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Abstract

We introduce a framework for defining concordance invariants of knots using equivariant singular
instanton Floer theory with Chern–Simons filtration. It is demonstrated that many of the concordance
invariants defined using instantons in recent years can be recovered from our framework. This rela-
tionship allows us to compute Kronheimer and Mrowka’s s7-invariant and fractional ideal invariants
for two-bridge knots, and more. In particular, we prove a quasi-additivity property of s7, answering
a question of Gong. We also introduce invariants that are formally similar to the Heegaard Floer
τ -invariant of Oszváth and Szabó and the ε-invariant of Hom. We provide evidence for a precise
relationship between these latter two invariants and the s7-invariant.

Some new topological applications that follow from our techniques are as follows. First, we
produce a wide class of patterns whose induced satellite maps on the concordance group have the
property that their images have infinite rank, giving a partial answer to a conjecture of Hedden and
Pinzón-Caicedo. Second, we produce infinitely many two-bridge knots K which are torsion in the
algebraic concordance group and yet have the property that the set of positive 1{n-surgeries on K is a
linearly independent set in the homology cobordism group. Finally, for a knot which is quasi-positive
and not slice, we prove that any concordance from the knot admits an irreducible SUp2q-representation
on the fundamental group of the concordance complement.

While much of the paper focuses on constructions using singular instanton theory with the traceless
meridional holonomy condition, we also develop an analogous framework for concordance invariants
in the case of arbitrary holonomy parameters, and some applications are given in this setting.
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1 Introduction

Homological knot invariants provide many useful tools to study 4-dimensional aspects of knots. For
instance, there are several knot homology theories that can be used to prove a conjecture due to Milnor
[Mil68], which says that the slice genus of any torus knot Tp,q is given by

g4pTp,qq “
pp´ 1qpq ´ 1q

2
.

The original proof due to Kronheimer and Mrowka used instanton gauge theory with respect to connections
on 4-manifolds that are singular along embedded surfaces [KM93]. Later, alternative proofs were
given by Ozsváth and Szabó [OS03b] using Heegaard knot Floer homology, and Rasmussen [Ras10]
using Khovanov homology. Motivated by Rasmussen’s work, Kronheimer and Mrowka introduced a
concordance invariant s7 in [KM13], further studied by Gong [Gon21]. Kronheimer and Mrowka’s proof
of the Milnor conjecture can be recast in terms of s7.

Equivariant singular instanton Floer theory is a package of invariants, studied in [DS19, DS20], which
is roughly the S1-equivariant Morse–Floer theory of a Chern–Simons functional defined on a space of
connections which are singular along a knot. As is explained in more detail below, Kronheimer and
Mrowka’s s7-invariant, and in fact all of the recent concordance invariants they construct in [KM21b], can
be recovered from equivariant singular instanton theory in a systematic way. This new perspective allows
us to compute all of these concordance invariants for two-bridge knots, prove a quasi-additivity property
of s7 answering a question of Gong [Gon21], and more.

In this setting, we also introduce concordance invariants rs and rε, which can be recovered from s7. We
provide evidence that rs and rε are equal to the Heegaard Floer τ -invariant [OS03b] and ε-invariant [Hom14],
respectively. Further incorporating the Chern–Simons filtration structure into the equivariant singular
instanton package, we construct a suite of numerical concordance invariants generalizing the Γ-invariants
studied in [Dae20, DS19] and the rs-invariants of [NST19]. The combination of these techniques leads to
new applications involving satellite operations in concordance, the homology cobordism group, and the
existence of irreducible SUp2q-representations for concordance complements.

Concordance invariants from equivariant singular instanton theory

In [DS19], to a knot in the 3-sphere, there is associated a certain algebraic object, called an S-complex, up
to chain homotopy. Let C be the smooth knot concordance group. Following a general strategy such as the
one in [Sto20], equivariant singular instanton Floer theory gives rise to a homomorphism

C ÝÑ ΘS
R (1)

where ΘS
R, an algebraic object, is the local equivalence group of S-complexes over the coefficient ring

R. To define homology concordance invariants, one may use (1) and then work to algebraically extract
information from ΘS

R. Some progress in this direction was given in [DS19, DS20].

In search of a relationship between these types of invariants and Kronheimer and Mrowka’s s7-invariant,
we consider (1) in the case that R is the power series ring QrrΛss which appears in the construction of s7
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[KM13]. We define several local equivalence invariants in this setting, two of which when composed with
(1) give rise to concordance maps denoted

rs : C Ñ Z, rε : C Ñ t´1, 0, 1u.

Theorem 1.1. The invariant rs defines a homomorphism from the smooth knot concordance group C to Z.
For any knot K in the 3-sphere, we have an inequality

rspKq ď g4pKq. (2)

This inequality is sharp for any given positive torus knot Tp,q, in that we have

rspTp,qq “
pp´ 1qpq ´ 1q

2
. (3)

Moreover, Kronheimer and Mrowka’s s7-invariant is determined by rs and rε as follows:

s7pKq “ 2rspKq ´ rεpKq. (4)

As an immediate consequence of Theorem 1.1, we see that s7pKq factors through the local equivalence
construction of (1). This gives an affirmative answer to [DS19, Question 8.44]. Theorem 1.1 also implies
that 2rspKq is a slice-torus invariant in the sense of [Liv04, Lew14]. The results of [Liv04, Proposition
3.3] and [Lew14, Corollary 5.9.] allow us to compute rs for several families of knots.

Corollary 1.2. If K is a quasi-positive knot, then (2) is an equality:

rspKq “ g4pKq.

If K is an alternating knot, then we have

rspKq “ ´
σpKq

2
,

where σpKq denotes the knot signature.

In [Gon21], Gong posed the question of whether there exists a constant C such that

|s7pK#K 1q ´ s#pKq ´ s#pK 1q| ď C (5)

for any knots K and K 1 in the 3-sphere. Relation (4) and additivity of rs can be used to show that (5) holds
with C “ 3. Using our techniques, we obtain the optimal version of quasi-additivity for s7:

Theorem 1.3. For any pair of knots K and K 1 in the 3-sphere, we have

|s7pK#K 1q ´ s7pKq ´ s7pK 1q| ď 1.

4



In [Gon21], Gong studies a pair of concordance invariants s7`pKq and s7´pKq which satisfy

s7pKq “ s7`pKq ` s
7
´pKq.

We also exhibit these as local equivalence invariants, prove connected sum inequalities, and derive slice
genus bounds which improve on the ones in [Gon21]. See Section 4.2 and Theorem 6.1 for details.

The above properties of the instanton concordance invariants s7, rs and rε are reminiscent of similar
properties for certain invariants defined in Heegaard Floer theory. Recall the concordance invariants τ , ν
defined by Osváth and Szabó [OS03b, OS11], and the ε-invariant of Hom [Hom14].

Conjecture 1.4. For any knot K Ă S3, we have s7`pKq “ νpKq. In particular, we have the following:

rspKq “ τpKq, s7pKq “ νpKq ´ νpK˚q, rεpKq “ εpKq.

Here we write K˚ for the mirror of a knot K. As further evidence towards this conjecture, we have the
following result. For an integer homology 3-sphere Y , we write hpY q P Z for the instanton Frøyshov
invariant of Y defined in [Frø02].

Theorem 1.5. For any knot K Ă S3 with rspKq ą 0, we have hpS3
1pKqq ă 0.

A folklore conjecture asserts that the Frøyshov instanton invariant h is equal to half the d-invariant of
Osváth and Szabó [OS03a] for integer homology 3-spheres. Given this, Theorem 1.5 corresponds to an
analogous relation between τ and d. This latter relation can be understood via the ν`-invariant [HW16];
for more details, see for example [Sat18, §2.2].

Recently, Baldwin and Sivek [BS21] introduced concordance invariants τ 7, ν7, ε7 derived from the
behavior of the framed instanton homology groups I7pS3

r pKqq with respect to the surgery coefficient
r P Q. Perhaps a more accessible variation of Conjecture 1.4 is the following.

Conjecture 1.6. For any knot K Ă S3, we have

rspKq “ τ 7pKq, s7pKq “ ν7pKq, rεpKq “ ε7pKq.

Further evidence is an analogue of Theorem 1.5 for τ 7 and h which is given in [BS22, §9]. Note that the
Baldwin–Sivek invariants are defined in the context of non-singular, non-equivariant instanton homology
for 3-manifolds, and as such, the manner in which they are constructed is entirely different from the
methods of the current paper. We remark that an analogue of τ was also defined using sutured instanton
theory by Li [Li21], and was shown to agree with τ 7 in [GLW19].

Kronheimer and Mrowka recently introduced in [KM21b] new concordance invariants that are
constructed using certain versions of singular instanton homology for knots with local coefficients. An
example is the fractional ideal invariant z6pKq, which is an S -submodule

z6pKq Ă Frac pS q , S :“ FrT˘1
1 , T˘1

2 , T˘1
3 s.

They also define numerical invariants fσpKq derived from such ideal invariants, for a choice of homomor-
phism σ from S to a valuation ring. These invariants fit into our framework as well:
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Theorem 1.7. All of the concordance invariants of Kronheimer and Mrowka from [KM21b], such as
z6pKq and fσpKq, factor through the map (1) for an appropriate choice of coefficient ring R. In other
words, they are determined by the local equivalence class of the equivariant singular instanton S-complex.

For more details, see Section 5. It should be noted that while Kronheimer and Mrowka’s invariants are
defined using cobordism maps, our characterization of the invariants is entirely in terms of the equivariant
singular instanton S-complex of the knot. The same remark holds for s7.

As the equivariant singular instanton theory of two-bridge knots is partially understood (see [DS20]),
we may use our new perspective on these invariants to carry out computations for this class of knots.

Theorem 1.8. For a two-bridge knot K, the invariant s7pKq, as well as the concordance invariants of
[KM21b], are determined by the knot signature σpKq.

See Section 4.5 for more detailed statements. Note that Kronheimer and Mrowka previously computed
the concordance invariants of [KM21b] for special families of two-bridge knots. Theorem 1.8 implies:

Corollary 1.9. Conjecture 1.4 is true for two-bridge knots.

We also verify Conjecture 1.4 for positive knots; see Corollary 6.2.

All of the invariants discussed thus far, and in fact all constructions in this paper, work more generally
for knots in integer homology 3-spheres. In particular, we extend the definitions of s7pKq and the
concordance invariants of [KM21b] to knots in integer homology 3-spheres. However, not all of the
properties of these invariants given above are established in this more general setting.

One of the main technical (algebraic) tools used in our constructions is that of special cycles. The
notion of a special cycle can be traced back to Frøyshov’s definition of the h-invariant in the setting of
integer homology 3-spheres [Frø02]; see in particular (21)–(22). In this paper we systematically develop
special cycles. All of our concordance invariants are obtained by utilizing special cycles in various
incarnations of the equivariant singular instanton Floer complex of a knot.

Topological Applications

There is an additional layer of structure on the equivariant singular instanton Floer S-complex of a knot
which comes in the form of a real-valued filtration, which is roughly obtained by keeping track of the
Chern–Simons values of flat singular connections. Incorporating this into the above framework leads to a
plethora of numerical concordance invariants which we describe below. However, for the benefit of the
reader, we first describe some of the topological applications that come out of this story.

Satellites and concordance

Consider a knot P Ă S1 ˆD2, called a pattern. Given a knot K in the 3-sphere, cutting out a solid torus
neighborhood of K and gluing back in pS1 ˆ D2, P q gives the satellite knot P pKq. The assignment
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Figure 1: Tangle corresponding to a pattern P determined by taiumi“1 and tbiuni“1.

K ÞÑ P pKq descends to define a map on the smooth concordance group:

P : C ÝÑ C

In some cases this is a constant map. For example, if the pattern P is contained in a 3-ball embedded
inside S1 ˆ D2, then for all knots K, we have P pKq “ P pU1q where U1 is the unknot. At the other
extreme, Hedden and Pinzón-Caicedo make the following conjecture.

Conjecture 1.10 ( [HPC21, Conjecture 2]). If for a given pattern P the satellite operator P : C Ñ C is
non-constant, then its image generates an infinite rank subgroup of C.

The following result, proved by our methods, verifies Conjecture 1.10 for a large class of patterns.

Theorem 1.11. Suppose a pattern P satisfies the following:

(i) There exists a knot K that can be unknotted by a sequence of positive-to-negative crossings changes,
and such that P pKq is concordant to a non-slice quasi-positive knot.

(ii) P pU1q is the unknot.

Then, the image of the induced map P : C Ñ C generates an infinite rank subgroup of C.
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We prove a more general result; see Theorem 6.7.

As concrete examples, we may consider a pattern P associated to two sequences of negative integers
taiu

m
i“1 and tbiuni“1 where m ě n´ 1 and maxtm,nu ą 0, obtained from the tangle diagram in Figure 1

by identifying the vertical edges of the rectangle. Included in this family of patterns are Whitehead
doubles, pm` 1, 1q-cables, and Yasui’s pattern P0,k from [Yas15, Figure 10]. We show in Section 6.2
that this general class of patterns satisfies the assumptions of Theorem 1.11.

In fact, any pattern P as in Figure 1 satisfies a stronger version of (i) in Theorem 1.11: P preserves
strong quasi-positivity, in the sense that if K is strongly quasi-positive, then so too is P pKq. Thus if
P1, . . . , Pl are constructed as in Figure 1, then the composition Pl ˝ ¨ ¨ ¨ ˝P1 also satisifies the assumptions
of Theorem 1.11. Note that the patterns of Figure 1 have winding number zero when m “ n´ 1.

The above remarks imply that our result is independent of the ones in [HPC21, Theorem 3]. There,
Conjecture 1.10 is proved for non-zero winding number patterns, and also for certain patterns satisfying
an assumption involving non-triviality of rational linking numbers. By an argument similar to one in
[HPC21, §5.3], if at least one (resp. two) of P1, . . . , Pl from Figure 1 has winding number zero, then the
composition has zero winding number (resp. vanishing rational linking numbers).

For a pattern P as described in Figure 1 (or a composition thereof), we specifically show that

tP pTp,q`npqu
8
n“0

is a linearly independent set in C. Here p, q are coprime positive integers. More generally, this is true for
any pattern P satisfying Theorem 1.11 where in (i) the knot K can be taken as Tp,q. In particular, taking
P to be an iterated Whitehead double, we obtain the following.

Corollary 1.12. Let p and q be coprime integers with p, q ą 1. Then, for any integer r ą 0, the r-th
iterated Whitehead doubles tWhrpTp,q`npqu

8
n“0 are linearly independent in C.

This result generalizes [NST19, Theorem 1.12] (the case r “ 1), which in turn is a generalization of a
result in [HK12]. See also [PC19, Par18] for related results.

Two-bridge knots and homology cobordism

The study of the homology cobordism group Θ3
Z of integer homology 3-spheres is a central topic in the

4-dimensional topology. See [Man18] for a survey. The techniques of this paper lead to the following.

Theorem 1.13. There exist infinitely many two-bridge knots K which are torsion in the algebraic
concordance group and for which the set tS3

1{npKqu
8
n“1 is linearly independent in Θ3

Z.

Recall thatK is torsion in the algebraic concordance group if and only if the Tristram–Levine signature
function of K is identically zero. Write Kpp, qq for the two-bridge knot of type pp, qq. Our convention is
such that Kp3, 1q is the right-handed trefoil. Define a family of a two-bridge knots as follows:

Km,n :“ Kp212mn´ 68n` 53, 106m´ 34q. (6)
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We show, more specifically, for integers m ě 7 and n ě 0, that Km,n has vanishing Tristram–Levine
signature function, and the set of homology spheres tS3

1{kpK
˚qu8k“1 is linearly independent in Θ3

Z.

The simplest example is K˚
m,0 (independent of m), which is the knot 10˚28. Theorem 1.13 also applies

to two-bridge knots outside of the family K˚
m,n. For example, we show that it is true for

Kp65, 51q “ 11a˚333, Kp81, 52q “ 12a˚596.

These two examples have the additional feature that the Rohlin invariants of their 1{n-surgeries all vanish.

While the methods of this paper, together with previous work, can produce many variations of
Theorem 1.13, this particular result is of interest because it seems difficult to prove using other flavors of
Floer theory. Moreover, in the context of instanton theory, a result proved in [NST19] says that

hpS3
1pKqq ă 0 ùñ tS3

1{npKqu
8
n“1 is linearly independent in Θ3

Z (7)

where h is the instanton Frøyshov invariant [Frø02]. However, we expect that all of our examples satisfying
Theorem 1.13 have hpS3

1pKqq “ 0. We remark that h is conjecturally equal to half the d-invariant of
[OS03a]. Our results, to the best of our knowledge, give the first examples of knots for which the
1{n-surgeries, for all positive integers n, are linearly independent and their d-invariants vanish.

In the other direction, our methods give new information about the instanton Frøyshov invariant h,
and combined with the result (7) from [NST19] we can prove the following.

Theorem 1.14. Let K belong to one of the following two classes of knots:

(i) Alternating knots with negative signature;

(ii) Quasi-positive knots which are not slice.

Then tS3
1{npKqu

8
n“1 is a linearly independent set in the homology cobordism group.

Recently, Baldwin and Sivek [BS22] independently gave an alternative proof of Theorem 1.14 using a
relationship between τ 7 and the Frøyshov invariant h, and also passing through (7) from [NST19]. Our
method uses rs instead of τ 7. Also, note that when K is a positive torus knot, Theorem 1.14 recovers linear
independence results proven in [Fur90, FS92].

In the course of proving the above results, various concordance properties of knots are established.
Here is one such result. A knot K Ă S3 is called H-slice in a given closed 4-manifold X if there is a
properly and smoothly embedded null-homologous disk in XzintD4 bounded by K.

Theorem 1.15. Consider the two-bridge knots Km,n defined in (6). Let m be a positive integer, and let
K be a knot whose concordance class is represented as follows:

rKs “ a1rKm,0s ` a2rKm,1s ` ¨ ¨ ¨ ` aN rKm,N s,

where ai are integers and aN ą 0. Then K is not smoothly H-slice in any positive definite smooth closed
4-manifold with b1 “ 0. For m ě 7, the knot K has vanishing Tristram–Levine signature function.

We remark that Heegaard Floer theory [OS03b] and Seiberg-Witten theory [Bar22] provide several
obstructions to H-sliceness in definite 4-manifolds. However, it is known that these obstructions reduce to
the classical knot signature for two-bridge knots.

9



Existence of irreducible SUp2q-representations

There is a strong relationship between signatures of knots and SUp2q-representations of knot complements.
For example, suppose the Tristram–Levine signature σωpKq of a knotK is non-zero for some ω P p0, 1{2q,
where e4πiω is not a root of the Alexander polynomial. It then follows from [Her97b] that there exists an
irreducible SUp2q representation of π1pS

3zKq which sends a meridian to the conjugacy class of
„

e2πiω 0
0 e´2πiω



P SUp2q. (8)

See also [Her97a, HK98]. The following is a 4-dimensional extension of this result, applying to comple-
ments of concordances.

Theorem 1.16. Let K be a knot with non-vanishing Tristram–Levine signature σωpKq ‰ 0 for some
ω P p0, 1{2q, where e4πiω is not a root of the Alexander polynomial. Then for any smooth knot concordance
S Ă r0, 1sˆS3 fromK to a knotK 1, there exists a non-abelian SUp2q-representation on the fundamental
group of the concordance complement which sends meridians to the conjugacy class of (134).

This generalizes an analogous result involving the ordinary knot signature σpKq “ σ1{4pKq, proved
in [DS20, Theorem 5]. Versions of Theorem 1.16 for the ω “ 1{4 case hold with the Tristram–Levine
signature replaced by many of the concordance invariants considered in this paper. For example:

Theorem 1.17. If any of rspKq, s7pKq, rεpKq is non-zero, then, for any knot concordance S Ă r0, 1s ˆS3

from K to K 1, there exists a non-abelian traceless SUp2q-representation on the concordance complement.

In particular, Theorem 1.17 and Corollary 1.2 imply the following.

Corollary 1.18. For a non-slice quasi-positive knot K and any knot concordance S Ă r0, 1s ˆ S3 from
K to K 1, there exists a non-abelian traceless SUp2q-representation on the concordance complement.

Concordance invariants and the Chern–Simons filtration

We now give a brief overview of the invariants that are used to prove the above applications. As already
alluded to above, these invariants are obtained by incorporating the Chern–Simons filtration into the
strategy, following (1), of extracting concordance invariants by probing the local equivalence group of
S-complexes. First, we broaden our topological viewpoint.

As already mentioned, all of the constructions in this paper are carried out for knots in integer
homology 3-spheres. A (smooth) cobordism of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q between knots in
integer homology 3-spheres is a homology concordance if W is an integer homology cobordism, and S is
a properly embedded annulus. The collection of knots in integer homology 3-spheres modulo homology
concordance gives rise to an abelian group Θ3,1

Z , called the homology concordance group. There is a
natural homomorphism from the smooth concordance group C to the group Θ3,1

Z .

In [DS19, DS20], a homology concordance invariant ΓpY,Kq : Z Ñ r0,8s is defined and studied,
modelled after the homology cobordism invariant ΓY from [Dae20]. Homology cobordism invariants

10



rspY q P r0,8s, where s P r´8, 0s, were defined in [NST19]. All of these invariants utilize the Chern–
Simons filtration on instanton homology. In this paper, we adapt the construction of rspY q to knots and
define homology concordance invariants rspY,Kq. In fact, we define a homology concordance invariant

NpY,Kq : Zˆ r´8, 0q ÝÑ r0,8s (9)

which simultaneously generalizes ΓpY,Kq and rspY,Kq. That is, for certain choices of coefficient rings,

ΓpY,Kqpkq “ NpY,Kqpk,´8q,

rspY,Kq “ ´mintinftr P r´8, 0q | NpY,Kqp0, rq ď ´su, 0u.

The construction of NpY,Kq roughly uses the equivariant singular instanton S-complex of pY,Kq, together
with its Chern–Simons filtration structure, and the algebraic machinary of filtered special cycles.

All of the properties proved for rspY q in [NST19] have analogues for rspY,Kq. More generally, we
show that the invariant NpY,Kq satisfies certain inequalities with respect to cobordisms. See Theorem 5.47
and Theorem 5.50. These inequalities generalize the inequalities of ΓpY,Kq given in [DS20], and the
inequalities for rspY,Kq which are analogous to the ones for rspY q in [NST19].

The behavior of these invariants with respect to connected sums is also studied.

Theorem 1.19. Given knots in integer homology 3-spheres pY,Kq and pY 1,K 1q, suppose sb ă 0, where
sb :“ maxtNpY,Kqpk, sq ` s1,NpY 1,K1qpk1, s1q ` su. Then

NpY#Y 1,K#K1qpk ` k
1, sbq ď NpY,Kqpk, sq `NpY 1,K1qpk1, s1q.

Consequently, the invariants Γ and rs satisfy the following inequalities:

ΓpY#Y 1,K#K1qpk ` k
1q ď ΓpY,Kqpkq ` ΓpY 1,K1qpk

1q,

rs`s1pY#Y 1,K#K 1q ´ s´ s1 ě mintrspY,Kq ´ s, rs1pY
1,K 1q ´ s1u.

To make contact with 3-manifold invariants, we have the following result. It is proved using a natural
cobordism from pY1pKq, U1q, which is 1-surgery with an unknot, to the pair pY,Kq.

Theorem 1.20. Let K be a knot in an integer homology 3-sphere Y satisfying σpY,Kq ď 0. Suppose
1
8 ă ΓpY,Kq

`

´1
2σpY,Kq

˘

. Then, ΓY1pKqp0q ą 0 and r0pY1pKqq ă 8.

Theorem 1.13 is an application of this result.

The topological applications described earlier in this introduction all make use of NpY,Kq, to varying
degrees. We note that NpY,Kq, and thus ΓpY,Kq and rspY,Kq, are defined in the setting of singular
instanton theory with holonomy around shrinking meridians of K having trace limiting to zero. The same
is true for the invariants rs, s7, rε, and those of [KM21b], discussed above.

More generally, we consider the case in which the meridional holonomies have limiting trace
2 cosp2πωq, where ω P p0, 1{2q, the traceless case corresponding to ω “ 1{4. The analytical framework
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here was established by Kronheimer and Mrowka [KM93,KM11b]. Knot invariants defined using singular
instanton theory with general holonomy parameter ω were studied in [Ech19, Imo21].

The cases in which ω ‰ 1{4 are distinguished from the traceless case in that the coefficient ring
used must take into account the possibility of infinitely many isolated instantons interpolating between
two singular flat connections. In Section 7, we develop the local equivalence story, with Chern–Simons
filtration, for arbitrary holonomy parameter ω P p0, 1{2q. For example, generalizing (9), we define

N ω
pY,Kq : Zˆ r´8, 0q ÝÑ r0,8s

for each ω P p0, 1{2q such that e4πiω is not a root of the Alexander polynomial of the knot. This invariant
is constant with respect to homology concordances in its domain of definition. Theorem 1.16 is an
application of this more general general framework.

Organization

In Section 2, we review aspects of equivariant singular instanton theory, following [DS19, DS20]. Fur-
thermore, certain deformed versions of the instanton S-complex, called (un)reduced framed homology
theories, are studied. In Section 3, special cycles are introduced and studied. In Section 4, we use the
machinary of special cycles to define concordance invariants. In particular, rs and rε are defined, and we
prove Theorem 1.1 (recovering s7), Corollary 1.2 (computations of rs), and Theorem 1.3 (quasi-additivity
of s7). Here we also prove Theorem 1.7, and Theorem 1.8 (two-bridge knot computations). In Section 5
we incorporate the Chern–Simons filtration into our constructions, and study filtered special cycles. We
introduce NpY,Kq, and prove Theorems 1.5 and 1.19. In Section 6, all of the topological applications are
proved, except for Theorem 1.16. In this section, we also prove Theorem 1.20. Finally, in Section 7, the
theory for general holonomy parameters is developed, and Theorem 1.16 is proved.
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valuable comments. AD, HI and CS thank Nikolai Saveliev for co-organizing the 2022 workshop “Gauge
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2 Singular instanton theory

This section provides background for the rest of the paper. We first review relevant constructions and
results from [DS19, DS20] on S-complexes for knots derived from equivariant singular instanton Floer
theory, with meridional holonomy parameter ω “ 1{4. (More general holonomy parameters are considered
in Section 7 .) Next, equivariant complexes from [DS19, §4] are reviewed. Finally, the framed complexes
that are central to the concordance invariants defined in Section 4 are introduced and studied.
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2.1 S-complexes from singular instantons

We begin by reviewing material from [DS19, DS20].

Definition 2.1. An S-complex over a ring R consists of a finitely generated free graded R-module rC˚
and endomorphisms rd and χ of rC˚ such that the following hold:

(i) rd decreases the grading by 1 and χ increases the grading by 1;

(ii) rd2 “ 0, χ2 “ 0 and χ ˝ rd` rd ˝ χ “ 0; and

(iii) Hp rC˚, χq “ Ker pχq{Im pχq is isomorphic to Rp0q, a copy of R in grading 0.

The differential of rC is the endomorphism rd. Our S-complexes will typically be graded by Z{4, at least
up until Section 5, where certain types of filtered S-complexes are studied. For a chain complex C˚ we
typically omit the grading from the subscript and simply write C.

The trivial S-complex is given by rC “ Rp0q with rd “ χ “ 0. Given two S-complexes p rC, rd, χq and
p rC 1, rd1, χ1q, the tensor product complex is naturally an S-complex:

p rCb, rdb, χbq “ p rC b rC 1, db 1` εb d1, χb 1` εb χ1q.

Here ε is the sign map that multiplies an element in grading i by p´1qi. The dual S-complex p rC:, rd:, χ:q
is defined by rC:i “ Homp rC´i, Rq, with rd:pfq “ ´εpfq ˝ rd and χ:pfq “ ´εpfq ˝ χ for f P C:.

A typical S-complex has the form rC˚ “ C˚ ‘ C˚´1 ‘Rp0q with differential

rd “

»

–

d 0 0
v ´d δ2

δ1 0 0

fi

fl (10)

and where χ maps C˚ isomorphically to the summand C˚´1, and is otherwise zero. Every S-complex is
isomorphic to one of this form, and most S-complexes that we encounter come with such a decomposition.
We refer to a choice of such a decomposition as a splitting of the the S-complex. The summand Rp0q Ă rC
will be referred to as the reducible summand of the S-complex.

Definition 2.2. Given S-complexes p rC, rd, χq and p rC 1, rd1, χ1q, a graded R-module map rλ : rC Ñ rC 1 is
an S-morphism (or simply morphism) if rλrd “ rd1rλ and rλχ “ χ1rλ. An S-chain homotopy rK between
morphisms rλ and rλ1 is anR-module map rK : rC Ñ rC 1 satisfying rλ´rλ1 “ rK rd` rd1 rK and χ1 rK` rKχ “ 0.

With respect to decompositions rC “ C˚ ‘ C˚´1 ‘ Rp0q and rC 1 “ C 1˚ ‘ C 1˚´1 ‘ Rp0q of our
S-complexes as described above, an S-morphism rλ : rC Ñ rC 1 has the form

rλ “

»

–

λ 0 0
µ λ ∆2

∆1 0 η

fi

fl . (11)

An S-chain homotopy has a similar shape, but with a sign appearing in the middle entry.
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Remark 2.3. The morphisms defined here are more general than those of [DS19, DS20], which require
either η “ 1 or that η is invertible. Morphisms of the latter type are strong height 0 morphisms, in
terminology introduced below.

Let Y be an integer homology 3-sphere, and K Ă Y a knot. In [DS19], singular instanton gauge
theory is used to construct a Z{4-graded S-complex associated to pY,Kq, denoted

rCpY,Kq “ C˚pY,Kq ‘ C˚´1pY,Kq ‘Rp0q. (12)

We proceed to summarize the construction in what follows, ignoring various technicalities.

Choose an orbifold metric on Y which is singular along K with cone-angle π. Associated to pY,Kq,
we have the space ApY,Kq of singular SUp2q connections on Y that are singular along K. Roughly
speaking, any such singular connection is a connection on Y zK which is compatible with a preferred
reduction near K and around shrinking meridians of K has asymptotic traceless holonomy. There is a
Chern–Simons functional

cs : ApY,Kq Ñ R (13)

which descends to cs : BpY,Kq Ñ R{Z, where BpY,Kq is the quotient of ApY,Kq by a group of gauge
transformations. The critical set of cs in BpY,Kq consists of flat singular connections with traceless
holonomy around meridians µ of K. As such, Critpcsq Ă BpY,Kq can be identified with

tρ P Hompπ1pY zKq, SUp2qq | trρpµq “ 0u {SUp2q

where the SUp2q-action is by conjugation. There is a unique reducible representation class in this set
which factors through π1pY zKq Ñ H1pY zK;Zq and sends the generator of H1pY zK;Zq to a traceless
element. The corresponding reducible connection class in BpY,Kq is typically denoted θ.

The Z{4-graded chain complex pCpY,Kq, dq is roughly the Morse–Floer complex with respect to the
functional cs, having discarded θ. In general, perturbation data π is chosen to ensure that transversality
holds. The underlying R-module of CpY,Kq is defined by

CpY,Kq “
à

αPC˚πpY,Kq

R ¨ α,

where CπpY,Kq “ C˚πpY,Kq \ tθu is the critical set of the cs perturbed by π. The differential d counts
(perturbed) instantons on Rˆ Y that have the prescribed singularity type along RˆK. The underlying
technical work here relies heavily on work of Kronheimer and Mrowka [KM11b].

Now fix a basepoint p P K and an orientation of K. Consider the framed configuration space rBpY,Kq
consisting of singular connections that around a family of meridians of K shrinking around p, oriented
compatibly with K, have limiting holonomy exactly equal (and not just conjugate) to the element

„

i 0
0 ´i



P SUp2q (14)

Then rBpY,Kq is a principal S1-bundle over BpY,Kq. The (perturbed) Chern–Simons functional gives an
S1-invariant function on rBpY,Kq, and the S-complex (12) is a model for its Morse–Floer complex with
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some additional structure induced by the S1-action. The summand Rp0q is generated by the reducible θ.
The maps δ1, δ2 in (10) involve counting singular instantons on Rˆ Y with one reducible limit, and the
map v involves cutting down moduli spaces by holonomy along the path Rˆ tpu. For more details, see
[DS19], where the following is proved.

Theorem 2.4. ([DS19, Theorem 3.34]) The S-chain homotopy type of the Z{4-graded S-complex
rCpY,Kq is an invariant of pY,Kq. In particular, it is independent of metric, perturbation and basepoint.

This invariant is an enhancement of Kronheimer and Mrowka’s I6pY,Kq from [KM11a]:

Theorem 2.5. ([DS19, Theorem 8.9]) The total homology of rCpY,Kq, over Z-coefficients, is naturally
isomorphic to the Z{4-graded abelian group I6pY,Kq, by an isomorphism of degree σpY,Kq pmod 4q.

The S-complex (12) can also be defined using a local coefficient system which is modelled on a
construction from [KM11b]. In its simplest form, this is a Z{4-graded S-complex over the ring ZrT˘1s:

rCpY,K; ∆q “ C˚pY,K; ∆q ‘ C˚´1pY,K; ∆q ‘ ZrT˘1sp0q.

If R is an algebra over ZrT˘1s, we write rCpY,K; ∆Rq “ rCpY,K; ∆q bR.

We next turn to morphisms induced by cobordisms. It will be important in the sequel to classify
the types of morphisms we obtain by how they behave with respect to the reducible summands of the
S-complexes. To this end, we introduce the following algebraic definition, which is a minor variation of a
definition that appears in [DS20].

Definition 2.6. Let i P Zě0. Let rλ : rC Ñ rC 1 be a morphism as in (14) and set c0 “ η and

cj :“ δ11pv
1qj´1∆2p1q `∆1v

j´1δ2p1q `

j´2
ÿ

l“0

δ11pv
1qlµvj´2´lδ2p1q (15)

for j P Zą0. Then rλ is a height i morphism if it has homological degree 2i, and satisfies cj “ 0 for j ă i.
It is a strong height i morphism if, in addition, the element ci is invertible. A strong height 0 morphism is
also called a local morphism.

Now consider a cobordism of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q where K Ă Y and K 1 Ă Y 1 are
knots in integer homology 3-spheres. Here W is a cobordism from Y to Y 1 and S is an orientable
surface cobordism from K to K 1, embedded in W . Let E be a Up2q-bundle over W . Then we consider
connections on W which are singular along S, with traceless holonomy around shrinking meridians of S.
The topological energy of such a connection A is given by

κpAq “
1

8π2

ż

W zS
trpFadpAq ^ FadpAqq

where FadpAq is the traceless part of the curvature. We note that the Chern–Simons functional in (13), for
A0 P ApY,Kq, can be defined by choosing a connection on r0, 1s ˆ Y restricting to A0 at 0 and A1 “ θ
at 1 and then setting cspA0q “ 2κpAq.
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A cobordism map can be constructed from pW,S,Eq, under some topological assumptions. One first
fixes an orbifold metric on W with con-angle π along the surface S. Roughly, the map counts singular
instantons on E, or more precisely, E with cylindrical ends attached. If b1pW q “ b`pW q “ 0, reducible
singular instantons on E (for any metric) are in bijection with elements of H2pW ;Zq; an instanton AL
compatible with a splitting E “ L‘L˚b detpEq is sent to c1pLq P H

2pW ;Zq. Its topological energy is

κpALq “ ´

ˆ

c1pLq `
1

4
S ´

1

2
c1pEq

˙2

. (16)

The index, indpAq, of a singular connection A on a cobordism with cylindrical ends refers to the index
of the linearized ASD operator defined with weighted Sobolev spaces that give exponential decay at the
ends. For AL, this formula for the index is as follows:

indpALq “ 8κpALq `
3

2
pσpW q ` χpW qq `

1

2
S ¨ S ` χpSq ` σpY,Kq ´ σpY 1,K 1q ´ 1.

Any reducible which has minimal index among all reducibles is called a minimal reducible. The minimal
topological energy over all reducibles is defined as follows, where c :“ c1pEq:

κminpW,S, cq :“ min
 

κpALq | c1pLq P H
2pW ;Zq

(

.

For the following definition, let R be any algebra over the ring ZrT˘1s.

Definition 2.7. For a non-negative integer i, the data pW,S, cq where pW,Sq : pY,Kq Ñ pY 1,K 1q is a
cobordism of pairs and c P H2pW ;Zq is negative definite of height i if the following hold:

(i) b1pW q “ b`pW q “ 0;

(ii) The index of one (and hence all) minimal reducibles is 2i´ 1.

Furthermore, define the following element of R:

ηpW,S, cq :“
ÿ

AL minimal

p´1qc1pLq
2
T p2c1pLq´cq¨S . (17)

If in addition to (i) and (ii), ηpW,S, cq is invertible in R, then pW,S, cq is of strong height i over R.

Proposition 2.8. ([DS20, Propositions 2.24, 4.17]) Suppose pW,S, cq as above is negative definite
of (strong) height i ě 0. Then there is an associated (strong) height i morphism rCpY,K; ∆Rq Ñ
rCpY 1,K 1; ∆Rq. The term ci as defined in (15) is equal to ηpW,S, cq.

The construction of the above morphism depends on some auxiliary choices including a metric and
perturbation, but different choices lead to homotopy equivalent morphisms. The construction also depends,
a priori, on a choice of path between the basepoints of K and K 1 used to define the S-complexes, but this
is not important in the sequel.

There are also morphisms induced by cobordisms where the surface is immersed, with transverse
double points. For simplicity, suppose in what follows that W : Y Ñ Y 1 is a homology cobordism, and
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S : K Ñ K 1 is a connected orientable surface with s˘ many ˘-double points, and genus gpSq. Then
there is an induced morphism of S-complexes rCpY,K; ∆Rq Ñ rCpY 1,K 1; ∆Rq with height

i :“ ´gpSq `
σpY,Kq

2
´
σpY 1,K 1q

2
, (18)

assuming i ě 0. Furthermore, for this morphism, the term ci as given in (15) is, up to a unit, equal to

ci “ pT
2 ´ T´2qs`

See [DS20, §4.3] for the construction. This type of morphism is used at several points in the sequel.

If pW,Sq : pY,Kq Ñ pY 1,K 1q is a homology concordance, there is a unique minimal reducible of
index ´1, and we obtain a local morphism rCpY,K; ∆Rq Ñ rCpY 1,K 1; ∆Rq for any R. By reversing the
direction and orientation of this cobordism, we obtain a local morphism rCpY 1,K 1; ∆Rq Ñ rCpY,K; ∆Rq.
These observations motivate the following construction.

Let rC and rC 1 be two Z{4-graded S-complexes over some ring R. We say that rC and rC 1 are locally
equivalent, and write rC „ rC 1, if there are local morphisms rC Ñ rC 1 and rC 1 Ñ rC. Write

ΘS
R “ tZ{4-graded S-complexesu{ „

Then ΘS
R is an abelian group, where the identity element is the trivial S-complexRp0q, the group operation

is tensor product of S-complexes, and inverses are dual S-complexes. For any algebra R over ZrT˘1s,
the assignment described above, pY,Kq ÞÑ rCpY,K; ∆Rq, induces a group homomorphism

Θ3,1
Z Ñ ΘS

R (19)

where Θ3,1
Z is the homology concordance group of knots in integer homology 3-spheres.

In light of (19), homology concordance invariants with values in a set R1 can be defined, in a purely
algebraic manner, by constructing some map ΘS

R Ñ R1 (not necessarily a homomorphism), from the local
equivalence group to R1. The simplest example, for R an integral domain, is a homomorphism

h : ΘS
R Ñ Z (20)

called the Frøyshov invariant, essentially introduced in [Frø02]. The Frøyshov invariant of an S-complex
rC is uniquely determined by the following conditions, where k is a non-negative integer:

hp rCq ą k ðñ
there exists α P C˚ satisfying dα “ 0,

δ1v
ipαq “ 0 for 0 ď i ă k, and δ1v

kpαq ‰ 0
(21)

hp rCq ě ´k ðñ
there exist a0, ¨ ¨ ¨ , a´k P R satisfying

dα “
ř´k
i“0 v

iδ2paiq and a´k ‰ 0
(22)

Moreover, if there is a local map rC Ñ rC 1, then hp rCq ď hp rC 1q. Finally, (20) is an isomorphism if R is a
field. Thus the Frøyhov invariant for a general integral domain R factors as ΘS

R Ñ ΘS
FracpRq – Z.

The following result computes the Frøyshov invariants for most of the S-complexes used in this paper.
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Theorem 2.9 ([DS20, Theorem 7]). Let K be a null-homotopic knot in an integer homology 3-sphere Y .
If T 4 ‰ 1 in the ZrT˘1s-algebra R, then the Frøyshov invariant of rCpY,K; ∆Rq is as follows:

h
´

rCpY,K; ∆Rq

¯

“ ´
1

2
σpY,Kq ` 4hpY q (23)

where σpY,Kq is the knot signature and hpY q is Frøyshov’s instanton invariant defined in [Frø02].

In the sequel, we often write hpY,Kq for the quantity appearing in (23).

2.2 Equivariant complexes

We next review several algebraic constructions that can be applied to S-complexes. We start with
equivariant theories that one can associate to an S-complex p rC, rd, χq over a ring R. There are two models
for these equivariant theories: large model and small model [DS19]. Each of these models has some
advantages over the other one. In the following, Rrrx´1, xs denotes the ring of Laurent power series in the
variable x´1 and coefficients in R. This ring is an algebra over the polynomial ring Rrxs in the obvious
way, and the quotient algebra is denoted by Rrrx´1, xs{Rrxs.

The large equivariant complexes associated to p rC, rd, χq are given by ppC, pdq, pqC, qdq and pC, dq, where

pC “ rC bR Rrxs, qC “ rC bR Rrrx
´1, xs{Rrxs, C “ rC bR Rrrx

´1, xs,

are Rrxs-modules and the corresponding differentials are given as

pd “ ´rdb 1` χb x, qd “ rdb 1´ χb x, d “ ´rdb 1` χb x.

If we equip pC, qC and C with the Z{4-grading induced by that of rC and requiring that x2j has degree
´2j, then the differentials of these complexes decrease the grading by 1. The subspace of pC given by
elements with Z{4-grading is denoted by pCi, and a similar convention is used for qC and C. In particular,
pCi is a module over Rrx2s and the same comment applies to qC and C.

We write HppCq, HpqCq and HpCq for the homology groups of the large equivariant complexes. These
homology groups fit into an exact triangle of the form

HpqCq
j˚ // HppCq

i˚{{
HpCq

p˚

cc
(24)

where the module homomorphisms are induced by the inclusion map i : pCÑ C, the map j given as

jp
´1
ÿ

i“´8

ζix
iq “ ´χpζ´1q,
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and the map p : pCÑ C given as the composition of the projection map and the sign map ε. Note that i
and p are Rrxs-module homomorphisms while j is only an R-module homomorphism. However, we have

xj´ jx “ pdK `K qd

for the homomorphism K : qCÑ pC that sends an element
ř´1
i“´8 ζix

i to ζ´1. In particular, the induced
map j˚ is an Rrxs-module homomorphism.

Proposition 2.10. Let R be an integral domain and n :“ rankRpCk´2q for k P Z{4. Then for any
element ξ P Hkp

qCq, there exists a non-zero polynomial fpxq P Rrxs with degxpfpxqq ď n such that

fpx2q ¨ j˚pξq “ 0.

In particular, Im j˚ is a torsion submodule of HppCq.

Proof. Let ζ “
ř´1
i“´8 ζix

i P qCk with ζi “ pαi, βi, aiq P rCk`2i be a representative for ξ. Then we have

jpR ¨ xζ, x2ζ, . . . , x2nζyq “ χpR ¨ xζ´1, ζ´3, . . . , ζ´2n´1yq “ R ¨ xα´1, α´3, . . . , α´2n´1y Ă Ck´2.

Since n “ rankRCk´2, we have a non-trivial linear relation
řn
i“0 biα´2i´1 “ 0 with bi P R. Therefore,

for the non-zero polynomial fpxq :“
řn
i“0 bix

i, we have

fpx2q ¨ j˚pξq “ rjpfpx
2q ¨ ζqs “ r´χp

n
ÿ

i“0

biζ´2i´1qs “ ´r

n
ÿ

i“0

biα´2i´1s “ 0.

Small equivariant complexes provide smaller models for the equivariant homology groups of the
S-complex rC. Pick a splitting rC “ C˚ ‘ C˚´1 ‘ Rp0q and let d, v, δ1 and δ2 be the homomorphisms
associated to rd with respect to this splitting. The three versions of small equivariant complexes are denoted
by ppC,pdq, pqC,qdq and pC, dq where

pC “ C˚´1 ‘Rrxs, qC “ C˚ ‘Rrrx
´1, xs{Rrxs, C “ Rrrx´1, xs,

with differentials defined as follows:

pdpα,
N
ÿ

i“0

aix
iq “ pdα´

N
ÿ

i“0

viδ2paiq, 0q, qdpα,
´1
ÿ

i“´8

aix
iq “ pdα,

´1
ÿ

i“´8

δ1v
´i´1pαqxiq, d “ 0.

The Rrxs-module structures on pC and qC are respectively given by the chain maps

x ¨ pα,
N
ÿ

i“0

aix
iq “ pvα, δ1pαq `

N
ÿ

i“0

aix
i`1q, x ¨ pα,

´1
ÿ

i“´8

aix
iq “ pvα` δ2pa´1q,

´2
ÿ

i“´8

aix
i`1q,

whereas the module structure on C is the obvious one. We equip each of these complexes with a
Z{4-grading using the gradings of the summands where again the degree of x2j is equal to ´2j.
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The analogue of the exact triangle in (24) for the homology groups HppCq, HpqCq and HpCq is given by

HpqCq
j˚ // HppCq

i˚{{
HpCq

p˚

cc
(25)

where the maps are defined at the chain level as follows:

ipα,
N
ÿ

i“0

aix
iq :“

´1
ÿ

i“´8

δ1v
´i´1pαqxi `

N
ÿ

i“0

aix
i, jpα,

´1
ÿ

i“´8

aix
iq :“ p´α, 0q,

pp
N
ÿ

i“´8

aix
iq :“ p

N
ÿ

i“0

viδ2paiq,
´1
ÿ

i“´8

αix
iq.

The following relation between large and small complexes is proved in [DS19, Lemma 4.11].

Proposition 2.11. There are R-module homomorphisms

pΦ : pCÑ pC, qΦ : qCÑ qC, Φ̄ : CÑ C,

that are chain maps and commute with the action of x up to chain homotopy. Moreover, these homomor-
phisms are chain homotopy equivalences with the chain homotopy inverses

pΨ : pCÑ pC, qΨ : qCÑ qC, Ψ̄ : CÑ C.

In particular, pΦ˚ : HppCq Ñ HppCq is an isomorphism of Rrxs-modules with the inverse pΨ˚, and similar
claims hold for pqΦ˚, qΨ˚q and pΦ̄˚, Ψ̄˚q. Moreover, these maps define a homomorphism between (24) and
(25) commuting with the homomorphisms in the exact triangle.

Sketch of the proof. The splitting rC “ C˚‘C˚´1‘Rp0q induces a splitting of large equivariant complexes.
With respect to these splittings, the maps from the large complexes to the small complexes are as follows:

pΦp
N
ÿ

i“0

αix
i,

N
ÿ

i“0

βix
i,

N
ÿ

i“0

aix
iq :“ p

N
ÿ

i“0

vipβiq,
N
ÿ

i“0

aix
i `

N
ÿ

i“1

i´1
ÿ

j“0

δ1v
jpβiqx

i´j´1q,

qΦp
´1
ÿ

i“´8

αix
i,

´1
ÿ

i“´8

βix
i,

´1
ÿ

i“´8

aix
iq :“ pα´1,

´1
ÿ

i“´8

aix
i `

´1
ÿ

i“´8

8
ÿ

j“0

δ1v
jpβiqx

i´j´1q,

Φ̄p
N
ÿ

i“´8

αix
i,

N
ÿ

i“´8

βix
i,

N
ÿ

i“´8

aix
iq :“

N
ÿ

i“´8

aix
i `

N
ÿ

i“´8

8
ÿ

j“0

δ1v
jpβiqx

i´j´1,
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The maps in the reverse direction are given by:

pΨpα,
N
ÿ

i“0

aix
iq :“ p

N
ÿ

i“1

i´1
ÿ

j“0

vjδ2paiqx
i´j´1, α,

N
ÿ

i“0

aix
iq,

qΨpα,
´1
ÿ

i“´8

aix
iq :“ p

´1
ÿ

i“´8

v´i´1pαqxi `
´1
ÿ

i“´8

8
ÿ

j“0

vjδ2paiqx
i´j´1, 0,

´1
ÿ

i“´8

aix
iq,

Ψ̄p
N
ÿ

i“´8

aix
iq :“ p

N
ÿ

i“´8

8
ÿ

j“0

vjδ2paiqx
i´j´1, 0,

N
ÿ

i“´8

aix
iq.

Remark 2.12. The maps in Proposition 2.11 satisfy a few additional useful properties. The equivariant
complexes C and C are Rrrx´1, xs-modules in the obvious way, and the maps Φ̄ and Ψ̄ are Rrrx´1, xs-
module homomorphisms. The maps pΦ, qΦ and Φ̄ are in fact left inverses to pΨ, qΨ and Ψ̄:

pΦ ˝ pΨ “ 1
pC
, qΦ ˝ qΨ “ 1

qC
, Φ̄ ˝ Ψ̄ “ 1C.

We also have the relations

Φ̄ ˝ i “ i ˝ pΦ, pΦ ˝ j “ j ˝ qΦ, pΨ ˝ j “ j ˝ qΨ, qΨ ˝ p “ p ˝ Ψ̄.

Corollary 2.13. The equivariant homology groups HppCq and HpqCq fit into the exact sequences

0 // Im j˚
� � // HppCq

i˚ // Im i˚ // 0, (26)

0 // Rrrx´1, xs{Im i˚
p˚ // HpqCq

j˚ // Im j˚ // 0, (27)

where Im j˚ is a torsion Rrxs-submodule of HppCq. If R is an integral domain, then Im j˚ agrees with the
torsion submodule of HppCq. For a field R, the Rrxs-module Im i˚ is isomorphic to Rrxs.

Proof. The short exact sequences (26) and (27) immediately follow from (25). Proposition 2.10 implies
that Im j˚ is a torsion Rrxs-submodule of HppCq. In the other direction and if R is an integral domain,
then a torsion element of HppCq is in the kernel of the map i˚ because Rrrx´1, xs has trivial torsion.

Now, let R be a field. The submodule Im i˚ contains elements of the form
řN
i“0 aix

i for which

a0δ2p1q ` a1vδ2p1q ` ¨ ¨ ¨ ` aNv
iδ2paN q

is trivial. In particular, Im i˚ is not trivial. Since the S-complex rC is finitely generated over R, the
submodule Im i˚ of Rrrx´1, xs has an element Qpxq with minimal x-degree. It is straightforward to check
that any element of Im i˚ can be written uniquely as a multiple of Qpxq by some element of Rrxs.

Any morphism of S-complexes rλ : rC Ñ rC 1 induces a morphism of equivariant theories. In the case
of large equivalent complexes, we have the Rrxs-module homomorphisms

pλ : pCÑ pC1, qλ : qCÑ qC1, λ : CÑ C
1
,
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each given by rλb 1. These are compatible with (24) in that we have the following commutative diagram:

¨ ¨ ¨
j

ÝÝÝÝÑ pC
i

ÝÝÝÝÑ C
p

ÝÝÝÝÑ qC
j

ÝÝÝÝÑ ¨ ¨ ¨

pλ

§

§

đ λ

§

§

đ

qλ

§

§

đ

¨ ¨ ¨
j1

ÝÝÝÝÑ pC1
i1

ÝÝÝÝÑ C
p1

ÝÝÝÝÑ qC1
j1

ÝÝÝÝÑ ¨ ¨ ¨

(28)

We also remark that chain homotopic morphisms of S-complexes induce chain homotopic homorphisms
of large equivariant complexes.

Proposition 2.11 can be used to obtain homomorphisms of small equivalent complexes

pλ : pCÑ pC1, qλ : qCÑ qC1, λ : CÑ C
1
,

pλ :“ pΦ1 ˝ pλ ˝ pΨ, qλ :“ qΦ1 ˝ qλ ˝ qΨ, λ :“ Φ
1
˝ λ ˝Ψ.

We may describe the induced map λ : CÑ C
1 more explicitly as an endomorphism of Rrrx´1, xs given

as multiplication by a Laurent power series of the form

c0 ` c1x
´1 ` c2x

´2 ` c3x
´3 ` . . . , (29)

where cj is introduced in Definition 2.6. (In the case c0 “ 1, this computation is done in [DS19, §4.2],
and the verification in the more general case is similar.) If rλ has height i, then (29) has degree at most ´i,
and the equality holds if rλ is a strong height i morphism. The commutative diagram in (28) together with
Proposition 2.11 gives rise to the following diagram for the small equivariant theories that is commutative
up to chain homotopy:

¨ ¨ ¨
j

ÝÝÝÝÑ pC˚
i

ÝÝÝÝÑ C˚
p

ÝÝÝÝÑ qC˚
j

ÝÝÝÝÑ ¨ ¨ ¨

pλ

§

§

đ λ

§

§

đ

qλ

§

§

đ

¨ ¨ ¨
j

ÝÝÝÝÑ pC1˚
i

ÝÝÝÝÑ C˚
p

ÝÝÝÝÑ qC1˚
j

ÝÝÝÝÑ ¨ ¨ ¨

(30)

Next, let ppCb,Cb, qCbq be the large equivariant complexes of the S-complex p rCb, rdb, χbq obtained
by taking the tensor product of S-complexes p rC, rd, χq and p rC 1, rd1, χ1q. The isomorphisms

Rrxs bRrxs Rrxs – Rrxs, Rrrx´1, xs bRrrx´1,xs Rrrx
´1, xs – Rrrx´1, xs

induce the following chain maps, which are module isomorphisms:

pT : pCbRrxs pC
1 Ñ pCb, T : CbRrrx´1,xs C

1
Ñ C

b
.

The following claim is essentially proved in the proof of [DS19, Lemma 4.27].

Lemma 2.14. The composition

Φ
b
˝ T ˝

´

ΨbRrrx´1,xs Ψ
1
¯

: CbRrrx´1,xs C
1
Ñ C

b

is equal to the multiplication map Rrrx´1, xs bRrrx´1,xs Rrrx
´1, xs Ñ Rrrx´1, xs.
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Proof. Noting that the maps Φ
b, ΨbRrrx´1,xs Ψ

1 and T are all Rrrx´1, xs-module homomorphisms, it
suffices to verify the claim for 1b 1:

Φ
b
˝ T ˝ rΨbRrrx´1,xs Ψ

1
sp1b 1q “ Φ

b
˝ T p

˜

8
ÿ

j“0

vjδ2p1qx
´j´1, 0, 1

¸

b

˜

8
ÿ

j“0

vjδ2p1qx
´j´1, 0, 1

¸

q

“ Φ
b
pA, 0, 1q “ 1

for some chain A P Cb˚ bRrrx
´1, xs. This completes the proof.

The following proposition provides a naturality result for the maps pT and T .

Proposition 2.15. The following diagram of Rrxs-modules

HppCq bRrxs HppC
1q HpCq bRrrx´1,xs HpC

1
q CbRrrx´1,xs C

1

HppCbq HpC
b
q C

b

i˚bi1˚ Φ˚bRrrx´1,xsΦ
1

˚

ib˚ Φ
b

˚

is commutative, where the vertical maps are respectively induced by pT , T and multiplication.

Proof. The commutativity of the left square follows readily from the following relation:

T ˝
`

ib i1
˘

“ ib ˝ pT . (31)

The commutativity of the right square follows from Lemma 2.14 and the fact that Ψ˚ and Ψ
1

˚ are the
inverses of Φ˚ and Φ

1

˚, respectively.

Let S be an algebra over R. Define the S-complex rCS over S as the base change rC bR S. Associated
to rCS are equivariant complexes ppCS ,CS , qCSq and ppCS ,CS , qCSq. We have natural isomorphisms

pCS – pCbR S,

and similar isomorphisms hold for the other versions of equivariant theories. The chain maps in the exact
triangles (24), (25) and the homomorphisms in the proof of Proposition 2.11 with these isomorphisms. A
morphism of S-complexes rλ : rC Ñ rC 1 induces a morphism rλS : rCS Ñ rC 1S of the base changes. This in
turn induces morphisms of equivariant theories. For instance, we have pλS : pCS Ñ pC1S that is equal to
rλS bS 1Rrxs “ pλbR 1S .

The constructions of equivariant theories from above can be applied to the Z{4-graded S-complex
rCpY,K; ∆Rq of a knot K in an integer homology sphere Y , where R is any algebra over ZrT˘1s. In
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particular, after using the package of either large or small equivariant complexes and then passing to
homology, we obtain equivariant instanton knot homology groups that fit into an exact triangle:

qIpY,K; ∆Rq
j˚ // pIpY,K; ∆Rq

i˚ww
IpY,K; ∆Rq

p˚

gg
(32)

Moreover, we have IpY,Kq – Rrrx´1, xs. The exact triangle in (32) is functorial with respect to negative
definite cobordisms of pairs. That is to say, if the cobordism of pairs pW,Sq : pY,Kq Ñ pY 1,K 1q together
with c P H2pW ;Zq is negative definite of height i ě 0, then there is a cobordism map

pλpW,S,cq : pIpY,K; ∆Rq Ñ pIpY 1,K 1; ∆Rq,

and similarly qλpW,S,cq, λpW,S,cq. These maps commute with the maps in (32). Furthermore, after iden-
tification of IpY,K; ∆Rq and IpY 1,K 1; ∆Rq with Rrrx´1, xs using small model, the map λpW,S,cq is
multiplication by an expression of the form (29), where cj “ 0 for j ă i, and ci is given in (17).

2.3 Deformed complexes and framed singular instanton homology

The equivariant complex pC of an S-complex rC can be regarded as a deformation of the chain complex
p rC,´rdq after applying the base change ofRrxs toR, by evaluation of x at 1. This definition of equivariant
complexes from this viewpoint can be generalized in the following way. Suppose ϕ : Rrxs Ñ S is a
ring homomorphism. In particular, S can be regarded as an algebra over R. We define the ϕ-deformed
complex associated to rC as follows:

rCϕ :“ rC bR S, rdϕ :“ rdb 1` χb ϕpxq.

In the case that rC is the S-complex of pY,Kq, the homology of the ϕ-deformed complex p rCϕpY,Kq, rdϕq
is denoted by rIϕpY,Kq. Previously several knot invariants under the general name of singular instanton
Floer homology were constructed by Kronheimer and Mrowka [KM11a, KM13, KM21a, KM21b]. It is
shown in [DS19, §8] that any of these knot invariants can be characterized as rIϕpY,Kq for an appropriate
choice of ϕ.

Suppose R is an algebra over QrT˘1s and Λ :“ T ´ T´1 P R. For an S-complex rC over R, we can
associate the unreduced framed complex C7 defined as follows:

C7 :“ rC˚ ‘ rC˚`2, d7 :“

«

rd 2Λ2χ

2χ rd

ff

.

We write pC7˚pY,K; ∆Rq, d
7q for the unreduced framed complex of the S-complex rCpY,K; ∆Rq. The

motivation to consider unreduced framed complexes comes from the following result.

Theorem 2.16. ([DS19, Theorem 8.20]) The total homology of pC7˚pY,K; ∆Rq, d
7q, defined with coef-

ficients R “ QrT˘1s, is naturally isomorphic to Kronheimer–Mrokwa’s singular instanton homology
I7pY,Kq of [KM13], by an isomorphism of degree σpY,Kq ` 1 pmod 4q.
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When comparing the notations in this paper and [KM13], the reader should note that u and λ in
[KM13] are equal to T 2 and Λ in our notation. The degree of the isomorphism in the theorem comes
from comparing the grading conventions in [DS19] and [KM13]. We may also let R “ Q be the algebra
over QrT˘1s where we set T “ 1. Then it is shown in [DS19, Theorem 8.13] that the homology of
pC7˚pY,K; ∆Rq, d

7q agrees with the flavor of I7pY,Kq defined in [KM11a].

The unreduced framed complex can be identified as a deformed complex. Suppose R is an algebra
over QrT˘1s, Λ :“ T ´ T´1 P R and S is the quotient of Rrxs by the ideal generated by x2 ´ 4Λ2.
Let ϕ : Rrxs Ñ S be the the quotient map. Then C7 is the ϕ-deformed complex associated to rC.
More concretely, we identify pζ1, ζ2q P C

7 with ζ1 `
1
2xζ2 P rCϕ. We may also identify pC7, d7q with

ppC bRrxs S,´pd b 1Sq using the isomorphism that sends pζ1, ζ2q P C
7 to ζ1 ´

1
2xζ2. Composing the

inverse of this isomorphism and the sign map ε gives an isomorphism f 7 : ppCbRrxsS, pdb1Sq Ñ pC7, d7q

of chain complexes. If we define the Rrxs-module structure on pC7, d7q by

x ¨ pζ1, ζ2q “ p´2Λ2ζ2,´2ζ1q, (33)

then f 7 is an Rrxs-module homomorphism. We have the exact sequence of Rrxs-modules

¨ ¨ ¨ HppCq HppCq HpC7q HppCq ¨ ¨ ¨
x2´4Λ2 q7˚ x2´4Λ2

(34)

where q7˚ is induced by composing the quotient map with the chain isomorphism f 7.

Remark 2.17. For any knot K in S3, the singular instanton Floer homology I7pS3,Kq has rank 1 over
the ring QrT˘1s in degrees 0 and 2 and rank 0 in degrees 1 and 3 [KM13]. This property is special to the
unreduced framed homology of S-complexes that are given by classical knots, and it does not hold for an
arbitrary S-complex.

A morphism rλ : rC Ñ rC 1 with homological degree 2i induces a chain map λ7 : C7 Ñ C 17

λ7 :“

«

rλ 0

0 rλ

ff

,

that has the same homological degree as 2i.

Proposition 2.18. For any morphism of S-complexes rλ : rC Ñ rC 1 as above, we have the following
commutative diagram of Rrxs-modules:

H˚ppCq H˚pC
7q

H˚`2ippC
1q H˚`2ipC

17q

q7

pλ˚ λ7˚

q17

Next, we discuss unreduced framed complexes for tensor products. Let p rCb, rdb, χbq be the tensor
product of S-complexes p rC, rd, χq and p rC 1, rd1, χ1q. Let ppCb,Cb, qCbq and Cb7 be the large equivariant

25



complexes and the unreduced framed complex of rCb, respectively. Then we have canonical chain
isomorphisms

C7 bRrxs C
17 –

´

pCbRrxs S
¯

bRrxs

´

pC1 bRrxs S
¯

– pCb bRrxs S – Cb7

We denote by T 7 : C7bRrxsC 17 Ñ Cb7 the resulting isomorphism. By the definition of T 7 and arguments
in Section 2.2, the following proposition holds.

Proposition 2.19. We have the following commutative diagram of Rrxs-modules:

HppCq bRrxs HppC
1q HppCbRrxs pC

1q HppCbq

HpC7q bRrxs HpC
17q HpC7 bRrxs C

17q HpCb7q

q7˚bRrxsq
17
˚ pq7bRrxsq

17q˚

pT˚

qb7˚

T 7˚

Finally, we discuss the duality of C7. We begin with a few remarks about dual complexes. Let pV˚, dq
be a Z{4-graded chain complex freely generated over R, and pV :˚ , d:q be its dual complex. This is defined
as follows: for any i, we have V :i “ HompV´i, Rq, and for any f P V :, we have d:pfq :“ ´εpfq ˝ d
where ε is the sign map. (Note that the dual of an S-complex from Section 2.1 is defined using a similar
convention.) We have a natural pairing x¨, ¨y : V :´i b Vi Ñ R given as

xf, vy ÞÑ fpvq. (35)

The sign convention above is chosen such that if we equip V :˚ b V˚ with the differential d: b 1` εb d,
then (35) determines a chain map. In particular, if R is an integral domain, we obtain the non-degenerate
evaluation bilinear form x¨, ¨y :

`

HpV :˚ q{TorR
˘

ˆ
`

HpV˚q{TorR
˘

Ñ R.

Let pC:7, d:7q denote the unreduced framed complex of rC:. Note that

C:7i “
rC:i ‘

rC:i`2 “ HomRp rC´i, Rq ‘HomRp rC´i´2, Rq. (36)

Similarly, denote by pC7:, d7:q the dual complex of C7. Then

C7:i “ HomRpC
7

´i, Rq “ HomRp rC´i, Rq ‘HomRp rC´i`2, Rq. (37)

Proposition 2.20. The map C:7˚ Ñ C7:˚`2, defined with respect to the splittings in (36) and (37) by

pϕ,ψq ÞÑ pψ,ϕq,

is a chain isomorphism. In particular, for any integral domain R, we have the isomorphism

H˚pC
:7q{TorR – HomRpH´˚´2pC

7q, Rq.
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The reduced framed complexes of the S-complex rC are given by the Z{2-graded deformed complexes

p rC˘, rd˘q :“ p rC, rd˘ 2Λχq.

Since rC is Z{4-graded, and rd and χ have respectively degrees´1 and 1, the homology groupsHp rC`, rd`q
and Hp rC´, rd´q are isomorphic. The reduced theories are related to the unreduced framed complex C7 in
the following way. First, define R-module homomorphisms

ι˘ : rC˘ Ñ C7˚, ι˘ :“

„

Λ
˘1



, (38)

π˘ : C7 Ñ rC˘, π˘ :“
“

1 ˘Λ
‰

. (39)

These are chain maps, and we have a short exact sequence

0 ÝÑ rC´
ι´
ÝÑ C7

π`
ÝÑ rC` ÝÑ 0 (40)

of Z{2-graded chain complexes over R. There is a similar exact sequence with ` and ´ interchanged.
Note that the maps ι˘ and π˘ are Rrxs-module homomorphisms, where the action of x on rC˘ is set to
be multiplication by ¯2Λ. Futhermore, π` ˝ ι` “ 2Λ, and hence the exact sequence (40) splits if the
element Λ is invertible in R.

Similar to C7, we may identify rC˘ with appropriate base changes of the equivariant complex ppC, pdq.
Suppose S˘ is the ringR regarded as an algebra overRrxs where the action of x is given by multiplication
by¯2Λ. Then p rC˘, rd˘q is naturally isomorphic to ppCbRrxsS˘,´pdb1S˘q. Composing the inverse of this
isomorphism and the sign map determines a chain isomorphism f˘ : ppCbRrxsS

˘, pdb1S˘q Ñ p rC˘, rd˘q.
From this description, we obtain the following long exact sequence of Rrxs-modules:

¨ ¨ ¨ HppCq HppCq Hp rC˘˚ q HppCq ¨ ¨ ¨
x˘2Λ rq˘˚ x˘2Λ (41)

Here rq˘˚ is induced by composing the quotient map with the chain isomorphism f˘.

Remark 2.21. For any knot K in S3, the singular instanton Floer homology rI˘pS3,Kq :“ Hp rC˘q
associated to rCpS3,K; ∆QrT˘1sq, defined over the ring QrT˘1s, has rank 1 in degree 0 and rank 0 in
degree 1. This follows from Remark 2.17 and the exact sequence induced by (40).

For the remainder of this section, we focus on basic properties of rC`. Similar arguments hold for rC´.
We start with the counterpart of Proposition 2.18.

Proposition 2.22. For any morphism of S-complexes rλ : rC Ñ rC 1 of even degree, we have the following
commutative diagram of Z{2-graded Rrxs-modules:

H˚ppCq Hp rC`q

HppC1q Hp rC 1`q

rq`˚

pλ˚ rλ`˚

rq1`˚

where rλ` : rC` Ñ rC 1` is equal to rλ, and rλ`˚ is induced by rλ`.
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Next, we discuss the tensor product of reduced framed complexes. Let p rCb, rdb, χbq be the tensor
product of S-complexs p rC, rd, χq and p rC 1, rd1, χ1q, and ppCb,Cb, qCbq be the large equivariant complexes
of rCb. Analogous to the unreduced case, we have canonical chain isomorphisms

rC` bRrxs rC
1` –

´

pCbRrxs S
`
¯

bRrxs

´

pC1 bRrxs S
`
¯

– pCb bRrxs S
` – rCb`,

where rCb` is the reduced framed complex of rCb. Denote by rT` : rC` bRrxs rC
1` Ñ rCb` the resulting

isomorphism overRrxs. As the x-action on rC is multiplication by´2Λ, we have a canonical isomorphism

rC` bRrxs rC
1` – rC` bR rC 1`

Under this identification, the map rT` coincides with the identity. The following result is the counterpart
of Proposition 2.19.

Proposition 2.23. We have the following commutative diagram of Rrxs-modules:

HppCq bRrxs HppC
1q HppCbRrxs pC

1q HppCbq

Hp rC`q bR Hp rC
1`q Hp rCb`q

rq`˚bRrxsrq
1`
˚ prq`bRrxsrq

1`q˚

pT˚

rqb`˚

3 Special cycles

The characterization of the Frøyshov invariant of an S-complex given in (21)–(22) highlights the im-
portance of cycles satisfying certain conditions when constructing local equivalence invariants. In this
section we systematically study such special cycles in the (large) equivariant complexes associated to
the S-complex. We describe the behavior of these cycles in the context of the associated unreduced and
reduced framed complexes. These algebraic constructions will be applied in later sections to defined
homology concordance invariants of knots.

3.1 Special cycles of S-complexes

Fix a Z{4-graded S-complex rC over a ring R, and use the same notation for its associated equivariant
complexes as was used in Section 2.2. Let z “ pα,

řN
i“0 aix

iq be an element of the small equivariant
complex pC. If z is a cycle, i.e. pdpzq “ 0, then ipzq P Rrrx´1, xs defines an element in the image of the
homology map i˚. Noting the expressions

pdpzq “ pdα´
N
ÿ

i“0

viδ2paiq, 0q, ipzq “
N
ÿ

i“0

aix
i `

´1
ÿ

i“´8

δ1v
´i´1pαqxi, (42)
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we see that there is some z P pC that produces an element in Im i˚ of x-degree equal to ´k ´ 1 ă 0 if and
only if condition (21) holds; and an element in Im i˚ of x-degree ´k ě 0 if and only if condition (22)
holds. Thus we have the following alternative characterization of the Frøyshov invariant:

hp rCq “ ´min
 

degxpQpxqq | 0 ‰ Qpxq P Im i˚ Ă Rrrx´1, xs
(

P Z. (43)

To explore this structure further, following [DS19, §4.7] we associate to each k P Z the ideal

Jkp rCq :“ tc´k P R | c´kx
´k ` c´k´1x

´k´1 ` ¨ ¨ ¨ P Im i˚ Ă Rrrx´1, xsu.

The Frøyshov invariant is the support of these ideals in the sense that Jkp rCq ‰ 0 if and only if hp rCq ě k.
Since Im i˚ is an Rrxs-module, the non-trivial instances of Jkp rCq form a nested sequence of ideals in R:

J
hp rCq

p rCq Ď J
hp rCq´1

p rCq Ď ¨ ¨ ¨ Ď R

Moreover, the collection tJkp rCqukPZ is a local equivalence invariant of the S-complex rC.

The cycles of interest will be those that realize the elements of the ideals Jkp rCq. We would like to
view these as in pC, as many of the constructions in subsequent sections are tied more directly to the large
equivariant complexes. To this end, we introduce the following terminology. Recall that pΨ : pCÑ pC is a
chain homotopy equivalence.

Definition 3.1. For k P Z and f P R, a chain z P pC is a special pk, fq-cycle if there exists a cycle z P pC
such that pΨpzq “ z and ipzq “ fx´k `

ř´k´1
i“´8 bix

i.

We often call z simply a special cycle, even though the data pk, fq is essential. Note that every cycle
in the image of pΨ is a special cycle for some pk, fq: take f “ 0 and k ! 0. Interesting special cycles have
f ‰ 0. In fact, for any k P Z and f P R, there exists a special pk, fq-cycle in pC if and only if f P Jkp rCq.

We remark that the cycle z in the above definition is uniquely determined by the special cycle z P pC,
since pΦ : pCÑ pC satisfies z “ pΦ ˝ pΨpzq “ pΦpzq.

The following construction plays a central role in subsequent sections.

Proposition 3.2. Given a Z{4-graded S-complex rC over R, let h :“ hp rCq and f P Jhp rCq. Then there
is a special ph, fq-cycle z P pC2h. Moreover, the homology class rzs is uniquely determined by f up to
Rrx2s-torsion. Consequently, we have an injective R-homomorphism

pξ : Jhp rCq Ñ H2hp
pCq{TorRrx2s, f ÞÑ pξpfq :“ rzs (44)

Proof. That there exists a special ph, fq-cycle z follows from the remarks preceding the proposition. To
prove the second statement of the proposition, let z and z1 be two distinct special ph, fq-cycles, whose
associated cycles are z and z1 respectively. Then ipzq “ ipz1q. Indeed, if not, then ipz ´ z1q would have
x-degree strictly smaller than ´h, contradicting (43). Noting that

i˚rzs “ i˚pΨ˚rzs “ Ψ˚i˚rzs,

we have i˚rzs ´ i˚rz
1s “ 0, and hence rzs ´ rz1s “ 0 P Im j˚. As Im j˚ is exactly the Rrx2s-torsion in

HppCq, we conclude that rzs is uniquely determined up to Rrx2s-torsion.
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To prove injectivity, note that by construction, the composition of maps

Jhp rCq
pξ // H2hp

pCq{TorRrx2s
pΦ˚˝i˚ // Im i˚

ch // Jhp rCq

is the identity, where ch is the map which sends
řN
´8 bjx

j to b´h.

We now describe the behavior of special cycles under various operations involving S-complexes.

Lemma 3.3. Let rλ : rC Ñ rC 1 be a height i morphism. Then, for a special pk, fq-cycle z P pC, the chain

pΨ1 ˝ pΦ1 ˝ pλpzq P pC1

is a special pk ` i, cifq-cycle, where ci is defined by the expression in (15).

Proof. Let z “ pΨpzq and z1 “ pΦ1 ˝ pλpzq “ pλpzq. Recall that λ is multiplication by
ř´i
j“´8 cjx

j . Then

i1pz1q “ i1 ˝ pλpzq “ λ ˝ ipzq “

˜

´i
ÿ

j“´8

c´jx
j

¸

¨

˜

fx´k `
´k´1
ÿ

j“´8

bjx
j

¸

.

Thus z1 is a cycle such that i1pz1q has leading term cifx
´k´i.

Let p rCb, rdb, χbq be the tensor product of p rC, rd, χq and p rC 1, rd1, χ1q, and write ppCb,Cb, qCbq for the
large equivariant complexes associated to rCb.

Lemma 3.4. Let z P pC (resp. z1 P pC1) be a special pk, fq-cycle (resp. pk1, f 1q-cycle). Then, the chain

pΨb ˝ pΦb ˝ pT pz bRrxs z
1q P pCb

is a special pk ` k1, ff 1q-cycle.

Proof. Recall the commutative diagram in Proposition 2.15. Since Cb˚ has trivial differential, we have

ib ˝ pΦb ˝ pT pz bRrxs z
1q “ Φb ˝ ib ˝ pT pz bRrxs z

1q “ Φb˚ ˝ i
b
˚ ˝

pT˚przs bRrxs rz
1sq

“ pΦ˚ ˝ i˚rzsq ¨ pΦ
1

˚ ˝ i
1
˚rz

1sq “ pΦ ˝ ipzqq ¨ pΦ
1
˝ i1pz1qq

“

˜

fx´k `
´k´1
ÿ

i“´8

bix
i

¸

¨

˜

f 1x´k
1

`

´k1´1
ÿ

i“´8

b1ix
i

¸

.

The leading term is ff 1x´k´k
1

, and this completes the proof.

Let S be an algebra over R. For an S-complex rC over R, let ppCS ,CS , qCSq denote the large
equivariant complexes of the S-complex rC bR S over the coefficient ring S. The following is immediate.

Lemma 3.5. Let z P pC be a special pk, fq-cycle. Then, the chain

z bR 1 P pCS – pCbR S

is a special pk, fq-cycle, where f “ f ¨ 1 P S.
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3.2 Behavior in unreduced framed complexes

Throughout, we suppose that R is an integral domain algebra over QrT˘1s. Let rC be an S-complex over
R and h :“ hp rCq. Recall from (34) that we have a map

HppCq HpC7q
q7˚

In what follows, it will be convenient to quotient HpC7q by the image of Rrx2s-torsion under q7˚. For
brevity, we use the following notation for this quotient:

HpC7qq :“ HpC7q{q7˚
`

TorRrx2s
˘

In particular, we have a well-defined induced map

HippCq{TorRrx2s HipC
7qq

q7˚

We now apply this map to the special cycle construction of Proposition 3.2.

Proposition 3.6. Let h :“ hp rCq. Then the following maps are injective R-module homomorphisms:

ξ7` : Jhp rCq Ñ H2hpC
7qq, f ÞÑ ξ7`pfq :“ q7˚

pξpfq, (45)

ξ7´ : Jhp rCq Ñ H2h´2pC
7qq, f ÞÑ ξ7´pfq :“ x ¨ q7˚

pξpfq. (46)

In particular, ξ7` and ξ7´ map any non-trivial element in Jhp rCq into a non-torsion element.

Proof. Suppose ξ7`pfq P HpC7qq is zero. Then there is a representative rys P HppCq of pξpfq P

HppCq{TorRrxs such that q7˚rys “ 0. By the exact sequence (34), we have rys “ px2 ´ 4Λ2qrzs for
some rzs P HppCq. Now if f ‰ 0, by definition of pξpfq, we have

Ψ˚i˚ppx
2 ´ 4Λ2qrzsq “ fx´h `

´h´1
ÿ

j“´8

bjx
j .

On the other hand, Ψ˚i˚rzs then has leading term of x-degree equal to ´2´ h, contradicting (43). Thus
f “ 0 and ξ7` is injective. For ξ7´ the argument is similar. The last claim follows from injectivity and the
fact that Jhp rCq is an ideal in an integral domain R.

An alternative proof follows by applying the pairing result given below as Proposition 3.11.

Remark 3.7. We can make the following observation about the module q7˚
`

TorRrx2s
˘

used in the
definition of HipC

7qq. Suppose rzs P HippCq satisfies fpx2qrzs “ 0 for some fpxq P Rrxs. As C7 is
isomorphic to the quotient of pC by the relation x2 ´ 4Λ2, we have 0 “ q7˚pfpx

2q ¨ rzsq “ fp4Λ2q ¨ q7˚rzs.
Thus in the case that fp4Λ2q ‰ 0, the element rzs is R-torsion in HpC7q.
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To make the above construction more explicit, if ξ7`pfq “ rpζ1, ζ2qs for chains ζ1 P rC2h and
ζ2 P rC2h`2, then the description of the x-module structure on C7 in (33) gives the expression

ξ7´pfq “ x ¨ rpζ1, ζ2qs “ rp´2Λ2ζ2,´2ζ1qs. (47)

We now describe the behavior of ξ7˘ under some basic operations.

Lemma 3.8. Let rC and rC 1 be S-complexes over R with h :“ hp rCq and h1 :“ hp rC 1q. If h1 ě h, then for
any height ph1 ´ hq morphism rλ : rC˚ Ñ rC 1 the induced map λ7˚ : HpC7qq Ñ HpC 17qq satisfies

λ7pξ7˘pfqq “ ξ7˘pch1´hfq

Here ch1´h is defined by the expression in (15).

Proof. Let z P pC2h be a special ph, fq-cycle. Then, it follows from Lemma 3.3 that pΨ1 ˝ pΦ1 ˝ pλpzq P pC2h1

is a special ph1, ch1´hfq-cycle. Then we compute

λ7˚pξ
7
`pfqq “ λ7˚ ˝ q

7
˚przsq “ q17˚ ˝

pλ˚przsq “ q17˚ pr
pΨ1 ˝ pΦ1 ˝ pλpzqsq “ ξ7`pch1´hfq.

The second identity follows from the commutative diagram in Proposition 2.18. Since λ7 is an Rrxs-
module homomorphism, this completes the proof.

Let rCb be the tensor product of S-complexes rC and rC 1 overR, and ppCb,Cb, qCbq (resp. Cb7) be the
large equivariant complexes (resp. unreduced framed complex) of rCb. Let h :“ hp rCq and h1 :“ hp rC 1q.
Recall the chain isomorphism T 7 : C7 bRrxs C

17 Ñ Cb7 from Proposition 2.19. We have an induced map

t7 : HpC7qq bRrxs HpC
17qq Ñ HpC7 bRrxs C

17qq.

Lemma 3.9. For any f P Jhp rCq and f 1 P Jh1p rC 1q, the composition of t7 with T 7˚ maps the tensor products
of ξ7˘pfq P HpC

7qq and ξ7˘pf
1q P HpC 17qq as follows:

ξ7`pfq b ξ
7
`pf

1q ÞÑ ξ7`pff
1q ξ7`pfq b ξ

7
´pf

1q ÞÑ ξ7´pff
1q

ξ7´pfq b ξ
7
`pf

1q ÞÑ ξ7´pff
1q ξ7´pfq b ξ

7
´pf

1q ÞÑ ξ7`p4Λ2ff 1q

Proof. Since x ¨ ξ7`pff
1q “ ξ7´pff

1q and x2 ¨ ξ7`pff
1q “ 4Λ2 ¨ ξ7`pff

1q “ ξ7`p4Λ2ff 1q, we only need
to check ξ7`pfq b ξ7`pf

1q ÞÑ ξ7`pff
1q. Let z P pC2h (resp. z1 P pC12h1) be a special ph, fq-cycle (resp.

ph1, f 1q-cycle). Then, from Lemma 3.4, pΨb ˝ pΦb ˝ pT pz b z1q P pCb2h`2h1 is a special ph` h1, ff 1q-cycle.
The result now follows from

T 7˚ ˝ t
7pξ7`pfq b ξ

7
`pf

1qq “ T 7˚ ˝ t
7 ˝ pq7˚ bRrxs q

17
˚ qprzs b rz

1sq “ qb7˚ ˝ pT˚prz b z
1sq

“ qb#
˚ prpΨb ˝ pΦb ˝ pT pz b z1qsq “ ξ7`pff

1q,

where we have used the commutative diagram of Proposition 2.19.
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Finally, we discuss a duality result involving the two maps ξ7` and ξ7´. We start with the following
lemma. In the formulas below, we are using the splitting rC˚ “ C˚ ‘ C˚´1 ‘Rp0q.

Lemma 3.10. Let rC be an S-complex over R, and h :“ hp rCq. The following assertions hold:

(i) If h ą 0, then any representative of the homology class of ξ7`pfq is a cycle pp0, α, 0q, 0q P
rC2h ‘ rC2h`2 for some α P C2h´1 satisfying

δ1v
ipαq “ 0 p0 ď i ă h´ 1q and δ1v

h´1pαq “ f.

(ii) If h “ 0, any representative of ξ7`pfq has the form pp0, α, fq, 0q P rC2h ‘ rC2h`2 for some α P C´1.

(iii) If h ă 0, then any representative of ξ7`pfq is given by a cycle in rC2h ‘ rC2h`2 in the form of
˜

pv´h´1δ2pfq `
´h´2
ÿ

i“0

viδ2pbiq, α, bq, p
´h´2
ÿ

i“0

viδ2pb
1
iq, 0, b

1q

¸

.

Proof. Here we consider the case h ă 0. Let z “ pΨpα,
ř´h
i“0 aix

iq P pC2h be a special ph, fq-cycle. In
particular, a´h “ f . Then

ξ7`pfq “ q7˚przsq “ rq
7 ˝ pΨpα,

´h
ÿ

i“0

aix
iqs.

Here, by the definitions of pΨ and q7, we have

q7 ˝ pΨpα,
´h
ÿ

i“0

aix
iq “ q7

˜

´h
ÿ

i“1

i´1
ÿ

j“0

vjδ2paiqx
i´j´1, α,

´h
ÿ

i“0

aix
i

¸

“

˜

´h
ÿ

i“1

i´1
ÿ

j“0

vjδ2paiqp4Λ2q
t
i´j´1

2 uxpi´j´1q´2t
i´j´1

2 u, α,
´h
ÿ

i“0

aip4Λ2q
t
i
2 uxi´2t

i
2 u

¸

“

˜

v´h´1pa´hq `
´h´2
ÿ

i“0

viδ2pbiq `
´h´2
ÿ

i“0

viδ2pb
1
iqx, α, b` b

1x

¸

for some elements bi, b1i, b, b
1 P R p0 ď i ď ´k ´ 2q. The remaining parts are proved similarly.

Let rC: denote the dual complex of an S-complex rC over R, and C7: denote the framed complex of
rC:. Set h :“ hp rCq “ ´hp rC:q. Then, the duality pairing for ξ7˘ is stated as follows.

Proposition 3.11. For any non-zero elements f P Jhp rCq and f 1 P J´hp rC:q, we have

xξ7`pf
1q, ξ7´pfqy “ xξ

7
´pf

1q, ξ7`pfqy “ ´2ff 1,

where ξ7˘pfq P H˚pC
7qq and ξ7˘pf

1q P H˚pC
:7qq, and the above pairing is induced by the identification

of Proposition 2.20. In particular, the pairing is independent of the choice of representatives for ξ7˘pfq.
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The proof of this proposition uses Lemma 3.10. First we give some remarks on dual S-complexes
following [DS19, §4.4]. For any S-complex rC˚ “ C˚ ‘ C˚´1 ‘ Rp0q, the dual complex rC:˚ has a
splitting of the form C:˚ ‘ C:˚´1 ‘ Rp0q where C:˚ “ HomRpC´˚´1, Rq. With respect to this splitting,
the components of the differential rd: are given by d:, v:, δ:1 and δ:2, where for any f P C:i , we have

d:pfq “ p´1qif ˝ d, v:pfq “ f ˝ v, δ:1pfq “ ´f ˝ δ2p1q, δ:2p1q “ δ1.

Furthermore, the pairing in (35) for ζ “ pα, β, aq P rCi and ζ: “ pf, g, bq P rC:´i is given by

xζ:, ζy “ p´1qigpαq ` fpβq ` ab. (48)

Proof of Proposition 3.11. Here we prove xξ7`pf
1q, ξ7´pfqy “ ´2ff 1 for the case h ą 0. By Lemma 3.10,

the homology class ξ7`pfq P H2hpC
7qq is represented by a cycle pp0, α, 0q, 0q P rC2h ‘ rC2h`2 such that

δ1v
ipαq “ 0 p0 ď i ă h´ 1q and δ1v

h´1pαq “ f,

while ξ7`pf
1q P H´2hpC

:7qq is represented by a cycle in rC:
´2h ‘

rC:
´2h`2 that has the following form

`

˜

pv:qh´1δ:2pf
1q `

h´2
ÿ

i“0

pv:qiδ:2pbiq, ϕ, b

¸

,

˜

h´2
ÿ

i“0

pv:qiδ:2pb
1
iq, 0, b

1

¸

˘

.

Moreover, the formula (47) shows that ξ7´pfq P H2hpC
7q is represented by p0, p0,´2α, 0qq P rC2h´2‘ rC2h.

Therefore, from Proposition 2.20 and (48), we have

xξ7`pf
1q, ξ7´pfqy “

C˜

pv:qh´1δ:2pf
1q `

h´2
ÿ

i“0

pv:qiδ:2pbiq, ϕ, b

¸

, p0,´2α, 0q

G

“

˜

f 1δ1v
h´1 `

h´2
ÿ

i“0

biδ1v
i

¸

p´2αq “ ´2ff 1.

The remaining parts are proved similarly.

3.3 Behavior in reduced framed complexes

Let R be an integral domain algebra over QrT˘1s, rC an S-complex over R and h :“ hp rC˚q. Parallel
to what was done for the unreduced complexes, we now consider special cycles in the reduced framed
complexes rC˘ associated to rC. First, recall from (41) that we have maps

HppCq Hp rC˘q.
rq˘˚

Similar to our convention in the unreduced case, we write Hp rC˘qq for the quotient of Hp rC˘q by the
submodule generated by the image of Rrx2s-torsion under rq˘˚ . Thus we have induced maps

HippCq{TorRrx2s Hip rC
˘qq

rq˘˚
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As rC` and rC´ are isomorphic complexes, for the remainder of this section we focus on the case of
˘ “ `, and drop the symbol ` from most of the notation. The proof of the following is analogous to that
of Proposition 3.6.

Proposition 3.12. Let h :“ hp rCq. Then the following map is an injective R-module homomorphism:

rξ : Jhp rCq Ñ H2hp rC
`qq, f ÞÑ rξpfq :“ rq˚pξpfq (49)

In particular, rξ maps any non-trivial element in Jhp rCq into a non-torsion element.

In this context, the behavior of special cycles under non-negative height morphisms is described as
follows. The proof is entirely analogous to that of Lemma 3.8.

Lemma 3.13. Let rC and rC 1 be S-complexes over R with h :“ hp rCq and h1 :“ hp rC 1q. If h1 ě h, then
for any height ph1 ´ hq morphism rλ : rC Ñ rC 1, the induced map rλ`˚ : Hp rC`qq Ñ Hp rC 1`qq satisfies

rλ`˚ p
rξpfqq “ rξpch´h1fq

Here ch1´h is defined by the expression in (15).

For tensor products, we have the following. Let rCb be the tensor product of S-complexes rC and rC 1

over R. Let h :“ hp rCq and h1 :“ hp rC 1q. We have an induced map

rt : Hp rC`qq bR Hp rC
1`qq Ñ Hp rCb`qq

Lemma 3.14. For any f P Jhp rCq and f 1 P Jh1p rC 1q, we have

rt
´

rξpfq b rξpf 1q
¯

“ rξpff 1q.

Proof. Let z P pC2h (resp. z1 P pC12h1) be a special ph, fq-cycle (resp. ph1, f 1q-cycle). Then, it follows
from Lemma 3.4 that pΨb ˝ pΦb ˝ pT pzb z1q P pCb2h`2h1 is a special ph`h1, ff 1q-cycle. Now we see, using
the commutative diagram from Proposition 2.23,

rtprξpfq b rξpf 1qq “ rt ˝ prq˚ bRrxs rp
1
˚qprzs b rz

1sq “ rqb˚ ˝
pT˚prz b z

1sq

“ rq˚prpΨ
b ˝ pΦb ˝ pT pz b z1qsq “ rξpff 1q.

4 Concordance invariants from special cycles

In this section, we construct several local equivalence invariants of S-complexes using the machinary of
special cycles. As in the previous sections, the element Λ “ T ´ T´1 of QrT˘1s plays an important role
for us. The formal power series ring of Λ may be identified with the completion of the localization of
QrT˘1s at T “ 1. An explicit identification comes from noting that Λ “ apT ´ 1q where a “ 1` T´1

is a unit in QrT˘1s. Thus as a power series in T ´ 1, we can write

Λ “ 2pT ´ 1q ´ pT ´ 1q2 ` pT ´ 1q3 ´ pT ´ 1q4 ` ¨ ¨ ¨
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With this identification, QrrΛss is a QrT˘1s-algebra. Recall that ΘS
QrrΛss denotes the local equivalence

group of Z{4-graded S-complexes over QrrΛss. The first set of invariants are of the form

rs, s7˘, s7, rε : ΘS
QrrΛss Ñ Z.

Applying these constructions to the S-complex rCpY,K; ∆QrrΛssq of a knot in an integer homology 3-sphere
gives corresponding homology concordance invariants. For knots in S3 we show: rs is a homomorphism
and half a slice-torus invariant in the sense of [Lew14]; s7 recovers Kronheimer and Mrowka’s invariant
from [KM13]; and s7˘ recover Gong’s refinements of s7 from [Gon21]. In particular, we prove Theorems
1.1, 1.3 and Corollary 1.2 from the introduction.

We go on to define, for any Z{4-graded S-complex over ZrT˘1s, a ZrT˘1s-submodule

pzp rCq Ă Frac
`

ZrT˘1s
˘

which is a local equivalence invariant. Applying this to knots, we show that this invariant recovers all of
the concordance invariants defined by Kronheimer and Mrowka from [KM21b], proving Theorem 1.7
from the introduction. Finally, we compute all of the invariants introduced in this section for two-bridge
knots, and in particular prove Theorem 1.8.

4.1 The invariant rs

Let rC be an S-complex over QrrΛss and h :“ hp rCq. Since any ideal of QrrΛss is the form of pΛnq, we
have Jhp rCq “ pΛn0q for some n0 P Zě0. Now, rsp rCq is defined as follows.

Definition 4.1. We define

rsp rCq :“ min
!

n´m | Λn P Jhp rCq, rξpΛ
nq “ Λm ¨ y for some y P Hp rC`qq

)

, (50)

where rξ : Jhp rCq Ñ Hp rC`qq is the R-homomorphism in (49).

An equivalent definition of rs uses the induced map rξ : Jhp rCq Ñ Hp rC`qq{TorQrrΛss. In this version,
we can fix any non-negative integer n such that Λn P Jhp rCq and take the minimum over all m for which
the condition in (50) holds.

The following proposition implies the invariance of rs under local equivalence.

Proposition 4.2. Let rC and rC 1 be S-complexes over QrrΛss with i :“ hp rC 1q ´ hp rCq ě 0. If there exists
a height i morphism rλ : rC Ñ rC 1 with ci “ aΛk for some unit a P QrrΛss, we have

rsp rC 1q ď rsp rCq ` k.

In particular, if rλ is a local map (or equivalently, i “ 0 and k “ 0), then rsp rC 1q ď rsp rCq.

Proof. Pick n P Zě0 and y P Hp rC`qq such that rξpΛnq “ Λn´rsp
rCq ¨ y. By applying rλ`˚ to this identity

and then using Lemma 3.13, we have

rξpaΛn`kq “ Λn´rsp
rCq ¨ rλ`˚ pyq.

Since a is a unit, this implies that rsp rC 1q ď pn` kq ´ pn´ rsp rCqq “ rsp rCq ` k.
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Next, we prove sub-additivity of rs.

Proposition 4.3. For any two S-complexes rC and rC 1 over QrrΛss, we have

rsp rC b rC 1q ď rsp rCq ` rsp rC 1q. (51)

In particular, for any S-complex rC and its dual S-complex rC: we have

rsp rC:q ě ´rsp rCq. (52)

Proof. Let rs :“ rsp rCq, rs1 :“ rsp rC 1q. Pick n, n1 P Zě0, rys P Hp rC`q, ry1s P Hp rC`q and representatives
rzs P Hp rC`q and rz1s P Hp rC 1`q for rξpΛnq P Hp rC`qq, rξpΛn

1

q P Hp rC 1`qq such that

rzs “ Λn´rs ¨ rys, rz1s “ Λn
1´rs1 ¨ ry1s.

By Lemma 3.14, the image rzbs of rzs b rz1s with respect to the map

Hp rC`q bR Hp rC
1`q Ñ Hp rCb`q (53)

is a representative for rξpΛn`n
1

q P Hp rCb`qq, and we have

rzbs “ Λn`n
1´rs´rs1rybs (54)

where rybs is the image of rys b ry1s with respect to (53). This gives (51). The inequality in (52) follows
from (51) and the fact that the tensor S-complex rCb rC: is locally equivalent to the trivial S-complex.

Additivity of rs will be established under the following condition, which is a condition which holds for
S-complexes of knots in the 3-sphere, see Remark 2.21.

Assumption 4.4. Hkp rC
`q has rank 1 for k ” 0 pmod 2q, and rank 0 for k ” 1 pmod 2q.

Remark 4.5. It is straightforward to verify, using the Künneth formula, that if the S-complexes rC and rC 1

satisfy Assumption 4.4, then so too does the tensor product S-complex rC b rC 1. Similarly, if rC satisfies
Assumption 4.4, then so does the dual rC:.

Note that under Assumption 4.4, the natural quotient map Hp rC`q Ñ Hp rC`qq is an isomorphism
mod QrrΛss-torsion. This follows from the injectivity of the map rξ. Thus Hp rC`q{TorQrrΛss can be used as
the homology group appearing in the definition of rs.

Proposition 4.6. If rC and rC 1 satisfy Assumption 4.4, then we have

rsp rC b rC 1q “ rsp rCq ` rsp rC 1q. (55)

In particular, if rC satisfies Assumption 4.4, then rsp rC:q “ ´rsp rCq.

37



Proof. With the remark preceding the statement of the proposition in mind, in the proof of Proposition 4.3
we replace the instances of Hp rC`qq, Hp rC 1`qq and Hp rCb`qq with the respective QrrΛss-modules
Hp rC`q, Hp rC 1`q and Hp rCb`q modulo QrrΛss-torsion. Now rys, ry1s are generators of the free modules
Hp rC`q{TorQrrΛss, Hp rC 1`q{TorQrrΛss respectively, and rybs is a generator of Hp rCb`q{TorQrrΛss. This last
point, together with (54), computes (55).

Now, if K is a knot in an integer homology 3-sphere Y , we define

rspY,Kq :“ rs
´

rCpY,K; ∆QrrΛssq
¯

. (56)

which by construction induces a map from the homology concordance group to Z. In particular, restricting
to knots in the 3-sphere induces a concordance invariant

rs : C Ñ Z (57)

which is a homomorphism by Remark 2.21 and Proposition 4.6.

Remark 4.7. The construction of rs does not require the completion of a ring: we could have simply used
QrT˘1s localized at T ´ 1. We take the completion as a matter of convenience, to more easily align our
constructions with those of [KM13], as is done in the proof of Theorem 4.17. Similar remarks hold for
the invariants defined in the next section. See also the discussion of coefficients Section 4.2.2.

Remark 4.8. The reader may find the choice of coefficient ring QrrΛss and the element Λ used in this
section mysterious. The definition of rs, together with Proposition 4.2 and Proposition 4.3, in fact work
more generally for S-complexes over an integral domain R localized at a prime principal ideal, such as
pΛq above. The particular choice of R “ QrrΛss with its prime ideal pΛq is motivated by Remark 2.21,
which says that the corresponding instanton homology for knots in S3 satisfies Assumption 4.4.

4.2 Kronheimer and Mrowka’s s7-invariant

We now define local equivalence invariants s7` and s7´ that induce maps

s7˘ : ΘS
QrrΛss Ñ Z

Similar to the case of rs, these are defined using special cycles. We write the sum as s7 :“ s7` ` s7´.
Applying these constructions to the S-complex of a knot defines Z-valued homology concordance
invariants. For knots K in the 3-sphere, we show that our s7 recovers Kronheimer and Mrowka’s invariant
from [KM13], and that s7` and s7´ recover Gong’s refinements of s#pKq from [Gon21].

4.2.1 s7-invariants of S-complexes

Let rC be an S-complex over QrrΛss and h :“ hp rCq. Recall that Λn P Jhp rCq for n " 0.
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Definition 4.9. We define s7˘p rCq as follows:

s7`p
rCq :“ min

!

n´m
ˇ

ˇ

ˇ
Λn P Jhp rCq, ξ

7
`pΛ

nq “ Λmy` for some y` P H2hpC
7qq

)

(58)

s7´p
rCq :“ min

!

n´m
ˇ

ˇ

ˇ
Λn P Jhp rCq, ξ

7
´pΛ

nq “ Λmy´ for some y´ P H2h´2pC
7qq

)

(59)

Here ξ7˘ : Jhp rCq Ñ H˚pC
7qq are the homomorphisms in (45)–(46). The s7-invariant of rC is defined by

s7p rCq :“ s7`p
rCq ` s7´p

rCq.

Remark 4.10. Our description in Definition 4.9 of the s7-invariant, using the divisibility of certain
canonical classes, is reminiscent of an alternative description of the Rasmussen invariant given in [San20].

The equalities x ¨ ξ7`pΛ
nq “ ξ7´pΛ

nq and 1
4x ¨ ξ

7
´pΛ

nq “ ξ7`pΛ
n`2q imply the inequality

0 ď s7`p
rCq ´ s7´p

rCq ď 2. (60)

Proposition 4.11. Let rC and rC 1 be S-complexes over QrrΛss with i :“ hp rC 1q ´ hp rCq ě 0. If there exists
a height i morphism rλ : rC Ñ rC 1 with ci “ aΛk for some unit a P QrrΛss, we have

s7`p
rC 1q ď s7`p

rCq ` k and s7´p
rC 1q ď s7´p

rCq ` k.

In particular, if rλ is a local map (or equivalently, i “ 0 and k “ 0), then s7˘p rC
1q ď s7˘p

rCq for each sign.

Proof. The proof is the same as Proposition 4.2, except we use Lemma 3.8 instead of Lemma 3.13.

Proposition 4.12. For any two S-complexes rC and rC 1 over QrrΛss, we have the inequalities

s7`p
rC b rC 1q ď min

#

s7`p
rCq ` s7`p

rC 1q,

s7´p
rCq ` s7´p

rC 1q ` 2

+

and s7´p
rC b rC 1q ď min

#

s7`p
rCq ` s7´p

rC 1q,

s7´p
rCq ` s7`p

rC 1q

+

.

Proof. Let s˘ :“ s7˘p
rCq, s1˘ :“ s7˘p

rC 1q, and Cb7˚ denote the framed complex of the tensor product of rC

and rC 1. Then there exist elements

y˘ P H2hp rCq´1˘1
pC7qq and y1˘ P H2hp rC1q´1˘1

pC 17˚ q
q

such that Λn˘´s˘y˘ “ ξ7˘pΛ
n˘q and Λn

1
˘´s

1
˘y1˘ “ ξ7˘pΛ

n1˘q. By Lemma 3.9, we have:

Λn``n
1
`´s`´s

1
`T 7˚ ˝ t

7py` b y
1
`q “ ξ7`pΛ

n``n1`q

Λn``n
1
´´s`´s

1
´T 7˚ ˝ t

7py` b y
1
´q “ ξ7´pΛ

n``n1´q

Λn´`n
1
`´s´´s

1
`T 7˚ ˝ t

7py´ b y
1
`q “ ξ7´pΛ

n´`n1`q

1
4Λn´`n

1
´´s´´s

1
´T 7˚ ˝ t

7py´ b y
1
´q “ ξ7`pΛ

n´`n1´`2q.

These complete the proof.
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To proceed, we impose Assumption 4.4, which in the current setting has the following characterization.

Lemma 4.13. Assumption 4.4 for an S-complex rC is equivalent to the condition that HkpC
7q has rank 1

if k pmod 4q is even, and is zero if k pmod 4q is odd.

Proof. The equivalence follows from the short exact sequence of R-chain complexes in (40), which splits
over the field of fractions of R “ QrrΛss.

It follows from Lemma 4.13 and the injectivity of the maps ξ7˘ from Proposition 3.6 that under
Assumption 4.4, the natural quotient map HpC7q Ñ HpC7qq is an isomorphism mod QrrΛss-torsion. In
particular, HpC7q{TorQrrΛss can be used as the homology group appearing in the definitions of s7˘. This
fact is used in the proof of the following.

Proposition 4.14. Let rC: be the dual of an S-complex rC over QrrΛss. If rC satisfies Assumption 4.4, then

s7`p
rC:q “ ´s7´p

rCq and s7´p
rC:q “ ´s7`p

rCq.

Proof. Here we prove s7`p rC
:q “ ´s7´p

rCq. Let s :“ s7´p
rCq and s: :“ s7`p

rC:q, and let C:# denote the
unreduced framed complex of rC:. By the assumption, there exist generators

y´ P H2h´2pC
7q{TorQrrΛss and y:` P H´2hpC

:#
˚ q{TorQrrΛss

such that Λn´sy´ “ ξ7´pΛ
nq and Λn

1´s:y:` “ ξ7`pΛ
n1q. By Proposition 2.20, H´2hpC

:7q{TorQrrΛss is
isomorphic to HompH2h´2pC

7q,QrrΛssq. Under this identification, we see that xy:`, y´y “ a for some
unit a P QrrΛss, and we have

xξ7`pΛ
n1q, ξ7´pΛ

nqy “ xΛn
1´s:y:`, Λn´sy´y “ aΛn`n

1´s´s: .

On the other hand, Proposition 3.11 gives

xξ7`pΛ
n1q, ξ7´pΛ

nqy “ ´2Λn`n
1

.

These imply s7´p rCq ` s
7
`p

rC:q “ s` s: “ 0. Similarly, we can prove s7`p rCq ` s
7
´p

rC:q “ 0.

Proposition 4.15. For S-complexes rC and rC 1 over QrrΛss satisfying Assumption 4.4, we have:

max

#

s7`p
rCq ` s7´p

rC 1q,

s7´p
rCq ` s7`p

rC 1q

+

ď s7`p
rC b rC 1q ď min

#

s7`p
rCq ` s7`p

rC 1q,

s7´p
rCq ` s7´p

rC 1q ` 2

+

(61)

max

#

s7´p
rCq ` s7´p

rC 1q,

s7`p
rCq ` s7`p

rC 1q ´ 2

+

ď s7´p
rC b rC 1q ď min

#

s7`p
rCq ` s7´p

rC 1q,

s7´p
rCq ` s7`p

rC 1q

+

(62)

Proof. Combining Proposition 4.14 with Remark 4.5, we have

s7`p
rC b rC 1q “ ´s7´p

rC: b rC 1:q ě ´min

#

s7`p
rC:q ` s7´p

rC 1:q,

s7´p
rC:q ` s7`p

rC 1:q

+

“ max

#

s7`p
rCq ` s7´p

rC 1q,

s7´p
rCq ` s7`p

rC 1q

+

.

The remaining part is proved similarly.
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Now we prove the S-complex version of Theorem 1.3. (Note that for proving Theorem 1.3, we need
the agreement of s7

`

rCpS3,K;QrrΛssq
˘

with Kronheimer and Mrowka’s s7pKq, discussed below.)

Theorem 4.16. For two S-complexes rC and rC 1 over QrrΛss satisfying Assumption 4.4, we have

|s7p rC b rC 1q ´ s7p rCq ´ s7p rC 1q| ď 1.

Proof. As a consequence of Proposition 4.15, we have the inequalities:

s7p rCq ` s7p rC 1q ď 2s7`p
rC b rC 1q ď s7p rCq ` s7p rC 1q ` 2

´2` s7p rCq ` s7p rC 1q ď 2s7´p
rC b rC 1q ď s7p rCq ` s7p rC 1q

These gives the desired inequality.

4.2.2 Recovering Kronheimer and Mrowka’s s7

Write s7pKq for Kronheimer and Mrowka’s concordance invariant from [KM13], and s7˘pKq for the
refinements satisfying s7pKq “ s7`pKq ` s

7
´pKq, studied by Gong in [Gon21]. Here we prove:

Theorem 4.17. For any knot K in S3, we have

s7˘pKq “ s7˘
`

rCpS3,K; ∆QrrΛssq
˘

.

Consequently, s7pKq agrees with s7
`

rCpS3,K; ∆QrrΛssq
˘

.

Before giving the proof, we review the definition of the concordance invariants s7˘pKq. The main
ingredient in the definition is the framed version I7pKq of singular instanton Floer homology defined in
[KM13]. First, we give some remarks on coefficient rings.

In [KM13], I7pKq is first defined over the coefficient ring Qru˘1s, and then over the ring Qrrλss. This
latter ring is identified with the completion of the ring Qru˘1s localized at the prime ideal pu´ 1q. This
completion is taken so that there is a square-root for the expression

u` u´1 ´ 2 (63)

in the ring, one of which corresponds to λ. Our variable T is related to their u by u “ T 2, and our
Λ “ T ´ T´1, which is already a square-root of (63) (so that a completion is in fact unnecessary),
replaces the role of λ. More precisely, there is a natural map from Qru˘1spu´1q “ QrT˘2spT 2´1q to
QrT˘1spT´1q, which induces an isomorphism on completions, and which in turn is used to identify Qrrλss
with QrrΛss. All homology groups I7pKq below will be taken with the coefficient ring QrrΛss. We also
write I7pKq1 “ I7pKq{TorQrrΛss.

In [KM13], it is proved that for any knot K in the 3-sphere, I7pKq has rank 2 over QrrΛss in degrees 1
and ´1 pmod 4q. In the case of the unknot U1, these generators are respectively called u` and u´. Next,
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take a normally immersed oriented surface cobordism S from U1 to K in I ˆ S3 with genus g and s`
positive double points. Then, S induces a map

m7pSq : QrrΛssxu`y ‘QrrΛssxu`y “ I7pU1q
1 Ñ I7pKq1. (64)

Then the invariants s7˘pKq defined in [Gon21] are given by

s7`pKq :“ g ` s` ´m`pSq, s7´pKq :“ g ` s` ´m´pSq,

where m˘pSq are the maximal non-negative integers satisfying, for some y˘ P I7pKq1 in degree ˘1:

m7pSqu` “

#

Λm`pSqy` if g is even
Λm`pSqy´ if g is odd

m7pSqu´ “

#

Λm´pSqy´ if g is even
Λm´pSqy` if g is odd

The invariant s7pKq from [KM13] is defined to be the sum s7`pKq ` s
7
´pKq.

Proposition 4.18 ([KM13]). For any knot K in S3, we have

s7˘pK
˚q “ ´s7¯pKq.

Proof. We first take an embedded cobordism S from U to K appearing in the definition of s7˘pKq.
We obtain a cobordism S˚ from K˚ to U which is the same as S, but the incoming and the outgoing
ends are switched. This gives a cobordism map m7pS˚q from I7pK˚q1 to I7pU1q

1. As is explained in
[KM13, Lemma 3.2], this map is the dual of the map (64) where the generators y˚˘ of I7pK˚q1 in degrees
˘1 are identified with the dual basis using the relation xy˚˘, y¯y “ 1. Also, we take an embedded
cobordism T from U to K˚, and for simplicity, we assume that gpSq and gpT q are even. Then, since the
composition S˚ ˝ T is a cobordism from the unknot to itself,

0 “ s7˘pUq “ gpS˚ ˝ T q ´m˘pS
˚ ˝ T q.

Now, m˘pS˚ ˝ T q “ m˘pT q `m¯pSq. We then compute:

0 “ s7˘pUq “ gpT q ` gpSq ´m˘pT q ´m¯pSq “ s7¯pKq ` s
7
˘pK

˚q.

For a knot K Ă S3, write C7pKq for the unreduced framed complex associated to the S-complex
rCpS3,K; ∆QrrΛssq. Analogous to I7pKq1, the quotient ofHpC7pKqq by TorQrrΛss is denoted byHpC7pKqq1.

Lemma 4.19. Let S : U Ñ K be an orientable surface cobordism in I ˆ S3 with genus zero and s`
positive double points. Suppose σpKq ď 0. Then S induces a homomorphism

λ7S : HpC7pUqq1 Ñ HpC7pKqq1 (65)

This homomorphism sends the generators u˘ to ξ7˘pΛ
s`q.
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Proof. This follows from Lemma 3.8, and the fact that such a cobordism induces a morphism of height
hpS3,Kq “ ´σpKq{2 ě 0, as explained in Section 2.1; see (18). Note that since Assumption 4.4 is
satisfied for knots in the 3-sphere, in this setting HpC7qq{TorQrrΛss is isomorphic to HpC7q1.

Now, we give a proof of Theorem 4.17:

Proof of Theorem 4.17. From Proposition 4.18, one can assume hpS3,Kq ě 0. Let S : U1 Ñ K be a
negative definite cobordism with genus 0. Since S also induces the following commutative diagram:

I7pUq1
m7pSq
ÝÝÝÝÑ I7pKq1

–

§

§

đ

–

§

§

đ

HpC7pUqq1
λ7S

ÝÝÝÝÑ HpC7pKqq1

The vertical isomorphisms are from Theorem 2.16. By definition, we have s7˘pKq “ s` ´m˘, where
m˘ are the maximal non-negative integers such that m7pSqu˘ “ Λmy˘ for some elements y˘ in I7pKq1.
Lemma 4.19 implies

Λm˘y˘ “ m7pSqu˘ “ λ7Su˘ “ ξ7˘pΛ
s`q,

and hence we obtain
s7˘p

rCpS3,K; ∆QrrΛssqq “ s` ´m˘ “ s7˘pKq.

The following is a restatement of Theorem 1.3 from the introduction.

Theorem 4.20. For any pair of knots K and K 1 in the 3-sphere, we have

|s7pK#K 1q ´ s7pKq ´ s7pK 1q| ď 1.

Proof. This follows from Theorem 4.17 and Theorem 4.16.

Similarly, the inequalities of Section 4.2.1 give rise to connected sum inequalities for s7˘.

4.3 Relationship between rs and s7

We next study the relationship between the concordance homomorphism rs and the invariants s7˘. In the
course of doing so, we establish that 2rs is a slice-torus invariant, in the sense of [Lew14]. We begin by
studying the relationship between these invariants at the level of S-complexes.

Proposition 4.21. For any S-complex rC over QrrΛss satisfying Assumption 4.4, we have the inequalities

maxts7`p
rCq ´ 1, s7´p

rCqu ď rsp rCq ď mints7`p
rCq, s7´p

rCq ` 1u. (66)

In particular, we have
|s7p rCq ´ 2rsp rCq| ď 1.
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Proof. By Proposition 4.3 and Proposition 4.14, we only need to prove the right-hand inequality in (66).

Recall the map π` : C7 Ñ rC` in (39), defined over QrrΛss by the formula r1 Λs with respect to the
decomposition of rC`. Regard a special php rCq,Λnq-cycle in pC as a polynomial Qpxq whose coefficents
are chains of rC, and consider the decomposition Qpxq “ Q1px2q ` xQ2px2q. Using (33), we have:

pπ`q˚pξ
7
`pΛ

nqq “ pπ`q˚ ˝ p
7
˚prQ

1px2q ` xQ2px2qsq “ pπ`q˚
`“

pQ1p4Λ2q,´2Q2p4Λ2qq
‰˘

“
“

Q1p4Λ2q ´ 2ΛQ2p4Λ2q
‰

“ rp˚
`“

Q1px2q ` xQ2px2q
‰˘

“ rξpΛnq

pπ`q˚pξ
7
´pΛ

nqq “ pπ`q˚ ˝ p
7
˚prxQ

1px2q ` x2Q2px2qsq “ pπ`q˚
`“

p4Λ2Q2p4Λ2q,´2Q1p4Λ2qq
‰˘

“
“

4Λ2Q2p4Λ2q ´ 2ΛQ1p4Λ2q
‰

“ ´2Λrp˚
`“

Q1px2q ` xQ2px2q
‰˘

“ ´2rξpΛn`1q

These complete the proof.

We give two applications of Proposition 4.21. The first is a description of rs as a limit.

Proposition 4.22. For any S-complex rC over QrrΛss satisfying Assumption 4.4, we have

rsp rCq “
1

2

˜

lim
nÑ8

s7p rCbnq

n

¸

where rCbn denotes the tensor product of n copies of rC.

Proof. This immediately follows from the inequality

|s7p rCbnq ´ n ¨ 2rsp rCq| ď 1

given by Proposition 4.6 and Proposition 4.21.

As the S-complexes of knots in the 3-sphere satisfy Assumption 4.4, we obtain the following.

Corollary 4.23. For a knot K in the 3-sphere, we have

rspKq “
1

2

ˆ

lim
nÑ8

s7p#nKq

n

˙

.

This description allows us to prove the slice-torus property [Lew14] of 2rs, where rs : C Ñ Z is the
concordance homomorphism of (57). Write g4pKq for the smooth 4-ball genus of K.

Theorem 4.24. The map rs : C Ñ Z is half a slice-torus invariant, i.e. rs satisfies the following properties:

(i) rspKq is a homomorphism;

(ii) rspKq ď g4pKq;
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(iii) rspTp,qq “ g4pTp,qq where Tp,q denotes the pp, qq torus knot.

The equality rspKq “ g4pKq holds more generally for any quasi-positive knot.

Proof. Property (i) immediately follows from Theorem 5.8 and Proposition 4.3. Property (ii) follows
from Corollary 4.23 and the genus bound for s7 given by

s7pKq ď 2g4pKq,

which is a direct consequence of Kronheimer and Mrowka’s construction of s7pKq in [KM13]. Indeed,

g4pKq ě
g4p#nKq

n
ě

1

2

ˆ

s7p#nKq

n

˙

Ñ rspKq pnÑ8q.

Property (iii), and the last statement regarding quasi-positive knots, follow from Corollary 4.23 and
[Gon21, Proposition 1.8]: for any quasi-positive knot,

2g4pKq ´ 1 ď s7pKq ď 2g4pKq. (67)

Indeed, since the connected sum of two quasi-positive knots is also quasi-positive, and g4 is additive
among quasi-positive knots [Rud93], the inequalities (67) imply

2g4pKq ´
1

n
ď
s7p#nKq

n
ď 2g4pKq

for any n P Zą0. Thus, we have rspKq “ 1
2

ˆ

lim
nÑ8

s7p#nKq

n

˙

“ g4pKq.

Using [Lew14, Corollary 5.9], we also obtain the following. Note that this result together with
Theorem 4.24 proves Corollary 1.2 from the introduction.

Corollary 4.25. For an alternating knot K, we have

rspKq “ ´
1

2
σpKq.

In particular, we have
|s7pKq ` σpKq| ď 1.

As the second application of Proposition 4.21, we give a new t´1, 0, 1u-valued concordance invariant
rε, which behaves similar to Hom’s ε-invariant [Hom14, Definition 3.4] in Heegaard Floer theory.

Definition 4.26. For an S-complex rC over QrrΛss, we define

rεp rCq :“ 2rsp rCq ´ s7p rCq.

By Proposition 4.21, if the S-complex rC satisfies Assumption 4.4, then rεp rCq P t´1, 0, 1u. For any knot
K in an integer homology 3-sphere Y , we define

rεpY,Kq :“ rε
`

rCpY,K; ∆QrrΛssq
˘

.

In the case that Y “ S3, we abbreviate rεpS3,Kq to rεpKq. In particular, we have

rεpKq P t´1, 0, 1u.
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Proof of Theorem 1.1. The result follows from Theorem 4.24 and the above properties of rε.

We show the following properties of rε analogous to [Hom14, Proposition 3.6].

Proposition 4.27. The invariant rε satisfies the following properties for knots in S3:

(i) if K is smoothly slice, then rεpKq “ 0;

(ii) rεp´Kq “ ´rεpKq;

(iii) (a) if rεpKq “ rεpK 1q, then rεpK#K 1q “ rεpKq “ rεpK 1q;

(b) if rεpKq “ 0, then rεpK#K 1q “ rεpK 1q.

To prove the proposition, we introduce three types of S-complexes over QrrΛss according to the
inequalities (60). See also the discussion in [Gon21, Proposition 1.7].

Definition 4.28. Let rC be an S-complex over QrrΛss. We call rC Type O, Type I and Type II if the value
of s7`p rCq ´ s

7
´p

rCq is equal to 0, 1 and 2 respectively.

Lemma 4.29. For an S-complex rC over QrrΛss satisfying Assumption 4.4, we have the following:

(i) rC is Type O if and only if rsp rCq “ s7`p
rCq “ s7´p

rCq.

(ii) rC is Type I if and only if rsp rCq “ s7`p
rCq “ s7´p

rCq ` 1 or rsp rCq “ s7`p
rCq ´ 1 “ s7´p

rCq.

(iii) rC is Type II if and only if rsp rCq “ s7`p
rCq ´ 1 “ s7´p

rCq ` 1.

In particular, rεp rCq “ 0 if and only if rC is Type O or Type II.

Proof. All assertions directly follow from the inequalities (66).

Lemma 4.30. Let rC and rC 1 be S-complexes over QrrΛss satisfying Assumption 4.4.

(i) If rC is Type O, then s7`p rC b rC 1q “ s7`p
rCq ` s7`p

rC 1q and s7´p rC b rC 1q “ s7´p
rCq ` s7´p

rC 1q.

(ii) If rC is Type II, then s7`p rC b rC 1q “ s7`p
rCq ` s7´p

rC 1q and s7´p rC b rC 1q “ s7´p
rCq ` s7`p

rC 1q.

In particular, if rεp rCq “ 0, then s7p rC b rC 1q “ s7p rCq ` s7p rC 1q.

Proof. Suppose that rC is Type O. Then Proposition 4.15 gives the following:

s7`p
rCq ` s7`p

rC 1q “ s7´p
rCq ` s7`p

rC 1q ď s7`p
rC b rC 1q ď s7`p

rCq ` s7`p
rC 1q,

s7´p
rCq ` s7´p

rC 1q ď s7´p
rC b rC 1q ď s7`p

rCq ` s7´p
rC 1q “ s7´p

rCq ` s7´p
rC 1q.
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Similarly, if rC is Type II, then

s7`p
rCq ` s7´p

rC 1q ď s7`p
rC b rC 1q ď s7´p

rCq ` s7´p
rC 1q ` 2 “ s7`p

rCq ` s7´p
rC 1q,

s7´p
rCq ` s7`p

rC 1q “ s7`p
rCq ` s7`p

rC 1q ´ 2 ď s7´p
rC b rC 1q ď s7´p

rCq ` s7`p
rC 1q.

Finally, Lemma 4.29 completes the proof.

Now we prove Proposition 4.27.

Proof of Proposition 4.27. If K is smoothly slice, then rεpKq “ 2rspKq ´ s7pKq “ 0 follows from the
slice genus bounds for rs and s7 (see Theorem 1.1). By Proposition 4.6 and Proposition 4.14, we have
property (ii):

rεp´Kq “ 2rsp´Kq ´ s7p´Kq “ ´p2rspKq ´ s7pKqq “ ´rεpKq.

Let us consider property (iii). By Lemma 4.30 and property (ii), it suffices to prove the assertion (a) for
the case rεpKq “ rεpK 1q “ 1. Indeed, Proposition 4.6 and Theorem 4.16 imply

rεpK#K 1q “ 2rspK#K 1q ´ s7pK#K 1q ě p2rspKq ´ s7pKqq ` p2rspK 1q ´ s7pK 1qq ´ 1 “ 1.

Motivated by [Hom14, Proposition 3.6], we expect a positive answer to the following question.

Question 4.31. Does rε satisfy the following properties?

(i) If rεpKq “ 0, then rspKq “ 0.

(ii) If |rspKq| “ gpKq, where gpKq is the Seifert genus of K, then rεpKq “ sgn rspKq.

(iii) If K is homologically thin in the sense of Heegaard Floer theory, then rεpKq “ sgn rspKq.

We expect that one can define a corresponding homologically thinness for instanton theory in terms of
rC. Item (iii) is proved below for the special case of two-bridge knots in Proposition 4.53, and the proof
gives some indication of how one might define homological thinness in terms of S-complexes.

4.4 Fractional ideal invariants from instantons

Several concordance invariants for knots K Ă S3 were introduced recently by Kronheimer and Mrowka
in [KM21b], using a version of singular instanton homology defined for webs. Building on the work in
[DS19], we define an Rrxs-submodule pzpKq inside the field of fractions of Rrxs which is constructed
from the S-complex of the knot, using special cycles. We show that pzpKq specializes, upon changing
coefficients, to Kronheimer and Mrowka’s fractional ideal z6σpKq from [KM21b]. As a consequence of this
relationship, all of the concordance invariants defined in [KM21b] depend only on the local equivalence
class of the S-complex rCpK; ∆q.
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Let R be an integral domain and M be an arbitrary R-module. For two R-submodules N1 and N2 in
M , recall that the ideal rN1 : N2s is the R-submodule of FracpRq given by

rN1 : N2s “

!a

b

ˇ

ˇ

ˇ
aN2 Ă bN1

)

.

For m PM , we write rN1 : ms :“ rN1 : N2s where N2 is the submodule generated by m. Note that if
m is altered by a torsion element, then rN1 : ms is unchanged. For the remainder of this section, R will
denote the ring ZrT˘1s.

We now review the construction of Kronheimer and Mrowka’s ideals z6σpKq for any knot K in the
3-sphere. Let I6pK; S q be the instanton homology as defined in [KM21b], using local coefficients over

S “ FrT˘1
1 , T˘1

2 , T˘1
3 s

where F is the field with two elements. In what follows, we will often ignore torsion. Thus we write

I6pK; S q1 “ I6pK; S q{TorS

Kronheimer and Mrowka show that I6pK; S q1 – S as an S -module. Let S : U1 Ñ K be an orientable
surface cobordism in r0, 1s ˆ S3, possibly immersed, with transverse double points. Let g be its genus,
and s` be the number of positive double points. There is an induced S -module homomorphism

I6pSq : I6pU1; S q1 Ñ I6pK; S q1

With these choices, define z6pKq Ă FracpS q as follows:

z6pKq :“ P gpT 2
1 ´ T

´2
1 qs`rI6pK; S q1 : I6pSqp1qs (68)

Here, the element P is the symmetric Laurent polynomial defined as follows:

P “ T1T2T3 ` T1T
´1
2 T´1

3 ` T´1
1 T2T

´1
3 ` T´1

1 T´1
2 T3

If σ : S Ñ S 1 is a ring homomorphism, we obtain an ideal z6σpKq Ă FracpS 1q by base change.
Kronheimer and Mrowka prove that z6σpKq depends only on the knot K, and is a concordance invariant.

Remark 4.32. For defining cobordism maps of immersed surfaces, we are following the conventions of
[DS20, §2.5]. The definition of maps for immersed surfaces in [KM21b] is slightly different and is given
as the sum of maps of the form I6pW,S, cq where W is the blow up of r0, 1s ˆ S3 at the double points,
S is the proper transform of S, and c runs over a set of degree two cohomology classes of exceptional
spheres. The definition of z6pKq given above, at least when s` ‰ 0, is slightly different from the one in
[KM21b] because of this difference in convention. However, the above definition gives the same invariant
z6pKq as in [KM21b] because we can use a surface cobordism S with s` “ 0, and then use the invariance
of both definitions from the choice of S.

The theory IpK; S q1 used in the above construction is related to the S-complex of a knot as follows.
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Theorem 4.33 (Corollary 8.41 of [DS19]). There is a natural isomorphism of S -modules

I6pKq – pIpK; ∆q bZrT˘1,xs S

where on the right, the ZrT˘1, xs-algebra structure of S is given by reducing coefficients mod 2, and

T ÞÑ T1, x ÞÑ P. (69)

We now introduce a local equivalence invariant associated to any S-complex, which we will show
below can be used to recover Kronheimer and Mrowka’s invariants z6σpKq.

Definition 4.34. Let R be an integral domain, rC an S-complex over R, h :“ hp rCq, f P Jhp rCqzt0u, and
pξ : Jhp rCq Ñ H2hp

pCq{TorRrx2s the R-homomorphism in (44). Define

pzp rCq :“ f rHppCq : pξpfqs Ă FracpRrxsq.

Proposition 4.35. pzp rCq is independent of the choice of f P Jhp rCq.

Proof. This follows from the general property rN1 : N2s “ rrN1 : rN2s for any r P R.

Proposition 4.36. Let rC and rC 1 be S-complexes over R with i :“ hp rC 1q ´ hp rCq ě 0. If there exists a
height i morphism rλ : rC Ñ rC 1, then, with ci as defined in (15), we have

ci ¨ pzp rCq Ă pzp rC 1q.

In particular, if rλ is a local map (or equivalently, i “ 0 and ci is a unit of R), then pzp rCq Ă pzp rC 1q.

Proof. Lemma 3.3 implies pλ˚ppξpfqq “ pξpcifq P H˚ppC
1
˚q. Hence we have

cipzp rCq “ cif
!a

b

ˇ

ˇ

ˇ
apξpfq P bH˚ppC˚q

)

Ă cif
!a

b

ˇ

ˇ

ˇ
apλ˚ppξpfqq P bpλ˚pH˚ppC˚qq

)

Ă cif
!a

b

ˇ

ˇ

ˇ
apξpcifq P bH˚ppC

1
˚q

)

“ pzp rC 1q.

It follows that the Rrxs-submodule pzp rCq Ă FracpRrxsq is a local equivalence invariant of rC.

Definition 4.37. Let K be a knot in an integer homology 3-sphere Y . With R “ ZrT˘1s, define

pzpY,Kq :“ pzp rCpY,K; ∆qq

This is an Rrxs-submodule pzpY,Kq Ă FracpRrxsq. If Y “ S3, we simply write pzpKq.

From above, we see that pzpY,Kq is a homology concordance invariant of pY,Kq. For the remainder
of this section we focus on the case of knots in the 3-sphere.
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To relate pzpKq to z6σpKq, we give a cobordism interpretation of pzp rCq, similar to (68). Take an
immersed cobordism S : U1 Ñ K as above, with g “ 0. If h :“ ´σpKq{2 ě 0, we obtain the induced
morphism rλS : rCpU1; ∆q Ñ rCpK; ∆q of height h, with ch equal to pT 2 ´ T´2qs` , up to a unit. Thus

pIpSqp1q “ pIpSqppξp1qq “ pξppT 2 ´ T´2qs`q (70)

where pIpSq “ ppλSq˚. From this we immediately obtain

pzpKq “ pT 2 ´ T´2qs`rpIpK; ∆q : pIpSqp1qs (71)

Using Theorem 4.33 and its naturality with respect to cobordism maps, we see that z6pKq is obtained
from pzpKq by tensoring with S , using the base change described in (69).

The above argument leading to (71) only works for knots with non-positive signature. To work around
this, we extend our discussion to cobordisms S : K 1 Ñ K inside r0, 1s ˆ S3 which as above have genus
g and some double points, but for which K 1 is not necessarily the unknot. From (18), we have that if

h :“
1

2
σpK 1q ´

1

2
σpKq ´ g ě 0,

then such a cobordism induces a morphism of S-complexes of height h, with ch equal to pT 2 ´ T´2qs`

up to a unit. Now, if ´σpKq{2 ă 0, S has genus zero, and K 1 “ #lT
˚
2,3 where l ě σpKq{2, then h ě 0,

and so S induces such a morphism. Having replaced U1 by a connected sum of left-handed trefoils, we
require the following.

Lemma 4.38. Let l ě 0. Then J´lp#lT
˚
2,3q “ R, and pξp1q is a generator of pIp#lT

˚
2,3; ∆q1 – Rrxs.

Proof. The S-complex for T ˚2,3 is rC “ C˚ ‘ C˚´1 ‘ Rp0q where C˚ has one generator α in degree
2 pmod 4q; further, d “ δ1 “ v “ 0 and δ2p1q “ pT

2 ´ T´2qα. For details, see [DS19, §9]. Thus
pC “ xαy ‘Rrxs with differential

pdpaα,
N
ÿ

i“0

aix
iq “ ´pa0pT

2 ´ T´2qα, 0q.

The Rrxs-module structure on pC is the obvious one on xαy ‘ Rrxs, where x ¨ α “ 0. Thus pIpT ˚2,3; ∆q

is isomorphic to Rrxs ‘ R{pT 2 ´ T´2qR via mapping the cycle p0, xiq for i ě 1 to xi´1 P Rrxs, and
mapping pα, 0q toR{pT 2´T´2qR. In particular, pIpT ˚2,3; ∆q1 – Rrxs. The map i sends p0, xiq to xi. Thus
Im i˚ “ xRrxs Ă Rrrx´1, xs. From this we obtain hpT ˚2,3q “ ´1 and J´1p rCq “ R. A special p´1, 1q-
cycle is given by pΨpzq where z “ p0, xq, and so pξp1q maps to the generator x P xRrxs – pIpT ˚2,3; ∆q1.

The result for l ą 1 follows from the l “ 1 case using the connected sum theorem.

We will also make use of the following.

Lemma 4.39. Let S : T ˚2,3 Ñ U1 be the immersed cobordism induced by the movie of a crossing
change, from negative to positive. Then there is an identification pIpT ˚2,3q

1 – Rrxs such that the map
pIpSq : pIpT ˚2,3q

1 Ñ pIpU1q
1 “ Rrxs is multiplication by T 2 ´ T´2.

50



Proof. The cobordism S induces a height 1 morphism rλS : rCpT ˚2,3; ∆q Ñ rCpU1; ∆q, which is determined
by the component ∆1. Appealing to the arguments in [DS19], we obtain that ∆1δ2p1q is equal to a count
of two reducibles, the latter of which is pT 2 ´ T´2qs` “ T 2 ´ T´2. Thus rλS is a height 1 morphism
with c1 “ ∆1δ2p1q equal to T 2 ´ T´2 up to a unit. The result follows.

With these preliminaries we now prove the main result of this section.

Theorem 4.40. Kronheimer and Mrowka’s invariant z6σpKq Ă FracpS q can be recovered from pzpKq as

z6σpKq “ pzpKq bZrT˘1,xs S
1

where the module structure defining the tensor product uses (69) and the base change σ : S Ñ S 1.

Proof. We prove the result for σ “ idS . The more general case follows easily.

As already indicated, if ´σpKq{2 ě 0, the result follows from (71) and the isomorphisms in
Theorem 4.33, which are natural with respect to cobordism maps (when they are defined).

Suppose ´σpKq{2 ă 0. Choose a cobordism S : #lT
˚
2,3 Ñ K in the cylinder with genus 0 and s`

double points, and l ě σpKq{2. Specifically choose S so that it is a composition of S1 : #lT
˚
2,3 Ñ U1

and S2 : U1 Ñ K, where S1 is a connected sum of cobordisms T ˚2,3 Ñ U1 each induced by a negative to
positive crossing change.

By Lemma 4.38, we still have (70), and thus expression (71) for pzpKq is true for the cobordism S.
By Lemma 4.39 and Theorem 4.33, the map I6pS1q : I6p#lT

˚
2,3q

1 Ñ I6pU1q
1 is up to a unit equal to

multiplication by pT 2
1 ´ T

´2
1 ql. Using this input, we now compute

pzpKq bZrT˘1,xs S “ pT 2
1 ´ T

´2
1 qs`rI6pK; S q1 : I6pSqp1qs

“ pT 2
1 ´ T

´2
1 qs`rI6pK; S q1 : pT 2

1 ´ T
´2
1 qlI6pS2qp1qs

“ pT 2
1 ´ T

´2
1 qs`´lrI6pK; S q1 : I6pS2qp1qs

As s` ´ l is the number of positive double points of S2 : U1 Ñ K, this last expression is z6pKq.

The cobordism interpretation for pzpKq as in (71) extends to the non-zero genus case. First we need to
study further the invariants of the connected sums of T2,3 and T ˚2,3.

Lemma 4.41. Let S : T ˚2,3 Ñ U1 be a genus 1 embedded cobordism. Then pIpSq is multiplication by x.

Proof. Such a cobordism induces a morphism rCpT ˚2,3; ∆q Ñ rCpU1; ∆q of height σpT ˚2,3q{2 ´ g “ 0,
with c0 “ 1. This morphism is determined by mapping the reducible summand Rp0q Ă rCpT2,3; ∆q

isomorphically to Rp0q “ rCpU1; ∆q. From this and the isomorphism of pIpT ˚2,3q
1 – Rrxs given in the

proof of Lemma 4.38, we see that the induced map on pI is multiplication by x.
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Lemma 4.42. For l ą 0, we have pIp#lT2,3; ∆q – I l where

I l “
´

xl, xl´1pT 2 ´ T´2q, xl´2pT 2 ´ T´2q2, . . . , pT 2 ´ T´2ql
¯

. (72)

Moreover, Jlp#lT2,3q “ ppT
2 ´ T´2qlq and pξppT 2 ´ T´2qlq “ pT 2 ´ T´2ql P I l.

Proof. The S-complex for T2,3 is given by rC “ C˚ ‘ C˚´1 ‘ Rp0q where C˚ has a single generator
α in degree 1 pmod 4q; further, d “ δ2 “ v “ 0 and δ1pαq “ T 2 ´ T´2. See [DS19, §9]. Thus
pCpT2,3q “ xαy ‘Rrxs with zero differential, and so pIpT2,3; ∆q “ pCpT2,3q. The Rrxs-module structure is

x ¨ paα,
N
ÿ

i“0

aix
iq “ p0, pT 2 ´ T´2qa`

N
ÿ

i“0

aix
iq.

That means that pIpT2,3; ∆q is isomorphic as an Rrxs-module to I1 “ px, T 2 ´ T´2q by sending pα, 0q to
T 2 ´ T´2 and p0, xiq to xi`1. Furthermore, we have ipaα,

řN
i“0 aix

iq “ apT 2 ´ T´2qx´1 `
řN
i“0 aix

i.
Thus hpT2,3q “ 1 and J1p rCq “ pT

2´ T´2q Ă R. A special p1, T 2´ T´2q-cycle is given by pΨpzq where
z “ pα, 0q, and so pξpT 2 ´ T´2q corresponds under the isomorphism pIpT2,3; ∆q – I1 to the element
T 2 ´ T´2. The completes the proof in the case l “ 1. The more general case follows in a similar fashion,
making use of the connected sum theorem.

The following lemma can be proved in the same way as Lemma 4.39 and Lemma 4.41.

Lemma 4.43. Let S : U1 Ñ T2,3 be the immersed cobordism induced by the movie of a crossing change,
from negative to positive. With respect to the identification of pIpT2,3q with I in Lemma 4.42, the cobordism
map pIpSq : pIpU1q “ Rrxs Ñ pIpT2,3q is given by multiplication by T 2 ´ T´2. If S1 : U1 Ñ T2,3 is an
embedded cobordism of genus 1, then the cobordism map pIpSq : pIpU1q “ Rrxs Ñ pIpT2,3q is given by
multiplication by x.

Now suppose S : #lT
˚
2,3 Ñ K is an immersed cobordism with genus g and s` positive double points,

and for which l ě σpKq{2` g. Then we have the following:

pzpKq “ xgpT 2 ´ T´2qs`rpIpK; ∆q1 : pIpSqp1qs. (73)

To see this, we first assume that l ě g, and that S is the composition of S1 : #lT
˚
2,3 Ñ #l´gT

˚
2,3

and S2 : #l´gT
˚
2,3 Ñ K where S1 is embedded and has genus g, and S2 has genus zero; further

assume that S1 is the connected sum of g genus 1 cobordisms T ˚2,3 Ñ U1 and the product cobordism
#l´gT

˚
2,3 Ñ #l´gT

˚
2,3. The cobordisms S1 and S2 respectively induce morphisms of S-complexes with

levels 0 and l´g´σpKq{2. In particular, pIpS1q and pIpS2q are both well-defined and pIpSq “ pIpS2q˝pIpS1q.
By Lemma 4.41 and naturality of the connected sum theorem, pIpS1q is multiplication by xg. Then (73)
follows from pIpSq “ pIpS2q ˝ pIpS1q “ xgpIpS2q and the fact it already has been established for the
cobordism S2. In the case g ą l, we may still obtain cobordisms S1 and S2 as above except that #l´gT

˚
2,3

52



should be replaced with #g´lT2,3. Lemma 4.41 and Lemma 4.43 imply that pIpS1q is still multiplication
by xg. Therefore, we have

xgpT 2 ´ T´2qs`rpIpK; ∆q1 : pIpSqp1qs “xgpT 2 ´ T´2qs`rpIpK; ∆q1 : pIpS2qpxgqs

“xgpT 2 ´ T´2qs``g´lrpIpK; ∆q1 : pIpS2qppT 2 ´ T´2qg´lxgqs

“pT 2 ´ T´2qs``g´lrpIpK; ∆q1 : pIpS2qppξppT 2 ´ T´2qg´lqqs

“pT 2 ´ T´2qs``g´lrpIpK; ∆q1 : pξppT 2 ´ T´2qs``g´lqs

“pzpKq

Note that we used Lemma 4.42 for the third identity. More generally, for any S : #lT
˚
2,3 Ñ K with

l ě σpKq{2` g, we can homotope S to a surface of the type just considered through a sequence of twists
and finger moves, and appeal to [DS19, Proposition 2.30], to see that (73) still holds.

Proposition 4.44. Let S : U1 Ñ K be an orientable immersed cobordism with genus g and s` positive
double points. Let i “ maxt0, g ` σpKq{2u. Then for any j, k P Zě0 satisfying j ` k “ i, we have

xg`jpT 2 ´ T´2qs``k P pzpKq. (74)

Proof. If g`σpKq{2 ď 0, so that i “ j “ k “ 0, this follows directly from (73). If i “ g`σpKq{2 ą 0,
form a cobordism S1 : #lT

˚
2,3 Ñ K by pre-composing S with a cobordism S2 : #lT

˚
2,3 Ñ U1, where

S2 is formed by a connected sum of j genus 1 cobordisms and k standard crossing change cobordisms.
Applying (73) to the cobordism S1 yields the result.

Remark 4.45. For an immersed orientable cobordism S : U1 Ñ K with genus g and s` positive double
points, it follows from Kronheimer and Mrowka’s definition of z6pKq that we have

P gpT 2
1 ´ T

´2
1 qs` P z6pKq.

This is recovered by (74) when g ` σpKq{2 ď 0. One might expect that xgpT 2 ´ T´2qs` P pzpKq holds
with no condition on g ` σpKq{2. This shortcoming is likely a deficiency of the above trick involving
trefoils. We expect the stronger claim to follow once cobordism maps are defined in more generality.

We now turn to some computations.

Lemma 4.46. For l ě 0, we have pzp#lT
˚
2,3q “ Rrxs Ă FracpRrxsq.

Proof. As explained above, the equality (73) is valid for the identity cobordism S : #lT
˚
2,3 Ñ #lT

˚
2,3.

This has g “ s` “ 0, and of course pIpSqp1q is a generator of pIp#lT
˚
2,3q

1. The result follows.

For connected sums of the right-handed trefoil, we have the following.

Lemma 4.47. For l ą 0, we have pzp#lT2,3q “ I l Ă FracpRrxsq.
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Proof. From Definition 4.34 and Lemma 4.42, we compute

pzp#lT2,3q “ pT
2 ´ T´2qlrpIp#lT2,3; ∆q : pξppT 2 ´ T´2qlqs

“ pT 2 ´ T´2qlrI l : pT 2 ´ T´2qls “ I l

Remark 4.48. For simplicity, we have restricted our discussion above to the invariant z6σpKq. Kronheimer
and Mrowka also define in [KM21b] a concordance invariant z7pKq which is a fractional ideal for the
ring FrT˘1

0 , T˘1
1 , T˘1

2 , T˘1
3 s. Following the discussion in [DS19, §8.8], we have

z7pKq “ pzpKq bRrxs FrT
˘1
0 , T˘1

1 , T˘1
2 , T˘1

3 s

where Rrxs acts on the right-hand ring by reducing modulo 2, T ÞÑ T0 and x ÞÑ P .

In [KM21b], Kronheimer and Mrowka define several concordance invariants using constructions in
singular instanton homology. For example, for any homomorphism σ : S Ñ S 1 where S 1 is a valuation
ring with valuation group G, they define a homomorphism from the knot concordance group to G,

fσ : C Ñ G.

Specific choices of homomorphisms σ are given in [KM21b, §5]. Any each such invariant fσ is determined
by z6σpKq. Since the latter is determined by the local equivalence invariant pzpKq by Theorem 4.40, we
arrive at the following, which proves Theorem 1.7.

Theorem 4.49. All of the concordance invariants defined by Kronheimer and Mrowka in [KM21b], such
as z#

σ pKq, z
6
σpKq, fσpKq, ... depend only on the local equivalence class of the S-complex rCpK; ∆q.

4.5 Two-bridge knots

In the case of two-bridge knots, many of the invariants considered thus far are determined by the signature.
The results in this section imply Theorem 1.8 as stated in the introduction.

Proposition 4.50. Let K be a two-bridge knot and F any field. Then the local equivalence class of

rCpK; ∆bR F rT
˘1sq (75)

is determined by σpKq. In particular, if h :“ ´σpKq{2 ě 0, it is locally equivalent to the S-complex
over F rT˘1s of both the knots T2,2h`1 and #hT2,3.

Proof. Assume h “ hp rC0q ě 0; the result for h ă 0 follows by duality. As explained in [DS20, §3.1], the
S-complex rC in (75) for a two-bridge knot K has a free basis over F rT˘1s such that its differential rd can
be written, with respect to this basis, as T 2 ´ T´2 times a matrix with integer entries. As a consequence,

rC “ rC0 bF F rT
˘1s, rd “ rd0 b pT

2 ´ T´2q
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where p rC0, rd0q is an S-complex over the field F . The local equivalence class of any S-complex over a
field is determined by its Frøyshov invariant, see [DS19, Proposition 4.30]. Concretely, having assumed
hp rCq “ hp rC0q ě 0, the Z{4-graded S-complex rC0 over F is locally equivalent to the S-complex

rC 1 “ C 1˚ ‘ C
1
˚´1 ‘ Fp0q

with C 1 freely generated over F by elements α1, . . . , αh with the Z{4-grading of αi given by 2i ´ 1
pmod 4q; the only non-trivial differentials are vpαiq “ αi´1 for i ě 2 and δ1pα1q “ 1.

Let rλ : rC0 Ñ rC 1 and rλ1 : rC 1 Ñ rC0 be local morphisms realizing the local equivalence between rC0

and rC 1. Define an S-complex over F rT˘1s as follows:

rC2 “ rC 1 bF F rT
˘1s, rd2 “ rd1 b pT 2 ´ T´2q

Then rλ and rλ1 extend in the obvious way to local morphisms rC Ñ rC2 and rC2 Ñ rC, respectively. Finally,
hp rCq “ ´σpKq{2 by [DS20, Theorem 7].

Remark 4.51. The above argument does not work with F “ Z, because S-complexes over Z are not
classified by Frøyshov invariants. On the other hand, the authors have no counterexample to the general
statement of Proposition 4.50 with F replaced by Z.

Remark 4.52. An additional layer of structure on S-complexes for knots comes from the Chern–Simons
filtration, which is studied in the next section. The analogue of Proposition 4.50 is not true in the filtered
setting. This is evidendent from our applications of the theory to two-bridge knots; see also [DS19, DS20].

Using Proposition 4.50 we can compute the concordance invariants s7˘, s
7, rε for two-bridge knots.

Proposition 4.53. The invariants s7˘ for a two-bridge knot K are as follows:

s7`pKq “

$

’

&

’

%

´σpKq{2 if σpKq ă 0

0 if σpKq “ 0

´σpKq{2` 1 if σpKq ą 0

s7´pKq “

$

’

&

’

%

´σpKq{2´ 1 if σpKq ă 0

0 if σpKq “ 0

´σpKq{2 if σpKq ą 0

Thus Kronheimer and Mrowka invariant s7 and the invariant rε are as follows (where signp0q “ 0):

s7pKq “ ´σpKq ` signpσpKqq, rεpKq “ signpσpKqq.

Proof. By Proposition 4.18, it suffices to treat the case h :“ ´σpKq{2 ě 0. If h “ 0, by Proposition 4.50,
the S-complex for K with coefficients in QrrΛss is locally trivial, and thus s7˘pKq “ rεpKq “ 0. So
henceforth we assume h ą 0.

By Proposition 4.50, and the fact that s7˘ are local equivalence invariants, we may assume that the
S-complex of K over QrrΛss is of the form rC˚ “ C˚ ‘ C˚´1 ‘ QrrΛss where C˚ is freely generated
by α1, . . . , αh with non-trivial components of the differential given by vpαiq “ Λαi´1 for i ě 2 and
δ1pα1q “ Λ. To choose such a basis we use that T 2 ´ T´2 is equal to Λ times a unit in the ring QrrΛss.
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...
...

Λ3 Λ2x

Λ2 Λx

Λ Λα2 Λα4 . . . Λαh´1 x Λα1 Λα3 . . . Λαh

1 α2 α4 αh´1 α1 α3 αh

Figure 2: The QrrΛss-module HpC7q in the proof of Proposition 4.53.

The complex pC “ C˚´1 ‘ QrrΛssrxs has zero differential and is therefore equal to HppCq. For
simplicity write αi for the generator in HppCq which is pαi, 0q, and xi for p0, xiq. The x-action on HppCq
is depicted as follows:

αh . . . α1 x

αh´1 α2 1 x2 ¨ ¨ ¨

Λ Λ ΛΛ Λ

More precisely, x ¨ αi “ Λαi´1 for i ě 2, x ¨ α1 “ Λ, and x ¨ xi “ xi`1. In the diagram, each vertex
generates a copy of QrrΛss. The elements in the top row are in grading 2 pmod 4q, and in the bottom
row, 0 pmod 4q. In the diagram we have assumed that h is odd, the even case being similar. We have an
isomorphism of QrrΛssrxs-modules:

HppCq –
´

xh, xh´1Λ, . . . , xΛh´1,Λh
¯

“ Ih bRrxs QrrΛssrxs

The isomorphism sends αi to Λixh´i, and xi to xi`h. The map i : pC “ HppCq Ñ QrrΛssrrx´1, xs sends
αi P pC to Λix´i and sends xi to xi. From this we obtain Jhp rCq “ pΛhq Ă QrrΛss. We also have

pξ : Jhp rCq “ pΛ
hq Ñ HppCq, pξpΛhq “ αh

Next we turn to HpC7q. The action of x2 ´ 4Λ2 on HppCq is injective, and so HpC7q may be identified
with the quotient of HppCq by px2´4Λ2qHppCq. To describe HpC7q as this quotient, we have the diagram
in Figure 2, assuming h is odd. As a Q-vector space, HpC7q is the direct sum of the Q-spans of the
vertices. (We abuse notation and write αi also for the equivalence class of αi in HpC7q, and so on.) The
Λ-action is described by the arrows, each of which is multiplication by Λ up to a unit in Q. More precisely,

Λ ¨ αi “ Λαi, Λ ¨ Λαi “

$

&

%

1
4Λ2, i even

1
4Λx, i odd
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and the obvious Λ-action holds for the two QrrΛss towers generated by 1 and x. (The Z{4-gradings are
induced from HppCq and not represented in the diagram.) We obtain

ξ7`pΛ
hq “ αh, ξ7´pΛ

hq “ Λαh´1 (76)

where, if h “ 1, we set the convention α0 :“ 1. From the description of HpC7q it is easy to see
that the minima appearing in the definitions for s7˘p rCq are realized by the expressions (76). Thus
s7`p

rCq “ h “ ´σpKq{2 and s7´p rCq “ h´ 1 “ ´σpKq{2´ 1. This completes the proof.

Corollary 4.54. Let K be a two-bridge knot, F a field. Then pzpKq with coefficients F rT˘1s is as follows:

pzpKq bRrxs F rT
˘1, xs “

$

&

%

F rT˘1, xs σpKq ě 0

I´σpKq{2 bRrxs F rT˘1, xs σpKq ă 0

where I l is defined in (72). As a consequence, for a two-bridge knot, Kronheimer and Mrowka’s z6σpKq,
and in fact all concordance invariants defined in [KM21b], are determined by σpKq via these formulas.

Proof. This follows from Proposition 4.50, Lemma 4.46, Lemma 4.47, and Theorem 4.49.

Question 4.55. Is Proposition 4.50 true for alternating knots?

5 Concordance invariants from filtered special cycles

The S-complexes that arise from singular instanton Floer theory posess additional structure which roughly
comes in the form of an R-valued filtration, defined using values of the Chern–Simons functional. In this
section we use this additional structure to define more homology concordance invariants, generalizing
both the invariant ΓpY,Kq in the singular setting from [DS19, DS20], as well as the invariants ΓY and
rspY q in the setting of integer homology 3-spheres Y from [Dae20] and [NST19], respectively.

We first introduce the notion of an enriched complex, following [DS19] with minor variations. This is
the algebraic enhancement of an S-complex that singular instanton theory outputs when keeping track of
the Chern–Simons filtration. We then adapt the material of Section 3 to this setting, and define filtered
special cycles. These are then used to define various homology concordance invariants. In this section,
Theorems 1.5 and 1.19 from the introduction are proved.

5.1 Enriched S-complexes

Let R be an integral domain over ZrT˘1s. Let δ be a non-negative real number. An I-graded S-complex
over RrU˘1s is an S-complex rC over RrU˘1s with Zˆ R-bigrading:

rC “
à

pi,jqPZˆR

rCi,j
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which satisfies the following properties:

U rCi,j Ă rCi`4,j`1, rd rCi,j Ă
ď

kăj

Ci´1,k, and χ rCi,j Ă rCi`1,j .

We also impose that rC is freely, finitely generated as an RrU˘1s-module by homogeneously bigraded
elements, and the canonical element 1 in the distinguished summandRrU˘1s Ă rC is in rC0,0. Note that the
ring RrU˘1s can be thought of as the trivial I-graded S-complex, with U j havings Zˆ R-grading p4j, jq.
For any non-zero element ζ P rCi,j we denote the R-grading (also called the I-grading) by degIpζq “ j.
This is extended to non-homogeneous elements as follows: if ζ “

ř

ζi is a finite sum of homogeneous
elements in distinct bigradings, then

degIpζq “ sup
i
tdegIpζiqu P RY t´8u (77)

with the convention that degIp0q “ ´8. For an I-graded S-complex rC, the dual I-graded S-complex is
formed by taking the underlying dual S-complex rC: and further defining

degIpζ
:q “ suptdegIpζ

:pzqq ´ degIpzq | 0 ‰ z P rCu

for any ζ: P C: “ HomRrU˘1sp
rC,RrU˘1sq.

A height l morphism rλ : rC Ñ rC 1 of level δ between I-graded S-complexes is a height l morphism of
S-complexes such that the following holds:

rλ rCi,j Ă
ď

kďj`δ

rC 1i`2l,k.

A S-chain homotopy rK of level δ between height l morphisms rλ and rλ1 (of any levels) is an R-module
homomorphism and an S-chain homotopy between rλ and rλ1 such that

rK rCi,j Ă
ď

kďj`δ

rC 1i`2l`1,k.

We also have the analogous notions of strong height l morphisms and local morphisms in this context.

In the fortunate circumstance that no perturbations are needed in the construction of equivariant
singular instanton Floer homology, the output is simply an I-graded S-complex. In general, one must take
a sequence of perturbations approaching zero. The type of algebraic structure that arises in this more
general case is as follows.

Definition 5.1. An enriched S-complex E over RrU˘1s is a sequence tp rCi, d̃i, χiquiě1 of I-graded S-
complexes over RrU˘1s, local morphisms rφji : rCi Ñ rCj of levels δi,j , and a discrete subset K Ă R with
no accumulation point satisfying the following:

(i) rφii “ id and rφkj ˝
rφji is S-chain homotopy equivalent to rφki by an S-chain homotopy of level δi,j,k.

(ii) For each δ ą 0 there exists an N such that i, j, k ą N implies δi,j ď δ and δi,k,j ď δ.
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(iii) For every δ ą 0, there exists N P Zą0 such that for any n ą N , and any non-zero ζ P rCn, we have

degIpζq P BδpKq, (78)

where BδpKq :“ tr P R | |r ´ r1| ă δ for some r1 P Ku.

Remark 5.2. The I-graded S-complexes defined above are I-graded S-complexes of level 0 in the
terminology of [DS19]. Furthermore, in [DS19], condition (iii) is not imposed in the definition of enriched
S-complexes. Condition (iii) is used in the course of defining the rs-type invariants, following [NST19].

Proposition 5.3. Let E be an enriched S-complex over RrU˘1s consisting of t rCiu, trφji u,K. Define

rCn,ďs :“ tζ P rCn| degIpζq ď su.

Then rCn,ďs is a chain complex over R. For s R K and sufficiently large n,m P Zą0, the chain complexes
rCn,ďs and rCm,ďs are canonically chain homotopy equivalent.

Proof. By Definition 5.1 (iii), for sufficiently large n and m, rφmn induces a well-defined local morphism
from rCn,ďs to rCm,ďs. Moreover, conditions (i) and (ii) in Definition 5.1 imply that these maps provide
canonical S-chain homotopy equivalences between these S-complexes.

Remark 5.4. The chain complexes rCn,ďs over R in Proposition 5.3 have χ-actions and the result is
compatible with these actions. However, these complexes are not S-complexes over R, because they are
not finitely generated, and the reducible summands do not have rank 1.

Definition 5.5. Fix a non-negative integer l and non-negative real number κ. A morphism L : Ep1q Ñ
Ep2q of height l and level κ between two enriched S-complexes

Eprq “ pt rCiprqu, trφji prqu,Kq r P t1, 2u

is a collection of height l, level pδi,j ` κq morphisms rλji : rCip1q Ñ rCjp2q of I-graded S-complexes
satisfying the following conditions:

(i) For each δ ą 0, there exists an N such that i, j ą N implies that δi,j ă δ.

(ii) The maps rλkj ˝rφ
j
i p1q and rφkj p2q˝

rλji are S-chain homotopy equivalent to rλki via an S-chain homotopy
of some level δi,j,k. For every δ ą 0, there exists an N such that δi,j,k ă δ for i, j, k ą N .

The morphism is local if each rλji is a local morphism of I-graded S-complexes. A morphism between
enriched complexes is a chain homotopy equivalence if each rλji is an S-chain homotopy equivalence,
where the involved S-chain homotopy inverses and S-chain homotopies have levels which converge to
zero. A weak morphism is the above data, but without condition (ii) necessarily holding.

Let K be a knot in an integer homology 3-sphere Y . For a perturbation π of the Chern–Simons
functional (along with other auxiliary choices) with nondegenerate critical set and unobstructed moduli
spaces, one can associate an I-graded S-complex rCpY,K, πq over RrU˘1s. The generators of CpY,K, πq
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roughly correspond to homotopy classes rAs of singular connections on Rˆ pY,Kq, mod gauge, with
limit at ´8 some irreducible critical point α of the perturbed Chern–Simons functional, and limit at `8
the reducible θ. The connection rAs determines an R-valued lift of the perturbed Chern–Simons invariant
of α, which determines the I-grading, and a Z-valued lift of the Z{4-grading of α. Setting U “ 1 and
forgetting the I-grading structure gives the Z{4-graded S-complex of pY,Kq considered in Section 2.1.

To define the enriched S-complex CpY,Kq, we take a sequence of perturbations πi as above (with the
other necessary auxiliary choices), such that the norms }πi} converge to zero as iÑ8. Then set

EpY,Kq :“ pt rCi “ rCpY,K, πiqu, trφ
j
i u, Kq.

The map rφji is induced by a 1-parameter family of perturbations (and other auxiliary data). Moreover,
K Ă R is the set of critical values of the (unperturbed) Chern–Simons functional. By taking suitable
2-parameter families of perturbations and using the associated parametrized singular instanton moduli
spaces, one can verify that rφkj ˝ rφ

j
i is S-chain homotopy equivalent to rφki via an S-chain homotopy of

some level δi,k,j as required. The enriched complex CpY,Kq is an invariant of pY,Kq up to homotopy
equivalence. See [DS19, §7] and [DS20, §2], although note that there the unperturbed Chern–Simons
functional is used to define I-gradings.

For cobordism maps, we have the following. Recall the terminology of Definition 2.7.

Proposition 5.6 ([DS19, Theorem 7.18]). Suppose pW,S, cq, with c P H2pW ;Zq, is a cobordism
pY,Kq Ñ pY 1,K 1q which is negative definite of height l ě 0 over R. Then there is an induced height
l morphism of level 2κminpW,S, cq from EpY,Kq to EpY 1,K 1q such that for each morphism rλji in the
sequence, cl “ ηpW,S, cq.

Two enriched S-complexes E and E1 are locally equivalent, written E „ E1, if there are local
morphisms EÑ E1 and E1 Ñ E. Define the local equivalence group of enriched complexes:

ΘE
R “

 

enriched S-complexes over RrU˘1s
(

{ „

Just as in the case for S-complexes, this is an abelian group. The zero element is determined by
tp rCi, d̃i, χiq :“ pRrU˘1s, 0, 0quiě1 with tφji :“ idRrU˘1sui,jě1 and K “ Z Ă R. Addition is defined by
taking tensor products of enriched S-complexes.

It is sometimes convenient to use a slightly weaker definition of local equivalence by replacing local
morphisms with weak local morphisms. We call the resulting relation weak local equivalence.

Remark 5.7. The group ΘE
R is uncountable. To see this, we construct for each r P Rą0 an enriched

S-complex as follows. First, define an I-graded S-complex as follows:

rCtru “ RrU˘1sxζy ‘RrU˘1sxχpζqy ‘RrU˘1sp0q

The generator ζ has degI “ r and Z-grading 1. Further, rdpζq “ δ1pζq “ 1. By taking the constant
sequence of this I-graded S-complex, we obtain an enriched S-complex Etru. For distinct positive real
numbers r and r1, one can show that Etru and Etr1u are not locally equivalent.
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Recall that Θ3,1
Z is the homology concordance group of knots in integer homology 3-spheres. We

define a map Ω from Θ3,1
Z to the local equivalence group ΘE

R by assigning to pY,Kq the class of the
enriched complex EpY,Kq.

Theorem 5.8 ([DS19, Theorem 7.18]). The map Ω : Θ3,1
Z Ñ ΘE

R is a homomorphism.

5.2 Filtered special cycles

We next adapt some of the constructions involving special cycles from Section 3 to the setting of I-graded
S-complexes and enriched S-complexes. As before, R is an integral domain algebra over ZrT˘1s.

We begin by discussing equivariant complexes in this context. Let rC be an I-graded S-complex
over RrU˘1s. Recall that in Section 2.2 we associated to the underlying S-complex of rC the large
equivariant complexes pC,C, qC and small equivariant complexes pC,C, qC. These are Z-graded complexes
over RrU˘1srxs. We extend degI in an obvious manner to each of these complexes. For example, given
ζ “

řN
i“0 ζix

i P pC where ζi P rC, we have

degIpζq “ sup
i
tdegIpζiqu

Given this, it is immediate from the I-graded structure of rC that we have degIp
pdpζqq ď degIpζq for each

ζ P pC. The case for the other equivariant complexes is similar. Note that since C and qC contain elements
having infinite Laurent power series in x´1, the possible values of degI in these cases may include8.

The following result concerns the maps studied in the context of equivariant theories in Section 2.2.

Lemma 5.9. The chain maps pΦ,Φ, qΦ and pΨ,Ψ, qΨ are filtered maps (level 0): we have degIppΦpζqq ď
degIpζq for all ζ P pC, and similarly for the others. Also, the maps i, j, k and i, j,k are filtered.

Proof. We prove Ψ is filtered. Recall that Ψ : CÑ C is defined by

Ψp
N
ÿ

j“´8

ajx
iq “ p

N
ÿ

j“´8

8
ÿ

l“0

vlδ2pajqx
j´l´1, 0,

N
ÿ

j“´8

ajx
jq.

Note that x does not affect the I-grading and both of δ2 and vj are decreasing in I-grading. This implies Ψ
is also filtered. The proofs for the other maps are the same.

To an I-graded S-complex rC over RrU˘1s, each k P Z and s P R, define

Jďsk p rCq :“

#

c´k P R
ˇ

ˇ

ˇ

c´kx
´k ` c´k´1x

´k´1 ` ¨ ¨ ¨ “ Φipzq P RrU˘1srrx´1, xs,

z P pC2k, degIp
pdpzqq ď s

+

(79)

This is an ideal of R. If s ď s1 then we have an inclusion Jďsk p rCq Ă Jďs
1

k p rCq. We also have Jď´8k p rCq “

Jkp rCq, where Jkp rCq is the ideal defined in Section 3, regarding rC as an S-complex over R, having set
U “ 1. We will see below that for s ă 0, these ideals give rise to local equivalence invariants.

Now we arrive at our definition of special cycles in this setting.
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Definition 5.10. Let f P R, s P RY t´8u, k P Z and rC be an I-graded S-complex. We say z P pC is a
filtered special pk, f, sq-cycle if there exists z P pC2k satisfying pΨpzq “ z and also:

ipzq “ fx´k `
´k´1
ÿ

i“´8

bix
i, degIppdzq ď s.

Remark 5.11. As in the case of unfiltered special cycles, the chain z in Definition 5.10 is uniquely
determined by the special cycle z P pC. Note that if s ď s1 and z is a filtered special pk, f, sq-cycle, then z
is also a filtered special pk, f, s1q-cycle. Furthermore, z is a filtered special pk, f, sq-cycle, then x ¨ z is a
filtered special pk ´ 1, f, sq-cycle. Consequently, we have

Jďsk p rCq Ă Jďs
1

k1 p
rCq

if k1 ď k and s1 ď s. Filtered special pk, f,´8q-cycles coincide with unfiltered special pk, fq-cycles. In
general, filtered special cycles are not cycles in pC: they are cycles in pC{pCďs, where pCďs consists of
elements in pC with degI ď s. For any k P Z, f P R and s P R, there exists a special pk, f, sq-cycle in pC
if and only if f P Jďsk p rCq.

Remark 5.12. Let z be a special pk, f, sq-cycle with f ‰ 0, where z “ pΨpzq and z “ pα,
řN
i“0 aix

iq P

pC2k. Since pΦpzq “ z and pΨ, pΦ are filtered, we have degIpzq “ degIpzq. We further obtain

degIpzq “ maxtdegIpαq, 0u.

This follows from two observations: ipzq is equal to fx´k plus lower order terms; the Z-grading of z
equals 2k, implying that ai “ fiU

pi`kq{2 where fi P R. In particular, degIpaiq ď 0. Note that if k ą 0,
all ai’s are zero and degIpαq is automatically positive.

The following describes the behavior of filtered special cycles under morphisms.

Lemma 5.13. Let rλ : rC Ñ rC 1 be a height i morphism of level κ ě 0 between I-graded S-complexes.
Suppose s P R satisfies s ă ´κ. Then for a special pk, f, sq-cycle z P pC2k, the chain defined by

pΨ1 ˝ pΦ1 ˝ pλpzq P pC12k`2i

is a special pk ` i, cif, s` κq-cycle, where ci is defined as in (15). Moreover, we have

degIppΨ
1 ˝ pΦ1 ˝ pλpzqq ď degIpzq ` κ. (80)

Proof. This is a filtered version of Lemma 3.3. Note that pΨ1 and pΦ1 are filtered maps and pλ is a map of level
κ. Thus, we have (80). Let z “ pΨpzq and z1 “ pΦ1 ˝ pλpzq “ pλpzq. First note that d1pz1q “ d1pλpzq “ pλdpzq.
Then degIpdzq ď s and the assumption that rλ has level κ imply degIpd

1z1q ď s` κ. Further,

i1pz1q “ i1 ˝ pλpzq “ i1 ˝ pΦ1 ˝ pλ ˝ pΨpzq “ Φ
1
˝ λ ˝ i ˝ pΨpzq

“ Φ
1
˝ λ ˝Ψ ˝ ipzq ´ Φ

1
˝ λ ˝Ki ˝ pdpzq (81)

62



where we have used that
Ψ ˝ i´ i ˝ pΨ “ dKi `Kipd, (82)

with Ki : pCÑ C being defined by

Kipα,
N
ÿ

i“0

aix
iq “ p´

8
ÿ

i“0

vipαqx´i´1, 0, 0q.

The first term in (81) has x-degree ´k ´ i with leading term fci and I-grading equal to zero. The second
term has I-grading at most s` κ ă 0. Thus degIpi

1pz1qq ă 0. Furthermore, the second term in (81) can
be written as follows, where each aj P R:

N
ÿ

j“´8

ajU
ljxj

Since the I-grading is negative, each lj ă 0. Since the Z-grading is 2k` 2i, we have j “ ´2i´ 2k´ 4lj .
Thus this power series has x-degree less than ´i´ k. Consequently, i1pz1q is dominated by the first term
in (81), and has x-degree ´k ´ i with leading term fci.

Corollary 5.14. Let rλ : rC Ñ rC 1 be a height i morphism of level κ between I-graded S-complexes. Then
for any s ă ´κ, and with ci as defined in (15), we have

ciJ
ďs
k p rCq Ď Jďs`κk`i p rC 1q.

Next, we consider tensor products of filtered special cycles.

Lemma 5.15. Let z P pC2k (resp. z1 P pC12k1) be a special pk, f, sq-cycle (resp. pk1, f 1, s1q-cycle) such that

degIpzq ` s
1, degIpz

1q ` s ă 0. (83)

Then, the chain defined by

zb :“ pΨb ˝ pΦb ˝ pT pz bRrxs z
1q P pCb2k`2k1

is a special
`

k ` k1, ff 1,maxtdegIpzq ` s
1,degIpz

1q ` su
˘

-cycle. Moreover, we have

degIppΨ
b ˝ pΦb ˝ pT pz bRrxs z

1qq ď degIpzq ` degIpz
1q. (84)

Proof. This is a filtered version of Lemma 3.4. The inequality (84) follows since all of maps pΨb, pΦb and
pT are filtered. Since z P pC2k (resp. z1 P pC12k1) is a special pk, f, sq-cycle (resp. pk1, f 1, s1q-cycle), we can
take z P pC2k (resp. z1 P pC2k1 ) such that degIpd̂pzqq ď s, pΨpzq “ z and the leading term of ipzq is fx´k

(resp. degIpd̂
1pz1qq ď s1,pΨ1pz1q “ z1 and the leading term of i1pz1q is f 1x´k

1

). Since pΨ and pΨ1 are filtered
chain maps, we also have degIp

pdpzqq ď s (resp. degIp
pd1pz1qq ď s1). Using this, we obtain

degIp
pdbpz bRrxs z

1qq “ degIp
pdpzq b z1 ` z b pd1pz1qq

ď maxtdegIp
pdpzqq ` degpz1q, degIp

pd1pz1qq ` degI zu

ď maxtdegIpzq ` s
1, degIpz

1q ` su. (85)
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Since pΨb, pΦb and pT are filtered chain maps, we conclude that degIp
pdbpzbqq is bounded by the same

term as in (85).

To complete the proof, we need to analyze ibpzbq with zb “ pΦb pT pz bRrxs z
1q. Using Remark 2.12,

relations (31) and (82), we have the following:

ibpzbq “ Φ̄bib pT pz bRrxs z
1q

“ Φ̄bT pipΨpzq bRrxs i
1
pΨ1pz1qq

“ Φ̄bT
´

pΨ ˝ i´ dKi ´Kipdqpzqq bRrxs pΨ
1
˝ i1 ´ d

1
K 1

i ´K
1
i
pd1qpz1q

¯

(86)

Among the nine terms obtained by expanding the above expression, first consider the following term:

Φ̄bT pΨ ˝ ipzq bRrxs Ψ
1
˝ i1pz1qq.

Lemma 2.14 implies that the above expression is equal to ipzq¨i1pz1q, which has the leading term ff 1x´k´k
1

.
Using the assumption in (83) and an argument as in the proof of Lemma 5.13, we can show the five terms
in (86) involving either d or d1 have x-degree less than ´k ´ k1. It is also easy to see that the remaining
three terms involving d or d

1
vanish. In summary ibpzbq has the leading term ff 1x´k´k

1

.

Next, we adapt the construction of the ideals in (79) to the case of enriched S-complexes.

Lemma 5.16. Let E be an enriched S-complex over RrU˘1s consisting of t rCiu, trφji u,K. If s R K, then
the ideal Jďsk p rCnq Ă R does not depend on n for sufficiently large n.

Proof. For an interval rs1, s2s Ă RzK, there is some N ą 0 such that for all n ą N , the ideals Jďs1k p rCnq

and Jďs2k p rCnq are equal. The proof follows from this observation and Corollary 5.14.

From this lemma it follows that for s R K, we can define Jďsk pEq :“ Jďsk p rCnq for a sufficiently
large n. For s P K, we define Jďsk pEq :“ Jďs´εk pEq for a sufficiently small ε ą 0. Moreover, from
Corollary 5.14 we obtain:

Corollary 5.17. Let L : EÑ E1 be a height i morphism of level κ between enriched S-complexes. Then
for any s ă ´κ, and with ci as defined in (15) (which are the same for all rλji involved in L), we have

ciJ
ďs
k pEq Ď Jďs`κk`i pE1q.

In particular, Jďsk pEq is a local equivalence invariant of the enriched S-complex E.

Remark 5.18. In fact, the arguments show that Jďsk pEq is a weak local equivalence invariant.

Finally, we give conditions for when an enriched S-complex is (weakly) locally equivalent to the
trivial enriched complex. First, we need the following.
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Lemma 5.19. Let rC be a I-graded S-complex. If there is a special p0, 1,´8q-cycle z so that

degIpzq “ 0, (87)

then there is a level-0 local map from the trivial I-graded S-complex RrU˘1sp0q to rC.

Proof. A filtered special p0, 1,´8q-cycle z “ pΨpzq, where z “ pα, 1q P pC´2, sastisfies degIpdzq ď ´8.
This implies dα ´ δ2p1q “ 0. Define a local morphism of S-complexes rλ : RrU˘1sp0q Ñ

rC by
rλp0, 0, 1q “ p0, α, 1q. If z is as in the statement of the lemma, by (87), degIpαq “ 0 holds, which implies
this is a level 0 morphism.

Corollary 5.20. An enriched complex E consisting of t rCiu, trφji u,K is weakly local equivalent to the
trivial enriched complex if and only if the following two conditions hold:

(i) There is a sequence of special p0, 1,´8q-cycles tzju for t rCju so that limjÑ8 degIpzjq ď 0.

(ii) There is a sequence of special p0, 1,´8q-cycles tzju for tp rCjq:u so that limjÑ8 degIpzjq ď 0.

Proof. Using (i), as in the proof of Lemma 5.19, we define local morphisms rλi : RrU˘1sp0q Ñ
rCi by

rλip1q :“ p0, αi, 0q, where αi is an element in rCi such that dαi “ δ2p1q and limi degIpαiq ď 0. The
sequence L :“ trλiu defines a weak local morphism from the trivial enriched S-complex to E. Using (ii)
and dualizing, we obtain a weak local morphism in the opposite direction.

5.3 Numerical invariants for local equivalence classes of enriched complexes

Using filtered special cycles, we define local a equivalence invariant of enriched S-complexes called
JEpk, sq. This definition is motivated by a desire to generalize the Γ invariants from [Dae20, DS19] and
the rs-type invariants from [NST19].

Definition 5.21. For an I-graded S-complex rC, define

N
rC
pk, sq :“ inf tdegIpzq | z is filtered special pk, 1, sq-cycle u P r0,8s (88)

for pk, sq P Zˆ r´8, 0q.

Lemma 5.22. For an I-graded S-complex rC and a positive integer k and s P r´8, 0q, we have

N
rC
pk, sq “ inf

#

degIpαq
ˇ

ˇ

ˇ

α P C2k´1, δ1v
jα “ 0 for 0 ď j ď k ´ 2,

δ1v
k´1α “ 1, degIpdαq ď s

+

(89)

and if k is a non-positive integer we have

N
rC
pk, sq “ inf

#

maxtdegIpαq, 0u
ˇ

ˇ

ˇ

α P C2k´1, ai P RrU
˘1s p0 ď i ď ´kq, a´k “ 1,

degIpdα´
ř´k
i“0 v

iδ2paiqq ď s

+

(90)

In (104), we may assume ai “ 0 if i ı k pmod 2q, and otherwise ai “ fiU
pk`iq{2 for some fi P R.
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Proof. This is a straightforward consequence of the definitions. For any α satisfying the condition in
(103), we obtain the filtered special pk, 1, sq cycle pΨpα, 0q for a positive integer k, and for any α and ai
satisfying (104) we obtain the filtered special pk, 1, sq cycle pΨpα,

ř´k
i“0 aix

iq for a non-positive integer k.
For the last part, see Remark 5.12.

Remark 5.23. Note that N
rC
pk, sq “ 0 when k ď 0 and s P rdegIpδ2p1qq, 0q. To see this, one considers

α “ 0 in the conditions appearing in (104).

The following monotonicity property is a consequence of Remark 5.11.

Lemma 5.24. For any I-graded S-complex rC, N
rC

is increasing with respect to k and decreasing with
respect to s. That is to say, for any pk, sq, pk1, s1q P Zˆ r´8, 0q with k1 ď k and s1 ě s, we have

N
rC
pk1, s1q ď N

rC
pk, sq.

Lemma 5.25. Let rλ : rC Ñ rC 1 be a strong height i morphism of level κ ě 0 between I-graded
S-complexes. Then, for k P Z and s P r´8, 0q satisfying s` κ ă 0, we have

N
rC1
pk ` i, s` κq ď N

rC
pk, sq ` κ

Proof. If z is a filtered special pk, 1, sq-cycle for rC, then Lemma 5.13 implies that

pΨ1 ˝ pΦ1 ˝ pλpc´1
i zq (91)

is a filtered special pk ` i, 1, s` κq-cycle for rC 1, where ci is defined as in (15). Moreover, degI of the
special cycle in (91) is at most degIpzq ` κ. The claim follows from this observation.

Lemma 5.26. For an enriched complex E “ pt rCiu, trφji u,Kq, an integer k and s P r´8, 0qzK, the limit
of tN

rCi
pk, squiPZą0 exists in r0,8s.

Proof. If rs1, s2s is an interval in RzK, then there is some N ą 0 such that for all n ą N any special
pk, f, s2q-cycle for rCn is also a special pk, f, s1q-cycle. In particular, for any such s1, s2 and N , we have

N
rC
pk, s1q “ N

rC
pk, s2q. (92)

This observation together with Lemma 5.25 implies that tN
rCi
pk, squiPZą0 is a Cauchy sequence. Thus

the limit exists.

Lemma 5.26 allows us to extend Definition 5.21 to enriched complexes.

Definition 5.27. For an enriched S-complex E given by the data pt rCiu, trφji u,Kq, define the invariant
NE : Zˆ pr´8, 0qzKq Ñ r0,8s as follows:

NEpk, sq :“ lim
iÑ8

N
rCi
pk, sq. (93)

If s P KX r´8, 0q, then we define NEpk, sq “ lims1Ñs´ NEpk, s
1q.
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Example 5.28. For the trivial enriched complex E0, we have

NE0pk, sq “

#

8, k ą 0

0, k ď 0
, (94)

and for the enriched complex Etru of Remark 5.7 and its dual Etru:, we have

NEtrupk, sq “

$

’

&

’

%

8, k ą 1

r, k “ 1

0, k ď 0

, NEtru:pk, sq “

$

’

&

’

%

8, k ě 1

8, k “ 0 and s ă r

0, otherwise

. (95)

Remark 5.29. For an enriched S-complex E, it is not necessarily true, as was the case for S-complexes
in Remark 5.23, that NEpk, sq “ 0 for k ď 0 and s close to zero. To see this, one can take E to contain a
sequence of S-complexes rCtriu

: from Remark 5.7 where ri are positive numbers approaching 0. See,
however, Remark 5.44.

We may define a slight variation of NE in the following way.

Definition 5.30. For an I-graded S-complex rC over RrU˘1s, define

N
rC
pk, sq :“ inf tdegIpzq | z is filtered special pk, f, sq-cycle with f ‰ 0u P r0,8s (96)

for pk, sq P Zˆ r´8, 0q. For an enriched S-complex E “ pt rCiu, trφji u,Kq over RrU˘1s, define

N Epk, sq :“ lim
iÑ8

N
rCi
pk, sq. (97)

if Zˆ pr´8, 0qzKq. Extend this definition to the case that s P K by requiring that N
rC

is continuous from
the left with respect to the variable s.

Remark 5.31. We have an analogue of Lemma 5.22 for N
rC
pk, sq by replacing the condition δ1v

k´1α “ 1
in (103) and the condition a´k “ 1 in (104) respectively with δ1v

k´1α ‰ 0 and a´k ‰ 0.

Remark 5.32. In the case that R is a field, the invariants NE and N E agree. In general we have
NEpk, sq ě N Epk, sq. For instance, let E1tru be the enriched S-complex with the same chain group
as Etru and the differential that is a multiple of the differential of Etru by a non-unit element. Then
NEp1, sq “ 8 and N Ep1, sq “ r.

Next, we develop some basic properties for the invariants NE and N E.

Lemma 5.33. For an enriched S-complex E “ pt rCiu, trφji u,Kq, the map NE is locally constant on the
complement of Zˆ K in Zˆ r´8, 0q. Moreover, NE takes values in KY t8u. Similar properties hold
for the map N E.

Proof. The first claim follows from (92). The second part is straightforward, and similar proofs can be
used to address analogous claims for N E.
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Lemma 5.34. For any enriched S-complex E, NE and N E are increasing with respect to k and decreasing
with respect to s. That is to say, for any pk, sq, pk1, s1q P Zˆ r´8, 0q with k1 ď k and s1 ě s, we have

NEpk
1, s1q ď NEpk, sq, N Epk

1, s1q ď N Epk, sq.

Proof. In the case of NE, the claim can be verified using Lemma 5.24. The proof for N E is similar.

Proposition 5.35. Let L : EÑ E1 be a strong height imorphism of level κ between enriched S-complexes.
Then for k P Z and s P r´8, 0q we have

NE1pk ` i, sq ď NEpk, s´ κq ` κ.

If L : EÑ E1 is a height i morphism of level κ and ci, defined as in (15), is non-zero, we have

N E1pk ` i, sq ď N Epk, s´ κq ` κ.

Proof. The first part follows from Lemma 5.25, and the second part can be proved in a similar way.

Remark 5.36. An analysis of the proof shows that Proposition 5.47 holds with the weaker assumption
that the morphisms L in the statement do not necessarily satisfy condition (ii) of Definition 5.5.

Corollary 5.37. The invariants NE and N E depend only on the weak local equivariance type of E.

Proof. Proposition 5.47 implies that NE and N E depends only the local equivariance type of E. We can
upgrade this fact to our desired claim using Remark 5.36.

The following is a consequence of Lemma 5.15.

Theorem 5.38. For two enriched complexes E and E1, if NEpk, sq, NE1pk
1, s1q are finite and

sb :“ maxtNEpk, sq ` s
1, NE1pk

1, s1q ` su ă 0,

then the following inequalities hold:

NEbE1pk ` k
1, sbq ď NEpk, sq `NE1pk

1, s1q, N EbE1pk ` k
1, sbq ď N Epk, sq `N E1pk

1, s1q.

In [DS19, §7.5], an invariant ΓE is defined for any enriched S-complex ΓE. The following is a
straightforward consequence of the definition of Γ, Lemma 5.22 and Remark 5.31.

Lemma 5.39. For any enriched S-complex E over RrU˘1s, we have

ΓEpkq “ NEbFracRpk,´8q “ N Epk,´8q, (98)

where Eb FracR is the enriched S-complex obtained using the base change with respect to the field of
fractions of R.
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The transpose of NE for an enriched S-complex E is the map N ᵀ
E : Zˆ r0,8s Ñ r´8, 0s defined by

N ᵀ
Epk, rq :“ mintinfts P r´8, 0q | NEpk, sq ď ru, 0u pr ă 8q (99)

and N ᵀ
Epk,8q :“ limrÑ8N ᵀ

Epk, rq. Note that N ᵀ
Epk, rq “ 0 if and only if NEpk, 0q (and hence any

NEpk, sq) is greater than r. It also follows immediately from the definition that

NEpk,´8q “ 0 ðñ N ᵀ
Epk, 0q “ ´8. (100)

This function is again increasing with respect to k and decreasing with respect to r. Lemma 5.33 implies
that N ᵀ

E for any enriched complex E “ pt rCiu, trφji u,Kq takes values in K Y t´8u, and it is locally
constant on the complement of Z ˆ K in Z ˆ r0,8s. Moreover, for any fixed value of k, the function
N ᵀ

Epk, ¨q is continuous from the right. We may recover NE from N ᵀ
E using the following identity:

NEpk, sq “ mintr | N ᵀ
Epk, rq ď su if s R K.

The following is a consequence of the definition of N ᵀ
Epk, rq and Theorem 5.38:

N ᵀ
EbE1pk ` k

1, r ` r1q ď maxtN ᵀ
Epk, rq ` r

1, N ᵀ
E1pk

1, r1q ` ru. (101)

Finally, we mention that the analogue of Theorem 5.47 holds for N ᵀ: if there is a strong height imorphism
EÑ E1 of level κ ě 0 between I-graded S-complexes, and k P Z and r P r0,8s, we have

N ᵀ
E1pk ` i, r ` κq ď N ᵀ

Epk, rq ` κ. (102)

The following is the analogue of Lemma 5.22, and the proof is straightforward.

Lemma 5.40. For an I-graded S-complex rC and a positive integer k and r P r0,8s, we have

N ᵀ
rC
pk, rq “ min

#

inf

#

degIpdαq
ˇ

ˇ

ˇ

α P C2k´1, δ1v
jα “ 0 for 0 ď j ď k ´ 2,

δ1v
k´1α “ 1, degIpαq ď r

+

, 0

+

(103)

and if k is a non-positive integer we have

N ᵀ
rC
pk, rq “ inf

#

degIpdα´
´k
ÿ

i“0

viδ2paiqq
ˇ

ˇ

ˇ

α P C2k´1, ai P RrU
˘1s p0 ď i ď ´kq,

a´k “ 1, degIpαq ď r

+

(104)

In (104), we may assume ai “ 0 if i ı k pmod 2q, and otherwise ai “ fiU
pk`iq{2 for some fi P R.

Motivated by [NST19], we define another numerical invariant for enriched complexes.

Definition 5.41. For any enriched S-complex E over RrU˘1s and any s P r´8, 0s, we define

rspEq :“ ´N ᵀ
Ep0,´sq P r0,8s. (105)

The following is a corollary of Theorem 5.38 and (101).
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Corollary 5.42. The invariants ΓE and rspEq satisfy the following inequalities:

ΓEbE1pk ` k
1q ď ΓEpkq ` ΓE1pk

1q,

rs`s1pEb E1q ´ s´ s1 ě mintrspEq ´ s, rs1pE
1q ´ s1u.

Finally, the invariants that we have defined above can detect the (weak) local equivalence class of the
trivial enriched S-complex.

Corollary 5.43. An enriched S-complex E is weakly locally equivalent to the trivial enriched S-complex
if and only if the following conditions hold:

NEp0,´8q “ 0 and NE:p0,´8q “ 0. (106)

These conditions are equivalent to r0pEq “ 8 and r0pE
:q “ 8.

Proof. The first statement follows from Corollary 5.20, and the last statement from (100).

5.4 Homology concordance invariants

We now use the homomorphism Ω : Θ3,1
Z Ñ ΘE

R constructed in Theorem 5.8, together with the numerical
invariants of ΘE

R defined above, to construct homology concordance invariants for knots in integer
homology 3-spheres. Unless otherwise stated, R is an integral domain algebra over ZrT˘1s.

Let K Ă Y be a knot in an integer homology 3-sphere, and write EpY,Kq for the associated enriched
S-complex. Applying the construction of Definition 5.27, we obtain:

NpY,Kqpk, sq :“ NEpY,Kqpk, sq

Here k P Z, s P r´8, 0q, and NpY,Kqpk, sq P r0,8s. We similarly define the homology concordance
invariant N pY,Kqpk, sq using Definition 5.30. We also apply the construction of (99) to define

N ᵀ
pY,Kqpk, rq :“ N ᵀ

EpY,Kqpk, rq

where k P Z, r P r0,8s, and N ᵀ
pY,Kqpk, rq takes values in r´8, 0s. By construction, all of these invariants

factor through the homomorphism Ω and define homology concordance invariants. In the case that Y is
the 3-sphere, we omit it from notation and write NK , and similarly for the other invariants.

Remark 5.44. For any sequence of perturbations πi (with auxiliary choices) approaching zero, we have
lim sup degIpδ

i
2p1qq ď m ă 0, wherem :“ maxtKXp´8, 0qu, δi2 is the δ2-map defined using πi, and K

is the set of critical values of the unperturbed Chern–Simons functional. This follows from non-degeneracy
of the reducible connection and standard compactness properties. Using this and Remark 5.23, we obtain
that NEpY,Kqpk, sq “ 0 for k ď 0 and s P rm, 0q. In particular, N ᵀ

Epk, rq ď m when k ď 0.
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As special values, we have the following homology concordance invariants:

ΓpY,Kqpkq :“ N pY,Kqpk,´8q

rspY,Kq :“ ´N ᵀ
pY,Kqp0,´sq

The invariant ΓpY,Kq is the same as the invariant ΓR
pY,Kq studied in [DS19, DS20]. The invariant rspY,Kq

is an analogue of the integer homology 3-sphere invariant invariant defined in [NST19]. Later in this
section we describe an explicit relationship between this latter invariant and rspY,U1q, where U1 is an
unknot in a small ball inside Y ; see (120).

The following connected sum inequalities follow from the inequalities of Theorem 5.38 and (101),
and the fact that Ω : Θ3,1

Z Ñ ΘE
R is a homomorphism.

Theorem 5.45. Given knots in integer homology 3-spheres pY,Kq and pY 1,K 1q, suppose sb ă 0, where
sb :“ maxtNpY,Kqpk, sq ` s1,NpY 1,K1qpk1, s1q ` su. Then

NpY#Y 1,K#K1qpk ` k
1, sbq ď NpY,Kqpk, sq `NpY 1,K1qpk1, s1q,

with the same inequality holding for the N -invariants. Furthermore, we have:

N ᵀ
pY#Y 1,K#K1qpk ` k

1, r ` r1q ď maxtN ᵀ
pY,Kqpk, rq ` r

1, N ᵀ
pY,1K1qpk

1, r1q ` ru.

Specializing to the case of the invariants ΓpY,Kq and rspY,Kq, we obtain the following.

Corollary 5.46. The invariants Γ and rs satisfy the following inequalities:

ΓpY#Y 1,K#K1qpk ` k
1q ď ΓpY,Kqpkq ` ΓpY 1,K1qpk

1q,

rs`s1pY#Y 1,K#K 1q ´ s´ s1 ě mintrspY,Kq ´ s, rs1pY
1,K 1q ´ s1u.

Note that Theorem 5.45 and Corollary 5.46 prove Theorem 1.19 from the introduction.

We next consider the behavior of these invariants under cobordisms. What follows is a straightforward
generalization of some material from [DS19, §4.4]. Recall from the discussion surrounding Definition 2.7
that to cobordism data pW,S, cq with b1pW q “ b`pW q “ 0 there is an associated integer

i :“ 4κminpW,S, cq `
1

4
S ¨ S `

1

2
χpSq `

1

2
σpY,Kq ´

1

2
σpY 1,K 1q (107)

such that if i ě 0, then there is an associated height i morphism of S-complexes. This construction can be
used to construct a height i morphism of the associated enriched S-complexes.

Theorem 5.47. Let pW,Sq : pY,Kq Ñ pY 1,K 1q be a cobordism, as in Definition 2.7, which is negative
definite of strong height i ě 0 over R, where i can be computed from (107). Then we have

NpY 1,K1qpk ` i, sq ď NpY,Kqpk, s´ 2κminpW,Sqq ` 2κminpW,Sq. (108)

Moreover, if equality is achieved in (108) for some k P Z and s P r´8, 0q, with both sides finite
and positive, then there exists an irreducible traceless SUp2q representation of π1pW zSq. The same
conclusion holds for the N -invariants, under the weaker assumption that the cobordism is not necessarily
strong, but satisfies ηpW,Sq ‰ 0.

71



Proof. Inequality (108) follows from Proposition 5.6 and Theorem 5.47.

Now we prove the second statement, regarding when equality is achieved in (108). For now, assume
our enriched S-complexes are simply I-graded S-complexes, and morphisms are level 0. In particular,
the singular instanton S-complexes, and the relevant cobordism maps below, can be defined without
perturbations, and the I-gradings are determined by the unperturbed Chern–Simons functional.

Define κ :“ κminpW,Sq. Let z “ pΨpzq be a filtered special pk, 1, s ´ 2κq-cycle with z “
pα,

řN
i“0 aix

iq in pC2kpY,Kq. Recall from Remark 5.12 that

degIpzq “ degIpzq “ maxtdegIpαq, 0u,

and degIpaiq ď 0. Assume z is a filtered special cycle that realizes the value of NpY,Kqpk, s´ 2κq. This
is possible because the I-gradings take values in the image of the Chern–Simons functional, a discrete
subset of R. Thus we have the relation

NpY,Kqpk, s´ 2κq “ maxtdegIpαq, 0u. (109)

Let pλ : pCpY,Kq Ñ pCpY 1,K 1q be induced by pW,S, cq on small equivariant (filtered) complexes. By
Lemma 5.13, z1 “ pΨ1pz1q, where z1 “ pλpzq, is a filtered special pk ` i, 1, sq-cycle. We obtain

NpY 1,K1qpk ` i, sq ď degIppλpzqq ď degIpzq ` 2κ “ NpY,Kqpk, s´ 2κq ` 2κ. (110)

where we have used in the second inequality that rλ has level 2κ, and we have also used degIpz
1q “

degIpz
1q. By our assumption that (108) is an equality, the inequalities in (110) are equalities. Next,

z1 “ pα1,
řN 1

i“0 a
1
ix
iq where

α1 “ λpαq `
N
ÿ

i“1

i´1
ÿ

j“0

µvi´j´1δ2paiq `
N
ÿ

i“0

pv1qi∆2paiq. (111)

This follows from direct computation of z1 “ pλpzq “ pΦ1 ˝ pλ ˝ pΨ1pzq using the definitions of the maps from
Section 2.2. As NpY 1,K1qpk ` i, sq ą 0, we have by Remark 5.12 that

NpY 1,K1qpk ` i, sq “ degIpz
1q “ degIpα

1q.

Now degIpα
1q is the maximum of the I-degrees of the three terms appearing in (111).

First, consider the case in which this maximum is realized by the first term:

degIpα
1q “ degIpλpαqq.

From (109), and the string of equalities achieved in (110), we obtain

degIpα
1q ě degIpαq ` 2κ. (112)

Furthermore, degIpα
1q ď degIpαq ` 2κ because rλ has level 2κ. Thus (112) is an equality. Recall from

[DS20] that α “
ř

rirαi and α1 “
ř

r1irα
1
i are linear combinations over R of irreducible flat connections
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(in fact, paths of flat connections to the reducible), and λprαiq “
ř

dijrα
1
j where dij P Z is the signed

count of elements in a moduli space of singular instantons on the cobordism pW,Sq with cylindrical ends
attached. For such an instanton A in this count we have

degIprαiq ` 2κ “ degIprα
1
jq ` 2κpAq

Suppose rα1j is chosen such that degIpα
1q “ degIprα

1
jq and r1j ‰ 0. We obtain

degIpαq ` 2κ ě degIprαiq ` 2κ “ degIprα
1
jq ` 2κpAq “ degIpα

1q ` 2κpAq

Using (112) we obtain κpAq ď 0. The energy of an instanton is necessarily non-negative, and thus
κpAq “ 0, and A is flat. This flat singular connection corresponds to an SUp2q-representation of
π1pW zSq that extends irreducible representations of π1pY zKq and π1pY

1zK 1q which send meridians to
traceless elements in SUp2q.

Now suppose degIpα
1q is realized by the second term in (111). Here, degIpα

1q “ degIpµpβqq where

β :“
N
ÿ

i“1

i´1
ÿ

j“0

vi´j´1δ2paiq

Since each degIpaiq ď 0, we have degIpβq ď 0. Since rλ is of level 2κ, degIpα
1q ě degIpβq ` 2κ,

analogous to (112). The argument now proceeds as in the previous case, and we obtain a representation of
π1pW zSq that extends irreducible representations at pY,Kq and pY 1,K 1q, just as before. In the last case,
in which degIpα

1q is realized by the third term in (111), we have some r P RrU˘1s such that degIprq ď 0
and degIp∆2prqq ě degIprq ` 2κ. The argument gives a representation of π1pW zSq as before, except
that it is only irreducible at the end of pY 1,K 1q.

The case involving non-trivial perturbations is similar, but also uses limiting arguments similar to
those in [Dae20, §3.2], [NST19, §3].

Substituting s “ ´8, Theorem 5.47 recovers one of the inequalities in [DS20, Proposition 4.33].

Remark 5.48. The proof of Theorem 5.47 given above shows the following. If equality occurs in
(108) and NpY,Kqpk, s ´ 2κminpW,Sqq is finite and positive, then there exists an irreducible SUp2q
representation of π1pW zSq extending irreducible traceless representations of π1pY zKq and π1pY

1zK 1q.
However, if NpY,Kqpk, s´2κminpW,Sqq “ 0 and NpY 1,K1qpk`i, sq ą 0, then the representation obtained
is irreducible at pY 1,K 1q, but possibly reducible at pY,Kq.

Remark 5.49. A version of Theorem 5.47 also holds for non-trivial bundles. If pW,S, cq is cobordism
data as in Definition 2.7, which is negative definite of strong height i ě 0 over R, then

NpY 1,K1qpk ` i, sq ď NpY,Kqpk, s´ 2κminpW,S, cqq ` 2κminpW,S, cq.

In this case, if both sides are finite and positive, there exists an irreducible SUp2q representation of
π1pW zpS Y F qq which is traceless around meridians of S and equal to ´1 around meridians of F , where
F is an embedded surface in W such that rF s is Poincaré dual to c P H2pW ;Zq.
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The following is an analogue of Theorem 5.47 for N ᵀ, and the proof is similar (see also (102)).

Theorem 5.50. Let pW,Sq : pY,Kq Ñ pY 1,K 1q be a cobordism, as in Definition 2.7, which is negative
definite of strong height i ě 0 over R, where i can be computed from (107). Then we have

N ᵀ
pY 1,K1qpk ` i, r ` 2κminpW,Sqq ď N ᵀ

pY,Kqpk, rq ` 2κminpW,Sq (113)

Moreover, if equality is achieved in (113) for some k P Z and r P r0,8s, with both sides finite and
negative, then there exists an irreducible traceless SUp2q representation of π1pW zSq.

Remark 5.51. Note that if k` i ď 0, then both sides of (108) are automatically negative by Remark 5.44.

We now apply Theorem 5.47 to relate our invariants to knot surgeries.

Corollary 5.52. Let K be a knot in an integer homology 3-sphere Y satisfying σpY,Kq ď 0. Then, we
have the following inequality, where Y1pKq denotes 1-surgery on K:

NpY,Kq
ˆ

k ´
1

2
σpY,Kq, s

˙

ď NpY1pKq,U1q

ˆ

k, s´
1

8

˙

`
1

8

A similar inequality holds for the N -invariants.

Proof. Consider the 4-manifold with boundary W obtained by adding a 1-framed 2-handle to r0, 1s ˆ Y
along t1u ˆK, and reversing orientation. We view W as a cobordism Y1pKq Ñ Y . In this cobordism
there is an embedded annulus S formed by taking the core of the 2-handle and connect-summing
with a small 2-disk whose boundary is an unknot U1 Ă Y1pKq. We obtain a cobordism of pairs
pW,Sq : pY1pKq, U1q Ñ pY,Kq. Note H2pW ;Zq is generated by rSs, S ¨ S “ ´1, and S has genus
zero, and W is simply-connected. Choosing bundle data c “ 0, in this case (16) is minimized by the
unique choice c1pLq “ 0, and we compute

κminpW,S, cq “ ´

ˆ

1

4
S

˙2

“
1

16
.

Furthermore, (107) is computed to be i “ ´σpY,Kq{2. Note also ηpW,S, cq “ 1, so that the induced
morphism is strong. The result now follows from Theorem 5.47.

Substituting s “ ´8, we obtain the following.

Corollary 5.53. Let K be a knot in an integer homology 3-sphere Y satisfying σpY,Kq ď 0. Then

ΓpY,Kq

ˆ

k ´
1

2
σpY,Kq

˙

ď ΓpY1pKq,U1qpkq `
1

8
.

A consequence of Theorem 5.50 and Remark 5.51 is the following.
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Corollary 5.54. Let pW,Sq : pY,Kq Ñ pY 1,K 1q be a cobordism of pairs, as in Definition 2.7, which is
negative definite of strong height 0 over R. Let κ :“ κminpW,Sq. Then for all s P r´8, 0s we have

rs´2κpY,Kq ď rspY
1,K 1q ` 2κ. (114)

Furthermore, if rs´2κpY,Kq is finite, and equality is achieved in (114), then there exists an irreducible
traceless SUp2q representation of π1pW zSq.

In the sequel, the above is typically applied to the case in which pW,Sq : pY,Kq Ñ pY 1,K 1q is a
cobordism of pairs satisfying b1pW q “ b`pW q “ 0, with S Ă W is a null-homologous annulus, and
σpY,Kq “ σpY 1,K 1q. In this case we have the following inequality, for any s P r´8, 0s:

rspY,Kq ď rspY
1,K 1q. (115)

If furthermore π1pW zSq – Z, then there cannot be any irreducible traceless SUp2q representation of
π1pW zSq. In this case, for s P p´8, 0s, (115) is a strict inequality.

In proving linear independence of a given sequence of elements in Θ3,1
Z , we will use the following.

Proposition 5.55. Let tpYi,KiquiPZą0 be a sequence of representatives in Θ3,1
Z satisfying:

(i) 8 ą r0pY1,K1q ą r0pY2,K2q ą ¨ ¨ ¨

(ii) r0p´Yi,´Kiq “ 8.

Then for any linear combination rpY,Kqs :“
řN
i“0mirpYi,Kiqs in Θ3,1

Z with mN ą 0, we have
r0pY,Kq ă 8. In particular, tpYi,KiquiPZą0 is a linearly independent subset of Θ3,1

Z .

Proof. We first claim that for any positive integer m, we have

r0p#mpYi,Kiqq “ r0pYi,Kiq, r0p#mp´Yi,´Kiqq “ 8. (116)

Applying Corollary 5.46 to pYi,Kiq#pYi,Kiq yields the inequality r0p#2pYi,Kiqq ě r0pYi,Kiq. On
the other hand, we have r0pYi,Kiq ě r0p#2pYi,Kiqq by applying Corollary 5.46 to the decomposition
rpYi,Kiqs “ 2rpYi,Kiqs ´ rpYi,Kiqs in Θ3,1

Z . This yields the first part of (116) for m “ 2. The case for
larger values of m follows inductively. The second claim in (116) also follows from Corollary 5.46.

Now let rpY,Kqs :“
řN
i“0mirpYi,Kiqs be as in the statement of the proposition. A similar argument

as above using Corollary 5.46 gives

r0 pY,Kq “ mintr0pYi,Kiq | 1 ď i ď N, mi ą 0u “ r0pYN ,KN q ă 8. (117)

To obtain the last part of the proposition, note that if we have a linear combination
řN
i“0mirpYi,Kiqs

which is zero in Θ3,1
Z , we may assume that mN ą 0 without loss of generality, which is a contradiction by

the first part of the proposition.

The following is a relation between r0 and rs.
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Theorem 5.56. For a knot K in S3 with rspKq ‰ 0, we have mintr0pKq, r0pK
˚qu ă 8.

Proof. By construction, rspKq depends only on the weak local equivalence class of the enriched S-
complex EpY,Kq. Thus if rspKq is non-zero, EpY,Kq is not weakly locally equivalent to the trivial
enriched S-complex. By Corollary 5.43 we obtain that one of r0pKq or r0pK

˚q is finite.

We next make some remarks on the relationship between invariants for unknots and the 3-manifold
invariants of [Dae20, NST19]. First, we give another expression for rspY,Kq. Assume for simplicity
that no perturbations are required, and thus the enriched S-complex EpY,Kq is an I-graded S-complex
rC “ rCpY,K; ∆Rq. Then we compute

rspY,Kq “ ´min tinftdegIpdα´ δ2p1qq | α P C´1, degIpαq ď ´su, 0u

“ max
!

suptdegIpfq | f P C
:
1, degIpαq ď ´s, α P C´1, pd

:fqpαq ´ δ:1pfq P Rz0u, 0
)

“ inf
!

r P p0,8s | rδ:1s ‰ 0 P HpCď´s{Cďrq
)

(118)

where Cďr denotes the R-chain complex consisting of elements with degI ď r. The invariant rRs pY q of
[NST19] is defined similarly as in the last line, but using the complex C˚pY ;Rq of the integer homology
sphere Y , with Chern–Simons filtration, and the map D1 : C˚pY ;Rq Ñ R (called θY in [NST19]) in
place of δ1. (There are also some convention differences, reflected in the discussion below; see also
[NST19, §4.1].) The chain complex C˚pY ;Rq is defined with respect to the coefficient ring R, forgetting
the ZrT˘1s-algebra structure.

There is a chain map φ : C˚pY, U1; ∆Rq Ñ C˚pY ;Rq and a map D : C1pY,U1; ∆Rq Ñ R satisfying

Dd` δ1 `D1φ “ 0. (119)

For details see [DS20, Proposition 5.3]. The map φ preserves the Chern–Simons filtrations, and we obtain,
much like in the argument that proves Theorem 5.47, using the dual version of (119), an inequality

rspY, U1q ď 2rRs pY q. (120)

The factor of 2 that appears is because of the difference of conventions for the Chern–Simons functional.
A similar argument using (119) and also the dual version yields the inequalities

ΓY p1q ď ΓpY,U1qp1q (121)

ΓY p0q ě ΓpY,U1qp0q (122)

where ΓY is as defined in [Dae20] over Q, and ΓpY,U1q is defined with the coefficient ring R being any
integral domain algebra over QrT˘1s.

In fact, the inequalities (120)–(122) are equalities. A proof follows along the same lines of the
one sketched in [DS20, §5.3], where it is explained that C˚pY,U1;Rq is chain homotopy equivalent to
the Z{4-graded chain complex pC˚pY ;Rq, dY q ‘ pC˚´2pY ;Rq, dY q, and that under this equivalence,
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δ1 corresponds to D1 ‘ 0. The equivalence, which is roughly induced by certain cobordism maps, is
filtration-preserving (adjusting for differences in convention). Given this explicit identification, equality
in (120)–(122) follows. As we do not use this result elsewhere in the paper, we omit the details.

We have the following result regarding homology cobordisms of integer homology 3-spheres.

Corollary 5.57. If r0pY, U1q is finite, then for any homology cobordism W from Y to itself, there is an
irreducible SUp2q representation of π1pW q.

Proof. Let W : Y Ñ Y be a homology cobordism. Choose a submanifold of W , diffeomorphic to
r0, 1s ˆ D3, which is a regular neighborhood of a path from the incoming copy of Y to the outgoing
copy of Y . We obtain a cobordism of pairs pW,Sq : pY,U1q Ñ pY, U1q where S is an unknotted annulus
inserted in the submanifold identified with r0, 1s ˆD3. By the Seifert–Van-Kampen Theorem, we have

π1pW zSq – π1pW q ˚ Z,

where the copy of Z is generated by any circle fiber of the normal bundle of S. Now our assumption
on r0pW,Sq, together with Corollary 5.54, imply that there is an irreducible traceless representation
ρ : π1pW q ˚ Z Ñ SUp2q. The traceless condition means that after possibly conjugating, ρp1q “ i “
diagpi,´iq P SUp2q, where 1 P Z. Consider the representation ρ1 :“ ρ˝ι where ι : π1pW q Ñ π1pW q˚Z
is the inclusion. If ρ1 is reducible, then, because Hompπ1pW q,Zq “ H1pW ;Zq “ 0, it is trivial. But then
ρ has image i and is reducible, a contradiction. Thus ρ1 is the desired irreducible representation.

Remark 5.58. An alternative proof of Corollary 5.57 may be obtained once equality in (120) is established.
For then finiteness of r0pY, U1q implies finiteness of rR0 pY q, and the result then follows from [NST19,
Theorem 1.1(1)].

We end this section with some results involving the invariant s7pY,Kq. In what follows, for an integer
homology 3-sphere Y , we write hpY q P Z for Frøyshov’s instanton invariant defined in [Frø02], which is
constructed in the setting of SOp3q-equivariant instanton Floer theory for Y with rational coefficients.
We study the relationship between rspY,Kq and hpY q. For the remainder of this section, R “ QrrΛss.

Proposition 5.59. If K is a knot in an integer homology 3-sphere Y satisfying hpY q “ hpY1pKqq, then

rspY,Kq ď rspY1pKq, U1q.

Proof. Let i :“ ´σpY,Kq{2. First assume i ě 0. Consider the cobordism pW,Sq : pY1pKq, U1q Ñ

pY,Kq from the proof of Corollary 5.52. There, it was shown that pW,Sq is strong and negative definite
over R of height i. Then we have

i “ ´σpY,Kq{2 “ hpY,Kq ´ 4hpY q

“ hpY,Kq ´ 4hpY1pKqq

“ hpY,Kq ´ hpY1pKq, U1q

where we have used Theorem 2.9 in the first and third lines, and the assumption hpY q “ hpY1pKqq in the
middle. The result now follows from an application of Proposition 4.11. If i ď 0, using the trick employed
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in Section 4.4, we form a cobordism pW 1, S1q : pY1pKq,#´iT
˚
2,3q Ñ pY,Kq by splicing on ´i copies of

the blown-up version of the cobordism from Lemma 4.39 onto pW,Sq. Then pW 1, S1q has height 0 with
c0 “ ηpW 1, S1q equal to Λ´i up to a unit. An application of Proposition 4.2 gives the result.

Proposition 5.60. If hpY q “ 0, then rspY,U1q “ 0.

Proof. Consider the map ψ : CpY ;Rq Ñ CpY,U1; ∆Rq which is the dual of φ : Cp´Y,´U1; ∆Rq Ñ

Cp´Y ;Rq from (119). Then (119) gives a dual relation of the form

dD1 ` δ2 ` ψD2 “ 0.

Under the standing assumption that R “ QrrΛss we have CpY ;Rq “ CpY ;Qq bQ QrrΛss. Further,
hpY q “ 0 implies that D2p1q “ dY α for some α P CpY ;Qq. Now

δ2p1q “ ´ψD2p1q ´ dD
1p1q “ ´ψdY pαq ´ dD

1p1q “ dβ

where β “ ´ψpαq ´D1p1q. Then p0, β, 1q P pC defines a special p0, 1q-cycle for rCpY, U1; ∆Rq. From
the definition of rs we obtain rspY, U1q ď 0. Applying the same argument to the orientation-reversal yields
the inequality rsp´Y,´U1q ď 0. We then have

0 ď ´rsp´Y,´U1q ď rspY,U1q

by (52). This completes the proof.

The following result implies Theorem 1.5 from the introduction.

Proposition 5.61. For a knot K in Y with hpY q “ 0, if rspY,Kq ą 0, then hpY1pKqq ă 0.

Proof. Note that we always have hpY1pKqq ď hpY q “ 0, see [Frø02]. Assume hpY1pKqq “ 0. Then

0 “ rspY1pKq, U1q ě rspY,Kq

from Proposition 5.59 and Proposition 5.60. This contradicts rspY,Kq ą 0.

Remark 5.62. Following the outline given in [DS20, §5.3], we expect that rCpY, U1; ∆QrrΛssq is homotopy
equivalent to rC bQ QrrΛss where rC is an S-complex over Q. This would imply rspY,U1q “ 0 for any
integer homology 3-sphere Y . We would then obtain that rspY,Kq ą 0 implies hpY1pKqq ă hpY q.

6 Applications

We now use the invariants introduced in this paper to prove various topological applications. In the
first section below, we provide slice genus bounds for the invariants s7˘pKq. We then turn to prove
the applications described in the introduction involving knot concordance, homology cobordism, and
non-abelian traceless SUp2q-representations on concordance complements.
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6.1 Genus bounds from s7˘

In [KM13], Kronheimer and Mrowka prove that s7pKq gives a lower bound for the twice of the slice
genus of K. From the definitions given by Gong [Gon21], one obtains slice genus bounds for s7˘pKq as
well. Using our description of these invariants, we improve these bounds.

Theorem 6.1. For any knot K, we have the following genus bounds.

(i) |s7`pKq|, |s
7
´pKq ` 1| ď g4pKq hold if σpKq ă 0;

(ii) |s7˘pKq| ď g4pKq hold if σpKq “ 0;

(iii) |s7`pKq ´ 1|, |s7´pKq| ď g4pKq hold if σpKq ą 0.

Before proving this theorem, we observe that above genus bounds can be used to improve a result
from [Gon21] about the values of s7˘ for quasi-positive knots.

Corollary 6.2. Let K be a quasi-positive knot. If σpKq ď 0, then s7`pKq “ g4pKq. If σpKq ă 0, then
s7´pKq “ g4pKq ´ 1.

This corollary determines s7˘ for any algebraic knot or more generally any positive knot because any
such non-trivial knot has negative signature [Prz89].

Proof. It is shown in [Gon21] that for any quasi-positive knot K, if g4pKq is even, then we have

s7`pKq “ g4pKq, g4pKq ´ 1 ď s7´pKq ď g4pKq,

and if g4pKq is odd, then we have

g4pKq ď s7`pKq ď g4pKq ` 1, s7´pKq “ g4pKq ´ 1.

Now the claim follows from combining the above bounds with Theorem 6.1.

In order to prove Theorem 6.1, we use the following lemma from [Sat19].

Lemma 6.3 ([Sat19, §3]). For any knot K, there exist a non-negative integer k, positive integers mi ,ni
for any 1 ď i ď g4pKq and a cobordism of pairs

pW,Sq : pS3,Kq Ñ
´

S3,#
g4pKq
i“1 K˚

mi,ni

¯

such that Km,n is the doubly twist knot with parameters m,n P Zą0, W is the connected sum of the
product cobordism with k copies of CP 2

, gpSq “ 0 and the homology class of S is equal to e1 ` ¨ ¨ ¨ ` el
where 0 ď l ď k and ei is a generator of the H2 of the ith copy of CP 2

in W .

79



Proof of Theorem 6.1. For the knot K, take the cobordism pW,Sq provided by Lemma 6.3. There is a
unique minimal reducible on pW,Sq of index 2i´1 with i “ σpKq{2´g4pKq. In particular, ηpW,Sq “ 1.
Since σp#g4pKq

i“1 K˚
mi,niq “ 2g4pKq ě σpKq, the integer i is non-positive, and if it is negative then pW,Sq

is not a negative definite cobordism of pairs with a non-negative height. To remedy this, take the blown up
version of the cobordism from Lemma 4.39 and view it as a cobordism from the unknot to T2,3. Then
splice ´i copies of this cobordism along pW,Sq to obtain a cobordism as follows:

pW 1, S1q : pS3,Kq Ñ pS3,#
g4pKq
i“1 K˚

mi,ni#´iT2,3q.

It is straightforward to check that pW 1, S1q is a negative definite cobordism of pairs with vanishing height
and ηpW 1, S1q “ pT 2 ´ T´2q´i up to a unit. Thus, from Proposition 2.8 and Proposition 4.11, we have

s7˘p#
g4pKq
i“1 K˚

mi,ni#´iT2,3q ď s7˘pKq ´ i. (123)

Proposition 4.50 implies that the S-complex of #
g4pKq
i“1 K˚

mi,ni#´iT2,3 is locally equivalent to the
connected sum of ´g4pKq ´ i “ ´σpKq{2 copies of T2,3 over QrrΛss. Therefore, we have

s7˘p#
g4pKq
i“1 K˚

mi,ni#´iT
˚
2,3q “ s7˘

`

#´σpKq{2 T2,3

˘

.

This together with (123) gives

s7˘p#´σpKq{2 T2,3q `
1
2σpKq ´ g4pKq ď s7˘pKq.

By substituting K˚ for K, we obtain

´s7¯p#´σpKq{2 T2,3q ´
1
2σpKq ´ g4pKq ď ´s

7
¯pKq.

Combining the last two inequalities, we obtain the desired claim
ˇ

ˇ

ˇ

ˇ

s7˘pKq ´
σpKq

2
´ s7˘p#´σpKq{2 T2,3q

ˇ

ˇ

ˇ

ˇ

ď g4pKq.

6.2 Applications to knot concordance and H-sliceness

Here we prove the following, which is a restatement of Theorem 1.15 from the introduction.

Theorem 6.4. Let m be a positive integer and tKm,nunPZě0 be the sequence of two-bridge knots defined
by Km,n :“ Kp212mn´68n`53, 106m´34q. Let K be a knot whose concordance class is of the form

rKs “ a1rKm,0s ` a2rKm,1s ` ¨ ¨ ¨ ` aN rKm,N s,

where ai P Z and aN is positive. Then the knot K is not smoothly H-slice in any positive definite closed
4-manifold with b1 “ 0.
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n

Figure 3: Two-bridge knot Km,n “ Kp212mn´ 68n` 53, 106m´ 34q. In the box labelled “´m” there
are m full negative twists, and in the box labelled “n” there are n full positive twists.

-m

n

Figure 4: A Seifert surface for Km,n and its symplectic basis.

Note that Km,0 “ 1028 for any m P Zą0. The diagram of Km,n is depicted in Figure 3. Firstly, we
observe that almost all of Km,n are algebraically slice. Recall the Tristram–Levine signature function:

σωpY,Kq :“ sgn
“

p1´ e4πiωqAK ` p1´ e
´4πiωqAᵀ

K

‰

(124)

Here AK is a Seifert matrix for the knot K Ă Y , ω P p0, 1
2q, and sgnpBq is the signature of the Hermitian

matrix B, which is the number of positive eigenvalues minus the number of negative eigenvalues of B.

Lemma 6.5. We have σpKm,nq “ σ1{4pKm,nq “ 0 for m ě 1 and n ě 0. Moreover, if m ě 7, then
σωpKm,nq “ 0 for ω P p0, 1

2q. Thus Km,n is torsion in the algebraic concordance group if m ě 7, n ě 0.

Proof. Taking a Seifert surface for the knot Km,n, together with a choice of symplectic basis, as shown in
Figure 4. Then the corresponding Seifert matrix Am,n is computed as follows:

Am,n “

»

—

—

—

—

—

—

–

2
´1 2

´1 ´1
´1 ´1

´1 ´m
´1 n

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Now σωpKm,nq is the signature of the matrix Am,n,ω :“ p1´ e4πiωqAm,n` p1´ e
´4πiωqAᵀ

m,n. We first
show that the number of positive and negative eigenvalues of this Hermitian matrix does not change in the
case that ω “ 1{4 and m ě 1, n ě 0, and also in the case that ω is arbitrary and m ě 7, n ě 0.
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To this end, a direct computation gives the following expression for the determinant:

fpm,n, ωq :“ detpAm,n,ωq “ 64 sin6p2πωq
`

8mn cosp12πωq ` cosp4πωqpp98m´ 34qn` 26q

` cosp8πωqp´42mn` 8n´ 8q ´ 64mn` 26n´ 19
˘

Now we consider m, n as continuous variables. Setting x “ cosp4πωq, we compute

df

dm
“ ´256n sin8p2πωqppxq, ppxq “ 16x2 ´ 26x` 11,

df

dn
“ ´256 sin8p2πωqqpxq, qpxq “ 16mx2 ´ 26mx` 11m` 8x´ 9.

The quadratic ppxq is always positive, and thus df{dm ď 0. On the other hand, qpxq is always positive
when m ě 7, and in this case we thus have df{dn ă 0. In summary, the function fpm,n, ωq is
non-increasing in n,m when n ě 0 and m ě 7. We also have, with x as before:

fpm, 0, ωq “ ´64 sin6p2πωqppxq ă 0.

We conclude that fpm,n, ωq is negative for all m ě 7, n ě 0, ω P p0, 1{2q. Also

fpm,n, 1{4q “ ´64p53` 4p´17` 53mqnq

which is negative for all m ě 1, n ě 0. Thus the number of positive and negative eigenvalues of
Am,n,ω does not change under the stated conditions. Thus σωpKm,nq “ σpK1,0q for m,n, ω as in the
statement of the lemma. The proof is completed by showing that σpK1,0q “ σp1028q “ 0, which is
straightforward.

In order to prove Theorem 6.4, we use the following property of the invariant r0pKq:

Proposition 6.6. For a knot K in S3, if the invariant r0pKq is finite and σpKq “ 0, then K is not
smoothly H-slice in any negative definite closed 4-manifold with b1 “ 0.

Proof. If K is H-slice in a negative definite 4-manifold with b1 “ 0, then we obtain a negative definite
cobordism of pairs pW,Sq : pS3, U1q Ñ pS3,Kq of height 0 with ηpW,Sq “ 1 and κminpW,Sq “ 0.
Now applying Corollary 5.54 gives a contradiction.

Proof of Theorem 6.4. It suffices to verify the hypotheses (i) and (ii) of Proposition 5.55 for the family
of knots tK˚

m,nuně0, where m ą 0 is fixed. Indeed, the result then follows from Proposition 5.55 and
Proposition 6.6.

Consider the negative to positive crossing changes from Km,n to the unknot shown in Figure 5. These
give rise to an immersed cobordism from the unknot to Km,n with genus 0, no positive double points, and
pn` 3q negative double points. By blowing up and capping off the unknot, we obtain a null-homologous
disk with boundary Km,n in p#n`3CP

2
qzB4. Now, Lemma 6.5 and Proposition 6.6 implies

r0pKm,nq “ 8. (125)
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-m

n

-m

Figure 5: Changing n` 3 negative crossings in the diagram for Km,n produces an unknot.

Similar to the previous construction, a positive to negative crossing change from Km,n to Km,n`1

induces, after blowing up, a cobordism pWm,n, Sm,nq : pS3,Km,nq Ñ pS3,Km,n`1q where Sm,n is a
null-homologous annulus and Wm,n is a twice punctured CP 2. Then Corollary 5.54 gives

r0pK
˚
m,n`1q ď r0pK

˚
m,nq. (126)

Here we have used that σpKm,nq “ σpKm,n`1q “ 0, which implies that the cobordism pWm,n, Sm,nq is
negative definite over R of strong height 0.

The cobordism pWm,n, Sm,nq is given by the Kirby diagram in Figure 6. Note that the two-bridge
presentation of Km,n implies that π1pS

3zKm,nq is generated by two meridional loops, one for each of
the two strands that pass through the p´1q-framed 2-handle. This added 2-handle induces a relation on
π1pWm,nzSm,nq that equates these two elements. Thus π1pWm,nzSm,nq – Z. As such a cobordism does
not admit any irreducible SUp2q-representations, Corollary 5.54 implies that (126) is a strict inequality:

r0pK
˚
m,n`1q ă r0pK

˚
m,nq. (127)

Now consider the case n “ 0. Figure 7 describes a positive to negative crossing change from
Km,0 “ 1028 to 7˚4 . This gives an immersed cobordism from 10˚28 to 74 with genus 0 and one positive
double point. Therefore, it follows from [DS20, Corollary 3.24] and [DS20, Proposition 4.33] that

3

5
“ Γ74p1q ď

1

2
` Γ10˚28

p0q.
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-m

n

-1

Figure 6: A Kirby diagram for a cobordism pW,Sm,nq : pS3,Km,nq Ñ pS3,Km,n`1q. The cobordism is
obtained by attaching the p´1q-framed 2-handle to pS3,Km,nq.

Figure 7: Changing a positive crossing in 1028 gives 7˚4 . (The knot 74 is depicted in Figure 10.)

This shows Γ10˚28
p0q ą 0, and property (100) implies r0pK

˚
m,0q “ r0p10˚28q ă 8. Together with (125)

and (127), this verifies the hypotheses in Proposition 5.55, and the proof is complete.

6.2.1 The result on satellite operations

We next prove Theorem 1.11 and Corollary 1.12, the results on satellite operations described in the
introduction. The following implies Theorem 1.11, as we will see below.

Theorem 6.7. Suppose that a pattern P Ă S1 ˆD2 satisfies:

(i) There is some knot K such that r0pP pKqq ă 8 and r0pP pKq
˚q “ 8.

(ii) P pU1q is the unknot.

Then, the image of the induced map P : C Ñ C generates an infinite rank subgroup of C.

Suppose that pW,Sq : pS3,Kq Ñ pS3,K 1q is a cobordism of pairs satisfying b1pW q “ b`pW q “ 0,
with S a null-homologous annulus. Cut out a regular neighborhood of S and glue in the pair pS1 ˆD2 ˆ

I, P ˆ Iq along its boundary in the standard way to obtain a cobordism of pairs

pW,SP q : pS3, P pKqq Ñ pS3, P pK 1qq (128)

where SP is the image of P ˆ I after gluing. Note that SP is null-homologous in W .
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Lemma 6.8. Suppose P pU1q is the unknot. If π1pW zSq – Z, then π1pW zSP q – Z.

Proof. Write W zPS “WS YXP where WS “W zNpSq is the complement of a regular neighborhood
of S in W , and XP “ pS

1 ˆD2zP q ˆ I . Thus W zSP is the gluing of WS and XP along their common
boundary Z – T 2 ˆ I . By the Seifert–Van-Kampen Theorem,

π1pW zSP q – π1pWSq ˚π1pZq π1pXP q. (129)

Note πpZq – Z‘ Z and, by assumption, π1pWSq – Z. In particular, the amalgated product in (129) is
unchanged if π1pWSq is replaced by π1ppS

3zU1q ˆ Iq – Z. Another application of Seifert–Van-Kampen
says that this latter amalgated product is isomorphic to π1ppS

3zP pU1qq ˆ Iq. By our assumption that
P pU1q “ U1, this group is isomorphic to Z, and the result follows.

Lemma 6.9. Let K Ă S3 be a knot. Then there is a knot K 1 Ă S3 and a cobordism pW,Sq : pS3,K 1q Ñ

pS3,Kq such that b1pW q “ b`pW q “ 0, S is null-homologous in W , and π1pW zSq – Z.

Proof. LetK 1 be obtained fromK by changing n negative crossings to positive crossings in some diagram.
Then, in the standard manner using blow-ups, there is an associated cobordism pW,Sq : pS3,K 1q Ñ

pS3,Kq such that W is the cylinder S3ˆ I blown up n times. To arrange that π1pW zSq – Z, we proceed
as follows. Let K have a diagram which includes the crossings that are altered to obtain K 1. The group
π1pW zSq has presentation given by a Wirtinger presentation for π1pS

3zKq using this diagram, but with
additional relations: for each Wirtinger relation xjxi “ xkxj corresponding to a crossing that is changed,
we obtain relations xj “ xi and xj “ xk. To guarantee π1pW zSq – Z, one must simply have enough
crossing changes so that these additional relations identify all the Wirtinger generators.

If K is given as the closure of a braid β with p strands, K 1 can be chosen explicitly as follows. This is
similar to what is done in the proof of [NST19, Proof of Theorem 5.17]. Let

∆H “ pσ1σ2 ¨ ¨ ¨σp´1qpσ1σ2 ¨ ¨ ¨σp´2q ¨ ¨ ¨ pσ1σ2qσ1

where σi are standard generators of the braid group on p strands. Then let K 1 be the closure of ∆2
Hβ. Note

that K 1 is obtained from K by viewing K as the closure of ∆´1
H ∆Hβ and changing all of the negative

crossings in ∆´1
H to positive crossings. As π1pS

3zKq is generated by a collection of p meridians around
the braid strands at the top or bottom of the braid closure, and the crossings of ∆H relate all of these
strands, these p generators are identified in π1pW zSq, as desired.

In what follows, we use the signature formula for satellites due to Litherland [Lit79]. With our
conventions, this reads as follows. For a pattern P with winding number p, and a knot K in S3, we have:

σωpP pKqq “ σpωpKq ` σωpP pU1qq (130)

where pω is taken modulo 1
2Z to lie in r0, 1{2q. Here we assume e4πiω is not a root of the Alexander

polynomial of the satellite knot P pKq.
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Proof of Theorem 6.7. The result is known for non-zero winding number patterns by [HPC21, Proposition
8]. Thus we assume the winding number of P is zero. By assumption, we have a knot K1 :“ K that
satisfies r0pP pK1qq ă 8 and r0pP pK1q

˚q “ 8. Let K2 :“ K 1 be a knot as given by Lemma 6.9. Then,
since b1pW q “ b`pW q “ 0, S is null-homologous, and π1pW zSq – Z, we may form the associated
cobordism as in (128) to obtain pW,SP q : pS3, P pK2qq Ñ pS3, P pK1qq. By (130) with ω “ 1{4, and
the assumption that P has winding number zero, we have

σpP pK1qq “ σpP pU1qq “ 0,

and similarly σpP pK2qq “ 0. Thus pW,SP q is a cobordism which is negative definite of strong height 0.
Then Corollary 5.54 and the discussion following it applied to the cobordism pW,SP q gives us

r0pP pK2qq ă r0pP pK1qq.

That this inequality is strict uses π1pW zSP q – Z, which follows from Lemma 6.8, π1pW zSq – Z, and
our assumption P pU1q “ U1. Similarly, viewing pW,Sq as a cobordism pS3, P pK1q

˚q Ñ pS3, P pK2q
˚q,

Corollary 5.54 yields8 “ r0pP pK1q
˚q “ r0pP pK2q

˚q. We continue in this fashion, inductively defining
Ki from Ki´1 using Lemma 6.9. Then tKiu

8
i“1 satisfies the hypotheses of Proposition 5.55, and thus

gives a linearly independent set in the concordance group.

Proof of Theorem 1.11. Let K be a knot that can be unknotted by a sequence a positive to negative
crossing changes. As in the proof of Theorem 6.7, we may assume the winding number of P is zero, so
that σpP pKqq “ σpP pU1qq “ 0.

We obtain from the crossing changes of K a cobordism pW,Sq : pS3,Kq Ñ pS3, U1q with b1pW q “
b`pW q “ 0 such that S is a null-homologous annulus. Applying the construction of (128), we obtain
pW,SP q : pS3, P pKqq Ñ pS3, P pU1qq. As P pU1q “ U1, we can cap this off, and conclude that P pKq˚

is H-slice in a negative definite 4-manifold with b1 “ 0. Then Proposition 6.6 implies r0pP pKq
˚q “ 8.

Next, since P pKq is by assumption quasi-positive and non-slice, Corollary 1.2 implies rspP pKqq “
g4pP pKqq ą 0. In particular, the enriched S-complex associated to P pKq is not weakly locally equiv-
alent to the trivial enriched S-complex. By Corollary 5.43, we then have either r0pP pKqq ă 8 or
r0pP pKq

˚q ă 8. Having shown r0pP pKq
˚q “ 8 above, it must be that r0pP pKqq ă 8. As the pattern

P and the knot K satisfy the hypotheses of Theorem 6.7, the result follows.

Proposition 6.10. If P satisfies the conditions of Theorem 6.7 with K “ Tp,q in condition (i), then

tP pTp,q`pnqu
8
n“0

is a linearly independent set in the homology concordance group.

Proof. This follows from the proof of Lemma 6.9, which gives the construction for the sequence of knots
in the proof of Theorem 6.7, and the following observation: if Tp,q`np is obtained in a standard way by
taking the closure of a p strand braid β, then Tp,q`pn`1qp is the braid closure of ∆2

Hβ.

Proof of Corollary 1.12. This follows from Proposition 6.10 with P “ Whr.
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We next show that the patterns of Figure 1 satisfy the hypotheses of Theorem 1.11. In what follows,
we allow m or n to be zero, in which case the corresponding sequences are empty.

Proposition 6.11. Let P be a pattern as in Figure 1, for taiumi“1 and tbiuni“1 sequences of negative
integers with m ě n ´ 1 and maxtm,nu ą 0. Then the image of the induced concordance map
P : C Ñ C generates an infinite rank subgroup of C.

Write A :“ taiu
m
i“1 and B :“ tbiu

n
i“1. Note that when A “ H and B “ t´1u, the pattern P is the

Whitehead double. When A “ t´1, . . . ,´1u and B “ H, we obtain the pm` 1, 1q-cable. The case of
A “ t´k ´ 1u and B “ t´1u is Yasui’s pattern P0,k from [Yas15, Figure 10].

Lemma 6.12. A pattern P as in Proposition 6.11 preserves strong quasi-positivity, in the following sense:
if K is a non-trivial strongly quasi-positive knot, then so too is P pKq.

It is proved in [Rud93, §2] that the Whitehead double of strongly quasi-positive knot is also strongly
quasi-positive. Lemma 6.12 gives a generalization of this fact. We follow the method in [Rud93, §2]
to prove Lemma 6.12. In what follows we write gpKq for the Seifert genus of a knot, and use that
quasi-positive Seifert surfaces realize gpKq, see [Rud93].

Proof. We first show that the pattern P 1 shown in Figure 8, the case where B “ H, preserves strong
quasi-positivity in this sense. Let S be a quasi-positive Seifert surface for a non-trivial knot K. Then, the
union of pm` 1q parallel copies of S is also quasi-positive, which we denote by rS. Consider a surface
S with pm` 1q annuli banded together as in Figure 9. Recall that P 1pKq is formed by cutting out from
pS3,Kq a regular neighborhood pair pS2 ˆD2, S1q of the knot K, and gluing in the pair pS1 ˆD2, P 1q.
Upon forming P 1pKq, the surface S is transferred to S1 ˆD2 in such a way that the interior boundaries
of the annuli in S glue to the parallel copies of S in rS. The resulting surface S1 is a quasi-positive Seifert
surface for P 1pKq, and thus P 1 preserves quasi-positivity. Note that the Euler characteristic of S1 is

χpS1q “ pm` 1qχpSq ´m.

We next use Rudolph’s result [Rud92] that any full subsurface of a quasi-positive surface is also
quasi-positive. (Recall that a full subsurface is a subsurface whose inclusion induces an injection on
fundamental groups.) Let rS1 be the union of n parallel copies of a regular neighborhood of BS in S and
pm´ n` 1q parallel copies of S. Then rS1 is regarded as a subsurface of rS. Fitting this into the above
construction, where we glue rS1 and S, we obtain a corresponding subsurface S2 of S1. Since gpSq ą 0,
the boundary of S is not null-homotopic in S, and hence S2 is a full subsurface of S1. Consequently, S2

is a quasi-positive Seifert surface for P 2pKq with Euler characteristic

χpS2q “ pm´ n` 1qχpSq ´m,

where P 2 is the pattern depicted in Figure 8, with dotted lines included.

Next, we consider plumbings of S2 with twisted annuli Bi (1 ď i ď n), each which has bi full twists,
so that the resulting surface S3 has boundary P pKq. Then, by [Rud98, Theorem], the quasi-positivity of
S2 and Bi implies that S3 is quasi-positive. Moreover, we have

χpS3q “ χpS2q ´ n “ pm´ n` 1qχpSq ´m´ n.
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Figure 8: The pattern P 1 (omit horizontal dotted lines) and P 2 (include horizontal dotted lines).

This implies gpP pKqq “ gpS3q “ pm´n` 1qgpKq`n. Under our assumptions on m and n, we obtain
gpP pKqq ą 0. In particular, P pKq is non-trivial.

Proof of Proposition 6.11. Let K be any non-trivial positive knot, such as a positive torus knot Tp,q. Then
by Lemma 6.12, P pKq is a non-trivial strongly quasi-positive knot, and hence P satisfies condition (i) of
Theorem 1.11. Condition (ii), that P pU1q “ U1, is straightforward. This completes the proof.

The property of preserving strongly quasi-positive knots is closed under composition of patterns, and
so too is the property P pU1q “ U1. Thus if P1, . . . , Pl are patterns as in Proposition 6.11, then Pl ˝¨ ¨ ¨˝P1

also satisfies Theorem 1.11. This remark, together with Proposition 6.10, gives the following.

Corollary 6.13. Let P1, . . . , Pl be patterns as in Proposition 6.11, and P :“ Pl ˝ ¨ ¨ ¨ ˝ P1. Then

tP pTp,q`pnqu
8
n“0

is a linearly independent set in the homology concordance group.
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Figure 9: The surface S.

6.3 Applications to the homology cobordism group

We now give several applications to the homology cobordism group of homology 3-spheres. We begin by
proving Theorem 1.14 from the introduction. To this end, we have:

Theorem 6.14. For a knot K in S3 with rspKq ą 0, the set tS3
1{npKqu

8
n“1 is linearly independent in the

homology cobordism group.

Proof. Proposition 5.61 implies hpS1pKqq ă 0. Now [NST19, Theorem 1.8] completes the proof.

Proof of Theorem 1.14. By Theorem 6.14, we only need to check rspKq ą 0 for knots listed in (i) and
(ii), which follows from Theorem 4.24 and Corollary 4.25.

The following is a restatement of Theorem 1.20 from the introduction.

Theorem 6.15. Let K be a knot in an integer homology 3-sphere Y satisfying σpY,Kq ď 0. Suppose
1
8 ă ΓpY,Kq

`

´1
2σpY,Kq

˘

. Then, ΓY1pKqp0q ą 0 and r0pY1pKqq ă 8.

Proof. By Corollary 5.53 with k “ 0, we have

0 ă ΓpY,Kq

ˆ

´
1

2
σpY,Kq

˙

´
1

8
ď ΓpY1pKq,U1qp0q.

Using (122), we conclude that ΓY1pKqp0q ą 0. The second claim follows from the analogue of (100) for
integer homology spheres.
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The following is useful criterion for determining when the surgeries of a knot determines a linearly
independent set in homology cobordism. It will be used to prove Theorem 1.13 from the introduction.

Theorem 6.16. Let K be a knot in S3 satisfying σpKq ď 0. Suppose 1
8 ă ΓK

`

´1
2σpKq

˘

. Then the set
tS3

1{npKqu
8
n“1 is linearly independent in the homology cobordism group.

Proof. By Theorem 6.15, we have r0pS1pKqq ă 8. Then, the proof of [NST19, Theorem 5.12] implies

8 ą r0pS1pKqq ą r0pS1{2pKqq ą ¨ ¨ ¨ and

8 “ r0p´S1pKqq “ r0p´S1{2pKqq “ ¨ ¨ ¨ .

The proof now follows from [NST19, Corollary 5.6], the 3-manifold analogue of Proposition 5.55.

The following result, with Lemma 6.5, implies Theorem 1.13.

Theorem 6.17. For any of the two-bridge knots Km,n defined in (6) with m ě 1 and n ě 0, the set
tS3

1{kpKm,nqu
8
k“1 is linearly independent in the homology cobordism group.

Proof. For Km,0 “ 1028 (where m is arbitrary), we show below in Corollary 6.22 that

Γ10˚28
p0q “

8

53
ą

1

8
.

Next, suppose m ě 1 and n ě 0. Recall the crossing change cobordism pS3,K˚
m,n`1q Ñ pS3,K˚

m,nq

from the proof of Theorem 6.4, which is negative definite of strong height zero (and level zero), since
σpK˚

m,nq “ pK
˚
m,n`1q “ 0. From Theorem 5.47 (see also [DS20, Proposition 4.33]) we obtain

ΓK˚m,np0q ď ΓK˚m,n`1
p0q.

We inductively obtain ΓK˚m,n`1
p0q ą 1{8. The result now follows from Theorem 6.16.

We provide some more examples using Theorem 6.16, where the knot is a two-bridge knot. Note that
for a two-bridge knot K with non-zero signature, Theorem 1.14 provides a linearly independent set of the
surgeries on K. For this reason we focus on examples with zero signature. We will use the following.

Lemma 6.18. For m,n ě 2 with maxtm,nu ě 3, let Dm,n be a double twist knot as described in
Figure 10. Suppose K is a knot with σpKq “ 0 obtained from Dm,n by changing a positive crossing to a
negative crossing. Then tS3

1{kpKqu
8
k“1 is linearly independent in the homology cobordism group.

Proof. Since a single negative crossing change gives rise to a negative definite cobordism of height 1 and
κmin “ 1{4, [DS20, Proposition 4.33] implies

ΓDm,np1q ´
1

2
ď ΓKp0q.
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m

n

Figure 10: The double twist knot Dm,n is a two-bridge knot involving a strand of m full twists and one of
n full twists. The particular example shown is D2,2, which is the knot 74 in Rolfsen notation.

On the other hand, [DS20, Corollary 3.24] computes

ΓDm,np1q “
p2m´ 1qp2n´ 1q

4mn´ 1
.

It is then straightforward to verify using these two relations that ΓKp0q ą 1{8 for m ě 2, n ě 3. Now,
the assertion follows from Theorem 6.16.

With our conventions, the double twist knot Dm,n has the two-bridge knot description

Dm,n “ Kp4mn´ 1,´2mq

Given an integer l ě 1 we consider the two-bridge knot

Dl,m,n :“ Kp16lmn´ 4l ´ 4mn` 4m` 1,´8ln` 2n´ 2q.

This has Hirzebruch–Jung continued fraction p´2m,´2n, 2l, 2q, and by changing a negative crossing
in the twist corresponding to “2”, we obtain Dm,n. The mirror of the case of m “ n “ 2 and l “ 1 is
depicted in Figure 7. Indeed, in this case D1,2,2 “ Kp53,´14q “ 10˚28.

Theorem 6.19. For integers l ě 1, m,n ě 2, with maxtm,nu ě 3, the two-bridge knot Dl,m,n has
σpDl,m,nq “ 0, and tS3

1{kpDl,m,nqu
8
k“1 is linearly independent in the homology cobordism group.

Proof. By the above description of Dl,m,n and Lemma 6.18, it suffices to show σpDl,m,nq “ 0. Similar
to the setup in the proof of Lemma 6.5, σpDl,m,nq is given by the signature of the matrix

»

—

—

–

´2m ´1
´1 ´2n ´1

´1 2l ´1
´1 2

fi

ffi

ffi

fl

which, given that l,m, n are positive, is clearly zero.
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Note that D1,2,2 “ 10˚28 is not included in this statement, although the result still holds (in fact, it is
contained in Theorem 6.17). Special cases of Theorem 6.19 include

D1,2,3 “ Kp77, 50q “ 12a˚380, D1,3,2 “ Kp81, 52q “ 12a˚596, (131)

D1,4,2 “ Kp109, 70q, D1,2,4 “ Kp101, 66q. (132)

In the next section, a more explicit way of proving these cases is explained. We remark that Dl,m,n is not
always algebraically slice: for example, D1,2,3 has non-trivial Tristram–Levine signature function.

6.4 More two-bridge examples using the ADHM construction

In [DS20], the S-complex of a two-bridge knot Kpp, qq is studied using information derived from an
equivariant ADHM correspondence. The data of d, δ1, δ2 are completely determined, and constraints are
given for which components of the v-map can possibly be non-zero. All of this information is represented
entirely by arithmetic conditions in terms of pp, qq. Here, we use this information to compute the local
equivalence class of the enriched S-complex for 1028. We also provide some further examples. We refer
to [DS20] for the details on the structure of S-complexes used below.

Remark 6.20. The conventions of this paper differ from those in [DS19, DS20]: the two-bridge knot
Kpp, qq in this paper corresponds to the two-bridge knot Kpp,´qq in those references.

For two-bridge knots, one can avoid perturbations and the generality of enriched S-complexes,
and work exclusively with I-graded S-complexes. Throughout this section, we work with I-graded
S-complexes over RrU˘1s, where R “ ZrT˘1s. We begin by giving a simple expression for the local
equivalence class of the I-graded S-complex for the two-bridge knot 10˚28. Define an I-graded S-complex

rC 1˚ “ C 1˚ ‘ C
1
˚´1 ‘RrU

˘1s

where C 1˚ is freely generated by α, β. The differential rd1 satisfies d1pβq “ pT 2 ´ T´2qα and δ12p1q “
pT 2 ´ T´2qα, and is otherwise zero. The Z ˆ R-gradings for the generators α and β are respectively
defined to be p´2,´20{53q and p´1, 8{53q.

Proposition 6.21. The I-graded S-complex of the knot 10˚28 over RrU˘1s, where R “ ZrT˘1s, is locally
equivalent to the I-graded S-complex rC 1 which is defined above.

Proof. Recall that 10˚28 is the two-bridge knot Kp53, 34q. Let rC “ rCp10˚28; ∆Rq be the associated
I-graded S-complex over RrU˘1s. We define morphisms rλ : rC Ñ rC 1 and rλ : rC 1 Ñ rC. First we define
rλ1. We write the components of this morphism in the usual way:

rλ1 “

»

–

λ1 0 0
µ1 λ1 ∆1

2

∆1
1 0 1

fi

fl

We declare that the components of rλ1 as indicated above are given by:

λ1pαq “ ζ19, λ1pβq “ ζ22, µ1pαq “ 0, µ1pβq “ cU´1ζ1
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ζ0

0

ζ3

33
53

ζ1

39
53

ζ16

20
53

ζ2

50
53

ζ19

´20
53

ζ6

26
53

ζ4

41
53

ζ13

19
53

ζ17

35
53

ζ5

21
53

ζ15

30
53

ζ9

32
53

ζ18

22
53

ζ22

8
53

ζ7

56
53

ζ10

31
53

ζ14

12
53

ζ20

18
53

ζ8

5
53

ζ12

51
53

ζ21

27
53

ζ25

´ 5
53

ζ11

2
53

ζ23

14
53

ζ24

´ 8
53

ζ26

23
53

Figure 11: This diagram shows generators for C˚ and the reducible ζ0 for the knot 10˚28 “ Kp53, 34q. All
arrows are multiplication by ˘pT 2 ´ T´2q. The displayed arrows represent d except for the two which
are incident to ζ0, which are δ1 and δ2. The v-map might have non-zero components (not displayed).

and ∆1
1 “ ∆1

2 “ 0. Here c is an integer such that vpζ22q “ cU´1pT 2 ´ T´2qζ18. We are using the
constraint from [DS20] that the only possible non-zero component of the v-map acting on ζ22 is some
multiple of ζ18. It is straightforward to check that rλ1 is a local map of S-complexes. Furthermore, because
degIpβq “ 8{53 ą ´14{53 “ degIpU

´1ζ1q, it is a level 0 local morphism of I-graded S-complexes.
Now we turn to the construction of rλ. For this, we declare the nonzero components:

λpζ19q “ α, λpζ22q “ β

µpζ16q “ ´c1ζ
22, µpζ20q “ ´c2ζ

22, µpζ23q “ ´c3ζ
22
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Here c1, c2, c3 are constants defined by the following relations:

vpζ3q “ c1pT
2 ´ T´2qζ22,

vpζ21q “ c2pT
2 ´ T´2qζ22,

vpζ26q “ c3pT
2 ´ T´2qζ22

In writing these expressions, we are again using the constraint on the form of the v-map from [DS20],
which is a numerical computation. We also set ∆1 “ ∆2 “ 0. It is straightforward to verify that rλ as
defined is a local map of S-complexes. Furthermore, because

degIpζ
16q “

20

53
, degIpζ

20q “
18

53
, degIpζ

23q “
14

53

are all greater than degIpβq “ 8{53, this is a level 0 local morphism of I-graded S-complexes.

Having constructed level 0 local morphisms in each direction, we have proved the result.

In what follows, we denote by

r1spKq “ ´ inftr P r´8, 0q | NKp0, rq ď ´su

the version of the rs-invariant for a knot K which only depends on the enriched S-complex defined over
the field of fractions of R “ ZrT˘1s.

Corollary 6.22. The non-trivial Γ and r1s invariants for 1028 and its mirror are give by:

Γ10˚28
piq “

$

’

&

’

%

0 i ă 0

8{53 i “ 0

8 i ą 0

r1sp1028q “

#

8 s P p´8,´8{53q

19{53 s P p´8{53, 0s

Similar computations can be carried out for other two-bridge knots. In Table 1, we list some such
examples, focusing on the case of two-bridge knots with zero signature. The computations were partially
done by computer, following the algorithm given in [DS20] for S-complexes of two-bridge knots. The
knots which have a shaded cell in the table are ones to which Theorem 6.16 applies. Note that the
examples (131)–(131) appear in this table.

6.5 Irreducible SUp2q-representations

We now consider results on the existence of non-abelian traceless SUp2q representations for the funda-
mental groups of homology concordance complements, and a related result for homology cobordisms.
(Note that Theorem 1.16, which involves arbitrary holonomy parameters, is proved in the next section.)
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pp, qq Other name ΓKp0q ΓKp0q ą
1
8? r1s‹pK

˚q

p37, 17q 10˚34 2{37 N 13/37

p49, 23q 12a169 4{49 N 17{49

p53, 34q 10˚28 8{53 Y 19{53

p61, 29q 6{61 N 21{61

p65, 51q 11a˚333 14{65 Y 25{65

p69, 29q 1032 6{69 N 19{69

p73, 23q 12a1148 2{73 N 19{73

p73, 35q 8{73 N 25{73

p77, 50q 12a˚380 18{77 Y 27{77

p81, 52q 12a˚596 16{81 Y 29{81

p85, 41q 10{85 N 29{85

p93, 73q 22{93 Y 35{93

p93, 41q 11a˚93 8{93 N 27{93

p97, 31q 4{97 N 25{97

p97, 47q 12{97 N 33{97

p101, 66q 28{101 Y 35{101

p105, 41q 11a175 6{105 N 25{105

p109, 70q 24{109 Y 39{109

p109, 53q 14{109 Y 37{109

p109, 51q 2{109 N 47{109

Table 1: Every two-bridge knot K “ Kpp, qq with (i) |p| ď 109, (ii) σpKq “ 0, and (iii) ΓKp0q,ΓK˚p0q
not both zero, is equivalent to one of the above, after possibly taking the mirror. The identifiers for the
knots in the second column are from Knotinfo [LM]. In each case, ΓK˚ “ ΓU1 and r1spKq “ r1spU1q,
while for the mirror, r1spK

˚q “ 8 for s ă ´ΓKp0q and r1spK
˚q is finite for s P p´ΓKp0q, 0s. In the last

column above, s‹ is any real number in p´ΓKp0q, 0s.
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Theorem 6.23. Let K be a knot in an integer homology 3-sphere Y . If the enriched S-complex of pY,Kq
is not weakly locally equivalent to the trivial enriched S-complex, then, for any homology concordance
pW,Sq : pY,Kq Ñ pY 1,K 1q, there exists an irreducible traceless representation π1pW zSq Ñ SUp2q.

A similar result involving a non-vanishing condition on the signature was proven in [DS19].

Proof. If EpY,Kq is not locally equivalent to the trivial enriched S-complex, Corollary 5.43 says that
either r0pKq ă 8 or r0pK

˚q ă 8. Then Corollary 5.54 completes the proof.

As a corollary, we have the following, which implies Theorem 1.17 from the introduction.

Corollary 6.24. Let K be a knot in S3. Suppose one of the following invariants is non-trivial (i.e. not
equal to the value of an invariant for the unknot):

(i) σpKq, s7pKq, s7˘pKq, rspKq, or rεpKq;

(ii) one of Kronheimer–Mrowka’s invariants from [KM21b], such as fσpKq or z6pKq.

Then, for any knot concordance S Ă I ˆ S3 from K to K 1, there exists an irreducible traceless
representation π1pI ˆ S

3zSq Ñ SUp2q.

Proof. If one of the above invariants is non-trivial, Theorem 4.49 implies that the enriched S-complex of
K is not weakly locally equivalent to that of the unknot. Thus, the result follows from Theorem 6.23.

We also provide a result on the existence of irreducible representations on homology cobordisms.

Theorem 6.25. Let K be a knot in an integer homology 3-sphere Y satisfying σpY,Kq ď 0. Suppose
1
8 ă ΓpY,Kq

`

´1
2σpY,Kq

˘

. Fix a positive integer n. Then, for any homology cobordism W from Y1{npKq
to itself, there exists an irreducible SUp2q-representation on π1pW q.

Proof. Theorem 6.15 and (120) imply r0pY1pKq, U1q ă 8. There is a standard negative definite
cobordism with b1 “ 0 from Y1{npKq to Y1pKq by attaching a chain of p´2q-framed two-handles of
length n´ 1 to a meridian of K Ă Y1{npKq, and this gives r0pY1{npKq, U1q ď r0pY1pKq, U1q ă 8. The
result then follows from Corollary 5.57.

7 General holonomy parameters

Singular connections are the key geometrical player in the definition of the S-complex of a knot. Up to
this point, we have only considered S-complexes defined by singular connections whose holonomies
along meridians of a codimension two submanifold are asymptotic to a conjugate of the element

»

–

i 0

0 ´i

fi

fl P SUp2q. (133)
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One can consider more generally singular connections where (133) is replaced with
»

–

e2πiω 0

0 e´2πiω

fi

fl P SUp2q (134)

for some fixed ω P p0, 1
2q [KM93, KM11b]. In Section 7.1, we review how such singular connections

can also be used to produce S-complexes for knots. In this section, we mainly follow [Imo21], see
also [Ech19]. However, there are some minor differences in our conventions that we discuss in detail
below. We also study functoriality of S-complexes of knots with holonomy parameter ω with respect to
cobordisms of pairs. In Subsection 7.2, we study filtered special cycles with holonomy parameter ω and
generalize the construction of the numerical invariants of Section 5 to the case of arbitrary holonomy
parameter ω. In particular, the proof of Theorem 1.16 will be given in this section.

7.1 S-complexes from singular instantons with general holonomy parameters

A singular connection with holonomy parameter ω for a pair pY,Kq of a knot in an integer homology
3-sphere is, roughly speaking, a connection on the trivial SUp2q-bundle over Y that is singular along K
and whose holonomy along any family of shrinking meridians of K is asymptotic to a conjugate of the
matrix (134). This definition can be made precise by picking a model singular connection Aω0 and then
considering connections of the form Aω0 ` a where a is a 1-form with coefficients in sup2q that lives in a
weighted Sobolev space and has appropriate decay behavior in a neighborhood of the knot K. We refer
the reader to [KM93, KM11b] for the details of the definition of singular connections, and we only review
some of the features of singular connections that are essential for our purposes. We write AωpY,Kq for
the space of all singular connections for the pair pY,Kq. There is an action of a gauge group GωpY,Kq
on AωpY,Kq and the quotient space is denoted by BωpY,Kq.

The definition of singular connections can be adapted to pairs pW,Sq of an embedded surface S in a
4-manifold W (or more generally submanifolds of codimension two in a smooth manifold). We will be
interested in the case that pW,Sq : pY,Kq Ñ pY 1,K 1q is a cobordism of pairs with cylindrical ends, and
consider singular Up2q-connections with holonomy parameter ω that are asymptotic to fixed representa-
tives of α P BωpY,Kq and α1 P BωpY 1,K 1q such that the induced connection on the determinant bundle
is some fixed (non-singular) Up1q connection. The configuration spaces of such connections modulo the
gauge group is denoted by BωpW,S, c;α, α1q where c P H2pW ;Zq denotes the first Chern class of the
determinant bundle. The set of connected components of BωpW,S, c;α, α1q can be characterized as a
torsor over Z‘ Z, where p1, 0q P Z‘ Z acts by adding an instanton and p0, 1q P Z‘ Z acts by adding a
monopole. Any element z of this torsor is called a path from α to α1 along pW,Sq and the corresponding
connected component of BωpW,S, c;α, α1q is denoted by Bωz pW,S, c;α, α1q.

Associated to any singular connection A representing an element of BωpW,S, c;α, α1q, there are two
quantities that are called topological energy and monopole number. The topological energy of A is defined
with the same Chern-Weil integral as before:

κpAq “
1

8π2

ż

W
trpFadpAq ^ FadpAqq,
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where FadpAq denotes the trace-free part of the curvature of A corresponding to the splitting up2q “
sup2q‘R of the Lie algebra of Up2q. The curvature of A extends over the singular locus and has the form

»

–

Ω 0

0 Ω1

fi

fl

with respect to the splitting that gives the presentation in (134). The monopole number of A is defined as

νpAq “ ´
i

2π

ż

S

`

Ω´ Ω1
˘

` 2ωS ¨ S.

The topological energy and the monopole number of A are locally constant and depend only on the path
z represented by A. Adding an instanton to A changes pκpAq, νpAqq to pκpAq ` 1, νpAqq, and adding
a monopole changes pκpAq, νpAqq to pκpAq ` 2ω, νpAq ` 2q. Moreover, the connected components of
BωpW,S, c;α, α1q are determined by their topological energies and monopole numbers.

The subspace of BωpY,Kq consisting of connections with trivial curvature has a topological descrip-
tion. By taking holonomy along closed curves, the space of such flat connections, denoted by CpY,K, ωq,
can be identified with the character variety

tϕ P Hompπ1pY zKq, SUp2qq | ϕpµq is conjugate to (134) u{SUp2q, (135)

where µ is any meridian of K. In particular, there is a distinguished flat singular connection θω in
BωpY,Kq that is reducible and it corresponds to the class of the abelian representation in (135). A flat
singular connection is non-degenerate if it is cut down transversely by the flat curvature equation. The
reducible connection θω is non-degenerate if and only if e4πiω is not a root of the Alexander polynomial
[Ech19, Lemma 15]. (See also [KM11b].)

The ASD equation is naturally defined for singular connections on a 4-manifold, and we write
Mω
z pW,S, c;α, α

1q for the subspace of Bωz pW,S, c;α, α1q given by the solutions of the ASD equation.
The local behavior of this moduli space around the class of a singular connection is controlled by an
ASD operator DA. Assuming that α and α1 are non-degenerate, DA is a Fredholm operator defined on
appropriate weighted Sobolev spaces that in particular give exponential decay at the ends. In this case, the
moduli space Mω

z pW,S, c;α, α
1q is a smooth manifold of dimension indpDAq in a neighborhood of the

class of A if DA is surjective. Analogous to the topological energy and monopole number, the index of
DA depends only on z. In fact, the dimension formulas of [KM93] together with excision imply that for
any singular connection A representing an element of BωpW,S, c;α, α1q the expression

indpDAq ´

ˆ

8κpAq ` 2p1´ 4ωqνpAq ´
3

2
pχpW q ` σpW qq ` χpSq ` 8ω2S ¨ S

˙

depends only on α and α1. Motivated by this discussion, we write indpzq for the index of the ASD operator
of any element (and hence all elements) of Bωz pW,S, c;α, α1q.
Example 7.1. Suppose pW,Sq : pY,Kq Ñ pY 1,K 1q is a cobordism of pairs such that b1pW q “ b`pW q “
0. We also assume that e4πiω is not a root of the Alexander polynomials of pY,Kq and pY 1,K 1q and thus
the reducible singular flat connections θω and θ1ω for pY,Kq and pY 1,K 1q are non-degenerate. Let also
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c P H2pW ;Zq and B0 be a Up1q connection on the line bundle with c1 “ c. If L is a Up1q-bundle on
W , then there is a reducible instanton AωL that has the form B ‘B˚ bB0 with B being a singular Up1q
connection such that i

2πFB represents the cohomology class c1pLq ` ωS. Then we have

κpAωLq “ ´pc1pLq ` ωS ´
1

2
cq2, νpAωLq “ pc´ 2c1pLqq ¨ S

and the index formula

indpDAωL
q “8κpAωLq ` 2p1´ 4ωqνpAωLq ´

3

2
pχpW q ` σpW qq ` χpSq ` 8ω2S ¨ S`

` σωpY,Kq ´ σωpY
1,K 1q ´ 1, (136)

where σωpY,Kq, σωpY 1,K 1q are the Tristram-Levine signatures of pY,Kq, pY 1,K 1q as given in (124).
This formula, in the case that ω is a rational number, is proved in [Imo21]. To extend the formula to
the irrational case, note that if rω0 ´ ε, ω0 ` εs is an interval such that e4πiω is not a root of Alexander
polynomial for any ω in this interval, then the expression on the left hand side of (136) is constant for all
values of ω P rω0 ´ ε, ω0 ` εs. The left hand side is an index of an elliptic operator, and it is clear from
the Fredholm theory developed in [KM93, KM11b] that the ASD operators DAωL

for ω P rω0 ´ ε, ω0 ` εs
form a continuous family of Fredholm operators with a continuously varying domains and codomains. In
particular, standard property of the indices of Fredholm operators imply that the left hand side of (136) is
also constant. Now we can use this observation to obtain (136) in the case that ω is irrational.

A lifted singular connection rα on pY,Kq with holonomy parameter ω is an element α of BωpY,Kq
together with a choice of a homotopy class of a path from α to θω in BωpY,Kq. The path from α to θω

determines a connected component z of BωpRˆ Y,RˆK;α, θωq. Using this path z, we can define1

csprαq “ 2κpzq, holKprαq “ νpzq, degZprαq “ indpzq.

There is a forgetful map that sends the lifted singular connection rα to the underlying singular connection
α. This map identifies lifted singular connections as the universal cover of BωpY,Kq. Then cs and holK
define two real-valued functions on the universal cover. The critical points of the Chern–Simons functional
cs are given by lifted flat singular connections. For a pair of integers k, l, we can add k instantons and l
monopoles to the path component of a lifted connected rα to obtain a new lifted connection with the same
underlying singular connection. If we denote this lifted connection by U2k`lT 2l

rα then we have

cspU iT jrαq “ csprαq ` i` jp2ω ´
1

2
q, holKpU

iT jrαq “ holKprαq ` j, (137)

degZpU
iT jrαq “ 4i` degZprαq. (138)

for any pair of integers i and j satisfying the property that j is an even integer 2i´ j is divisible by 4. We
formally extend the definition of lifted flat connections to the include case that i, j are arbitrary integers
by requiring (137).

The computation in (137) motivates the definition of a ring with two gradings. From now on we
assume that ω P p0, 1

4q. Let R be a ring, and consider the ring RrT´1, T ssrU˘1s of Laurent polynomials

1Our convention of the Chern–Simons functional cs differs from the convention of [Imo21] by a factor of 2.
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in the variable U with coefficients in the ring of Laurent power series in the variable T . Thus, for any
element q of this ring there is a finite positive integer N such that

q “
N
ÿ

i“´N

ripT qU
i

with ripT q P RrT´1, T ss. We may regard RrT´1, T ssrU˘1s as an algebra over RrU˘1, T˘1s in the
obvious way. We define the I-grading of a monomial rU iT j for a non-zero r P R to be i` jp2ω ´ 1{2q.
Now the I-grading of an arbitrary non-zero element q of RrT´1, T ssrU˘1s is defined to be the maximum
of the I-gradings of all monomials in q. In particular, the assumption that ω ă 1{4 implies that the
I-grading of any non-zero element is a finite number. We extend the I-grading to the zero element of
RrT´1, T ssrU˘1s by ´8. We also define a Z-grading degZ on RrT´1, T ssrU˘1s by setting elements of
the form rpT qU i to be homogenous of degree 4i.

Next, we recall the definition of the S-complex of pY,Kq for a holonomy parameter ω such that e4πiω

is not a root of the Alexander polynomial of pY,Kq. The assumption on ω implies that the reducible θω

for the pair pY,Kq is non-degenerate. After a small perturbation of cs, we may assume that its critical
points in the space of lifted singular connections are non-degenerate. (We assume that the perturbation
is invariant with respect to the action of U and T on the space of lifted singular connections.) Let
CωpY,Kq˝ be the R-module freely generated by the critical points of the perturbed cs. Then there is an
action of RrU˘1, T˘1s on this module, and CωpY,Kq˝ is in fact a finitely generated free module over
RrU˘1, T˘1s. For a reason that becomes clear momentarily, we take the completion

CωpY,Kq :“ CωpY,Kq˝ bRrU˘1,T˘1s RrT
´1, T ssrU˘1s (139)

to obtain a finitely generated free module over RrT´1, T ssrU˘1s. We use the value of the perturbed cs to
define degI for any element rrα P CωpY,Kq where rα is a lifted connection and r P R is non-zero. We
extend degI to all elements of CωpY,Kq using (77). This grading, called I-grading, has the property that

degIpq ¨ ζq “ degIpqq ` degIpζq (140)

for any ζ P CωpY,Kq and q P RrT´1, T ssrU˘1s. We also use degZ to define a Z-grading on CωpY,Kq.

The moduli spaces of singular ASD connections determine a differential d on CωpY,Kq. To be
more specific, let rα be a lifted (perturbed) flat connection with the underlying singular flat connection α.
Suppose z is a path from α to another irreducible perturbed flat connection α1 such that indpzq “ 1. The
path z determines a lift of rα1 of α1 by requiring that

csprαq “ 2κpzq ` csprα1q, holKprαq “ νpzq ` holKprα
1q.

In particular, degZprαq is equal to indpzq ` degZprα
1q, and hence the difference between the Z-gradings

of rα and rα1 is 1. The downward gradient flow line equation for the perturbed cs can be identified as
a perturbation of the ASD equation over R ˆ Y , and with a slight abuse of notation, we still write
Mω
z pRˆ Y,RˆK;α, α1q for the solutions of this perturbed ASD equation in Bωz pRˆ Y,RˆK;α, α1q.

By choosing the perturbation of cs generically, we may assume that Mω
z pR ˆ Y,R ˆK;α, α1q is cut

down transversely and hence it is a smooth 1-dimensional manifold. This moduli space admits a natural
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orientation and a free R-action given by translation. Therefore, we obtain a well-defined integer mz by
the signed count of the elements of the quotient space Mω

z pRˆ Y,RˆK;α, α1q{R. Now we define

dprαq “
ÿ

z

mz ¨ rα
1 (141)

where the sum is over paths z as above. It is clear from the construction that degIprα
1q is smaller than

degIprαq. However, we cannot guarantee that there are finitely many terms in (141) and this is the reason
that we need to work with the completion in (139).

The map d extends to an RrT´1, T ssrU˘1s-module homomorphism. This defines a differential on
CωpY,Kq. This differential decreases degZ by 1 and decreases the I-grading. We similarly define maps

δ1 : CωpY,Kq Ñ RrT´1, T ssrU˘1s, δ2 : RrT´1, T ssrU˘1s Ñ CωpY,Kq,

using the singular ASD connections that are asymptotic to θω, and a homomorphism

v : CωpY,Kq Ñ CωpY,Kq

by cutting down the moduli spaces by holonomy along the path Rˆ tpu where p is a basepoint on K.

Using these homomorphisms, we can form rCωpY,Kq together with a differential rd and a map χ as
in Section 2.1. The Z-grading degZ and the I-grading degI define the structure of a variant of I-graded
S-complexes: the differential rd and the homomorphism χ respectively decrease and increase Z-grading
by 1. The map rd decreases the I-grading and χ preserves the I-grading. Multiplication of an element of
rCωpY,Kq by an element of RrT´1, T ssrU˘1s changes the I-grading as in (140). Moreover, multiplying a
homogenous element (with respect to degZ) in rCωpY,Kq by rpT qU i increases degZ by 4i. This algebraic
structure of rCωpY,Kq motivates a generalization of the notion of I-graded S-complexes. We continue to
call any such algebraic structure an I-graded S-complex; if we want to specify the role of ω, we say an
I-graded S-complex with holonomy parameter ω.

Most of the algebraic notions introduced in Section 5.1 can be adapted to the present setup. We define,
just as before, height i morphisms of I-graded S-complexes with holonomy parameter ω and with level
δ. There is a small modification that we need to make in the definition of strong morphisms because the
variable T has non-trivial I-grading. A height i morphism of I-graded S-complexes with level δ is strong
if the element ci, defined as in (15), has the form

ci “ r0 ` r1T ` r2T
2 ` ¨ ¨ ¨ P RrT´1, T ss

where r0 is an invertible element of the ring R. This is equivalent to saying that ci is invertible and
degIpciq “ 0. We define enriched complexes with holonomy parameter ω as in Definition 5.1 with the
change that instead of one discrete subset K of R, we have one such discrete set Km for any integer m,
and we update item (iii) by replacing (78) with

degZpζq “ m ùñ degIpζq P BδpKmq. (142)

Finally, we follow Definition 5.5 without any change to define (weak) local equivalence of enriched
complexes with holonomy parameter ω.

Now we return to our topological setup. The following lemma justifies our requirement in (142) on
the algebraic side.
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Lemma 7.2. For any pY,Kq and any ω, there is a discrete subset K0
m Ă R for any integer m such that

for any lifted singular flat connection rα on pY,Kq with holonomy parameter ω and degZpαq “ m, we
have csprαq P K0

m. Moreover, there is a constant M0 such that the following holds: for any positive real
number δ, there is a positive constant ε such that if we perturb cs by a perturbation term whose norm is
less than δ and rα is a lift of a critical point of the perturbed cs with degZpαq “ m, then

csprαq P
m`M0
ď

i“m´M0

BδpK
0
i q. (143)

In the statement of this lemma, we do not assume that perturbed singular flat connections on pY,Kq
are necessarily non-degenerate. In this case, the ASD operator associated to a connection A from some
singular flat connection α to θω is not necessarily Fredholm. To define degZ in this case, we modify the
function spaces in the definition of DA to weighted Sobolev spaces. That is to say, we replace L2

k function
spaces with L2

k,δ for some sufficiently small positive value of δ. An element f of some function space
L2
k,δ over the cylinder R ˆ Y is characterized by the property that eδ|t|f is an element of L2

k where t
denotes the parameter on the R factor.

Proof. The moduli space of singular flat connections CpY,K, ωq is compact by the Uhlenbeck compact-
ness theorem. Thus CpY,K, ωq has finitely many path connected components, and we pick a basepoint
from each path connected component to obtain a finite set of singular flat connections tαiuNi“1. Any lifted
flat connection rα can be written as the concatenation of a lift rαi of a basepoint singular flat connection
αi and a path z within one of the connected components of CpY,K, ωq. The path z is represented by a
singular flat connection A on Rˆ Y with holonomy parameter ω such that the restriction of A to ttu ˆ Y
for any t P R is flat. In particular, the topological energy of A vanishes, and we have csprαq “ csprαiq.

Although degZprαq is not necessarily equal to degZprαiq, we claim that the difference between these
quantities is uniformly bounded. First note that h1pαq, the dimension of the Zariski tangent space of
CpY,K, ωq at α P CpY,K, ωq (or equivalently the kernel of the gradient of cs at α), is bounded by some
finite constant M . This follows from the compactness of CpY,K, ωq and the fact that h1pαq defines a
lower semi-continuous function on CpY,K, ωq. For any α P CpY,K, ωq, there is a small neighborhood of
α in BωpY,Kq such that for any path z of singular flat connections within this neighborhood, the ASD
index of the path is at most h1pαq. This can be seen from the spectral flow interpretation of the ASD
index over a cylinder. From this observation, we see that the difference between degZprαq and degZprαiq
is bounded by a constant M0 that is independent of rα. As a consequence of the relationship between
pcsprαq,degZprαqq and pcsprαiq, degZprαiqq, it suffices to prove the first claim in the case that rα is a lift
of one of the basepoints. Now the claim follows because there are finitely many basepoints and the
topological energy and the index of the lifts of these basepoints satisfy (137) and (138).

For the second claim of the lemma, the key point is that any critical point α of perturbed cs for a
small enough perturbation belongs to a small neighborhood of α0 P CpY,K, ωq. We may assume that this
neighborhood is small enough such that a path z from α0 to α in this neighborhood has the property that

κpzq ă
δ

2
, indpzq ăM0,
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where M0 is the constant obtained in the previous paragraph. Since any lift rα of α is obtained from
concatenating a lift of rα0 and a path z as above, the property in (143) holds.

For two perturbations of the Chern–Simons functional in the definition of rCωpY,Kq, we obtain
morphisms of some level δ between the corresponding I-graded S-complexes. Therefore, taking a
sequence of perturbations going to zero gives an enriched complex EωpY,Kq in the above generalized
sense. Although (78) does not hold in the case that ω is irrational, we have (142) for arbitrary ω, as a
consequence of Lemma 7.2, by taking Km to be the union of the discrete sets K0

i for i between m´M0

and m`M0. The homotopy-type of this enriched complex is a topological invariant of pY,Kq.

Remark 7.3. Suppose l is the Z{2-bundle over Y zK that restricts to a non-trivial bundle on any meridian
of K. Since the structure group of l is discrete, it comes with a canonical connection ι. Given a
singular connection A on pY,Kq with holonomy parameter ω, the connection Ab ι determines a singular
connection on pY,Kq with holonomy parameter 1{2´ ω. The above construction can be modified in a
straightforward way to define an enriched complex EωpY,Kq for ω P p1{4, 1{2q, which is now defined
over the ring RrrT´1, T srU˘1s. The operation of taking tensor product with ι allows us to obtain this
enriched complex from E

1
2
´ωpY,Kq. In particular, we do not get any new information by considering the

values of ω that are greater than 1{4.

This construction of enriched complexes of knots with arbitrary holonomy parameter ω is functorial
with respect to cobordisms of pairs. First we need the following generalization of Definition 2.7.

Definition 7.4. Let pW,Sq : pY,Kq Ñ pY 1,K 1q be a cobordism of pairs and c P H2pW ;Zq. For a
non-negative integer i, we say pW,S, cq is a height i negative definite cobordism with respect to the
holonomy parameter ω if it satisfies the following properties.

(i) b1pW q “ b`pW q “ 0 and e4πiω is not the root of the Alexander polynomials of pY,Kq, pY 1,K 1q.

(ii) For any L, the index of the reducible ASD connection AωL from Example 7.1 is at least 2i´ 1.

We say pW,S, cq is a strong height i negative definite cobordism (over RrrT ss) if

ηωpW,S, cq :“
ÿ

c1pLqPH2pW ;Zq
indpALq“2i´1

p´1qc1pLq
2
T νpA0q´νpAq P RrrT ss (144)

is invertible and has vanishing degI . Here A0 is a reducible ASD connection of index 2i´ 1 on pW,S, cq
whose topological energy is equal to

κωminpW,S, cq :“ min tκpAωLq | indpAωLq “ 2i´ 1u . (145)

In what follows, if c is trivial, then we drop it from the notation in (144) and (145).

Note that the index formula (136) and the assumption on A0 implies that the terms in (144) have
non-negative powers of T and hence it belongs to RrrT ss. Moreover, ηωpW,S, cq is independent of the
choice of A0 because νpA0q is determined by κωminpW,S, cq. We also remark that the subset of H2pW ;Zq
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given by c1 of connections AωL with minimal index is independent of ω. In particular, ηωpW,S, cq (defined
using the value of i that minimizes the index of the ASD operator) is independent of ω.

Example 7.5. Let K 1 is obtained from a knot K Ă Y by changing a negative crossing to a positive
crossing, and pW,Sq : pY,Kq Ñ pY,K 1q the blow-up of the crossing change cobordism. There are two
reducibles A0 and A1, corresponding to the trivial cohomology class and the the exceptional class, that
minimize the index. The index of these reducibles is σωpY,Kq ´ σωpY 1,Kq ´ 1 P t˘1u. We have

pκpA0q, νpA0qq “ p4ω
2, 0q, pκpA1q, νpA1qq “ p1´ 4ω ` 4ω2,´4q.

which implies that
ηωpW,Sq “ 1´ T 4.

This is an invertible element of ZrrT ss with trivial degI . Therefore, pW,Sq gives a strong height 0
or 1 negative definite cobordism. In the case that K 1 is obtained from K by changing a positive
crossing to a negative crossing, the cobordism pW,Sq has a unique reducible with minimal index
σωpY,Kq ´ σωpY

1,Kq ´ 1 P t´3,´1u and vanishing values of κ, ν. In particular, ηωpW,Sq “ 1.
Thus pW,Sq is a strong height 0 negative definite cobordism if σωpY,Kq “ σωpY

1,Kq.

Example 7.6. As a generalization of the previous example, let S : K Ñ K 1 be an immersed knot
cobordism in r0, 1s ˆ Y with transverse double points. We write s` and s´ for the number of positive
and negative double points of S. Then blowing up the double points of S determines a cobordism
pW,Sq : pY,Kq Ñ pY,K 1q. If i “ 1

2pσωpKq ´ σωpK
1qq ´ gpSq ě 0, then pW,Sq gives a height i

negative definite cobordism with ηωpW,Sq “ p1´ T 4qs` and κωminpW,S, cq “ 4s`ω
2.

For a negative definite cobordism pW,S, cq : pY,Kq Ñ pY 1,K 1q of height i, we define maps

λ, µ : CωpY,Kq Ñ CωpY 1,K 1q, ∆1 : CωpY,Kq Ñ RrT´1, T ssrU˘1s,

∆2 : RrT´1, T ssrU˘1s Ñ CωpY 1,K 1q, (146)

essentially in the same way as in the case ω “ 1{4, using moduli spaces Mω
z pW,S, c;α, α

1q. We only
need clarify our convention on relating lifted flat connections. Fix a reducible connection A0 as in
Definition 7.4. Let rα be a lifted singular connection on pY,Kq with the underlying singular connection α
and z be a path from α to α1 along pW,S, cq. (In practice, and for the definition of the cobordism maps
above, the path z is determined by a singular instanton.) Then we fix a lift rα1 of α1 by requiring:

csp rα1q ` 2κpzq “ csprαq ` 2κωminpW,S, cq, holKp rα1q ` νpzq “ holKprαq ` νpA0q. (147)

As mentioned above, νpA0q is independent of A0 as long as its energy is equal to κωminpW,S, cq.

The maps in (146) combine, in the way described in Section 2.1, to define a height i morphism

rλωpW,S,cq : rCωpY,Kq Ñ rCωpY 1,K 1q.

That is to say, rλpW,S,cq is a chain map, and if we define cj as in Definition 2.6, then ci “ ηωpW,S, cq
and cj “ 0 for j ă i. For i “ 0 this is proved in [Imo21] and for higher values of i the argument of
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[DS20] adapts without any essential change. In the absence of perturbation terms, the first identity in
(147) and non-negativity of the topological energy of instantons imply that rλpW,S,cq is a morphism of
I-graded complexes with level 2κωminpW,S, cq. In general, we obtain a morphism of enriched complexes

LωpW,S,cq : EωpY,Kq Ñ EωpY 1,K 1q

with height i and level 2κωminpW,S, cq using sequences of perturbations terms that go to zero.

We may forget the I-grading in the above construction and obtain an S-complex in the sense of
Definition 2.1 over the ring RrT´1, T ss with a Z{4 grading. Here we use the isomorphism of degree 4
provided by U to roll the Z-graded complex rCωpY,Kq into a Z{4 graded complex which is still denoted
by the same notation. Unlike the case of holonomy parameter ω “ 1{4, the S-complex rCωpY,Kq does
not see much about the knottedness of K in Y . To be more precise, we have the following.

Proposition 7.7 ([Imo21]). If K and K 1 are two homotopic knots in an integer homology sphere Y with
σωpY,Kq “ σωpY,K

1q and non-vanishing values of Alexander polynomial at e4πiω, then the S-complexes
rCωpY,Kq and rCωpY,K 1q are chain homotopy equivalent.

Proof. We may obtain K 1 from K by a sequence of crossing changes. This gives a cylinder cobordism
S : K Ñ K 1 immersed into r0, 1s ˆ Y . Use the construction of pW,Sq : pY,Kq Ñ pY 1,K 1q in Example
7.6 to obtain a height 0 negative definite cobordism. The above functoriality discussion gives a morphism
rλ : rCωpY,Kq Ñ rCωpY,K 1q. We obtain a morphism rλ1 of S-complexes in the reverse direction by
flipping pW,Sq. The composition of rλ and rλ1 in either order is the identity multiplied by a term of the
form p1´ T 4qn [Imo21]. This gives the desired claim, because 1´ T 4 is a unit in RrT´1, T ss.

In the case of a knot K in S3, we can completely characterize rCωpKq. For any ω, there is a two-
bridge torus knot T2,2n`1 such that σωpT2,2n`1q “ ´2 and ∆T2,2n`1pe

4πiωq ‰ 0 [Imo21]. For any
such knot, the character variety (135) is non-degenerate and has one reducible element θω and one
irreducible element α. In particular, we can use a perturbation in the definition of rCωpT2,2n`1q such that
CωpT2,2n`1q “ RrT´1, T ss. There is an iterated crossing change cobordism from the unknot to T2,2n`1

which gives rise to a strong height 1 negative definite cobordism of pairs by following the construction
of Example 7.6. In particular, this implies that the map δ1 is multiplication by a unit. Now degree
consideration implies that the remaining maps involved in the S-complex rCωpT2,2n`1q have to be trivial.
After a change of basis, we may also assume that δ1 : RrT´1, T ss Ñ RrT´1, T ss is the identity map. We
denote this S complex by rCx1y. More generally, for any integer k, let rCxky be given by tensoring n copies
of rCx1y. (For negative k, this means that rCxky is the tensor product of ´k copies of the dual of rCx1y.)
The connected sum theorem of [Imo21] implies that rCωp#kT2,2n`1q is chain homotopy equivalent to
rCx1y. Therefore, the following is a corollary of Proposition 7.7.

Corollary 7.8 ([Imo21]). For any knot K in S3 and ω P p0, 1
4q that e4πiω is not a root of the Alexander

polynomial of K, the S-complex rCωpKq is chain homotopy equivalent to rCx´σωpKq{2y.

In the more general case of arbitrary integer homology spheres Y , it is reasonable to expect that
rCωpY,Kq is determined by Y and the integer σωpY,Kq. At least in the case that K is null-homotopic,
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we can verify this by following the argument as in the proof of Corollary 7.8. Applying the connected
sum theorem of [Imo21], we conclude that rCωpY,Kq is chain homotopy equivalent to

rCωpY,U1q b rCx´σωpY,Kq{2y. (148)

Now if R is an integral domain, (148) implies that the following identity holds for the Frøyshov invariant
hωpY,Kq :“ hp rCωpY,Kqq of the S-complex rCωpY,Kq:

hωpY,Kq :“ hωpY, U1q ´
1

2
σωpY,Kq

Following the same argument as in the proof of [DS20, Proposition 5.3], we can see that hωpY, U1q “

4hpY q if 2 P R is non-zero. Here hpY q is the Frøyshov invariant of the integral homology 3-sphere Y
defined using coefficient ring R [Frø02]. In summary, we have the following.

Proposition 7.9. Let R be an integral domain with 2 P R non-zero. Let K be a null-homotopic knot in
an integer homology sphere Y such that e4πiω is not a root of the Alexander polynomial of K. Then

hωpY,Kq “ 4hpY q ´
1

2
σωpY,Kq.

7.2 Filtered special cycles for general holonomy parameters

In the previous section, we learned that S complexes of knots in the case ω P p0, 1
4q, and after forgetting

the I-gradings, do not contain any interesting information. This is in contrast to the case ω “ 1
4 , where we

have obtained non-trivial topological information from the S-complex of a knot K, such as the invariant
rspKq. Nevertheless, the I-grading of EωpY,Kq is expected to say more about the topological type of K.
This I-grading was already used in [Imo21] to study concordances between torus knots. In this section,
we initiate the study of some of the concordance invariants that one can obtain from applying the filtered
constructions of the previous sections.

For any ω, our concordance invariant in a raw form is the local equivalence class of the enriched
complex EωpY,Kq. For any ring R, we define ΘE,ω

R to be the set of local equivalence classes of enriched
S-complexes over the ring RrT´1, T ssrU˘1s with holonomy parameter ω. As in the previous instances,
tensor product gives an additive structure on this set and we would like to define a homomorphism

ΩE,ω : Θ3,1
Z Ñ ΘE,ω

R

by mapping rpY,Kqs to the local equivalence class of EωpY,Kq. There is an issue with this definition
because e4πiω might be a root of Alexander polynomial of K, and hence EωpY,Kq might not be well-
defined. One obvious fix for this issue is to limit to the values of ω such that e4πiω is not the root of
Alexander polynomial of any K in an integer homology sphere. For instance, we can pick ω to be any
rational number if the form m

4pk
where p is a prime number. For any such ω, e4πiω is not a root of the

Alexander polynomial of any knot (See, for example, [Liv02, Corollary 3.2].)

The construction of filtered special cycles in Section 5 can be adapted to enriched complexes of knots
with general holonomy parameters. If rCω is an S-complex over the ring RrT´1, T ssrU˘1s with parameter
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ω, then we can form the equivariant complexes and the maps between them as in Section 2.2. For any
f P R, s P RY t´8u, k P Z, we define a filtered special pk, f, sq-cycle to be an element z P pCω

2k such
that z “ pΨpzq for some z P pCω2k and

ipzq “
´k
ÿ

i“´8

bix
i, degIppdzq ď s,

where b´k “ f `
ř8
i“1 riT

i P RrrT ss with ri P R. In particular, if f ‰ 0, the degIpb´kq “ 0. Using
filtered special cycles, we have the following counterparts of Definitions 5.21 and 5.30:

N
rCω
pk, sq :“ inf tdegIpzq | z is filtered special pk, 1, sq-cycle u P r0,8s

N
rCω
pk, sq :“ inf tdegIpzq | z is filtered special pk, f, sq-cycle with f ‰ 0u P r0,8s

Property (142) implies that the above definition extends to enriched complexes of holonomy parameter
ω by a limiting process as in Section 5.2. For an enriched S-complex Eω, the transpose N ᵀ

Eω of NEω

is defined as in (99). The value of NEωpk, sq belongs to K2k´1, and similarly for N Eω and N ᵀ
Eω . As a

counterpart of 5.24, NEωpk, sq and N Eωpk, sq are increasing with respect to k and decreasing with respect
to s. Thus, N Eωpk, rq is increasing with respect to k and decreasing with respect to r. Define

ΓEωpkq :“ N Eωpk,´8q, rspE
ωq :“ ´N ᵀ

Eωp0,´sq.

Applying these to the enriched complex EωpY,Kq of a knot K gives the topological invariants N ω
pY,Kq,

N ω
pY,Kq, N

ω,ᵀ
pY,Kq, Γω

pY,Kq and rωs pY,Kq.

The connected sum theorem of [Imo21] gives rise to the analogues of the connected sum inequalities
in Theorem 5.45. For the pairs pY,Kq and pY 1,K 1q, let k, k1 be integers and s, s1 be negative real numbers
such that sb :“ maxtN ω

pY,Kqpk, sq ` s
1,N ω

pY 1,K1qpk
1, s1q ` su is negative. Then

N ω
pY#Y 1,K#K1qpk ` k

1, sbq ď N ω
pY,Kqpk, sq `N ω

pY 1,K1qpk
1, s1q.

A similar inequality holds for N ω
pY,Kq. If r and r1 are positive real numbers, then

N ω,ᵀ
pY#Y 1,K#K1qpk ` k

1, r ` r1q ď maxtN ω,ᵀ
pY,Kqpk, rq ` r

1, N ω,ᵀ
pY,1K1qpk

1, r1q ` ru.

The following result generalizes Theorem 5.47 and Theorem 5.50 to other holonomy parameters.

Theorem 7.10. Let pY,Kq and pY 1,K 1q be given such that e4πiω is not a root of the Alexander polyno-
mials of these knots. Let pW,Sq : pY,Kq Ñ pY 1,K 1q be a cobordism which is negative definite of strong
height i ě 0 with respect to the holonomy parameter ω. Then we have

N ω
pY 1,K1qpk ` i, sq ď N ω

pY,Kqpk, s´ 2κωminpW,Sqq ` 2κωminpW,Sq, (149)

N ω,ᵀ
pY 1,K1qpk ` i, r ` 2κωminpW,Sqq ď N ω,ᵀ

pY,Kqpk, rq ` 2κωminpW,Sq (150)

Moreover, if equality is achieved in (149) (resp. (150)) for some k P Z and s P r´8, 0q (resp. r P r0,8s),
with both sides finite and positive (resp. negative), then there exists an irreducible SUp2q representation
of π1pW zSq that maps a meridian of S to (134). The same conclusion holds for N ω

pY,Kq, under the weaker
assumption that the cobordism is not necessarily strong, but satisfies degIpη

ωpW,Sqq “ 0.
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Example 7.11. The roots of the Alexanader polynomial of the trefoil T2,3 are eπi{3, e5πi{3, and σωpT2,3q

is equal to ´2 for 1{12 ă ω ă 5{12 and is equal to 0 for 0 ă ω ă 1{12 or 5{12 ă ω ă 1{2. This
computation of Tristram-Levine signature is reflected in the fact that the moduli space of flat connections
CpT2,3, ωq for 1{12 ă ω ă 5{12 has a unique non-degenerate irreducible αω and a non-degenerate
reducible. For any such ω that has the form of a rational number m

2p with p “ 6n´ 1, we have

csprαωq P
"

p5p` 6mq2

12p2
`
k

p

*

kPZ
, (151)

where rαω is a lift of αω. To see this, note that αω can be lifted to a flat connection pαω on the Brieskorn
homology sphere Σp2, 3, pq. Following the arguments in [CS99, Imo21], one first determines the flat
connection pαω on Σp2, 3, pq and then uses [FS90] to show that the (ordinary) Chern-Simons functional of
pαω is equal to p5p` 6mq2{24p P R{Z. Now (151) follows from this computation.

For the rest of this example, assume that the above value of ω is less than 1{4. Since αω is non-
degenerate, we may form the enriched complex EωpT2,3q of T2,3 using a sequence of perturbations the
Chern-Simons functional that are trivial in a neighborhood of the elements of CpT2,3, ωq. In particular,
ΓωT2,3p1q is a positive real number in the set (151). Moreover, applying Example 7.5 to the crossing change
cobordism from the unknot to the trefoil and then applying Theorem 7.10 implies that

ΓωT2,3p1q ď
2m2

p2
.

In particular, if 2m2 ă p, then the above two constraints uniquely determine ΓωT2,3p1q. We can use this to
show the following identities:

Γ
1{10
T2,3
p1q “

1

300
, Γ

1{11
T2,3
p1q “

1

1452
.

In general, we expect that

ΓωT2,3p1q “ 12

ˆ

ω ´
1

12

˙2

for ω P p1{12, 1{4s.

Corollary 7.12. Suppose K is a knot in integer homology sphere Y such that e4πiω is not a root of the
Alexander polynomial of K and the weak local equivalence class of EωpY,Kq is non-trivial. Then for any
homology concordance pW,Sq : pY,Kq Ñ pY 1,K 1q, there is a representation of π1pW zSq into SUp2q
that restricts to irreducible representations of Y zK and Y 1zK 1 and the conjugacy class of a meridian of
S is mapped to the conjugacy class of (134) in SUp2q.

This corollary folllows from Theorem 7.10. A homology concordance pW,Sq determines a negative
definite cobordism of strong height 0 with κωminpW,Sq “ 0 and ηωpW,Sq “ 1. The cobordism from
pY 1,K 1q to pY,Kq obtained by flipping pW,Sq satisfies a similar property. Thus (149) and (150) imply

N ω
pY,Kqpk, sq “ N ω

pY 1,K1qpk, sq, N ω,ᵀ
pY,Kqpk, rq “ N ω,ᵀ

pY 1,K1qpk, rq
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for all values of k, s and r. In particular, we obtain the claim in Corollary 7.12 if we can show that either
N ω
pY,Kq or N ω,ᵀ

pY,Kq is finite and non-zero. Arguing as in Remark 5.44, the value of N ω,ᵀ
pY,Kqpk, sq is non-zero

for k ď 0. Since EωpY,Kq is not weakly locally equivalent to the trivial enriched complex, the following
generalization of Proposition 5.43 shows that N ω,ᵀ

pY,Kqp0, 0q is finite.

Proposition 7.13. An enriched S-complex Eω with holonomy parameter ω is weakly locally equivalent
to the trivial enriched S-complex if and only if the following conditions hold:

NEωp0,´8q “ 0 and N
pEωq:

p0,´8q “ 0. (152)

These conditions are equivalent to r0pE
ωq “ 8 and r0ppE

ωq:q “ 8.

Corollary 7.14. Suppose K is a knot in an integer homology sphere Y such that e4πiω is not a root of the
Alexander polynomial of K and it satisfies one of the following assumptions:

(i) 4hpY q ` σωpY,Kq ‰ 0;

(ii) N ω
pY,Kq ‰ N ω

pS3,U1q
;

(iii) N ω
pY,Kq ‰ N ω

pS3,U1q
.

Then the same claim as in Corollary 7.12 holds.

Proof. All of the invariants N ω
pY,Kq, N

ω
pY,Kq and 4hpY q`σωpY,Kq depend on the weak local equivalence

class of pY,Kq. So, if any one of them is non-trivial, then the weak local equivalence class of EωpY,Kq
is non-trivial, too. Now the claim follows from Corollary 7.12.

Proof of Theorem 1.16. This follows from Corollary 7.14 (i) applied to knots in the 3-sphere.

We already studied the behavior of N ω
pY,Kqpk, sq when we vary the variables k and s. The following

proposition asserts that N ω
pY,Kqpk, sq is also well-behaved with respect to varying ω.

Proposition 7.15. Suppose K is a knot in an integer homology sphere Y such that e4πiω is not a root of
the Alexander polynomial of K. Then for any ε ą 0, there exists δ ą 0 such that

|N ω
pY,Kqpk, sq ´N ω1

pY,Kqpk, sq| ă ε

whenever |ω ´ ω1| ă δ. Similar claims hold for N ω
pY,Kq and N ω,ᵀ

pY,Kq.

Proof. For pY,Kq, ω as in the statement, and any ε ą 0, there is δ ą 0 such that the following holds
[DS]: for any ω1 with |ω ´ ω1| ă δ, there are strong height 0 morphisms of enriched S-complexes

Φω1

ω : EωpY,Kq Ñ Eω
1

pY,Kq, Ψω
ω1 : Eω

1

pY,Kq Ñ EωpY,Kq

with level ε such that Φω1
ω ˝Ψω

ω1 and Ψω
ω1 ˝Φω1

ω are chain homotopic to the identity morphisms using chain
homotopies of level ε. Now the claim is an immediate consequence of this property.
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