW,S;α, α1q Ă BzpW,S;α, α1q.
The perturbed instanton equation defining the moduli space MzpW,S;α, α1q is of the fol-
lowing form along the incoming end p´8, 1s ˆ Y Ă W`:

F`
A ` ψptqpVπpAq ` ψ0ptqpVπ0pAq “ 0.

Here π and π0 are perturbations on RˆY as in (2.9), and ψptq “ 1 for t ă 0 and 0 at t “ 1,
while ψ0ptq is supported on p0, 1q. We always choose π P P 1 such that Cπ Ă BpY,Kq

is as in Propositions 2.6 and 2.12. Similar remarks hold for the other end. For generic
choices of π0 and its analogue at the end of Y 1 the irreducible part of the moduli space
MzpW,S;α, α1q is cut out transversally, and is a smooth manifold of dimension d, where
d “ indpDAq “: grzpW,S;α, α1q. (See [KM11b] and [KM07, Section 24] for more details.)
Here DA is the linearized ASD operator on pW`, S`q, analogous to (2.10), defined using
Sobolev spaces with exponential decay at the ends with reducible limits, as in (2.11). Write

MpW,S;α, α1qd “
ď

grzpW,S;α,α1q“d

MzpW,S;α, α1q.

Note that grzpI ˆ pY,Kq;α1, α2q “ grzpα1, α2q. Furthermore, the linear gluing formulae
for grzpα1, α2q in the cylindrical case extend in this more general context. In particular,
for cobordisms pW,Sq : pY,Kq Ñ pY 1,K 1q and pW 1, S1q : pY 1,K 1q Ñ pY 2,K2q with
composite cobordism pW 2, S2q “ pW 1, S1q ˝ pW,Sq, we have

grzpW,S;α, α1q ` dimStabpα1q ` grz1pW 1, S1;α1, α2q “ grz2pW 2, S2;α, α2q

where Stabpα1q Ă G pY 1,K 1q is isomorphic to t˘1u if α1 is irreducible, and Up1q if it is
reducible. Just as in the cylindrical case, the mod 4 congruence class of grzpW,S;α, α1q is
independent of z, and for this we write grpW,S;α, α1q P Z{4.

An unparametrized broken trajectory for MzpW,S;α, α1q is a triple consisting of an
instanton in Mz2pW,S;β, β1q and unparametrized broken trajectories in M̆`

z1pα, βq and
M̆`

z3pβ1, α1q, where β and β1 are critical points for Y and Y 1, and z “ z3 ˝ z2 ˝ z1. The space
of such broken trajectories is denoted M`

z pW,S;α, α1q.
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Remark 2.23. When z is dropped from either BzpW,S;α, α1q or MzpW,S;α, α1q, it should
be understood that we are considering the union over all homotopy classes z. ˛

Suppose rAs P BzpW,S;α, α1q is a singular connection for the pair pW,Sq. Then the
action, or topological energy, of rAs is defined to be the Chern-Weil integral

κpAq :“
1

8π2

ż

W`zS`

TrpFA ^ FAq.

Instantons rAs are characterized as having energy equal to 8π2κpAq, and in particular
κpAq ě 0, with equality if and only if A is flat. Furthermore,

2κpAq “ CSpαq ´ CSpα1q ´
1

8
S ¨ S pmod Zq. (2.24)

In this paper we will focus on the case in which the homology class of S is divisible by 4, in
which case we can ignore the term 1

8S ¨ S in this formula. Next, we define the monopole
number of rAs, denoted νpAq, by the following integral:

νpAq :“
i

π

ż

S`

Ω.

The connection FA extends to the singular locus S`, and Ω in the above formula is a 2-form
with values in the orientation bundle of S` such that the restriction of FA to the singular
locus has the following form:

FA|S` “

„

Ω 0
0 ´Ω

ȷ

The numbers κpAq and νpAq are invariants of the homotopy class z, and determine it.
Moreover, the dimension d of a moduli space MpW,S;α, α1qd is determined by κpAq, and
the homotopy classes z of the components of MpW,S;α, α1qd are distinguished by their
monopole numbers νpAq.

The flip symmetry of Subsection 2.3 extends to the case in which the homology class
of S is a multiple of 2 within H2pW ;Zq. In this case, there exists a flat Z{2 bundle-
with-connection ξ over W`zS` with holonomy ´1 around small circles linking S; then
ιrAs :“ rAb ξs as before. We have the relations

κpιAq “ κpAq, νpιAq “ ´νpAq, (2.25)

see [KM93, Lemma 2.12]. In particular, note that when pW`, S`q is a cylinder, the
monopole number is negated under ι.

2.7 Reducible connections and negative definite pairs

The goal of this subsection is to study the reducible solutions of the ASD equation on
a cobordism of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q between knots in integer homology
3-spheres. Any such connection is necessarily asymptotic to the reducibles associated
to pY,Kq and pY 1,K 1q. The following lemma gives a formula for the index of the ASD
operator associated to a connection that is asymptotic to reducibles:
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Lemma 2.26. Suppose the connection A represents an element of BzpW,S; θ, θ1q. Then:

indpDAq “ 8κpAq ´
3

2
pσpW q ` χpW qq ` χpSq `

1

2
S ¨ S ` σpKq ´ σpK 1q ´ 1 (2.27)

where σpW q and σpKq are respectively the signature of the 4-manifold W and the signature
of the knot K, and for a topological space X , χpXq denotes the Euler characteristic of X .

Proof. We first compute the index for a slightly simpler case. Suppose that pX,Σq has only
one outgoing end pY,Kq, the homology class of Σ is trivial, and rX denotes a branched
double cover of X branched along Σ with covering involution τ : rX Ñ rX . There is a flat
singular connection associated to the pair pX,Σq such that after lifting up to rX and taking
the induced SOp3q adjoint connection, it can be extended to the trivial connection over rX .
As an alternative description, we may consider the involution on the trivial bundle R3 over
rX which lifts the involution τ and is given by:

ppv1, v2, v3q, xq P R3 ˆ rX ÞÑ ppv1,´v2,´v3q, τpxqq. (2.28)

The quotient by this involution sends the trivial connection to an orbifold SOp3q connection
on X which lifts to our desired SUp2q reducible singular connection A0.

We define the ASD operator DA0 in the same way as before using weighted Sobolev
spaces with exponential decay at the end. From the description of A0, it is clear that
kerpDA0q is isomorphic as a vector space to the subspace of

H1p rX;Rq “ H1p rXq b R3

which is invariant under the involution induced by (2.28), which may be identified with
τ˚ b diagp1,´1,´1q where τ˚ acts on H1p rXq and the diagonal matrix acts on R3. We
obtain that kerpDA0q is isomorphic to H1

`p rXq ‘ H1
´p rXq‘2 where H i

˘p rXq denotes the
p˘1q-eigenspace of the action of τ on the cohomology group H ip rXq. A similar argument
applies to the cokernel. In summary, we obtain:

kerpDA0q – H1
`p rXq ‘H1

´p rXq‘2 (2.29)

cokerpDA0q – H`
` p rXq ‘H`

´ p rXq‘2 ‘H0p rXq (2.30)

A straightforward calculation shows that

indpDA0q “ ´pσp rXq ` χp rXqq `
1

2
pσpXq ` χpXqq ´

1

2
(2.31)

We further specialize to the case that pX,Σq is obtained by firstly pushing a Seifert surface
for K Ă t1u ˆ Y into r0, 1s ˆ Y and then capping the incoming end of r0, 1s ˆ Y with a
4-manifold X with boundary Y . The signature of the 4-manifold obtained as the branched
double cover of the Seifert surface Σ pushed into r0, 1s ˆ Y is equal to the signature of K.
Therefore, in this case we have:

σp rXq “ 2σpXq ` σpKq χp rXq “ 2χpXq ´ χpΣq
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and the formula in (2.31) simplifies to:

´
3

2
pσpXq ` χpXqq ´ σpKq ` χpΣq ´

1

2
.

Applying a similar construction as above to the pair pY 1,K 1q and then changing the orienta-
tion of the underlying 4-manifold produces a pair pX 1,Σ1q with boundary p´Y 1,K 1q and a
reducible singular flat connection A1

0. A similar argument as above shows:

indpDA1
0
q “ ´

3

2
pσpX 1q ` χpX 1qq ` σpK 1q ` χpΣ1q ´

1

2
.

Gluing pX,Σq, pW,Sq and pX 1, S1q produces a closed pair pW,Sq. We may also glue
A0, A and A1

0 to obtain a singular connection A on pW,Sq with the same topological energy
as A. Additivity of the ASD indices implies that:

indpDAq “ indpDA0q ` indpDAq ` indpDA1
0
q ` 2

where the appearance of the term 2 on the left hand side is due to reducibility of the
connections θ and θ1. Now we can obtain (2.27) using the index formula in the closed case
[KM93] and our calculation of the indices of A0 and A1

0.

The same elementary observation which was used in (2.29)–(2.30) implies that:

Proposition 2.32. Suppose a cobordism of pairs pW,Sq has a double branched cover
π : ĂW Ñ W . Let A be a singular connection on pW,Sq for some singular bundle data. If
the non-singular connection π˚Aad is a regular ASD connection on ĂW , then A is regular. In
particular, if π˚Aad is trivial and b`pĂW q “ 0, then A is regular.

To simplify our discussion about reducible singular instantons, we henceforth assume
H1pW ;Zq “ 0, b`pW q “ 0, and S is an orientable surface of genus g whose homology
class is divisible by 4. By a slight abuse of notation, we write S for both the homology
class of S and its Poincaré dual. The space of reducible elements of the moduli spaces
MzpW,S; θ, θ1q (with the trivial perturbation term) is in correspondence with the set of
isomorphism classes of Up1q-bundles on W . For any line bundle L on W , there is a Up1q

reducible singular ASD connection AL :“ η ‘ η˚ such that η is a singular ASD connection
on L, defined over W`zS`. The connection η has the property that its holonomy along a
meridian of S is asymptotic to i (rather than ´i) as the size of the meridian goes to zero.
The topological energy and the monopole number of AL are given as follows:

κpALq “ ´pc1pLq `
1

4
Sq ¨ pc1pLq `

1

4
Sq νpALq “ 2c1pLq ¨ S `

1

2
S ¨ S

In particular, the topological energy is strictly positive unless c1pLq ` 1
4S is a torsion

cohomology class. By requiring H1pW ;Zq “ 0, we guarantee that there is a unique
reducible instanton with vanishing topological energy and monopole number.
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The index formula of Lemma 2.26, under the current assumptions, simplifies to:

indpDAL
q “ 8κpALq ´ 2g `

1

2
S ¨ S ` σpKq ´ σpK 1q ´ 1

“ 8κpALq ` 2pb1pĂW q ´ b`pĂW qq ´ 1

where ĂW denotes the double cover of W branched along S, and the second identity can be
derived from the following standard identities:

σpĂW q “ 2σpW q ´ σpKq ` σpK 1q ´
1

2
S ¨ S, χpĂW q “ 2χpW q ´ χpSq.

As another observation about the topology of ĂW , note that b1pĂW q “ 0. This is shown, for
example, in [Roh71] for the case that the pair pW,Sq is a closed pair and the homology class
of S is non-trivial and a similar argument can be used to verify the same identity in our case.
In fact, we can reduce our case to the closed case by gluing the pairs pX,Σq and pX 1,Σ1q as
in the proof of Lemma 2.26. We may also assume that the homology class of S is non-trivial
by taking the connected sum with the pair pCP

2
, Bq where B is a surface representing a

non-trivial homology class.

Definition 2.33. A cobordism of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q between knots in integer
homology 3-spheres is a negative definite pair if H1pW ;Zq “ 0, b`pW q “ 0, the homology
class of S is divisible by 4, and b`pĂW q “ 0. The latter condition about the branched double
cover can be replaced with the following identity:

σpK 1q “ σpKq `
1

2
S ¨ S ` χpSq. ˛

For a negative definite pair pW,Sq, indpDAL
q is equal to 8κpALq ´ 1. In particular,

the flat reducible A0 has index ´1, and it is regular and has 1-dimensional stabilizer. All
remaining reducibles have higher indices. In fact, we may assume that all the other reducibles
are also regular [DCX17, Subsection 7.3]. However, we do not need this fact in the sequel.
As the moduli space MpW,S; θ, θ1q0 defined with trivial perturbation contains a unique
regular reducible with vanishing κ and ν, the same is true for a small enough perturbation.

Example 2.34. For any pair pY,Kq of a knot in an integer homology sphere, the product
pr0, 1s ˆ Y, r0, 1s ˆ Kq is a negative definite pair. We fix two perturbations of the Chern-
Simons functional for pY,Kq and a perturbation of the ASD connection on the cobordism
associated to the product cobordism. The above discussion shows that if the perturbation of
the ASD equation is small enough, then MpW,S; θ, θ1q0 contains a unique regular reducible
with vanishing topological energy and monopole number. Here the ASD equation is defined
with respect to an orbifold metric, which is not necessarily a product metric. ˛

Example 2.35. Any homology concordance pW,Sq : pY,Kq Ñ pY 1,K 1q, as defined in the
introduction, is a negative definite pair. ˛
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For a negative definite pair pW,Sq, we may use the discussions of the previous and
present sections to ensure the regularity of the moduli spaces MpW,S;α, α1qz of expected
dimension at most 3. The analogues of Propositions 2.14 and 2.15 carry over as stated to the
setting of non-cylindrical cobordisms. However, we note that the analogue of Proposition
2.21 requires MzpW,S;α, α1q to be regular and of dimension less than 2, instead of 3.

We close this subsection with some remarks on compactness and gluing theory for
singular instantons. Let pW,Sq be a cobordism with auxiliary data as in Subsection 2.6. For
simplicity of notation to follow we assume pW,Sq : H Ñ pY,Kq, i.e. it has one boundary
component pY,Kq. We assume that the critical set Cπ is non-degenerate, and all moduli
spaces MzpW,S;αq for α P Cπ are unobstructed and smooth.

Suppose α is irreducible, and let β1, . . . , βl P Cirr
π with βl “ α. For any homotopy

classes z1, . . . , zl with concatenation equal to z, there is a gluing map of the form

Mz1pW,S;β1qˆRą0ˆM̆z2pβ1, β2qˆRą0ˆ¨ ¨ ¨ˆRą0ˆM̆zlpβl´1, βlq ÝÑ MzpW,S;αq

which is an embedding. In many cases we consider, the moduli space MpW,S;αq is
compact away from the image of this gluing map. There are only two other sources of
non-compactness that might occur. The first is from bubbling, which can occur only when
indpDAq ě 4 for instantons rAs P MzpW,S;αq. We will always be in a situation where
bubbling can be avoided.

The other source of non-compactness comes from reducible connections. This case is
important for us in the sequel. Suppose above that some βj for 1 ă j ă l is reducible, i.e.
β “ θ. Then the relevant gluing map in this situation takes the form

¨ ¨ ¨ ˆ M̆zj pβj´1, θq ˆ S1 ˆ Rą0 ˆ M̆zj`1pθ, βj`1q ˆ ¨ ¨ ¨ ÝÑ MzpW,S;αq

where the rest of the domain is as before. The factor S1 of “gluing parameters” may be
identified with the stabilizer of θ. In general one can glue along multiple reducibles, but in
the sequel we will only see the above case.

Finally, consider the case in which β1 “ θ is reducible, and Mz1pW,S; θq “ trA1su

contains a unique regular reducible rA1s and no irreducibles. There is a gluing map

trA1su ˆ Rą0 ˆ M̆z2pθ, β2q ˆ Rą0 ˆ ¨ ¨ ¨ ˆ Rą0 ˆ M̆zlpβl´1, βlq ÝÑ MzpW,S;αq

where as before βj for j ą 1 are irreducible. Here there is no gluing parameter as in the
previous case; from another viewpoint, the gluing parameter cancels with the stabilizer of
A1. Compare the discussion in [DK90, p.325].

The situations we encounter below are all minor variations of the above. We will allow
pW,Sq to have multiple boundary components, for example. Further, for MzpW,S; θq, a
moduli space of irreducible singular instantons, the same constructions are available.

The compactness principle underlying our arguments in the sequel is as follows: if bub-
bling can be ruled out (as will always be the case), a sequence of instantons in MzpW,S;αq

which does not have a convergent subsequence does have a subsequence that eventually lies
in the image of one of the types of gluing maps described above.
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The moduli spaces M`
z pW,S;αq which contain broken trajectories are topologized as

follows. Let a “ prAs, rB1s, . . . , rBl´1sq P M`
z pW,S;αq be a broken trajectory of the

first type considered above, where rAs is an instanton on pW,Sq and rBis on R ˆ pY,Kq,
with all limits irreducible. Then any neighborhood N of a P M`

z pW,S;αq contains the
image under the gluing map of U ˆ pT,8q ˆ U1 ˆ ¨ ¨ ¨ ˆ pT,8q ˆ Ul´1 for some T " 0
depending on N , and neighborhoods U and Ui of rAs and rBis in their respective moduli
spaces, which also depend on N . The other cases are similar. Note that the gluing parameter
factors involved in breakings at reducibles are forgotten in the completion of M`

z pW,S;αq.
Furthermore, if bubbling does not occur, then M`

z pW,S;αq is compact.
The above summary relies on a substantial amount of technical work which is by now

standard or treated elsewhere. Gluing theory in instanton theory began with Taubes [Tau82],
and Floer developed the case of R ˆ Y with Y an integer homology 3-sphere in his original
construction of instanton homology [Flo88]. In the singular setting, the machinary developed
in [KM11b], which also references [KM07], handles the cases in which reducibles can
be avoided, and also describes the conditions under which bubbling occurs. The results
are similar to the case of non-singular instanton homology as treated in [Don02, 4.4,5.1].
The cases involving breaking at reducibles are also analogous to the non-singular case as
in [Don02, 4.4.1] and [Frø02, Theorem 5], except that instances of SOp3q (the stabilizer
of the reducible) are replaced by S1. All of the above fits into the general framework of
unobstructed gluing theory.

2.8 Counting critical points

In the non-singular SUp2q gauge theory setting, Taubes showed in [Tau90] that the signed
count of (perturbed) irreducible flat connections on an integer homology 3-sphere is equal
to 2λpY q, twice the Casson invariant. Here “signed count” means that a critical point α is
counted with sign p´1qgrpαq where grpαq is defined analogously to (2.18). In the singular
setting, we have the following, which is essentially a special case of a result due to Herald
[Her97], which followed the work of Lin [Lin92].

Theorem 2.36 (cf. Theorem 0.1 of [Her97]). Let Y be an integer homology 3-sphere and
K Ă Y a knot. Suppose π is a small perturbation such that Cπ is non-degenerate. Then

ÿ

αPCirr
π

p´1qgrpαq “ 4λpY q `
1

2
σpKq (2.37)

where λpY q is the Casson invariant of Y and σpKq is the signature of the knot K Ă Y .

As our setup is different from Herald’s, we explain how the work in [Her97] implies
Theorem 2.36. Suppose, as in the statement, that π is a small perturbation such that Cπ is
non-degenerate. In particular, Cirr

π is a finite set. Let α1, α2 P Cirr
π and write αi “ rBis. The

orientation, or sign, associated to αi is determined by the parity of grpαiq. In particular, the
signs for the two critical points α1 and α2 agree if and only if

grpα1q ´ grpα2q ” grpα1, α2q ” indpDAq mod 4
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is even. HereA is a connection on the cylinder RˆY with limitsB1 andB2, as in Subsection
2.5. In fact, we may arrange that the operator DA is of the form B

Bt `DBptq, where Bptq is a
path of connections R Ñ C pY,Kq equal to B1 and B2 for t ! 0 and t " 0, respectively,
and DB is the extended Hessian of CS ` fπ at B. It is well-known, in this situation, that
indpDAq is equal to the spectral flow of the path of operators DBptq.

Now, consider a closed tubular neighborhoodN Ă Y of the knotK, which as an orbifold
is isomorphic to the pair pS1 ˆD2, S1q. Extend the reduction of the bundle E|K “ L‘ L˚

over N . We may assume that π is compactly supported. In particular, we may assume
that N is chosen small enough so that π is supported on Y zN . The boundary of N is
a 2-torus. Write MBN for the moduli space of flat Up1q connections on L|BN , which is
naturally identified with the dual torus of BN . The torus MBN is a 2-fold branched cover
over the moduli space of flat SUp2q connections on E|BN .

Let S Ă MBN be the embedded circle consisting of flat connections which are trace
free at the meridian of K. Let Y ˝ be the closure of Y zN . Denote by

Mirr
Y ˝ Ă MBN

the image of the moduli space of π-perturbed flat irreducible connections on E|Y ˝ which
preserve the Up1q bundle L Ă E|BN . After perhaps changing our small perturbation π, we
can assume that Mirr

Y ˝ is immersed in MBN and also that Mirr
Y ˝ intersects S transversely,

away from self-intersection points of Mirr
Y ˝ . We orient these manifolds as in [Her97].

Proposition 2.38. Let αi “ rBis P Cirr
π for i “ 1, 2. As points in Mirr

Y ˝ X S Ă MBN , the
local orientations for α1 and α2 agree if and only if the spectral flow of DBptq is even.

A proof of Proposition 2.38 follows by essentially repeating the proof of Proposition
7.2 in [Her97], which itself is a modification of Proposition 5.2 from [Tau90]. In the proof
of Proposition 7.2 in [Her97], the spectral flow of DBptq is related to data on Y ˝ and N
by analyzing a Mayer–Vietoris sequence of Fredholm bundles. While Proposition 7.2 in
[Her97] treats the case of flat connections with trivial holonomy around meridians of K, so
that N is instead, as an orbifold, simply S1 ˆD2, the argument easily adapts to our situation.

The main result of [Her97], Theorem 0.1, with α “ π{2, tells us that the intersection
number Mirr

Y ˝ ¨ S is equal, up to a sign ˘ which depends on our conventions, to the
quantity ˘p4λpY q ` 1

2σpKqq. Together with Proposition 2.38, this implies equation (2.37)
of Theorem 2.36 up to the ambiguity ˘. An adaptation of [Her97, Lemma 7.5] shows that
the sign ˘ is universal, i.e. independent of pY,Kq. Finally, we determine that the sign is in
fact ` by computing a non-trivial example, see e.g. Subsection 9.3.

2.9 Orienting moduli spaces

In this subsection, we fix our conventions for the orientation of ASD moduli spaces based on
[KM11b]. A similar discussion about the orientation of moduli spaces in the non-singular
case appears in [Don02, Section 5]. For any cobordism of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q,
and a path z along pW,Sq between the critical points α, α1 for Y , Y 1, the moduli space

29



MzpW,S;α, α1q is orientable. In fact, the index of the family of ASD operators DA associ-
ated to connections rAs P BzpW,S;α, α1q determines a trivial line bundle lzpW,S;α, α1q

on BzpW,S;α, α1q and the restriction of this bundle to MzpW,S;α, α1q is the orientation
bundle of the moduli space MzpW,S;α, α1q.

In the case that either α or α1 is reducible, we may form a variation of the bundle
lzpW,S;α, α1q. For example, in the case that α “ θ, we may change the definition of the
weighted Sobolev spaces of the domain and codomain of the ASD operator by allowing
exponential growth for an exponent ε rather than the exponential decay condition that we
used earlier. If ε is non-zero and small enough, then this new ASD operator is still Fredholm
and its index is independent of ε. Thus when α1 is irreducible, we have two choices of
determinant line bundles, both trivial, denoted by lzpW,S; θ´, α

1q and lzpW,S; θ`, α
1q,

depending on whether we require exponential decay or exponential growth. We use a similar
notation in the case that α1 is reducible.

We denote the set of orientations of the bundle lzpW,S;α, α1q by ΛzrW,S;α, α1s, which
is a Z{2-torsor. For a composite cobordism, there is a natural isomorphism:

Φ : Λz1rW1, S1;α, α
1s bZ{2Z Λz2rW2, S2;α

1, α2s Ñ Λz2˝z1rW2 ˝W1, S2 ˝ S1;α, α
2s.

In the case that α1 is reducible, we require that one of the appearances of α1 in the domain
of Φ is θ`, and the other θ´. The isomorphism Φ is associative when we compose three
cobordisms. Moreover, there is also a natural isomorphism between ΛzrW,S;α, α1s and
Λz1rW,S;α, α1s for any two paths z, z1 from α to α1 and this isomorphism is compatible
with Φ. This allows us to drop z from our notation for ΛzrW,S;α, α1s. We also drop pW,Sq

from our notation whenever the choice of pW,Sq is clear from the context.
For a cobordism of pairs pW,Sq, an element in ΛrW,S; θ´, θ

1
´s is identified with an ori-

entation of the determinant line lzpW,S; θ´, θ
1
´q over any connection in the homotopy class

of paths z. Assuming S is oriented andA0 represents a reducible element of BzpW,S; θ, θ1q,
this line may be identified as follows:

lzpW,S; θ´, θ
1
´q|rA0s – ^toppH1pW q ‘H`pW q˚ ‘H0pW q˚q. (2.39)

This holds because the connection Aad
0 decomposes into a trivial connection on a trivial real

line bundle and an S1-connection on a complex line bundle L0. The index of the operator
DA0 decomposes accordingly. The contribution from L0 can be oriented canonically as it is
a complex vector space, and the orientation of the contribution from the trivial line bundle
can be identified with the right hand side of (2.39). Similarly, we have an isomorphism

lzpW,S; θ`, θ
1
´q|rA0s – ^toppH1pW q ‘H`pW q˚q. (2.40)

A homology orientation for pW,Sq is defined to be an element of ΛrW,S; θ`, θ
1
´s, which

by (2.40) amounts to an orientation of the vector space

H1pW q ‘H`pW q.

In particular, if pW,Sq is a negative definite pair, we may take A0 to be the unique flat
reducible on pW,Sq, and we have a canonical element of ΛrW,S; θ`, θ

1
´s.
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Changing the orientation of S changes the orientation of the trivial real line bundle and
dualizes the complex line bundle L0. In particular, the identifications in (2.39) and (2.40)
change sign respectively according to the parities of d` d1 ´ 1 and d` d1, where:

d “ b1pW q ´ b`pW q, d1 “
indpDA0q ´ d` 1

2

In the case that pW,Sq is a negative definite pair and A0 is the unique flat reducible, then the
identification in (2.39) changes by a sign whereas the identification in (2.40) is preserved. In
particular, the canonical homology orientation is independent of the orientation of S.

Given pY,Kq and α P Cπ, let Λrαs :“ ΛrI ˆ Y, I ˆ K;α, θ´s if α is irreducible, and
Λrαs :“ ΛrI ˆ Y, I ˆK; θ`, θ´s if α “ θ. From the discussion in the previous paragraph,
because the cobordism pI ˆ Y, I ˆ Kq has b1 “ b` “ 0, it has a canonical homology
orientation, and there is thus a canonical element of Λrθs. We use this canonical choice
whenever we need an element from this set.

Given a homology orientation oW for pW,Sq and oα P Λrαs and oβ P Λrβs, we can fix
opW,S;α,α1q P ΛrW,S;α, α1s, and hence an orientation of MzpW,S;α, α1q, by requiring:

Φpoα b oW q “ ΦpopW,S;α,α1q b oα1q.

As a special case, we may apply this rule to orient a cylinder moduli space Mzpα1, α2q from
the data of oα1 P Λrα1s and oα2 P Λrα2s. Let τs be the translation on R ˆ Y defined by
τspt, yq “ pt´ s, yq. Then τs acts on Mzpα1, α2q by pull-back, and the identification

Mzpα1, α2q “ R ˆ M̆zpα1, α2q (2.41)

is such that the action of τs is by addition by s on the R-factor. Then we may orient
M̆zpα1, α2q using an orientation of Mzpα1, α2q, and requiring that the identification (2.41)
is orientation-preserving, with the ordering of factors as written.
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3 Instanton Floer homology groups for knots

In this section we introduce instanton homology groups for based knots in integer homology
3-spheres. Although we first introduce an analogue of Floer’s instanton homology for
homology 3-spheres, our main object of interest is a “framed” instanton homology, or rather
its chain-level manifestation, analogous to Donaldson’s theory for homology 3-spheres in
[Don02, Section 7.3.3]. The framed theory incorporates the reducible critical point and
certain maps defined via holonomy.

3.1 An analogue of Floer’s instanton homology for knots

Let pY,Kq be an integer homology 3-sphere with an embedded knot, as in Section 2. We
now also choose an orientation of the knot K, which will be required for some of the later
constructions. Equip Y with a Riemannian metric go with cone angle π along K. Choose a
holonomy perturbation as in Propositions 2.6 and 2.12, so that the critical set Cπ “ tθuYCirr

π

is a finite set of non-degenerate points, and the moduli spaces Mpα1, α2q are all regular. We
define C “ CpY,Kq to be the free abelian group generated by the irreducible critical set:

CpY,Kq “
à

αPCirr
π

Z ¨ α. (3.1)

The mod 4 grading grpαq of (2.18) gives C the structure of a Z{4-graded abelian group. As
usual, the grading will be indicated as a subscript, C˚ “ C˚pY,Kq, but is often omitted.

The differential d on the group C˚ is defined as follows:

dpα1q “
ÿ

α2PCirr
π

grpα1,α2q”1

#M̆pα1, α2q0 ¨ α2. (3.2)

In the sequel we depict the map d by an undecorated cylinder which should be thought
of as I ˆK. By Propositions 2.14 and 2.15, the moduli space M̆pα1, α2q0 is a finite set of
points. The coefficient #M̆pα1, α2q0 is a signed count of these points. More precisely, we
may more invariantly define the chain group to be

CpY,Kq “
à

αPCirr
π

ZΛrαs (3.3)

where ZΛrαs is the rank 1 free abelian group with generators the elements of Λrαs and the
relation that the sum of the two elements in Λrαs is equal to zero. Recall that Λrαs is defined
in Subsection 2.9. A choice of an element in each Λrαs identifies (3.3) with (3.1). Then,
given oα1 P Λrα1s and oα2 P Λrα2s, the moduli space M̆pα1, α2q0 is oriented using the
rules given in Subsection 2.9, and #M̆pα1, α2q0 is the count of this oriented 0-manifold.

Now pCpY,Kq, dq is a chain complex, as follows from the usual argument by virtue of
Propositions 2.14, 2.15 and 2.21. Specifically, the boundary of a compactified 1-dimensional
moduli space M̆`pα1, α2q1 consists of the components M̆`pα1, βq0 ˆ M̆`pβ, α2q0. The
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relation d2 “ 0 is depicted as “ 0. Although not reflected in the notation,
CpY,Kq and d depend on the choices of metric go and perturbation π. Define

I˚pY,Kq “ H˚pCpY,Kq, dq.

Then IpY,Kq is a Z{4-graded abelian group. We call IpY,Kq the irreducible instanton
homology of pY,Kq, as it only takes into account the irreducible critical points of the Chern-
Simons functional. It is a singular, or orbifold, analogue of Floer’s Z{8-graded instanton
homology IpY q for homology 3-spheres from [Flo88].

Now suppose we have a cobordism of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q with metric
and perturbations compatible with ones chosen for the boundaries. Suppose further that our
cobordism pW,Sq is a negative definite pair in the sense of Definition 2.33. Then we have a
map λ “ λpW,Sq : CpY,Kq Ñ CpY 1,K 1q defined by

λpαq “
ÿ

α1PCirr
π1

grpW,S;α,α1q”0

#MpW,S;α, α1q0 ¨ α1

where Cπ and Cπ1 are the corresponding critical sets, and α P Cirr
π . More precisely, using the

complexes (3.3), we orient MpW,S;α, α1q0 using oα P Λrαs and oα1 P Λrα1s as described
in Subsection 2.9, and #MpW,S;α, α1q0 is defined using this orientation. Note that because
b1pW q “ b`pW q “ 0, we have a canonical homology orientation of pW,Sq.

Although the map λ in general depends on the metric and perturbations, we have omitted
these dependencies from the notation. We depict the map λ by an undecorated picture of S,
given for example by . Write d1 for the differential of CpY 1,K 1q. Then we have

d1 ˝ λ´ λ ˝ d “ 0

with the two terms representing factorizations and correspond-
ing to the boundary points of M`pW,S;α, α1q1 from MpW,S;α, β1q0 ˆ M̆pβ1, α1q0 and
M̆pα, βq0 ˆMpW,S;β, α1q0 respectively.

We mention three standard properties of these cobordism maps. First, the composition of
two cobordism maps is chain chomotopic to the map associated to the composite cobordism.
That is, if we write pW,Sq “ pW2 ˝W1, S2 ˝ S1q, then there exists ϕ such that

λpW2,S2q ˝ λpW1,S1q ´ λpW,Sq “ d ˝ ϕ´ ϕ ˝ d (3.4)

where on the composite cobordism W one takes the composite metric and perturbation data.
The second property is similar: there is a chain homotopy between two cobordism maps
λpW,Sq that are defined using different perturbation and metric data on the interior of W .
Finally, the third property says that if pW,Sq : pY,Kq Ñ pY,Kq is diffeomorphic to a
cylinder with equal auxiliary data at the ends, then λpW,Sq is chain homotopic to the identity
map on CpY,Kq. The chain homotopy in (3.4) is defined by counting isolated points in the
moduli space of G-instantons, where G is a 1-parameter family of metrics with perturbations
interpolating between the composite auxiliary data on W` and the result of stretching W`

along the 3-manifold at which W1 and W2 are glued. The other two properties are proven
similarly. See e.g. [Don02, Section 5.3].
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Remark 3.5. In the verification of equation (3.4) it is important that there is only one
reducible and that it remains unobstructed and isolated in the moduli space of G-instantons,
where G is the 1-parameter family of auxiliary data. This follows from our assumption that
the cobordisms are negative definite pairs and the discussion in Subsection 2.7. This is in
contrast to the analogous situation in Seiberg–Witten theory for 3-manifolds, where in the
same situation one might encounter degenerate reducibles. ˛

We write IpW,Sq : IpY,Kq Ñ IpY 1,K 1q for the map induced by λpW,Sq on homology.
Following [Don02, Section 5.3], the above properties imply that IpY,Kq is an invariant of
pY,Kq, i.e., its isomorphism class does not depend on the metric and perturbation chosen
to define CpY,Kq. Along with Theorem 2.36, we obtain the following result, stated as
Theorem 1.3 in the introduction.

Theorem 3.6. Let Y be an integer homology 3-sphere and K Ă Y a knot. Then the Z{4-
graded abelian group I˚pY,Kq is an invariant of the equivalence class of the knot pY,Kq.
The euler characteristic of the irreducible instanton homology I˚pY,Kq is

χ pI˚pY,Kqq “ 4λpY q `
1

2
σpKq.

where λpY q is the Casson invariant and σpKq is the knot signature.

3.2 The operators δ1 and δ2

The chain complex pC, dq is defined only using irreducible critical points. To begin in-
corporating the reducible flat connection, we define two chain maps δ1 : C1 Ñ Z and
δ2 : Z Ñ C´2, analagous to maps defined in the non-singular setting using the trivial
connection, see [Frø02] and [Don02, Ch. 7]. We define

δ1pαq “ #M̆pα, θq0, δ2p1q “
ÿ

αPCirr
π

grpαq”2

#M̆pθ, αq0.

More precisely, the signs of these maps are defined, using the complexes (3.3), as follows.
The map δ1 is straightforward: a choice oα P Λrαs in the chain complexCpY,Kq determines
an orientation of Mpα, θq0 and hence of M̆pα, θq0 as described in Subsection 2.9, and
#M̆pα, θq0 is defined by using this orientation. For δ2, we use the following rule. Given
oα P Λrαs, the moduli space Mpθ, αq0 obtains an orientation o1 by requiring that

Φpo1 b oαq P ΛrI ˆ Y, I ˆK; θ´, θ´s (3.7)

is the negative of the preferred element in this set. (Our particular choice of convention is not
important, but gives the signs that we use in our relations below.) Then M̆pθ, αq0 is oriented
from Mpθ, αq0 as in Subsection 2.9, from which #M̆pθ, αq0 is defined.
Remark 3.8. Recall that elements in the set appearing in (3.7) may be identified with
orientations of (2.39) upon setting pW,Sq “ pI ˆ Y, I ˆ Kq. From the discussion there,
a preferred orientation depends on the orientation of S “ I ˆ K. This is the first point at
which we use our chosen orientation of K. ˛
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Just as in the non-singular case, see [Don02, Section 7.1], we have the chain relations

δ1 ˝ d “ 0, d ˝ δ2 “ 0, (3.9)

which follow by counting the boundary points of 1-manifolds of the form M̆`pα1, α2q1

where one of α1 or α2 is the reducible θ. We depict δ1 and δ2 as and respectively,
placing a dot at the end of the cylinder that has a reducible flat limit. Then the relations in
(3.9) are “ 0 and “ 0, respectively.

Now suppose pW,Sq : pY,Kq Ñ pY 1,K 1q is a cobordism of pairs. Then we define
maps ∆1 “ ∆1,pW,Sq : CpY,Kq Ñ Z and ∆2 “ ∆2,pW,Sq : Z Ñ CpY 1,K 1q as follows:

∆1pαq “ #MpW,S;α, θ1q0, ∆2p1q “
ÿ

α1PCirr
π1

grpW,S;θ,α1q”0

#MpW,S; θ, α1q0.

The signed counts are determined as follows. Identify the chain complexes as generated
by orientations as in (3.3). First, for the map ∆1, an element oα P Λrαs determines an
orientation o1 of the moduli space MpW,S;α, θ1q0 by the requirement

Φpoα b oW q “ o1

where oW is the canonical homology orientation of pW,Sq. Next, for ∆2, we define an
orientation o1 of MpW,S; θ, α1q0 given oα1 P Λrα1s by requiring that

Φpo1 b oα1q P ΛrW,S; θ´, θ
1
´s

is the canonical element. Note that this rule for ∆2 depends on the orientation of S, just as
when we defined the orientation rule for δ2.

The maps ∆1 and ∆2 are depicted by placing dots at the appropriate ends of a picture
for S, e.g. and . The following is an analogue of [Frø02, Lemma 1].

Proposition 3.10. Suppose pW,Sq : pY,Kq Ñ pY 1,K 1q is a negative definite pair. Then

(i) ∆1 ˝ d` δ1 ´ δ1
1 ˝ λ “ 0,

(ii) d1 ˝ ∆2 ´ δ1
2 ` λ ˝ δ2 “ 0.

Proof. Consider (i). This relation can be verified by counting the ends of the 1-dimensional
moduli space MpW,S;α, θ1q1. Studying the ends of such moduli spaces relies on the on
the compactness and gluing theory of the moduli spaces of singular instantons, which were
reviewed in Subsection 2.7. There are three types of ends in this moduli space. The first two
types are cylinders on components of M̆pα, βq0 ˆMpW,S;β, θ1q0 and MpW,S;α, β1q0 ˆ

M̆pβ1, α1q0, corresponding to instantons approaching trajectories that are broken along
irreducible critical points. Counting these contributions gives ∆1 ˝ dpαq ´ δ1

1 ˝ λpαq.
The third type of end in MpW,S;α, θ1q1 consists of singular instantons which factorize

into an instanton rAs P M̆pα, θq0 grafted to a reducible instanton on pW,Sq. The condition
that pW,Sq is a negative definite pair implies that there is a unique such reducible connection
class, and by our discussion in Subsection 2.7 it is unobstructed, so that the standard gluing
theory applies. This third type of end thus contributes the term δ1pαq.

The proof of (ii) is similar.
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Figure 1: The relations (i) (left) and (ii) (right) of Proposition 3.10 .

Remark 3.11. The verification of the signs in the above relations is straightforward given our
conventions for orienting moduli spaces. The argument is similar, for example, to the proof
of [KM07, Proposition 20.5.2]. The same remark holds for the relations that appear below. ˛

For a depiction of the relations in Proposition 3.10, see Figure 1. A shaded picture such
as is to be understood as representing a reducible singular instanton, and as a map
sends the reducible to the reducible, each represented by a dot, as before.

3.3 Holonomy operators and v-maps

In this section we describe maps that are obtained by taking the holonomies of instantons
along an embedded curve γ Ă S, see e.g. [KM11a, Section 2.2]. We treat the following
cases: (i) γ is a closed loop and pW,Sq is a negative definite pair; (ii) pW,Sq and γ are
cylinders, i.e. pW,Sq “ pI ˆ Y q and γ “ I ˆ tyu, which yields the v-map; and (iii) γ is a
properly embedded interval intersecting both ends of a negative definite pair pW,Sq.

3.3.1 The case of closed loops

Consider a negative definite pair pW,Sq : pY,Kq Ñ pY 1,K 1q and an associated configu-
ration space BpW,S;α, α1q where α and α1 are irreducible critical points for pY,Kq and
pY 1,K 1q, respectively. Let γ be a closed loop lying on the interior of the surface S. Suppose
νS denotes the S1-bundle associated to the normal bundle of S and fix a trivialization of
this bundle over γ. Given rAs P BpW,S;α, α1q, the adjoint connection Aad can be used to
define an S1-connection over γ, as described in the following paragraph.

The boundary of an ε tubular neighborhood of S in W is naturally isomorphic to the
S1-bundle νS over S, and by pulling back we obtain a connection Aad

ε on νS . The limit of
these connections as ε goes to zero defines a connection Aad

0 on νS such that the curvature of
Aad

0 has the fiber of νS in its kernel. Fixing an orientation for the fiber of νS (or equivalently
an orientation for S) determines an S1-reduction of this bundle over νS . In particular, the
holonomy of this connection along a lift of γ to νS , given by the trivialization of νS over γ,
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defines a map which depends only on the gauge equivalence class of A:

hγαα1 : BpW,S;α, α1q ÝÑ S1. (3.12)

Note that to make sense of the holonomy, we must choose a basepoint, an orientation of the
loop γ, an orientation of the fiber of νS and a lift of γ to νS . As S1 is abelian, the map hγαα1

is independent of the choice of basepoint defining the holonomy around γ. If we change the
orientation of γ, then hγαα1 is post-composed with the conjugation S1 Ñ S1. Changing the
orientation of S has the same effect. Finally, changing the chosen lift of γ would multiply
hγαα1 by ˘1.

Remark 3.13. In the sequel, we slightly abuse the description of this holonomy map by
saying that we take the holonomy of Aad along γ, and do not refer to the limiting process. ˛

Using this holonomy map we define µ “ µpW,S,γq : CpY,Kq Ñ CpY 1,K 1q by:

µpβ1q “
ÿ

α1PCirr
π1

grpW,S;α,α1q”1

deg
`

hγαα1 |MpW,S;α,α1q1

˘

¨ α1

This deserves some explanation, as the moduli space MpW,S;α, α1q1 is in general not
compact. The boundary components of the compactified moduli space M`pW,S;α, α1q1

come from two types of factorizations:

M̆pα, βq0 ˆMpW,S;β, α1q0,

MpW,S;α, β1q0 ˆ M̆pβ1, α1q0.

As each of the maps hγβα1 and hγαβ are defined on 0-dimensional moduli spaces and transverse
to some generic h P S1, the preimage phγαα1q

´1phq restricted to MpW,S;α, α1q1 is sup-
ported on the interior of M`pW,S;β1, β2q1. We may then define degphγαα1 |MpW,S;α,α1q1q to
be the oriented count of this preimage. We depict the map µ by a picture of the surface S
containing the closed loop γ, such as .

Let us be more precise about our sign conventions for µ. As usual, when determining
signs, our complexes are given by (3.3). The moduli space MpW,S;α, α1q1 is then oriented
from oα P Λrαs and oα1 P Λrα1s as described in Subsection 2.9. In this paper, we use the
convention that if f : M Ñ N is a smooth map of oriented manifolds with regular value
y P N , then f´1pyq is oriented by the normal-directions-first convention. This orients the
submanifold phγαα1q

´1phq Ă MpW,S;α, α1q1.
Now consider a holonomy map hγαα1 restricted to a 2-dimensional spaceMpW,S;α, α1q2.

The codimension-1 faces of M`pW,S;α, α1q2 are

M̆`pα, βqi´1 ˆM`pW,S;β, α1q2´i,

M`pW,S;α, β1q2´i ˆ M̆`pβ1, α1qi´1
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Figure 2: On the left is depicted relation (3.14); on the right, the relation of Proposition 3.16.

where i P t1, 2u. Consider the 1-manifold phγαα1q
´1phq Ă M`pW,S;α, α1q2. Again,

because γ is supported on the interior of S, this 1-manifold is supported away from the
codimension-1 faces with i “ 2. Counting the contributions from i “ 1 gives the relation

d ˝ µ´ µ ˝ d “ 0, (3.14)

showing that µ is a chain map. See Figure 2.

3.3.2 The case of a cylinder: the v-map

We move on to the cases in which γ is not closed. We first consider the case of the cylinder
R ˆ pY,Kq. The output of the construction is a degree ´2 (mod 4) endomorphism on
C˚ “ C˚pY,Kq. Choose a basepoint y P K and a lift of each α P Cirr

π to C pY,Kq once and
forever. Following a similar construction as above, we obtain a translation-invariant map

hα1α2 : BpY,K;α1, α2q ÝÑ S1

for each pair of irreducible critical points αi P Cirr
π on pY,Kq. To be more detailed, we define

BpY,K;α1, α2q using the chosen lifts of α1 and α2, and for a given rAs P BpY,K;α1, α2q,
the holonomy of Aad along R ˆ tyu determines hα1α2prAsq. (A lift of αi’s to the space of
framed connections rBpY,Kq suffices for the definition of hα1α2 .) The induced map hα1α2

on M̆pα1, α2qd extends to the moduli space of unparametrized broken trajectories which
break along irreducible critical points, and on the codimension-1 faces M̆`pα1, βqi´1 ˆ

M̆`pβ, α2qd´i with β irreducible, factors accordingly as hα1β ¨ hβα2 .
For hα1α2 to be well-defined we also require that meridians have preferred directions;

this is true because the knot K is oriented. Changing the orientation of K alters hα1α2 by
post-composition with the conjugation map S1 Ñ S1.

To define a well-behaved map on C˚ in this situation, in general we must modify the
above holonomy maps, similar to what is done in [Don02]. In particular, we define maps

Hα1α2 : M̆pα1, α2qd ÝÑ S1

by modifying the maps hα1α2 near broken trajectories. Since we need these modified
holonomy maps only for moduli spaces of up to dimension 2, we may assume that d ď 2.
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The maps Hα1α2 extend to unparametrized broken trajectories which break along irreducible
critical points, and satisfy the following properties.

(H1) Hα1α2 “ 1 if the dimension d of the unparametrized moduli space M̆pα1, α2qd on
which Hα1α2 is defined is equal to zero.

(H2) For a given sequence of instantons rBis in M̆pα1, α2qd converging to a broken instanton
prBs, rB1sq P M̆pα1, βqi´1 ˆ M̆pβ, α2qd´i where β is an irreducible critical point, the
holonomies Hα1α2pBiq converge to the product Hα1βpBq ¨Hβα2pB1q.

(H3) If grpα1q ” 1 and grpα2q ” 2, there is an end of M̆pα1, α2q2, corresponding to
trajectories broken along the reducible θ, which by standard gluing theory can be
identified with M̆pα1, θq0 ˆ S1 ˆ Rą0 ˆ M̆pθ, α2q0. We require that the restriction
of Hα1α2 to M̆pα1, θq0 ˆ tT u ˆ S1 ˆ M̆pθ, α2q0 for some (and hence any) T P Rą0

is a degree 1 map on each circle component.

The unmodified holonomy maps hα1α2 satisfy the properties (H2) and (H3) but do not
necessarily satisfy (H1). The modified holonomy maps are constructed in a way that is
inspired by what is done in [Don02, Section 7.3.2]. See Appendix A for details on the
contruction of the modified holonomy maps Hα1α2 which satisfy (H1)–(H3).

We may now define an operator v : C˚ Ñ C˚´2 as follows:

vpα1q “
ÿ

α2PCirr
π

grpα1,α2q”2

deg
´

Hα1α2 |M̆pα1,α2q1

¯

¨ α2 (3.15)

The degree may be computed by taking the preimage of a generic h P S1zt1u. By property
(H1), such a preimage is supported away from the ends of M̆pα1, α2q1, and generically is
a finite set of oriented points. The expression degpHα1α2 |M̆pα1,α2q1

q is defined to be the
signed count of these points.

The following proposition is a singular instanton analogue of [Don02, Proposition 7.8]
and [Frø02, Theorem 4], and its proof is analogous. The main difference is that SOp3q,
which in the non-singular setting plays both the role of the stabilizer of the trivial connection
and the codomain of the (adjoint) holonomy maps, is replaced in the singular setting by S1.

Proposition 3.16. d ˝ v ´ v ˝ d´ δ2 ˝ δ1 “ 0.

Proof. Consider the 1-dimensional moduli space

M :“ trAs P M̆pα1, α2q2 : Hα1α2prAsq “ hu

for some generic h P S1zt1u. Studying the ends of M will lead to the desired relation.
As the dimension of Mpα1, α2q3 is 3, there is no bubbling, and M̆`pα1, α2q2 is compact.
Thus an end of M contains a sequence of instantons that approaches an unparametrized
broken trajectory a “ prA1s, . . . , rAl´1sq where l ě 3, rAis P M̆pβi, βi`1qdi and β1 “ α1,
βl “ α2. By index additivity and dimension considerations, l ď 4.

First suppose that each βi is irreducible. Then Hα1α2 factors as
śl´1

i“1Hβiβi`1
near a, as

follows inductively from property (H2) above. If l “ 4, then each rAis is of index 1, and
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since Hβiβi`1
“ 1 for such instantons by property (H1), this case does not occur. From now

on we may assume l “ 3, so that a “ prA1s, rA2sq. Write β “ β2.
Suppose rA1s is of index 1 and rA2s of index 2, i.e. a P M̆pα1, βq0 ˆ M̆pβ, α2q1. For

these types of breakings, consider a corresponding gluing map

ψβ : M̆pα1, βq0 ˆ Rą0 ˆ M̆pβ, α2q1 Ñ M̆pα1, α2q2

which is a diffeomorphism onto its image. Let Nβ
0,1 Ă M be the image of this map, with

Rą0 restricted to some pT,8q, intersected with M . Here and in what follows, T ą 0 is
some large generic number to be specified later. Consider the map

f : M̆pα1, βq0 ˆ M̆pβ, α2q1 Ñ S1

given by fprA1s, rA2sq “ Hα1α2pψβprA1s, T, rA2sqq. With T generically chosen, h is
a regular value of f . Then f´1phq consists of the boundary points of MzNβ

0,1 that are

adjacent to Nβ
0,1. Taking T Ñ 8 and using (H2), f is homotopic to prA1s, rA2sq ÞÑ

Hα1βpA1qHβα2pA2q. For rA1s fixed, this latter map has the same degree as Hβα2 , which is
˘xvpβq, α2y. There are ˘xdpα1q, βy many choices for rA1s P M̆pα1, βq0. Ranging over all
possibilities for β, and using our orientation conventions, we find that the total number of
boundary points of this type is given by ´xvdpα1q, α2y.

For breakings where instead rA1s is of index 2 and rA2s of index 1, we define a corre-
sponding subset Nβ

1,0 Ă M using the image of a gluing map and intersecting with M . A
similar argument to the above shows that the number of boundary points in this situation,
again ranging over all relevant irreducible β, is given by xdvpα1q, α2y.

There is also the case in which there is a sequence of instantons in M approaching
an unparametrized broken trajectory a “ prA1s, rA2sq that factors through the reducible θ.
Such a sequence eventually lies in the image of a gluing map

ψθ : M̆pα1, θq0 ˆ S1 ˆ Rą0 ˆ M̆pθ, α2q0 Ñ M̆pα1, α2q2

Let N θ be the image of this map, with Rą0 restricted to the interval pT,8q, intersected with
the moduli space M . Consider the boundary points of MzN θ that are adjacent to N θ. These
are in pf 1q´1phq where

f 1 : M̆pα1, θq0 ˆ S1 ˆ M̆pθ, α2q0 Ñ S1

is defined by f 1prA1s, rA2sq “ Hα1α2pψθprA1s, g, T, rA2sqq. Using (H3), the map f 1 is
homotopic to a map which for each point in M̆pα1, θq0 ˆ M̆pθ, α2q0 restricts to a degree 1
map S1 Ñ S1. The number of boundary points, using our orientation conventions, is equal
to ´xδ2δ1pα1q, α2y.

Now consider M 1, the complement in M of the open sets Nβ
0,1, Nβ

1,0, N θ defined above,
where β ranges over irreducible critical points with appropriate index in each case. We
choose T large enough so that these open sets are disjoint, and generic so that M 1 is a 1-
manifold with boundary. By the discussion in Subsection 2.7, M 1 is compact. The boundary
points have been counted above, and yield the desired relation. This completes the proof.
The three types of factorizations are depicted in Figure 2.
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Remark 3.17. Ideally, the compactified moduli space would have the structure of a smooth
manifold with corners near broken trajectories, induced by the natural compactifications of
the domains of the gluing maps. In the above proof, we would then define a smooth manifold
with boundary M` Ă M̆`pα1, α2q2 and simply count its boundary points. (Technically, in
this strategy, we would also modify our compactification to include gluing parameters for
reducibles.) However, proving that the compactified moduli space indeed has such structure
is a technical issue which also arises in other Floer theories, and we would like to avoid it.
This is why, in the above proof, we consider a truncation of the moduli space to obtain a
compact manifold with boundary. A similar approach is employed in [SS10]. In the sequel,
we will often ignore this subtlety, with the understanding that one should always really
truncate the moduli spaces as done in the proof above. ˛

Remark 3.18. By properties (H1) and (H2), the map Hα1α2 is defined on the compactified
1-manifold M̆`pα1, α2q1 and sends the boundary components M̆pα1, βq0 ˆ M̆pβ, α2q0 to
the identity 1 P S1. Thus Hα1α2 descends to a map M Ñ S1, where M is the disjoint
union of circles obtained by identifying the boundary points of M̆`pα1, α2q1 in pairs. Then
the degree of Hα1α2 appearing in (3.15) is nothing more than the degree of M Ñ S1. In
particular, this shows that the map v : C˚ Ñ C˚´2 is independent of the choice of h P S1.
Changing the choice of modified holonomy maps will alter v by a chain homotopy. The
proof is a standard continuation map argument. See also Theorem 3.34 below. ˛

Remark 3.19. Our construction of v depends on the orientation of K. If the orientation is
reversed, then v changes sign. Similar remarks hold for δ2, following Remark 3.8. However,
the maps d and δ1 do not depend on the orientation of K. It follows that the relation of
Proposition 3.16 is invariant under orientation-reversal of K. ˛

3.3.3 Curves with boundary in cobordisms

Now consider any negative definite pair pW,Sq : pY,Kq Ñ pY 1,K 1q. We assume that γ
is an embedded interval in pW,Sq with its boundary intersecting both pY,Kq and pY 1,K 1q.
Denote by p P K and p1 P K 1 the boundary points of γ in S. Recall that W` is obtained
from W by attaching cylindrical ends p´8, 0s ˆ Y and r0,8q ˆ Y 1, and S` is obtained
from S similarly, by attaching p´8, 0s ˆK and r0,8q ˆK 1. We extend γ to a non-compact
curve γ` Ă S` by attaching p´8, 0s ˆ tpu and r0,8q ˆ tp1u. We obtain a map

hγαα1 : BpW,S;α, α1q ÝÑ S1

by taking as before the holonomy of the adjoint connection Aad along γ` compatible with
the S1 reduction of the bundle along S`. Modified holonomy maps Hγ

αα1 of Appendix A
give

µpαq “
ÿ

α1PCirr
π1

grpW,S;α,α1q”1

deg
`

Hγ
αα1 |MpW,S;α,α1q1

˘

¨ α1.

The relation in the following proposition is depicted in Figure 3 in the case that the curve
γ Ă S looks like . It is an analogue of the relation in the non-singular setting of
[Frø02, Theorem 6], and the proof is similar to that of Proposition 3.16.
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Figure 3: The relation of Proposition 3.20.

Proposition 3.20. d1 ˝ µ` µ ˝ d` ∆2 ˝ δ1 ´ δ1
2 ˝ ∆1 ´ v1 ˝ λ` λ ˝ v “ 0.

Similar to Remark 3.19, in this situation, the maps d, d1,∆1, λ do not depend on the
orientations of K,K 1, S, while v, v1, µ, δ2, δ

1
2,∆2 do, and change sign under orientation-

reversal. Thus the relation of Proposition 3.20 is invariant under orientation-reversal.

3.4 A framed instanton homology for knots

We now assemble the above data to define a framed instanton chain group p rCpY,Kq, rdq.
The main apparatus is the following.

Definition 3.21. A chain complex p rC˚, rdq is an S-complex if there are a finitely generated
free chain complex pC˚, dq and graded maps v : C˚ Ñ C˚´2, δ1 : C1 Ñ Z and δ2 : Z Ñ

C´2 such that rC˚ “ C˚ ‘ C˚´1 ‘ Z, and such that the differential is given by

rd “

»

–

d 0 0
v ´d δ2
δ1 0 0

fi

fl . (3.22)

The copy of Z in the decomposition of rC˚ is supported in grading 0. ˛

Because p rC˚, rdq is a chain complex, rd ˝ rd “ 0, which is equivalent to d ˝ d “ 0 and

δ1 ˝ d “ 0 (3.23)

d ˝ δ2 “ 0 (3.24)

d ˝ v ´ v ˝ d´ δ2 ˝ δ1 “ 0 (3.25)

Remark 3.26. More generally, if R is any commutative ring, an S-complex over R is defined
to be a finitely generated free chain complex over R, with the same structure as in the
definition above, replacing each instance of Z with R. If no ring is specified, the reader can
safely assume that we are working over the integers. ˛
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Remark 3.27. In the above definition of an S-complex, the chain complex comes with a
Z-grading which decreases the differential by 1. However, in the sequel we will consider S-
complexes graded by Z{2N for some positive integerN , in which case all grading subscripts
in the above definition should be taken modulo 2N . For technical reasons, an S-complex
with no grading must be defined over a ring of characteristic two. ˛

Definition 3.28. A morphism rλ : p rC˚, rdq Ñ p rC 1
˚,

rd1q of S-complexes is a degree zero chain
map that may be written in the form

rλ “

»

–

λ 0 0
µ λ ∆2

∆1 0 1

fi

fl (3.29)

with respect to decompositions rC˚ “ C˚ ‘ C˚´1 ‘ Z and rC 1
˚ “ C 1

˚ ‘ C 1
˚´1 ‘ Z. ˛

The condition of rλ being a chain map is equivalent to the following relations:

λ ˝ d´ d1 ˝ λ “ 0

∆1 ˝ d` δ1 ´ δ1
1 ˝ λ “ 0

d1 ˝ ∆2 ´ δ1
2 ` λ ˝ δ2 “ 0

µ ˝ d` λ ˝ v ` ∆2 ˝ δ1 ´ v1 ˝ λ` d1 ˝ µ´ δ1
2 ˝ ∆1 “ 0

Definition 3.30. An S-chain homotopy p rC˚, rdq Ñ p rC 1
˚,

rd1q of S-complexes is a chain
homotopy of complexes that when written with respect to decompositions rC˚ “ C˚ ‘

C˚´1 ‘ Z and rC 1
˚ “ C 1

˚ ‘ C 1
˚´1 ‘ Z takes the following form:

»

–

K 0 0
L ´K M2

M1 0 0

fi

fl .

A chain homotopy equivalence of S-complexes is a pair of morphisms f : rC˚ Ñ rC 1
˚ and

g : rC 1
˚ Ñ rC˚ of S-complexes with the property that f ˝ g and g ˝ f are S-chain homotopy

equivalent to identity morphisms. ˛

Let Y be an integer homology 3-sphere containing a knotK, and pC˚, dq “ pC˚pY,Kq, dq

its irreducible instanton chain complex for some choice of metric and perturbation. Choose
a basepoint p P K. We define rC˚pY,Kq “ C˚pY,Kq ‘ C˚´1pY,Kq ‘ Z, and rd by (3.22)
using the maps from the previous subsections; note that the choices of basepoint and modified
holonomy maps are required to define v. Then (3.9) verifies (3.23)–(3.24), and Proposition
3.16 gives (3.25). Thus p rC˚pY,Kq, d̃q is a Z{4-graded S-complex. Its homology,

rI˚pY,Kq “ H˚p rCpY,Kq, rdq,

is a Z{4-graded abelian group, which we call the framed instanton homology of pY,Kq.
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Remark 3.31. Our framed instanton chain complex should be distinguished from what
is called framed instanton homology for knots in [KM11b]. However, the relationships
established in Section 8 justify the overlapping use of terminology. ˛

Remark 3.32. In the non-singular set up, Donaldson introduces a similar object for any integer
homology sphere Y called an pF , σq-complex [Don02]. This object, denoted by p rC˚pY q, rdq,
is essentially an S-complex. The main differences are that the complex p rC˚pY q, rdq is defined
over Q, and rC˚pY q “ C˚pY q ‘ C˚´3pY q ‘ Q, where C˚pY q is a Z{8-graded complex.
The complex rC˚pY q is defined out of a theory which is SOp3q-equivariant, rather than S1-
equivariant. This is the primary reason for the appearance of a degree shift by 3 (dimension
of SOp3q) instead of 1 (dimension of S1). ˛

Now suppose pW,Sq : pY,Kq Ñ pY 1,K 1q is a negative definite pair. We also assume
that a properly embedded arc γ in S is fixed such that it forms a cobordism from the
basepoint of K to the basepoint of K 1. We slightly abuse terminology and refer to the data of
pW,Sq with γ a negative definite pair, and omit γ from our notation. Upon choosing metric,
perturbation data, framings of critical points and modified holonomy maps, we define a map

rλ “ rλpW,Sq : rCpY,Kq ÝÑ rCpY 1,K 1q

by the expression (3.29), using the maps previously defined for pW,Sq and γ. By virtue of
Propositions 3.10 and 3.20, rλ is a morphism of S-complexes.

Definition 3.33. Define H to be the category whose objects are pairs pY,Kq where Y is an
integer homology 3-sphere and K Ă Y is an oriented based knot, and whose morphisms
are negative definite cobordisms of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q in the sense of
Definition 2.33, equipped with an embedded arc on S connecting the basepoints of K and
K 1. Composition of morphisms in this category is defined by composing cobordisms. ˛

For any category with a notion of chain homotopy, we define the associated homotopy
category to be the category with the same objects, but whose morphisms are chain homotopy
equivalences of morphisms. We have the following analogue of [Don02, Theorem 7.11].

Theorem 3.34. The assignments pY,Kq ÞÑ p rCpY,Kq, rdq and pW,Sq ÞÑ rλpW,Sq induce a
functor of categories from H to the homotopy category of Z{4-graded S-complexes.

Proof. Let pW,Sq : pY,Kq Ñ pY 1,K 1q be a negative definite pair with an embedded
arc γ on S connecting the basepoints. Fix the required auxiliary choices (Riemannian
metric, perturbation and modified holonomy maps) and let rCpY,Kq and rCpY 1,K 1q be the
S-complexes associated to pY,Kq and pY 1,K 1q. As explained above, we obtain a morphism

rλpW,Sq : rCpY,Kq ÝÑ rCpY 1,K 1q

after fixing a metric, perturbation data and modified holonomy maps for pW,Sq compatible
with the auxiliary data of pY,Kq and pY 1,K 1q. For any two sets of auxiliary choices for
pW,Sq, a standard argument shows that the resulting morphism differs from rλ by an S-
chain homotopy of S-complexes. To be a bit more specific, one first connects the two
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collections of auxiliary choices for pW,Sq using a 1-parameter family of orbifold metrics
on W , perturbation data and modified holonomy maps. Then the associated family moduli
spaces can be used to define the required S-chain homotopy. In fact, one can use a similar
proof to show that homotoping γ changes rλpW,Sq by an S-chain homotopy. We may also
check that the morphism associated to a composition of negative definite pairs is S-chain
homotopic to the composition of the morphisms associated to the cobordism pairs in the
same way as in (3.4).

Using another standard argument involving continuation maps we see that the S-chain
homotopy type of the S-complex rCpY,Kq of pY,Kq does not depend on the orbifold Rie-
mannian metric on Y , perturbation of the Chern–Simons functional and modified holonomy
maps. This uses connectedness of the spaces of these auxiliary choices (see Proposition
A.12 for the relevant result for modified holonomy maps). Technically, the assignment
pY,Kq ÞÑ p rCpY,Kq, rdq only determines an object in the homotopy category up to canonical
isomorphism. However, this is remedied as follows.

Let C be a category of modules closed under taking arbitrary products and submodules.
A transitive system in C is the data pC, ϕ, Iq where C “ tCiuiPI is a set of objects in C and
ϕ “ tϕji : Ci Ñ Cjui,jPI is a set of isomorphisms such that ϕii “ id and ϕjk ˝ ϕki “ ϕji .
A morphism of transitive systems pC, ϕ, Iq Ñ pD,ψ, Jq is a collection of morphisms
tλji : C

i Ñ DjuiPI,jPJ such that ψl
kλ

k
i “ λljϕ

j
i for i, j P I and k, l P J . Transitive systems

form a category CTrans. There is a functor CTrans Ñ C that sends pC, ϕ, Iq to the submodule
of

ś

iPI C
i consisting of tciuiPI with ci P Ci and cj “ ϕji pciq for all i, j P I .

Thus to a based knot pY,Kq we actually assign a transitive system of Z{4-graded
S-complexes in the homotopy category, indexed by admissible metric, perturbation and
modified holonomy maps data, and to this transistive system we may then assign a Z{4-
graded S-complex in the homotopy category as described in the previous paragraph. Similar
remarks hold for the morphisms, and this is precisely how the functor in Theorem 3.34 is
defined. The situation is essentially the same as in any other construction of Floer homology,
see e.g. [KM07, p. 453].

Remark 3.35. The isomorphism class of rIpY,Kq does not depend on the basepoint on K.
Indeed, the identity cobordism of pY,Kq with an arbitrary path from one choice of the
basepoint on K to another choice induces an isomorphism between the Floer homology
groups rIpY,Kq for different choices of basepoints. ˛
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4 The algebra of S-complexes

The goal of this section is to further develop the algebraic aspects of S-complexes. In
particular, we associate various equivariant homology theories to an S-complex and discuss
how they give rise to Frøyshov-type invariants. We also study the behavior of S-complexes
with respect to taking duals and tensor products. Although we work over Z throughout this
section, all of the constructions carry over for any commutative ring R.

We also introduce the set ΘS
R of local equivalence classes of S-complexes over any

commutative ring R, following [Sto17]. This set has the structure of a partially ordered
abelian group. When R is an integral domain, the Frøyshov invariant h may be viewed as a
homomorphism h : ΘS

R Ñ Z of partially ordered abelian groups.
The constructions here are applied to the setting of singular instanton Floer theory in

the next section. However, the material in this section is entirely algebraic, and much of it
fits into the framework of S1-equivariant algebraic topology. In particular, the equivariant
chain complexes we consider are particular models of the borel, co-borel, and Tate homology
theories; see e.g. the discussions in [Man16, Sto17, Mil19]. Although much of the material
is standard in some circles, we include it here for completeness.

4.1 An equivalent formulation of S-complexes

In this subsection, we first give another definition of S-complexes:

Definition 4.1. An S-complex is a finitely generated free abelian graded group rC˚ together
with homomorphisms rd : rC˚ Ñ rC˚´1 and χ : rC˚ Ñ rC˚`1 which respectively have degree
´1 and 1, and which satisfy the following properties:

(i) rd ˝ rd “ 0, χ ˝ χ “ 0 and χ ˝ rd` rd ˝ χ “ 0.

(ii) There is a subgroup Z of rC0 such that kerpχq is equal to imagepχq ‘ Z.

Remark 4.2. Remarks 3.26 and 3.27 about coefficient rings and gradings for S-complexes
still apply here. The algebraic results in this section will hold for Z{2N -graded S-complexes
over any commutative ring, and S-complexes with arbitrary grading Z{N (in particular no
grading) over any commutative ring of characteristic two. However, for concreteness we
will typically work with Z-graded S-complexes over Z. ˛

This definition of S-complexes essentially agrees with the definition from the previous
section. Let C˚ be imagepχq after shifting down the degree by 1 and d :“ ´rd|C˚

. The
identities in (i) imply that d is an endomorphism of C˚ and defines a differential on C˚. The
assumption (ii) implies that rC˚ fits into a short exact sequence with degree preserving maps:

0 ÝÑ C˚´1 ‘ Z ãÝÑ rC˚
χ

ÝÝÑ C˚ ÝÑ 0 (4.3)

By splitting this exact sequence, we have an identification of rC˚ with C˚ ‘ C˚´1 ‘ Z, with
respect to which χ has the following form:

χpα, β, rq “ p0, α, 0q.
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Since the map χ anti-commutes with rd, and rd has degree ´1, it is easy to see that rd has the
form given in (3.22).

The notions of morphism and homotopy of S-complexes can be also reformulated using
the new definition of S-complexes. Suppose p rC˚, rd, χq and p rC 1

˚,
rd1, χ1q are S-complexes

and rλ : rC˚ Ñ rC 1
˚ is a degree 0 homomorphism of abelian groups such that rλ ˝ rd “ rd1 ˝ rλ

and rλ ˝ χ “ χ1 ˝ rλ. Once we split rC˚ and rC 1
˚ as C˚ ‘ C˚´1 ‘ Z and C 1

˚ ‘ C 1
˚´1 ‘ Z

following the above strategy, the map rλ has the form

rλ “

»

–

λ 0 0
µ λ ∆2

∆1 0 c

fi

fl

for a constant c P Z. Thus rλ is a morphism of S-complexes if we require that c “ 1. If
rλ1 : rC˚ Ñ rC 1

˚ is another morphism of S-complexes, an S-chain homotopy of rλ and rλ1 is a
degree 1 map rh such that rd1 ˝ rh` rh ˝ rd “ rλ´ rλ1 and χ1 ˝ h` h ˝ χ “ 0.

Remark 4.4. Suppose we have two different splittings of rC˚. Then the identity map of rC˚

induces a map between the two splittings which have the form in (3.29) and is a morphism
in the sense of Definition 3.28. Moreover, this morphism defines an S-chain homotopy
equivalence. This shows that the S-chain homotopy equivalences of S-complexes with
respect to Definitions 3.21 and 4.1 coincide with one another. This justifies our switching
between Definitions 3.21 and 4.1. ˛

Remark 4.5. Let X be a finite CW complex on which S1 acts cellularly, and freely away
from a unique fixed point, a 0-cell e0. The CW chain complex of S1 is a differential graded
algebra isomorphic to Zrχs{pχ2q with trivial differential. This dg-algebra acts on p rC˚, rdq,
the CW chain complex of X , making it into a dg-module over Zrχs{pχ2q. Then p rC˚, rd, χq

is an S-complex, with Z Ă rC generated by the fixed point e0. ˛

In what follows, we freely switch between the two equivalent formulations of S-
complexes. If we wish to use Definition 4.1, we also assume that a splitting of the sequence
(4.3) has been chosen. This allows us to obtain a splitting of rC˚ as C˚ ‘ C˚´1 ‘ Z and
hence we can talk about the maps v : C˚ Ñ C˚´2, δ1 : C1 Ñ Z, δ2 : Z Ñ C´2. We denote
a typical element of rC˚ by ζ. Typical elements of the summand C˚ of rC˚ are denoted by α,
β and the corresponding elements in the summand C˚´1 are denoted by α, β.

4.2 Equivariant homology theories associated to S-complexes

Suppose p rC˚, rd, χq is as above. In what follows, we will write Zrxs for the ring of polyno-
mials with integer coefficients. Let also Zrrx´1, xs be the ring of Laurent power series in the
variable x´1. That is to say, any element of Zrrx´1, xs has finitely many terms with positive
powers of x and possibly infinitely many terms with negative powers of x. We shall regard
Zrrx´1, xs as a module over the ring Zrxs.
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We associate chain complexes p pC˚, pdq, p qC˚, qdq to p rC˚, rd, χq defined as follows:

pC˚ :“ Zrxs b rC˚
pdpxi ¨ ζq “ ´xi ¨ rdζ ` xi`1 ¨ χpζq

qC˚ :“ pZrrx´1, xs{Zrxsq b rC˚
qdpxi ¨ ζq “ xi ¨ rdζ ´ xi`1 ¨ χpζq

We may define a chain map j : qC˚ Ñ pC˚´1 as follows:

jpxkξq “

"

´χpξq k “ ´1
0 k ă ´1

We can then define the mapping cone of j, which takes the following form:

C˚ :“ rC˚ b Zrrx´1, xs dpxi ¨ ζq “ ´xi ¨ rdζ ` xi`1 ¨ χpζq

These complexes inherit Z-gradings as follows: we declare that x has grading ´2, and use
the natural tensor product gradings. In particular, if ζ P rCi, then xj ¨ ζ has grading ´2j ` i.
With this convention, the differentials on the three complexes defined above have degree ´1.
By definition, we have a triangle of chain maps between chain complexes which induces an
exact triangle at the level of homology:

qC˚

j // pC˚

i~~
C˚

p

`` (4.6)

Here i is the inclusion map and p is given by the composition of the projection map and the
sign map ε associated to the graded vector space qC˚:

Definition 4.7. For a Z-graded vector space V˚, the sign homomorphism ε : V˚ Ñ V˚ is
defined by εpaq “ p´1qka where a is a homogeneous element of V˚ with grading k. ˛

While i and p in (4.6) preserve gradings, j has degree ´1. It is clear from the definitions
that all chain complexes here are defined over the graded ring Zrxs and all chain maps are
Zrxs-module homomorphisms, up to homotopy. We call (4.6) the large equivariant triangle
associated to the S-complex p rC˚, rdq.

There is another exact triangle associated to an S-complex rC˚. Multiplication by x
defines an injective chain map from p pC˚, pdq to itself and the quotient complex is isomorphic
to p rC˚, rdq. In particular, we have a triangle of the following form which induces an exact
triangle at the level of homology:

rC˚
z // pC˚

x��
pC˚

y

__ (4.8)

Here x denotes the map given by multiplication by x P Zrxs, y is the composition of the
projection to the constant term and the sign map, and z is given by χ. In particular, x, y and
z have respective degrees ´2, 0 and 1.

48



Proposition 4.9. For any morphism rλ : rC˚ Ñ rC 1
˚ of S-complexes, there are maps qλ : qC˚ Ñ

qC 1
˚, pλ : pC˚ Ñ pC 1

˚ and sλ : C˚ Ñ C
1

˚ which satisfy the following properties:

(i) qλ, pλ and sλ are chain maps over Zrxs, and preserve gradings.
(ii) If rK is an S-chain homotopy of morphisms rλ, rλ1 : rC˚ Ñ rC 1

˚, there are Zrxs-module
homomorphisms qK : qC˚ Ñ qC˚, pK : pC˚ Ñ pC 1

˚, sK : C˚ Ñ C
1

˚ such that:

qλ1 ´ qλ “ qK ˝ qd` qd ˝ qK

pλ1 ´ pλ “ pK ˝ pd` pd ˝ pK

sλ1 ´ sλ “ sK ˝ sd` sd ˝ sK

(iii) If rλ : rC˚ Ñ rC 1
˚ and rλ1 : rC 1

˚ Ñ rC2
˚ are morphisms and Čλ1 ˝ λ : rC˚ Ñ rC2

˚ is the
composed morphism, then the following identities hold:

­λ1 ˝ λ “ qλ1 ˝ qλ, {λ1 ˝ λ “ pλ1 ˝ pλ, Ğλ1 ˝ λ “ sλ1 ˝ sλ.

If rid : rC˚ Ñ rC˚ is the identity morphism, then pid, qid and sid are also identity maps.

Proof. Given a morphism rλ : rC˚ Ñ rC 1
˚ of S-complexes and an element xi ¨ ζ P pC˚, we

define pλpxi ¨ζq “ xi ¨rλpζq P pC 1
˚. The maps qλ and sλ are defined similarly. It is straightforward

to check that these maps satisfy the required properties.

4.3 Small equivariant complexes and the h-invariant

Suppose p rC˚, rd, χq is an S-complex as above. We introduce two other chain complexes
over Zrxs, denoted by ppC˚,pdq and pqC˚,qdq. Essentially the same complexes are defined in
[Don02]. It is also shown in [Dae18] that homology of these chain complexes and Zrrx´1, xs

form an exact triangle. In this subsection, we review these constructions and show that this
information is equivalent to the triangle (4.6) up to homotopy.

The chain complexes ppC˚,pdq and pqC˚,qdq are given as follows:

pC˚ :“ C˚´1 ‘ Zrxs pdpα,
N
ÿ

i“0

aix
iq “ pdα ´

N
ÿ

i“0

viδ2paiq, 0q

qC˚ :“ C˚ ‘ pZrrx´1, xs{Zrxsq qdpα,
´1
ÿ

i“´8

aix
iq “ pdα,

´1
ÿ

i“´8

δ1v
´i´1pαqxiq

The Z-grading on pC˚ is given by the shifted grading on C˚ and the grading on Zrxs where
xi has grading ´2i. The Z-grading on qC˚ is defined similarly, except that we do not shift
the grading on C˚. The Zrxs-module structures on these complexes are defined as follows:

x ¨ pα,
N
ÿ

i“0

aix
iq “ pvα, δ1pαq `

N
ÿ

i“0

aix
i`1q @pα,

N
ÿ

i“0

aix
iq P pC˚

x ¨ pα,
´1
ÿ

i“´8

aix
iq “ pvα ` δ2pa´1q,

´2
ÿ

i“´8

aix
i`1q @pα,

´1
ÿ

i“´8

aix
iq P qC˚
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We also define C˚ “ Zrrx´1, xs with the trivial differential and the obvious module structure,
again such that xi has grading ´2i.

Next, we define chain maps:

. . .
p

ÝÝÑ qC˚
j

ÝÝÑ pC˚
i

ÝÝÑ C˚
p

ÝÝÑ qC˚
j

ÝÝÑ . . . (4.10)

by the following formulas:

ipα,
N
ÿ

i“0

aix
iq “

´1
ÿ

i“´8

δ1v
´i´1pαqxi `

N
ÿ

i“0

aix
i

jpα,
´1
ÿ

i“´8

aix
iq “ p´α, 0q,

pp

N
ÿ

i“´8

aix
iq “ p

N
ÿ

i“0

viδ2paiq,
´1
ÿ

i“´8

aix
iq,

We call (4.10) the small equivariant triangle associated to the S-complex p rC˚, rdq. It is
shown in [Dae18, Subsection 2.3] that the maps i and p are Zrxs-module homomorphisms
and j commutes with the action of x up to chain homotopy. Moreover, the maps at the level
of homology groups induced by i, j and p form an exact triangle:

HpqC˚, qdq
j˚ // HppC˚, pdq

i˚{{
C˚

p˚

cc

We now show that the small and large equivariant chain complexes, and their associated
triangles, are chain homotopy equivalent over Zrxs. To this end, we define linear maps
pΦ : pC˚ Ñ pC˚, qΦ : qC˚ Ñ qC˚ and sΦ : C˚ Ñ C˚ as follows:

pΦp

N
ÿ

i“0

αix
i,

N
ÿ

i“0

βix
i,

N
ÿ

i“0

aix
iq :“ p

N
ÿ

i“0

vipβiq,
N
ÿ

i“0

aix
i `

N
ÿ

i“1

i´1
ÿ

j“0

δ1v
jpβiqx

i´j´1q

qΦp

´1
ÿ

i“´8

αix
i,

´1
ÿ

i“´8

βix
i,

´1
ÿ

i“´8

aix
iq :“ pα´1,

´1
ÿ

i“´8

aix
i `

´1
ÿ

i“´8

8
ÿ

j“0

δ1v
jpβiqx

i´j´1q

sΦp

N
ÿ

i“´8

αix
i,

N
ÿ

i“´8

βix
i,

N
ÿ

i“´8

aix
iq :“

N
ÿ

i“´8

aix
i `

N
ÿ

i“´8

8
ÿ

j“0

δ1v
jpβiqx

i´j´1
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We also define linear maps pΨ : pC˚ Ñ pC˚, qΨ : qC˚ Ñ qC˚ and sΨ : C˚ Ñ C˚:

pΨpα,
N
ÿ

i“0

aix
iq :“ p

N
ÿ

i“1

i´1
ÿ

j“0

vjδ2paiqx
i´j´1, α,

N
ÿ

i“0

aix
iq

qΨpα,
´1
ÿ

i“´8

aix
iq :“ p

´1
ÿ

i“´8

v´i´1pαqxi `

´1
ÿ

i“´8

8
ÿ

j“0

vjδ2paiqx
i´j´1, 0,

´1
ÿ

i“´8

aix
iq

sΨp

N
ÿ

i“´8

aix
iq :“ p

N
ÿ

i“´8

8
ÿ

j“0

vjδ2paiqx
i´j´1, 0,

N
ÿ

i“´8

aix
iq.

The following lemma summarizes the properties of these maps:

Lemma 4.11. The above maps are chain maps, which commute with the action of x and the
maps in the triangles (4.6) and (4.10) up to chain homotopy. We have:

pΦ ˝ pΨ “ id, qΦ ˝ qΨ “ id, sΦ ˝ sΨ “ id.

Moreover, the compositions pΨ ˝ pΦ, qΨ ˝ qΦ and sΨ ˝ sΦ are chain homotopic to the identity.

Proof. It is straightforward to check that the maps pΦ, qΦ, sΦ, pΨ, qΨ and sΨ are chain maps and
they satisfy the following identities:

pΦ ˝ x “ x ˝ pΦ, qΨ ˝ x “ x ˝ qΨ, sΦ ˝ x “ x ˝ sΦ, sΨ ˝ x “ x ˝ sΨ,

pΦ ˝ j “ j ˝ qΦ, pΨ ˝ j “ j ˝ qΨ, sΦ ˝ i “ i ˝ pΦ, qΨ ˝ p “ p ˝ sΨ.

Moreover, if we define the following four additional maps:

pKxpα,
N
ÿ

i“0

aix
iq :“ pα, 0, 0q,

Kipα,
N
ÿ

i“0

aix
iq :“ p´

8
ÿ

i“0

vipαqx´i´1, 0, 0q,

qKxp

´1
ÿ

i“´8

αix
i,

´1
ÿ

i“´8

βix
i,

´1
ÿ

i“´8

aix
iq :“ pβ´1, 0q,

K 1
pp

N
ÿ

i“´8

αix
i,

N
ÿ

i“´8

βix
i,

N
ÿ

i“´8

aix
iq :“ p´

N
ÿ

i“0

vipβiq, 0q, Kp “ K 1
p ˝ ε

then we have the following relations, which are straightforward to verify:

x ˝ pΨ ´ pΨ ˝ x “ pd pKx ` pKxpd x ˝ qΦ ´ qΦ ˝ x “ qd qKx ` qKx
qd,

sΨ ˝ i ´ i ˝ pΨ “ sdKi `Kipd qΦ ˝ p´ p ˝ sΦ “ qdKp `Kp
sd.
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In order to verify the last part of the lemma, define the following maps:

pKp

N
ÿ

i“0

αix
i,

N
ÿ

i“0

βix
i,

N
ÿ

i“0

aix
iq :“ p´

N
ÿ

i“0

i´1
ÿ

j“0

vjpβiqx
i´j´1, 0, 0q

qKp

´1
ÿ

i“´8

αix
i,

´1
ÿ

i“´8

βix
i,

´1
ÿ

i“´8

aix
iq :“ p

´1
ÿ

i“´8

8
ÿ

j“0

vjpβiqx
i´j´1, 0, 0q

sKp

N
ÿ

i“´8

αix
i,

N
ÿ

i“´8

βix
i,

N
ÿ

i“´8

aix
iq :“ p´

N
ÿ

i“´8

8
ÿ

j“0

vjpβiqx
i´j´1, 0, 0q

Again, it is straightforward to verify the following relations:

pΨ ˝ pΦ ´ id “ pd pK ` pK pd,

qΨ ˝ qΦ ´ id “ qd qK ` qK pd,

sΨ ˝ sΦ ´ id “ sd sK ` sK sd.

Let rC 1 be another S-complex and rλ : rC Ñ rC 1 be a morphism. We write pΦ1, qΦ1, sΦ1, pΨ1,
qΨ1 and sΨ1 for the chain homotopy equivalences associated to rC 1. These chain homotopies
can be employed to define pm

rλ
: pC˚ Ñ pC1

˚, qm
rλ
: qC˚ Ñ qC1

˚ and sm
rλ
: C˚ Ñ C

1

˚ as follows:

pm
rλ
:“ pΦ1 ˝ pλ ˝ pΨ qm

rλ
:“ qΦ1 ˝ qλ ˝ qΨ sm

rλ
:“ sΦ1 ˝ sλ ˝ sΨ

These homomorphisms agree with the definitions given in [Dae18, Subsection 2.3]. For
example, we have the following explicit formula:

sm
rλ
p

N
ÿ

i“´8

aix
iq “p

N
ÿ

i“´8

aix
iq

˜

1 `

8
ÿ

i“0

∆1v
iδ2p1qx´i´1 `

8
ÿ

i“0

δ1
1pv1qi∆2p1qx´i´1

`

8
ÿ

k“0

8
ÿ

j“0

δ1
1pv1qjµvkδ2p1qx´k´j´2

¸

In particular, the map sm
rλ

is an isomorphism of the Zrxs-module Zrrx´1, xs. Therefore, we
have the following consequence of this observation and Lemma 4.11:

Corollary 4.12. The Zrxs-module HpC˚, sdq is naturally isomorphic to Zrrx´1, xs. Any
morphism of S-complexes rλ : rC˚ Ñ rC 1

˚ induces an isomorphism sm
rλ
: C˚ Ñ C

1

˚. More-
over, there are bi P Z such that after the identifications of HpC˚, sdq and HpC

1

˚,
sd1q with

Zrrx´1, xs, the map sm
rλ

is multiplication by 1 `
ř´1

i“´8 bix
i.

Consider the Zrxs-submodule I Ă Zrrx´1, xs given by the image of i˚ : HppC˚, pdq Ñ

Zrrx´1, xs, or equivalently the kernel of the map p˚ : Zrrx´1, xs Ñ HpqC˚, qdq. Corollary
4.12 implies that if two S-complexes are related to each other by a morphism of S-complexes,
then the associated Zrxs-modules I are related by multiplication by an element of the form
1 `

ř´1
i“´8 bix

i. This observation suggests the following definition:
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Definition 4.13. For an S-complex rC as above we define its h-invariant as follows:

hp rCq :“ ´ inf
QpxqPI

tDegpQpxqqu

where for Qpxq P Zrrx´1, xs, DegpQpxqq denotes the degree of Qpxq.

The following result is an immediate consequence of Corollary 4.12:

Corollary 4.14. If there is a morphism of S-complexes from rC to rC 1, then hp rCq ď hp rC 1q.

The following proposition gives an alternative definition for hp rCq, and it can be easily
verified from the definitions. It is also closely related to Proposition 4 in [Frø02].

Proposition 4.15. The constant hp rC˚q is positive if and only if there is α P C˚ such that
dpαq “ 0 and δ1pαq ‰ 0. If hp rC˚q “ k for a positive integer k, then k is the largest integer
such that there exists α P C˚ satisfying the following properties:

dα “ 0, δ1v
k´1pαq ‰ 0, δ1v

ipαq “ 0 for i ď k ´ 2. (4.16)

If hp rC˚q “ k for a non-positive integer k, then k is the largest integer such that there are
elements a0, . . . , a´k P Z and α P C˚ such that

dα “

´k
ÿ

i“0

viδ2paiq, a´k ‰ 0. (4.17)

4.4 Dual S-complexes

Let pV˚, dq be an arbitrary Z-graded chain complex. Our convention is that the dual complex
HompV˚,Zq has differential f ÞÑ ´εpfq ˝ d, with the Z-grading that declares f : Vi Ñ Z
to be in grading ´i. Recall that the sign map ε is given in Definition 4.7.

Now let p rC˚, rd, χq be an S-complex. Let rC:
˚ be the dual chain complex Homp rC˚,Zq

with differential rd:. The endomorphism χ: of rC:
˚ is defined similarly, so that we have:

rd:pfq :“ ´εpfq ˝ rd,

χ:pfq :“ ´εpfq ˝ χ.

These clearly satisfy property (i) of Definition 4.1. The spaces kerpχ:q and imagepχ:q are
given by the subspaces of rC:

˚ which vanish respectively on imagepχq and kerpχq. Thus
property (ii) of Definition 4.1 is also satisfied, and p rC:

˚, rd
:, χ:q is an S-complex.

Let C:
˚ be given by imagepχ:q after shifting gradings down by 1, and d: be the dif-

ferential on C:
˚ given by the restriction of ´rd:. The space C:

˚ can be identified with
HompC˚,Zqr1s and the differential d: of f : Ci Ñ Z, which has degree ´i´ 1, is equal to
p´1qif ˝ d. If we split rC:

˚ as the sum C:
˚ ‘C:

˚´1 ‘ Z using a corresponding splitting of rC˚,
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then the S-complex structure on rC:
˚ determines maps v: : C:

˚ Ñ C:
˚´2, δ:

1 : C:
1 Ñ Z and

δ:
2 : Z Ñ C:

0 which are given by the following formulas:

v:pfq :“ f ˝ v, δ:
1pfq :“ ´f ˝ δ2p1q, δ:

2pmq :“ mδ1.

In what follows, for an S-complex p rC, rd, χq write qC˚ “ HompqC˚,Zq, pC˚ “ HomppC˚,Zq,
and C

˚
“ HompC˚,Zq for the duals of the small equivariant chain complexes associated to

rC˚, and call these the equivariant cohomology chain complexes. We write

pqC:
˚,qd

:q, ppC:
˚,pd

:q, pC
:

˚, d
:
q

for the small equivariant homology chain complexes associated to the dual S-complex
p rC:, rd:, χ:q, and i:, j:, p: for the maps in the associated small equivariant triangle. We write
i_, j_, p_ for the duals of the maps i, j, p in the small equivariant triangle for p rC, rd, χq. The
relationship between these is summarized as follows.

Lemma 4.18. We have a commutative diagram of small equivariant exact triangles, where
the vertical maps are isomorphisms of graded chain complexes over Zrxs:

¨ ¨ ¨ pC:
˚

��

i:oo qC:
˚

��

j:oo C
:

˚

p:

oo

��

¨ ¨ ¨
i:oo

¨ ¨ ¨ qC˚p_

oo pC˚j_oo C
˚i_oo ¨ ¨ ¨

p_

oo

(4.19)

Proof. The vertical maps, written from left to right as F1, F2 and F3, are defined by:

pF pf,
N
ÿ

j“0

bjx
jqpα,

´1
ÿ

i“´8

aix
iq “ fpαq `

N
ÿ

j“0

bja´j´1,

qF pf,
´1
ÿ

j“´8

bjx
jqpα,

N
ÿ

i“0

aix
iq “ fpαq `

´1
ÿ

j“´N´1

bja´j´1,

F p

N
ÿ

j“´8

bjx
jqp

N 1
ÿ

i“´8

aix
iq “

N
ÿ

j“´N 1´1

bja´j´1.

It is straightforward to check that these are isomorphisms of chain complexes, and fit into
the diagram (4.19) above, matching the two small equivariant triangles.

Remark 4.20. An analogous statement holds for the large equivariant triangles. ˛

Proposition 4.21. hp rC:
˚q “ ´hp rC˚q.
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Proof. First assume that hp rC˚q “ k ą 0. By Proposition 4.15 there is α P C˚ such that
dα “ 0 and the smallest integer i such that δ1vipαq is non-zero is equal to k ´ 1. This
implies that there is no f : C˚ Ñ Z and a0, . . . , ak´1 P Z such that ak´1 ‰ 0 and

fd`

k´1
ÿ

i“0

aiδ1v
i “ 0,

because we can apply this linear form to α. This implies that hp rC:
˚q ď ´k.

Next, we consider the set tδ1, δ1v, . . . , δ1v
k´1u. By restriction, elements of this set

define linearly independent maps on kerpdq. Our assumption implies that we obtain linearly
dependent elements by adding δ1vk. Therefore, there are a0, . . . , ak such that ak ‰ 0 and:

k
ÿ

i“0

aiδ1v
i|kerpdq “ 0

This implies that there is f : C˚ Ñ Z such that after multiplying all constants ai by a
non-zero integer, we have:

fd`

k
ÿ

i“0

aiδ1v
i “ 0

Consequently, we have hp rC:
˚q ě ´k which completes the proof in the case that hp rC˚q is

positive. The case that hp rC˚q is negative can be verified similarly.

Remark 4.22. An alternative proof of Proposition 4.21 may be obtained using the perspective
of Definition 4.13 and directly applying Lemma 4.18. ˛

4.5 Tensor products of S-complexes

Here we show that the tensor product of two S-complexes is naturally isomorphic to an
S-complex. Let p rC˚, rd, χq and p rC 1

˚,
rd1, χ1q be two S-complexes. We also fix splittings

rC˚ “ C˚ ‘ C˚´1 ‘ Z and rC 1
˚ “ C 1

˚ ‘ C 1
˚´1 ‘ Z and let d, v, δ1, δ2 and d1, v1, δ1

1, δ
1
2 be

the associated maps. From this data we define an S-complex p rCb
˚ ,

rdb, χbq. Firstly let
rCb

˚ “ rC˚ b rC 1
˚, and then define rdb and χb as follows:

rdb :“ rdb 1 ` εb rd1

χb :“ χb 1 ` εb χ1

It is clear that rdb and χb satisfy property (i) of Definition 4.1. To see (ii) of Definition 4.1,
note that imagepχbq is generated by the elements of the following form:

α b α1 ` εpαq b α1, α b α1, α b 1, 1 b α1, (4.23)

and the kernel of χb is generated by the above elements and 1 b 1.
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The subgroup of rCb
˚ generated by the elements in (4.23), after shifting down the degree

by 1, is denoted by Cb
˚ . We also write db for the differential on Cb

˚ defined as ´rdb|Cb .
The four types of elements in (4.23) determine a natural decomposition of Cb

˚ as follows:

Cb
˚ “ pC b C 1q˚ ‘ pC b C 1q˚´1 ‘ C˚ ‘ C 1

˚.

The differential db with respect to this decomposition is given by

db “

»

—

—

–

db 1 ` εb d1 0 0 0
´εv b 1 ` εb v1 db 1 ´ εb d1 εb δ1

2 ´δ2 b 1
εb δ1

1 0 d 0
δ1 b 1 0 0 d1

fi

ffi

ffi

fl

As in (4.3), we have a short exact sequence of the following form:

0 ÝÑ Cb
˚´1 ‘ Z ãÝÑ rCb

˚

χb

ÝÝÑ Cb
˚´1 ÝÑ 0

We may split this sequence using the following right inverse of the map χb:

αbα1`εpαqbα1 ÞÑ αbα1, αbα1 ÞÑ αbα1, αb1 ÞÑ αb1, 1bα1 ÞÑ 1bα1.

This gives rise to a splitting of rCb
˚ as Cb

˚ ‘ Cb
˚´1 ‘ Z and the maps vb : C˚ Ñ C˚´2,

δb
1 : C1 Ñ Z, δb

2 : Z Ñ C´2. The endomorphism vb : Cb
˚ Ñ Cb

˚´2 is given as follows:

vb “

»

—

—

–

v b 1 0 0 δ2 b 1
0 v b 1 0 0
0 0 v 0
0 δ1 b 1 0 v1

fi

ffi

ffi

fl

(4.24)

We also have δb
1 “ r0, 0, δ1, δ

1
1s and δb

2 “ r0, 0, δ2, δ
1
2s⊺.

Remark 4.25. The non-symmetrical form of vb is due to our non-symmetrical choice of
the right inverse for the map χb. In the case that we replace the integers with a ring in
which 2 is invertible, we can modify the above right inverse for χb by mapping α b α1 to
1
2pα b α1 ` εpαq b α1q. Then the new map vb with respect to the induced splitting of rCb

˚

has the following form:

1

2

»

—

—

–

v b 1 ` 1 b v1 0 1 b δ1
2 δ2 b 1

0 v b 1 ` 1 b v1 0 0
0 1 b δ1

1 2v 0
0 δ1 b 1 0 2v1

fi

ffi

ffi

fl

which is symmetrical with respect to switching rC˚ and rC 1
˚. ˛

Remark 4.26. Suppose p rC0
˚,

rd0, χ0q is the trivial S-complex with rC0
˚ “ Z, rd0 “ 0 and

χ0 “ 0. Our sign convention for tensor products and duals of S-complexes implies that the
following natural pairing on rC:

˚ and rC˚ defines a morphism Q : rC:
˚ b rC˚ Ñ rC0

˚:

pf, αq ÞÝÑ fpαq. ˛
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In Subsection 4.2, to any S-complex we associated a series of equivariant theories which
fit into an exact triangle. For example, p rC˚, rd, χq gives rise to the complex p pC˚, pdq over Zrxs.
We denote the corresponding objects associated to the S-complexes p rC 1

˚,
rd1q and p rCb

˚ ,
rdbq

by p pC 1
˚,

pd1q and p pCb
˚ ,

pdbq. We follow a similar terminology for the other objects introduced
in Subsection 4.2. Our goal is to study how hp rCb

˚ q is related to hp rC˚q and hp rC 1
˚q.

Lemma 4.27. There are Zrxs-module isomorphisms:

pT : pC˚ bZrxs
pC 1

˚ Ñ pCb
˚

sT : C˚ bZrrx´1,xs C
1

˚ Ñ C
b

˚

which are chain maps, and the following diagram commutes:

pC˚ bZrxs
pC 1

˚

ibi1

��

pT // pCb
˚

ib

��

C˚ bZrrx´1,xs C
1

˚

sT // C
b

˚

(4.28)

Moreover, we have I b I1 Ď Ib.

Note that although we have previously considered C˚ and C 1

˚ as Zrxs-modules, they
are also modules over the larger ring Zrrx´1, xs in the obvious way, and this is used in the
above statement.

Proof. We define pT and sT to be the isomorphism of chain complexes which are induced by
the following natural isomorphisms:

Zrxs bZrxs Zrxs “ Zrxs, Zrrx´1, xs bZrrx´1,xs Zrrx´1, xs “ Zrrx´1, xs.

The definition of the S-complex structure on rCb
˚ immediately implies that pT and sT are chain

maps. It is also straightforward to check that Diagram (4.28) commutes.
Suppose

řN
i“´8 aix

i P I and
řN 1

i“´8 a1
ix

i P I1 such that aN and a1
N 1 are non-zero.

Then Lemma 4.11 implies that we have

p

N
ÿ

i“´8

8
ÿ

j“0

vjδ2paiqx
i´j´1, 0,

N
ÿ

i“´8

aix
iq P imagepi˚q,

and there is a corresponding element in imagepi1˚q, replacing ai and N by a1
i and N 1. The

tensor product of these two elements, using the isomorphism T , gives rise to an element in
the image of the map ib˚ : Hp pCb

˚ q Ñ HpC
b

˚ q, which is of the following form:

pA, 0,
N
ÿ

i“´8

N 1
ÿ

j“´8

aia
1
jx

i`jq

where A P Cb
˚ b Zrrx´1, xs. By Lemma 4.11, the map Φ sends this element to Ib which

has the form
řN

i“´8

řN 1

j“´8 aia
1
jx

i`j . Consequently, I b I1 Ď Ib.
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Corollary 4.29. hp rCb
˚ q “ hp rC˚q ` hp rC 1

˚q.

Proof. Lemma 4.27 implies that hp rCb
˚ q ě hp rC˚q ` hp rC 1

˚q. The morphism Q in Remark
4.26 induces a morphism from rC:

˚ b rCb
˚ to rC 1

˚. Then we have:

hp rC 1
˚q ě hp rC:

˚ b rCb
˚ q ě ´hp rC˚q ` hp rCb

˚ q.

The first inequality frollows from Corollary 4.14, while the second inequality follows from
Proposition 4.21 and another application of Lemma 4.27.

4.6 Local equivalence groups

We next introduce an equivalence relation on the set of S-complexes, essentially that of
“(chain) local equivalence” as defined in [Sto17]; see also [HMZ18, HHL18]. In those
references, the focus is on equivariant homological algebra over Pinp2q and Z{4. In this
sense our setup, which is in principle that of S1-equivariant homological algebra, is more
basic. However, we allow for more general coefficient rings, and will later consider a filtered
analogue of these constructions, providing a broader context.

A preorder on a set S is a binary relation 9ď which is reflexive and transitive. The
quotient set S{ „ obtained by identifying elements s, t P S with s 9ď t and t 9ď s is a partially
ordered set with the induced binary relation, denoted ď.

To any category, we may define a preorder on objects as follows: two objects s and t
have s 9ď t if there is a morphism from s to t. We apply this to the category of Z-graded
S-complexes over a commutative ring R, and call the resulting set ΘS

R:

ΘS
R :“ tS-complexes over Ru { „

p rC, rd, χq „ p rC 1, rd1, χ1q ðñ D f : rC˚ Ñ rC 1
˚, f

1 : rC 1
˚ Ñ rC˚

Here f and f 1 are morphisms of S-complexes. We refer to the equivalence relation „ as
local equivalence. An equivalence class in ΘS

R will be denoted rp rC˚, rd, χqs. Then

rp rC˚, rd, χqs ď rp rC 1
˚,

rd1, χ1qs ðñ D f : rC˚ Ñ rC 1
˚

Thus ΘS
R is a partially ordered set. Our above work implies the following:

Proposition 4.30. The set ΘS
R has the natural structure of an abelian group, compatible

with the partial order ď, making it a partially ordered abelian group.

Proof. Addition is given by the tensor product of S-complexes. Associativity follows
because the natural tensor product associativity isomorphism, written

p rC˚ b rC 1
˚q b rC2

˚ – rC˚ b p rC 1
˚ b rC2

˚q,

is an isomorphism of S-complexes. Similarly, commutativity follows because the map
rC˚ b rC 1

˚ Ñ rC 1
˚ b rC˚ defined by α b α1 ÞÑ p´1qijα1 b α, where α and α1 have respective

gradings i and j, is an isomorphism of S-complexes.
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Next, the addition operation is well-defined on ΘS
R, as it is straightforward to verify that

the tensor product of two S-chain homotopy equivalences is again an S-chain homotopy
equivalence. The identity element is represented by the trivial S-complex rC0

˚ “ R with
rd0 “ 0, and the inverse of an S-complex rC˚ is given by its dual rC:

˚. Indeed, the natural
pairing of Remark 4.26 and the morphism R “ rC0

˚ Ñ rC:
˚ b rC˚ sending 1 to the identity

show that rC:
˚ b rC˚ is equivalent to rC0

˚.

When we want to consider Z{2N -graded S-complexes over R, we may form an analo-
gous partially ordered group, and we denote this by ΘS

R,Z{2N :

ΘS
R,Z{2N :“ tZ{2N -graded S-complexes over Ru { „

When our S-complexes are graded by Z{N and R has characteristic 2, we similarly have
ΘS

R,Z{N . If in this latter case N “ 1 (i.e. there are no gradings) then we write ΘS
R,H.

The h-invariant of Definition 4.13 extends to the case when the coefficient ring is any
commutative ring R. In the case that R is an integral domain, h is a homomorphism:

Proposition 4.31. Let R be an integral domain. The h-invariant induces a homorphism
h : ΘS

R Ñ Z of partially ordered abelian groups. If R is a field, then h an isomorphism. In
general, the h-invariant factors as follows, where FracpRq is the field of fractions of R:

ΘS
R ÝÑ ΘS

FracpRq,Z{2
h

ÝÝÑ Z charpRq ‰ 2

ΘS
R ÝÑ ΘS

FracpRq,H
h

ÝÝÝÑ Z charpRq “ 2

Proof. That h is a homomorphism follows from Corollaries 4.14 and 4.29 and Proposition
4.21, which directly adapt when Z is replaced by any integral domain R.

Next, suppose that R is a field. Let rC˚ be an S-complex over R such that hp rCq “ 0.
Proposition 4.15 implies that there is α P C˚ such that δ2p1q “ dα. Then a morphism
rλ : rC0

˚ Ñ rC˚, from the trivial S-complex rC0
˚ to rC˚, is given in components by λ “ µ “

∆1 “ 0 and ∆2p1q “ α. The same construction applies to the dual, giving a morphism
rC0

˚ Ñ rC:
˚ whose dual is a morphism rC˚ Ñ rC0

˚. Thus rC˚ is locally equivalent to the trivial
complex. This implies that h is injective. To see that h is surjective, take the complex
rC˚ “ C˚ ‘C˚´1 ‘R with C˚ freely generated by a single element α, with d “ v “ δ2 “ 0
and δ1pαq “ 1. Proposition 4.15 implies that hp rC˚q “ 1, so h is surjective.

Proposition 4.15 also makes it clear that the h-invariant is the same whether we work over
R or FracpRq, and similarly the grading of rC˚ plays no essential role in its determination.

In particular, the h invariant depends on the weakest possible type of grading we allow
for S-complexes over R, and moreover only sees the field of fractions of R. In particular,
the h invariant defined with Z-coefficients is the same as if it is defined with Q-coefficients,
and in this case only the Z{2-gradings of the complexes are necessary.
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4.7 Nested sequences of ideals

Here we describe a refinement of the invariant hp rCq in the form of a sequence of ideals
which in general depends on more than the field of fractions of R.

We begin with the concrete example in which R “ Z. In this case, we have another
natural invariant associated to the local equivalence class of an S-complex. Let p rC˚, rd, χq

be an S-complex over Z, and let I Ă Zrrx´1, xs be the associated Zrxs-module impi˚q. Set

gp rCq :“ gcdtm | m is the leading factor of Qpxq P I with DegpQpxqq “ ´hp rCqu P Zą0

An application of Corollary 4.12 shows that if there is a morphism from rC to rC 1, then gp rCq

is divisible by gp rC 1q. From Subsection 4.5 we gather that gp rC b rC 1q divides gp rCqgp rC 1q.
There is also an analogue of Proposition 4.15 for gp rCq:

gp rCq “

#

gcdtδ1v
k´1pαq | α satisfies (4.16)u, hp rCq ą 0

gcdta´k | a0, . . . , a´k and α satisfy (4.17)u, hp rCq ď 0

We have an induced map g : ΘS
Z Ñ Zą0 of partially ordered sets, where Zą0 is given the

partial order of divisibility. More generally, for any commutative ring R, we obtain a similar
map from ΘS

R to the set of ideals of R.
We expand on the above construction in the case that R is a general integral domain.

Let p rC˚, rd, χq be an S-complex over R, and again let I Ă Rrrx´1, xs be the associated
Rrxs-submodule impi˚q. Then we make the following:

Definition 4.32. For an S-complex rC as above we define its associated ideal sequence

¨ ¨ ¨ Ď Ji`1 Ď Ji Ď Ji´1 Ď ¨ ¨ ¨ Ď R (4.33)

where we also write Ji “ Jip rCq, as follows:

Jip rCq :“
␣

a0 P R | D a0x
´i ` a´1x

´i´1 ` ¨ ¨ ¨ P I
(

. ˛ (4.34)

The ideals Ji defined by (4.34) are nested as in (4.33) by virtue of the fact that I is
an Rrxs-submodule. The maximum i P Z such that Ji ‰ 0 is by definition the invariant
h :“ hp rCq, and so we may write

Jh Ď Jh´1 Ď Jh´2 Ď ¨ ¨ ¨ Ď R (4.35)

Note Jhp rCq “ gp rCq. Corollary 4.12 implies that the nested sequence of ideals (4.35) is an
invariant of the local equivalence class of the S-complex p rC, rd, χq. More generally, for a
morphism rC Ñ rC 1, with associated ideals Ji and J 1

i , respectively, we have Ji Ď J 1
i . Lemma

4.27 implies that these ideals behave with respect to tensor products as follows:

Jip rCq ¨ Jjp rC
1q Ă Ji`jp rC b rC 1q.

With respect to taking duals of S-complexes, we have

Jip rC
:q “ 0 ðñ J´i´1p rCq ‰ 0,

which follows from the characterization of the h-invariant in terms of Ji mentioned above.
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5 Equivariant invariants from singular instanton theory

In this section we apply the machinary of the previous section to the framed instanton
S-complex defined in Section 3, associated to a based knot in an integer homology 3-sphere
pY,Kq. The output is a triangle of equivariant Floer homology groups, pI˚pY,Kq, qI˚pY,Kq

and I˚pY,Kq, the Frøyshov-type invariant hZpY,Kq, and a nested sequence of ideals.

5.1 Equivariant Floer homology groups

For an oriented based knotK in an integer homology sphere Y , we constructed a Z{4-graded
S-complex p rC˚pY,Kq, rdq whose S-chain homotopy type is a natural invariant of the pair
pY,Kq. Associated to this S-complex, we have equivariant chain complexes p pC˚pY,Kq, pdq,
p qC˚pY,Kq, qdq and pC˚pY,Kq, sdq as defined in Subsection 4.2. We write

pI˚pY,Kq, qI˚pY,Kq, I˚pY,Kq (5.1)

for the homology groups of these chain complexes and call them the equivariant singular
instanton homology groups of pY,Kq. These homology groups are Zrxs-modules. Our
notation is motivated by the notation in the monopole Floer homology of [KM07], and the
three groups (5.1) are respectively called “I-from”, “I-to” and “I-bar”.

We may alternatively use the small model for equivariant Floer homology groups in
Subsection 4.3 to define equivariant singular instanton homology groups. In particular,

I˚pY,Kq – Zrrx´1, xs

Invariance of the S-chain homotopy type of p rC˚pY,Kq, d̃q implies that these Zrxs-modules
are invariants of pY,Kq. Moreover, we have exact triangles:

qI˚pY,Kq
j˚ // pI˚pY,Kq

i˚yy
I˚pY,Kq

p˚

ee
(5.2)

pI˚pY,Kq
x˚ // pI˚pY,Kq

y˚yy
rI˚pY,Kq

z˚

ee
(5.3)

induced by (4.6) and (4.8). The equivariant singular instanton homology groups are Z{4-
graded over the graded ring Zrxs, where x has grading ´2. With respect to these gradings,
the maps p˚ and i˚ have degree zero, while j˚ has degree ´1. Moreover, the maps x˚, y˚

and z˚ have respective degrees ´2, 0 and 1.
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We may similarly define the equivariant singular instanton cohomology groups I˚
pY,Kq,

pI˚pY,Kq and I˚
pY,Kq. These satisfy similar properties. In the triangles (5.2) and (5.3), the

arrows are reversed and the maps are replaced by i˚, j˚, p˚, x˚, y˚ and z˚.
Equivariant singular instanton homology groups are functorial with respect to nega-

tive definite pairs. A negative definite pair pW,Sq : pY,Kq Ñ pY 1,K 1q induces a mor-
phism rλpW,Sq : rC˚pY,Kq Ñ rC˚pY 1,K 1q. The discussion of Subsection 4.2 shows that
this morphism induces morphisms of Zrxs-modules pI˚pW,Sq : pI˚pY,Kq Ñ pI˚pY 1,K 1q,
qI˚pW,Sq : qI˚pY,Kq Ñ qI˚pY 1,K 1q and I˚pW,Sq : I˚pY,Kq Ñ I˚pY 1,K 1q.

Theorem 5.4. The equivariant singular instanton homology groups define functors

qI˚ : H ÝÑ ModZ{4
Zrxs

pI˚ : H ÝÑ ModZ{4
Zrxs

I˚ : H ÝÑ ModZ{4
Zrxs

from the category H of based knots in homology 3-spheres to the category of Z{4-graded
modules over the graded ring Zrxs. The maps i˚, j˚, p˚ determine natural transformations.
Similarly, we have cohomology functors, satisfying the same properties:

qI˚ : H ÝÑ ModZ{4
Zrxs

pI˚ : H ÝÑ ModZ{4
Zrxs

I
˚
: H ÝÑ ModZ{4

Zrxs

Remark 5.5. In this article, we have restricted our attention to negative definite pairs, in the
sense of Definition 2.33. However, we hope that the functoriality of the equivariant singular
instanton homology groups can be extended to other cobordisms. ˛

Remark 5.6. Technically, our constructions assign to a pair pY,Kq a transitive system of
equivariant singular instanton homology modules, indexed by the choices of auxiliary data,
and to a cobordism pW,Sq a morphism of such transitive systems. We may then assign to
each transitive system a module, as discussed after Theorem 3.34. ˛

Let pY,Kq be a based knot in an integer homology 3-sphere and let p´Y,´Kq be its
orientation reversal. From (2.20) and the discussion in Subsection 4.4 we conclude that the
Z{4-graded S-complex associated to p´Y,´Kq is naturally identified with the dual of the
Z{4-graded S-complex of pY,Kq. This implies the following:

Proposition 5.7. Let r : H Ñ H denote the functor which reverses orientations, i.e.
rpY,Kq “ p´Y,´Kq, and rpW,Sq “ p´W,´Sq. Then we have the following equalities:

qI˚ ˝ r “ pI˚, pI˚ ˝ r “ qI˚, I
˚

˝ r “ I˚,

qI˚ ˝ r “ pI˚, pI˚ ˝ r “ qI˚, I˚ ˝ r “ I
˚
.
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Remark 5.8. Observe that we are working over the coefficient ring Z, and yet we do not need
homology orientations, as is necessary, for example, in [KM07]. This is because we have
restricted our attention to knots in homology 3-spheres and cobordisms which are negative
definite pairs, which have canonical homology orientations. ˛

Remark 5.9. All of the above works if Z is replaced by any commutative ring R. ˛

5.2 Local equivalence and the concordance invariant h

Recall the category H, whose objects are based knots in integer homology 3-spheres, and
whose morphisms are negative definite pairs. Consider the set Θ3,1

Z obtained from H by the
general procedure described in Subsection 4.6. We obtain the following description:

Θ3,1
Z :“ tpY,Kq : Y an integer homology 3-sphere,K Ă Y a knotu { „

pY,Kq „ pY 1,K 1q ðñ
D negative definite pairs

pY,Kq Ñ pY 1,K 1q, pY 1,K 1q Ñ pY,Kq

The partially ordered set Θ3,1
Z has a group operation: the identity is represented by the

unknot in the 3-sphere, the group operation is connected sum of knots, and inverses are
obtained by reversing orientation. This abelian group is also a partially ordered group, with
rpY,Kqs ď rpY 1,K 1qs if and only if there is a negative definite pair from pY,Kq to pY 1,K 1q.
Furthermore, there is a natural homomorphism to Θ3,1

Z from the homology concordance
group defined in the introduction. We will prove the following:

Theorem 5.10. LetR be a commutative ring. The assignment pY,Kq ÞÑ p rC˚pY,K;Rq, rd, χq

induces a homorphism Ξ : Θ3,1
Z Ñ ΘS

R,Z{4 of partially ordered abelian groups.

That the assignment induces a well-defined map Θ3,1
Z Ñ ΘS

R,Z{4 of partially ordered sets
follows from the discussion in Subsection 3.4. That the map is a homomorphism will follow
from our connected sum theorem, to be proved in Section 6.

Definition 5.11. For a based knot in an integer homology 3-sphere pY,Kq, we define
hpY,Kq “ hZpY,Kq to be the Frøyshov invariant of the S-complex p rCpY,Kq, rdq. That is,
h is the invariant of the equivalence class rpY,Kqs P Θ3,1

Z obtained from the composition

h : Θ3,1
Z

Ξ
ÝÝÑ ΘS

Z,Z{4
h

ÝÝÑ Z

When Y is the 3-sphere, we simply write hpKq. More generally, we write hRpY,Kq for the
Frøyshov invariant obtained using a coefficient ring R which is an integral domain. ˛

Remark 5.12. In Section 7, we will generalize this invariant to the collection of invariants
hS pY,Kq for S -algebras over R “ ZrU˘1, T˘1s using local coefficient systems. These
more general versions are the ones discussed in the introduction. ˛
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Let CZ be the homology concordance group. There is a natural homomorphism

CZ ÝÑ Θ3,1
Z

In this way, any integer valued function defined on ΘS
R,Z{4 gives rise to a homology concor-

dance invariant for knots. We use the same notation hR : CZ Ñ Z for the homomorphism
induced by hR in this way.

Theorem 5.13. Let R be an integral domain. Then hR induces a homology concordance
invariant which is a homomorphism of partially ordered groups:

hR : CZ Ñ Z.

If pW,Sq : pY,Kq Ñ pY 1,K 1q is a negative definite pair, then hRpY,Kq ď hRpY 1,K 1q.

We may refine the invariants hR using Definition 4.32 to obtain a sequence of ideals

JR
h pY,Kq Ď JR

h´1pY,Kq Ď ¨ ¨ ¨ Ď R

where h “ hRpY,Kq, the construction of which again factors through Θ3,1
Z . The properties

of these ideals carry over from the discussion in Subsection 4.7. We will also generalize this
construction in Section 7.
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6 The connected sum theorem

Let pY,Kq and pY 1,K 1q be pairs of integer homology 3-spheres with embedded oriented
based knots. Then the connected sum pY#Y 1,K#K 1q, performed at the distinguished
basepoints of K and K 1, is also an oriented based knot. The main result of this section is:

Theorem 6.1. (Connected Sum Theorem for Knots) In the situation described above,
there is a chain homotopy equivalence of Z{4-graded S-complexes:

rCpY#Y 1,K#K 1q » rCpY,Kq b rCpY 1,K 1q (6.2)

The statement holds over any coefficient ring. This equivalence is natural, up to S-chain
homotopy, with respect to split cobordisms.

Each framed instanton chain complex that appears in the statement has some fixed choices
of metric and perturbation, which are as usual suppressed from the notation. The connected
sum theorem, together with Lemma 4.27, implies the following result for pI˚.

Corollary 6.3. Let pY,Kq and pY 1,K 1q be based knots in integer homology 3-spheres.
There is a chain homotopy equivalence of Z{4-graded complexes over Zrxs:

pC˚pY,Kq bZrxs
pC˚pY 1,K 1q » pC˚pY#Y 1,K#K 1q

natural up to homotopy with respect to split cobordisms. In particular, if R is a field, then
there is a Künneth formula relating pI˚pY,K;Rq, pI˚pY 1,K 1;Rq and pI˚pY#Y 1,K#K 1;Rq.

A similar statement holds for the I˚ theory, and the two are intertwined by the map i˚. We
remark also that Theorem 6.1 completes the proof of Theorem 5.10.

In this section we prove the equivalence (6.2) and its naturality (explained in Subsection
6.3.4) over Z, as the case for arbitrary coefficients follows from this.

Theorem 6.1 is a singular instanton homology analogue of Fukaya’s connected sum
theorem for the instanton Floer homology of integer homology 3-spheres [Fuk96]. In fact,
our result goes further than Fukaya’s theorem, which does not determine the full S-complex
for the connected sum. Our proof is an adaptation of the one described by Donaldson
[Don02, Section 7.4] in the non-singular setting. Apart from our having repackaged the
algebra, the main difference between our proof of Theorem 6.1 and Donaldson’s proof in
the non-singular case occurs in the proof of Proposition 6.17, where a singular analogue of
[Don02, Theorem 7.16] is used; see Remark 6.25 for more details.

6.1 Topology of the connected sum theorem

There is a standard cobordism of pairs pY,Kq \ pY 1,K 1q Ñ pY#Y 1,K#K 1q which we
denote by pW,Sq. The cobordism W : Y \ Y 1 Ñ Y#Y 1 is obtained by attaching a 4-
dimensional 1-handle H to r0, 1s ˆ pY \ Y 1q along 3-ball neighborhoods of the basepoints
pˆ t1u and p1 ˆ t1u. The surface cobordism S : K\K 1 Ñ K#K 1 is similarly obtained by
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attaching a 2-dimensional 1-handle, embedded inside H . Note that if K and K 1 are unknots,
then S is a pair of pants. For this reason we depict pW,Sq by a directed pair of pants, i.e. .
We have a similar cobordism of pairs pW 1, S1q : pY#Y 1,K#K 1q Ñ pY,Kq \ pY 1,K 1q,
which is obtained from pW,Sq by swapping the roles of incoming and outgoing ends, and
reversing orientation. This is depicted by . Both surfaces S and S1 admit framings which
are compatible with the Seifert framings of the knots K, K 1 and K#K 1.

γ
γ1

γ#

γ Y γ1 Y γ#

σ
σ1 σ#

σ Y σ1 Y σ#
Figure 4

Fix three oriented, piecewise-differentiable paths γ, γ1 and γ# on the surface S Ă W
in the following way. The path γ (resp. γ1) begins at the base point p of Y (resp. p1 of Y 1)
and ends at the base point p# of Y#Y 1. The path γ# begins at p and ends at p1. These
three paths together form a graph in the shape of the letter Y as it is shown in Figure 4. The
holonomy of any connection along γ is equal to the product of its holonomies along the
paths γ1 and γ#. Similarly, we denote by σ, σ1 and σ# the paths on the surface S1 which are
the mirrors of the paths γ, γ1 and γ#, as depicted in Figure 4.

The composite cobordism pW,Sq ˝ pW 1, S1q has an embedded loop on S ˝ S1, depicted
in Figure 5, formed by joining together γ# and σ#. A regular neighborhood N of this
loop is diffeomorphic to the pair pS1 ˆ D3, S1 ˆ D1q, the boundary of which is the pair
pS1 ˆ S2, S1 ˆ 2 ptsq. Excising N and gluing back in a copy of pD2 ˆ S2, D2 ˆ 2 ptsq

produces a cobordism isomorphic to r0, 1s ˆ pY#Y 1,K#K 1q, the identity cobordism.

pW,Sq ˝ pW 1, S1q r0, 1s ˆ pY#Y 1,K#K 1q

Figure 5

Now we consider the other composite, pW 1, S1q ˝ pW,Sq. Within this cobordism there is an
embedded pair pS3, S1q; in Figure 6 below, this S1 is the horizontal circle. Cutting along
this 3-sphere and circle, and gluing in two pairs of the form pB4, D2q, yields a cobodism
isomorphic to the identity cobordism r0, 1s ˆ ppY,Kq \ pY 1,K 1qq.
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pW 1, S1q ˝ pW,Sq r0, 1s ˆ ppY,Kq \ pY 1,K 1qq

Figure 6

6.2 Moduli spaces on the cobordisms pW,Sq and pW 1, S1q

Throughout this section, we write α, α1 and α# for gauge equivalence classes of critical
points for the perturbed Chern-Simons functionals on pY,Kq, pY 1,K 1q and pY#Y 1,K#K 1q.
Similarly, we write θ, θ1 and θ# for the corresponding reducible classes. We use the
abbreviated notation Mpα, α1;α#qd for the instanton moduli space MpW,S;α, α1, α#qd.
Similarly, Mpα#;α, α1qd denotes the moduli space MpW 1, S1;α#, α, α1qd.

We can use the paths γ and γ1 defined above to define maps as in Subsection 3.3.3:

Hγ : BpW,S;α, α1, α#q Ñ S1 Hγ1

: BpW,S;α, α1, α#q Ñ S1

Note that in contrast to our convention from Section 3.3, for the sake of brevity, we omit the
critical limits from the notation of these holonomy maps. To define Hγ (resp. Hγ1

) we need
α (resp. α1) to be irreducible, and both maps require α# irreducible. By picking generic
points h, h1 P S1, we define the following cut-down moduli spaces:

Mγpα, α1;α#qd :“ trAs P Mpα, α1;α#qd`1 | HγprAsq “ hu, (6.4)

Mγ1pα, α1;α#qd :“ trAs P Mpα, α1;α#qd`1 | Hγ1

prAsq “ h1u, (6.5)

Mγγ1pα, α1;α#qd :“ trAs P Mpα, α1;α#qd`2 | HγprAsq “ h, Hγ1

prAsq “ h1u. (6.6)

The moduli spaces (6.4), (6.5) and (6.6) are defined only in the case that α# is irreducible.
Moreover, we need irreducibility of α (resp. α1) to define the moduli spaces in (6.4) (resp.
(6.5)) and (6.6). There is another obvious way in which we can define a cut-down moduli
space in the case that α and α1 are both irreducible:

Mγ#pα, α1;α#qd :“ trAs P Mpα, α1;α#qd`1 | Hγ#
prAsq “ h1 ¨ h´1u (6.7)

We will mainly be concerned with the moduli spaces in (6.4), (6.5), (6.6) and (6.7) in the
case that d “ 0 or d “ 1. By choosing h and h1 generically, we may assume that all such
moduli spaces are smooth manifolds.

Remark 6.8. We follow similar orientation conventions as before to orient the moduli spaces.
For example, to orient the moduli space Mpα, α1;α#q, we use the canonical homology
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orientation oW for the pair pW,Sq, which is an element of ΛrW,S; θ`, θ
1
`; θ

#
´ s, defined as

in Subsection 2.9. Given elements oα P Λrαs, oα1 P Λrα1s and oα# P Λrα#s, we can fix
oα,α1;α# P ΛrW,S; θ`, θ

1
`; θ

#
´ s, and hence an orientation of Mpα, α1;α#q, by demanding:

Φpoα b oα1 b oW q “ Φpoα,α1;α# b oα#q. ˛

6.3 Proof of the connected sum theorem

Let us write p rC˚, rd, χq, p rC 1
˚,

rd1, χ1q and p rC#
˚ , rd

#, χ#q for the framed instanton S-complexes
for the based knots pY,Kq, pY 1,K 1q and pY#Y 1,K#K 1q, respectively. Write p rCb

˚ ,
rdb, χbq

for the tensor product S-complex defined using p rC˚, rd, χq and p rC 1
˚,

rd1, χ1q as in Subsection
4.5, so that its underlying chain complex is simply p rC˚, rdq b p rC 1

˚,
rd1q.

The moduli spaces discussed in Subsection 6.2 will be used to define morphisms

rλpW,Sq :p rC
b
˚ ,

rdb, χbq Ñ p rC#
˚ ,

rd#, χ#q,

rλpW 1,S1q :p rC
#
˚ ,

rd#, χ#q Ñ p rCb
˚ ,

rdb, χbq.

In Subsection 6.3.1, we define rλpW,Sq and show that it is a morphism of S-complexes. The
definition of rλpW 1,S1q is similar and is given in Subsection 6.3.2. Finally, in Subsection 6.3.3,
we show that these maps are S-chain homotopy equivalences.

6.3.1 Definition of the map rλpW,Sq

Using the S-compex decomposition of rCb
˚ from Subsection 4.5 and the notation of Definition

3.28, giving a morphism

rλpW,Sq : p rCb
˚ ,

rdb, χbq Ñ p rC#
˚ ,

rd#, χ#q

amounts to defining four maps, λ : Cb
˚ Ñ C#

˚ , µ : Cb
˚ Ñ C#

˚´1, ∆1 : Cb
0 Ñ Z, and

∆2 : Z Ñ C#
´1. Upon further decomposing Cb

˚ , these may be written as maps

λ : pC b C 1q˚ ‘ pC b C 1q˚´1 ‘ C˚ ‘ C 1
˚ Ñ C#

˚

µ : pC b C 1q˚ ‘ pC b C 1q˚´1 ‘ C˚ ‘ C 1
˚ Ñ C#

˚´1

∆1 : pC b C 1q0 ‘ pC b C 1q´1 ‘ C0 ‘ C 1
0 Ñ Z

∆2 : Z Ñ C#
´1.

The maps λ, µ and ∆1 can be further decomposed using the decomposition of their domains
into four components; we write

λ “ rλ1, λ2, λ3, λ4s, µ “ rµ1, µ2, µ3, µ4s, ∆1 “ r∆1,1,∆1,2,∆1,3,∆1,4s.

We proceed to define these maps. Suppose α, α1 and α# are all irreducible. Then define:

xλ1pα b α1q, α#y “ #Mγ#pα, α1;α#q0 ∆1,1pα b α1q “ #Mγ#pα, α1; θ#q0

xλ2pα b α1q, α#y “ #Mpα, α1;α#q0 ∆1,2pα b α1q “ #Mpα, α1; θ#q0

xλ3pαq, α#y “ #Mpα, θ1;α#q0 ∆1,3pαq “ #Mpα, θ1; θ#q0

xλ4pα1q, α#y “ #Mpθ, α1;α#q0 ∆1,4pα1q “ #Mpθ, α1; θ#q0
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We also define x∆2p1q, α#y “ #Mpθ, θ1;α#q0. Finally, we define µ as follows:

xµ1pα b α1q, α#y “ #Mγγ1pα, α1;α#q0

xµ2pα b α1q, α#y “ #Mγpα, α1;α#q0

xµ3pαq, α#y “ #Mγpα, θ1;α#q0

xµ4pα1q, α#y “ #Mγ1pθ, α1;α#q0

Using the pictorial calculus introduced in Section 3, we may write these maps as follows:

λ “

”

, , ,
ı

∆1 “

”

, , ,
ı

∆2 “ µ “

”

, , ,
ı

Remark 6.9. There is a unique reducible ASD connection A0 on pW,Sq up to gauge equiva-
lence, which is unobstructed and has index ´1, as can be verified using arguments similar to
those in Subsection 2.7. From this one can deduce that rλ has degree 0 (mod 4), as is already
implicit in the above notation. ˛

Remark 6.10. We have indicated the convention, as in the case of µ1, that a picture involving
more than one path represents a map defined by cutting down moduli spaces by holonomy
constraints HγprAsq “ hγ for each path γ, where hγ P S1. In the generic case, as is always
assumed, the parameters hγ are distinct from one another. Thus we have the relation

“ 0,

because this map counts instantons whose holonomy along one path is equal to two distinct
quantities. We note here, in passing, that whenever two paths overlap, our convention is to
draw them slightly separated from one another. ˛

Remark 6.11. Because γ# is homotopic to γ concatenated with the reverse of γ1, we have
the relation Hγ ¨ pHγ1

q´1 “ Hγ#
. From this we obtain the relation

´ “

This follows from Remark 3.18 and the elementary fact that for two maps f and f 1 from a
closed oriented 1-manifold M to S1, we have degpf ¨ f 1q “ degpfq ` degpf 1q. ˛

Proposition 6.12. The maps λ, µ, ∆1 and ∆2 define a morphism of S-complexes. That is to
say, they satisfy the following identities:

d# ˝ λ “ λ ˝ db,

δ#1 ˝ λ “ ∆1 ˝ db ` δb
1 ,

λ ˝ δb
2 “ δ#2 ´ d# ˝ ∆2,

d# ˝ µ` µ ˝ db “ v# ˝ λ´ λ ˝ vb ` δ#2 ˝ ∆1 ´ ∆2 ˝ δb
1 .
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Figure 7

Figure 8
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Figure 9

Proof. The relations listed will follow by analyzing the ends of certain 1-dimensional moduli
spaces using the gluing theory which is outlined in Subsection 2.7.

First, the relation d# ˝ λ “ λ ˝ db splits into the equations:

d#λ1 “ λ1pdb 1q ` λ1pεb d1q ´ λ2pεv b 1q ` λ2pεb v1q ` λ3pεb δ1
1q ` λ4pδ1 b 1q

d#λ2 “ λ2pdb 1q ´ λ2pεb d1q

d#λ3 “ λ2pεb δ1
2q ` λ3d

d#λ4 “ ´λ2pδ2 b 1q ` λ4d
1

These relations follow by counting the boundary points of the 1-dimensional manifolds
M`

γ#pα, α1;α#q1, M`pα, α1;α#q1, M`pα, θ1;α#q1 and M`pθ, α1;α#q1, respectively.
The boundary points in the four cases correspond to certain factorizations of instantons
which are depicted by the four rows in Figure 7. The details of this analysis are completely
analogous to the proofs of Propositions 3.10 and 3.20.

Similarly, the relation δ#1 ˝λ “ ∆1˝db `δb
1 splits into four equations, which correspond

to the four rows in Figure 8, obtained by counting boundary points of the moduli spaces
M`

γ#pα, α1; θ#q1, M`pα, α1; θ#q1, M`pθ, α1; θ#q1 and M`pθ, α1; θ#q1.
The relation λ ˝ δb

2 “ δ#2 ´ d# ˝ ∆2 is equivalent to

λ3 ˝ δ2 ` λ4 ˝ δ1
2 “ δ#2 ´ d# ˝ ∆2,

the terms corresponding to the boundary points of moduli spaces M`pθ, θ1;α#q1:

Finally, consider the fourth relation

d# ˝ µ` µ ˝ db “ v# ˝ λ´ λ ˝ vb ` δ#2 ˝ ∆1 ´ ∆2 ˝ δb
1 . (6.13)

This splits into four equations. The first equation follows by counting the boundary points of
1-dimensional moduli spaces M`

γγ1pα, α1;α#q1. See Figure 9. Note that gluing theory gives
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Figure 10

an additional contribution to Figure 9 of the form

However, this term vanishes by Remark 6.10. The term in Figure 9 depicted as

(6.14)

comes from broken trajectories in M`
γγ1pα, α1;α#q1 which break along a reducible on

Y#Y 1. Although the two curves γ, γ1 travel through r1,8q ˆ Y#Y 1, it is clear that

M`
γγ1pα, α

1;α#q1 “ M`

γ#γ1pα, α
1;α#q1.

Thus from the viewpoint of the latter moduli space, we only need understand how such
trajectories interact with the holonomy map of γ1, from which the contribution (6.14) follows
just as in Proposition 3.16. In verifying the relation at hand from Figure 9, we use Remark
6.11 several times, for example:

´ “

´ “

The second equation stemming from (6.13) is obtained from the boundary points of
the moduli space M`

γ pα, α1;α#q1, which are represented in Figure 10. The third equation
follows from considering the boundary of M`

γ pα, θ1;α#q1; the fourth and final equation is
similar, and uses M`

γ1 pθ, α1;α#q1 and the relation of Remark 6.11.
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6.3.2 Definition of the map rλpW 1,S1q

We have a similar decomposition for the map rλpW 1,S1q:

λ1 : C#
˚ Ñ pC b C 1q˚ ‘ pC b C 1q˚´1 ‘ C˚ ‘ C 1

˚

µ1 : C#
˚ Ñ pC b C 1q˚´1 ‘ pC b C 1q˚´2 ‘ C˚´1 ‘ C 1

˚´1

∆1
1 : C

#
1 Ñ Z

∆1
2 : Z Ñ pC b C 1q´1 ‘ pC b C 1q´2 ‘ C´1 ‘ C 1

´1.

The maps λ1, µ1 and ∆1
2 can be further decomposed using the decomposition of their

codomains into four components, as seen above; we write

λ1 “ rλ1
1, λ

1
2, λ

1
3, λ

1
4s⊺, µ “ rµ1

1, µ
1
2, µ

1
3, µ

1
4s⊺, ∆1

2 “ r∆1
2,1,∆

1
2,2,∆

1
2,3,∆

1
2,4s⊺.

We proceed to define these maps. Suppose α, α1 and α# are all irreducible. Then define:

xλ1
1pα#q, α b α1y “ #Mpα#;α, α1q0 x∆1

2,1p1q, α b α1y “ #Mpθ#;α, α1q0

xλ1
2pα#q, α b α1y “ #Mσ#pα#;α, α1q0 x∆1

2,2p1q, α b α1y “ #Mσ#pθ#;α, α1q0

xλ1
3pα#q, αy “ #Mpα#;α, θ1q0 x∆1

2,3p1q, αy “ #Mpθ#;α, θ1q0

xλ1
4pα#q, α1y “ #Mpα#; θ, α1q0 x∆1

2,4p1q, α1y “ #Mpθ#; θ, α1q0

We also define ∆1
1pα#q “ #Mpα#; θ, θ1q0. Finally, we define µ1 as follows:

xµ1
1pα#q, α b α1y “ #Mσpα#;α, α1q0

xµ1
2pα#q, α b α1y “ #Mσσ1pα#;α, α1q0

xµ1
3pα#q, αy “ #Mσpα#;α, θ1q0

xµ1
4pα#q, α1y “ #Mσ1pα#; θ, α1q0

The proof of the following proposition is similar to the proof of Proposition 6.12. All the
relations are obtained from Subsection 6.3.1 by reversing the pictures from right to left.

Proposition 6.15. The maps λ1, µ1, ∆1
1 and ∆1

2 define a morphism of S-complexes. That is
to say, they satisfy the following identities:

db ˝ λ1 “ λ1 ˝ d#,

δb
1 ˝ λ1 “ ∆1

1 ˝ d# ` δ#1 ,

λ1 ˝ δ#2 “ δb
2 ´ db ˝ ∆1

2,

db ˝ µ1 ` µ1 ˝ d# “ vb ˝ λ1 ´ λ1 ˝ v# ` δb
2 ˝ ∆1

1 ´ ∆1
2 ˝ δ#1 .

6.3.3 Chain homotopies of compositions

We firstly identify the composition rλpW,Sq ˝ rλpW 1,S1q, which is a morphism of S-complexes,
as a morphism associated to pW ˝, S˝q :“ pW ˝ W 1, S ˝ S1q. Let ρ# :“ γ# ˝ σ# be the
closed loop embedded in the surface S˝, and similarly set ρ “ γ ˝ σ, ρ1 “ γ1 ˝ σ1. Let

rλpW ˝,S˝,ρ#q : rC
#
˚ Ñ rC#

˚
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be the S-morphism defined by components λ˝, µ˝, ∆˝
1 and ∆˝

2, where

xλ˝pα#q, β#y “ #Mρ#pW ˝, S˝;α#, β#q1
0

xµ˝pα#q, β#y “ #Mρ#ρpW ˝, S˝;α#, β#q1
0

x∆˝
1pα#q, 1y “ #Mρ#pW ˝, S˝;α#, θ#q1

0

x∆˝
2p1q, β#y “ #Mρ#pW ˝, S˝; θ#, β#q1

0

In all of these moduli spaces, we use a slightly larger gauge group than usual; this is indicated
by the primed superscripts. To say more, viewing our moduli spaces as consisting of SOp3q

(orbifold) adjoint connections, we mod out by not only determinant-1 gauge transformations,
but all SOp3q (orbifold) gauge transformations. In the case at hand, the determinant-1 gauge
group is of index 2 in this larger group, as H1pW ˝;Z{2q – Z{2. The residual Z{2 action is
free and orientation-preserving on the determinant-1 moduli spaces [KM11a, Subsection
5.1], so for example we have

#Mρ#pW ˝, S˝;α#, β#q0 “ 2#Mρ#pW ˝, S˝;α#, β#q1
0

This modification of gauge groups is to avoid factors of 2 in our chain relations below.
Otherwise, our notation is just as before; for example, we have

Mρ#ρpW ˝, S˝;α#, β#q1
0 :“ trAs P MpW ˝, S˝;α#, β#q1

2 | Hρ#prAsq “ s,HρprAsq “ tu

for generic fixed s, t P S1, and Hρ# and Hρ are modified holonomy maps. In pictures:

λ˝ “ µ˝ “

∆˝
1 “ ∆˝

2 “

That the map rλpW ˝,S˝,ρ#q just defined is a morphism of S-complexes follows, for the most
part, from the usual arguments. The one essential difference is that pW ˝, S˝q is not a negative
definite pair in the sense of Definition 2.33, because H1pW ˝zS˝;Zq is free abelian of rank 2.
In considering its reducible traceless representations in X pW ˝, S˝q, one of these generators,
upon conjugating, must go to i P SUp2q, and the other is then of the form eiθ P SUp2q.
Thus there is not one reducible, but a circle’s worth. Nonetheless, all the moduli spaces used
in the definition are cut down by holonomy around the loop ρ#, and this has the effect of
picking out a single reducible which is unobstructed. Similar matters are discussed in the
proof of Proposition 6.17 below.

Proposition 6.16. There is an S-chain homotopy equivalence between the S-morphism
rλpW,Sq ˝ rλpW 1,S1q and the map rλpW˝W 1,S˝S1,ρ#q.

Proof. Choose a path of metrics G on pW ˝, S˝q, starting at g0 and ending at a broken metric
g8, the latter of which is broken along the gluing region of the composition pW,Sq˝pW 1, S1q.
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Figure 11

Define K˝, L˝, M˝
1 and M˝

2 as follows:

xK˝pα#q, β#y “ #trAs P
ď

gPG

MgpW ˝, S˝;α#, β#q1
0 | Hρ#prAsq “ su

xL˝pα#q, β#y “ #trAs P
ď

gPG

MgpW ˝, S˝;α#, β#q1
1 | Hρ#prAsq “ s,HρprAsq “ tu

xM˝
1 pα#q, 1y “ #trAs P

ď

gPG

MgpW ˝, S˝;α#, θ#q1
0 | Hρ#prAsq “ su

xM˝
2 p1q, β#y “ #trAs P

ď

gPG

MgpW ˝, S˝; θ#, β#q1
0 | Hρ#prAsq “ su

These maps define a chain homotopy as in Definition 3.30 between rλpW ˝,S˝q defined above
and the map rλ8

pW ˝,S˝q
defined similarly to rλpW ˝,S˝q but using the broken metric g8 in place

of g0. That is, if we write the components of rλ8
pW ˝,S˝q

as λ8, µ8, ∆8
1 and ∆8

2 , then

d#K `Kd# “ λ8 ´ λ˝

v#K ´ d#L` δ#2 M1 ` Ld# ´Kv# `M2δ
#
1 “ µ8 ´ µ˝

δ#1 K `M1d
# “ ∆8

1 ´ ∆˝
1

´d#M2 ´Kδ#2 “ ∆8
2 ´ ∆˝

2

These relations are proved in the usual way; for the first, consider the 1-dimensional moduli
space

Ť

gPGM
g
ρ#

pW ˝, S˝;α#, β#q1
0. Counting the ends of this moduli space that contain

sequences of pairs prAis, giq where the metrics gi converge to the interior of G yield the left
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hand side of the equation d#K ` Kd# “ λ8 ´ λ˝, and ends containing sequences with
gi Ñ g0 (resp. g8) contribute to λ˝ (resp. λ8) on the right side. Finally, we claim that

rλ8
pW ˝,S˝q “ rλpW,Sq ˝ rλpW 1,S1q

This amounts to straightforward verifications of the following identities:

λ8 “ λ1λ
1
1 ` λ2λ

1
2 ` λ3λ

1
3 ` λ4λ

1
4

µ8 “ µ1λ
1
1 ` µ2λ

1
2 ` µ3λ

1
3 ` µ4λ

1
4 ` λ1µ

1
1 ` λ2µ

1
2 ` λ3µ

1
3 ` λ4µ

1
4 ` ∆2∆

1
1

∆8
1 “ ∆1,1λ

1
1 ` ∆1,2λ

1
2 ` ∆1,3λ

1
3 ` ∆1,4λ

1
4

∆8
2 “ λ1∆

1
2,1 ` λ2∆

1
2,2 ` λ3∆

1
2,3 ` λ4∆

1
2,4

The right hand sides are represented by the rows of Figure 11. (If we had not modified
our gauge groups, factors of 2 would appear on the right hand sides, from a discrete gluing
parameter, multiplying by ´1 on one of Y or Y 1, as in [BD95, Section 3.2].) We also remark
that in verifying the relation for µ8 we use the following identity, and its symmetries:

“

Proposition 6.17. The morphism rλpW ˝,S˝,ρ#q is S-chain homotopic to id.

Proof. Recall from Figure 5 that embedded in the composite pW ˝, S˝q “ pW ˝W 1, S ˝ S1q

is a copy of pS1 ˆ D3, S1 ˆ D1q, surgery on which yields a product cobordism. Write
pW c, Scq for the closure of the complement of pS1 ˆD3, S1 ˆD1q, so that

pW ˝, S˝q “ pW c, Scq Y pS1 ˆD3, S1 ˆD1q,

where the two pieces are glued along pS1 ˆ S2, S1 ˆ t2 ptsuq. The basic idea of the proof is
to relate the morphism associated to pW ˝, S˝q to a morphism associated to the pair in which
pS1 ˆD3, S1 ˆD1q is replaced by pD2 ˆ S2, D2 ˆ 2 ptsq.

Stretching the metric along a collar neighborhood of the gluing region provides a 1-
parameter family of metrics, starting from our initial choice of metric, and limiting to a
metric broken along S1 ˆ S2. Along this 1-parameter family of metrics, we homotop the
loops ρ, ρ1 and ρ# and vary the constant s P S1 continuously such that when the metric
is broken along S1 ˆ S2, the loop ρ# is contained in S1 ˆ D1, away from the region of
stretching, but that ρ and ρ1 are in the interior of W c and s “ 1. We also arrange that the
perturbation data both near the gluing region and on the component pS1 ˆ D3, S1 ˆ D1q

are zero. (These assumptions will be justified in the course of the proof.) Write rλ` for the
map defined just as rλpW ˝,S˝,ρ#q was defined, but using the limiting broken metric; write its
components as λ`, µ`,∆`

1 ,∆
`
2 . The family of metrics determines an S-chain homotopy

from rλpW ˝,S˝,ρ#q to rλ` in the usual way.
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We now describe rλ`. First, the critical set C of the unperturbed Chern-Simons functional
on pS1 ˆS2, S1 ˆ 2 ptsq may be identified via holonomy with the traceless character variety,
similarly to (2.2). This latter set is identified with S1 as follows. Let µ be a meridian
generator for the fundamentral group of S2z2 pts, and ν a generator corresponding to the S1

factor. The condition tr ρpµq “ 0 implies there is some gρ P SUp2q such that gρρpµqg´1
ρ “ i.

As µ and ν commute, we have gρρpνqg´1
ρ “ eiθ P S1. Sending ρ to gρρpνqg´1

ρ gives the
bijection. In summary, we have an induced bijection C Ñ S1.

Note that the stabilizer of each point in C is isomophic to Up1q. We next claim that C is
Morse–Bott non-degenerate. As C has been identified with the smooth 1-manifold S1, this
amounts to showing, for each class in C, that H1 of the associated deformation complex has
dimension 1. This in turn is equivalent to

dimH1pΣ;π˚B̌adqrτ
˚

“ 1 (6.18)

where π : Σ Ñ S1 ˆS2 is the double branched cover, B̌ad is the orbifold adjoint connection
associated to rBs P C, and rτ˚ is the action induced by a lift rτ of the covering involution
τ on Σ to the adjoint bundle. Each class is reducible, and so π˚B̌ad is the sum of some
Up1q-connection B1 and a trivial connection. Thus H1pΣ;π˚B̌adq is given by

H1pS1 ˆ S2;B1q ‘H1pS1 ˆ S2;Rq. (6.19)

The action of rτ˚ is by ´1 on the left factor of (6.19) and the identity on the right factor. This
implies the relation (6.18).

Next, let MpS1 ˆ D3, S1 ˆ D1qred denote the set of reducible instantons on the pair
pS1 ˆD3, S1 ˆD1q, with cylindrical end attached. Then we have the map

MpS1 ˆD3, S1 ˆD1qred Ñ C (6.20)

which associates to an instanton its flat limit. This is a bijection, as every flat connection on
pS1 ˆ S2, S1 ˆ 2 ptsq extends uniquely over pS1 ˆD3, S1 ˆD1q.

Note that each flat instanton in MpS1 ˆ D3, S1 ˆ D1qred is unobstructed, because
the branched cover S1 ˆ D3 is negative definite. Furthermore, each such instanton has
dimH1 “ 0 in the deformation complex, as follows from a similar computation to that of
(6.18). In particular, the index of the ASD operator for any rAs P MpS1 ˆD3, S1 ˆD1qred

is equal to ´1. Moreover, any instanton on pS1 ˆD3, S1 ˆD1q with index ´1 is neccesarily
in MpS1 ˆ D3, S1 ˆ D1qred, because all such instantons must have the same energy, and
must therefore all be flat.

Write MpW c, Sc;α#, β#qd for the union of MpW c, Sc;α#, γ, β#qd´1 over all γ P C,
and similarly for MpS1 ˆD3, S1 ˆD1qirr

d . Then each of these is a smooth manifold whose
dimension is recorded in the subscript. From the above discussion,

MpS1 ˆD3, S1 ˆD1qirr
d “ H, d ď 0 or d ı 0 mod 4 (6.21)

We now employ gluing theory in the Morse–Bott case, see e.g. [Don02, Section 4.5.2].
Write Mρ#pS1 ˆ D3, S1 ˆ D1qirr

d for the subspace of rAs P MpS1 ˆ D3, S1 ˆ D1qirr
d`1
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satisfying a holonomy condition Hρ#prAsq “ 1. Consider the diagram

MpW c, Sc;α#, β#qd

r

''

Mρ#pS1 ˆD3, S1 ˆD1qirr
d1

r1

vv
C

(6.22)

where each of r and r1 record the limit γ P C along the cylindrical ends. Note that all
instantons in MpW c, Sc;α#, β#qd are irreducible. Similarly, we have a diagram

MpW c, Sc;α#, β#q1

r

''

Mρ#pS1 ˆD3, S1 ˆD1qred

r1

vvC

(6.23)

where r1 is a restriction of the map (6.20). The Morse–Bott gluing theory tells us that for our
limiting broken metric, the moduli space Mρ#pW ˝, S˝;α#, β#q0 may be identified with
union of the fiber products of (6.22) for d ` d1 “ 1, along with the fiber product (6.23).
However, (6.21) implies that (6.22) is empty for any pair pd, d1q with d` d1 “ 1, so we may
restrict our attention to (6.23).

The holonomy constraint Hρ#prAsq “ 1 picks out exactly two points in the domain of
the bijection (6.20). This is because Hρ# is defined by first taking the adjoint connection,
which has the effect of squaring the holonomy in S1. We conclude that the map

r1 :Mρ#pS1 ˆD3, S1 ˆD1qred Ñ C

is an embedding of two points into C with image being two elements θ˘ of C that have
holonomies ˘1 along the S1-factor. By picking appropriate metric and perturbation on the
interior of pW c, Scq, we may assume that r is transverse to θ˘ P C. Thus

#Mg
ρ#

pW ˝, S˝;α#, β#q0 “ #MpW c, Sc;α#, θ`, β
#q0 ` #MpW c, Sc;α#, θ´, β

#q0

“ 2#MpW c, Sc;α#, θ`, β
#q0

where g is the metric broken along S1 ˆ S2. The second equality holds because there is
again an element of the SOp3q gauge group which maps MpW c, Sc;α#, θ`, β

#q0 into
MpW c, Sc;α#, θ´, β

#q0 in an orientation preserving way. As the map λ` is defined using
the moduli space Mg

ρ#
pW ˝, S˝;α#, β#q1

0, a quotient of Mg
ρ#

pW ˝, S˝;α#, β#q0 by a free
involution, the factor of 2 is absorbed and we have the identity

xλ`pα#q, β#y “ #MpW c, Sc;α#, θ`, β
#q0.

The other components may be described similarly:

xµ`pα#q, β#y “ #MρpW c, Sc;α#, θ`, β
#q0

∆`
1 pα#q “ #MpW c, Sc;α#, θ`, θ

#q0

x∆`
2 p1q, β#y “ #MpW c, Sc; θ#, θ`, β

#q0
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Recall from Figure 5 that replacing pS1 ˆD3, S1 ˆD1q with pD2 ˆS2, D2 ˆ 2 ptsq results
in the product cobordism r0, 1s ˆ pY#Y 1,K#K 1q. By attaching pD2 ˆ S2, D2 ˆ 2 ptsq

metrically, with a cylindrical end, this product cobordism inherits a broken metric. Then
the associated moduli space Mpr0, 1s ˆ pY#Y 1,K#K 1q;α#, β#q0 may be identified with
union of the following fiber product:

MpW c, Sc;α#, β#q1

r

''

MpD2 ˆ S2, D2 ˆ 2 ptsqred

r1

vvC

We have ruled out the possibility of fiber products involving MpD2 ˆ S2, D2 ˆ 2 ptsqirr
d as

in the previous case for S1 ˆ D3. The moduli space MpD2 ˆ S2, D2 ˆ 2 ptsqred consists
of one point, the unique flat connection which extends θ` P C. Note that this connection is
unobstructed because the branched cover, also identified with D2 ˆ S2, is negative definite,
and it has dimH1 “ 0 because b1pD2 ˆ S2q “ 0. Thus

xλ`pα#q, β#y “ #Mpr0, 1s ˆ pY#Y 1,K#K 1q;α#, β#q0

and similarly for µ`, ∆`
1 and ∆`

2 . In summary, we may write

rλ` “ rλ8
r0,1sˆpY#Y 1,K#K1q (6.24)

where the map on the right side is the usual S-morphism associated to a cobordism, with the
understanding that the auxiliary data involves a metric broken along S1 ˆ S2. Finally, using
an S-chain homotopy induced by the family of metrics which starts at this broken metric
and “unstretches” to the product metric, we obtain an S-chain homotopy from the right side
of (6.24) to the S-morphism defined using the product metric, which is the identity.

Remark 6.25. Consider a negative definite pair pW,Sq : pY,Kq Ñ pY 1,K 1q as in Subsection
3.3.1, and an embedded 2-sphere F with F ¨ F “ 0, which intersects S transversally
in 2 points, such that F ¨ S “ 0. A neighborhood of F is diffeomorphic to the pair
pD2 ˆS2, D2 ˆ2 ptsq, and we can cut this out and reglue a copy of pS1 ˆD3, S1 ˆ2 ptsq to
obtain a pair pW 1, S1q. Let γ denote the closed loop which is the core of S1ˆD3 Ă W 1. From
Subsection 3.3.1 we have a holonomy induced map µpW 1,S1,γq : CpY,Kq Ñ CpY 1,K 1q.
To the original cobordism pW,Sq we consider the usual cobordism-induced map λpW,Sq :
CpY,Kq Ñ CpY 1,K 1q, which counts isolated instantons. Then the argument in the proof
of Proposition 6.17 shows:

Proposition 6.26. The maps µpW 1,S1,γq and 2λpW,Sq are chain homotopic.

This is a singular and relative analogue of [Don02, Theorem 7.16]. To remove the factor of
2, we can work with a slightly larger gauge group when defining µpW 1,S1,γq, as done in the
proof of Proposition 6.17. ˛

Next, we analyze the reverse composition.
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Proposition 6.27. rλpW 1,S1q ˝ rλpW,Sq is S-chain homotopic to an isomorphism.

Proof. Set pW I, SIq :“ pW 1, S1q ˝ pW,Sq. We consider an S-chain homotopy H I such that

rdbH I `H I
rdb “ rλpW 1,S1q ˝ rλpW,Sq ´ rλ8

pW I,SIq (6.28)

The moduli spaces for the map H I are defined similarly to the chain homotopy used in the
proof of Proposition 6.16, but this time using a path of metrics G that starts at the broken
metric g0 for the composite pW I, SIq :“ pW 1, S1q ˝ pW,Sq, broken along pY#Y 1,K#K 1q,
and ending at the metric g8 broken along the pS3, S1q from Figure 6. The components of
H I are defined in a straightforward manner, by looking at the shape of the corresponding
component in rλpW 1,S1q ˝ rλpW,Sq, and defining the component of H I using the same kind of
moduli space but incorporating the metric family G. For example, if we write

H I “

»

–

KI 0 0
LI ´KI M I

2

M I
1 0 0

fi

fl

then KI is a 4 ˆ 4 matrix, with entries KI
ij . Now, the p1, 1q-entry of λλ1 is equal to

λ1λ
1
1, which is defined by counting instantons on pW I, SIq with metric g0 and constrained

holonomy along ρ#. To define KI
11 we use G instead of the single metric g0:

xKI
11pα b α1q, β b β1y “ #trAs P

ď

gPG

MgpW I, SI;α, α1;β, β1q0 | Hγ#
prAsq “ su

The other components of H I are defined similarly. Although tedious, checking that H I

is indeed an S-chain homotopy as in (6.28) is straightforward and analogous to previous
computations.

We claim that the map rλ8
pW I,SIq

is S-chain homotopic to an isomorphism. Write its
S-morphism components as λI, µI, ∆I

1 and ∆I
2. Then λI is depicted in the bottom left

matrix of Figure 12. To see this, it is convenient to also have in mind the map obtained
halfway through the homotopy from λλ1 to λI, depicted in the top right matrix of Figure 12.
The vanishing entries of λI in Figure 12 are instances of standard vanishing theorems. For
example, consider the component λI

13. By gluing theory, the instantons under consideration
correspond to pairs of instantons rAs, rA1s and a gluing parameter in S1. Here rAs and rA1s

are connections on the punctured cylinders R ˆ Y and R ˆ Y 1, respectively, where A has
limits α and β at the ends of the cylinder and the reducible θ0 at the puncture, while A1 has
limits α1 and β1 along its cylinder, and θ0 at the puncture. As λI

13 counts index 0 instantons,
the relevant moduli spaces containing rAs and rA1s are empty. The vanishing of the other
entries is argued similarly.

An argument similar to that in the proof of Proposition 6.17 shows that λI is equal to
the map defined using moduli spaces on the unpunctured cylinder R ˆ pY \ Y 1q using a
metric g which is broken along chosen 3-spheres (surrounding the prior punctures) in each

80



Figure 12: A homotopy from λλ1 to the identity is depicted in stages, from left to right, top
to bottom. The top left matrix represents λλ1, the top right matrix a map halfway through
the chain homotopy of KI, the bottom left is the map λI, and the bottom right represents
the identity map. (Our depiction of a cylinder here, for a cobordism map, should not be
confused with our prior use of a cylinder representing the boundary map d.)

of the two cylinders. Using a family of metrics GI from g to a translation-invariant metric,
we obtain a homotopy from λI to the identity. Indeed, the off-diagonal terms in λI, such as

go under this chain homotopy to zero, because there are no translation-invariant instantons of
index 0 from a reducible to an irreducible; and the diagonal terms in λI go to identity maps,
because translation-invariant instantons of index 0 with irreducible limits are (perturbed) flat,
and induce the identity maps on the chain level.

In fact, the 1-parameter family of metrics GI induces in the usual manner an S-chain
homotopy between rλ8

pW I,SIq
and an S-morphism which from the previous paragraph has

λ-component equal to the identity. The proof is completed by Lemma 6.29 below.
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Lemma 6.29. If rλ : p rC˚, rdq Ñ p rC 1
˚,

rd1q is a morphism of S-complexes with its component
λ : C˚ Ñ C 1

˚ an isomorphism, then in fact rλ is an isomorphism of S-complexes.

Proof. After identifying C˚ and C 1
˚ using λ, we are reduced to the case in which rλ is a

morphism from p rC˚, rdq to itself, and rλ has decomposition given in (3.29) where λ “ 1 is
the identity. The inverse of rλ in this case is given by

»

–

1 0 0
´µ` ∆2∆1 1 ´∆2

´∆1 0 1

fi

fl

which is of course a morphism of S-complexes. Alternatively, a morphism of S-complexes
rC˚ Ñ rC 1

˚, after reordering the summands, is an upper triangular matrix whose diagonal
entries are λ, 1, λ, and the inverse is of the same form.

We have established that the compositions

rλpW,Sq ˝ rλpW 1,S1q, rλpW 1,S1q ˝ rλpW,Sq

are S-chain homotopic to the identity and an isomorphism, respectively. It follows formally
that the second composition is in fact S-chain homotopic to the identity. This completes the
proof of the chain homotopy equivalence (6.2).

6.3.4 Naturality of the equivalences

Finally, we discuss the naturality of (6.2) with respect to split cobordisms. Let us consider
negative definite pairs pX,F q : pY1,K1q Ñ pY2,K2q and pX 1, F 1q : pY 1

1 ,K
1
1q Ñ pY 1

2 ,K
1
2q.

As usual, our knots are based, and in the cobordisms pX,F q and pX 1, F 1q we choose neatly
embedded arcs whose endpoints are the distinguished basepoints. Using these arcs, we may
form the glued cobordism pX#X 1, F#F 1q : pY1#Y

1
1 ,K1#K

1
1q Ñ pY2#Y

1
2 ,K2#K

1
2q in a

standard manner. This is what is meant by a split cobordism. We consider the square:

rC˚pY1,K1q b rC˚pY 1
1 ,K

1
1q

rλpX,F qbrλpX1,F 1q
��

rλpW1,S1q // rCpY1#Y
1
1 ,K1#K

1
1q

rλpX#X1,F#F 1q
��

rC˚pY2,K2q b rC˚pY 1
2 ,K

1
2q

rλpW2,S2q

// rC˚pY2#Y
1
2 ,K2#K

1
2q

(6.30)

The vertical maps are the usual morphisms of S-complexes we associate to given cobordisms,
while the horizontal maps are the maps as constructed in Subsection 6.3.1. We have implicitly
chosen metrics and perturbations for each of the cobordisms. The cobordisms

pX#X 1, F#F 1q ˝ pW1, S1q, pW2, S2q ˝
`

pX,F q \ pX 1, F 1q
˘

are topologically equivalent, an elementary fact which is left to the reader. Thus the two
different compositions obtained in the above square may be viewed as induced by the same
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cobordism, but with different (broken) metrics and perturbation choices. Then, choosing
a 1-parameter family of auxiliary data interpolating these choices gives rise, in the usual
manner, to an S-chain homotopy between the two morphisms

rλpX#X 1,F#F 1q ˝ rλpW1,S1q, rλpW2,S2q ˝

´

rλpX,F q b rλpX 1,F 1q

¯

This establishes the commutativity of (6.30) up to S-chain homotopy. There is a similar
square with horizonal arrows reversed, using the morphisms defined in Subsection 6.3.2, and
the same statements hold.
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7 Local coefficient systems and filtrations

In this section we describe how to generalize our previous constructions to the case of
local coefficients. Our general local coefficient system is a hybrid of the one defined by
Kronheimer and Mrowka in [KM11b], which roughly measures the holonomy of connections
along the longitudal direction of the knot, and one the defined by the Chern-Simons func-
tional. The latter ingredient has more structure, inherited from the fact that the Chern-Simons
functional is (almost) non-increasing for (perturbed) instantons. In this context, we carry
over constructions from the non-singular setting given in [Dae18].

7.1 Local coefficients

Let pY,Kq be a based knot in an integer homology 3-sphere. The most general local
coefficient system on BpY,Kq that we consider is defined over the ring

R :“ ZrU˘1, T˘1s.

To an element of BpY,Kq represented by the connection B, we associate the R-module

∆rBs :“ ZrU˘1, T˘1s ¨ UCSpBqT holKpBq

where holKpBq P R{Z is defined analogously to (3.12), and roughly gives the holonomy
of the S1-connection induced by Bad along K. To define holKpBq, we must choose a
framing of our knot to fix our procedure for taking the holonomy. For more details see
[KM11b, Section 3.9]. A knot in an integral homology 3-sphere has a canonical framing
induced by a Seifert surface, and we always use this framing.

The holonomy holKpBq is related to the monopole number νpAq in the same way
that the Chern-Simons functional is related to the topological energy κpAq. In particular,
we have an analogue of relation (2.24): if A is a connection on a cobordism of pairs
pW,Sq : pY,Kq Ñ pY 1,K 1q then we have the relation

νpAq ” holK1pB1q ´ holKpBq pmod Zq (7.1)

where B and B1 are the limiting connections on pY,Kq and pY 1,K 1q, respectively.
Let γ : r´1, 1s Ñ BpY,Kq be a path from α1 to α2. Let A be a singular connection on

R ˆ Y representing γ, and representing the pull-backs of α1 and α2 for t ă ´1 and t ą 1,
respectively. Then we define ∆γ : ∆α1 Ñ ∆α2 to be multiplication by U´2κpAqT νpAq,
which is well-defined by relations (2.24) and (7.1). Monomials in ∆α can be identified with
homotopy classes of paths γ from α to the reducible class θ. The action and monopole
number of the path γ determines a pair of real numbers pĂCSpγq, ĂholKpγqq. We use this
pair to define two (real valued) gradings on ∆α, which are respectively called instanton
and monopole gradings. Moreover, the ASD index of the path γ can be used to define a
Z-grading rgr on ∆α which is an integer lift of grpαq. This grading satisfies rgrp1q “ 0 for
1 P ∆θ. Further, multiplication by U˘1 changes the Z-grading by ˘4 and it is fixed by
multiplication by T˘1.
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Suppose K is a based knot in an integer homology sphere Y . Let pC˚pY,K; ∆q, dq be
the Z-graded chain complex over R defined as follows:

C˚pY,K; ∆q “
à

αPCirr
π

∆α, dpα1q “
ÿ

α2PCirr
π

rAsPM̆pα1,α2q0

∆pAqpα2q (7.2)

Here ∆pAq “ ˘∆γ such that γ is the path in BpY,Kq from α1 to α2 determined by A and
the sign is given by the orientation of the moduli space M̆pα1, α2q0. A discussion similar to
the one in Subsection 3.1 shows that pC˚pY,K; ∆q, dq is indeed a chain complex over R,
where d has degree ´1.

Suppose pW,Sq : pY,Kq Ñ pY 1,K 1q is a negative definite pair in the sense of Definition
2.33. Choose, as usual, a path from the basepoint of K to the basepoint of K 1. By a slight
modification of (7.2), we may define a cobordism map

λpW,S;∆qpαq “
ÿ

α1PCirr
π1

rAsPMpW,S;α,α1q0

∆pAq ¨ α1. (7.3)

Here ∆pAq :“ ˘U´2κpAqT νpAq where the sign is determined as usual by the orientation of
the moduli space MpW,S;α, α1q0.

We may continue in this fashion, and adapt all of the constructions in Section 3 to the
setting of local coefficients. We obtain an S-complex

p rC˚pY,K; ∆q, rdq (7.4)

over the ring R. To a negative definite pair pW,Sq as above, we may associate a morphism
rλpW,S;∆q of S-complexes, and so forth. The same arguments as before show that the S-
chain homotopy type of the S-complex p rCpY,K; ∆q, rdq is independent of the choice of the
orbifold metric on Y and the perturbation of the Chern-Simons functional.

We may recover the S-complex p rC˚pY,Kq, rdq over Z from (7.4) using the change of
basis that evaluates U and T at 1. Given an R-algebra S , we obtain an S-complex over the
ring S by performing a change of basis on our local coefficient system:

p rC˚pY,K; ∆S q, rdq, ∆S :“ ∆ bR S

In general, this S-complex is only Z{4-graded. However, it becomes a Z-graded algebra
in the obvious way if S is a Z-graded R-algebra, which means that multiplication by U˘1

changes the grading by ˘1 and multiplication by T˘1 does not change the grading.

Remark 7.5. If T “ ZrT˘1s is the R-algebra obtained by setting U “ 1, then we obtain
an S-complex over T denoted p rCpY,K; ∆T q, rdq. The system ∆T is essentially the local
coefficient system considered in [KM11b, Section 3.9]. ˛

Remark 7.6. If U “ ZrU˘1s is the R-algebra obtained by setting T “ 1, then we obtain
an S-complex over U denoted p rCpY,K; ∆U q, rdq. There is an analogous construction in
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the non-singular case, where one can define an S-complex p rC˚pY ; ∆q, rdq, such that the
local coefficient system ∆ is over the ring QrU˘1s. The definition of ∆ follows a similar
pattern to ∆U , where we use the action κpAq (for a non-singular connection) to define a
homomorphism associated to a path of connections. ˛

Remark 7.7. Strictly speaking the Z-graded complex p rC˚pY,K; ∆q, rdq does not fit into the
definition of S-complexes that we have been using so far because the coefficient ring R
is graded. However, one can modify the definition to include such S-complexes. On its
face, it might seem that rC˚pY,K; ∆q does not give any extra information in comparison
to rCpY,K; ∆T q of Remark 7.5 because rC˚pY,K; ∆q is the periodic Z-graded complex
obtained by unrolling the Z{4Z-graded complex rCpY,K; ∆T q. However, in the remaining
part of this section we shall show that rC˚pY,K; ∆q can be equipped with an “almost-
filtration” which gives rise to additional information. ˛

The machinery of Section 4 applies to this setting: for any R-algebra S we obtain three
equivariant singular instanton homology groups, denoted

pI˚pY,K; ∆S q, qI˚pY,K; ∆S q, I˚pY,K; ∆S q.

These are Z-graded S rxs-modules, and the discussion of Subsection 5.1 carries over to this
setting in a straightforward manner. For each R-algebra S we have a Frøyshov invariant

hS pY,Kq P Z (7.8)

by taking the algebraic Frøyshov invariant of the S-complex p rC˚pY,K; ∆S q, rdq as given by
Definition 4.13 or equivalently Proposition 4.15. Further, we also have ideals

JS
h pY,Kq Ă JS

h´1pY,Kq Ă ¨ ¨ ¨ Ă S (7.9)

by applying Definition 4.32 to the S-complex p rC˚pY,K; ∆S q, rdq. Here h “ hS pY,Kq.
Theorems 1.13 and 1.16 of the introduction about the properties of these invariants follow
from our discussions in Section 4.

The connected sum theorem also generalizes to the setting of local coefficients.

Theorem 7.10. Let pY,Kq and pY 1,K 1q be based knots in integer homology 3-spheres.
There is a chain homotopy equivalence of Z-graded S-complexes over R “ ZrU˘1, T˘1s:

rCpY#Y 1,K#K 1; ∆q » rCpY,K; ∆q bR
rCpY 1,K 1; ∆q

This equivalence is natural, up to S-chain homotopy, with respect to split cobordisms.

The proof is for the most part the same as that of Theorem 6.1. In particular, all maps
defined in the proof are modified to follow the same pattern as in (7.3), where we now keep
track of the terms κpAq and νpAq for each instanton in the exponents of our formal variables.
The only part of the proof that requires additional commentary is Proposition 6.17. The key
observation is that the instantons in the proof that appear in the moduli spaces

Mρ#pS1 ˆD3, S1 ˆD1qred, MpD2 ˆ S2, D2 ˆ 2 ptsqred (7.11)
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have κpAq “ νpAq “ 0, which follows because all of these instantons are flat. (In fact,
the vanishing of κpAq and νpAq here are not essential for the proof of Theorem 7.10, but
κpAq “ 0 will play an important role below.) This shows, in particular, that Proposition
6.26 holds with local coefficients, and that the proof of Section 6 carries through to prove
Theorem 7.10. As a consquence, we have:

Theorem 7.12. Let S be an R-algebra. The assignment pY,Kq ÞÑ p rC˚pY,K; ∆S q, rd, χq

induces a homomorphism Θ3,1
Z Ñ ΘS

S ,Z{4 of partially ordered abelian groups.

In particular, the Frøyshov invariant (7.8) descends to a homomorphism Θ3,1
Z Ñ Z of

partially ordered abelian groups, and satisfies the analogue of Theorem 5.13.

7.2 The Chern-Simons filtration

The topological energy κpAq of the elements of our moduli spaces satisfies a positivity
property which gives rise to more structure on p rCpY,K; ∆q, rdq. This idea, applied to the
complex p rC˚pY ; ∆q, rdq of Remark 7.6, was used in [Dae18] to produce invariants of the
homology cobordism group of integral homology 3-spheres. (More precisely, the complex
p rC˚pY ; ∆q, rdq there is obtained by the change of basis associated to the inclusion of QrU˘1s

into a Novikov ring.) These constructions can be adapted to the present set up to produce
concordance invariants.

If A is a non-flat ASD connection on a 4-manifold, which determines a path in BpY,Kq

from α to α1, then the Chern-Weil integral defining the topological energy is positive:

κpAq “
1

8π2

ż

W`zS`

trpFA ^ FAq “
1

8π2

ż

W`zS`

|FA|2 ą 0.

In particular, if the perturbation of the Chern-Simons functional is trivial in the definition of
the complex rC˚pY,K; ∆q, the differential rd strictly decreases the instanton grading. This
structure may be formalized as follows.

Definition 7.13. An I-graded S-complex (of level δ) overRrU˘1s is an S-complex p rC, rd, χq

over RrU˘1s with a Z ˆ R-bigrading as an R-module, which satisfies the following proper-
ties. Writing rCi,j for the pi, jq P Z ˆ R-graded summand, we have:

(i) U rCi,j Ă rCi`4,j`1

(ii) rd rCi,j Ă
Ť

kăj`δ
rCi´1,k

(iii) χ rCi,j Ă rCi`1,j

Further, rC is freely, finitely generated as an RrU˘1s-module by homogeneously bigraded
elements. The distinguished summand RrU˘1s Ă rC has 1 P RrU˘1s in bigrading p0, 0q.
We denote the integer and the real gradings on rCi,j by rgr and degI . ˛
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Note that an I-graded S-complex of level δ is also one of level δ1 for all δ1 ą δ.
Concretely, an I-graded S-complex over RrU˘1s has underlying chain complex of the form:

rC “

˜

n
à

k“1

RrU˘1sγk

¸

‘

˜

n
à

k“1

RrU˘1sγ
k

¸

‘RrU˘sγ0 (7.14)

This gives the S-complex decomposition rC˚ “ C˚ ‘ C˚´1 ‘RrU˘1s, where the indicated
subscript gradings are the Z-gradings. In particular, γ0 generates the “trivial” summand, and
the bigrading of γ0 is p0, 0q. The bigrading pik, jkq P Z ˆ R of γk is arbitrary, although it
gives the bigrading of γ

k
as pik ` 1, jkq. The real I-grading degI can be extended to any

element of rC as follows:

degI

´

ÿ

skζk

¯

“ maxtdegIpζkq | sk ‰ 0u

where the ζk belong to distinct summands rCi,j of rC.
Thus p rC˚pY,K; ∆q, rdq, if defined with a trivial perturbation, has the structure of an

I-graded S-complex (of level 0) over RrU˘1s, where R “ ZrT˘s. In the form (7.14), the
generators γk (k ě 1) are choices of homotopy classes of paths from irreducible critical
points to θ, while γ0 is the constant path at θ. In general, in the presence of a perturbation π
the differential can possibly increase the instanton grading, but only less than some δπ ě 0
determined by the perturbation. Thus in the general case, p rC˚pY,K; ∆q, rdq is an I-graded
S-complex of level δπ over RrU˘1s. For morphisms, we have:

Definition 7.15. A morphism rλ : rC Ñ rC 1 of level δ ą 0 of I-graded S-complexes (of any
levels) is an RrU˘1s-module homomorphism and morphism of S-complexes such that

rλ rCi,j Ă
ď

kďj`δ

rC 1
i,k.

A level δ S-chain homotopy rK between morphisms rλ and rλ1 of I-graded S-complexes is an
RrU˘1s-module homomorphism and an S-chain homotopy between rλ and rλ1 such that

rK rCi,j Ă
ď

kďj`δ

rC 1
i`1,k. ˛

If the perturbation of the ASD equation in the definition of a cobordism map rλpW,S;∆q is
trivial, then this morphism does not increase the instanton grading. Hence it is a morphism of
I-graded complexes of level 0. In the general case, the map induced by pW,Sq is a morphism
of I-graded complexes of some level determined by the perturbation.

7.3 Enriched S-complexes

Ideally, we would like to associate an I-graded S-complex of level 0 to pY,Kq. As the zero
perturbation is not always admissible, we settle for the following limiting structure.
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Definition 7.16. An enriched S-complex rE is a sequence tp rCi, rdi, χiquiě1 of I-graded S-
complexes over RrU˘1s of levels δi, and morphisms ϕji : rC

i Ñ rCj of levels δi,j satisfying:

(i) ϕii “ id and ϕjk ˝ ϕki is S-chain homotopy equivalent to ϕji via an S-chain homotopy
of some level δi,k,j .

(ii) For each δ ą 0 there exists an N such that i ą N implies δi ď δ, and i, j ą N (resp.
i, j, k ą N ) implies δi,j ď δ (resp. δi,k,j ď δ). ˛

For a based knot pY,Kq in an integer homology 3-sphere, we may take a sequence

rEpY,K; ∆q :“ tp rCi
˚pY,K; ∆q, rdi, χiqu

of I-graded S-complexes associated to a sequence of perturbations of the Chern-Simons
functional that go to zero. Thus p rCi

˚pY,K; ∆q, rdi, χiq is of some level δi determined by the
chosen perturbation. For any pair i, j there is a morphism ϕji :

rCipY,K; ∆q Ñ rCjpY,K; ∆q

of I-graded S-complexes of level δi,j , determined by a path of auxiliary data. Moreover,
rEpY,K; ∆q satisfies the properties of an enriched S-complex over RrU˘1s, where here
R “ ZrT˘1s. The proofs of these claims are identical to the proofs of analogous results in
the non-singular setting given in [Dae18]. Next, we define morphisms in this setting:

Definition 7.17. A morphism L : rEp1q Ñ rEp2q of enriched complexes, where

rEprq “ ptp rCi
˚prq, rdiprq, χiprqqu, ϕji prqq r P t1, 2u,

is a collection of morphisms rλji : rC
ip1q Ñ rCjp2q of I-graded S-complexes of level δi,j such

that the following hold:

(i) rλjk ˝ ϕki p1q and ϕjkp2q ˝ rλki are S-chain homotopy equivalent to rλji via an S-chain
homotopy of some level δi,k,j .

(ii) For each δ ą 0, there exists an N such that i, j ą N (resp. i, j, k ą N ) implies that
δi,j ă δ (resp. δi,k,j ă δ).

The morphism is a chain homotopy equivalence of enriched S-complexes if each rλji is an
S-chain homotopy equivalence where the involved S-chain homotopy equivalences have
levels which converge to 0. ˛

We have thus constructed the category of enriched S-complexes overRrU˘1s. There is a
forgetful functor to the category of S-complexes, that to any enriched S-complex associates
the first S-complex in its sequence, and to any enriched S-morphism as above, we also
associate the S-morphism λ11. This forgetful map does not remember the positivity property
of enriched complexes with respect to the instanton gradings.

To a negative definite pair pW,Sq : pY,Kq Ñ pY 1,K 1q we can associate a morphism
LpW,Sq of enriched S-complexes rEpY,K; ∆q Ñ rEpY 1,K 1; ∆q by taking a sequence of
S-morphisms, defined as usual, after choosing an appropriate sequence of auxiliary data.

We obtain the analogue of Theorem 3.34.
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Theorem 7.18. The assignments pY,Kq ÞÑ rEpY,K; ∆q and pW,Sq ÞÑ LpW,Sq induce a
functor from H to the homotopy category of enriched S-complexes over ZrT˘1srU˘1s.

The enriched S-complex rEpY,K; ∆q is the “universal” invariant defined in this paper,
in the sense that all of our S-complexes associated to based knots in integer homology
3-spheres may be derived from this invariant by a change of basis (coefficient ring), and by
possibly applying a forgetful functor.

7.4 Local equivalence for enriched complexes

We may apply the general procedure described in Subsection 4.6 to the category of enriched
S-complexes over RrU˘1s. That is, we declare that two enriched S-complexes rE and rE1 are
equivalent rE „ rE1 if there are morphisms rE Ñ rE1 and rE1 Ñ rE. The resulting set

ΘE
RrU˘1s “

␣

enriched S-complexes over RrU˘1s
(

{ „

is a partially ordered abelian group, where rrEs ď rrE1s if there is a morphism rE Ñ rE1.
The group structure is inherited from that of the local equivalence group for S-complexes,
by performing operations component-wise for each sequence. Furthermore, the forgetful
functor from the category of enriched S-complexes to S-complexes induces a surjective
homomorphism of partially ordered abelian groups:

ΘE
RrU˘1s ÝÑ ΘS

RrU˘1s,Z

The target is the local equivalence group of Z-graded S-complexes over RrU˘1s. The
grading is inherited from the Z-grading of the I-graded S-complex.

Theorem 7.19. The assignment pY,Kq ÞÑ rEpY,K; ∆q induces a homomorphism of partially
ordered abelian groups Ω : Θ3,1

Z Ñ ΘE
RrU˘1s

where R “ ZrT˘1s.

We also have an analogue of the connected sum theorem in the setting of enriched
S-complexes. For this, we note that the tensor product of two I-graded S-complexes is
naturally an I-graded S-complex, and similarly for enriched S-complexes.

Theorem 7.20. Let pY,Kq and pY 1,K 1q be based knots in integer homology 3-spheres.
There is a chain homotopy equivalence of enriched S-complexes over R “ ZrU˘1, T˘1s:

rEpY#Y 1,K#K 1; ∆q » rEpY,K; ∆q bR
rEpY 1,K 1; ∆q

This equivalence is natural, up to enriched chain homotopy, with respect to split cobordisms.

The proof follows the remarks after Theorem 7.10, and relies on the fact that κpAq “ 0
for the instantons in (7.11). We also use that in the proof we can choose the perturbations on
the two cobordisms as small as we like.
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7.5 The concordance invariant ΓR
pY,Kq

The local equivalence class of the enriched S-complex associated to a based knot pY,Kq

is expected to be a strong invariant, as it has the behavior and values of the Chern-Simons
functional built into its structure. Here we describe one way to extract numerical information
from this local equivalence class which leads to a concordance invariant ΓR

pY,Kq
, an analogue

of the invariant ΓY for homology 3-spheres from [Dae18].
The definition of the invariant ΓR

pY,Kq
factors through an algebraic map defined on the

local equivalence group of enriched S-complexes:

Γ : ΘE
RrU˘1s ÝÑ MapěpZ,Rě0q (7.21)

In fact, a similar algebraic map can be used to define ΓY . Here and throughout this section,
R is an integral domain and an algebra over ZrT˘1s. The codomain in (7.21) is the set
of non-decreasing functions from Z to the extended positive real line Rě0 “ Rě0 Y 8.
The map Γ is defined as follows. Take an enriched S-complex rE defined by a sequence
tp rCj , rdj , χjqu of I-graded S-complexes over RrU˘1s. To each S-complex p rCj , rdj , χjq we
have the associated chain group Cj and the RrU˘1s-module homomorphisms:

dj : Cj Ñ Cj , vj : Cj Ñ Cj ,

δj1 : Cj Ñ RrU˘1s, δj2 : RrU˘1s Ñ Cj .

Then for each k P Zą0 we define:

ΓprEqpkq :“ lim
jÑ8

inf
α

pdegIpαqq P Rě0

where the infimum is over all α P Cj with bigrading p2k ´ 1, degIpαqq such that:

djpαq “ 0, k ´ 1 “ minti P Zě0 | δj1pvjqipαq ‰ 0u.

For each k P Zď0 we define:

ΓprEqpkq :“ max

˜

lim
jÑ8

inf
α

pdegIpαqq , 0

¸

P Rě0

where the infimum is over all α P Cj with bigrading p2k ´ 1, degIpαqq such that there are
ta0, a1, . . . , a´ku Ă RrU˘1s satisfying:

djpαq “

´k
ÿ

i“0

pvjqiδj2paiq. (7.22)

Note that in (7.22), a straightforward degree consideration implies that we can limit ourselves
to the following case, where si P R:

ai “

#

siU
k`i
2 i ” k mod 2

0 i ı k mod 2
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If there is a morphism rE Ñ rE1 between enriched S-complexes then ΓprEqpkq ě ΓprE1qpkq

for any integer k. In particular, locally equivalent enriched complexes have the same
Γ functions. An equivalent definition of ΓprEq can also be given in terms of the small
equivariant complexes associated to the S-complexes. We refer to [Dae18] for more details.

Definition 7.23. Let R be an integral domain which is an algebra over ZrT˘1s. For a based
knot in an integer homology 3-sphere pY,Kq, we define the function ΓR

pY,Kq
as follows:

ΓR
pY,Kq :“ Γ

´

rEpY,K; ∆RrU˘1sq

¯

If Y “ S3 we write K in place of pY,Kq. ˛

That is, ΓR
pY,Kq

is the invariant of the equivalence class rpY,Kqs P Θ3,1
Z obtained as:

ΓR
pY,Kq : Θ

3,1
Z

Ω
ÝÝÑ ΘE

RrU˘1s

Γ
ÝÝÑ Mapě0pZ,Rě0q

The following summarizes the basic properties of this function. The proofs are entirely
analogous to those of Theorems 1–4 and Proposition 1 of [Dae18].

Theorem 7.24. Let pY,Kq be a based knot in an integer homology 3-sphere.

(i) The function ΓR
pY,Kq

is an invariant of rpY,Kqs P Θ3,1
Z .

(ii) ΓR
pY,Kq

is a non-decreasing function Z Ñ Rě0 which is positive for i P Zą0.

(iii) If pW,Sq : pY,Kq Ñ pY 1,K 1q is a negative definite cobordism of pairs, then

ΓR
pY 1,K1qpiq ď

#

ΓR
pY,Kq

piq ´ ηpW,Sq i ą 0

maxpΓR
pY,Kq

piq ´ ηpW,Sq, 0q i ď 0

where ηpW,Sq P Rě0 is an invariant of pW,Sq. Furthermore, ηpW,Sq ą 0 unless
there is a traceless SUp2q representation of π1pW zSq which extends irreducible
traceless SUp2q representations of π1pY zKq and π1pY 1zK 1q.

(iv) For each i P Z, we have ΓR
pY,Kq

piq ă 8 if and only if i ď hRpY,Kq.

(v) For each i P Z, if ΓR
pY,Kq

piq R t0,8u then it is congruent to CSpαq (mod Z) for some
irreducible singular flat SUp2q connection α on pY,Kq.

The invariant ηpW,Sq is defined to be the infimum of 2κpAq, as A ranges over all finite
energy singular ASD connections which limit to irreducible flat connections on the ends.

In this subsection, we did not attempt to systematically exploit the Chern-Simons filtra-
tion to study concordances, and we content ourselves with the definition of one homology
concordance invariant. For example, we believe that by a slight modification of our axioma-
tization of enriched complexes one can define analogues of the invariants rs introduced in
[NST19]. Another possible direction is to apply the construction of Subsection 4.7 in the
context of enriched S-complexes.
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8 Connections to Kronheimer and Mrowka’s constructions

In [KM11b, KM11a], Kronheimer and Mrowka defined several instanton Floer homology
groups associated to a given link in a 3-manifold, for cases in which no reducibles are present.
In [KM19a,KM19b,KM19c], over rings of characteristic 2 they extended their constructions
to webs, which are embedded trivalent graphs. Here we recall some of these constructions,
and discuss their relationship to the invariants introduced earlier.

8.1 Instanton homology for admissible links

We first recall the instanton homology groups IωpY,Lq construced in [KM11b, KM11a] for
certain links in 3-manifolds. Special cases of this construction are the singular instanton
groups I6pY,Lq and I#pY,Lq, where in this latter case pY, Lq is a pair of any 3-manifold Y
with an embedded link L. We begin with:

Definition 8.1. An admissible link is a triple pY,L, ωq where L is an unoriented link
embedded in a closed, oriented, connected 3-manifold Y , and ω Ă Y is an unoriented 1-
manifold embedded in Y with Bω “ ω X L, transversely, satisfying the following condition:
there exists a closed oriented surface Σ Ă Y such that either

• Σ is disjoint from L and intersects ω transversely an odd number of times, or

• Σ is transverse to L and intersects it an odd number of times.

This condition for ω is called the non-integrality condition. ˛

We remark that with this terminology, a knot in an integer homology 3-sphere is not an
admissible link for any choice of ω.

Kronheimer and Mrowka associate to an admissible link pY,L, ωq a relatively Z{4-
graded abelian group IωpY, Lq, defined as follows. From the 1-manifold ω one may construct
an SOp3q-bundle P Ñ Y zL whose second Stiefel-Whitney class is Poincaré dual to
rωs P H1pY, L;Z{2q. Then define a chain complex pCω

˚ pY,Lq, dq by setting

Cω
˚ “ Cω

˚ pY,Lq “
à

αPCπ

Z ¨ α

where Cπ are the critical points modulo the determinant-1 gauge group of a suitably perturbed
Chern-Simons functional for P . The non-integrality condition on ω ensures that for small π,
all such critical points on P are irreducible, i.e. Cπ “ Cirr

π . The differential d is defined just
as in (3.2), and IωpY,Lq is defined to be the homology of this chain complex:

IωpY, Lq :“ H˚ pCωpY,Lq, dq .

As before, unlike the group IωpY,Lq, the chain complex pCωpY, Lq, dq depends on a choice
of metric and perturbation, which are suppressed from the notation.

Given any link L Ă Y with a basepoint p P L, Kronheimer and Mrowka define

I6pY, Lq :“ IωpY,L#Hq
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Figure 13: The Hopf link H with the arc ω.

where H Ă S3 is the Hopf link and ω is a unknotted arc connecting the two components
of H; see Figure 13. The connect sum is taken at the basepoint p P L. The connected sum
L#H may be identified with L Y µ where µ is a small meridional component around L
near p. Note that the resulting ω always satisfies the non-integrality condition: take Σ to
be the 2-torus boundary of a small regular neighborhood of µ. The homology I6pY, Lq is
a relatively Z{4-graded abelian group, and is an invariant of the based link pY,L, pq. Note
that just as before we omit the basepoint p from the notation. The group I6pY, Lq is in fact
absolutely Z{4-graded. In the sequel, we will use the notation

pC6
˚, d

6q “ pC6
˚pY,Lq, d6q

for the chain complex pCω
˚ pY,L#Hq, dq, so that I6

˚pY,Lq is the homology of pC6
˚, d

6q.
In a similar vein, for any link L Ă Y , Kronheimer and Mrowka define the group

I#pY, Lq :“ IωpY,L\Hq.

Here we take the disjoint union of L with the Hopf link H , along with its arc ω. In order to
perform this construction, we choose a small ball in Y zL in which to embed H . We write

pC#
˚ , d

#q “ pC#
˚ pY,Lq, d#q

for the chain complex pCω
˚ pY,L\Hq, dq, so that I#˚ pY,Lq is the homology of pC#

˚ , d
#q.

This group is also absolutely Z{4-graded.
Let pY, L, ωq be an admissible link, and let p P L be a basepoint. The construction of

Subsection 3.3.2 carries through in this setting to define a map v : Cω
˚ Ñ Cω

˚´2 associated
to p, using S1 holonomy along the cylinder. Here we have:

Proposition 8.2. d ˝ v ´ v ˝ d “ 0.

The proof is similar to that of Proposition 3.16; the absence of any reducible critical points,
in this case, precludes the appearance of the term δ2 ˝ δ1.

Remark 8.3. There are at least two other ways that one can define a degree 2 operator on
the complex Cω

˚ pY, Lq using the basepoint p. Connected sum of r´1, 1s ˆ L at the point
p0, pq with a standard torus determines a cobordism of pairs pr´1, 1s ˆ Y, Sq : pY,Lq Ñ

pY,Lq and the induced cobordism map is a degree 2 chain map σ acting on Cω
˚ pY, Lq

[KM11a, Subsection 8.3]. Alternatively, the standard construction of µ-maps [DK90, Chapter
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5] assigns to the point p a cohomology class of degree 2 in the space of singular connections
on the bundle P associated to pY,L, ωq [Kro97]. This cohomology class in [Kro97] is
rational; to obtain an integral class we consider ´2 times the 2-dimensional point class in
[Kro97]. Cup product with this cohomology class defines another chain map σ1 of degree 2
on Cω

˚ pY,Lq. The argument of [Kro97, Proposition 5.1] shows that the operators σ and σ1

are chain homotopy equivalent. Moreover, the operator σ1 is also chain homotopy equivalent
to v. The proof is analogous to the corresponding result in the non-singular setting in
[Don02, Subsection 7.3.2]. ˛

The analogue of the S-complex rCpY,Kq from Subsection 3.4 in this setting is simply a
mapping cone complex of v; we define p rCωpY, Lq, rdq by

rCωpY, Lq :“ Cω
˚ ‘ Cω

˚´2,
rd “

„

d 0
v ´d

ȷ

(8.4)

We leave it to the interested reader to formulate the analogue of Theorem 3.34 in this
setting, describing a functor from a category whose objects are base-pointed admissible links
pY,L, ωq to a suitable category of mapping cone complexes.

We now describe variations of Theorem 6.1 obtained by replacing one or both of pY,Kq

and pY 1,K 1q by a based admissible link. Let pY,Kq be an integer homology 3-sphere with
an embedded based knot. Let pY 1, L1, ω1q be a based admissible link. Then rCpY,Kq is an
S-complex, while (8.4) defines the chain complex rCω1

pY 1, L1q as a mapping cone complex.

Theorem 8.5. (Connected Sum Theorem for a knot and an admissible link) There is a
chain homotopy equivalence of relatively Z{4-graded chain complexes:

rCω1

pY#Y 1,K#L1q » rCpY,Kq b rCω1

pY 1, L1q

Furthermore, the tensor product is naturally isomorphic to a mapping cone complex, making
the chain homotopy equivalence one of mapping cone complexes. The equivalence is natural,
up to mapping cone chain homotopies, with respect to split cobordisms.

Remark 8.6. One can generalize the definition of an S-complex to include mapping cone
complexes, the latter being viewed as S-complexes with the distinguished summand Z
replaced by 0, and all maps modified accordingly. The notion of morphisms can be similarly
generalized, and the theorems in this section can then be stated as homotopy equivalences
between S-complexes in this larger category. ˛

Remark 8.7. The naturality in Theorem 6.1, as explained in Subsection 6.3.4, assumes that
the cobordisms involved are negative definite pairs. However, for the naturality in the above
Theorem 8.5, we allow the cobordism on the side of the admissible links to be of the general
sort considered in [KM11b, KM11a]. A similar remark holds for the other variations of the
connected sum theorem stated below. ˛

The proof of this result is very similar to that of Theorem 6.1. If pY 1, L1, ω1q is admissible,
then one modifies the proof above in which pY 1,K 1q is a knot by omitting the Z-summand
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in the associated complex p rC 1
˚,

rd1q and all maps that have anything to do with it; in short,
the reducible θ1 is eliminated. That the tensor product of an S-complex and a mapping cone
complex is naturally a mapping cone complex follows from the discussion in Subsection 4.5
by simply deleting the Z-summand of one S-complex.

There is another variation where pY,Kq is also replaced by a based admissible link
pY,L, ωq. The statement in this situation is as follows:

Theorem 8.8. (Connected Sum Theorem for admissible links) Let pY,L, ωq, pY 1, L1, ω1q

be based admissible links. There is a relatively Z{4-graded chain homotopy equivalence

rCωYω1

pY#Y 1, L#L1q » rCωpY,Lq b rCω1

pY 1, L1q

This equivalence is one of mapping cone complexes, and is natural, up to mapping cone
chain homotopies, with respect to split cobordisms.

These variations have counterparts in non-singular instanton Floer homology, involving
connected sums between homology 3-spheres and 3-manifolds with non-trivial admissible
bundles, see e.g. [Sca15].

8.2 Computing I6pY,Kq and I#pY,Kq from the framed complex

We may now relate the framed instanton homology rIpY,Kq, or more precisely its underlying
chain complex, to Kronheimer and Mrowka’s instanton homology groups I6pY,Kq and
I#pY,Kq. We first consider I6pY,Kq. Recall that this group has an absolute Z{4-grading
defined in [KM11a, Section 4.5].

Theorem 8.9. Let pY,Kq be a based knot in an integer homology 3-sphere. There is a
chain homotopy equivalence C6pY,Kq » rCpY,Kq, natural up to chain homotopy, and
homogeneous with respect to Z{4-gradings. In particular, there is a natural isomorphism

I6pY,Kq – rIpY,Kq

In the case that Y is the 3-sphere, the isomorphism has degree σpKq pmod 4q.

The chain homotopy C6pY,Kq » rCpY,Kq in the statement of the above theorem is a
chain homotopy of Z{4-graded chain complexes. That is to say, we forget the S-complex
structure of rCpY,Kq given by the endomorphism χ.

Proof. Recall from Subsection 8.1 that C6pY,Kq is defined to be CωpS3#Y,H#Kq where
H Ă S3 is the Hopf link and ω is a small arc as in Figure 13. We apply Theorem 8.5 in this
situation to obtain a chain homotopy equivalence

rCωpS3#Y,H#Kq » rCωpS3, Hq b rCpY,Kq. (8.10)

The complex CωpS3, Hq is free abelian on one generator, with zero differential. The v-map,
of degree 2 (mod 4), is necessarily zero. Thus the mapping cone complex rCωpS3, Hq is free
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abelian of rank two with zero differential. We may then identity the right side of (8.10) with
two copies of rCpY,Kq; it is the mapping cone for the zero map on rCpY,Kq. As the chain
homotopy (8.10) is one of mapping cone complexes, we conclude that

C6pY,Kq “ CωpS3#Y,H#Kq » rCpY,Kq.

Now suppose Y is the 3-sphere. As the established equivalence is homogeneous with
respect to gradings, to compute its degree, it suffices to compare the grading of the reducible
generator on each side. By definition, the reducible generator in rCpY,Kq has grading zero
(mod 4). On the other hand, the grading of the reducible in C6pKq is computed by Poudel
and Saveliev in [PS17, Theorem 1] to be σpKq (mod 4). (Note that the signature of a knot is
always even, so we do not have to determine a sign.)

Note that under the equivalence of Theorem 8.9, the v-map on the complex C6pY,Kq

corresponds to the map on rCpY,Kq “ C˚ ‘ C˚´1 ‘ Z by formula (4.24) to the zero map.
This recovers a special case of [Xie18, Proposition 4.6].

Next, we observe that Theorem 8.9 combined with Theorem 6.1 recovers the following
connected sum theorem for I6pY,Kq:

Corollary 8.11. Let pY,Kq and pY 1,K 1q be knots in integer homology 3-spheres. Then over
a field there is a natural isomorphism of vector spaces

I6pY#Y 1,K#K 1q – I6pY,Kq b I6pY 1, L1q. (8.12)

which preserves the Z{4-gradings.

Note that, from our viewpoint, the preservation of the Z{4-gradings in (8.12) follows
from the additivity of the knot signature under connected sums.

We now turn to I#pY,Kq. Recall that on the S-complex rC˚pY,Kq “ C˚ ‘ C˚´1 ‘ Z
the map χ : rC˚pY,Kq Ñ rC˚pY,Kq defined with respect to this decomposition by

χ “

»

–

0 0 0
1 0 0
0 0 0

fi

fl

is an anti-chain map. Note that χ sends C˚ to C˚´1 identically and is otherwise zero. We
may form Conep2χq, the mapping cone of 2χ acting on rC˚pY,Kq.

Theorem 8.13. Let pY,Kq be a based knot in an integer homology 3-sphere. There is a
chain homotopy equivalence C#pY,Kq » Conep2χq. This equivalence is natural up to
chain homotopy, and homogeneous with respect to Z{4-gradings.

Proof. Recall from Subsection 8.1 thatC#pY,Kq is defined to beCωpS3#Y,H\Kq where
H Ă S3 is the Hopf link and ω is a small arc as in Figure 13. We may view pS3#Y,H\Kq

as the connected sum of pS3, H\U1q, a Hopf link with a disjoint unknot (the latter of which
contains the basepoint) with the based knot pY,Kq. Apply Theorem 8.5 to obtain

rCωpS3#Y,H \Kq » rCωpS3, H \ U1q b rCpY,Kq. (8.14)
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Figure 14: The skein triple involving pS3#Y, pH \ U1q#Kq (left) and two instances of
pS3#Y,H#Kq (middle and right). The basepoint on H \ U1 lives on the unknot U1.

The complex C#pU1q “ CωpS3, H\U1q contains two generators, v` and v´, which differ
in degree by 2 (mod 4). Indeed, the traceless character variety for pS3, H\U1q is a 2-sphere,
and we may perturb the Chern-Simons functional using a standard Morse function for S2

leaving us with two critical points. The differential on C#pU1q is zero for grading reasons,
and we have a natural identification between C#pU1q and its homology I#pU1q.

We may then align our notation of generators v` and v´ with [KM11a], where the
v-map, denoted there by σ, is computed on I#pU1q as follows (see Remark 8.3):

vpv`q “ 2v´, vpv´q “ 0.

Having determined rCωpS3, H \ U1q to be the mapping cone of v as above on Zv` ‘ Zv´,
using Subsection 4.5 we compute CωpS3#Y,H \Kq Ă rCωpS3#Y,H \Kq to be

Zv` b rCpY,Kq ‘ Zv´ b rCpY,Kq

with differential 1b rd‘1b rd´2F where F sends Zv`bC˚ to Zv´bC˚´1 identically. This
chain complex is clearly the same as Conep´2χq, which is isomorphic to Conep2χq.

Note that the results above fit together to form an exact triangle:

¨ ¨ ¨ I6pY,Kq

��

// I#pY,Kq

��

// I6pY,Kq

��

// I6pY,Kq ¨ ¨ ¨

��

¨ ¨ ¨H˚p rCpY,Kqq // H˚pConep2χqq // H˚p rCpY,Kqq
r2εχs// H˚´1p rCpY,Kqq ¨ ¨ ¨

(8.15)

Here, the vertical maps are induced by the equivalences of Theorems 8.9 and 8.13, the bottom
horizontal arrows are induced by the short exact sequence for a mapping cone complex, and
the top horizontal arrows are defined to commute. There is similar long exact sequence
involving I6pY,Kq and I#pY,Kq obtained from Kronheimer and Mrowka’s unoriented
skein exact triangle applied to the situation of Figure 14, see [KM11a, Section 8.7].

The skein triple in Figure 14 may be viewed as obtained from the skein triple for
pS3, H \ U1q, pS3, Hq and pS3, Hq (setting pY,Kq “ pS3, U1q in Figure 14), and then
connect summing with pY,Kq at a point on U1 Ă H\U1 away from the crossing resolutions.
The naturality of our equivalences with respect to split cobordisms, together with the
computations in [KM11a, Section 8.7], implies the following:
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Proposition 8.16. The exact triangle (8.15) is isomorphic to the exact triangle obtained
from the unoriented skein exact triangle as described above.

If we work over the coefficient ring F “ Z{2, then 2χ “ 0, and (8.15) splits.

Corollary 8.17. Over the field F “ Z{2 there is a natural Z{4-graded isomorphism

I#pY,K;Fq˚ – I6pY,K;Fq˚ ‘ I6pY,K;Fq˚`2

This last corollary is essentially [KM19a, Lemma 7.7].

8.3 Local coefficients and the concordance invariant s#pKq

Let pY,Kq be a based knot in an integer homology 3-sphere. Consider the ring

TQ “ T b Q “ QrT˘1s

of Remark 7.5 tensored by Q, so that rC˚pY,K; ∆TQ
q is a Z{4-graded S-complex over TQ.

Recall that to each critical point rBs we assign the module T holKpBqTQ. A variation of our
connected sum theorem with local coefficients and one admissible link implies the following
chain homotopy equivalence of Z{4-graded mapping cone complexes over TQ:

rC#
˚ pY,K; ∆TQ

q » rCω
˚ pS3, H \ U1; ∆TQ

q bTQ
rC˚pY,K; ∆TQ

q

As in Subsection 8.2, the link pS3, H Y U1q has its base point on U1. The local coefficient
system on pS3, H Y U1q is defined just as for pY,Kq but using only U1.

Thus we are in the situation of (8.14), but with local coefficients. Still we have that
Cω

˚ pS3, H \ U1; ∆TQ
q is isomorphic to a rank 2 module TQv` ‘ TQv´ with trivial

differential. However, the v-map is different here: it is determined by

vpv`q “ 2v´, vpv´q “ p2T 2 ` 2T´2 ´ 4qv`.

This follows from the computation of ppuq and qpuq in the proof of Proposition 4.1 of
[KM13]. For us, u “ T , and vpv`q “ qpuqv´ and vpv´q “ ppuqv`. This leads to the
following description of C#

˚ pY,K; ∆TQ
q: it is chain homotopy equivalent to the complex

˜

rCpY,K; ∆TQ
q˚ ‘ rCpY,K; ∆TQ

q˚`2,

«

rd p2T 2 ` 2T´2 ´ 4qχ

2χ rd

ff¸

(8.18)

where χ is as defined in the previous subsection. Note that if we set T “ 1 we obtain the
mapping cone of 2χ, as expected.

The following was proved in [KM13] for knots in the 3-sphere.

Proposition 8.19. For pS3,Kq any based knot in the 3-sphere, I#˚ pS3,K; ∆T q has rank 2
as a module over T , with generators in gradings which differ by 2 (mod 4).
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We remark that our grading convention in this case is different from the one of [KM13]
by a shift. The two generators for I#pS3,K; ∆TQ

q are typically denoted z` and z´, and
have gradings 1 and ´1 (mod 4) in the convention of [KM13]. This structure is exploited in
[KM13] to define a concordance invariant s#pKq for knots in S3.

The construction of s#pKq is as follows. Choose a surface cobordism S : U1 Ñ K
from the unknot U1 to K with a path between basepoints. This induces a map

I#pS; ∆TQ
q1 : I#pU1; ∆TQ

q1 ÝÑ I#pK; ∆TQ
q1

where the superscript in I#pK; ∆TQ
q1 indicates that we mod out by torsion. Then there are

elements σ˘pSq P TQ such that we have I#pS; ∆TQ
q1pv˘q “ σ˘pSqz˘ if gpSq is even,

and otherwise I#pS; ∆TQ
q1pv˘q “ σ˘pSqz¯. Pass to the local ring of TQ at T “ 1, and

let λ “ T ´ T´1. Then there are unique natural numbers m#
˘pSq such that in this local ring

σ˘pSq is up to a unit equal to λm
#
˘ pSq. Finally,

s#pKq :“ 2gpSq ´
1

2
pm#

`pSq `m#
´pSqq.

In particular, s#pKq is determined by the cobordism map I#pS; ∆TQ
q. Now suppose

pr0, 1s ˆ S3, Sq is a negative definite pair. From the naturality of our connected sum
theorem with respect to split cobordisms, the map I#pS; ∆TQ

q is induced by the element
p0,∆2p1q, 1q ‘ p0,∆2p1q, 1q in the chain complex (8.18). We summarize:

Proposition 8.20. Let pY,Kq be a based knot in an integer homology 3-sphere. Then there
is a natural chain homotopy equivalence from C#

˚ pY,K; ∆TQ
q to the complex (8.18). If

Y “ S3 and there is a surface cobordism S : U1 Ñ K in r0, 1s ˆ S3 with negative definite
branched cover, then the concordance invariant s#pKq is determined by the S-complex
rC˚pK; ∆TQ

q and the element ∆2p1q therein induced by S.

Remark 8.21. Upon developing our theory for more general cobordism maps, we expect
that the negative definite cobordism condition on S can be removed, and one can obtain
an interpretation of s#pKq in terms of the S-chain homotopy type of rC˚pK; ∆TQ

q for an
arbitrary knot K. ˛

8.4 Instanton homology for strongly marked webs

In [KM19a], Kronheimer and Mrowka defined a variation of singular instanton homology
for webs in 3-manifolds. A web in a closed, oriented and connected 3-manifold Y is an
embedded trivalent graph L Ă Y . Let ω Ă Y be an embedded unoriented 1-manifold which
may intersect the edges of L transversely, but misses the vertices of L. We say a web is
admissible if it satisfies the non-integrality condition stated above for admissible links, in
which the link L is replaced by a web.

Given a web pY,Kq, there is an associated bifold, denoted Y̌ , which is an orbifold whose
underlying space is Y . The orbifold Y̌ has points with isotropy Z{2 given by the edges of
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K, and points with isotropy the Klein-four group V4 given by the vertices of K; all other
points in the orbifold have trivial isotropy. In [KM19a], the authors pass freely between the
web pY,Lq and its associated bifold Y̌ .

There is a notion of marking data µ for a web pY,Lq, which consists of a pair pUµ, Eµq

where Uµ Ă Y is any subset and Eµ Ñ UµzL is any SOp3q bundle. When µ is strong,
Kronheimer and Mrowka define the instanton homology

JpY̌ ;µq “ JpY,L;µq

which is a vector space over F “ Z{2. This is constructed using SOp3q singular instanton
gauge theory. The marking data specifies a region for which we only allow determinant-1
gauge transformations. When pY, L, ωq is an admissible web, the marking data is strong if it
is all of Y . In particular, when L also has no vertices, in this case

JpY̌ ;µq “ IωpY,L;Fq (8.22)

That is to say, in this case pL, ωq is an admissible link, and we recover the instanton
homology for admissible links with F-coefficients. We will write pCpY̌ ;µq, dq for the chain
complex that computes the F-vector space JpY̌ ;µq. In general, this is not graded, but see
[KM19a, Section 8.4]. Note in (8.22) that ω Ă Y is determined by the marking data µ. More
generally, pCpY̌ ;µq, dq is defined with coefficients in any ring with characteristic two.

To carry the construction of the map v from Subsection 3.3.2 over to this setting, we
must address the issue of bubbling. For context, we briefly recall why JpY̌ ;µq is not
defined with general coefficient rings, as explained in [KM19a, Section 3.3]. In describing
d2, we consider the ends of 1-dimensional moduli spaces M̆pα1, α2q1. The ends of this
moduli space are as before, unless α1 “ α2. In this case, in addition to ends of the form
r0,8q ˆ M̆pα1, βq0 ˆ M̆pβ, α1q0, there is an end of the form

r0,8q ˆ V ˆ V4 (8.23)

where V Ă L is the subset of vertices of our web. This end represents bubbling at the
vertices of the web, a phenomenon which is absent in the case for links. However, because
the Klein-four group V4 has 4 elements, the relation d2 “ 0 holds if we work over any ring
of characteristic two, for example.

Now choose a basepoint p P L away from the vertices. We have a holonomy map
hα1α2 : M̆pα1, α2q1 Ñ S1 defined as before. We must address the possibility of bubbling,
represented by the end (8.23). A connection class on this end with t P r0,8q large is
obtained by gluing, along a vertex in L, an instanton on R4{V4 to the flat connection on
R ˆ Y̌ which is the pull-back of α1. The key point is that because our basepoint p P L is
away from the vertices, the holonomy of any such glued instanton is close to the holonomy
of the flat connection on R ˆ Y̌ determined by α1, the latter of which is trivial.

In conclusion, we may modify our holonomy map to a map Hα1,α2 just as in Subsection
3.3.2, without making any modifications along any end where bubbling occurs. Then our
observation from the previous paragraph implies that the cut-down moduli space trAs P
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Figure 15

M̆pα1, α2q1 : Hα1,α2prAsq “ hu for a generic h P S1zt1u is, as before, a finite set of points.
We may then define the endomorphism v on CpY̌ ;µq. Proposition 8.2 continues to hold in
this setting, and we may form the mapping cone complex of v:

rCpY, L;µq :“ CpY̌ ;µq ‘ CpY̌ ;µq, rd “

„

d 0
v d

ȷ

(8.24)

We have the following variation of Theorem 6.1 when one of the based knots is replaced by
a strongly marked web; it generalizes Theorem 8.5 over F.

Theorem 8.25. (Connected Sum Theorem for a knot and a strongly marked web) Let
pY,Kq be a based knot in an integer homology 3-sphere and pY 1, L1q a based web with
strong marking data µ containing the basepoint of L1. Let µ# be marking data on the
connected sum formed by connect summing the marking data which is all of Y with µ. There
is a chain homotopy equivalence of chain complexes over F:

rCpY#Y 1,K#L1;µ#q » rCpY,K;Fq b rCpY 1, L1;µq

Furthermore, the tensor product is naturally isomorphic to a mapping cone complex, making
the chain homotopy equivalence one of mapping cone complexes. The equivalence is natural,
up to mapping cone chain homotopies, with respect to split cobordisms.

We may also consider the case of a connected sum between two strongly marked webs.
The following generalizes Theorem 8.8 over F.

Theorem 8.26. (Connected Sum Theorem for strongly marked webs) Let pY,Lq, pY 1, L1q

be based webs with strong marking data µ, µ1 containing the basepoints of L, L1, respectively.
There is a chain homotopy equivalence of mapping cone chain complexes over F:

rCpY#Y 1, L#L1;µY µ1q » rCpY, L;µq b rCpY 1, L1;µ1q.

Here µY µ1 is marking data obtained from gluing µ and µ1 on the connected sum.
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8.5 Connect summing with a theta web

Let pY,Kq be a based knot in an integer homology 3-sphere. Let pS3,Θq be the theta web, as
given in Figure 15, with edges e1, e2 and e3. Consider the connected sum pY#S3,K#Θq.
The marking data µ “ pUµ, Eµq, where Uµ is all of Y#S3, and Eµ is trivial, is strong. We
use the same notation µ for the marking data restricted to pS3,Θq. The argument in Section
2.2 of [KM19b] provides an isomorphism

JpY#S3,K#Θ;µq – I6pK;Fq. (8.27)

We may recover this, and obtain a chain-level refinement, by applying Theorem 8.25.
The complex C˚pΘ;µq is in fact Z{2-graded, and has one generator in degree 0. By
the computation in Section 4.4 of [KM19b], the v-map on this complex vanishes, and
the mapping cone complex rC˚pΘ;µq is thus isomorphic to the Z{2-graded vector space
Fp0q ‘ Fp1q with trivial differential. In other words, rC˚pΘ;µq is identical to the Hopf link
complex rCω

˚ pH;Fq. Applying Theorem 8.25 gives a chain homotopy equivalence

rC˚pY#S3,K#Θ;µq » rC˚pY,K;Fq b rC˚pΘ;µq,

of Z{2-graded mapping cone complexes, similar to the proof of Theorem 8.9. In particular,
we have a chain homotopy equivalence of Z{2-graded complexes over F,

C˚pY#S3,K#Θ;µq » C6
˚pY,K;Fq

which is natural with respect to split cobordism maps up to chain homotopy. Taking
homology, we recover (8.27). Similar reasoning allows us to recover I#pK;Fq by taking
the connected sum of K with an unknot union a theta web.

8.6 Local coefficients from theta webs

More recently, in [KM19d] Kronheimer and Mrowka have used their instanton homology
of webs to extract new concordance invariants. Here we explain how a variation of our
connected sum theorem implies some structural results about these invariants.

Let pY,Kq be a based knot in an integer homology 3-sphere. Consider the ring

SBN “ FrT˘1
1 , T˘1

2 , T˘1
3 s

Now orient K, and in a small ball surrounding the basepoint p P K, take the connected
sum of K with a theta web. We call the result K6. This is a web with three edges e1, e2,
e3, each oriented in a fashion determined by the orientation of K, as in Figure 16. Let µ
be the marking data of the previous subsection. The instanton complex CpY,K6;µq can be
upgraded to a complex with a local coefficient system,

pC6
˚pY,K; ∆BN q, dq (8.28)
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Figure 16: On the left, we take our oriented knot K and perform a connected sum with a
standard theta web near the basepoint p P K. The result is K6 on the right, and we orient
the three edges of K6 as indicated.

which is a Z{2-graded chain complex over SBN . The local coefficient system ∆BN of
SBN -modules is defined using holonomies along the three edges of the webK6: the variable
T1 is associated to the arc containing the edge formed by the merging of K and e1, while T2
and T3 are associated to the edges e2 and e3, respectively. We refer to [KM19c] for more
details. The homology of the complex (8.28) is denoted

I6
˚pY,K; ∆BN q “ H˚

`

C6pY,K; ∆BN q, d6
˘

and is a Z{2-graded SBN -module. The recycling of the notation I6 here is justified, as is in
[KM19c], by the observations from Subsection 8.5. The v-map is defined in this setting, and
there are no reducibles, so we may as usual form the mapping cone complex of v:

p rC6
˚pY,K; ∆BN q, rd6q

Let TF “ T b F “ FrT˘1s. A variation of our connected sum theorem implies the
following chain homotopy equivalence of Z{2-graded mapping cone complexes over SBN :

rC6
˚pY,K; ∆BN q » rC˚pY,K; ∆TF

q bTF
rC6

˚pS3, U1; ∆BN q (8.29)

where U1 is an unknot. Here and in what follows, SBN is viewed as a TF-algebra by
identifying T “ T1. The mapping cone complex rC6

˚pS3, U1; ∆BN q is computed in Section
4.4 of [KM19b]: there is one irreducible critical point for the theta web, so we have
C6

˚pS3, U1; ∆BN q “ TF, while the v-map TF Ñ TF is multiplication by P P TF, where

P :“ T1T2T3 ` T´1
1 T´1

2 T3 ` T´1
1 T2T

´1
3 ` T1T

´1
2 T´1

3 (8.30)

Unravelling the right-hand side of the equivalence (8.29), we obtain

`

C6
˚pY,K; ∆BN q, d6

˘

»

´

rC˚pY,K; ∆TF
q bTF

SBN , rdb 1SBN
` P ¨ χ

¯
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where P ¨ χ is multiplication by P between two summands of rC˚pY,K; ∆TF
q bTF

SBN .
That is, according to its decomposition as an S-complex over SBN , we have

P ¨ χ “

¨

˝

0 0 0
P 0 0
0 0 0

˛

‚ (8.31)

In conclusion, the complex C6
˚pY,K; ∆BN q and its homology I6

˚pY,K; ∆BN q featured in
[KM19c, KM19d], while defined as modules over the ring SBN “ FrT˘1

1 , T˘1
2 , T˘1

3 s in
three variables, is entirely determined up to chain homotopy equivalence by the S-complex
rC˚pY,K; ∆TF

q over the ring TF in one variable. In fact, in the next subsection we will see
a more precise statement at the level of homology. A similar argument to that of Proposition
8.19 yields the following, which is proved for Y “ S3 by a different method in [KM19c].

Proposition 8.32. For pY,Kq any based knot in an integer homology 3-sphere, the homology
group I6

˚pY,K; ∆BN q has rank 1 as a module over SBN .

We now assume that Y is the 3-sphere, and omit it from the notation. The importance
of the modules I6pK; ∆BN q, from the viewpoint of [KM19c, KM19d], is two-fold. First is
a connection to combinatorial link homology: Corollary 6.6 of [KM19c] gives a spectral
sequence whose E2-page is a version of Bar-Natan’s Khovanov homology over SBN and
which converges to I6pK; ∆BN q. Second, there is defined in [KM19d] a concordance
invariant z6

BN pKq in the setting of I6pK; ∆BN q, which we now briefly review.
Let FracpSBN q be the quotient field of SBN . A fractional ideal is an SBN -module

M Ă FracpSBN q such that there is some s P SBN with sM Ă SBN . Let S : U1 Ñ K be a
cobordism of knots from the unknot toK. We have an induced map of rank-1 SBN -modules

I6pS; ∆BN q1 : I6pU1; ∆BN q1 ÝÑ I6pK; ∆BN q1

where I6pK; ∆BN q1 denotes the SBN -module I6pK; ∆BN q modulo torsion. Then

z6

BN pKq :“ P g ¨
“

I6pK; ∆BN q1 : imI6pS; ∆BN q1
‰

Ă FracpSBN q

where g is the genus of S, and rN :M s is the generalized module quotient,

rN :M s :“ ta{b P FracpSBN q : aM Ă bNu .

The ideal z6

BN pKq is a fractional ideal, and is proven in [KM19d, Section 5] to be a
concordance invariant of the knot K.

Now suppose that pr0, 1s ˆ S3, Sq is a negative definite pair. The existence of S is
equivalent to the assumption in (1.20) on the slice genus of K. Then we have a morphism of
S-complexes rCpS; ∆TF

q : rCpU1; ∆TF
q Ñ rCpK; ∆TF

q. Upon tensoring with rCpΘ;∆BN q

and using the naturality of our connected sum theorem, we obtain that C6pS; ∆BN q is chain
homotopy equivalent to the map

p0,∆2 b 1, 1q : TF bTF
SBN ÝÑ rC˚pY,K; ∆TF

q bTF
SBN

We summarize some of our observations in the following.
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Proposition 8.33. Let pY,Kq be a based knot in an integer homology 3-sphere. The
module I6pY,K; ∆BN q over SBN “ FrT˘1

1 , T˘1
2 , T˘1

3 s is determined by the S-complex
rC˚pY,K; ∆TF

q over TF “ FrT˘1
1 s. Specifically, we have a Z{2-graded isomorphism

I6
˚pY,K; ∆BN q – H˚

´

rC˚pY,K; ∆TF
q bTF

SBN , rdb 1SBN
` P ¨ χ

¯

where P ¨ χ is given by (8.31). Suppose Y “ S3 and that there is a surface cobordism
S : U1 Ñ K in r0, 1s ˆ S3 with negative definite double branched cover. Then the image of
the induced map I6pS; ∆BN q in I6pK; ∆BN q corresponds to the inclusion of the element

rλSp1q “ p0,∆2p1q, 1q P rC˚pY,K; ∆TF
q.

Thus in this case, the concordance invariant z6

BN pKq is determined by the S-complex
rC˚pY,K; ∆TF

q over TF “ FrT˘1
1 s and the element ∆2p1q therein.

All of the above may be carried out in the framework of the unreduced theory I#pY,Kq

with local coefficients induced by the theta web. In this case, we consider the ring

R# “ FrT˘1
0 , T˘1

1 , T˘1
2 , T˘1

3 s

The group I#pY,K; ∆R#q is a module over R# and its local coefficient system is defined
by holonomies around K and the three arcs of the theta web; the variable T0 is associated
with K, and T1, T2, T3 with the theta web as before. It is the homology of

pC#
˚ pY,K; ∆R#q, d#q (8.34)

which is a chain complex associated to pY,Kq#pS3, U1 \Θq where as before the connected
sum involves U1, not Θ, and which has marking data µ containing all of Y#S3, and local
coefficient system ∆R# . We form the mapping cone complex with respect to the v-map, and
apply a variation of our connected sum theorem, to obtain the following equivalence:

rC#
˚ pY,K; ∆R#q » rC˚pY,K; ∆TF

q bTF
rC#

˚ pS3, U1; ∆R#q

Here R# is a TF-module by identifying T “ T0. Now just as in Subsection 8.2, the
complex C#

˚ pS3, U1; ∆R#q may be taken to have two generators in even grading, with
trivial differential. The v-map in this case is multiplication by P . Indeed, this follows from
[KM19c, Proposition 5.9], after identifying the v-map with the map induced by a genus 1
cobordism U1 Ñ U1 (see Remark 8.3). Then (8.34) is chain homotopy equivalent to

´

rC˚pY,K; ∆TF
q bTF

R#, rdb 1R# ` P ¨ χ
¯‘2

(8.35)

In particular, the theory naturally splits into two chain complexes. Further, when we set
T0 “ T1 we recover two copies of the chain complex computed above for I6pY,K; ∆BN q.

Similar to Proposition 8.33, we obtain that the module I#pY,K; ∆R#q over R# is
determined by the S-complex rC˚pY,K; ∆TF

q defined over TF “ FrT˘1
0 s. Specifically,

we have a Z{2-graded isomorphism between I#pY,K; ∆R#q and the homology of (8.35).
Furthermore, if Y “ S3 and there is a cobordism of pairs pr0, 1s ˆ S3, Sq from U1 to K
which is negative definite, then the concordance invariant z#pKq of [KM19c] is determined
by the cobordism map on S-complexes.

106



8.7 Relations to equivariant homology groups

Several of the constructions of the above chain complexes bare similarities to the equivariant
homology groups discussed in Section 4. To begin making these connections more precise,
recall that given an S-complex p rC˚, rd, χq over a ring R, the equivariant complex p pC˚, pdq

over Rrxs is defined as follows, where pd is defined on rC Ă pC and extended Rrxs-linearly:

pC˚ “ rC˚ bR Rrxs, pd “ ´rd` x ¨ χ

We slightly extend this construction to incorporate base changes ofRrxs, as follows. Suppose
S is another ring, and φ : Rrxs Ñ S is a ring homomorphism. Define p pCφ

˚ , pd
φq by:

pCφ
˚ “ S bR

rC˚, pdφps ¨ ζq “ ´s ¨ rdζ ` ϕpxqs ¨ χpζq

Here s P S, ζ P rC, and S is considered an R-module by restriction. In other words, we
have the identification pCφ

˚ “ pC˚ bRrxs S as chain complexes over S. Note that when
ϕ : Rrxs Ñ R sends x to zero, the complex pCϕ

˚ is naturally identified with rC˚.
As a simple example, recall that Theorem 8.13 expresses the chain homotopy type of

C#
˚ pY,Kq as the mapping cone of 2χ acting on rC˚pY,Kq. We may write this as

C#
˚ pY,Kq » pCϕ

˚ pY,Kq

where ϕ : Zrxs Ñ Zrxs{px2q is the ring homomorphism which is determined by sending x
to the equivalence class 2x (mod x2).

For a more interesting example, we consider I#pY,K; ∆R#q as discussed in the previous
subsection. We saw there that the chain complex for this group is chain homotopy equivalent
to the chain complex given by (8.35). From this we obtain

C#
˚ pY,K; ∆R#q » pCϕ

˚ pY,K; ∆TF
q‘2 “

´

pC˚pY,K; ∆TF
q bTFrxs R#

¯‘2
(8.36)

where ϕ : TFrxs Ñ R# “ FrT˘1
0 , T˘1

1 , T˘1
2 , T˘1

3 s is the TF “ FrT˘1
0 s-linear homomor-

phism determined by sending x to P , where P is given as before by (8.30).
Note that FrT˘1

1 , T˘1
2 , T˘1

3 s a free module over FrP s. (This is an immediate conse-
quence of Proposition 8.40 below.) Tensoring with the ring FrT˘1

0 s then shows that R# is a
free module over TFrxs with the above module structure. As a consequence, the relationship
(8.36) holds at the level of homology.

Corollary 8.37. Let pY,Kq be a based knot in an integer homology 3-sphere. The module
I#pY,K; ∆R#q over R# is isomorphic to ppIpY,K; ∆TF

q bTFrxs R#q‘2 where the ring
structure of R# over TFrxs is given by sending x ÞÑ P .

Remark 8.38. In [KM19c], an operator Λ is defined on I#pY,K; ∆R#q, associated to the
identity cobordism with a dot placed on the singular surface r0, 1s ˆK. The R#-module
structure of I#pY,K; ∆R#q then lifts to an F -module structure, where

F “ R#rΛs{pΛ2 ` PΛ `Qq.
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We can lift the isomorphism of Corollary 8.37 to one of F -modules. The result is

I#pY,K; ∆R#q – pIpY,K; ∆TF
q bTFrxs I

#pU1; ∆R#q

where the F -module structure is induced by that of I#pU1; ∆R#q. This follows from
viewing Λ as induced by a cobordism (with a dot) and the naturality of the connected sum
theorem. As I#pU1; ∆R#q is isomorphic as an F -module to F , I#pY,K; ∆R#q is an
F -module obtained from pIpY,K; ∆TF

q by the base change TFrxs Ñ F which is the base
change of Corollary 8.37 followed by inclusion R# Ñ F . ˛

Similar results hold for the reduced theory I6pY,K; ∆BN q, starting from Proposition
8.33. The description of the chain homotopy-type of C6

˚pY,K; ∆TF
q given there may be

represented as a chain homotopy equivalence

C6
˚pY,K; ∆BN q » pCϕ

˚ pY,K; ∆TF
q “ pC˚pY,K; ∆TF

q bTFrxs SBN (8.39)

where ϕ : TFrxs Ñ SBN “ FrT˘1
1 , T˘1

2 , T˘1
3 s is the TF “ FrT˘1

1 s-linear homomor-
phism determined by sending x to P . This module structure is elucidated by the following.

Proposition 8.40. The ring SBN “ FrT˘1
1 , T˘1

2 , T˘1
3 s is free as a module over FrT˘1

1 , P s.

As a consequence, the relationship (8.39) also holds at the level of homology.

Corollary 8.41. Let pY,Kq be a based knot in an integer homology 3-sphere. The module
I6pY,K; ∆BN q over SBN is isomorphic to pIpY,K; ∆TF

q bTFrxs SBN where the ring
structure of SBN over TFrxs is given by sending x ÞÑ P .

The proof of Proposition 8.40 needs some preparation. Firstly, we fix the dictionary
order on Zě0 ˆ Zě0 by declaring pi, jq ě pi1, j1q if either i ą i1 or i “ i1, j ą j1. For a
non-zero element Q “

ř

Ri,jT
i
2T

j
3 of the ring SBN where Ri,j P FrT˘1

1 s, define

DegpQq :“ max
i,j

tp|i|, |j|q | Ri,j ‰ 0u P Zě0 ˆ Zě0

where the maximum is defined with respect to the dictionary order. We also define LpQq,
the leading terms of such a non-zero Q, to be the following expression:

LpQq :“
ÿ

p|i|,|j|q“DegpQq

Ri,jT
i
2T

j
3 P SBN

Proposition 8.40 is a consequence of the following two lemmas.

Lemma 8.42. Suppose a subset G Ă SBN is given such that the set

tLpgP iq | g P G, i ě 0u

forms a basis of SBN over FrT˘1
1 s. Then SBN is free over FrT˘1

1 , P s with basis G.
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Proof. Let Q P SBN be non-zero. By assumption, there are R0, . . . , Rn P FrT˘1
1 s and

g0, . . . , gn P G such that the leading terms of Q are given as the sum

LpQq “
ÿ

i

RiLpgiP
iq

In particular, either Q “
ř

iRigiP
i or we have the following:

DegpQ´
ÿ

i

RigiP
iq ă DegpQq.

Thus by induction we can write Q as a linear combination of the elements in G over the ring
FrT˘1

1 , P s. Next, suppose we have a relation of the form

N
ÿ

m“1

RmgmP
km “ 0

with Rm P FrT˘1
1 s not all zero, km P Zě0, and gm P G. Then we define pi0, j0q P

Zě0 ˆ Zě0 to be the maximum of DegpgmP
kmq among all m that Rm ‰ 0. Therefore,

ÿ

DegpgmPkm q“pi0,j0q

RmLpgmP
kmq “ 0.

This contradicts our assumption and implies that Rm “ 0 for all m. In particular, G gives
an FrT˘1

1 , P s-basis for SBN .

Lemma 8.43. Let G be the following subset of SBN :

G :“ tTm
2 , T

m
3 , T

n
2 T

´1
3 , T´n

2 T3, T
´1
2 Tn

3 , T2T
´n
3 , T2T3 | m P Z, n P Zě1u.

Then tLpgP kq | g P G, k ě 0u is an FrT˘1
1 s-basis for SBN .

Proof. For a given pi, jq P Zě0 ˆ Zě0, we characterize all the elements of the form gP k

with g P G having DegpgP kq “ pi, jq. Because of the symmetrical role of T2 and T3, we
assume that i ě j. In the following table we list all such elements gP k with degree pi, jq.

i “ j “ 0 1 ¨ P 0

i ą 0, j “ 0 T i
2 ¨ P 0, T´i

2 ¨ P 0

i “ j ą 0 P i, T2T3P i´1, T2T´1
3 P i´1, T´1

2 T3P
i´1

i ą j ą 0 T i´j
2 P j , T j´i

2 P j , T i´j`1
2 T´1

3 P j´1, T j´i´1
2 T3P

j´1

It is clear that in each case the leading terms of the listed elements give an FrT˘1
1 s-basis of

FrT˘1
1 stT i

2T
j
3 , T

i
2T

´j
3 , T´i

2 T j
3 , T

´i
2 T´j

3 u,

the direct sum of which give a decomposition of SBN into FrT˘1
1 s-modules.
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8.8 Remarks on some concordance invariants

For a knot K whose slice genus satisfies the assumption in (1.20), we have given rather
specific recipes for how to describe the invariants of [KM13, KM19d] in terms of our theory
of S-complexes with local coefficients. It is natural to ask whether the concordance invariants
s#pKq, z6

BN pKq, z#pKq are related to the various concordance invariants constructed in
this paper. A closely related question is the following:

Question 8.44. Are the invariants s#pKq, z6

BN pKq, z#pKq determined by the local equiva-
lence class of the S-complex rCpS3,K; ∆T q with local coefficients?

We now suggest a possible recipe for how the above concordance invariants may be
derived more directly from our equivariant homology theories. We first mimic the definition
of z6

BN pKq, as far as we can, in the setting of pIpK; ∆TF
q, motivated by Corollary 8.41. To

ensure that we have a cobordism map at our disposal, we assume that there is a connected,
oriented surface cobordism S : U1 Ñ K in r0, 1s ˆ S3 with negative definite branched
double cover. Then we have an induced map

pIpS; ∆TF
q1 : pIpU1; ∆TF

q1 ÝÑ pIpK; ∆TF
q1

where the prime superscripts indicate that we mod out by the torsion elements over TFrxs.
Let g be the genus of S. We define

pzpKq :“ xg ¨ rpIpK; ∆TF
q1 : im pIpS; ∆TF

q1s Ă FracpTFrxsq (8.45)

Because the equivariant homology pIpK; ∆TF
q is a rank 1 module over TFrxs, it is isomor-

phic as a module to an ideal I Ă TFrxs. Then pzpKq may be described as

pzpKq “ xgζ´1 ¨ I Ă FracpTFrxsq

where ζ “ pIpS; ∆TF
qp1q. Thus pzpKq is a fractional ideal for the ring TFrxs “ FrT˘1, xs.

Now the ring homomorphism TFrxs Ñ SBN induced by sending T ÞÑ T1 and x ÞÑ P
induces a map from fractional ideals of TFrxs to fractional ideals of SBN . By Proposition
8.33 and the naturality of the isomorphism in Corollary 8.41, we conclude that pzpKq is sent
to z6pKq under this correspondence.

Similar remarks hold for the relationship between pzpKq and z#pKq. Consider the homo-
morphism TFrxs Ñ R# induced by sending T ÞÑ T0 and x ÞÑ P , and the homomorphism
R# Ñ SBN which sets T0 “ T1. We obtain the commutative diagram on the left:

TFrxs

R# SBN

pzpKq

z#pKq z6

BN pKq

These homomorphisms induce maps between the fractional ideals of the three rings, and via
these correspondences the invariant pzpKq is sent to z#pKq and z6

BN pKq, as indicated in the
above diagram on the right.
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There is a relation between pzpKq and the nested sequence of ideals JTF
i pKq defined in

(7.9) which can be described as follows. Given any TFrxs-module Z in FracpTFrxsq and
any integer i, we define

JipZq :“

"

a

b
| D

axj´i ` aj´i´1x
j´i´1 ` ¨ ¨ ¨ ` a0

bxj ` bj´1xj´1 ` ¨ ¨ ¨ ` b0
P Z

*

Ă FracpTFq.

This is clearly a TF-submodule of FracpTFq.

Proposition 8.46. For any K as above, Ji`σpKq{2ppzpKqq Ă JTF
i pKq. In particular,

JippzpKqq is an ideal of TF.

Proof. Suppose a cobordism S : U1 Ñ K is chosen as above. Recall that

IpKq “ impi˚ : pIpK; ∆TF
q Ñ TFrrx´1, xsq,

JTF
i pKq “

␣

a P TF | D ax´i ` a´i´1x
´i´1 ` ¨ ¨ ¨ P I

(

.

First, with notation as in (8.45), we claim that

rpIpK; ∆TF
q1 : im pIpS; ∆TF

q1s “ rIpKq : sIpS; ∆TF
qp1qs (8.47)

where 1 P TFrrx´1, xs in (8.47) is a generator of IpU1q “ TFrxs as a module over TFrxs.
This claim is a straightforward consequence of the exact triangle in (5.2) and the fact that all
elements in qIpK; ∆TF

q are TFrxs-torsion. Corollary 4.12 implies that

sIpS; ∆TF
qp1q “ 1 `

´1
ÿ

i“´8

bix
i.

Let a{b P Ji`σpKq{2ppzpKqq. Then (8.47) implies there are P pxq, Qpxq P TFrxs such that

P pxqp1 `
ř´1

i“´8 bix
iq

Qpxq
P IpKq,

and the ratio of the leading term of P pxq{Qpxq is equal to a
bx

´i. Thus a{b P JTF
i pKq.

The above proposition and the preceding discussion provides a partial answer to Question
1.19 for the family of knots with slice genus ´σpKq{2.

Question 8.48. Can the definition of pzpKq be extended to all knots in the 3-sphere such that
the relationship to z#pKq and z6

BN pKq described above still holds?

Note that if one constructs general cobordism maps for the equivariant theory, then there
is an obvious way of extending the definition of pzpKq to all knots using (8.45).

A similar discussion holds for s#pKq. In particular, if there is a surface cobordism
S : U1 Ñ K as above, we may define pspKq by replacing TF in (8.45) with TQ, and from
our discussion in Subsection 8.3, s#pKq may be recovered from pspKq.
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9 Computations

In this section we study our invariants for two-bridge knots and torus knots. In particular, we
prove Theorems 1.14 and 1.12 from the introduction.

After discussing the utility of passing to the double branched cover in Subsection 9.1,
we turn to two-bridge knots, where much of the structure of our invariants can be described
combinatorially. We rely on previous results about instantons on RˆLpp, qq, which depend
upon equivariant ADHM constructions. Along the way we describe all of our invariants for
the right-handed trefoil, from which the computation hT “ 1 follows. We also make contact
with Sasahira’s instanton homology for lens spaces, from which Theorem 1.12 follows. We
then discuss the p3, 5q and p3, 4q torus knots, making use of Austin’s work [Aus95], which
also relies on equivariant ADHM constructions. Subsection 9.5 discusses the irreducible
Floer homology of torus knots. Finally, in Subsection 9.6, we discuss some more examples
for which hpKq vanishes.

9.1 Passing to the branched cover

The geometrical input involved in the singular instanton Floer complexes rC˚pKq for a knot
K Ă S3 as defined in Section 3 can be related to the corresponding data on the double
branched cover π : Σ Ñ S3 over K. On the level of critical sets, this is established in
[PS17], and the description extends to the cylinder in a straightforward manner.

Recall that the critical set CpKq “ CpS3,Kq of the unperturbed singular Chern-Simons
functional for K may be identified with the SUp2q traceless character variety of K from
(2.2), denoted X pKq “ X pS3,Kq. For a closed oriented 3-manifold Y , we define

X pY q :“ tρ : π1pY q Ñ SUp2qu{SUp2q,

and via holonomy X pY q may be identified with the critical set CpY q of flat connections
modulo gauge transformations for the SUp2q Chern-Simons functional on Y . If Y is a
Z{2-homology 3-sphere, as is the case for Σ, then X pY q is naturally identified with the
corresponding SOp3q character variety, by taking adjoints. Note in this case there are unique
SUp2q and SOp3q bundles over Y up to isomorphism.

Let τ : Σ Ñ Σ be the covering involution of Σ. Fix an SUp2q bundle over Σ and let
gΣ be its adjoint bundle. A lift rτ of τ to gΣ is specified by choosing a bundle isomorphism
f : τ˚gΣ Ñ gΣ via the relation rτ “ f ˝ p´1 where p : τ˚gΣ Ñ gΣ is the pullback map.
Such lifts fall into two types, depending on whether rτ |K is the identity or of order two. We
restrict our attention here to the latter case; these are locally conjugate to the model given in
(2.28). For such a lift rτ , the quotient ǧK “ gΣ{rτ is an SOp3q orbifold bundle over pS3,Kq,
isomorphic to the adjoint orbifold bundle ǧE considered in Section 2.1. Let Cτ pΣq denote
the subset of CpΣq of classes that are represented by a connection whose adjoint is fixed
under the induced action for some such choice of a lift rτ . Now, define a map

Π : CpKq ÝÑ CpΣqτ

112



as follows: given an SUp2q singular connection representing a class in CpKq, take its SOp3q

adjoint, pull back the induced orbifold connection to obtain an SOp3q connection on Σ, and
then take the gauge equivalence class of its unique SUp2q lift. In terms of representations,
CpΣqτ corresponds to the subset X pΣqτ Ă X pΣq consisting of ρ : π1pΣq Ñ SUp2q such
that τ˚ρ “ uρu´1 for some order four element u P SUp2q, up to conjugacy.

The fibers of the map Π are either one or two points. More precisely, we may divide the
classes in CpΣqτ into three types, determined by their gauge stabilizers:

(i) (trivial) the trivial connection class θΣ with stabilizer SUp2q;

(ii) (abelian) non-trivial classes with stabilizer isomorphic to Up1q;

(iii) (irreducible) classes with stabilizer t˘1u.

The map Π is onto, and Π´1pθΣq “ tθu where θ is the reducible singular flat connection for
K; the fiber over a class of type (ii) in CpΣqτ consists of a unique irreducible class in CpKq;
and over a class of type (iii) are two irreducible class in CpKq. In particular, a non-irreducible
class in CpΣqτ may come from an irreducible class in CpKq. In terms of representations,
as is described in [PS17, Section 4], (i) corresponds to the trivial homomorphism, (ii) to
non-trivial representations with abelian image, and (iii) to non-abelian representations. An
abelian representation in X pΣqτ lifts to a unique binary dihedral representation in X pKq,
and an irreducible representation has two irreducible lifts to X pKq. The map Π factors as

CpKq ÝÑ CpKq{ι ÝÑ CpΣqτ

where the first map is the quotient map associated to the flip symmetry ι of Subsection
2.3, and the second map is a bijection. The fibers of Π consisting of one point are given
by fixed points of ι, while the fibers with two points are the free orbits of ι. In particular,
the involution ι restricted to CpKq acts freely on flat connections whose pullbacks to Σ are
irreducible, and fixes all other connection classes.

For α, β P CpKq we have an R-invariant flip symmetry ι : Mpα, βq Ñ Mpια, ιβq

between moduli spaces on R ˆ pS3,Kq, and ι2 “ id. Thus ι acts on Mpα, βq Y ιMpα, βq

as an involution. If either α or β is fixed by ι we have an identification
´

M̆pα, βq Y ιM̆pα, βqq

¯

{ι “ M̆pαΣ, βΣqτ

where M̆pαΣ, βΣqτ is the moduli space of instantons on R ˆ Σ which are fixed by some lift
rτ of the branched covering τ extended to the cylinder. Here αΣ “ Πpαq and βΣ “ Πpβq.
We also assume that our metric on Σ is invariant with respect to the branched covering
involution. (We assume for simplicity that we do no need any holonomy perturbations to
achieve regularity.) Then M̆pαΣ, βΣqτ is the fixed point set of a Z{2-action on M̆pαΣ, βΣq

induced by τ . If ι acts freely on both α and β we have instead an identification
´

M̆pα, βq Y ιM̆pα, βqq

¯

{ιY

´

M̆pα, ιβq Y M̆pια, βqq

¯

{ι “ M̆pαΣ, βΣqτ

where the two sets on the left hand side are disjoint.
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Lemma 9.1. The involution ι acts freely on M̆pα, βq Y ιM̆pα, βq, and νpιrAsq “ ´νprAsq.

Proof. Let rAs P M̆pα, βq be a (non-constant) instanton fixed by ι. Then the pull-back of
rAs to R ˆ Σ is a non-constant reducible. Since there is no such instanton we conclude that
the action of ι is free. The behavior of the monopole number with respect to ι is given in
(2.25).

9.2 Two-bridge knots

Let p, q be relative prime, with p odd. Write Kp,q for the two-bridge knot whose two-fold
branched cover is the lens space Lpp, qq. The critical set CpLpp, qqq is easy to describe.
Write ξiLpp,qq

for the flat SUp2q connection class on Lpp, qq corresponding to the conjugation
class of the representation π1pLpp, qqq “ Z{p Ñ SUp2q defined by ζ ÞÑ ζi ‘ ζ´i. Then

CpLpp, qqq “ tξ1Lpp,qq, . . . , ξ
pp´1q{2
Lpp,qq

u

Our convention is to identify Lpp, qq with the quotient of S3 Ă C2 by the action of Z{p,
where Z{p, viewed as the pth roots of unity, acts as ζ ¨ pz1, z2q “ pζz1, ζ

qz2q. Furthermore,
the two-bridge knot Kp,q is the fixed point set of Lpp, qq under the involution induced by the
conjugation action pz1, z2q ÞÑ pz1, z2q. Thus the orbifold pS3,Kp,qq is the quotient of S3

by the action of the dihedral group of order 2p.
As observed in [PS17], all of the classes in CpLpp, qqq are fixed by the action of τ , and

so CpLpp, qqq “ CpLpp, qqqτ . Furthermore, each ξiLpp,qq
is reducible, and thus uniquely lifts

to a class ξi P CpKq which is fixed by ι. Each of these is non-degenerate. Note that ξ0 “ θ
is the flat reducible, while ξi for 1 ď i ď pp´ 1q{2 is irreducible. Thus our irreducible Floer
chain complex has underlying (ungraded) group given by

CpKp,qq “

pp´1q{2
à

i“1

Z ¨ ξi

The gradings may also be computed, as recalled below. Consequently, the framed S-complex
rCpKp,qq “ CpKp,qq ‘ CpKp,qq ‘ Z has rank p. On the other hand, by Theorem 8.9 the
homology of rCpKp,qq is isomorphic to Kronheimer and Mrowka’s I6pKp,qq, which is also
of rank p by [KM11a, Corollary 1.6]. Thus rd “ 0, and in particular all the chain-level maps
d, v, δ1 and δ2 must vanish. Proposition 4.15 implies:

Proposition 9.2. For a two-bridge knot Kp,q we have hpKp,qq “ 0.

This result is no longer true if we use local coefficients. The key observation is that some
of the zero-dimensional moduli spaces M̆pξi, ξjq0 are non-empty, and in fact consist of
exactly two points rAs and rA1s, which descend to a unique instanton on RˆLpp, qq. The flip
symmetry ι interchanges these instantons, reversing orientations, and so their contributions
to the differential considered above cancel. However, it will happen that sometimes the
monopole number νprAsq “ ´νprA1sq is nonzero, in which case the contributions will not
cancel in the setting of the local coefficient system ∆T .
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Moduli spaces of instantons on R ˆ Lpp, qq were studied in [Aus95, Fur90, FH90]. See
also [Sas13, Section 4.1] for a nice summary. An argument using the Weitzenböck formula
shows that all such moduli are unobstructed and smooth. The 0-dimensional moduli spaces
can be described explicitly, and are determined as follows. First, consider the congruence

a` qb ” 0 pmod pq (9.3)

We count solutions pa, bq in a rectangle determined by k1, k2 P Zą0 as follows:

N1pk1, k2; p, qq :“ #
␣

pa, bq P Z2 solving (9.3), |a| ă k1, |b| ă k2
(

(9.4)

N2pk1, k2; p, qq :“ #

"

pa, bq P Z2 solving (9.3),
|a| ă k1, |b| “ k2 or
|a| “ k1, |b| ă k2

*

(9.5)

Theorem 9.6 ([Aus95, Fur90]). Let 0 ď i, j ď pp´ 1q{2, where i ‰ j. Suppose there exists
k1, k2 P Zą0 and ε1, ε2 P t`1,´1u such that the following hold:

k1 ” ε1i` ε2j pmod pq, qk2 ” ´ε1i` ε2j pmod pq (9.7)

N1pk1, k2; p, qq “ 1, N2pk1, k2; p, qq “ 0 (9.8)

Then M̆pξiLpp,qq
, ξjLpp,qq

q0 defined for R ˆ Lpp, qq is a point. Otherwise it is empty.

Furthermore, the positive integers k1, k2 above are related to topological energy as
follows: when there exists an instanton rA1s on R ˆ Lpp, qq as in the theorem, we have

κpA1q “
1

8π2

ż

RˆLpp,qq

trpFA1 ^ FA1q “
1

p
¨ c2p rEq “

k1k2
p

(9.9)

where rE Ñ S4 is an SUp2q bundle that supports an extension of the pullback of the instanton
A1 to the 4-sphere compactification of R ˆ S3.

We now return to the orbifold pS3,Kp,qq. Consider a moduli space M̆pξiLpp,qq
, ξjLpp,qq

qd

of instantons on R ˆ Lpp, qq. It follows from the computations of [PS17, Section 7.1] that
the τ -invariant moduli space has dimension d{2. Thus pullback induces an embedding

´

M̆pξi, ξjq d
2

¯

{ι ãÑ M̆pξiLpp,qq, ξ
j
Lpp,qq

qd

of smooth manifolds, whose image is the fixed point set of an involution on the codomain.
In particular, setting d “ 0, we find that M̆pξi, ξjq0 is entirely determined by the above
theorem, combined with the behavior of the symmetry ι as described in Lemma 9.1.

Corollary 9.10. Let 0 ď i, j ď pp ´ 1q{2, where i ‰ j, and consider the corresponding
moduli space M̆pξi, ξjq0 of instantons on R ˆ pS3,Kp,qq.

(i) M̆pξi, ξjq0 “ H if and only if M̆pξiLpp,qq
, ξjLpp,qq

q0 “ H.

(ii) If M̆pξi, ξjq0 ‰ H, then it consists of two oppositely oriented points.
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In the case that M̆pξi, ξjq0 ‰ H, Theorem 9.6 implies that M̆pξi, ξjq0 consists of two
points. These two points are oppositely oriented because of the vanishing of the maps d, δ1
and δ2. To compute the maps d, δ1 and δ2 with local coefficients, we have:

Proposition 9.11. Suppose M̆pξi, ξjq0 ‰ H, so that it contains two instantons rAs and
ιrAs. Let k “ k1k2 where k1, k2 P Zą0 are solutions to (9.7), (9.8). Then

tνprAsq, νpιrAsqu “

#

t0u if k ” 0 mod 2

t2,´2u if k ” 1 mod 2

To prove this we utilize the twisted spin Dirac operator. To set this up, let rAs P

M̆pξi, ξjq, so that A is a singular instanton on R ˆ pS3,Kp,qq. Pull back A to an instanton
on R ˆ S3. By Uhlenbeck’s removable singularity theorem, this pull back connection
extends, after possibly gauge transforming, to an instanton rA on the compactified S4. Write
rE Ñ S4 for the bundle on which rA is supported, and set k :“ c2p rEq.

Recall that pS3,Kp,qq is the quotient of S3 by the dihedral group D2p, generated by
ζ P Z{p Ă Up1q and τ P Z{2, where ζ ¨ pz1, z2q “ pζz1, ζ

qz2q and τ ¨ pz1, z2q “ pz1, z2q.
Here we view S3 Ă C2 as the unit sphere. This action extends to C2 Y 8 “ S4. We may
lift the action of D2p to an action of the binary dihedral group rD4p of order 4p on the bundle
rE. This lift may be chosen such that rA is invariant under the action of rD4p.

The action of D2p on the 4-sphere also lifts to an action of rD4p on the spinor bundles
S˘ Ñ S4. Thus we may consider the spin Dirac operator coupled to rA:

{D
rA
: Γp rE b S´q ÝÑ Γp rE b S`q

The group rD4p induces actions on the domain and codomain, and {D
rA

is equivariant with
respect to these actions. Write rτ for the lift of the action of τ to rD4p.

Proposition 9.12. Lefprτ , {D
rA
q “ νpAq{2.

Proof. We use the Atiyah–Segal–Singer equivariant index theorem, as stated in [BGV04,
Theorem 6.16], applied to the operator {D

rA
and the action of rτ P rD4p:

Lefprτ , {D
rA
q “ ´

1

2π

ż

S2

pApS2qchprτ , rEq

detp1 ´ τ1 ¨ expp´FN qq1{2

Here S2 “ R2 Y 8 Ă S4 is the fixed point set of τ ; the term chprτ , rEq is defined to be
Trprτ ¨ expp´F

rA
qq; FN is the component of Riemannian curvature form of S4 normal to S2;

and τ1 is the action of τ on the normal bundle over S2. We have pApS2q “ 1. The connection
rA descends to the singular connection A, and so by assumption there is a preferred reduction
rL ‘ rL´1 Ñ S2 over the fixed point set, at which rA splits as rA0 ‘ rA˚

0 . Furthermore, the
action of rτ on rL‘ rL´1 is of the form diagpi,´iq. Thus

chprτ , rEq “ Tr

˜

„

i 0
0 ´i

ȷ

¨ exp

«

´F
rA0

0

0 F
rA0

ff¸

“ ´2iF
rA0
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The action of τ on the normal bundle of S2 is by negation, so for the denominator we have

detp1 ´ τ1 ¨ expp´FN qq´1{2 “ detp1 ` expp´FN qq´1{2 “
1

2

ˆ

1 `
1

4
FN

˙

We find that only the constant term of the denominator contributes to the final integral:

Lefprτ , {D
rA
q “ ´

1

2π

ż

S2

´2iF
rA0

¨
1

2
“

i

2π

ż

S2

F
rA0

“
1

2
νpAq

The last equality follows because the fixed point set S2, with 0 and 8 removed, is mapped
with the connection rA isomorphically to R ˆK with the connection A.

The character of {D
rA

restricted to the subgroup Z{2p Ă rD4p, which we write as
indZ{2pp {D

rA
q, is computed in [Sas13, Section 4.2]. For 0 ď i ď 2p ´ 1, we write χj

for the character of Z{2p defined by sending the generator to ejπi{p. Then

indZ{2pp {D
rA
q “

2p´1
ÿ

j“0

Mpj, k1, k2; p, qq ¨ χj (9.13)

where the coefficient Mpj, k1, k2; p, qq is defined to be the number of solutions pc, dq P Z2

with 0 ď c ď k1 ´ 1 and 0 ď d ď k2 ´ 1 to the congruence

´k1 ` 2c` 1 ` qp´k2 ` 2d` 1q ” j pmod 2pq (9.14)

Here k1 and k2 are solutions to (9.7); in the situation we consider, they will be uniquely
determined as also satisfying (9.8). The binary dihedral group rD4p has p´1 two-dimensional
representations, whose characters we denote by rχj for 1 ď j ď p ´ 1; and also 4 one-
dimensional representations, dented rχ˘

0 , rχ˘
p . Here rχ`

0 is the trivial representation and rχ´
0

has rτ acting by ´1. The restriction from rD4p to the subgroup Z{2p sends:

rχj ÞÑ χj ` χ2p´j p1 ď j ď p´ 1q, rχ˘
0 ÞÑ χ0, rχ˘

p ÞÑ χp (9.15)

In particular, if we consider the rD4p character of {D
rA
, we may write

ind
rD4p

p {D
rA
q “ n`

0 rχ
`
0 ` n´

0 rχ
´
0 ` n`

p rχ
`
p ` n´

p rχ
´
p `

p´1
ÿ

j“1

nj rχj

The operator {D
rA

is surjective, so each of these coefficients is non-negative. We then have,
combining (9.15) and (9.13), the following:

Mpj, k1, k2; p, qq `Mp2p´ j, k1, k2; p, qq “ nj p1 ď j ď p´ 1q

Mp0, k1, k2; p, qq “ n`
0 ` n´

0

Mpp, k1, k2; p, qq “ n`
p ` n´

p

Observe that rχjprτq “ 0, while rχ˘
0 prτq “ ˘1 and rχ˘

p prτq “ ˘i. Consequently, we have
Lefprτ , {D

rA
q “ n`

0 ´ n´
0 . Note that this Lefschetz number is real by Proposition 9.12, so

necessarily n`
p “ n´

p .
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Proposition 9.16. Let 0 ď i, j ď pp´ 1q{2, where i ‰ j, satisfying (9.7) and (9.8) for some
k1, k2 P Zą0, so that the moduli space M̆pξiLpp,qq

, ξjLpp,qq
q0 “ trA1su is a point. Then the

associated coupled spin Dirac operator {DA1 defined over R ˆ Lpp, qq is surjective and

dim ker {DA1 “

#

0 if k1k1 ” 0 mod 2

1 if k1k2 ” 1 mod 2

Proof. Suppose Mp0, k1, k2; p, qq ą 0, so that there exists a solution pc, dq to (9.14) with
j “ 0, where 0 ď c ď k1 ´ 1 and 0 ď d ď k2 ´ 1. Then pa, bq with a :“ ´k1 ` 2c ` 1
and b :“ ´k2 ` 2d ` 1 is a solution to (9.3) with |a| ă k1 and |b| ă k2. However, the
assumption N1pk1, k2; p, qq “ 1 implies the only such solution is pa, bq “ p0, 0q. Thus

c “ pk1 ´ 1q{2, d “ pk2 ´ 1q{2

are uniquely determined, and we must have Mp0, k1, k2; p, qq “ 1 and k1k2 ” 1 (mod 2).
The same reasoning shows that if k1k2 ” 0 (mod 2) then there is no solution to (9.14). It
remains to observe that Mp0, k1, k2; p, qq is precisely ind {DA1 “ dim ker {DA1 .

Proof of Proposition 9.11. By Proposition 9.16, n`
0 ` n´

0 “ 0 if k “ k1k2 ” 0 (mod 2),
and n`

0 ` n´
0 “ 1 if k “ k1k2 ” 1 (mod 2). Note n˘

0 P Zě0. By Proposition 9.12,
n`
0 ´ n´

0 “ Lefprτ , {D
rA
q “ νpAq{2, from which the result follows.

The assumption that rAs P M̆pξi, ξjq lies in the 0-dimensional component of the moduli
space was only used in the proof of Proposition 9.16, and there we only relied on the relation
N1pk1, k2; p, qq “ 1. In general, rAs P M̆pξi, ξjqd where

d “ N1pk1, k2; p, qq `
1

2
N2pk1, k2; p, qq ´ 1

for some k1, k2 satisfying (9.7). Note that the involution pa, bq ÞÑ p´a,´bq on the sets
appearing in (9.4), (9.5) shows that N1pk1, k2; p, qq is odd and N2pk1, k2; p, qq is even. In
particular, if d “ 1, then we must have N1pk1, k2; p, qq “ 1 and N2pk1, k2; p, qq “ 2. Thus
the above work carries through in this situation as well.

Corollary 9.17. If rAs P M̆pξi, ξjq1 then the conclusion of Proposition 9.11 still holds.

9.2.1 The irreducible chain complex with local coefficients

We now have an algorithm to compute the irreducible chain complex pC˚pKp,q; ∆ b Fq, dq

which is a module over R b F “ FrU˘1, T˘1s, along with the maps δ1 and δ2. We have

C˚pKp,q; ∆ b Fq “

pp´1q{2
à

i“1

U ci ¨ FrU˘1, T˘1s ¨ ξi
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Fixing 1 ď i ď pp ´ 1q{2, let k1, k2 P Zą0 be any pair of solutions to (9.7) after setting
j “ 0. Using (9.9) the Chern–Simons invariant ci associated to ξi is given by

ci :“ 2 ¨ k1k2{2p “ k1k2{p

The factor of 2 appears in the denominator because the orbifold pS3,Kp,qq is the quotient
of Lpp, qq by the branched cover involution, while the factor of 2 appears in the numerator
because the Chern–Simons functional is related to the scaled action 2κ. Furthermore, the
Z{4-grading of the generator ξi is given by:

grpξiq ” N1pk1, k2; p, qq `
1

2
N2pk1, k2; p, qq pmod 4q

Next, fix 0 ď i, j ď pp´ 1q{2 and i ‰ j. Define aij P FrU, T˘1s to be

aij :“

#

U´k1k2{ppT 2 ´ T´2q, if Dk1, k2 P Zą0 solving (9.7), (9.8), k1k2 odd
0, otherwise

Then the maps d, δ1, and δ2 are determined as follows:

xdξi, ξjy “ aij , δ1pξiq “ ai0, xδ2p1q, ξiy “ a0i

All that remains, in order to describe the entire S-complex rC˚pKp,q; ∆ b Fq (and in fact
all of its structure as an enriched S-complex), is to compute the v-maps. Properties of the
2-dimensional moduli spaces M̆pξiLpp,qq

, ξjLpp,qq
q2 are described in [Aus95], and it seems

probable that the v-maps can be computed directly, starting from the equivariant ADHM
constructions described therein.

Remark 9.18. Although we have not computed the v-maps here, note that Corollary 9.17
determines the monopole numbers of instantons which contribute to the v-map. ˛

Remark 9.19. If we work over the general local coefficient system ∆, without tensoring
by F, we have only determined each map d, δ1, δ2 up to a sign, i.e. each aij should be
written instead as ˘aij . However, as long as there are no “cycles” in the differential, it is
straightforward to verify that these signs do not matter, and our description determines the
equivalence class of the complex over ∆. ˛

9.2.2 Sasahira’s instanton homology for lens spaces

The complex computed above is closely related to a version of instanton homology for lens
spaces defined by Sasahira [Sas13], the idea for which goes back to Furuta [Fur90]. We first
define the underlying chain group, which is a vector space over F “ Z{2, to be

C˚pLpp, qqq “

pp´1q{2
à

i“1

F ¨ ξiLpp,´qq
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The minus sign in ´q is included to properly align our orientation conventions with [Sas13].
There is of course a natural identification of this group withC˚pKp,´q;Fq, via ξiLpp,´qq

ÞÑ ξi,
and we define a Z{4-grading on C˚pLpp, qqq using this identification. Next, consider

F4 :“ Frxs{px2 ` x` 1q,

the field with four elements. We have a ring homomorphism f : FrU˘1, T˘1s Ñ F4 which
is determined by fpUq “ 1 and fpT q “ x. Note fpT 2 ´ T´2q “ 1. Then

xdξiLpp,´qq, ξ
j
Lpp,´qq

y :“ fpaijq P F Ă F4

The homology of the complex pC˚pLpp, qqq, dq is denoted I˚pLpp, qqq, and is a Z{4-graded
F-vector space. That this is the same as the definition in [Sas13] follows from Proposition
9.16. Another notation for I˚pLpp, qqq in [Sas13] is given by Ip0q

˚ pLpp, qqq.

Theorem 9.20. There is an isomorphism from pC˚pKp,q; ∆F4q, dq, where the local system
∆F4 is obtained from ∆ b F via the base change f : FrU˘1, T˘1s Ñ F4, to Sasahira’s
chain complex pC˚pLpp,´qqq b F4, dq tensored over F4. As a result,

I˚pKp,q; ∆F4q – I˚pLpp,´qqq b F4

as Z{4-graded vector spaces over the field F4.

In particular, the euler characteristics are equal, and given by σpKp,qq{2. Thus we obtain
a way of computing the signature of Kp,q from the arithmetic functions N1pk1, k2; p,´qq

and N2pk1, k2; p,´qq, although the authors suspect that this is probably not new.

Remark 9.21. Proposition 9.16 simplifies the construction of pC˚pLpp, qqq, dq given by
Sasahira. Indeed, in [Sas13], the coefficient d :“ xdξiLpp,´qq

, ξjLpp,´qq
y is computed in two

steps: (1) first, check if the relevant 0-dimensional moduli space is empty or a point rA1s

using Theorem 9.6; then, (2) compute ind {DA1 , and its parity will give the answer for d P F.
However, Proposition 9.16 says that ind {DA1 ” k1k2 (mod 2), where k1 and k2 have already
been determined in step (1), via Theorem 9.6. ˛

Corollary 9.22. Let k P Z. Then hS pK8k`1,´2q “ 0 for any coefficient system ∆S .

Proof. Sasahira computes in [Sas13, Proposition 4.9] that I˚pLp8k` 1, 2qq “ 0. Essentially
the same computation shows I˚pK8k`1,2; ∆S q “ 0, which implies the result.

9.2.3 Invariants for the right-handed trefoil

We describe the full structure of the our invariant for the right-handed trefoil, which with our
conventions is the p3,´1q two-bridge knot. Recall that we write R “ ZrU˘1, T˘1s. From
Subsection 9.2.1 and Remark 9.19, we have the following:

C˚pK3,´1; ∆q “ U c1R ¨ ξ1
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To compute c1, we note that the solution pk1, k2q to (9.7), (9.8) for i “ 1 and j “ 0 is
pk1, k2q “ p1, 1q. Thus c1 “ k1k2{p “ 1{3. This also gives the usual grading of U1{3ξ1 as
1 (mod 4). Note that there is no room for a v-map, because there is only 1 generator. The
map δ2 is zero for grading reasons, while δ1 is determined by

δ1pξ1q “ ˘U´1{3pT 2 ´ T´2q,

using the data of k1, k2 discussed above. The generator U1{3ξ1 will be identified with the
homotopy class of the path from ξ1 to θ determined by the unique instanton that contributes to
the computation of δ1. The instanton grading of this generator is given by the Chern–Simons
invariant of this path, which is 1{3.

Next, the S-complex rC˚ :“ rC˚pK3,´1; ∆q is

rC˚ “

´

U1{3R ¨ ξ1
¯

‘

´

U1{3R ¨ χξ1
¯

‘ R ¨ θ

where the generator U1{3χξ1 has grading 2 (mod 4), and the differential is simply

rd “

»

–

0 0 0
0 0 0

˘U´1{3pT 2 ´ T´2q 0 0

fi

fl

This determines the I-graded S-complex of the right-handed trefoil, and, as no perturbations
are necessary, also the isomorphism-type of its enriched S-complex.

We may also compute the equivariant homology groups. Let us first continue to work
over our universal coefficient ring R “ ZrT˘1, U˘1s. The exact triangle (1.5) splits:

0 ÝÑ pIpK3,´1,∆Rq
i˚
ÝÑ IpK3,´1,∆Rq

p˚
ÝÑ qIpK3,´1,∆Rq ÝÑ 0

More precisely, this is a short exact sequence of Rrxs-modules, and is computed from our
description of the S-complex for K3,´1 given above and the definitions in Subsection 4:

0 ÝÑ U1{3R ¨ ξ1 ‘ Rrxs
i˚
ÝÑ Rrrx´1, xs

p˚
ÝÑ

Rrrx´1, xs

pT 2 ´ T´2qx´1 ` Rrxs
ÝÑ 0 (9.23)

Here p˚ is the obvious projection, i˚ embeds Rrxs into Rrrx´1, xs, and

i˚pU1{3ξ1q “ pT 2 ´ T´2qx´1.

The Rrxs-module structures on the second and the third groups in the exact sequence (9.23)
are the obvious ones, while on the first group we have

x ¨ U1{3ξ1 “ T 2 ´ T´2 P Rrxs, (9.24)

with the usual module structure on the Rrxs-factor. From this description it is clear that the
ideal I “ impi˚q introduced in Subsection 4.3 is:

I “ pT 2 ´ T´2qx´1 ` Rrxs Ă Rrrx´1, xs.
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Our nested sequence of ideals of R, from (7.9), is given by

JR
1 “ pT 2 ´ T´2q, JR

i “ 0 pi ě 2q, JR
i “ R pi ď 0q.

We summarize some more consequences of these computations.

Proposition 9.25. For the right-handed trefoil we have hR “ 1. The same holds for hS

for any integral domain base change S for which U and pT 2 ´ T´2q remain nonzero.
Furthermore, the function ΓR

K3,´1
: Z Ñ Rě0 Y 8 for R “ ZrT˘1s satisfies the following:

ΓR
K3,´1

pkq “

$

’

&

’

%

0, k ď 0

1{3, k “ 1

8, k ě 2

We turn to the base change TF “ FrT˘1s. Using Corollary 8.41 we may recover the
computation of I6pK3,´1; ∆BN q from [KM19d]. Here we note that

pCpK3,´1,∆TF
q “ pIpK3,´1,∆TF

q “ TF ¨ ξ1 ‘ TFrxs

where similar to before the TFrxs-module structure is the standard one on the summand
TFrxs, but just as in (9.24) acts on the generator ξ1 as:

x ¨ ξ1 “ T 2 ´ T´2 P TFrxs (9.26)

Now Corollary 8.41 gives us an isomorphism of SBN -modules

I6pK3,´1; ∆BN q – pIpK3,´1; ∆TF
q bTFrxs SBN (9.27)

We have a surjective homomorphism to the right hand side of (9.27):

SBN ‘ SBN ÝÑ
`

TF ¨ ξ1 bTFrxs SBN

˘

‘ SBN (9.28)

which sends pa, bq ÞÑ pξ1 b a, bq. Using relation (9.26) and that the module structure of
SBN “ FrT˘1

1 , T˘1
2 , T˘1

3 s over TFrxs sends x ÞÑ P , we find that the kernel of (9.28)
consists of elements pPa, pT 2 ´ T´2qbq. Thus I6pK3,´1; ∆BN q has the presentation

SBN ÝÑ SBN ‘ SBN , 1 ÞÑ pP, T 2 ´ T´2q.

We have recovered part of [KM19d, Proposition 8.1], proven by an entirely different method:

Corollary 9.29. Let K be the right-handed trefoil. Then I6pK; ∆BN q is isomorphic as an
SBN -module to the ideal pP, T 2 ´ T´2q Ă SBN .

Since the slice genus condition in (1.20) is satisfied by the right-handed trefoil, we
can define the ideal pzpK3,´1q and use [KM19d, Proposition 8.1] to see that it is equal to
px, T 2 ´ T´2q.
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9.3 The p3, 5q torus knot

We now turn back to the coefficient ring Z, and study some knots which have non-trivial
h “ hZ invariants. We begin with the torus knot K “ T3,5, whose double branched cover Σ
is the Poincaré homology sphere Σp2, 3, 5q. Recall that for an integer homology 3-sphere
such as Σ, Floer’s chain complex pC˚pΣq, dq for the Z{8-graded instanton homology I˚pΣq

is generated by the irreducible critical points in CpΣq, perhaps after a suitable holonomy
perturbation. For the Poincaré sphere, no perturbation is needed, and there are two non-
degenerate irreducibles tαΣ, βΣu Ă CpΣq, so we can write

C˚pΣq “ Zp1q ‘ Zp5q “ I˚pΣq.

The Floer gradings are grpαΣq ” 1 (mod 8) and grpβΣq ” 5 (mod 8). Our convention is
that grpαΣq is the expected dimension modulo 8 of MpαΣ, θΣq, the moduli space of finite
energy instantons on R ˆ Σ with limits αΣ and θΣ at ´8 and `8, respectively, where θΣ
is a trivial connection.

From our discussion in Subsection 9.1, and the fact that CpΣqτ “ CpΣq (see [Sav99,
Proposition 8]), there are four irreducibles in CpKq, which are non-degenrate: two lifts, α
and ια, of αΣ, and two lifts, β and ιβ, of βΣ. We may use the zero perturbation and the
index computations of [PS17, Theorem 7.2] to write

C˚pKq “ Z2
p1q ‘ Z2

p3q “ I˚pKq (9.30)

where each Zp1q is generated by one of α and ια, and each Zp3q by one of β and ιβ. For
grading reasons, as already indicated in (9.30), we have d “ 0.

For grading reasons, δ2 “ 0. We now turn to δ1. Recall that Σp2, 3, 5q is a quotient of
the 3-sphere by an action of the binary icosohedral group in SUp2q – S3 of order 120. In
particular, it has a metric of positive scalar curvature, covered by the round metric on the
3-sphere. Using an equivariant ADHM construction, Austin showed that for this metric, all
finite energy instanton moduli on R ˆ Σ are unobstructed, smooth manifolds, and

M̆pαΣ, θΣq0 “ trA1su

consists of one unparametrized instanton up to gauge, see [Aus95, Proposition 4.1]. The
metric may be chosen so that the covering involution τ that yields the orbifold pS3,Kq is an
isometry; see [Dun88] for the classification of spherical orbifolds. Again, our discussion
from Subsection 9.1 implies that each of M̆pα, θq0 and M̆pια, θq0 consist of a unique
instanton, rAs and ιrAs, respectively, which lift rA1s. Consequently, δ1 : Z2

p1q
Ñ Z is

nonzero, from which hpT3,5q ě 1 follows.
By Theorem 8.9, a chain complex computing I6pKq for the p3, 5q torus knot is

rC˚pKq “

´

Z2
p1q ‘ Z2

p3q

¯

‘

´

Z2
p0q ‘ Z2

p2q

¯

‘ Zp0q

rd “

»

–

0 0 0
v 0 0
δ1 0 0

fi

fl
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On the other hand, it is known that I6pKq has rank 7. Indeed, for a general knot K,
Kronheimer and Mrowka’s spectral sequence from [KM11a] provides the rank inequality

rank KhredpKq ě rank I6pKq,

where KhredpKq is the reduced Khovanov homology of K. For the p3, 5q torus knot, the left
hand side is equal to 7. Furthermore, rankI6pKq is bounded below by |∆K |, the sum of the
absolute values of the alexander polynomial, see (9.35). For the p3, 5q torus knot |∆K | “ 7,
so rankI6pKq “ 7 as claimed. It is straightforward to see that δ1v “ 0, for otherwise the
homology of rC˚pKq would have rank less than 7. Thus hpT3,5q ď 1, and we obtain:

Proposition 9.31. For the p3, 5q torus knot K we have hpKq “ 1.

9.4 The p3, 4q torus knot

The case of the p3, 4q torus knot K is similar to that of the p3, 5q torus knot. This is because
the double branched cover is again a finite quotient of S3, this time by the binary tetrahedral
group in SUp2q – S3 of order 24. Again CpΣqτ “ CpΣq and there are two classes αΣ,
βΣ P CpΣq apart from θΣ, but in this case one is abelian, say βΣ. Thus there are two
irreducibles α, ια P CpKq that pull back to αΣ, and only one β P CpKq that pulls back to
βΣ. Using [Aus95] and [PS17, Lemma 7.5] we compute

C˚pKq “ Z2
p1q ‘ Zp3q “ I˚pKq, (9.32)

where each copy of Zp1q is generated by one of α and ια, while Zp3q is generated by β. We
sketch the computation for the reader.

We begin with the algorithm of Austin [Aus95]. We start with the graph GT˚ of
the extended Dynkin diagram rE6 for the binary tetrahedral group T ˚. By the McKay
Correspondence, this graph encodes the unitary representation theory of the binary tetrahedral
group. We recall that T ˚ is the subgroup of SUp2q, viewed as the unit quaternions, given by

t˘1,˘i,˘j,˘k,
1

2
p˘1 ˘ i˘ j ˘ kqu.

Let tRiu be the set of unitary representations of T ˚ up to isomorphism. We let R1 be the
trivial representation of T ˚, R2 the tautological representation including T ˚ into SUp2q,
and R3 “ R˚

7 the two non-trivial Up1q representations; note that T ˚ has abelianization
Z{3. Then the vertices of GT˚ are tRiu, while Ri and Rj are connected by an edge if upon
writing Ri bR2 “

ř

nijRj we have nij “ 1; in general, nij P t0, 1u.
Next, let G1

T˚ be the graph obtained from GT˚ by identifying conjugate representations.
In our case, we only identify R3 and R7. Then form a new graph ST˚ by extracting the
vertices of G1

T˚ that are SUp2q representations, and connecting two vertices by an edge if
there is a path in G1

T˚ connecting the representations not passing through any other SUp2q

representations. Austin shows that for a vertex v in ST˚ corresponding to αv P CpΣq,

dimMpαv, θΣq ” 4Ipvq ´ 3 mod 8,
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GT˚ “ rE6

R1

R2

R3 R4 R5 R6 R7

G1
T˚ ST˚

θ “ R1 ‘R1

α “ R2

β “ R3 ‘R7

Figure 17

where Ipvq is the length of a shortest path of edges from v to R1 ‘ R1 “ θΣ within
ST˚ . From Figure 17 we compute in our case that dimMpαΣ, θΣq ” 1 (mod 8) and
dimMpβΣ, θΣq ” 5 (mod 8).

Finally, from [PS17, Lemma 7.5] we have for any non-trivial γ P CpKq the relation

dimMpγ, θq “
1

2
pdimMpΠpγq, θΣq ` 1q mod 4

from which we conclude that grpαq ” grpιαq ” 1 (mod 4) and grpβq ” 3 (mod 4). This
verifies the computation of (9.32). Furthermore, from [Aus95, Proposition 4.1] and the fact
that αΣ is adjacent to θΣ in the graph ST˚ , the moduli space M̆pαΣ, θΣq0 is a point. Just as
for the p3, 5q torus knot, we conclude that δ1 ‰ 0 on C1pKq. Now

rC˚pKq “

´

Z2
p1q ‘ Zp3q

¯

‘

´

Z2
p0q ‘ Zp2q

¯

‘ Zp0q

has rank 7, while I6pKq has rank 5, because rank KhredpKq “ 5 “ |∆K |. We again
conclude that hpKq “ 1, just as for the p3, 5q torus knot.

Remark 9.33. An alternative approach to computing the gradings replaces Austin’s algorithm
with Fintushel and Stern’s method [FS90]. However, the most important input above is in
showing that δ1 ‰ 0, which follows from Austin’s equivariant ADHM construction. ˛

9.5 The irreducible homology of torus knots

Fintushel and Stern [FS90] computed I˚pΣpp, q, rqq, Floer’s Z{8-graded instanton homology
for the Brieskorn integer homology sphere Σ “ Σpp, q, rq. Here p, q, r are relatively prime
positive integers. The unperturbed critical set CpΣq is non-degenerate, and each generator
has odd grading, so that d “ 0 and C˚pΣq “ I˚pΣq.

Let p, q be odd. Then Σpp, q, 2q is the double branched cover of the torus knot K “ Tp,q.
Just as in Subsections 9.3 and 9.4, CpΣqτ “ CpΣq by [Sav99, Proposition 8]. Furthermore,
according to [CS01, Lemma 4.1], the gradings of the generators in C˚pΣq are congruent
mod 2 to the gradings of the corresponding generators in C˚pKq. Thus here also d “ 0 and
C˚pKq “ I˚pKq. By Theorem 2.36 we obtain

IpTp,qq – Z´σpTp,qq{2 (9.34)
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supported in odd gradings (mod 4). The conjecture in [PS17, Section 7.4] is equivalent to
the rank of I˚pTp,qq being evenly distributed between gradings 1 and 3 (mod 4).

The isomorphism (9.34) also holds when one of p or q is even. In fact, in this case and
when p and q are odd, one can directly count that the number of irreducible traceless SUp2q

representations in X pTp,qq is equal to ´σpTp,qq{2, using [Kla91, Theorem 1] and formula
(9.38) below. These representations correspond to nondegenerate critical points, and thus
C˚pTp,qq has rank ´σpTp,qq{2, providing an upper bound on the rank of I˚pTp,qq. Theorem
3.6 provides the same lower bound, implying the isomorphism (9.34).

9.6 More vanishing results for hpKq

We describe some simple conditions under which hpKq “ 0 for a knot K Ă S3. Write
∆K “

ř

ajt
j for the symmetrized Alexander polynomial with ∆Kp1q “ 1, and define

|∆K | :“
ÿ

j

|aj |

to be the sum of the absolute values of its coefficients. The instanton homology I6pKq

is isomorphic over C to the sutured instanton knot homology of K [KM11a, Proposition
1.4], the latter of which has an additional Z-grading whose graded euler characteristic is the
Alexander polynomial [KM10a, Lim10]. This implies

rank I6pKq ě |∆K |. (9.35)

On the other hand, by Theorem 8.9, I6pKq is isomorphic to the homology of the S-complex
rC˚pKq “ C˚pKq ‘ C˚´1pKq ‘ Z. In particular, if the irreducible complex C˚pKq may
be chosen to have 1

2p|∆K | ´ 1q generators, then the differential of rC˚pKq is necessarily
zero by (9.35), and in particular, δ1 “ δ2 “ 0, implying hpKq “ 0. More precisely, given a
perturbation for which CπpKq “ Cirr

π Y tθu is non-degenerate, if |CπpKq| “ 1
2p|∆K | ` 1q,

then hpKq “ 0. For the examples we will consider, the perturbation π will always be zero,
so that the implication may be written in terms of the traceless character variety X pKq.
That is, if X pKq is a finite set of nondegenerate points then:

|X pKq| “
1

2
p|∆K | ` 1q ùñ hpKq “ 0. (9.36)

Applying this to the case of torus knots, we obtain the following:

Proposition 9.37. For K a pp, qq torus knot, if 1 ` |σpKq| “ |∆K |, then hpKq “ 0. This
condition is satisfied by the following two families:

pp, 2pk ` 2q, k ě 1, p ” 1 pmod 2q

pp, 2pk ˘ p2 ´ pqq, k ě 1, p ” ˘1 pmod 4q
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Proof. For a pp, qq torus knot we saw in the previous subsection that X pKq is nondegenerate
and has cardinality equal to |σpKq|{2 ` 1. So the first part of the claim follows from (9.36).

The signature of torus knots is given by the following expression [Lit79, Kau87]

σpTp,qq “ pp´ 1qpq ´ 1q ´ 4 ¨Bpp, qq (9.38)

where, assuming that p is odd, we have

Bpp, qq “ #

"

pm,nq | 1 ď m ď
p´ 1

2
, 1 ď n ď q ´ 1,

1

2
ď
m

p
`
n

q

*

.

A straightforward computation shows that:

Bpp, qq “

$

&

%

´

p´1
2

¯´

3kp`k´1˘3
2

¯

q “ 2kp˘ 2
´

p´1
2

¯´

p2k`1
2 qp

3p`1
2 q ´ 1

2 ˘ 2
¯

¯ t
p
4 u q “ p2k ` 1qp˘ 2

Thus we can use (9.38) to write

σpTp,qq “

#

´pp´ 1qpkp` k ˘ 1q q “ 2kp˘ 2

´pp´ 1q

´

p2k ` 1qp
p`1
2 q ˘ 2

¯

˘ 4t
p
4 u q “ p2k ` 1qp˘ 2

The Alexander polynomial of a torus knot is given by the following formula:

∆Tp,q “
ptpq ´ 1qpt´ 1q

ptp ´ 1qptq ´ 1q
.

In the case that q “ lp˘ 2 with l ě 1, this formula simplifies as follows:

∆Tp,q “

$

’

’

&

’

’

%

1 ` pt´ 1q

ˆ

řp´1
i“1

řli´1
j“0 t

pj`2i `
ř

p´1
2

i“1 t
2i´1

˙

q “ lp` 2

1 ` pt´ 1q

ˆ

řp´1
i“1

řli´1
j“1 t

pj´2i ´
ř

p´1
2

i“1 t
´2i`1

˙

q “ lp´ 2

These identities imply that:

|∆Tp,lp˘2
| “

ˆ

p´ 1

2

˙

ppp` 1ql ˘ 2q ˘ 1

Form the above identities it is easy to check that the identity 1 ` |σpKq| “ |∆K | holds for
the mentioned families of torus knots.

The same method may be applied, for example, to find Montesinos knotsK with hpKq “

0. In this case, the double branched cover Σ of K is again a Brieskorn homology sphere
Σpp, q, rq, and by [FS90], the unperturbed critical set CpΣq “ X pΣq is non-degenerate and
of cardinality 2|λpΣq| ` 1, where λ is the Casson invariant. For example, the p´2, 3, 7q

pretzel knot satisfies (9.36), and consequently has h “ 0.
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A Modified holonomy maps

In this appendix we construct the modified holonomy maps that are used to define the v-map,
and related maps, first used in Subsection 3.3.2 of the main text. The construction is inspired
by one that is described in [Don02, §7.3.2].

Fix a pair pY,Kq of an integer homology sphere and a knot. Let π be a perturbation of the
Chern-Simons functional for the pair pY,Kq, and for any α P Cirr

π pY,Kq fix a neighborhood
Uα of α in BpY,Kq together with a subset Wα Ă C pY,Kq that maps diffeomorphically to
Uα via the projection. For instance, we may use a Coulomb chart around α to pick Wα. We
call elements of Wα lifts of the elements of Uα. Then for each pair of irreducible critical
points αi P Cirr

π pY,Kq, we obtain the holonomy map

hα1α2 : BpY,K;α1, α2q ÝÑ S1

that is invariant with respect to translations, as outlined in Section 3. Recall that the
holonomy is of the adjoint connection along R ˆ tpu where p P K is a basepoint. The
preferred reduction of the bundle along the singular locus guarantees that this holonomy
lies in S1 – SOp2q Ă SOp3q. Below we implicitly assume that all holonomies are of the
adjoint connection, without further mention. We wish to modify the map hα1α2 so that
the restrictions of this map to the moduli spaces of instantons have the properties listed in
Subsection 3.3.2. Our key tool in the construction of modified holonomy maps are almost
homomorphisms of S1.

Definition A.1. An almost homomorphism of S1 is the data of sequence of continuous maps
hk : r0,8qk ˆ pS1qk`1 Ñ S1 for any k ě 0 satisfying the following properties.

(i) For 1 ď i ď k, if si ě 1, then

hkps1, . . . , si´1, si, si`1, . . ., sk, g0, g1, . . . , gkq

“ hk´ipsi`1, . . . , sk, gi, . . . , gkq ¨ hi´1ps1, . . . , si´1, g0, . . . , gi´1q.

(ii) For 1 ď i ď k, if si ď 1
2 , then

hkps1, . . . , si´1, si, si`1, . . ., sk, g0, g1, . . . , gk`1q

“ hk´1ps1, . . . , si´1, si`1, . . . , sk, g0, g1, . . . , gi´2, gigi´1, gi`1, . . . , gk`1q. ˛

Remark A.2. An almost homomorphism of S1 is essentially a version of a homotopy diagram
(as defined in [Vog73]) for the category S1, where S1 is viewed as a groupoid. ˛

Example A.3. For any k ě 0, define hk : r0,8qk ˆ pS1qk`1 Ñ S1 as

hkps1, s2, . . . , sk, g0, g1, . . . , gkq “ gk ¨ gk´1 ¨ ¨ ¨ g0. (A.4)

Clearly this sequence of maps defines an almost homomorphism of S1, which we call the
canonical almost homomorphism. ˛
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Definition A.5. A homotopy of almost homomorphisms is a family of continuous maps

h̃k : r0, 1s ˆ r0,8qk ˆ pS1qk`1 Ñ S1

such that for any t P r0, 1s, the sequence of maps thtkukě0 defined by htkp¨q “ h̃kpt, ¨q
is an almost homomorphism. We say that th̃kukě0 is a homotopy between the almost
homomorphisms th0kukě0 and th1kukě0. ˛

Lemma A.6. Let h0 : S1 Ñ S1 be a continuous map and rh0 : r0, 1s ˆ S1 Ñ S1 be a
homotopy from the identity map to h0. Then h̃0 can be extended to a homotopy of almost
homomorphisms th̃kukě0 such that th0kukě0 is the canonical almost homomorphism.

Proof. We may construct h̃k : r0, 1s ˆ r0,8qk ˆ pS1qk`1 Ñ S1 by induction on k. Suppose
h̃k is constructed for k ď i´1 such that the maps htk satisfy (i) and (ii) of Definition A.1, and
h0k is given by (A.4). We wish to extend this construction to h̃i while the above properties are
still satisfied. The properties in Definition A.1 and the condition on h0i uniquely determine
h̃ipt, s1, s2, . . . , sk, g0, g1, . . . , gkq when t “ 0 or one of si belongs to r0, 1{2s Y r1,8q.
These points in the domain of h̃i form a retract of r0, 1s ˆ r0,8qk ˆ pS1qk`1, and hence we
may extend h̃i to the rest of its domain.

The inductive argument in the proof of Lemma A.6 can be used in the construction of
almost homomorphisms that satisfy additional properties. The following lemma gives an
instance of such properties.

Lemma A.7. For any k ě 0, let Sk be a subset of r0,8qk ˆ pS1qk`1 such that Ykě0Sk is
finite. Then there is an almost homomorphism thkukě0 which is homotopic to the canonical
almost homomorphism and such that hk evaluates to 1 at the elements of Sk.

Now for each pair α1, α2 P Cirr
π pY,Kq, we define a modified holonomy map

Hα1α2 : BpY,K;α1, α2q ÝÑ S1

that depends on the choice of an almost homomorphism thkukě0 which is homotopic to the
canonical almost homomorphism, and the choices of Uα and Wα for each α P Cirr

π pY,Kq.
For rAs P BpY,K;α1, α2q, let rAts P BpY,Kq denote the restriction of rAs to ttu ˆ Y .
Let V 0

rAs
be an open subspace of R such that t P V 0

rAs
if and only if rAts belongs to Uα for

some choice of α. We also need an open subspace VrAs of V 0
rAs

consisting of the points t
such that t is in an interval I of length at least 1{3 and I Ă V 0

rAs
.

The definition of VrAs implies that it is a union of finitely many open intervals. Thus
there is a sequence of real numbers

b0 ă a1 ă b1 ă ¨ ¨ ¨ ă ak ă bk ă ak`1

such that
VrAs “ p´8, b0q Y pa1, b1q Y ¨ ¨ ¨ Y pak, bkq Y pak`1,8q.
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For 1 ď i ď k, define

si :“ bi ´ ai, ci :“
ai ` bi

2
.

Since ci P VrAs, there is a preferred lift of rAcis to Wα Ă C pY,Kq for some α. In particular,
we may obtain a well-defined gi P S1 by taking the holonomy of rAs along tyu ˆ rci, ci`1s

for any 1 ď i ď k ´ 1. Here y is the basepoint on the knot K as before. Similarly we may
take the holonomy of rAs along tyu ˆ p´8, c1s and tyu ˆ rck,8q to respectively obtain g0
and gk. Clearly hα1α2prAsq is equal to the product gk ¨ gk´1 ¨ ¨ ¨ g0. We define

Hα1α2prAsq “ hkps1, s2, . . . , sk, g0, g1, . . . , gkq.

Proposition A.8. The map Hα1α2 : BpY,K;α1, α2q Ñ S1 is continuous and invariant
with respect to translation action on BpY,K;α1, α2q. We may also assume that any given
finite subset S of BpY,K;α1, α2q is mapped into 1 P S1.

Proof. Property (ii) in Definition A.1 implies that if we remove the intervals in VrAs with
length at most 1{2 to obtain V 1

rAs
, and then follow a similar definition as that of Hα1α2prAsq

with V 1
rAs

we obtain the same value of Hα1α2prAsq. For rA1s P BpY,K;α1, α2q that is
close to A, the subspace V 1

rA1s
of R is close to the subspace of VrAs given by intervals of

length at least 1{2. From this and continuity of almost homomorphisms, it is easy to see that
Hα1α2 is continuous. It is clear from the definition that Hα1α2 is invariant with respect to
the translation action. The last part of the proposition is a consequence of Lemma A.7.

Singular connections on the cylinder associated to pY,Kq can be glued to each other to
form new singular connections. For instance for any α1, α3 P CπpY,Kq and α2 P Cirr

π pY,Kq

we have the following gluing map:

Gl : BpY,K;α1, α2q ˆ Rą0 ˆ BpY,K;α2, α3q Ñ BpY,K;α2, α3q

To be more specific, let f : R Ñ r0, 1s be a smooth function such that fptq “ 0 for t ď ´1
and fptq “ 1 for t ě 1. Suppose rAs P BpY,K;α1, α2q and rA1s P BpY,K;α2, α3q. We
may assume that the representative connection A for rAs is chosen such that it is in temporal
gauge and is asymptotic to the fixed lift in Wα2 of α2 as t Ñ 8. This assumption fixes A
uniquely. Similarly, let A1 be in temporal gauge and asymptotic to the lift of α2 as t Ñ ´8.
Now GlprAs, T, rA1sq is the element of BpY,K;α1, α3q represented by the connection

f

ˆ

t

1 ` T

˙

τ˚
T pAq `

ˆ

1 ´ f

ˆ

t

1 ` T

˙˙

τ˚
´T pAq

where τs : RˆY Ñ RˆY is the translation τspt, yq “ pt`s, yq. The following proposition
describes the behavior of modified holonomy maps with respect to the gluing map Gl.

Proposition A.9. For any rAs P BpY,K;α1, α2q and rA1s P BpY,K;α2, α3q, we have

lim
TÑ8

Hα1α3pGlprAs, T, rA1sqq “ Hα2α3prA1sq ¨Hα1α2prAsq.
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Proof. For fixed rAs, rA1s, as T Ñ 8, there is a corresponding index i with parameter
si Ñ 8, and the result follows immediately from property (i) in Definition A.1.

The restriction of the maps Hα1,α2 to the moduli spaces M̆pα1, α2qd can be used to
construct the maps required for the definition of the map v in Subsection 3.3.2. By taking
S in Proposition A.8 to be the union of 0-dimensional moduli spaces, we may assume that
property (H1) in Subsection 3.3.2 is satisfied. Properties (H2) and (H3) hold by similar
arguments as in Proposition A.9. The only missing point is that our maps at this point are
only continuous. (In fact, continuity of these maps would be enough to define the map
v and prove Proposition 3.16.) By induction on d and for d ď 2, we may approximate
the constructed maps M̆pα1, α2qd Ñ S1 such that properties (H1)–(H3) still hold and the
restriction of Hα1,α2 to each stratum of M̆pα1, α2qd is smooth.

Next, we turn to the definition of modified holonomy maps for a cobordism of pairs
pW,Sq : pY,Kq Ñ pY 1,K 1q that are compatible with the chosen modified holonomy maps
for pY,Kq and pY 1,K 1q in an appropriate sense. To achieve this, first we introduce the
corresponding notion for almost homomorphisms.

Definition A.10. Suppose thkukě0 and th1
kukě0 are almost homomorphisms of S1. A

continuation from thkukě0 to th1
kukě0 is the data of a sequence of continuous maps

hk,l : r0,8qk`l ˆ pS1qk`l`1 Ñ S1

for any k, l ě 0 satisfying the following properties.

(i) For 1 ď i ď k, if si ě 1, then

hk,lps1, . . . , si´1, si, si`1, . . . , sk, s
1
1, . . . , s

1
l, g1, . . . , gk, g, g

1
1, . . . , g

1
lq “

hk´i,lpsi`1, . . . , sk, s
1
1, . . . , s

1
l, gi`1, . . . , gk, g, g

1
1, . . . , g

1
lq ¨ hi´1ps1, . . . , si´1, g1, . . . , giq,

and for 1 ď i ď l, if s1
i ě 1, then

hk,lps1, . . . , sk, s
1
1, . . . , s

1
i´1, s

1
i, s

1
i`1, . . . , s

1
l, g1, . . . , gk, g, g

1
1, . . . , g

1
lq “

h1
l´ips

1
i`1, . . . , s

1
l, g

1
i, . . . , g

1
lq ¨ hk,i´1ps1, . . . , sk, s

1
1, . . . , s

1
i´1, g1, . . . , gk, g, g

1
1, . . . , g

1
i´1q.

(ii) For 1 ď i ď k, if si ď 1
2 , then

hk,lps1, . . . , si´1, si, si`1, . . . , sk, s
1
1, . . . , s

1
l, g1, . . . , gk, g, g

1
1, . . . , g

1
lq “

hk´1,lps1, . . . , si´1, si`1, . . . , sk, s
1
1, . . . , s

1
l, g1, . . . , gi´1, gigi`1, . . . , gk, g, g

1
1, . . . , g

1
lq.

In the above identity, if i “ k, then gigi`1 should be replaced with gig. Similarly, for
1 ď i ď l, if s1

i ď 1
2 , then

hk,lps1, . . . , sk, s
1
1, . . . , s

1
i´1, s

1
i, s

1
i`1, . . . , s

1
l, g1, . . . , gk, g, g

1
1, . . . , g

1
lq “

hk,l´1ps1, . . . , sk, s
1
1, . . . , s

1
i´1, s

1
i`1, . . . , s

1
l, g1, . . . , gk, g, g

1
1, . . . , g

1
i´1g

1
i, g

1
i`1, . . . , g

1
lq,

and if i “ 1, then g1
i´1g

1
i should be replaced with gg1

i. ˛
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Example A.11. Given any almost homomorphism thkukě0, there is a trivial continuation
from thkukě0 to itself given by hk,l “ hk`l for any k, l ě 0. ˛

Lemma A.12. Let thkukě0 and th1
kukě0 be homotopic almost homomorphisms of S1. Then

there is a continuation thk,luk,lě0 from thkukě0 to th1
kukě0. Moreover, we can assume that

the continuation maps evaluate to 1 at any finite subset Yk,lě0Sk,l contained in the union of
the domains of thk,luk,lě0.

Proof. We wish to construct the maps hk,l by induction on k ` l. In each step of induction,
the properties in Definition A.10 determine hk,l on a subset of the domain. However, there
might be an obstruction to extending the map to the whole domain. To resolve this issue, we
use a similar trick as in Lemma A.6 by constructing a stronger object. Suppose the family
of almost homomorphisms th̃tkuk“0 gives a homotopy from thkukě0 to th1

kukě0. Then we
inductively construct a map

rhk,l : r0, 1s ˆ r0,8qk`l ˆ pS1qk`l`1 Ñ S1

such that for any t P r0, 1s, the sequence of maps tht
k,lukě0 defined by ht

k,lp¨q “ rhk,lpt, ¨q is
a continuation from thkukě0 to th̃tkuk“0 and the continuation th0

k,lukě0 from thkukě0 to
thkukě0 is provided by Example A.11. In particular, th1

k,lukě0 gives a continuation from
thkukě0 to th1

kukě0. Now there is no obstruction in carrying out the induction step. A
straightforward examination of the construction shows that the property in the second part of
this lemma can be guaranteed in this inductive argument.

A similar inductive argument can be used to prove the following lemma.

Lemma A.13. There is a homotopy between any two choices of continuations th0
k,luk,lě0

and th1
k,luk,lě0 provided by Lemma A.12. To be more precise, there is a continuous map

rhk,l : r0, 1s ˆ r0,8qk`l ˆ pS1qk`l`1 Ñ S1

for any k, l ě 0 such that tht
k,lutk,lě0u, given by ht

k,l :“
rhk,lpt, ¨q, is a continuation that is

equal to the given continuations for t “ 0 and 1. Moreover, for any finite subset S of the
union over k and l of the spaces p0, 1q ˆ r0,8qk`l ˆ pS1qk`l`1, we may assume that the
maps rhk,l evaluate to 1 at the points of S.

Now we are ready to define modified holonomy maps for a cobordism of pairs pW,Sq :
pY,Kq Ñ pY 1,K 1q and a path γ connecting the basepoints y and y1 of K and K 1. For
the pair pY,Kq, fix an almost homomorphism thkukě0 homotopic to the canonical almost
homomorphism, neighborhood Uα, and a lift Wα of Uα for each α P Cirr

π pY,Kq. Fix similar
choices for the pair pY 1,K 1q. Using Lemma A.12, we may find a continuation thk,luk,lě0

from thkukě0 to th1
kukě0. For rAs P BpW,S;α, α1q and t P p´8, 0q, let rAts P BpY,Kq

denote the restriction of rAs to ttu ˆ Y on the cylindrical end associated to pY,Kq.
Let VrAs Ă p´8, 0q consist of t0 such that there is an interval I of size at least 1{3

containing t0 such that for any t P I , rAts belongs to one of Uα. Similarly, we define a subset
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V 1
rAs

Ă p0,8q using the restriction of rAs to ttu ˆ Y 1 on the cylindrical end associated to
pY 1,K 1q. There are real numbers

b0 ă a1 ă b1 ă ¨ ¨ ¨ ă ak ă bk ă 0 ă a1
1 ă b1

1 ă ¨ ¨ ¨ ă al ă b1
l ă a1

l`1,

such that the sets VrAs and V 1
rAs

have the following form:

VrAs “ p´8, b0qYpa1, b1qY¨ ¨ ¨Ypak, bkq, V 1
rAs “ pa1

1, b
1
1qY¨ ¨ ¨Ypa1

l, b
1
lqYpa1

l`1,8q.

For 1 ď i ď k and 1 ď j ď l, define the following real numbers:

si :“ bi ´ ai, ci :“
ai ` bi

2
, s1

j :“ b1
j ´ a1

j , c1
j :“

a1
j ` b1

j

2
.

For 2 ď i ď k and 1 ď j ď l ´ 1, let gi P S1 and g1
i P S1 be respectively the holonomy of

rAs along tyuˆrci´1, cis and ty1uˆrc1
j , c

1
j`1s. We also let g1 be the holonomy of rAs along

tyu ˆ p´8, c1s, g1
l be the holonomy of rAs along ty1u ˆ rc1

l,8q, and g be the holonomy of
rAs along γ from tyu ˆ tcku to ty1u ˆ tc1

1u. We define

Hγ
αα1prAsq “ hk,lps1, . . . , sk, s

1
1, . . . , s

1
l, g1, . . . , gk, g, g

1
1, . . . , g

1
lq.

Similar to the case of cylinders, Hγ
αα1 : BpW,S;α, α1q Ñ S1 is continuous, and we

assume it maps a given finite subset S of BpW,S;α, α1q into 1 P S1. There are gluing maps

Glin : BpY,K;α1, α2q ˆ Rą0 ˆ BpW,S;α2, α
1q Ñ BpW,S;α1, α

1q,

Glout : BpW,S;α, α1
1q ˆ Rą0 ˆ BpY 1,K 1;α1

1, α
1
2q Ñ BpW,S;α, α1

2q

such that the following relations hold:

lim
TÑ8

Hγ
α1α1pGlinprAs, T, rA1sqq “ Hγ

α2α1prA1sq ¨Hα1α2prAsq,

lim
TÑ8

Hγ
αα1

2
pGloutprAs, T, rA1sqq “ Hα1

1α
1
2
prA1sq ¨Hγ

αα1
1
prAsq.

We use the restriction of the map Hγ
αα1 to the moduli spaces MpW,S;α, α1q1, after

a smooth approximation, to define the map µ in Subsection 3.3.3. Verifying Proposition
3.20 uses compatibility of Hγ

αα1 with respect to the gluing maps spelled out in the last
paragraph. Lemma A.13 allows us to show that the map µ (and the remaining components
of the cobordism map associated to pW,Sq) are invariant of the auxiliary choices (including
the choice of the continuation) up to chain homotopy.
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