
AN ODD KHOVANOV HOMOTOPY TYPE

SUCHARIT SARKAR, CHRISTOPHER SCADUTO, AND MATTHEW STOFFREGEN

Abstract. For each link L ⊂ S3 and every quantum grading j, we construct a stable homo-
topy type X jo (L) whose cohomology recovers Ozsváth-Rasmussen-Szabó’s odd Khovanov homology,

H̃i(X jo (L)) = Khi,jo (L), following a construction of Lawson-Lipshitz-Sarkar of the even Khovanov
stable homotopy type. Furthermore, the odd Khovanov homotopy type carries a Z/2 action whose
fixed point set is a desuspension of the even Khovanov homotopy type. We also construct a Z/2
action on an even Khovanov homotopy type, with fixed point set a desuspension of X jo (L).
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1. Introduction

1.1. Khovanov homologies. In [Kho00] Khovanov categorified the Jones polynomial: to a link
diagram L, he associated a bigraded chain complex, whose graded Euler characteristic is (a certain
normalization of) the Jones polynomial of L, and whose (graded) chain homotopy type is an
invariant of the underlying link. Several generalizations were soon constructed, such as invariants
for tangles [Kho02, BN05], various perturbations [Lee05, BN05], versions for other polynomials
[KR08a, KR08b], and many others. The categorified invariant carried structure that was not
visible at the decategorified level. To wit, to a link cobordism in R3 × [0, 1], there is an associated
map of Khovanov chain complexes [Jac04, Kho06, BN05, CMW]; and this map, along with Lee’s
perturbation, was used by Rasmussen in [Ras10] to define a numerical concordance invariant s and
to give a combinatorial proof of a theorem due to Kronheimer and Mrowka [KM93] on the four-ball
genus of torus knots (popularly known as the Milnor conjecture). Khovanov homology itself turns
out to be a more powerful invariant than the Jones polynomial. Indeed, Khovanov homology is
known to detect the unknot [KM11], while the corresponding question for the Jones polynomial
remains wide open.

In [OSz05], Ozsváth and Szabó constructed the first relation between Khovanov homology and
Floer-theoretic invariants—Heegaard Floer homology [OSz04] to be specific—in the form of a spec-
tral sequence from reduced Khovanov homology of a link to the Heegaard Floer homology of its
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branched double cover. The spectral sequence was originally constructed over Z/2, but it was soon
realized that its integral lift does not start from the usual Khovanov homology, but rather from
a different homology theory which has the same Z/2 reduction; this new chain complex was con-
structed by Ozsváth-Rasmussen-Szabo [ORSz13] and is usually called the odd Khovanov complex,
and this is the version that seems closely related to Heegaard Floer type invariants. (The even
theory was later discovered to be related to certain other Floer theories, such as instanton Floer
homology [KM11] and symplectic Khovanov homology [SS06].) The two versions were combined by
a pullback into a single unified theory by Putyra [Put14], cf. [PS16]: the unified Khovanov complex
is a chain complex over Z[ξ]/(1 − ξ2) which recovers the even (respectively, odd) Khovanov chain
complex upon setting ξ = 1 (respectively, ξ = −1).

In this paper, we will typically decorate the objects from the even theory by the subscript e, the
ones from the odd theory by the subscript o, and the ones from the unified theory by the subscript
u. In particular, we will denote the even, odd, and the unified Khovanov complexes as Kce(L),
Kco(L), and Kcu(L), respectively.

1.2. Khovanov homotopy types. In [LS14a], Lipshitz and Sarkar associated to a link diagram L
a finite CW spectrum Xe(L), whose reduced cellular cochain complex is isomorphic to the Khovanov
complex Kce(L), taking the (non-basepoint) cells of Xe(L) to the standard generators of Kce(L).
The (stable) homotopy type of Xe(L) is an invariant of the underlying link; specifically, Reidemeister
moves from the diagram L to a diagram L′ induce stable homotopy equivalences Xe(L)→ Xe(L′).
A different construction of an even Khovanov homotopy type was constructed independently by
Hu-Kriz-Kriz [HKK16], and the two versions were later shown to be equivalent [LLS]. A stable
homotopy refinement of Khovanov homology endowed it with extra structure, such as an action
by the Steenrod algebra [LS14c], which was then used to construct a family of additional s-type
concordance invariants [LS14b], as well as to show that Khovanov homotopy type is a strictly
stronger invariant than Khovanov homology [See].

One could ask for a spectrum invariant Xo(L) satisfying analogous properties, but with Khovanov
homology replaced with odd Khovanov homology. The original Lipshitz-Sarkar contruction using
the Cohen-Jones-Segal framed flow categories machine from [CJS95] does not seem to admit an easy
generalization: on account of the signs that appear in the definition of odd Khovanov homology,
there is no framed flow category for the odd theory covering the framed cube flow category. However,
in [LLS], Lawson-Lipshitz-Sarkar provided several more abstract constructions of Xe(L)—similar
to the one from [HKK16]—in order to understand the behavior of the Khovanov spectrum under
disjoint union and connected sum. In this paper, we will give a slight generalization of their

machinery to construct a finite Z2-equivariant CW spectrum Xo(L) =
∨
j X

j
o (L) for each oriented

link diagram L (Definition 5.2).

Theorem 1.1. The (stable) homotopy type of the odd Khovanov spectrum Xo(L) =
∨
j X

j
o (L)

from Definition 5.2 is independent of the choices in its construction and is an invariant of the
isotopy class of the link corresponding to L. Its reduced cellular cochain complex agrees with the
odd Khovanov complex Kco(L),

C̃icell(X jo (L)) = Kci,jo (L),

with the cells mapping to the distinguished generators of Kco(L).
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We also construct a reduced theory: a finite Z2-equivariant CW spectrum X̃o(L, p) =
∨
j X̃

j
o (L, p)

for each oriented link diagram L with basepoint p (Definition 5.7).

Theorem 1.2. The (stable) homotopy type of the reduced odd Khovanov spectrum X̃o(L, p) =∨
j X̃

j
o (L, p) from Definition 5.7 is independent of the choices in its construction and is an invariant

of the isotopy class of the pointed link corresponding to (L, p). Its reduced cellular cochain complex

agrees with the reduced odd Khovanov complex K̃co(L),

C̃icell(X̃ jo (L, p)) = K̃c
i,j

o (L),

with the cells mapping to the distinguished generators of K̃co(L). There is a cofibration sequence

X̃ j−1o (L, p)→ X jo (L)→ X̃ j+1
o (L, p).

We introduce concordance invariants built from this construction, in analogy with [LS14b]. To
do so, we show that associated to a cobordism of links, there exists a map of odd Khovanov spectra
(we do not attempt to show that the map is well-defined); the map induces a map on the odd
Khovanov chain complex, and reduces mod-2 to the usual cobordism map on Kc(L;Z2). Therefore:

Theorem 1.3. The Khovanov cobordism map Kh(L;Z2)→ Kh(L′;Z2) associated to a link cobor-
dism L → L′ from [Jac04, Kho06, BN05] is a map of Aσ-modules, where Aσ is the free product
of two copies of the mod-2 Steenrod algebra, and the first (respectively, second) copy acts on the
mod-2 Khovanov homology by viewing it as the mod-2 cohomology of the even (respectively, odd)
Khovanov homotopy type.

Moreover, in Definition 5.4, we construct an even stable homotopy type X ′e(L) (that is, a finite
CW spectrum whose cellular chain complex is the even Khovanov chain complex), equipped with a
Z2-action. This Z2-action is not visible from the Burnside functor constructed in [LLS], so in some
sense this Z2-action arises from the odd theory. We conjecture that the even space constructed
here is stable homotopy equivalent to the construction of [LS14a].

Theorem 1.4. The (stable) homotopy type of the even Khovanov spectrum X ′e(L) from Defini-
tion 5.4 is independent of the choices in its construction and is an invariant of the isotopy class of
L. Its reduced cellular cochain complex agrees with the odd Khovanov complex Kce(L),

C̃icell(X ′ je (L)) = Kci,je (L),

with the cells mapping to the distinguished generators of Kco(L).

Finally, similar to unified Khovanov homology, we combine Xe(L) and Xo(L) into a single finite

Z2 × Z2-equivariant CW spectrum Xu(L) =
∨
j X

j
u(L), which we think of as a ‘unified Khovanov

spectrum’ (Definition 5.5):

Theorem 1.5. The (stable) homotopy type of the unified Khovanov spectrum Xu(L) from Defini-
tion 5.5 is independent of the choices in its construction and is an invariant of the isotopy class of
L. Its reduced cellular cochain complex agrees with the unified Khovanov complex Kcu(L),

C̃icell(X ju(L)) = Kci,ju (L),
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with the cells mapping to the distinguished generators of Kcu(L), and the two Z2 actions correspond
to multiplication by ξ and −ξ, respectively.

There is also a reduced unified spectrum X̃u(L) for which the analogue of Theorem 1.2 (Propo-
sition 5.9) holds.

The different spectra and the different actions admit the following relationship:

Theorem 1.6. Let L be a link diagram.

(1) The action of the two Z2-factors is free away from the basepoint on Xu(L): Xe(L) is the
geometric quotient under the action of the first factor (sometimes called Z+

2 ) and Xo(L) is the
geometric quotient under the second factor (sometimes called Z−2 ); moreover, the Z2-action on
Xo(L) is the quotient of the Z+

2 -action on Xu(L).

(2) The geometric fixed-point set of X jo (L) under Z2 is precisely Σ−1X je (L), and quotienting by the
fixed point set produces Xu(L). The induced Z2-action on Xu(L) agrees with the Z+

2 -action.
This produces a cofibration sequence

Σ−1Xe(L)→ Xo(L)→ Xu(L),

and the induced long exact sequence on cohomology agrees with the one constructed in [PS16].
(3) The Puppe map Xu(L) → Xe(L) from the previous cofibration sequence is homotopic to the

quotient map Xu(L)→ Xu(L)/Z+
2 .

(4) The geometric fixed-point set of X ′ je (L) under Z2 is precisely Σ−1X jo (L), and quotienting by
the fixed point set produces Xu(L). The induced Z2-action on Xu(L) agrees with the Z−2 -action.
This produces a cofibration sequence

Σ−1Xo(L)→ X ′e(L)→ Xu(L),

and the induced long exact sequence of cohomology agrees with the one constructed in [PS16].
(5) The Puppe map Xu(L) → Xo(L) from the previous cofibration sequence is homotopic to the

quotient map Xu(L)→ Xu(L)/Z−2 .

1.3. Burnside categories and functors. This paper uses the machinery of Burnside functors
from [HKK16, LLS]. There, the dual of the Khovanov chain complex of a link diagram with n
(ordered) crossings is viewed as a diagram of abelian groups:

Fe : (2n)op → Z-Mod,

where 2n is the category with objects elements of {0, 1}n and a unique arrow a→ b if a ≥ b.
In order to construct a stable homotopy type, one considers a certain 2-category B, the Burnside

category, whose objects are finite sets and whose 1-morphisms are finite correspondences. The 2-
category B naturally comes with a forgetful functor to abelian groups B → Z-Mod by sending a
set S to the free abelian group Z〈S〉 generated by S. The Khovanov stable homotopy type arises
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from a lift:

2n Z-Mod

B

Fop
e

Fe

The realization of any functor Fe : 2n → B is then defined as a finite CW spectrum |Fe| associated
to Fe. Indeed, as shown in [LLS17], the stable equivalence class of the functor Fe, modulo shifting
by the number of negative crossings n−, is itself an invariant (which recovers the even Khovanov
homotopy type Xe—the appropriately shifted stable homotopy type of |Fe|).

In this paper, we first review, in §2, the odd Khovanov chain complex, viewing it as a diagram:

Fo : (2n)op → Z-Mod.

Indeed, Fo and Fe can be combined by a pullback into a unified functor

Fu : (2n)op → Zu-Mod.

where Zu = Z[ξ]/(ξ2 − 1), and Fe (respectively, Fo) is obtained by setting ξ = +1 (respectively,
ξ = −1).

Then in §3, we move to some slight generalizations of the Burnside 2-category, Bσ, the signed
Burnside category in order to take account of the signs appearing in odd Khovanov homology, and
Bξ, the free Z2-equivariant Burnside category in order to take account of the ξ-action.

In §4 we show how the realization construction of [LLS] generalizes to Bσ and Bξ. Roughly, the
realization process of a functor to Bσ is comparable to the realization process of a functor to B,
except that where a sign appears, the corresponding cell is glued in by a fixed orientation-reversing
homeomorphism.

And then in §5 we construct lifts

Z-Mod

Z-Mod

Zu-Mod

2n

B

Bσ

Bξ

Fop
e

Fe

Fop
o

Fo

Fop
u

Fu

ξ = −1

ξ = +1

Q

F
D

where the arrows among the various versions of Burnside categories are those from Figure 1. Note
that the lift

Fo : 2n → Bσ
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recovers all the other lifts; it decomposes along quantum gradings Fo = qjF jo , and its equivariant
equivalence class, after shifting by n−, recovers all the (correctly shifted) stable homotopy types
obtained by the above-mentioned realization procedure, and is itself an invariant:

Theorem 1.7. The equivariant equivalence class of the shifted functor Σ−n−F jo from Definition 5.1
is independent of all the choices in its construction and is a link invariant.

Acknowledgement. We are grateful to Anna Beliakova, Mike Hill, Tyler Lawson, Francesco Lin,
Robert Lipshitz, and Ciprian Manolescu for many helpful conversations.

2. Khovanov homologies

In this section we review the definitions and basic properties of three versions of Khovanov
homology for an oriented link L: ordinary or even Khovanov homology Kh(L) = Khe(L), defined
by Khovanov [Kho00]; odd Khovanov homology Kho(L) defined by Ozsváth, Rasmussen and Szabó
[ORSz13]; and Khu(L), the unified theory of Putyra and Putyra-Shumakovitch [Put14, PS16],
which generalizes the previous two theories. These three homological invariants will be upgraded
to Burnside functors in §5.

2.1. The cube category. We first recall the cube category. Call 2 = {0, 1} the one-dimensional
cube, viewed as a partially ordered set by setting 1 > 0, or as a category with a single non-identity
morphism from 1 to 0.

Call 2n = {0, 1}n the n-dimensional cube, with the partial order given by

u = (u1, . . . , un) ≥ v = (v1, . . . , vn) if and only if ∀ i (ui ≥ vi).

It has the categorical structure induced by the partial order, where Hom2n(u, v) has a single element
if u ≥ v and is empty otherwise. Write φu,v for the unique morphism u→ v if it exists. The cube
carries a grading given by |v| =

∑
i vi. Write u >k v if u ≥ v and |u| − |v| = k. When u >1 v, call

the corresponding morphism φu,v an edge.

Definition 2.1. The standard sign assigment s is the following function from edges of 2n to Z2.
For u >1 v, let k be the unique element in {1, . . . , n} with uk > vk. Then

su,v :=
k−1∑
i=1

ui mod 2.

Note that s may be viewed as a 1-cochain in C∗cell([0, 1]n;Z2). In general, s + c is called a sign
assignment for any 1-cocycle c in C∗cell([0, 1]n;Z2).

2.2. Some rings and modules. We will often write Z2 multiplicatively as {1, ξ}. The integral
group ring of Z2 then has the presentation Z[ξ]/(ξ2−1), which we abbreviate to Zu. There are two
basic Zu-modules Ze and Zo obtained from Zu by setting ξ = +1 and ξ = −1, which fit into the
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following diagram:

(2.2)

Zu

Ze Zo

Z2

ξ = +1 ξ = −1

The modules Ze and Zo are both infinite cyclic groups, for which ξ ∈ Zu acts as +1 on Ze, and by −1
on Zo. All maps in the above diagram are surjections, and in fact Zu is a pull-back for this diagram
in the category of rings. Equivalently, Zu is isomorphic to the subring of Z⊕ Z consisting of pairs
(a, b) with a ≡ b mod 2. Note that the kernel of the map ξ = +1 (resp. ξ = −1) in the diagram is
isomorphic to Zo (resp. Ze). In particular, we have a short exact sequence 0→ Ze → Zu → Zo → 0,
and an analogous exact sequence with e and o swapped.

Now let S be any finite set, and let T (S) be the tensor algebra generated by S over Zu. Let I
be the two-sided ideal of T (S) generated by elements x⊗ x and x⊗ y − ξy ⊗ x where x, y ∈ S.

Definition 2.3. Given a finite set S, we define the Zu-module Λu(S) := T (S)/I.

We will abuse notation and write x1⊗ · · · ⊗ xn ∈ Λu(S) for the equivalence class of the element
x1 ⊗ · · · ⊗ xn ∈ T (S), whenever each xi ∈ S. We have the fundamental relation

x1 ⊗ · · · ⊗ xn = ξsign(σ)xσ(1) ⊗ · · · ⊗ xσ(n)
for any permutation σ of length n. Upon setting ξ = +1, we recover Λe(S), the symmetric algebra
on the set S modulo the ideal generated by squares of elements in S. If we set ξ = −1, we recover
Λo(S), the usual exterior algebra on the set S. If we write Λ2(S) for the Z2-exterior algebra on the
set S, then these four algebras fit into a pull-back diamond analogous to Diagram (2.2).

2.3. Three Khovanov homology theories. We will now recall the definition of odd Khovanov
homology, as well as the definition of the unified theory (in the spirit of odd Khovanov homology).
Let L be a link diagram with n ordered crossings. Each crossing can be resolved as the 0-
resolution or the 1-resolution . We assume that L is decorated by an orientation of crossings,
i.e., a choice of an arrow at each crossing, or , connecting the two arcs of the 0-resolution
at that crossing. Rotating the arrows 90◦ degrees clockwise (this requires choosing an orientation
of the plane) produces an arrow joining the two arcs of the 1-resolution at that crossing as well.
That is, a crossing (respectively, ) has 0-resolution (respectively, ) and 1-resolution
(respectively, ).

We will recall the ‘top-down’ construction of three functors

Fu : (2n)op −→ Zu-Mod, Fe : (2n)op −→ Z-Mod, Fo : (2n)op −→ Z-Mod,

by first defining the unified functor Fu, and then defining Fe and Fo by restricting scalars ξ = +1
and ξ = −1, respectively. (Alternatively, one can also carry out a bottom-up approach, defining Fe
and Fo, and then defining Fu as the pullback.)
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For each v ∈ 2n, let Lv be the complete resolution diagram formed by taking the 0-resolution
at the ith crossing if vi = 0, or the 1-resolution otherwise. The diagram Lv is a planar diagram of
embedded circles and oriented arcs. Write Z(Lv) for the set of circles in Lv.

For objects v ∈ 2n, set Fu(v) = Λu(Z(Lv)). For morphisms, first consider the following as-
signment F′u on the edges; the actual functor Fu will be a slight modification of this assignment.
Let φv,w be an edge in 2n, so that its reverse φopw,v is a morphism in the opposite category. Sup-
pose φopw,v corresponds to a split cobordism, so that some circle a ∈ Z(Lw) splits into two circles
a1, a2 ∈ Z(Lv), and that the other elements of these two sets of circles are naturally identified.
Suppose further that the arc in Lv associated to this splitting is pointing from a1 to a2. Define

F′u(φopw,v)(x) = (a1 + ξa2)⊗ x

where Λu(Z(Lw)) is viewed embedded in Λu(Z(Lv)) by sending a to either a1 or a2. Now suppose
instead we have a merge cobordism, so that two circles a1, a2 ∈ Z(Lw) merge into one circle
a ∈ Z(Lv), and that the other elements in these two sets of circles are naturally identified. Define
F′u(φopw,v) to be the Zu-algebra map Λu(Z(Lw)) → Λu(Z(Lv)) determined by sending a1 and a2 to
a, and by the identity map on other circle generators. The assignment F′u on the edges does not
commute across the 2-dimensional faces; rather, it does so only up to possible multiplication by ξ.
We correct the assignment F′u on morphisms as follows.

The two-dimensional configurations can be divided into four categories as follows (with unori-
ented arcs being orientable in either direction).

A : , , , .

C : , , , , .

X : .

Y : .

(2.4)

For the type-A faces, F′u commutes after multiplication by ξ, for the type-C faces F′u commutes
directly, while for the type-X and type-Y faces, F′u commutes, both directly, and after multiplication
by ξ. Define ψX (respectively, ψY ), an element of C2

cell([0, 1]n; {1, ξ}), to be ξ for the type-A or -X
faces (respectively, type-A or -Y faces), and 1 for the type-C or -Y faces (respectively, type-C or
-X faces).

Definition 2.5. A type-X (respectively, type-Y) edge assignment for the diagram L with oriented
crossings is a (multiplicative) cochain ε ∈ C1

cell([0, 1]n; {1, ξ}) such that δε = ψX (respectively,
= ψY ).

Fix an edge assignment ε, either of type-X or type-Y. For an edge φopw,v, set

Fu(φopw,v) = ε(φopw,v)F
′
u(φopw,v)

and this defines the functor Fu. Setting ξ = +1 and ξ = −1 throughout the above construction
defines the even and odd functors Fe and Fo, respectively.
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The three Khovanov homology theories are then defined from these functors as follows. First,
we define for • ∈ {u, e, o} a chain complex:

Kc•(L) =
⊕
v∈2n

F•(v), ∂• =
∑
v>1w

(−1)sv,w F•(φ
op
w,v)

(Here s is the standard sign assignment from Definition 2.1.) This complex depends on the ordering
of the crossings, the choice of crossing orientations, and the choice of edge assignment, as does the
corresponding functor. However, these choices do not affect the resulting chain homotopy type
[Kho00, Theorem 1], [ORSz13, Theorem 1.3], [Put14, §7].

Definition 2.6. For • ∈ {u, e, o} define Kh•(L) = H∗(Kc•(L), ∂•).

The unified homology group Khu(L) is a Zu-module, while the even and odd theories are abelian
groups. Each theory has a bigrading, defined in the usual way, as follows. Let n− be the number
of negative crossings in the diagram L. The homological and quantum gradings, denoted i and
j respectively, are defined on x = a1 ⊗ · · · ⊗ ak ∈ Λ•(Z(Lv)) with a1, . . . , ak ∈ Z(Lv) to be

i(x) = |v| − n−, j(x) = |Z(Lv)| − 2k + |v|+ n− 3n−.

We write Khi,j• (L) for the corresponding bigraded module. We note that the unified theory in
[Put14] is called the covering homology , and is more specfically obtained from Example 10.7 of
loc. cit. by setting X = Z = 1 and Y = ξ. The terminology unified is used in [PS16].

Remark 2.7. Our definition of an edge assignment is non-standard, but the standard type-X
(respectively, type-Y) edge assignment from [ORSz13, Put14] may be obtained from our type-X
(respectively, type-Y) edge assignment by multiplying by (−1)sv,w .

2.4. Relations between the theories. From the definitions, it is clear that the chain complexes
Kc•(L) above fit into a pull-back diagram just as in Diagram (2.2),

(2.8)

Kcu(L)

Kce(L) Kco(L)

Kc2(L)

ξ = +1 ξ = −1

where Kc2(L) denotes Khovanov chain complex with Z2 coefficients. Indeed, we may define Kcu(L)
to be the pullback of Kce(L) and Kco(L) over Kc2(L),

Kcu(L) = {(a, b) ∈ Kce(L)⊕Kco(L) | a ≡ b mod 2},
which then naturally inherits a Z2-action ξ(a, b) = (a,−b).

We also have a short exact sequence of chain complexes 0→ Kce(L)→ Kcu(L)→ Kco(L)→ 0.
This may be viewed as arising from tensoring the short exact sequence 0→ Ze → Zu → Zo → 0 by
the unified chain complex Kcu(L) over Zu. There is a similar exact sequence with e and o swapped.
Passing to homology yields the following long exact sequences, cf. [PS16]:

(2.9) · · · → Khi,je (L) −→ Khi,ju (L) −→ Khi,jo (L)
φoe−−→ Khi+1,j

e (L)→ · · ·
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(2.10) · · · → Khi,jo (L) −→ Khi,ju (L) −→ Khi,je (L)
φeo−−→ Khi+1,j

o (L)→ · · ·

2.5. Reduced theories. Let p be a basepoint on the planar diagram L. Then the reduced complex

K̃c•(L, p) for • ∈ {u, e, o} is the subcomplex of Kc•(L) consisting of elements of the form a ⊗ y,
where a is a circle containing p in a resolution diagram, and y is any other element. The complex

K̃c•(L) is homologically graded as a subcomplex of Kc•(L), but there is a shift in its quantum

grading, which is defined as one more than the formula for j(x) above. The reduced functors F̃•
are defined in the same way.

The chain homotopy type depends on the isotopy type of L and which component of the link
p lies in. In the odd case, the basepoint does not matter, and the chain complex is a direct sum
[ORSz13, Prop 1.7]:

(2.11) Kc∗,jo (L) = K̃c
∗,j−1
o (L)⊕ K̃c

∗,j+1

o (L)

In contrast to the odd case, the unified and even theories do not split into a direct sum of their
reduced theories. Instead, for • ∈ {u, e}, there is a short exact sequence of chain complexes

0 −→ K̃c
∗,j+1

• (L, p) −→ Kc∗,j• (L) −→ K̃h
∗,j−1
• (L, p) −→ 0.

The reduced Khovanov homology is defined as

Definition 2.12. For • ∈ {u, e, o} define K̃h
i,j

• (L, p) = Hi(K̃c
∗,j
• (L, p), ∂•).

2.6. Khovanov generators. In the sequel, we will need to fix bases of these chain complexes to
facilitate the construction of the various Khovanov spectra. For even Khovanov homology, there is a
natural basis of generators: the elements a1⊗· · ·⊗ak ∈ Λe(Z(Lv)) where each ai ∈ Z(Lv) is distinct.
Since Λe(Z(Lv)) is the quotient of a symmetric algebra on these generators, their order does not
matter. For the unified and odd cases, order matters, however: recall that a1⊗a2 = ξa2⊗a1 in the
unified case, and a1 ⊗ a2 = −a2 ⊗ a1 in the odd case. To fix generators, we will thus fix at every
vertex v ∈ 2n a total ordering > of the set Z(Lv). Once this is done, we write

Kg(v) = Kg•(v) := {a1 ⊗ · · · ⊗ ak : ai ∈ Z(Lv), a1 > · · · > ak} • ∈ {u, e, o}

for the set of Khovanov generators at v. As indicated, we will often omit the subscript • from the
notation, as each of the three sets for a fixed v are naturally identified (once the circles in Z(Lv)
are totally ordered). Note that in the unified case, the set of Khovanov generators over all v ∈ 2n

gives a Zu-basis for the chain complex. On the other hand, a Z-basis for the unified chain complex
at v ∈ 2n is given by

Kg(v) q ξKg(v)

where ξKg(v) is the set of ξx with x ∈ Kg(v). Note that Kg(v) has 2|Z(Lv)| elements. Given a

basepoint p on our diagram L, we can also form the set of reduced generators K̃g(v; p) at the vertex
v, the subset of Kg(v) whose elements each include the circle containing the basepoint. This set has
half the number of elements of Kg(v), and, running over all v ∈ 2n, forms a basis for the reduced

complex K̃c•(L, p) where • ∈ {e, o}, and a Zu-basis for K̃cu(L, p).
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3. Burnside categories and functors

In this section, we review the definition of the Burnside category B from [LLS, LLS17], and
define some slight modifications: the signed Burnside category Bσ and the Z2-equivariant Burnside
category Bξ. We then discuss functors from the cube category 2n to these Burnside categories.

3.1. The Burnside category. Given finite sets X and Y , a correspondence from X to Y is a
triple (A, s, t) for a finite set A, where s, t are set maps s : A→ X and t : A→ Y ; s and t are called
the source and target maps, respectively. The correspondence (A, s, t) is depicted:

X Y

AsA tA

For correspondences (A, sA, tA) and (B, sB, tB) from X to Y and Y to Z, respectively, define
the composition (B, sB, tB) ◦ (A, sA, tA) to be the correspondence (C, s, t) from X to Z given by
the fiber product C = B ×Y A = {(b, a) ∈ B × A | t(a) = s(b)} with source and target maps
s(b, a) = sA(a) and t(b, a) = tB(b). There is also the identity correspondence from a set X to itself,
i.e., (X, IdX , IdX) from X to X. Given correspondences (A, sA, tA), (B, sB, tB) from X to Y , a
morphism of correspondences (A, sA, tA) to (B, sB, tB) is a bijection f : A → B commuting with
the source and target maps. There is also the identity morphism from a correspondence to itself.

Composition (of set maps) gives the set of correspondences from X to Y the structure of a
category. Define the Burnside category B to be the weak 2-category whose objects are finite sets,
morphisms are finite correspondences, and 2-morphisms are maps of correspondences.

Recall that in a weak 2-category, that arrows need only be associative up to an equivalence,
and similarly the identity axiom holds only after composing with a 2-morphism. To be explicit,
for finite sets X,Y and (A, s, t) a correspondence from X to Y , neither (Y, IdY , IdY ) ◦ (A, s, t),
nor (A, s, t) ◦ (X, IdX , IdX), equals (A, s, t). Rather, there are natural 2-morphisms, left and right
unitors,

λ : Y ×Y A→ A, ρ : A×X X → A

given by λ(y, a) = a and ρ(a, x) = a. Further, the composition C ◦ (B ◦A), for A from W to X, B
from X to Y , and C from Y to Z, is not identical to (C ◦B) ◦A, rather there is an associator

α : (C ×Y B)×X A→ C ×Y (B ×X A)

given by α((c, b), a) = (c, (b, a)). The categories to follow are slight variations of this one. The total
diagram of Burnside categories that we will consider in this article is depicted in Figure 1.

3.2. The signed Burnside category. Given sets X and Y , a signed correspondence is a corre-
spondence (A, sA, tA) equipped with a map σA : A→ {+1,−1}, regarded as a tuple (A, sA, tA, σA);
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we call σA the “sign” or “sign map” of the signed correspondence:

X Y

A

{+1,−1}

sA tA

σA

In the sequel we often write “correspondence” for “signed correspondence”, where it will not
cause any confusion. We define a composition (B, sB, tB, σB) ◦ (A, sA, tA, σA) of signed correspon-
dences (A, sA, tA, σA) from X to Y , and (B, sB, tB, σB) from Y to Z by (C, s, t, σ), where (C, s, t)
is the composition (B, sB, tB) ◦ (A, sA, tA) and σ(b, a) = σB(b)σA(a). Also, we define the identity
(signed) correspondence by (X, IdX , IdX , 1) (i.e., the identity correspondence takes value 1 on all
elements).

We define maps of signed correspondences f : (A, sA, tA, σA)→ (B, sB, tB, σB) to be morphisms
of correspondences f : (A, sA, tA) → (B, sB, tB) such that σB ◦ f = σA. We may then define
the signed Burnside category Bσ to be the weak 2-category with objects finite sets, morphisms
given by signed correspondences, and 2-morphisms given by maps of signed correspondences. The
structure maps λ, ρ, α of §3.1 are easily seen to respect the sign, confirming that Bσ is indeed a
weak 2-category. There is a forgetful 2-functor F : Bσ → B which forgets signs. There is also
an inclusion-induced 2-functor I : B → Bσ. We will usually refer to such 2-functors simply as
functors.

3.3. The Z2-equivariant Burnside category. We let Bξ denote the 2-category whose objects
are finite, free Z2-sets, with Z2-equivariant correspondences, and 2-morphisms Z2-equivariant bijec-
tions of correspondences. (Recall that we write Z2 = {1, ξ}.) The 2-category Bξ is a subcategory
of the Burnside 2-category for the group Z2.

There is a forgetful functor F : Bξ → B. There is also a “quotient” functor Q : Bξ → B, which
simply takes the quotient by the action of Z2 on objects, 1- and 2-morphisms.

There is also a strictly unitary “doubling” 2-functor D : Bσ → Bξ consisting of the following
data.

(1) For each object X of Bσ, we need to specify an object D(X) of Bξ. Define D(X) = {1, ξ}×X,
with the Z2-action on {1, ξ} ×X being ξ(1, x) = (ξ, x) for all x ∈ X.

(2) For any 2 objects X,Y of Bσ, we need to specify a functor, also denoted D, from HomBσ(X,Y )
to HomBξ

(D(X),D(Y )) that sends IdX to IdD(X). This functor sends a signed correspondence
A from X to Y to the correspondence {1, ξ} ×A from {1, ξ} ×X to {1, ξ} × Y (the Z2-action
is similar). The source and target maps on {1} ×A are defined as

s(1, a) = (1, s(a))

t(1, a) = (σ(a), t(a))
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B

Bσ

Bξ

I

F

D

F Q

Figure 1. The Burnside categories and some functors between them. We
have the relations Q◦D = F and F ◦ I = Id. The F ’s are forgetful functors, I is a
subcategory inclusion, Q is a quotient functor, and D stands for doubling.

(The sign σ(a) takes value in Z2 = {+1,−1}, which has been identitified with Z2 = {1, ξ}.)
The source and target maps are then extended equivariantly to {ξ} × A. Finally, D sends a
2-morphism f : A→ B to the 2-morphism (Id, f) : {1, ξ} ×A→ {1, ξ} ×B.

(3) Finally, for any correspondences A from X to Y and B from Y to Z in Bσ, we need to specify
a 2-morphism in Bξ from D(B) ◦ D(A) = ({1, ξ} × B) ×({1,ξ}×Y ) ({1, ξ} × A) to D(B ◦ A) =
{1, ξ} × (B ×Y A) that is natural in A and B. Define it to be

((σ(a), b), (1, a)) 7→ (1, (b, a)),

extended Z2-equivariantly. It is not hard to check that these maps satisfy the required coherence
relations with the structure maps λ, ρ, α of Bσ and Bξ, as described in [Bén67, Definition 4.1
and Remark 4.2]. Therefore, the above is indeed a 2-functor.

3.4. Functors from Burnside categories. For • ∈ {∅, σ} we define a functor A : B• → Z-Mod
by sending a set X ∈ B• to the free abelian group generated by X, denoted A(X). For a signed
correspondence φ = (A, s, t, σ) from X to Y , we define A(φ) : A(X)→ A(Y ) by

(3.1) A(φ)(x) =
∑

a∈A | s(a)=x

σ(a)t(a)

for elements x ∈ X, extended linearly over Z. Similarly, we have a functor A : Bξ → Zu-Mod that
sends a free Z2-set X to A(X), which is a free Zu-module; for a Z2-equivariant correspondence φ,
we use the same formula as Equation (3.1), but exclude σ, and extend linearly over Zu.

3.5. Functors to Burnside categories. We now consider functors from the cube category 2n to
the Burnside categories thus far introduced. We let B• be one of the Burnside categories introduced
above, appearing in Figure 1, so that • ∈ {∅, σ, ξ}. The functors F : 2n → B• we consider will be
strictly unitary 2-functors; that is, they will consist of the following data:

(1) For each vertex v of 2n, an object F (v) of B•.
(2) For any u ≥ v, a 1-morphism F (φu,v) in B• from F (u) to F (v), such that F (φu,u) is the identity

morphism IdF (u).
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(3) Finally, for any u ≥ v ≥ w, a 2-morphism Fu,v,w in B• from F (φv,w) ◦ F (φu,v) to F (φu,w) that
agrees with λ (respectively, ρ) when v = w (respectively, u = v), and that satisfies, for any
u ≥ v ≥ w ≥ z,

Fu,w,z ◦2 (Id ◦ Fu,v,w) = (Fv,w,z ◦ Id) ◦2 Fu,v,z
(with ◦ denoting composition of 1-morphisms and ◦2 denoting composition of 2-morphisms;
and we have suppressed the associator α).

We will usually use the characterization of these functors in the lemma to follow.

Lemma 3.2. Let B• be any of the Burnside categories with • ∈ {∅, σ, ξ}. Consider the data of ob-
jects F (v) for v ∈ 2n, 1-morphisms F (φv,w) for edges v >1 w, and 2-morphisms Fu,v,v′,w : F (φv,w)◦
F (φu,v)→ F (φv′,w) ◦F (φu,v′) for each 2d face described by u >1 v, v

′ >1 w, such that the following
compatibility conditions are satisfied:

(1) For any 2d face u, v, v′, w as above, Fu,v,v′,w = F−1u,v′,v,w;

(2) For any 3d face in 2n on the left, the hexagon on the right commutes:

u v′

v′′ w

v w′′

w′ z

◦

◦

◦◦

◦

◦
Id× Fu,v,v′′,w′

Fv′′,w′,w,z × Id

Id× Fu,v′′,v′,w

Fv′,w,w′′,z × Id

Id× Fu,v′,v,w′′

Fv,w′′,w′,z × Id

This collection of data can be extended to a strictly unitary functor F : 2n → B•, uniquely up to
natural isomorphism, so that Fu,v,v′,w = F−1u,v′,w ◦2 Fu,v,w.

Proof. The proof is same as that of [LLS, Lemma 2.12] and [LLS17, Lemma 4.2]. �

3.6. Totalization. Given a functor F : 2n → B• we construct a chain complex denoted Tot(F ),
and called the totalization of the functor F . The underlying chain group of Tot(F ) is given by

Tot(F ) =
⊕
v∈2n
A(F (v)).

We set the homological grading of the summand A(F (v)) to be |v|. The differential is given by
defining the components ∂u,v from A(F (u)) to A(F (v)) by

∂u,v =

{
(−1)su,vA(F (φu,v)) if u >1 v

0 otherwise.

Note that for a functor F : 2n → Bξ, the totalization Tot(F ) is a chain complex over Zu.
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3.7. Natural transformations. The following will serve as the basic relation between functors
from the cube to a Burnside category. As before, • ∈ {∅, σ, ξ}.

Definition 3.3. A natural transformation η : F1 → F0 between 2-functors F1, F0 : 2n → B• is a
strictly unitary 2-functor η : 2n+1 → B• so that η|{1}×2n = F1 and η|{0}×2n = F0.

A natural transformation (functorially) induces a chain map between the chain complexes of
Burnside functors, which we write as Tot(η) : Tot(F1)→ Tot(F0).

Many of the natural transformations we will encounter will be sub-functor inclusions or quotient
functor surjections. Given a functor F : 2n → B•, a sub-functor (respectively, quotient functor)
G : 2n → B• is a functor that satisfies:

(1) G(v) ⊂ F (v) for all v ∈ 2n; if • = ξ, the Z2-action on G(v) is induced from the Z2-action on
F (v).

(2) G(φu,v) ⊂ F (φu,v) for all u ≥ v, with the source and target maps (and the sign map if • = σ
or the Z2-action if • = ξ) being restrictions of the corresponding ones on F (φu,v).

(3) s−1(x) ⊂ G(φu,v) (respectively, t−1(y) ⊂ G(φu,v)) for all u ≥ v and for all x ∈ G(u) (respec-
tively, y ∈ G(v)).

If G is a sub (respectively, quotient) functor of F , then there is a natural transformation G → F
(respectively, F → G), and the induced chain map Tot(G) → Tot(F ) (respectively, Tot(F ) →
Tot(G)) is an inclusion (respectively, a quotient map).

Definition 3.4. If G is a sub-functor of F : 2n → B•, then the functor H defined as H(v) =
F (v) \ G(v) and H(φu,v) = F (φu,v) \ G(φu,v) is a quotient functor of F (and vice-versa). Such a
sequence

G→ F → H

is called a cofibration sequence of Burnside functors; it induces the short exact sequence

0→ Tot(G)→ Tot(F )→ Tot(H)→ 0

of chain complexes.

The following is another particular example of a natural transformation which will appear later.
Suppose we are given a functor F : 2n → Bσ. For each object v ∈ 2n, choose a function ζv : F (v)→
{+1,−1}. Define a new functor F ′ : 2n → Bσ that is equal to F except that in the correspondence
F (φv,w) = (A, s, t, σ) for v >1 w we change the sign function σ to be σ′(x) = ζv(s(x))ζw(t(x))σ(x).
There is a naturally induced natural transformation η : F → F ′:

Definition 3.5. A sign reassignment η of F : 2n → Bσ is a natural transformation η : F → F ′ as
described above, induced by a function ζv : F (v)→ {±1} for each v ∈ 2n.

In the context of Morse theory, a sign reassignment as above corresponds to changing the
orientation on the stable tangent bundle to a critical point in Morse theory. In the sequel, the
appearance of sign reassignments will be specific to odd Khovanov homology. Such reassignments
are not necessary in the (even) Khovanov setting, since in that case there is a preferred choice
of signs: the (even) Khovanov complex comes equipped with a choice of generators for which all
signs in the differentials, apart from the standard sign assignment, are positive, cf. §2.6. In the odd
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Khovanov setting, in which there are generally no such positive bases, sign reassignments inevitably
appear.

3.8. Stable equivalence of functors. In the sequel, we will be interested not just in functors
F : 2n → B•, but stable functors, which are pairs (F, r) with r ∈ Z. We will write ΣrF for the pair
(F, r); its totalization is defined to be ΣrTot(F ) = Tot(F )[r], that is, the chain complex Tot(F )
shifted up by r. In this section we describe when two such stable functors are equivalent, only
slightly modifying [LLS17, Definition 5.9] by allowing • ∈ {∅, σ, ξ}.

A face inclusion ι is a functor 2n → 2N that is injective on objects and preserves the relative
gradings. We remark that self-equivalences ι : 2n → 2n are face inclusions. Now consider a face
inclusion ι : 2n → 2N and a functor F : 2n → B•. The induced functor Fι : 2N → B• is uniquely
determined by requiring that F = Fι ◦ ι, and such that for v ∈ 2N/ι(2n), we have Fι(v) = ∅. For
a face inclusion ι, we define |ι| = |ι(v)| − |v| for any v ∈ 2n, which is independent of v because ι
is assumed to preserve relative gradings. As observed in [LLS17, §5], for any face inclusion ι and
functor F as above,

Tot(Fι) ∼= Σ|ι|Tot(F )

where the isomorphism is natural up to certain sign choices. With this background, we state the
relevant notion of equivalence for stable functors.

Definition 3.6. Two stable functors (E1 : 2m1 → B•, q1) and (E2 : 2m2 → B•, q2) are stably
equivalent if there is a sequence of stable functors {(Fi : 2ni → B•, ri)} (0 ≤ i ≤ `) with Σq1E1 =
Σr0F0 and Σq2E2 = Σr`F` such that for each pair {ΣriFi,Σ

ri+1Fi+1}, one of the following holds:

(1) (ni, ri) = (ni+1, ri+1) and there is a natural transformation η : Fi → Fi+1 or η : Fi+1 → Fi such
that the induced map Tot(η) is a chain homotopy equivalence.

(2) There is a face inclusion ι : 2ni ↪→ 2ni+1 such that ri+1 = ri − |ι| and Fi+1 = (Fi)ι; or a face
inclusion ι : 2ni+1 ↪→ 2ni such that ri = ri+1 − |ι| and Fi = (Fi+1)ι.

We call such a sequence, along with the arrows between ΣriFi, a stable equivalence between the
stable functors Σq1E1 and Σq2E2. If • = σ, and if the sequence is such that the maps η satisfy
Tot(Dη) are chain homotopy equivalences over Zu (where D : Bσ → Bξ is from Figure 1), we call
it a equivariant (stable) equivalence, and say that ΣqiEi are equivariantly equivalent.

We note that a stable equivalence from Σq1E1 to Σq2E2 induces a chain homotopy equivalence
Tot(Σq1E1)→ Tot(Σq2E2), well-defined up to choices of inverses of the chain homotopy equivalences
involved in its construction, and an overall sign. Note that for Bξ, the category of chain complexes
under consideration is over Zu.

We will also need the notion of a map of Burnside functors:

Definition 3.7. A map Σq1E1 → Σq2E2 of Burnside functors ΣqiEi : 2mi → B• consists of a
sequence of stable functors {(Fi : 2ni → B•, ri)} (0 ≤ i ≤ `) with Σq1E1 = Σr0F0 and Σq2E2 = Σr`F`
along with the following:

(1) For i even, a stable equivalence from ΣriFi to Σri+1Fi+1.
(2) For i odd, a natural transformation Fi → Fi+1, and we require ri = ri+1.
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Similarly, for • = σ, an equivariant map Σq1E1 → Σq2E2 will consist of the same information, but
where the stable equivalences are required to be equivariant equivalences.

3.9. Coproducts. Finally, let us describe the elementary coproduct operation on functors 2n →
B•, generalizing that from [LLS17]. [LLS17] also define a product operation, but we have no need
for that.

Given two 2-functors F1, F2 : 2n → B• the coproduct 2-functor F1 q F2 : 2n → B• is defined as
follows. On objects and 1-morphisms, F1qF2 is just the disjoint union: (F1qF2)(v) = F1(v)qF2(v)
for v ∈ 2n, with Z2-action defined component-wise if • = ξ, and (F1qF2)(φu,v) = F1(φu,v)qF2(φu,v)
for u ≥ v, with the source map, target map, and sign map if • = σ, and Z2-action if • = ξ, defined
component-wise. For u ≥ v ≥ w, the associated 2-morphism may be viewed as a map

(F1 q F2)u,v,w :
∐
i=1,2

Fi(φv,w)×Fi(v) Fi(φu,v) −→
∐
i=1,2

Fi(φu,w)

and it is defined component-wise using the bijections (Fi)u,v,w for i = 1, 2. We have the following
immediate property for chain complexes:

Tot(F1 q F2) = Tot(F1)⊕ Tot(F2).

4. Realizations of Burnside functors

In this section, given a functor F : 2n → B• to any of the previously defined Burnside categories,
we construct an essentially well-defined finite CW spectrum |F |, which in the Z2-equivariant case
• = ξ is a Z2-equivariant spectrum. As a first step, we construct finite CW complexes ‖F‖k for
sufficiently large k, so that increasing the parameter k corresponds to suspending the CW complex
‖F‖k. The finite CW spectrum |F | is then defined from this sequence of spaces. The construction
of ‖F‖k depends on some auxiliary choices, but its stable homotopy type does not. Moreover, the
spectra constructed from two stably equivalent Burnside functors will be homotopy equivalent.

For signed Burnside functors, i.e., when • = σ, we can carry out our construction with a Z2-
action. For ordinary Burnside functors, i.e., when • = ∅, our construction recovers the “little
boxes” realization of [LLS, §5], cf. [LLS17, §7]; but if it comes from a signed Burnside functor, we
produce an alternate constructon with an extra Z2-action.

After reviewing the notion of “box maps” used in the little box realization construction of [LLS17,
§5], we introduce “signed box maps.” After providing the necessary background on homotopy
colimits, we then use signed box maps to construct the realization | · | for functors to the signed
Burnside category. This is all that is needed to construct the odd Khovanov homotopy type. We
then indicate the modifications needed to define the other realization functors and to construct the
various extra Z2-actions.

4.1. Signed box maps. We start with the construction of (ordinary) box maps, following [LLS,
§2.10]. Fix an identification Sk = [0, 1]k/∂ which we maintain though the sequel, and view Sk

as a pointed space. Let B be a box in Rk with edges parallel to the coordinate axes, that is,
B = [a1, b1] × · · · × [ak, bk] for some ai, bi. Then there is a standard homeomorphism from B to
[0, 1]k, via (x1, . . . , xk)→ (x1−a1b1−a1 , . . . ,

xk−ak
bk−ak ). Then we have an identification Sk ∼= B/∂B.
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Given a collection of sub-boxes B1, . . . , B` ⊂ B with disjoint interiors, there is an induced map

(4.1) Sk = B/∂B → B/(B\(B̊1 ∪ · · · ∪ B̊`)) =
∨̀
a=1

Ba/∂Ba =
∨̀
a=1

Sk → Sk.

The last map is the identity on each summand, so that the composition has degree `. As pointed
out in [LLS], this construction is continuous in the position of the sub-boxes. We let E(B, `) denote
the space of boxes with disjoint interiors in B, and have a continuous map E(B, `)→ Map(Sk, Sk).

We can generalize the above procedure to associate a map of spheres to a map of sets A→ Y ,
as follows. Say we have chosen sub-boxes Ba ⊂ B with disjoint interiors, for a ∈ A. Then we have
a map:

(4.2) Sk = B/∂B → B/(B\(
⋃
a∈A

B̊a)) =
∨
a∈A

Ba/∂Ba =
∨
a∈A

Sk →
∨
y∈Y

Sk

where the last map is built using the map of sets A→ Y .

More generally, we can also assign a box map to a correspondence of sets, as follows. Fix a
correspondence A from X to Y with source map s and target map t. Say that we also have a
collection of boxes Bx for x ∈ X. Finally, we also choose a collection of sub-boxes Ba ⊂ Bs(a) with
disjoint interiors, for a ∈ A. We then have an induced map

(4.3)
∨
x∈X

Sk →
∨
y∈Y

Sk,

by applying, on Bx, the map associated to the set map s−1(x)→ Y . A map as in Equation (4.3) is
said to refine the correspondence A. Let E({Bx}, s) be the space of collections of labeled sub-boxes
{Ba ⊂ Bs(a) | a ∈ A} with disjoint interiors. Then, choosing a correspondence (A, s, t) (so that A
and s are those appearing in the definition of E({Bx}, s)—note that the definition of E({Bx}, s) does
not involve the target map t)—Equation (4.3) gives a map E({Bx}, s) → Map(∨x∈XSk,∨y∈Y Sk).
We write

(4.4) Φ(e,A) ∈ Map(
∨
x∈X

Sk →
∨
y∈Y

Sk)

for the map associated to e ∈ E({Bx}, s) and a compatible correspondence (A, s, t). The main
point is that, for any box map Φ(e,A) refining A, the induced map on the kth homology agrees
with the abelianization map

A(A) : A(X) = H̃k(∨x∈XSk)→ A(Y ) = H̃k(∨y∈Y Sk).

We now indicate a further generalization of box maps to cover signed correspondences. Fix a
signed correspondence (A, s, t, σ) from X to Y , and let Bx, x ∈ X be some collection of boxes. Fix
a collection of sub-boxes Ba ⊂ Bs(a) for a ∈ A. There is an induced map just as in Equation (4.3),
but whose construction depends on the sign map σ, as follows. For x ∈ X, we have a set map
s−1(x) → Y , along with signs for each element of s−1(x). We modify the box map refining
s−1(x)→ Y (without sign) by precomposing with r, reflection in the first coordinate, in boxes with
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non-trivial sign:

Sk = B/∂B → B/(B\(
⋃
a∈A

B̊a)) =
∨
a∈A

Ba/∂Ba

∨
ra−−→

∨
a∈A

Ba/∂Ba =
∨
a∈A

Sk →
∨
y∈Y

Sk.

Here ra = r if σ(a) = −1 and ra = Id if σ(a) = +1. This defines the map on the factor on the left
of Equation (4.3) indexed by the element x ∈ X. We say that a map constructed this way refines
the signed correspondence (A, s, t, σ). As before, we can regard it as a map

Φ(e,A) ∈ Map(
∨
x∈X

Sk,
∨
y∈Y

Sk),

where e ∈ E({Bx}, s), and (A, s, t, σ) is a compatible signed correspondence. Once again, the
induced map on the kth homology agrees with the abelianization map.

Similarly, for a signed correspondence (A, s, t, σ), we can consider box maps refining the (un-
signed) correspondence, and then precompose by d, the reflection in the first two coordinates, if
the sign is nontrivial. We call a map obtained this way a doubly signed refinement of the tuple

(A, s, t, σ), and denote it Φ̂(e,A).

We next record two lemmas from [LLS] about the spaces E({Bx}, s) that we need later. For a
map s : A→ X define Esym({Bx}, s) to be the subspace of E({Bx}, s) in which we require the box
Ba to lie symmetrically in Bs(a) with respect to reflection in the first coordinate r, for all a ∈ A,
and E2sym({Bx}, s) by requiring symmetry in the first two coordinates.

Lemma 4.5. Consider s : A → X. If the boxes are k-dimensional then E({Bx}, s) is (k − 2)-
connected and Esym({Bx}, s) is (k − 3)-connected and E2sym({Bx}, s) is (k − 4)-connected.

Proof. The first statement is [LLS, Lemma 2.29], and the second statement follows from the first
since the space of symmetric k-dimensional boxes, Eksym({Bx}, s), is homotopy equivalent to the

space of (k−1)-dimensional boxes, Ek−1({Bx}, s), from which the third statement also follows. �

Lemma 4.6. If e ∈ E({Bx}, sA) is compatible with a signed correspondence A from X to Y , and
f ∈ E({By}, sB) is compatible with a signed correspondence B from Y to Z, then there is a unique
f ◦σA e ∈ E({Bx}, sB◦A) compatible with B◦A, depending only on e, f , and the sign map σA, so that
Φ(f ◦ e,B ◦A) = Φ(f,B) ◦Φ(e,A); we will sometimes drop the subscript σA (as we did just now).

Similarly, there is a unique f ◦̂σA e ∈ E({Bx}, sB◦A) compatible with B◦A, so that Φ̂(f ◦̂ e,B◦A) =

Φ̂(f,B) ◦ Φ̂(e,A). Both of these assignments ◦, ◦̂ : E({By}, sB) × E({Bx}, sA) → E({Bx}, sB◦A)
are continuous and send Esym({By}, sB)×Esym({Bx}, sA) to Esym({Bx}, sB◦A) (and similarly for
E2sym). Moreover, ◦ agrees with ◦̂ when restricted to E2sym({By}, sB)× E2sym({Bx}, sA).

Proof. This ‘composition map’ E({By}, sB)×E({Bx}, sA)→ E({Bx}, sB◦A), as discussed in [LLS,
§2.10], is constructed in the unsigned as follows: Given sub-boxes Bb ⊂ BsB(b) for all b ∈ B and
sub-boxes Ba ⊂ BsA(a) for all a ∈ A, define, for all (b, a) ∈ B ×Y A, the sub-box B(b,a) ⊂ BsA(a) to
be the ‘sub-box of the sub-box’, Bb ⊂ BsB(b)=tA(a)

∼= Ba ⊂ BsA(a).
In the signed case, one needs to precompose with a reflection if σA(a) = −1. That is, define

B(b,a) to be sub-box ra(Bb) ⊂ BsB(b)
∼= Ba of the sub-box Ba ⊂ BsA(a), where as before, ra = r if

σA(a) = −1 and ra = Id if σA(a) = +1.
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It is clear that Φ(f ◦ e,B ◦ A) = Φ(f,B) ◦ Φ(e,A). The slight subtlety lies in the case when
(b, a) ∈ B ◦A has sign +1, but each of a and b has sign −1; then each of the box maps Φ(e,A) and
Φ(f,B) requires reflecting along the first coordinate, and so their composition does not. The case

for Φ̂ is similar.

It is clear that both ◦ and ◦̂ send Esym({By}, sB) × Esym({Bx}, sA) to Esym({Bx}, sB◦A) and
E2sym({By}, sB) × E2sym({Bx}, sA) to E2sym({Bx}, sB◦A). In both cases, the definition of ◦ does
not require any reflections, while in the latter case, the definition of ◦̂ does not. So in the latter
case, ◦ and ◦̂ agree. �

4.2. Homotopy coherence. In this section, we briefly review homotopy colimits and homotopy
coherent diagrams following [LLS, §2.9]. Let Top∗ be the category of well-based topological spaces;
we will usually work with finite CW complexes. A weak equivalence X → Y is a map that induces
isomorphisms on all homotopy groups; typically our spaces are all simply connected, when the
definition reduces to being isomorphisms on all homology groups. A homotopy equivalence is a
special case of weak equivalence, and for CW complexes (the case at hand), the two notions are
equivalent.

We will sometimes also work with spaces equipped with an action by a fixed finite group G
(which is Z2 or Z2 × Z2 in our case), and all maps are G-equivariant, forming a category G-Top∗.

We also require that the inclusions of fixed points XH → XH′ , for all subgroups H ′ < H of G,
are cofibrations; in our case, all the spaces will carry CW structures so that the actions are CW
actions—that is, each group element simply permutes the cells and respects the attaching maps.
A map X → Y is called a weak equivalence if the induced map XH → Y H is a weak equivalence
for all subgroups H of G. A homotopy equivalence in G-Top∗ induces a weak equivalence. For
G-CW complexes (the case at hand), the two notions are equivalent by the G-Whitehead theorem,
see [GM95, Theorem 2.4]. For G-CW complexes, a weak equivalence X → Y induces a weak

equivalence between quotients of fixed points, XH′/XH → Y H′/Y H , for all subgroups H ′ < H of
G, and between orbit spaces, X/H → Y/H, for all subgroups H of G.

Now we recall the notion of a homotopy coherent diagram, which is the data from which a
homotopy colimit is constructed. Fix a finite group G (typically 0 or Z2 or Z2 × Z2). A homotopy
coherent diagram is intuitively a diagram F : C → G-Top∗ which is not commutative, but commu-
tative up to homotopy, and the homotopies themselves commute up to higher homotopy, and so
on, and for which all the homotopies and higher homotopies are viewed as part of the data of the
diagram. Precisely, we have the following.

Definition 4.7 ([Vog73, Definition 2.3]). A homotopy coherent diagram F : C → G-Top∗ assigns
to each x ∈ C a space F (x) ∈ G-Top∗, and for each n ≥ 1 and each sequence

x0
f1−→ x1

f2−→ · · · fn−→ xn

of composable morphisms in C a continuous G-map

F (fn, . . . , f1) : [0, 1]n−1 × F (x0)→ F (xn)
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with F (fn, . . . , f1)([0, 1]n−1 × {∗}) = ∗. These maps are required to satisfy the following compati-
bility conditions:

F (fn, . . . , f1)(t1, . . . , tn−1) =

F (fn, . . . , f2)(t2, . . . , tn−1), f1 = Id

F (fn, . . . , f̂i, . . . , f1)(t1, . . . , ti−1 · ti, . . . , tn−1), fi = Id, 1 < i < n

F (fn−1, . . . , f1)(t1, . . . , tn−2), fn = Id

F (fn, . . . , fi+1)(ti+1, . . . , tn−1) ◦ F (fi, . . . , f1)(t1, . . . , ti−1), ti = 0

F (fn, . . . , fi+1 ◦ fi, . . . , f1)(t1, . . . , t̂i, . . . , tn−1), ti = 1.

(4.8)

When C does not contain any non-identity isomorphisms, homotopy coherent diagrams may be
defined only in terms of non-identity morphisms and the last two compatibility conditions.

Given a homotopy coherent diagram, we can define its homotopy colimit in G-Top∗, quite
concretely, as follows:

Definition 4.9 ([Vog73, §5.10]). Given a homotopy coherent diagram F : C → G-Top∗ the homo-
topy colimit of F is defined by

(4.10) hocolim F = {∗} q
∐
n≥0

∐
x0

f1−→··· fn−→xn

[0, 1]n × F (x0)/ ∼,

where the equivalence relation ∼ is given as follows:

(fn, . . . , f1; t1, . . . , tn; p) ∼



(fn, . . . , f2; t2, . . . , tn; p), f1 = Id

(fn, . . . , f̂i, . . . , f1; t1, . . . , ti−1 · ti, . . . , tn; p), fi = Id, i > 1

(fn, . . . , fi+1; ti+1, . . . , tn;F (fi, . . . , f1)(t1, . . . , ti−1, p)), ti = 0

(fn, . . . , fi+1 ◦ fi, . . . , f1; t1, . . . , t̂i, . . . , tn; p), ti = 1, i < n

(fn−1, . . . , f1; t1, . . . , tn−1; p), tn = 1

∗, p = ∗.

When C does not contain any non-identity isomorphisms, homotopy colimits may be defined only
in terms of non-identity morphisms and the last four equivalence relations.

We will need the following properties, most of which are immediate consequences of the above
formulas:

(ho-1) Suppose that F0, F1 : C → G-Top∗ are homotopy coherent diagrams and η : F1 → F0 is a
natural transformation, that is, a homotopy coherent diagram

η : 2× C → Top∗

with η|{i}×C = Fi, i = 0, 1. Then η induces a map hocolim η : hocolimF1 → hocolimF0.
If η(x) is a weak equivalence for each x ∈ C —we will call such an η a weak equivalence
F1 → F0—then hocolim η is a weak equivalence as well.
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When the spaces involved are G-CW complexes (the case at hand), a weak equivalence
η : F1 → F0 is also a homotopy equivalence [Vog73, Proposition 4.6], that is, there exists
ζ, ζ ′ : F0 → F1 and

h, h′ : {2→ 1→ 0} × C → G-Top∗,

with h|{2→1}×C = η, h|{1→0}×C = ζ, h|{2→0}×C = IdF0 , and h′|{2→1}×C = ζ ′, h′|{1→0}×C = η,
h′|{2→0}×C = IdF1 .

(ho-2) Suppose that F0, F1 : C → G-Top∗ are diagrams and that F0 ∨ F1 : C → G-Top∗ is the
diagram obtained by wedge sum: (F0 ∨ F1)(x) = F0(x) ∨ F1(x) for all x ∈ C , and

(F0 ∨ F1)(fn, . . . , f1)(t1, . . . , tn−1, p) = Fi(fn, . . . , f1)(t1, . . . , tn−1, p)

for all i = 0, 1, x0
f1−→ x1

f2−→ · · · fn−→ xn, and p ∈ Fi(x0). Then hocolim(F0 ∨ F1) and
(hocolimF0) ∨ (hocolimF1) are naturally homeomorphic.

(ho-3) For any normal subgroup H of G, define the fixed point diagram FH : C → G/H-Top∗ by

setting FH(x) to be the fixed points F (x)H . Define the quotient diagram F/FH : C →
G-Top∗ by setting (F/FH)(x) to be the quotient F (x)/{p ∼ ∗ for all p ∈ FH(x)}. Then
there are natural homeomorphisms

hocolim(FH) hocolimF hocolim(F/FH)

hocolim(F )H hocolimF hocolim(F )/hocolim(F )H

∼= ∼==

with the arrows on the bottom row being induced from the natural transformations FH →
F → F/FH .

For diagrams of G-CW complexes, the arrows on the top row form a cofibration sequence
since (hocolimF,hocolim(F )H) form a CW-pair; moreover, a weak equivalence F1 → F0

induces weak equivalences FH1 → FH0 and F1/F
H
1 → F0/F

H
0 by the G-Whitehead theorem.

(ho-4) For any normal subgroup H of G, let F/H : C → G/H-Top∗ be the orbit diagram, obtained
by setting (F/H)(x) to be the orbit F (x)/{p ∼ h(p) for all p ∈ F (x), h ∈ H}. Then
hocolim(F )/H and hocolim(F/H) are naturally homeomorphic, and the map hocolimF →
hocolim(F/H) induced from the natural transformation F → F/H is identified with the
quotient map hocolimF → hocolim(F )/H.

For diagrams ofG-CW complexes, a weak equivalence F1 → F0 induces a weak equivalence
F1/H → F0/H by the G-Whitehead theorem.

4.3. Little boxes refinement. With this background, we are ready to review the little box real-
ization construction of [LLS, §5] and generalize for the other kinds of Burnside functors introduced
here, i.e., functors to B• for • ∈ {∅, σ, ξ}.

Definition 4.11. Fix a small category C and a strictly unitary 2-functor F : C → B•. A k-

dimensional spatial refinement of F is a homotopy coherent diagram F̃k : C → Top∗ such that

(1) For any u ∈ C , F̃k(u) = ∨x∈F (u)S
k, where Sk = [0, 1]k/∂. When • = ξ, this space has an

additional Z2-action—denoted ξ—induced from the Z2-action on the set F (u).
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(2) For any sequence of morphisms u0
f1−→ · · · fn−→ un in C and any (t1, . . . , tn−1) ∈ [0, 1]n−1 the

map

F̃k(fn, . . . , f1)(t1, . . . , tn−1) :
∨

x∈F (u0)

Sk →
∨

x∈F (un)

Sk

is a box map refining the (possibly signed) correspondence F (fn ◦ · · · ◦ f1), which is natu-

rally isomorphic to F (fn) ×F (un−1) · · · ×F (u1) F (f1); when • = ξ, we require each F̃k to be
ξ-equivariant.

Note that for • = ξ, the ξ-action is a CW action, with the CW complex structure given by the
boxes.

This definition reduces to [LLS, Definition 5.1] when • = ∅. The additions here are the signed
box map refinements introduced in §4.1, which are needed for functors to Bσ with non-trivial signs
in the correspondences, and the equivariant conditions.

The following is the main technical result in this section. As usual, • ∈ {∅, σ, ξ} in the statement.
For • = ∅, the ordinary Burnside category, this reduces to [LLS, Proposition 5.2].

Proposition 4.12. Let C be a small category in which every sequence of composable non-identity
morphisms has length at most n, and let F : C → B• be a strictly unitary 2-functor.

(1) If k ≥ n, there is a k-dimensional spatial refinement of F (which is ξ-equivariant if • = ξ).
(2) If k ≥ n + 1, then any two k-dimensional spatial refinements of F are weakly equivalent (ξ-

equivariantly if • = ξ).

(3) If F̃k is a k-dimensional spatial refinement of F , then the result of suspending each F̃k(u) and

F̃k(fn, . . . , f1) gives a (k + 1)-dimensional spatial refinement of F .

Proof. The proof is parallel to that of [LLS, Proposition 5.2]. For all values of •, the third point is
clear.

The case • = σ is an immediate generalization of the case • = ∅ as worked out in [LLS].

We sketch the main details. For point (1), given u ∈ C , set F̃k(u) = ∨x∈F (u)S
k, where the x-

summand is Bx/∂. We choose for each f : u → v in C a signed box map F̃k(f) refining the

signed correspondence F (f); for the identity morphism Idu, choose F̃k(Idu) to be the identity map
Id
F̃k(u)

, which indeed is a box map refining the identity correspondence IdF (u) = F (Idu). Let

ef ∈ E({Bx | x ∈ F (u)}, sF (f)) be the collection of little boxes corresponding to F (f).

This gives a definition of F̃k on vertices and arrows. We now need to define the appropriate

coherences among these maps, which will be done inductively. Assume for all sequences v0
f1−→

· · · fm−−→ vm with m ≤ `, we have defined continuous maps

efm,...,f1 : [0, 1]m−1 → E({Bx | x ∈ F (v0)), sF (fm◦···◦f1)),

and that these maps satisfy Equation (4.8) (with the composition map from Lemma 4.6 playing

the role ◦). Then for the induction step, given v0
f1−→ · · · f`+1−−−→ v`+1, we have a continuous map

S`−1 = ∂([0, 1]`)→ E({Bx | x ∈ F (v0)}, sF (f`+1◦···◦f1))
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defined by

(t1, . . . , ti−1, 0, ti+1, . . . , t`) 7→ ef`+1,...,fi+1
(ti+1, . . . , t`) ◦ efi,...,f1(t1, . . . , ti−1)

(t1, . . . , ti−1, 1, ti+1, . . . , t`) 7→ ef`+1,...,fi+1◦fi,...,f1(t1, . . . , ti−1, ti+1, . . . , t`).
(4.13)

By Lemma 4.5, this map extends to a map, call it ef`+1,...,f1 , from [0, 1]`. By definition, the maps

Φ(efm,...,f1) : [0, 1]m−1 ×
∨

x∈F (v0)

Sk →
∨

x∈F (vm)

Sk

assemble to form a homotopy coherent diagram.

Next, we address point (2). Say that we have spatial refinements F̃ 0
k and F̃ 1

k of F . Consider

the functor G : 2× C → B• defined as the composition 2× C
π2−→ C

F−→ B•. We need only define

a spatial refinement G̃k of G that restricts to F̃ ik at {i} × C for i = 0, 1. The construction of

G̃k proceeds uneventfully by induction as before. Then for each u ∈ C , G(φ1,0 × Idu) refines the
identity correspondence IdF (u) (and indeed, may be chosen to be the identity map), and hence is a

weak equivalence; therefore, by (ho-1), G̃k : F̃ 1
k → F̃ 0

k is a weak equivalence as well.

Next, we consider the case • = ξ. Construct a functor G : C → Bσ so that D ◦ G is naturally
isomorphic to F by choosing a section of the Z/2-quotient map qu∈CF (u) → qu∈CF (u)/Z2; we
leave the details to the reader. Then construct a box map refinement ofG; letBx be the box assigned
to x, for x ∈ qu∈CG(u), and let efm,...,f1 : [0, 1]m−1 → E({Bx | x ∈ G(v0), sG(fm◦···◦f1)) denote the

[0, 1]m−1-parameter family chosen for the sequence v0
f1−→ · · · fm−−→ vm during the construction.

We may then define B{1}×x = {1} × Bx and B{ξ}×x = {ξ} × Bx, for x ∈ qu∈CG(u). For

any v0
f1−→ · · · fm−−→ vm in C , and any (t1, . . . , tm−1) ∈ [0, 1]m−1, the configuration of disjoint

boxes efm,...,f1(t1, . . . , tm−1) ∈ E({Bx | x ∈ G(v0), sG(fm◦···◦f1)) refining the signed correspondence
G(fm ◦ · · · ◦ f1) can be doubled to get a configuration of disjoint boxes

dfm,...,f1(t1, . . . , tm−1) ∈ E({By | y ∈ F (v0) = {1, ξ} ×G(v0), sF (fm◦···◦f1) = Id{1,ξ} × sG(fm,◦···◦f1))

refining the unsigned correspondence F (fm ◦· · ·◦f1) = {1, ξ}×G(fm ◦· · ·◦f1). Use these dfm,...,f1 ’s
to construct the refinement, which is automatically ξ-equivariant. �

4.4. Realization of cube-shaped diagrams. Finally in this section we will discuss how to con-
struct a CW complex ‖F‖k, and then a CW spectrum |F |, from a given diagram F : 2n → B•. Let
2+ be the category with objects {0, 1, ∗} and unique non-identity morphisms 1 → 0 and 1 → ∗,
and let 2n+ = (2+)n.

Let F̃k : 2n → Top∗ be a spatial refinement of F using k-dimensional boxes, and let F̃+
k : 2n+ →

Top∗ be the diagram obtained from F̃k by setting F̃+
k (x) to be a point for all x ∈ 2n+ \2n. Let ‖F‖k

be the homotopy colimit of F̃+
k . We call ‖F‖k a realization of F : 2n → B• for • = {∅, σ, ξ}.

Corollary 4.14. If k ≥ n+1, then ‖F‖k is well-defined up to weak equivalence in Top∗ (or Z2-Top∗
if • = ξ). In each case, ‖F‖k+1 = Σ‖F‖k.
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Proof. As in [LLS, Corollary 5.6], this follows from Proposition 4.12 and properties of homotopy
colimits (ho-1). �

The homotopy colimit ‖F‖k may be given several CW structures. First, from Definition 4.9,
there is the standard CW structure, with cells [0, 1]m × Bx, parameterized by tuples (fm, . . . , f1)
subject to some relations.

We have a second CW structure on ‖F‖k, the fine structure, which is obtained from the standard
structure by subdividing each cell [0, 1]m × Bx along the central (m + k − 1)-dimensional box
[0, 1]m × Br

x, where Br
x ⊂ Bx is the fixed-point set of the reflection r : Bx → Bx along the first

coordinate. The fine CW complex structure will be of relevance in §4.5.

There is also the coarse cell structure of [LLS, Section 6]. There they construct a CW structure
on ‖F‖k for F an unsigned Burnside functor, with cells formed from unions of standard cells, so
that there is exactly one (non-basepoint) cell C(x) for each x ∈ quF (u). In more detail, if Fx
denotes the Burnside sub-functor of F generated by x, then the subcomplex ‖Fx‖k of ‖F‖k is the
image of the cell C(x). The construction generalizes without changes to give a CW structure on
‖F‖k for F : 2n → B•, with the same set of cells; when • = ξ, this produces a Z2-CW complex.
Unless otherwise specified, this is the default CW complex structure that we consider on ‖F‖k.

Lemma 4.15. A cofibration sequence G → F → H of functors 2n → B• (cf. Definition 3.4),
upon realization, induces a cofibration sequence of spaces. In general, any natural transformation
η : F1 → F0 of Burnside functors 2n → B• induces a map on the realizations.

Proof. Consider the standard CW complex structures. For the first statement, a spatial refinement

F̃k of F produces spatial refinements G̃k of G and H̃k of H; working with those refinements, it is
an immediate consequence of the definitions that ‖G‖k is a CW subcomplex of ‖F‖k with quotient
complex ‖H‖k.

For the second part, if η : 2n+1 → B• is the natural transformation, then (F0)ι0 is a subfunctor
and (F1)ι1 is the corresponding quotient functor, where ιi : 2n → 2n+1 is the face inclusion to
{i} × 2n. Therefore, we get a cofibration sequence

‖(F0)ι0‖k → ‖η‖k → ‖(F1)ι1‖k.
However, ‖(F0)ι0‖k = ‖F0‖k, while ‖(F1)ι1‖k = Σ‖F1‖k since ‖F1‖ is constructed as a hocolim over
2n+, while ‖(F1)ι1‖ is constructed as a hocolim over 2n+1

+ . Therefore, the Puppe map

‖(F1)ι1‖k = Σ‖F1‖k = ‖F1‖k+1 → ‖(F0)ι0‖k = Σ‖F0‖k = ‖F0‖k+1

is the required map. �

Proposition 4.16. If F : 2n → B•, then its shifted reduced cellular complex C̃cell(‖F‖k)[−k] is
isomorphic to the totalization Tot(F ) with the cells mapping to the corresponding generators. If
η : F1 → F0 is a natural transformation of Burnside functors, then the map ‖F1‖k → ‖F0‖k is
cellular, and the induced cellular chain map agrees with Tot(η).

Proof. The first statement is an immediate generalization of the corresponding statement for un-
signed Burnside functors from [LLS, Theorem 6]. The second statement is also clear from the form
of the map constructed in Lemma 4.15, using similar arguments. �
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We can then package all these spaces together to construct a finite CW spectrum, by which we
mean a pair (X, r) (sometimes written ΣrX), where X is a finite CW complex and r ∈ Z; one may
view it as an object in the Spanier-Whitehead category, or as Σr(Σ∞X), the rth suspension of the
suspension spectrum of the finite CW complex X. One can take the reduced cellular chain complex
of a finite CW spectrum, whose chain homotopy type is an invariant of the (stable) homotopy
type of the CW spectrum. Then, for a stable Burnside functor (F : 2n → B•, r), after fixing

a k-dimensional spatial refinement F̃k, we may define its realization as the finite CW spectrum
|ΣrF | = (‖F‖k, r − k).

Lemma 4.17. Let Σr1F1 → Σr2F2 be a map of Burnside functors F1, F2. Then there is an induced
map of realizations

|Σr1F1| → |Σr2F2|
well-defined up to homotopy equivalence. If the map of Burnside functors is a stable equivalence,
then the induced map is a homotopy equivalence. If • = ξ, the induced map and the homotopy
equivalence may be taken Z2-equivariant.

Proof. First, associated to a natural transformation of Burnside functors, there is a well-defined
space map by Lemma 4.15. Since all maps of Burnside functors are obtained as compositions of
natural transformations and stable equivalences, we need only show that there is a well-defined (up
to homotopy) homotopy equivalence of the realizations associated to a stable equivalence.

For this, we must check that maps as in the items of Definition 3.6 preserve the stable homotopy
type of ‖F‖k. For a natural transformation η : Fi → Fi+1, Proposition 4.16 produces a cellular map
‖Fi‖k → ‖Fi+1‖k, which induces the map Tot(η) on the cellular chain complex. The condition that
Tot(η) is a chain homotopy equivalence implies that the map of spaces is a homotopy equivalence
by Whitehead’s theorem (we assume k is sufficiently large so that all relevant spaces are simply
connected), so has a homotopy inverse well-defined up to homotopy. When • = ξ, the Z2-action is
free (away from the basepoint), so by the G-Whitehead theorem, the homotopy equivalences may
be taken equivariant. �

4.5. Equivariant constructions. We now explain how to make the constructions of the previous
sections equivariant. Recall that each Sk = [0, 1]k/∂ carries a natural Z2-action by r—reflection
in the first coordinate, as well as a Z2-action by d—composition of the reflections in the first two
coordinates (that is, a 180◦ rotation in the first coordinate plane).

Definition 4.18. Fix a small category C and a strictly unitary 2-functor F : C → B•. A reflection-
equivariant or r-equivariant k-dimensional spatial refinement of F is a Z2-equivariant k-dimensional

spatial refinement F̃k : C → Top∗ such that for any sequence of morphisms u0
f1−→ · · · fn−→ un in C

and any (t1, . . . , tn−1) ∈ [0, 1]n−1 the map

F̃k(fn, . . . , f1)(t1, . . . , tn−1) :
∨

x∈F (u0)

Sk →
∨

x∈F (un)

Sk

is r-equivariant. When • = ξ, we require each F̃k to be ξ-equivariant as well; in this case, F̃k is a
Z2 × Z2-equivariant diagram, with the first factor (denoted Z+

2 ) acting by ξ and the second factor
(denoted Z−2 ) acting by r ◦ ξ.
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Definition 4.19. Fix a small category C and a strictly unitary 2-functor F : C → Bσ. A doubly-
equivariant k-dimensional spatial refinement of F is a Z2-equivariant k-dimensional doubly signed

spatial refinement F̂k : C → Top∗ such that for any sequence of morphisms u0
f1−→ · · · fn−→ un in C

and any (t1, . . . , tn−1) ∈ [0, 1]n−1 the map

F̂k(fn, . . . , f1)(t1, . . . , tn−1) :
∨

x∈F (u0)

Sk →
∨

x∈F (un)

Sk

is equivariant with respect to reflections in the first two coordinates; the Z2-action is given by r
(there is also a second Z2-action by reflection in the second coordinate, which we will ignore). Note
that since we require the box map to be a doubly signed refinement of F (fn◦· · ·◦f1)—defined using

Φ̂ instead of Φ from §4.1—a doubly-equivariant spatial refinement is not a spatial refinement of F in

the usual sense. We will always denote doubly equivariant spatial refinements by F̂k to distinguish

them from r-equivariant spatial refinements F̃k, to which they are not homotopy equivalent (even
nonequivariantly).

We next record the equivariant version of Proposition 4.12:

Proposition 4.20. Let C be a small category in which every sequence of composable non-identity
morphisms has length at most n, and let F : C → B• be a strictly unitary 2-functor.

(1) If k ≥ n+ 1, the refinement of Proposition 4.12 may also be constructed r-equivariantly, while
if k ≥ n+ 2, it may be constructed doubly equivariantly.

(2) If k ≥ n+ 2, the weak equivalence from Proposition 4.12(2) may be constructed r-equivariantly,
while if k ≥ n+ 3, it may be constructed doubly equivariantly.

Moreover, if • = ξ, there is a ξ- and r-equivariant refinement of F for k ≥ n + 1, and the weak
equivalence from Proposition 4.12(2) may be constructed ξ- and r-equivariantly for k ≥ n+ 2.

Proof. The proof is essentially identical to the proof of Proposition 4.12. To make each F̃k(fn, . . . , f1)
r- or doubly-equivariant, simply stipulate that each map efm,...,f1 has image contained in Esym({Bx |
x ∈ F (v0)}, sF (fm◦···◦f1)) or E2sym({Bx | x ∈ F (v0)}, sF (fm◦···◦f1)). �

Proposition 4.21. If F̃ is an r-equivariant k-dimensional spatial refinement of F : C → Bσ, then
the following hold:

(1) The fixed point diagram F̃Z2 is a (k − 1)-dimensional refinement of F ◦ F : C → B.

(2) The orbit diagram (F̃ /F̃Z2)/Z2 is a k-dimensional refinement of F ◦ F : C → B.

(3) The quotient diagram F̃ /F̃Z2 is a k-dimensional refinement of D◦F : C → Bξ, with the r-action

on F̃ inducing the Z+
2 -action on F̃ /F̃Z2.

If F̂ is a doubly-equivariant k-dimensional spatial refinement of F : C → Bσ, then the following
hold:

(1) The fixed point diagram F̂Z2 is a (k − 1)-dimensional refinement of F : C → Bσ.

(2) The orbit diagram (F̂ /F̂Z2)/Z2 is a k-dimensional refinement of F : C → Bσ.
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(3) The quotient diagram F̂ /F̂Z2 is a k-dimensional refinement of D◦F : C → Bξ, with the r-action

on F̃ inducing the Z−2 -action on F̃ /F̃Z2.

If F̃ is a k-dimensional r-equivariant spatial refinement of F : C → Bξ, the following hold:

(4) The orbit diagram F̃ /Z+
2 is a k-dimensional spatial refinement of Q ◦ F : C → B.

(5) Say F = D ◦ G, and F̃ is ξ-invariant. Then the orbit diagram F̃ /Z−2 is a r-equivariant k-

dimensional spatial refinement of G : C → Bσ with the Z+
2 -action on F̃ inducing the r-action

on F̃ /Z−2 .

Proof. This is an immediate consequence of the definitions. �

As in §4.4, given any such equivariant spatial refinement F̃k for F : 2n → B•, we construct a

G-equivariant CW complex ‖F‖k as hocolim(F̃+
k ), where G = Z2 if • = σ and G = Z+

2 ×Z
−
2 if • = ξ.

By a G-equivariant CW complex, we mean a G-space carrying two different CW structures, so that
it is a G-CW complex with respect to the first structure, and we use the second structure to define
its cellular chain complex; equivalently, it is a pair of a G-CW complex and a CW complex, along
with a homeomorphism connecting the two, and its cellular chain complex is defined to be cellular
chain complex of the second CW complex (and so, does not automatically carry a G-action). In our
construction, the fine structure from §4.4 is the first CW structure, while the standard structure is
the second one. A caveat: our definition of G-equivariant CW complex is quite non-standard.

As before, for any stable functor (F, r), after fixing an equivariant spatial refinement F̃k, we let
|ΣrF | = (‖F‖k, r − k) denote the corresponding G-equivariant finite CW spectrum.

Similarly, if F̂k is a k-dimensional doubly-equivariant spatial refinement of F : 2n → Bσ, we

let ‖̂F‖k denote the Z2-equivariant CW complex hocolim(F̂+
k ). For any stable functor (F, r), we

let |̂ΣrF | denote the corresponding finite Z2-equivariant CW spectrum. We call |̂ΣrF | the doubly-
equivariant realization of (F, r), to avoid confusion with the ordinary realization of (F, r).

Corollary 4.22. Let F : 2n → B•.

(1) If • = σ, then |F |Z2 = Σ−1|F ◦F |, |F |/|F |Z2 = |D ◦F | (with the Z2-action on the left equaling
the Z+

2 -action on the right), and (|F |/|F |Z2)/Z2 = |F ◦ F |.
(2) If • = ξ, then |F |/Z+

2 = |Q ◦ F |; if F = D ◦G, then |F |/Z−2 = |G| (with the Z+
2 -action on the

left equaling the Z2-action on the right).

(3) If • = σ, then |̂F |
Z2

= Σ−1|F |, |̂F |/|̂F |
Z2

= |D ◦ F | (with the Z2-action on the left equaling the

Z−2 -action on the right), and (|̂F |/|̂F |
Z2

)/Z2 = |F |.

Proof. This follows from Proposition 4.20 and the properties of homotopy colimits (ho-3)—(ho-
4). �

Proposition 4.23. If F : 2n → Bξ, then the reduced cellular complex of its realization, C̃cell(|F |), is
isomorphic, as a Zu-module, to the totalization Tot(F ) with the cells mapping to the corresponding
generators. If F : 2n → Bσ, then the reduced cellular complex of its doubly-equivariant realization,
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C̃cell(|̂F |) is isomorphic to the totalization Tot(F ◦ F ) with the cells mapping to the corresponding
generators.

Proof. The statement is, nonequivariantly, just Proposition 4.16. The isomorphism as Zu-modules
follows from inspection of the proof of [LLS, Theorem 6]. The second statement is proved as in
Proposition 4.16. �

Lemma 4.24. Let Σr1F1 → Σr2F2 be an equivariant map between stable odd Burnside functors
(F1 : 2n1 → Bσ, r1) and (F2 : 2n2 → Bσ, r2). Then there is an induced Z2-equivariant map of
equivariant realizations

|Σr1F1| → |Σr2F2|,
an induced Z2-equivariant map of doubly-equivariant realizations

̂|Σr1F1| → ̂|Σr2F2|,
and an induced Z+

2 × Z−2 -equivariant map of equivariant realizations

|Σr1DF1| → |Σr2DF2|,
all well-defined up to homotopy equivalence. If the map of Burnside functors is an equivariant
equivalence, then these induced maps are equivariant homotopy equivalences.

Proof. Let us sketch the arguments in the first case. The other two cases are similar.

First, note that Lemma 4.15 can be made to hold equivariantly, so that associated to a natural
transformation of signed Burnside functors there is an equivariant map. So we only need to show
that associated to an equivariant equivalence of Burnside functors, there is a well-defined equivariant
stable homotopy equivalence of their realizations.

It will suffice to show that each of the moves in Definition 3.6 induces an equivariant stable homo-
topy equivalence. For the stabilization move this is clear. For the first move, assume that we have
a natural transformation η, with Tot(Dη) a homotopy equivalence over Zu. By Proposition 4.16
and Lemma 4.17, the induced map between realizations is cellular and induces a non-equivariant
homotopy equivalence. The induced map on fixed-point sets is induced by the underlying natural
transformation Fη using the identification of Corollary 4.22, which is a homotopy equivalence of
chain complexes since Tot(Dη) is. By the proof of Lemma 4.17, and using Corollary 4.22 again,
this induced map on fixed-point sets is a homotopy equivalence. By the G-Whitehead theorem, the
induced map is a Z2-homotopy equivalence. �

We record the behavior under coproducts.

Lemma 4.25. Let F1, F2 : 2n → B•. Then |F1 q F2| is equivariantly homeomorphic to |F1| ∨ |F2|.
If • = σ, then ̂|F1 q F2| is equivariantly homeomorphic to |̂F1| ∨ |̂F2|

Proof. The statement is an immediate consequence of (ho-2) and §3.9. �

Remark 4.26. In fact, for F : 2n → Bσ and any ` ≥ 0, the constructions of the present section may
be carried out using reflection in the first ` coordinates to produce a Z`2-equivariant CW-spectrum

|F |`; we have encountered the first few cases: |FF | = |F |0, |F | = |F |1, |̂F | = |F |2. Its cellular
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complex equals the totalization Tot(FF ) if ` is even and Tot(F ) if ` is odd. Proposition 4.21, as
well as its corollaries above, readily generalizes to these realizations, and the entire family is related
by iterated quotients (or fixed point sets) under the various actions.

5. Khovanov homotopy types

In this section, we construct the odd Khovanov Burnside functor, and the odd Khovanov ho-
motopy type as its realization. We also construct a reduced odd Khovanov homotopy type and the
unified Khovanov homotopy type. We establish various properties such as fixed point constructions
and cofibration sequences. We also construct several concordance invariants following standard
procedure.

5.1. The odd Khovanov Burnside functor. In this section, we define a functor to the signed
Burnside category associated to an oriented link diagram L with oriented crossings. After ordering
the n crossings of L, we will identify the vertices of the hypercube of resolutions of L with the
objects of 2n, and the edges with the length one arrows of 2n.

To define the odd Khovanov Burnside functor Fo : 2n → Bσ, following Lemma 3.2, we need only
define it on objects, length one morphisms, and across two-dimensional faces of the cube 2n. On
objects we set

Fo(u) = Kg(u).

For each edge u >1 v in 2n, and each element y ∈ Fo(v), write

Fo(φ
op
v,u)(y) =

∑
x∈Fo(u)

εx,yx,

where Fo is the odd Khovanov functor from §2.3. Note each εx,y ∈ {−1, 0, 1}. Define

Fo(φu,v) = {(y, x) ∈ Fo(v)× Fo(u) | εx,y = ±1},
where the sign on elements of FKh′(φu,v) is given by εx,y of the pair, and the source and target
maps are the natural ones.

We need only define the 2-morphisms across 2-dimensional faces. In fact, in contrast to the case
of even Khovanov homology, where a global choice is necessary in order to define the 2-morphisms
[LS14a], in odd Khovanov homology there is a unique choice of 2-morphisms compatible with the
preceding data. To be more specific, for any 2-dimensional face u >1 v, v

′ >1 w, and any pair
(x, y) ∈ Fo(u)× Fo(w), there is a unique bijection between

Ax,y := s−1(x) ∩ t−1(y) ⊂ Fo(φv,w)×Fo(v) Fo(φu,v)
and

A′x,y := s−1(x) ∩ t−1(y) ⊂ Fo(φv′,w)×Fo(v′) Fo(φu,v′)
that preserves the signs. (That is, the signed sets Ax,y, A

′
x,y both have at most one element of any

given sign).

The last assertion may be checked on a case-by-case basis, using [ORSz13, Figure 2]. Away
from ladybug configurations (i.e., configurations of type X and Y) the involved sets both have at
most one element (and Fo commutes across 2d faces), so the result is automatic. For ladybug
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configurations, there are sets Ax,y, A
′
x,y with two elements, but the elements have opposite sign,

and so there is still a unique matching.

Next, we observe that the compatibility relation demanded by Lemma 3.2 is satisfied by Fo (using
the unique bijections across 2-faces). For this, we must consider 3-dimensional faces ι : 23 → 2n,
and a choice of elements x ∈ Fo(ι(1, 1, 1)), y ∈ Fo(ι(0, 0, 0)) and the correspondence Ax,y. There are
six distinct decompositions of the arrow (1, 1, 1)→ (0, 0, 0) in 23 into a composition of nonidentity
arrows, corresponding to permutations of {1, 2, 3}. Specifically, if ei denotes the arrow 1 → 0 in
the ith-factor of 23, the permutation σ corresponds to the composition eσ(3) ◦ eσ(2) ◦ eσ(1). These
compositions are in turn related by 2-morphisms

Fi,j : F (ei) ◦ F (ej)→ F (ej) ◦ F (ei).

The compatibility relation of Lemma 3.2 boils down to the condition that the following diagram
commutes:

Fe3◦Fe2◦Fe1

Fe2◦Fe3◦Fe1

Fe2◦Fe1◦Fe3Fe1◦Fe2◦Fe3

Fe1◦Fe3◦Fe2

Fe3◦Fe1◦Fe2

F32 × Id

Id × F31

F21 × Id

Id × F23

F13 × Id

Id × F12

However, it turns out that for any choice of x, y as above, there is at most one element of a
given sign in Aσx,y := s−1(x) ∩ t−1(y) ⊂ F (eσ(3)) ◦ F (eσ(2)) ◦ F (eσ(1)), and therefore, the coherence
check is automatic. To see this is a simple enumeration of all possible options. In more detail,
following [LS14a], for 3d configurations that do not contain ladybug configurations on any of their
2d faces, each of the six sets Aσx,y contain at most one element. For the remaining configurations, it
is shown in [LS14a] that each of the six sets Aσx,y contain at most two elements. However, since these
remaining configurations contain ladybugs, these two elements must have opposite signs. (Recall
that if u >1 v, v

′ >1 w is a ladybug configuration and s−1(x) ∩ t−1(y) ⊂ Fo(φv,w) ◦ Fo(φu,v) is
non-empty, then it consists of two oppositely signed points.) Therefore, each of the six sets Aσx,y
contains at most one element of each sign for the remaining configurations as well.

Definition 5.1. Define the stable signed Burnside functor associated to an oriented link diagram
L with n oriented crossings and a choice of edge assignment to be (Fo,−n−), where Fo : 2n → Bσ

is the functor defined above, and n− is the number of negative crossings in L. Since the differential
on the Khovanov chain complex respects the quantum grading, cf. §2, the odd Khovanov Burnside
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functor splits as a coproduct of functors, one in each quantum grading:

Fo =
∐
j

F jo .

The total complex of the odd Khovanov Burnside functor Σ−n−F jo agrees with the dual of the odd
Khovanov chain complex:

(Tot(Σ−n−F jo ))∗ = Kc∗,jo (L).

Definition 5.2. We define the odd Khovanov spectrum Xo(L) =
∨
j X

j
o (L) as a Z2-equivariant

finite CW spectrum, where X jo (L) is a realization of the stable signed Burnside functor Σ−n−F jo

This odd functor recovers the even functor Fe : 2n → B from [LLS, LLS17] as follows.

Proposition 5.3. The functors Fo and Fe satisfy F ◦ Fo = Fe, where F : Bσ → B is the forgetful
functor from Figure 1.

Proof. The generators of even and odd Khovanov homology are canonically identified, cf. §2.6,
so on objects we have a canonical identification FFo(u) = Fe(u) = Kg(u). Similarly, since the
differentials agree up to sign (for this identification), we have that FFo(φu,v) is canonically identified
with Fe(φu,v) for u >1 v. So we just need to show that the 2-morphism FFo(φv,w) ◦ FFo(φu,v)→
FFo(φv′,w) ◦ FFo(φu,v′) agrees with the the 2-morphism Fe(φv,w) ◦Fe(φu,v)→ Fe(φv′,w) ◦Fe(φu,v′)
for all 2d faces u >1 v, v

′ >1 w.

For 2d configurations apart from ladybugs, for any x ∈ Kg(u), y ∈ Kg(w), the subset s−1(x) ∩
t−1(y) in each of the correspondences contain at most one element, and so the two 2-morphisms
agree. For ladybugs, one may check directly that the 2-morphism for FFo agrees with that for Fe.
To be more specific, the 2-morphism for FFo specified by a type-X sign assignment agrees (using
the above identifications of objects and 1-morphisms) with the right ladybug matching for Fe (a
type-Y assignment corresponds to left ladybug matching), see Figure 2 for details. By Lemma 3.2,
FFo is isomorphic to Fe. �

Therefore, the even Khovanov spectrum from [LS14a] is Xe(L) =
∨
j X

j
e (L) with X je (L) =

|Σ−n−FF jo |. Using the doubly-equivariant realizations, we have a related spectrum:

Definition 5.4. We define a second even Khovanov spectrum, denoted X ′e(L) =
∨
j X
′ j
e (L) as a

Z2-equivariant finite CW spectrum, where X ′ je (L) =
̂|Σ−n−F jo |, a doubly-equivariant realization of

the stable signed Burnside functor Σ−n−F jo .

Definition 5.5. We define the unified Khovanov spectrum Xu(L) =
∨
j X

j
u(L) as a Z+

2 × Z−2 -

equivariant finite CW spectrum, where X ju(L) is a realization of the stable Z2-equivariant Burnside

functor Σ−n−DF jo .

Remark 5.6. Following Remark 4.26, there is in fact a family of Khovanov spaces X`(L), for
` ≥ 0, whose cellular chain complexes agree with the even Khovanov chain complex Kce(L) if ` is
even and the odd Khovanov chain complex Kco(L) if ` even is odd. (We have already encountered
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X
a

b1

b2

c1

c2

d

a

b1
b2

c1
c2

d

-1(-1)

1(1)

-1(1)

1(-1)

1(1)

1(1)

1(1)

1(1)

Y
a

b1

b2

c1

c2

d

a

b1
b2

c1
c2

d

-1(-1)

1(1)

-1(-1)

1(1)

1(1)

1(1)

1(1)

1(1)

Figure 2. The odd functor for the type-X assignment recovers the even
functor for the right ladybug matching. Consider the two types of ladybugs,
X and Y, and name the circles appearing in the various resolutions a, b1, b2, c1, c2, d
as shown (their ordering does not matter). The coefficients of the relevant portion
of the functor Fo (as well as those of the assignment F′o in parentheses) are shown.
Since we are considering a type-X assignment, Fo is chosen to differ from F′o in
one edge for the X-ladybug, and is chosen to agree with F′o for the Y-ladybug. In
either case, the unique sign-respecting 2-isomorphism is the matching (a, b1, d) ↔
(a, c1, d), (a, b2, d)↔ (a, c2, d), which is the right ladybug matching from [LS14a].

X0(L) = Xe(L), X1(L) = Xo(L), and X2(L) = X ′e(L).) There is a natural generalization of Theorem
1.6 to this family of spaces. We conjecture that X`(L), up to homotopy equivalence, only depends
on the parity of `.

5.2. Relations among the three theories. In this section, we find relations among the three
Khovanov homotopy types, in terms of geometric fixed points, geometric quotients, and cofibration
sequences.

Proof of Theorem 1.6. The first statement and the first parts of statements (2) and (4) follow from
Corollary 4.22. The exact sequences are a consequence of the Z/2-actions on X ′e(L) and Xo(L), for
which Σ−1Xo(L) and Σ−1Xe(L) are respectively the fixed point sets, and Xu(L) the quotients. The
inclusion of the fixed-point sets are cofibrations in both cases, giving the desired exact sequences.
The agreement with the exact sequences of [PS16] at the level of cohomology is a consequence of
(3) and (5). So it remains to prove (3) and (5). The proofs are similar, so let us only consider (3).

Consider the Puppe sequence associated to the inclusion Σ−1Xe(L) ↪→ Xo(L). For concreteness,
assume Xo(L) has been constructed equivariantly using k-dimensional boxes, and all the sub-boxes
of [0, 1]k involved in the construction are of the form [0, 1]×B; that is, they extend the full length
in the first coordinate. Let X denote Xo(L), Y denote the fixed set Σ−1Xe(L), and Z denote the
quotient X/Y = Xu(L). The Puppe sequence takes the form

Y ↪→ X → X ∪ C(Y )
P−→ ΣY,
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with C denoting the cone, where the last map P is quotienting by X.

The term X ∪ C(Y ) is homotopy-equivalent to Z by quotienting by C(Y ):

Q : X ∪ C(Y )→ X/Y = Z.

So the Puppe map Z → ΣY is the homotopy inverse of Q, composed with P .

Meanwhile, we have the map R : Xu(L) = Z → Xe(L) = ΣY given by quotienting by Z+
2 . Recall

that the Z+
2 -action on Z = X/Y is induced from the Z2-action on X. We wish to show that these

two maps from Z to ΣY are homotopic. Since Q is a homotopy equivalence, it is enough to show
that the two maps P,R ◦Q : X ∪ C(Y )→ ΣY are homotopic.

Consider the quotient of X by the Z2-action. Since X has been constructed using boxes that
stretch the full length along the first coordinate, it is not hard to see that the quotient is C(Y ).
This produces a quotient map S : X ∪ C(Y )→ C(Y ) ∪ C(Y ) = ΣY .

Both the maps P and R ◦Q factor through the above map S. The first map quotients the first
C(Y ) factor, while the second map quotients the second factor. Either is homotopic to the identity
map C(Y ) ∪ C(Y )→ ΣY , and so the claim follows. �

5.3. Invariance. The main aim of this section is to prove that changes of the orientation of the
crossings, as well as Reidemeister moves, result in equivariantly equivalent signed Burnside functors.

Proof of Theorem 1.7. We will now prove that the equivariant equivalence class of the odd Kho-
vanov Burnside stable functor from Definition 5.1 is independent of the choices in its construction,
namely the choice of diagram L, the orientation of the crossings, the edge assignment, and the
ordering of the generators ai at each resolution.

We first see that for a fixed diagram L, changing the other auxiliary choices results in sign
reassignments (which are sometimes isomorphisms) of functors from 2n to Bσ.

• Edge assignment: Let ε, ε′ be two different edge assignments of the same type for the same
oriented knot diagram L. As noted in [ORSz13, Lemma 2.2], εε′ is a (multiplicative) cochain in
C1
cell([0, 1]n,Z2), and hence a coboundary of a 0-cochain α on the cube of resolutions. That is,

there is a map α : 2n → {±1}, so that for any v >1 w α(v)α(w) = ε(φopw,v)ε′(φ
op
w,v). If Fo and F ′o

are the corresponding functors 2n → Bσ, we get that F ′o is obtained from Fo by using the sign
reassignment associated to α.
• Orientations at crossings: Recall that [ORSz13, Lemma 2.3] asserts that for oriented diagrams

(L, o) and (L, o′) and an edge assignment ε for (L, o), there exists an edge assignment of the same
type ε′ for (L, o′) so that Kco(L, o, ε) ∼= Kco(L, o

′, ε′). The isomorphism constructed in the lemma
respects the Khovanov generators, and so induces an isomorphism of signed Burnside functors.
To be more specific, note that the Khovanov generators Kg(L) of Kco(L, o) are independent of
the orientation o (which only changes the differential). Then the choice of edge assignment ε′

is such that the identity morphism Kco(L, o, ε)→ Kco(L, o
′, ε′) commutes with the differentials.

Then the corresponding Burnside functors are also naturally isomorphic. (Independence of the
orientations of crossings can also be proved using Reidemeister II moves twice, as in [SSSz17,
Figure 4.5].)



36 SUCHARIT SARKAR, CHRISTOPHER SCADUTO, AND MATTHEW STOFFREGEN

• Type of edge assignment: [ORSz13, Lemma 2.4] proves that an edge assignment ε of a
decorated link diagram (L, o) of type X can also be viewed as a type Y edge assignment for some
orientation o′. That is, the type-X Burnside functor associated to (L, o, ε) is already the type-Y
Burnside functor associated to (L, o′, ε). (Independence of the type of edge assignment can also
be achieved by Viro’s trick of reflecting the knot diagram along the vertical line (which switches
the X and the Y ladybug), and then using a sequence of Reidemeister moves to come back to
the original diagram, cf. [LS14a, Proposition 6.5].)
• Ordering of circles at each resolution: Finally, we must check that reordering the circles of

a resolution results in an equivariantly-equivalent signed Burnside functor. For this, let Kg(u)
and Kg ′(u) denote the Khovanov generators for two differing orderings of the circles for a fixed
link diagram. These orderings are related by a bijection from Kg(u) to Kg ′(u). It is simple to
check that these bijections relate the two functors Fo, F

′
o : 2n → Bσ by a sign reassignment.

Next we move on to the main issue for proving well-definedness of the stable equivalence class of
the odd Khovanov Burnside functor: Reidemeister moves. For proving invariance under the Reide-
meister moves, the argument mostly follows the proof of [LLS17, Theorem 1], which lifts Khovanov’s
invariance proof [Kho00] to the level of Burnside functors. For two diagrams differing by a Reide-
meister move, Khovanov’s invariance proof—see also Bar-Natan [BN02]—is built using chain maps
between Khovanov complexes, which are either subcomplex inclusions or quotient complex projec-
tions that send Khovanov generators to Khovanov generators and are chain homotopy equivalences,
or their chain homotopy inverses. Since these maps send Khovanov generators to Khovanov gener-
ators, it is easy to see that the argument lifts to the Burnside category level [LLS17]; we similarly
sketch how in the odd case, the invariance proof from [ORSz13] lifts to the odd Burnside functor.
(The astute reader will observe that for the Reidemeister III proof by Khovanov, the chain maps
do not send Khovanov generators to Khovanov generators. This issue is faced in [LS14a] already.
It seems possible to carry through the approach of [Kho00, BN02, ORSz13], but at the expense of
considering functors from categories other than cube categories. However, we will instead follow
the proof of Reidemeister III invariance of [LS14a] by considering the braid-like Reidemeister III.)

The standard way to prove Reidemeister invariance—applicable in the even, odd, and unified
theory—is the following. Start with the Khovanov chain complex of one diagram, and perform a
sequence of replacements to arrive at the Khovanov chain complex of the other diagram, where
each replacement is either:

(c-1) Replacing the complex with a quotient complex associated to a merge. Namely, for a merge
taking circles a1, a2 in L0 to a in L1, there is an acyclic subcomplex spanned, at L0, by
generators that do not contain a1, and all generators at L1; replace by the quotient by this
subcomplex.

(c-2) Replacing the complex with the subcomplex associated to a split. Namely, for a split taking
one circle a in L0 to a1, a2 in L1, there is a subcomplex spanned by all generators from L1

which do not contain an a1 factor, and the corresponding quotient is acyclic; replace by this
subcomplex.

It is easy to check that the relevant maps—the quotient complex projection in the first case and the
subcomplex inclusion in the second case—are chain homotopy equivalences in the unified theory
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over Zu, and hence also in the odd and the even theory. (These cancellations are parametrized by
cancellation data from [SSSz17, Definition 4.4].)

To lift this argument to the Burnside functor level, in the first case, we will replace the functor
by a sub-functor, and in the second case, by a quotient functor from §3.7. (Recall, the Khovanov
complex is the dual of the totalization of the Burnside functor, hence sub-functors correspond to
quotient complexes and quotient functors correspond to subcomplexes.)

• RI: Consider the Reidemeister I move from a diagram L = to the diagram L′ = . We have

that Kg(L′) = Kg(L′0) q Kg(L′1) where L′0 = (respectively, L′1 = ) is obtained from L′

by resolving the new crossing by the 0-resolution (respectively, 1-resolution). Let a be the new
circle in L′0, as shown in the picture.

We may perform a replacement of Type (c-1) by cancelling the subcomplex of Kcu(L′) spanned
by all the generators in Kg(L′1) and only the generators in Kg(L′0) that do not contain a, and
after that we will be left with a quotient complex that is naturally isomorphic to Kcu(L). That is,
we have a quotient complex projection Kcu(L′)→ Kcu(L) that is a chain homotopy equivalence
over Zu. This is induced from a subfunctor inclusion Fo(L) → Fo(L

′), that is, the dual map on
the totalizations

(Tot(D ◦ Fo(L′)))∗ → (Tot(D ◦ Fo(L)))∗

agrees with the map on the unified Khovanov complex, where D : Bσ → Bξ is the doubling
functor from Figure 1. Therefore, the functors Fo(L) and Fo(L

′) are equivariantly equivalent.
• RII: The proof for Reidemeister II move is similar, except now we have to use both types of

cancellations. Say we are doing a Reidemeister II from L = to L′ = . Once again,

Kg(L′) decomposes as q(i,j)∈{0,1}2Kg(L′ij), where L′ij are the partial (i, j) resolutions of L′ at the

new crossings. Let a be the new circle in L′01 = .

For the merge L′01 → L′11, we may cancel the subcomplex spanned by Kg(L′11) and the gener-
ators in Kg(L′01) that do not contain a. The remaining quotient complex has an acyclic subcom-
plex corresponding to the split L′00 → L′01, spanned by Kg(L′00) and the remaining generators
in Kg(L′01). This produces a chain homotopy equivalence between Kcu(L′) and Kcu(L′10) (mod-
ulo shifting the homological grading by one), and the latter is naturally identified with Kcu(L).
Since these subquotient complexes come from Burnside sub-functors and Burnside quotient func-
tors, it is automatic that the two stable Burnside functors Fo(L) = Fo(L10) and Σ−1Fo(L

′) are
equivariantly equivalent.
• RIII: The proof of Reidemeister III invariance is exactly the same as the previous proof. As

discussed earlier, we deviate from the standard proofs from [Kho00, BN02, ORSz13], but instead
follow the proof from [LS14a, Proposition 6.4]. Let L′ be obtained from L by performing a
braid-like Reidemeister III move, as in [LS14a, Figure 6.1c]. Then in the six-dimensional partial
cube of resolutions of L′, one can perform as sequence of cancellations—see [LS14a, Figure 6.4]
and the subsequent table—of Types (c-1) and (c-2) to produce a chain homotopy equivalence
between Kcu(L′) and Kcu(L′000111) (modulo shifting gradings by three), and the latter is naturally
identified to Kcu(L). The subquotient complexes come from Burnside sub-functors and Burnside
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quotient functors, and once again it follows that the two stable Burnside functors Fo(L) =
Fo(L000111) and Σ−3Fo(L

′) are equivariantly equivalent.

We leave it to the reader to convince themselves that the above equivalences automatically respect
the decomposition of the Burnside functors according to quantum gradings. �

Proof of Theorem 1.1. Recall that Xo(L) = |Σ−n−Fo| = (‖Fo‖k,−n−−k). By Lemma 4.17, |Σn−Fo|
depends, up to (nonequivariant) stable homotopy equivalence, only on the stable equivalence class
of Σn−Fo. Then by Theorem 1.7, the stable homotopy class of |Σn−Fo| is an invariant of L.
Proposition 4.16 identifies the cellular chain complex of |Σn−Fo| as the totalization of Σ−n−Fo,
which is the dual of the Khovanov complex (see discussion after Definition 5.1), so Theorem 1.1
follows (nonequivariantly). To see that Xo(L) is well-defined up to equivariant stable homotopy
equivalence, we use Lemma 4.24 in place of Lemma 4.17. �

Proof of Theorem 1.4. As with the proof of Theorem 1.1, we see that X ′e(L), up to equivariant stable
homotopy equivalence, depends only on the equivariant equivalence class of Σn−Fo, by Lemma 4.24.
Theorem 1.7 establishes that the equivariant equivalence class of Σn−Fo is a link invariant, and the
theorem follows. �

Proof of Theorem 1.5. The well-definedness follows as in Theorems 1.1 and 1.4 from Lemma 4.24.
For the CW description, we use Proposition 4.23, which establishes that the equality in Theorem
1.5 is an isomorphism of Zu-modules. The statement about the Z2-actions on the reduced cellular
chain complex follows from the construction. �

5.4. Reduced odd Khovanov homotopy type. We briefly address the reduced theory.

Given a (generic) point p on a link diagram L, there is a natural sub-functor of F jo (L) generated

by only those Khovanov generators that do not contain the circle cp containing p. Let F̃ j−1o,+ (L, p)

denote this subfunctor and F̃ j+1
o,− (L, p) denote the corresponding quotient functor.

Next we show that the two reduced functors F̃ jo,+ and F̃ jo,− are canonically identified. Arranging
for convenience that the ordering of circles at each resolution has that cp—the circle containing

p—is always last, we have a canonical bijection between F̃o,− and F̃o,+. This bijection is compatible
with the 1-morphisms of the even Burnside functor; however, we must also check that these respect

the sign map. To be specific, for u >1 v, the bijection F̃o,−(φu,v) → F̃o,+(φu,v) preserves all signs

cf. §2.3, as the reader may check. We will refer to either functor as F̃o.

We would expect, based on what happens for odd Khovanov chain complex, that the unreduced

functor F jo should be stably equivalent to two copies of the reduced functor, F̃ j−1o q F̃ j+1
o . However,

the chain level splitting from [ORSz13] does not generalize. Indeed, any such stable equivalence
cannot be a equivariant equivalence, cf. Definition 3.6, since by Proposition 5.3, FFo = Fe (and

similarly, F F̃o = F̃e, where F̃e is the reduced even Burnside functor), and the even Burnside functor
(and indeed, the even Khovanov chain complex) does not split as two copies of its reduced version.
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Definition 5.7. We define the reduced odd Khovanov spectrum X̃o(L, p) =
∨
j X̃o

j
(L, p) as a Z2-

equivariant finite CW spectrum, where X̃o
j
(L, p) is a realization of the stable signed Burnside

functor Σ−n−F̃ jo .

Definition 5.8. We define the reduced unified Khovanov spectrum X̃u(L, p) =
∨
j X̃

j
u(L, p) as

a Z2 × Z2-equivariant finite CW spectrum, where X̃ ju(L, p) is a realization of the stable signed

Burnside functor Σ−n−DF̃ jo .

Proof of Theorem 1.2. Well-definedness of X̃o(L), up to equivariant stable homotopy equivalence,

will follow from showing that Σ−n−F̃o is well-defined up to equivariant equivalence, depending only
on the isotopy class of (L, p). Isotopy invariance is immediate for Reidemeister moves away from
the basepoint (using the maps induced by Reidemeister moves on Σ−n−Fo, and observing that

they preserve Σ−n−F̃o). As observed in [Kho03], any two diagrams for isotopic pointed links can
be related by Reidemeister moves not crossing the basepoint and isotopies in S2, from which well-
definedness follows. The cofibration sequence is a consequence of Lemma 4.15, using the cofibration
sequence of Burnside functors:

F̃ j−1o,+ (L, p)→ F jo (L)→ F̃ j+1
o,− (L, p).

Finally, the description of the reduced cellular cochain complex is a consequence of Proposition
4.16, as in the proof of Theorem 1.1. �

Proposition 5.9. The (stable) homotopy type of the reduced unified Khovanov spectrum X̃o(L, p) =∨
j X̃

j
o (L, p) from Definition 5.8 is independent of the choices in its construction and is an invariant

of the isotopy class of the pointed link corresponding to (L, p). Its reduced cellular cochain complex

agrees with the reduced unified Khovanov complex K̃cu(L),

C̃icell(X̃ ju(L, p)) = K̃c
i,j

u (L),

with the cells mapping to the distinguished generators of K̃cu(L). There is a cofibration sequence

X̃ j−1u (L, p)→ X ju(L)→ X̃ j+1
u (L, p).

Proof. The proof of Theorem 1.2 goes through mostly unchanged. The only new observation
necessary is that the double of a cofibration sequence of Burnside functors is again a cofibration
sequence. �

5.5. Cobordism maps. For every smooth link cobordism L→ L′ embedded in R3 × [0, 1], there
is an induced map on the even Khovanov complex Kc(L) → Kc(L′) [Jac04, BN05, Kho06], well-
defined up to chain homotopy and an overall sign. (The dependence on the overall sign can be
removed, see [CMW].)

[LS14b] lifted these maps to the even Khovanov homotopy types, Xe(L′) → Xe(L), so that
the induced map on the cellular cochain complex is the previous map, but did not check well-
definedness. It is fairly easy to check that the map Xe(L′) → Xe(L) defined in [LS14b] comes
from a map of the even Burnside functors Fe(L

′) → Fe(L), so that the dual of the map on their
totalizations is the map Kc(L)→ Kc(L′).
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In this section, we will further lift these to maps of the odd Burnside functor Fo(L
′) → Fo(L),

so that the even Burnside functor map is obtained by applying the forgetful functor F : Bσ → B.
In particular, we will get maps on the odd Khovanov homotopy type, Xo(L′) → Xo(L) and the
odd Khovanov complex, Kco(L)→ Kco(L

′). We will not check the well-definedness of any of these
maps.

The standard way to define these maps is by decomposing the cobordism as movie, which is a
sequence of knot diagrams so that each one is obtained from the previous one by a planar isotopy,
Reidemeister move, or a Morse critical point, which can be a birth, death, or a saddle. In §5.3, we
have already constructed maps of odd Burnside functors corresponding to the Reidemeister moves
(which were also equivariant equivalences). So we only need to construct maps associated to the
three Morse singularities.

First we consider the cup and cap cobordisms. Let L a link diagram, and L′ = L q U , the
disjoint union of L and an unknot, introducing no new crossings. The elementary cobordism from
L to L′ is called a cup or a birth, while that from L′ to L is a cap or a death. We construct natural
transformations

Φ∪o : Fo(L
′)→ Fo(L)

Φ∩o : Fo(L)→ Fo(L
′),

decreasing quantum grading by 1, lifting the natural transformations

Φ∪e : Fe(L
′)→ Fe(L)

Φ∩e : Fe(L)→ Fe(L
′)

for the even Burnside functors from [LS14b].

In each resolution of L′ there is a component corresponding to U . We can write Kg(L′) =
Kg(L)+ q Kg(L)− where Kg(L)− (respectively, Kg(L)+) is the subset of generators in Kg(L′)
which contain U (respectively, do not contain U); either is canonically identified with Kg(L) by
ordering the circles at each resolution so that U is last. Let Fo(L)− (respectively, Fo(L)+) be the
subfunctor of Fo(L

′) generated by Kg(L)− (respectively, Kg(L)+); either is isomorphic to Fo(L),
modulo a quantum grading shift of ±1. Then Fo(L

′) = Fo(L)− q Fo(L)+, and so there is a
subfunctor inclusion Fo(L)− → Fo(L

′) and quotient functor projection Fo(L
′)→ Fo(L)+.

We then set the cobordism maps according to:

Φ∪o : Fo(L
′)→ Fo(L)+ ∼= Fo(L)

Φ∩o : Fo(L) ∼= Fo(L)− → Fo(L
′).

Next, we handle the saddle case. Let L0, L1 be n-crossing link diagrams before and after the
saddle, as in [LS14b, Figure 3.2], and let Fe(L0), Fe(L1) : 2n → B be the two even Burnside functors
(we have implicitly identified the crossings in L0 with the crossings in L1). Associated to the saddle
cobordism, [LS14b] constructs a natural transformation Φs

e : Fe(L1)→ Fe(L0) as follows. There is a
(n+1)-crossing diagram L so that Li is the i-resolution of L at the new crossing, for i = 0, 1. Then
Φs
e : 2n+1 → B is simply defined to be Fe(L) : 2n+1 → B—the even Burnside functor associated to

L. One easily checks that the natural transformation increases the quantum grading by 1.
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The generalization to the signed Burnside functor version is immediate, and we obtain a natural
transformation Φs

o : F so (L1)→ F so (L0).

Lemma 5.10. Associated to a (movie presentation of a) link cobordism L → L′, the map on

the odd Burnside functors Φo : F
j+χ(S)
o (L′) → F jo (L) lifts the map on the even Burnside functors

Φe : F
j+χ(S)
e (L′)→ F je (L) that is (implicitly) constructed in [LS14b]:

FΦo = Φe.

In particular, the induced map on the Z2 chain complex, Kc∗,j(L;Z2)→ Kc∗,j+χ(S)(L′;Z2), agrees
with the Khovanov map (up to chain homotopy).

Proof. This is immediate from the definitions for each of the maps—the Reideister invariance maps,
as well as the cups, caps, and the saddles. �

Let A2 denote the mod-2 Steenrod algebra. Let Aσ denote the free product of two copies of A2.
It acts on Kh(L;Z2) as follows: the first (respectively, second) copy acts by viewing Kh(L;Z2) as
the mod-2 cohomology of Xe(L) (respectively, Xo(L)).

Proof of Theorem 1.3. We follow the proof of [LS14b, Corollary 5]. Let S : L → L′ be the link
cobordism and KhS : Kh(L;Z2)→ Kh(L′;Z2) the induced map. By Lemma 5.10, KhS comes from
a map of Burnside functors ΦS

o : Fo(L
′)→ Fo(L).

The even and odd realizations give two actions of A2 on the mod-2 Khovanov homology, and,
in particular, by naturality of Steenrod operations on either the odd or even spatial realization, we
have a commutative diagram

Khi,j(L;F) Khi+n,j(L;F)

Khi,j+χ(S)(L′;F) Khi+n,j+χ(S)(L′;F)

α

KhS

α

KhS

for α a stable cohomology operation of degree n coming from either copy of A2. It is then clear
that the diagram then also commutes for α a linear combination or composition of elements of the
two copies of A2. The theorem follows directly from these diagrams. �

5.6. Concordance invariants. Theorem 1.3 allows one to define knot concordance invariants,
once again borrowing arguments directly from [LS14b]. In this section, we work only with knots,
not links.

For a knot diagram K and field F, there is a spectral sequence with E2-page Khovanov homology
Khi,j(K;F) converging to F2 coming from a descending filtration F of the Khovanov chain complex
Kc(K) so that

Kc∗,j(K;F) = Fj/Fj+2.

This was defined by Lee [Lee05] for fields not of characteristic 2, and for all fields by Bar-Natan
[BN05], see also [Tur06, Nao06]; from now on, fix our field as F = F2, the field with two elements,
and we work their variant.
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The Rasmussen s invariant of K from [Ras10], cf. [LS14b], is defined by

sF(K) = max{q ∈ 2Z + 1 | H∗(Fq)→ H∗(F−∞) ∼= F2 surjective }+ 1,

= max{q ∈ 2Z + 1 | H∗(Fq)→ H∗(F−∞) ∼= F2 nonzero } − 1,

Definition 5.11. Fix α ∈ Aσ of grading n > 0. Call q ∈ 2Z + 1 α-half full if there exist elements
ã ∈ Kh−n,q(K;F), â ∈ Kh0,q(K;F), a ∈ H0(Fq;F), ā ∈ H0(F−∞;F) such that

(1) the map α : Kh−n,q(K;F)→ Kh0,q(K,F) from Theorem 1.3 sends ã to â.
(2) The map H0(Fq;F)→ Kh0,q(K;F) = H0(Fq/Fq+2;F) sends a to â.
(3) The map H0(Fq;F)→ H0(F−∞;F) sends a to ā.
(4) ā ∈ H0(F−∞;F) = F⊕ F is nonzero.

Call q α-full if there exists tuples (ã, â, a, ā) and (̃b, b̂, b, b̄) as above, with properties (1)–(3), and
so that ā, b̄ is a basis of H0(F−∞;F).

Definition 5.12. For a knot K, define rα+(K) = max{q ∈ 2Z + 1 | q is α-half-full} + 1, and
sα+(K) = max{q ∈ 2Z + 1 | q is α-full} + 3. If m(K) is the mirror of K, let rα−(K) = −rα+(m(K))
and sα−(K) = −sα+(m(K)).

Theorem 5.13. Let α ∈ Aσ and S a connected, embedded cobordism in R3 × [0, 1] from K to K ′

of genus g. Then

|rα±(K)− rα±(K ′)| ≤ 2g

|sα±(K)− sα±(K ′)| ≤ 2g.

In particular, |rα±(K)|/2, |sα±(K)|/2 are concordance invariants and lower bounds for the slice genus
g4(K).

Proof. This follows from Theorem 1.3, arguing as in [LS14b, Theorem 1]. �

5.7. Questions. We conclude with some structural questions about the odd Khovanov space:

(q-1) In §5.6 we constructed concordance invariants using the action of the mod-2 Steenrod algebra

on H̃∗(Xo(L);Z2). It is natural to ask for concordance invariants defined from homology using
different coefficient fields. Indeed, [LS14b] defines such invariants using stable cohomology
operations with any coefficient field. For this, perhaps one needs an analogue of the Lee
spectral sequence for odd Khovanov homology.

(q-2) Ozsváth-Rasmussen-Szabó [ORSz13] showed that Kh∗,jo (L) = K̃h
∗,j−1
o (L) ⊕ K̃h

∗,j+1

o (L) for

any link L. Is it the case that X jo (L) ' X̃ j−1o (L) ∨ X̃ j+1
o (L)? More specifically, is there

a stable equivalence between the signed Burnside functors F jo (L) and F̃ j−1o (L) q F̃ j+1
o (L)?

(Such an equivalence has to be non-equivariant.)
(q-3) So far, calculations of the odd Khovanov homotopy type are limited. Is it always a wedge

sum of Moore spaces? Do there exist links L for which Xo(L) is not a wedge sum of smash
products of Moore spaces?
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(q-4) In [PS16] there are short exact sequences:

Kce(L)→ Kcu(L)→ Kco(L) and Kco(L)→ Kcu(L)→ Kce(L)

At the level of cohomology, these exact sequences are induced from the cofibration sequences
in Theorem 1.6. However, the maps in that proposition were not cellular for the coarse CW
structure. That leads to the question: are there CW cofibration sequences

Xo(L)→ Xu(L)→ Xe(L) and Xe(L)→ Xu(L)→ Xo(L)

(with respect to the coarse CW structure) inducing the maps of [PS16] on cellular chain
complexes?

(q-5) One of the applications of the technology of [LLS] was to show

Xe(m(L)) ' Xe(L)∨

where m(L) is the mirror of L, and ∨ denotes the Spanier-Whitehead dual. We conjecture,
similarly, that Xo(m(L)) ' Xo(L)∨. The proof of the statement in even Khovanov homol-
ogy involved the TQFT structure of even Khovanov homology, and does not immediately
generalize to odd Khovanov homology.

(q-6) It would be desirable to understand the behavior of the odd Khovanov spectra for disjoint
unions and connected sums. Is it possible to express the (equivariant) homotopy type Xo(L1q
L2) in terms of the (equivariant) odd Khovanov spectra of L1, L2? (In the even theory, it
is merely the smash product.) Is it possible to express the odd and unified (unreduced)
Khovanov spectra of L1#L2 in terms of the spectra of the component links? For even
Khovanov homotopy, this was dealt with as [LLS, Theorem 8]: Xe(L1#L2) is the derived
tensor product of Xe(Li) over the even Khovanov spectrum of the unknot.

(q-7) Is the old even Khovanov spectrum Xe(L) stable homotopy equivalent to the new even Kho-
vanov spectrum X ′e(L)? More generally, does the Khovanov spectrum X`(L) from Remark 5.6
depend only on the parity of `?
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