
Oracle8

Concepts

Release 8.0

December, 1997

Part No. A58227-01

 Oracle8 Concepts

Part No. A58227-01

Release 8.0

Copyright © 1997 Oracle Corporation. All rights reserved.

Primary Author: Lefty Leverenz

Contributors: Richard Allen, David Anderson, Andre Bakker, Steve Bobrowski, Bill Bridge, Atif
Chaudry, Cynthia Chin-Lee, Cindy Closkey, Jeff Cohen, Benoit Dageville, Sandy Dreskin, Jason Durbin,
Ahmed Ezzat, Diana Foch-Lorentz, John Frazzini, Anurag Gupta, Gary Hallmark, Michael Hartstein,
Terry Hayes, Alex Ho, Chin Hong, Ken Jacobs, Sandeep Jain, Amit Jasuja, Hakan Jakobsson, Robert
Jenkins, Jr., Ashok Joshi, Jonathan Klein, R. Kleinro, Robert Kooi, Vishu Krishnamurthy, Andre Kruglikov,
Tirthankar Lahiri, Juan Loaiza, Brom Mahbod, Richard Mateosian, William Maimone, Andrew Mendel-
sohn, Reza Monajjemi, Mark Moore, Rita Moran, Denise Oertel, Mark Porter, Maria Pratt, Tuomas
Pystynen, Patrick Ritto, Hasan Rizvi, Sriram Samu, Hari Sankar, Gordon Smith, Danny Sokolsky, Leng
Leng Tan, Lynne Thieme, Alvin To, Alex Tsukerman, William Waddington, Joyo Wijaya, Linda Willis,
Andrew Witkowski, Mohamed Zait

Graphic Designer: Valarie Moore

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle SQL*Loader, SQL*Net and SQL*Plus are registered trademarks of Oracle Corporation, Redwood
City, California.

Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle Forms, Oracle Enterprise Manager, Oracle Parallel
Server, Oracle Server Manager, PL/SQL, Pro*C, Pro*C/C++, and Trusted Oracle are trademarks of Oracle
Corporation, Redwood City, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Send Us Your Comments ... xxiii

Preface ... xxv

Part I What Is Oracle?

1 Introduction to the Oracle Server

Databases and Information Management.. 1-2
The Oracle Server ... 1-4
Oracle Databases... 1-8

Database Structure and Space Management ... 1-8
Logical Database Structures.. 1-8
Physical Database Structures .. 1-11

Memory Structure and Processes... 1-13
Memory Structures... 1-13
Process Architecture... 1-16
The Program Interface ... 1-19
An Example of How Oracle Works.. 1-19

Data Concurrency and Consistency .. 1-20
Concurrency .. 1-20
Read Consistency.. 1-21
Locking Mechanisms.. 1-22

Distributed Processing and Distributed Databases... 1-23
Client/Server Architecture: Distributed Processing ... 1-23
 iii

Distributed Databases .. 1-24
Table Replication .. 1-26
Oracle and Net8 .. 1-26

Startup and Shutdown Operations.. 1-27
Database Security.. 1-27

Security Mechanisms.. 1-28
Trusted Oracle ... 1-34

Database Backup and Recovery ... 1-34
Why Is Recovery Important? .. 1-34
Types of Failures ... 1-35
Structures Used for Recovery ... 1-37
Basic Recovery Steps .. 1-39
The Recovery Manager .. 1-40

The Object-Relational Model for Database Management.. 1-40
The Relational Model ... 1-41
The Object-Relational Model... 1-41
Schemas and Schema Objects.. 1-42
The Data Dictionary ... 1-47

Data Access... 1-48
SQL — The Structured Query Language .. 1-48
Transactions... 1-49
PL/SQL .. 1-52
Data Integrity... 1-54

Part II Database Structures

2 Data Blocks, Extents, and Segments

The Relationships Among Data Blocks, Extents, and Segments... 2-2
Data Blocks... 2-3

Data Block Format .. 2-3
An Introduction to PCTFREE, PCTUSED, and Row Chaining.. 2-5

Extents ... 2-10
When Extents Are Allocated ... 2-11
Determining the Number and Size of Extents.. 2-11
 iv

How Extents Are Allocated... 2-11
When Extents Are Deallocated... 2-13

Segments... 2-15
Data Segments... 2-15
Index Segments ... 2-15
Temporary Segments ... 2-16
Rollback Segments.. 2-17

3 Tablespaces and Datafiles

An Introduction to Tablespaces and Datafiles .. 3-2
Tablespaces... 3-3

The SYSTEM Tablespace ... 3-4
Allocating More Space for a Database... 3-4
Bringing Tablespaces Online and Offline ... 3-7
Read-Only Tablespaces.. 3-9
Temporary Tablespaces ... 3-10

Datafiles .. 3-11
Datafile Contents .. 3-12
Size of Datafiles... 3-12
Offline Datafiles .. 3-12

4 The Data Dictionary

An Introduction to the Data Dictionary ... 4-2
The Structure of the Data Dictionary.. 4-2
SYS, the Owner of the Data Dictionary.. 4-3
How the Data Dictionary Is Used.. 4-3

How Oracle Uses the Data Dictionary .. 4-3
How Oracle Users Can Use the Data Dictionary ... 4-5

The Dynamic Performance Tables... 4-7
 v

Part III The Oracle Instance

5 Database and Instance Startup and Shutdown

Overview of an Oracle Instance ... 5-2
The Instance and the Database ... 5-2
Connecting with Administrator Privileges... 5-3
Parameter Files.. 5-4

Instance and Database Startup ... 5-5
Starting an Instance .. 5-5
Mounting a Database ... 5-6
Opening a Database.. 5-7

Database and Instance Shutdown ... 5-8
Closing a Database ... 5-8
Dismounting a Database.. 5-8
Shutting Down an Instance ... 5-9

6 Memory Structures

Introduction to Oracle Memory Structures.. 6-2
System Global Area (SGA) ... 6-2

The Database Buffer Cache.. 6-3
The Redo Log Buffer... 6-6
The Shared Pool .. 6-6
Size of the SGA.. 6-11
Controlling the SGA’s Use of Memory.. 6-12

Program Global Areas (PGA) ... 6-13
Contents of a PGA .. 6-13
Size of a PGA ... 6-14

Sort Areas.. 6-15
Sort Direct Writes.. 6-16

Virtual Memory ... 6-16
Software Code Areas .. 6-16
 vi

7 Process Structure

Introduction to Processes .. 7-2
Single-Process Oracle... 7-2
Multiple-Process Oracle .. 7-3

User Processes ... 7-4
Oracle Processes.. 7-5
Trace Files and the ALERT File .. 7-14

Variations in Oracle Configuration ... 7-16
Single-Task Configuration .. 7-16
Dedicated Server (Two-Task) Configuration ... 7-18
The Multithreaded Server ... 7-20

Examples of How Oracle Works .. 7-24
An Example of Oracle Using Dedicated Server Processes ... 7-25
An Example of Oracle Using the Multithreaded Server... 7-26

The Program Interface ... 7-27
Program Interface Structure.. 7-27
The Program Interface Drivers ... 7-27
Operating System Communications Software ... 7-28

Part IV The Object-Relational DBMS

8 Schema Objects

Overview of Schema Objects ... 8-2
Tables... 8-3

How Table Data Is Stored.. 8-4
Nulls ... 8-7
Default Values for Columns.. 8-8
Nested Tables .. 8-9

Views ... 8-10
Storage for Views.. 8-11
How Views Are Used .. 8-11
The Mechanics of Views .. 8-12
Dependencies and Views .. 8-13
 vii

Updatable Join Views... 8-13
Object Views .. 8-14

The Sequence Generator ... 8-14
Synonyms ... 8-15
Indexes .. 8-17

Unique and Non-Unique Indexes .. 8-17
Composite Indexes ... 8-18
Indexes and Keys .. 8-19
How Indexes Are Stored.. 8-19
Reverse Key Indexes... 8-22
Bitmap Indexes.. 8-23

Index-Organized Tables... 8-28
Benefits of Index-Organized Tables ... 8-29
Index-Organized Tables with Row Overflow Area... 8-29
Applications of Interest for Index-Organized Tables .. 8-30

Clusters ... 8-32
Performance Considerations... 8-34
Format of Clustered Data Blocks.. 8-34
The Cluster Key... 8-35
The Cluster Index.. 8-35

Hash Clusters ... 8-36
How Data Is Stored in a Hash Cluster... 8-37
Hash Key Values... 8-39
Hash Functions.. 8-40
Allocation of Space for a Hash Cluster.. 8-41

9 Partitioned Tables and Indexes

Introduction to Partitioning .. 9-2
What Is Partitioning?.. 9-2

Advantages of Partitioning ... 9-4
Very Large Databases (VLDBs) .. 9-4
Reducing Downtime for Scheduled Maintenance ... 9-6
Reducing Downtime Due to Data Failures ... 9-7
DSS Performance .. 9-7
I/O Performance... 9-8
 viii

Disk Striping: Performance versus Availability... 9-8
Partition Transparency .. 9-9
Manual Partitioning with Partition Views.. 9-10

Basic Partitioning Model... 9-11
Range Partitioning.. 9-12
Partition Names .. 9-14
Partition Bounds and Partitioning Keys ... 9-14
Equipartitioning.. 9-18

Rules for Partitioning Tables and Indexes... 9-21
Table Partitioning ... 9-21
Index Partitioning... 9-22

DML Partition Locks .. 9-30
Performance Considerations for Oracle Parallel Server ... 9-31

Maintenance Operations ... 9-31
Partition Maintenance Operations ... 9-32
Managing Indexes .. 9-38
Privileges for Partitioned Tables and Indexes.. 9-41
Auditing for Partitioned Tables and Indexes ... 9-42

SQL Extension: Partition-Extended Table Name.. 9-42
Examples of Partition-Extended Table Names... 9-43

10 Built-In Datatypes

Oracle Datatypes ... 10-2
Character Datatypes... 10-2
NUMBER Datatype .. 10-5
DATE Datatype... 10-7
LOB Datatypes .. 10-9
RAW and LONG RAW Datatypes... 10-11
ROWID Datatype.. 10-12
MLSLABEL Datatype... 10-16
Summary of Oracle Datatype Information ... 10-17

ANSI, DB2, and SQL/DS Datatypes ... 10-19
Data Conversion.. 10-20
 ix

11 User-Defined Datatypes (Objects Option)

Introduction ... 11-2
Complex Data Models.. 11-2
Multimedia Datatypes ... 11-3

User-Defined Datatypes... 11-3
Object Types .. 11-4
Collection Types.. 11-9

Application Interfaces.. 11-11
SQL.. 11-12
PL/SQL .. 11-12
Pro*C/C++... 11-12
OCI.. 11-13
OTT ... 11-14

12 Using User-Defined Datatypes

References and Name Resolution.. 12-2
Table Aliases.. 12-2
Method Calls without Arguments ... 12-3

Storage of User-Defined Types ... 12-4
Leaf-Level Attributes.. 12-4
Row Objects ... 12-4
Column Objects... 12-5
REFs .. 12-5
Nested Tables .. 12-5
VARRAYs .. 12-5

Properties of Object Attributes .. 12-6
Nulls.. 12-6
Defaults .. 12-7
Constraints... 12-8
Indexes.. 12-9
Triggers .. 12-9

Privileges on User-Defined Types and Their Methods ... 12-10
System Privileges .. 12-10
Schema Object Privileges... 12-10
Using Types in New Types or Tables .. 12-11
 x

Example.. 12-11
Privileges on Type Access and Object Access .. 12-12

Dependencies and Incomplete Types ... 12-13
Completing Incomplete Types ... 12-14
Type Dependencies of Tables ... 12-15

Import/Export of User-Defined Types... 12-15

13 Object Views

Introduction ... 13-2
Advantages of Object Views ... 13-2

Defining Object Views... 13-2
Using Object Views .. 13-4
Updating Object Views ... 13-4

Part V Data Access

14 SQL and PL/SQL

Structured Query Language (SQL).. 14-2
SQL Statements ... 14-3
Identifying Nonstandard SQL .. 14-6
Recursive SQL ... 14-6
Cursors ... 14-6
Shared SQL .. 14-7
Parsing.. 14-7

SQL Processing.. 14-8
Overview of SQL Statement Execution ... 14-8
DML Statement Processing ... 14-10
DDL Statement Processing.. 14-14
Controlling Transactions ... 14-14

PL/SQL .. 14-15
How PL/SQL Executes.. 14-15
Language Constructs for PL/SQL ... 14-17
Stored Procedures... 14-18
External Procedures ... 14-19
 xi

15 Transaction Management

Introduction to Transactions ... 15-2
Statement Execution and Transaction Control... 15-3
Statement-Level Rollback .. 15-4

Oracle and Transaction Management.. 15-4
Committing Transactions .. 15-5
Rolling Back Transactions ... 15-6
Savepoints .. 15-7
The Two-Phase Commit Mechanism... 15-7

Discrete Transaction Management .. 15-8

16 Advanced Queuing

Introduction to Message Queuing ... 16-3
Synchronous Communication .. 16-3
Asynchronous Communication.. 16-3

Oracle Advanced Queuing .. 16-4
Queuing Entities ... 16-4
Features of Advanced Queuing.. 16-6

17 Procedures and Packages

An Introduction to Stored Procedures and Packages... 17-2
Stored Procedures and Functions... 17-2
Packages ... 17-4

Procedures and Functions ... 17-6
Procedure Guidelines... 17-7
Benefits of Procedures.. 17-7
Anonymous PL/SQL Blocks vs. Stored Procedures ... 17-8
Standalone Procedures... 17-9
Dependency Tracking for Stored Procedures... 17-9
External Procedures.. 17-9

Packages .. 17-10
Benefits of Packages ... 17-13
Dependency Tracking for Packages... 17-14
 xii

How Oracle Stores Procedures and Packages ... 17-15
Compiling Procedures and Packages .. 17-15
Storing the Compiled Code in Memory.. 17-15
Storing Procedures or Packages in Database.. 17-15

How Oracle Executes Procedures and Packages ... 17-16
Verifying User Access .. 17-16
Verifying Procedure Validity.. 17-16
Executing a Procedure ... 17-17

18 Database Triggers

An Introduction to Triggers .. 18-2
How Triggers Are Used... 18-3
Some Cautionary Notes about Triggers .. 18-3
Triggers vs. Declarative Integrity Constraints ... 18-5

Parts of a Trigger ... 18-5
Triggering Event or Statement.. 18-6
Trigger Restriction.. 18-7
Trigger Action ... 18-7

Types of Triggers ... 18-7
Row Triggers and Statement Triggers... 18-7
BEFORE and AFTER Triggers .. 18-8
Trigger Combinations .. 18-9
INSTEAD OF Triggers ... 18-11

Trigger Execution .. 18-14
The Execution Model for Triggers and Integrity Constraint Checking............................ 18-14
Data Access for Triggers.. 18-16
Storage of Triggers ... 18-17
Execution of Triggers ... 18-17
Dependency Maintenance for Triggers ... 18-18

19 Oracle Dependency Management

An Introduction to Dependency Issues.. 19-2
Resolving Schema Object Dependencies .. 19-4

Compiling Views and PL/SQL Program Units ... 19-5
Dependency Management and Nonexistent Schema Objects ... 19-7
 xiii

Shared SQL Dependency Management ... 19-8
Local and Remote Dependency Management... 19-8

Managing Local Dependencies... 19-9
Managing Remote Dependencies... 19-9

20 The Optimizer

What Is Optimization? ... 20-2
Execution Plans ... 20-2
Execution Order .. 20-5

Cost-Based and Rule-Based Optimization... 20-6
The Cost-Based Approach ... 20-6

Overview of Optimizer Operations .. 20-12
Optimizer Operations .. 20-12
Types of SQL Statements ... 20-13

Evaluation of Expressions and Conditions .. 20-14
Constants.. 20-14
LIKE Operator ... 20-15
IN Operator.. 20-15
ANY or SOME Operator.. 20-15
ALL Operator .. 20-16
BETWEEN Operator... 20-17
NOT Operator ... 20-17
Transitivity... 20-17

Transforming and Optimizing Statements .. 20-19
Transforming ORs into Compound Queries .. 20-19
Transforming Complex Statements into Join Statements ... 20-22
Optimizing Statements That Access Views .. 20-24
Optimizing Compound Queries... 20-36
Optimizing Distributed Statements ... 20-39

Choosing an Optimization Approach and Goal ... 20-40
The OPTIMIZER_MODE Initialization Parameter .. 20-40
Statistics in the Data Dictionary.. 20-41
The OPTIMIZER_GOAL Parameter of the ALTER SESSION Command........................ 20-41
The FIRST_ROWS, ALL_ROWS, CHOOSE, and RULE Hints... 20-42
PL/SQL and the Optimizer Goal ... 20-42
 xiv

Choosing Access Paths... 20-42
Access Methods .. 20-43
Access Paths .. 20-45
Choosing Among Access Paths .. 20-58

Optimizing Join Statements ... 20-63
Join Operations ... 20-63
Choosing Execution Plans for Join Statements .. 20-69
Views in Outer Joins... 20-72

Optimizing Anti-Joins and Semi-Joins .. 20-74
Optimizing “Star” Queries ... 20-75

Star Query Example ... 20-75
Tuning Star Queries ... 20-75
Star Transformation ... 20-76

Part VI Parallel SQL and Direct-Load INSERT

21 Direct-Load INSERT

Introduction to Direct-Load INSERT.. 21-2
Advantages of Direct-Load INSERT.. 21-2
INSERT ... SELECT Statements... 21-3

Varieties of Direct-Load INSERT Statements ... 21-3
Serial and Parallel INSERT.. 21-3
Logging Mode ... 21-5

Additional Considerations for Direct-Load INSERT .. 21-8
Index Maintenance ... 21-8
Space Considerations ... 21-8
Locking Considerations ... 21-9

Restrictions on Direct-Load INSERT .. 21-9

22 Parallel Execution

Overview of Parallel Execution.. 22-2
Operations That Can Be Parallelized... 22-2
How Oracle Parallelizes Operations.. 22-3
 xv

Process Architecture for Parallel Execution ... 22-5
The Parallel Server Pool ... 22-7
Parallelizing SQL Statements .. 22-9

Setting the Degree of Parallelism .. 22-13
Determining the Degree of Parallelism for Operations .. 22-13
Balancing the Work Load .. 22-16
Parallelization Rules for SQL Statements.. 22-17

Parallel DDL .. 22-25
DDL Statements That Can Be Parallelized.. 22-25
CREATE TABLE ... AS SELECT in Parallel... 22-26
Recoverability and Parallel DDL.. 22-27
Space Management for Parallel DDL... 22-27

Parallel DML.. 22-29
Advantages of Parallel DML over Manual Parallelism .. 22-30
When to Use Parallel DML.. 22-31
Enabling Parallel DML... 22-32
Transaction Model for Parallel DML ... 22-33
Recovery for Parallel DML.. 22-34
Space Considerations for Parallel DML .. 22-35
Lock and Enqueue Resources for Parallel DML... 22-36
Restrictions on Parallel DML .. 22-37

Affinity .. 22-40
Other Types of Parallelism.. 22-42

Part VII Data Protection

23 Data Concurrency and Consistency

Data Concurrency and Consistency in a Multiuser Environment .. 23-2
Preventable Phenomena and Transaction Isolation Levels .. 23-2
Locking Mechanisms.. 23-3

How Oracle Manages Data Concurrency and Consistency .. 23-4
Multiversion Concurrency Control.. 23-4
Statement-Level Read Consistency .. 23-5
Transaction-Level Read Consistency ... 23-6
Oracle Isolation Levels ... 23-6
 xvi

Setting the Isolation Level ... 23-7
Comparing Read Committed and Serializable Isolation .. 23-9
Choosing an Isolation Level.. 23-12

How Oracle Locks Data ... 23-14
Transactions and Data Concurrency ... 23-15
Deadlocks... 23-16
Types of Locks... 23-18
DML (Data) Locks .. 23-19
DDL Locks (Dictionary Locks) ... 23-26
Latches and Internal Locks.. 23-28
Explicit (Manual) Data Locking.. 23-29
Oracle Lock Management Services .. 23-40

24 Data Integrity

Definition of Data Integrity .. 24-2
Types of Data Integrity .. 24-2
How Oracle Enforces Data Integrity.. 24-4

An Introduction to Integrity Constraints ... 24-5
Advantages of Integrity Constraints ... 24-5
The Performance Cost of Integrity Constraints ... 24-7

Types of Integrity Constraints.. 24-7
NOT NULL Integrity Constraints .. 24-7
UNIQUE Key Integrity Constraints... 24-8
PRIMARY KEY Integrity Constraints.. 24-10
FOREIGN KEY (Referential) Integrity Constraints ... 24-12
CHECK Integrity Constraints ... 24-16

The Mechanisms of Constraint Checking ... 24-17
Default Column Values and Integrity Constraint Checking.. 24-19

Deferred Constraint Checking ... 24-19
Constraint Attributes ... 24-20
SET CONSTRAINTS Mode... 24-20
Unique Constraints and Indexes .. 24-21

Enabled, Disabled, and Enable Novalidate Constraints... 24-21
 xvii

25 Controlling Database Access

Database Security.. 25-2
Schemas, Database Users, and Security Domains.. 25-2
User Authentication.. 25-3

Authentication by the Operating System.. 25-3
Authentication by the Network.. 25-4
Authentication by the Oracle Database... 25-4
Database Administrator Authentication ... 25-6

User Tablespace Settings and Quotas ... 25-8
Default Tablespace.. 25-8
Temporary Tablespace... 25-8
Tablespace Access and Quotas ... 25-8

The User Group PUBLIC ... 25-9
User Resource Limits and Profiles ... 25-10

Types of System Resources and Limits ... 25-10
Profiles.. 25-13

Licensing... 25-14
Concurrent Usage Licensing ... 25-14
Named User Licensing... 25-15

26 Privileges and Roles

Privileges .. 26-2
System Privileges .. 26-2
Schema Object Privileges... 26-3

Roles .. 26-10
Common Uses for Roles... 26-11
The Mechanisms of Roles .. 26-13
Granting and Revoking Roles ... 26-13
Who Can Grant or Revoke Roles? .. 26-13
Naming Roles .. 26-14
Security Domains of Roles and Users.. 26-14
Named PL/SQL Blocks and Roles ... 26-14
Data Definition Language Statements and Roles... 26-14
Predefined Roles ... 26-16
 xviii

The Operating System and Roles ... 26-16
Roles in a Distributed Environment .. 26-16

27 Auditing

Introduction to Auditing ... 27-2
Auditing Features... 27-2
Auditing Mechanisms.. 27-4

Statement Auditing .. 27-7
Privilege Auditing .. 27-7
Schema Object Auditing ... 27-8

Schema Object Audit Options for Views and Procedures.. 27-8
Focusing Statement, Privilege, and Schema Object Auditing ... 27-9

Auditing Successful and Unsuccessful Statement Executions... 27-9
Auditing BY SESSION versus BY ACCESS .. 27-10
Auditing By User .. 27-12

28 Database Recovery

An Introduction to Database Recovery .. 28-2
Errors and Failures ... 28-2

Structures Used for Database Recovery ... 28-7
Database Backups... 28-7
The Redo Log .. 28-7
Rollback Segments.. 28-8
Control Files .. 28-8

Rolling Forward and Rolling Back.. 28-8
The Redo Log and Rolling Forward .. 28-9
Rollback Segments and Rolling Back... 28-9

Recovery Manager .. 28-10
Recovery Catalog.. 28-10
Parallelization.. 28-12
Report Generation .. 28-12

Performing Recovery in Parallel.. 28-13
Situations That Benefit from Parallel Recovery ... 28-14
Recovery Processes... 28-14
 xix

Database Archiving Modes... 28-16
NOARCHIVELOG Mode (Media Recovery Disabled) ... 28-16
ARCHIVELOG Mode (Media Recovery Enabled)... 28-16

Control Files ... 28-19
Control File Contents ... 28-19
Multiplexed Control Files.. 28-20

Database Backups ... 28-21
Whole Database Backups... 28-21
Partial Database Backups .. 28-22
The Export and Import Utilities.. 28-23
Read-Only Tablespaces and Backup.. 28-23

Survivability .. 28-24
Planning for Disaster Recovery .. 28-24
Standby Database ... 28-24

Part VIII Distributed Processing and Distributed Databases

29 Distributed Processing

Oracle Client/Server Architecture.. 29-2
Distributed Processing... 29-2
Net8 .. 29-5

How Net8 Works .. 29-5

30 Distributed Databases

Oracle’s Distributed Database Architecture .. 30-2
Clients and Servers ... 30-2
The Network.. 30-4
Databases and Database Links.. 30-4
Database Links .. 30-6
Schema Object Name Resolution.. 30-6
Connecting Between Oracle Server Versions ... 30-7
Distributed Databases and Distributed Processing ... 30-7
Distributed Databases and Database Replication .. 30-7

Heterogeneous Distributed Databases ... 30-8
 xx

Transparent SQL Access.. 30-8
Procedural Access... 30-8
Gateway Features ... 30-9
Version 8 Gateways.. 30-10
Version 4 Gateways.. 30-10

Developing Distributed Database Applications .. 30-10
Remote and Distributed SQL Statements ... 30-10
Remote Procedure Calls (RPCs) ... 30-11
Remote and Distributed Transactions ... 30-11
Transparency in a Distributed Database System ... 30-13

Administering an Oracle Distributed Database System .. 30-15
Site Autonomy .. 30-15
Distributed Database Security .. 30-16
Tools for Administering Oracle Distributed Databases.. 30-17
Oracle Enterprise Manager ... 30-18
Third-Party Administration Tools ... 30-18
SNMP Support .. 30-19

National Language Support.. 30-19

31 Database Replication

What Is Replication? .. 31-2
Basic Replication... 31-2
Advanced (Symmetric) Replication... 31-3

Basic Replication Concepts... 31-4
Uses of Basic Replication ... 31-4
Read-Only Table Snapshots .. 31-6
Snapshot Refreshes... 31-8
Other Basic Replication Options .. 31-10

Advanced Replication Concepts .. 31-11
Uses for Advanced Replication .. 31-12
Advanced Replication Configurations .. 31-13
Advanced Replication and the Oracle Replication Manager ... 31-17
Replication Objects, Groups, Sites, and Catalogs .. 31-17
Oracle’s Advanced Replication Architecture ... 31-19
Replication Administrators, Propagators, and Receivers... 31-22
 xxi

Replication Conflicts .. 31-22
Unique Advanced Replication Options... 31-26

Part IX Appendix

A Operating System-Specific Information

Index
 xxii

Send Us Your Comments

Oracle8 Concepts, Release 8.0

Part No. A58227-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ electronic mail - infodev@us.oracle.com
■ FAX - (650) 506-7200 Attn: Oracle Server Documentation
■ postal service:

Oracle Corporation
Oracle Server Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.
 xxiii

xxiv

Preface

This manual describes all features of the Oracle server, an object-relational database
management system. It describes how the Oracle server functions and lays a con-
ceptual foundation for much of the practical information contained in other Oracle
server manuals. Information in this manual applies to the Oracle server running on
all operating systems.

Oracle8 and Oracle8 Enterprise Edition
Oracle8 Concepts contains information that describes the features and functionality
of the Oracle8 and the Oracle8 Enterprise Edition products. Oracle8 and Oracle8
Enterprise Edition have the same basic features. However, several advanced
features are available only with the Enterprise Edition, and some of these are
optional. For example, to use object functionality, you must have the Enterprise
Edition and the Objects Option.

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8 and the Oracle8 Enterprise Edition.
xxv

Audience
This manual is written for database administrators, system administrators, and
database application developers.

What You Should Already Know
You should be familiar with relational database concepts and with the operating
system environment under which you are running Oracle.

As a prerequisite, all readers should read Chapter 1, “Introduction to the Oracle
Server”. That chapter is a comprehensive introduction to the concepts and terminol-
ogy used throughout the remainder of this manual.

If You’re Interested in Installation and Migration
This manual is not an installation or migration guide. Therefore, if your primary
interest is installation, refer to your operating system-specific Oracle documenta-
tion, or if your primary interest is database and application migration, refer to
Oracle8 Migration.

If You’re Interested in Database Administration
While this manual describes the architecture, processes, structures, and other con-
cepts of the Oracle server, it does not explain how to administer the Oracle server.
For that information, see Oracle8 Administrator’s Guide.

If You’re Interested in Application Design
In addition to administrators, experienced users of Oracle and advanced database
application designers will find information in this manual useful. However, data-
base application developers should also refer to Oracle8 Application Developer’s
Guide and to the documentation for the tool or language product they are using to
develop Oracle database applications.

How This Manual Is Organized
This manual is divided into the following parts:

■ Part I: What Is Oracle?

■ Part II: Database Structures

■ Part III: The Oracle Instance

■ Part IV: The Object-Relational DBMS
xxvi

■ Part V: Data Access

■ Part VI: Parallel SQL and Direct-Load INSERT

■ Part VII: Data Protection

■ Part VIII: Distributed Processing and Distributed Databases

■ Part IX: Appendix

Part I: What Is Oracle?
Chapter 1: Introduction to the Oracle Server

This chapter provides an overview of the concepts and terminology you need for
understanding the Oracle server. You should read this overview before using the
detailed information in the remainder of this manual.

Part II: Database Structures
Chapter 2: Data Blocks, Extents, and Segments

This chapter discusses how data is stored and how storage space is allocated for
and consumed by various objects within an Oracle database. The space manage-
ment background information here supplements that in the following chapter and
in Chapter 8, “Schema Objects”.

Chapter 3: Tablespaces and Datafiles

This chapter discusses how physical storage space in an Oracle database is divided
into logical divisions called tablespaces. The physical operating system files associ-
ated with tablespaces, called datafiles, are also discussed.

Chapter 4: The Data Dictionary

This chapter describes the data dictionary, which is a set of reference tables and
views that contain read-only information about an Oracle database.

Part III: The Oracle Instance
Chapter 5: Database and Instance Startup and Shutdown

This chapter describes an Oracle instance and explains how the database adminis-
trator can control the accessibility of an Oracle database system. This chapter also
describes the parameters that control how the database operates.

Chapter 6: Memory Structures

This chapter describes the memory structures used by an Oracle database system.
xxvii

Chapter 7: Process Structure

This chapter describes the process structure of an Oracle instance and the different
process configurations available for Oracle.

Part IV: The Object-Relational DBMS
Chapter 8: Schema Objects

This chapter describes the database objects that can be created in the domain of a
specific user (a schema), including tables, views, numeric sequences, and syn-
onyms. Indexes and clusters, optional structures that make data retrieval more effi-
cient, are also described.

Chapter 9: Partitioned Tables and Indexes

This chapter describes how partitioning can be used to split large tables and
indexes into more manageable pieces.

Chapter 10: Built-In Datatypes

This chapter describes the types of relational data that can be stored in an Oracle
database table, such as fixed- and variable-length character strings, numbers, dates,
and binary large objects (BLOBs).

Chapter 11: User-Defined Datatypes (Objects Option)

This chapter gives an overview of the object extensions provided by the Oracle
object-relational database management system (ORDBMS).

Chapter 12: Using User-Defined Datatypes

This chapter describes the user-defined object types that are available in the Oracle
ORDBMS.

Chapter 13: Object Views

This chapter describes the extensions to views provided by the Oracle ORDBMS.

Part V: Data Access
Chapter 14: SQL and PL/SQL

This chapter briefly describes SQL (the Structured Query Language), the language
used to communicate with Oracle, as well as PL/SQL, the Oracle procedural lan-
guage extension to SQL.

Chapter 15: Transaction Management

This chapter defines the concept of transactions and explains the SQL statements
xxviii

used to control them. Transactions are logical units of work that are executed
together as a unit.

Chapter 16: Advanced Queuing

This chapter describes the Oracle Advanced Queuing feature, which allows users
to store messages in queues for deferred retrieval and processing by the Oracle
server.

Chapter 17: Procedures and Packages

This chapter discusses the procedural language constructs called procedures, func-
tions, and packages, which are PL/SQL program units that are stored in the data-
base.

Chapter 18: Database Triggers

This chapter describes the procedural language constructs called triggers, proce-
dures that are implicitly executed when anyone inserts rows into, updates, or
deletes rows from a database table.

Chapter 19: Oracle Dependency Management

This chapter explains how Oracle manages the dependencies for objects such as
procedures, packages, triggers, and views.

Chapter 20: The Optimizer

This chapter explains how the optimizer works. The optimizer is the part of Oracle
that chooses the most efficient way to execute each SQL statement.

Part VI: Parallel SQL and Direct-Load INSERT
Chapter 21: Direct-Load INSERT

This chapter describes the direct-load insert path, which can be performed serially
or in parallel, and the NOLOGGING option.

Chapter 22: Parallel Execution

This chapter describes parallel execution of SQL statements (queries, DML, and
DDL statements) and explains the rules for parallelizing SQL statements.

Part VII: Data Protection
Chapter 23: Data Concurrency and Consistency

This chapter explains how Oracle provides concurrent access to and maintains the
accuracy of shared information in a multiuser environment. It describes the auto-
xxix

matic mechanisms that Oracle uses to guarantee that the concurrent operations of
multiple users do not interfere with each other.

Chapter 24: Data Integrity

This chapter discusses data integrity and the declarative integrity constraints that
you can use to enforce data integrity.

Chapter 25: Controlling Database Access

This chapter describes how to control user access to data and database resources.

Chapter 26: Privileges and Roles

This chapter discusses security at the system and object levels.

Chapter 27: Auditing

This chapter discusses how the Oracle auditing feature tracks database activity.

Chapter 28: Database Recovery

This chapter describes the files and structures used for database recovery and dis-
cusses how to protect an Oracle database from possible failures.

Part VIII: Distributed Processing and Distributed Databases
Chapter 29: Distributed Processing

This chapter discusses distributed processing environments in which the Oracle
server can operate.

Chapter 30: Distributed Databases

This chapter discusses distributed database architecture, remote data access, and
table replication.

Chapter 31: Database Replication

This chapter discusses replication of Oracle databases in a distributed database
system.

Part IX: Appendix
Appendix A: Operating System-Specific Information

This appendix lists all of the operating system-specific references within this
manual.
xxx

How to Use This Manual
Every reader of this manual should read Chapter 1, “Introduction to the Oracle
Server”. This overview of the concepts and terminology related to Oracle provides
a foundation for the more detailed information that follows in later chapters.

Each part of this manual addresses a specific audience within the general audiences
previously described. For example, after reading Chapter 1, administrators who are
interested primarily in managing security should focus on the information pre-
sented in Part VII, “Data Protection”, particularly Chapter 25, “Controlling Data-
base Access”, Chapter 26, “Privileges and Roles”, and Chapter 27, “Auditing”.

Conventions Used in This Manual
This manual uses different fonts to represent different types of information.

Text of the Manual
The text of this manual uses the following conventions.

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, database object
names, parameters, filenames, and so on.

For example, “After inserting the default value, Oracle checks the FOREIGN KEY
integrity constraint defined on the DEPTNO column,” or “If you create a private
rollback segment, the name must be included in the ROLLBACK_SEGMENTS ini-
tialization parameter.”

Italicized Characters
Italicized words within text are book titles or emphasized words.

Code Examples
Commands or statements of SQL, Oracle Enterprise Manager line mode (Server
Manager), and SQL*Plus appear in a monospaced font.

For example:

INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);
ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.
All punctuation in example statements is required. All example statements termi-
xxxi

nate with a semicolon (;). Depending on the application, a semicolon or other termi-
nator may or may not be required to end a statement.

UPPERCASE in Code Examples
Uppercase words in example statements indicate the keywords within Oracle SQL.
When you issue statements, however, keywords are not case sensitive.

lowercase in Code Examples
Lowercase words in example statements indicate words supplied only for the con-
text of the example. For example, lowercase words may indicate the name of a
table, column, or file.

Your Comments Are Welcome
We value and appreciate your comment as an Oracle user and reader of our manu-
als. As we write, revise, and evaluate our documentation, your opinions are the
most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail
address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to:

Server Technologies Documentation Manager

Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

Fax: (650) 506-7200
xxxii

Part I

What Is Oracle?

Part I provides an overview of Oracle server concepts and terminology. It contains
one chapter:

■ Chapter 1, “Introduction to the Oracle Server”

The rest of this manual describes the concepts that are summarized in Chapter 1
more thoroughly.

 Introduction to the Oracle Se
1

Introduction to the Oracle Server

I am Sir Oracle,

And when I ope my lips, let no dog bark!

Shakespeare: The Merchant of Venice

This chapter provides an overview of the Oracle server. The topics include:

■ Databases and Information Management

■ Database Structure and Space Management

■ Memory Structure and Processes

■ Data Concurrency and Consistency

■ Distributed Processing and Distributed Databases

■ Startup and Shutdown Operations

■ Database Security

■ Database Backup and Recovery

■ The Object-Relational Model for Database Management

■ Data Access

Attention: This chapter contains information relating to both
Oracle8 and the Oracle8 Enterprise Edition. Some of the features
and options documented in this chapter are available only if you
have purchased the Oracle8 Enterprise Edition. See Getting to Know
Oracle8 and the Oracle8 Enterprise Edition for information about the
differences between Oracle8 and the Oracle8 Enterprise Edition.
rver 1-1

Databases and Information Management
Databases and Information Management
A database server is the key to solving the problems of information management.
In general, a server must reliably manage a large amount of data in a multiuser
environment so that many users can concurrently access the same data. All this
must be accomplished while delivering high performance. A database server must
also prevent unauthorized access and provide efficient solutions for failure
recovery.

The Oracle server provides efficient and effective solutions with the following
features:

client/server (distrib-
uted processing) envi-
ronments

To take full advantage of a given computer sys-
tem or network, Oracle allows processing to be
split between the database server and the client
application programs. The computer running
the database management system handles all of
the database server responsibilities while the
workstations running the database application
concentrate on the interpretation and display of
data.

large databases and
space management

Oracle supports the largest of databases, poten-
tially terabytes in size. To make efficient use of
expensive hardware devices, it allows full con-
trol of space usage.

many concurrent data-
base users

Oracle supports large numbers of concurrent
users executing a variety of database applica-
tions operating on the same data. It minimizes
data contention and guarantees data concur-
rency.

high transaction process-
ing performance

Oracle maintains the preceding features with a
high degree of overall system performance. Data-
base users do not suffer from slow processing
performance.

high availability At some sites, Oracle works 24 hours per day
with no down time to limit database through-
put. Normal system operations such as database
backup and partial computer system failures do
not interrupt database use.
1-2 Oracle8 Concepts

Databases and Information Management
controlled availability Oracle can selectively control the availability of
data, at the database level and sub-database
level. For example, an administrator can disal-
low use of a specific application so that the appli-
cation’s data can be reloaded, without affecting
other applications.

openness, industry
standards

Oracle adheres to industry accepted standards
for the data access language, operating systems,
user interfaces, and network communication pro-
tocols. It is an “open” system that protects a cus-
tomer’s investment.

Release 8.0 of the Oracle server has been certi-
fied by the U.S. National Institute of Standards
and Technology as 100% compliant with Entry
Level of the ANSI/ISO SQL92 (Structured
Query Language) standard. Oracle fully satisfies
the requirements of the U.S. Government’s
FIPS127-2 standard and includes a “flagger” to
highlight non-standard SQL usage.

Oracle also supports the Simple Network Man-
agement Protocol (SNMP) standard for system
management. This protocol allows administra-
tors to manage heterogeneous systems with a
single administration interface.

manageable security To protect against unauthorized database access
and use, Oracle provides fail-safe security fea-
tures to limit and monitor data access. These fea-
tures make it easy to manage even the most
complex design for data access.

database enforced
integrity

Oracle enforces data integrity, “business rules”
that dictate the standards for acceptable data. As
a result, the costs of coding and managing
checks in many database applications are elimi-
nated.
 Introduction to the Oracle Server 1-3

Databases and Information Management
The following sections provide a comprehensive overview of the Oracle architec-
ture. Each section describes a different part of the overall architecture.

The Oracle Server
The Oracle server is an object-relational database management system that pro-
vides an open, comprehensive, and integrated approach to information manage-
ment. An Oracle server consists of an Oracle database and an Oracle server

distributed systems For networked, distributed environments, Ora-
cle combines the data physically located on dif-
ferent computers into one logical database that
can be accessed by all network users. Distrib-
uted systems have the same degree of user trans-
parency and data consistency as non-distributed
systems, yet receive the advantages of local data-
base management.

Oracle also offers the heterogeneous option that
allows users to access data on some non-Oracle
databases transparently.

portability Oracle software is ported to work under differ-
ent operating systems. Applications developed
for Oracle can be ported to any operating system
with little or no modification.

compatibility Oracle software is compatible with industry stan-
dards, including most industry standard operat-
ing systems. Applications developed for Oracle
can be used on virtually any system with little or
no modification.

connectibility Oracle software allows different types of comput-
ers and operating systems to share information
across networks.

replicated environments Oracle software lets you replicate groups of
tables and their supporting objects to multiple
sites. Oracle supports replication of both data-
and schema-level changes to these sites. Oracle’s
flexible replication technology supports basic pri-
mary site replication as well as advanced
dynamic and shared-ownership models.
1-4 Oracle8 Concepts

Databases and Information Management
instance. The following sections describe the relationship between the database and
the instance.

Structured Query Language (SQL)
SQL (pronounced SEQUEL) is the programming language that defines and manipu-
lates the database. SQL databases are relational databases; this means simply that
data is stored in a set of simple relations. A database can have one or more tables.
And each table has columns and rows. A table that has an employee database, for
example, might have a column called employee number and each row in that col-
umn would be an employee’s employee number.

You can define and manipulate data in a table with SQL commands. You use data
definition language (DDL) commands to set up the data. DDL commands include
commands to creating and altering databases and tables.

You can update, delete, or retrieve data in a table with data manipulation com-
mands (DML). DML commands include commands to alter and fetch data. The
most common SQL command is the SELECT command, which allows you to
retrieve data from the database.

In addition to SQL commands, the Oracle server has a procedural language called
PL/SQL. PL/SQL enables the programmer to program SQL statements. It allows
you to control the flow of a SQL program, to use variables, and to write error-han-
dling procedures.

Database Structure
An Oracle database has both a physical and a logical structure. Because the physi-
cal and logical server structure are separate, the physical storage of data can be
managed without affecting the access to logical storage structures.

Physical Database Structure An Oracle database’s physical structure is determined
by the operating system files that constitute the database. Each Oracle database is
made of three types of files: one or more datafiles, two or more redo log files, and
one or more control files. The files of an Oracle database provide the actual physical
storage for database information.
 Introduction to the Oracle Server 1-5

Databases and Information Management
Logical Database Structure An Oracle database’s logical structure is determined by:

■ one or more tablespaces

A tablespace is a logical area of storage explained later in this chapter.

■ the database’s schema objects

A schema is a collection of objects. Schema objects are the logical structures that
directly refer to the database’s data. Schema objects include such structures as
tables, views, sequences, stored procedures, synonyms, indexes, clusters, and
database links.

The logical storage structures, including tablespaces, segments, and extents, dictate
how the physical space of a database is used. The schema objects and the relation-
ships among them form the relational design of a database.

For more information about database structures, see “Database Structure and Space
Management” on page 1-8.

An Oracle Instance
Every time a database is started, a system global area (SGA) is allocated and Oracle
background processes are started. The system global area is a an area of memory
used for database information shared by the database users. The combination of
the background processes and memory buffers is called an Oracle instance.

An Oracle instance has two types of processes: user processes and Oracle processes.

■ A user process executes the code of an application program (such as an Oracle
Forms application) or an Oracle Tool (such as Oracle Enterprise Manager).

■ Oracle processes are server processes that perform work for the user processes
and background processes that perform maintenance work for the Oracle
server.

Figure 1–1 illustrates a multiple-process Oracle instance.
1-6 Oracle8 Concepts

Databases and Information Management
Figure 1–1 An Oracle Instance

Communications Software and Net8
If the user and server processes are on different computers of a network or if the
user processes connect to shared server processes through dispatcher processes, the
user process and server process communicate using Net8. Dispatchers are optional
background processes, present only when a multi-threaded server configuration is
used. Net8 is Oracle’s interface to standard communications protocols that allows
for the proper transmission of data between computers. See “Oracle and Net8” on
page 1-26.

The Oracle Parallel Server: Multiple Instance Systems

Attention: The Oracle Parallel Server option is available only if
you have purchased the Oracle8 Enterprise Edition. See Getting to
Know Oracle8 and the Oracle8 Enterprise Edition for details about the
features and options available with Oracle8 Enterprise Edition.

Oracle
Processes
(background
processes)

User
processesUser User User User

Archiver
(ARCH)

Log
Writer

(LGWR)

Recoverer
(RECO)

Process
Monitor
(PMON)

System
Monitor
(SMON)

Database
Writer

(DBW0)

System Global Area
(SGA)
 Introduction to the Oracle Server 1-7

Database Structure and Space Management
Some hardware architectures (for example, shared disk systems) allow multiple
computers to share access to data, software, or peripheral devices. Oracle with the
Parallel Server option can take advantage of such architecture by running multiple
instances that “share” a single physical database. In appropriate applications, the
Oracle Parallel Server allows access to a single database by the users on multiple
machines with increased performance.

Oracle Databases
An Oracle database is a collection of data that is treated as a unit. The general pur-
pose of a database is to store and retrieve related information.

The database has logical structures and physical structures. See “Database Structure
and Space Management” below for an overview of the logical and physical struc-
tures of the Oracle database.

Open and Closed Databases
An Oracle database can be open (accessible) or closed (not accessible). In normal situ-
ations, the database is open and available for use. However, the database is some-
times closed for specific administrative functions that require the database’s data to
be unavailable to users.

Database Structure and Space Management
This section describes the architecture of an Oracle database, including the physical
and logical structures that make up a database. This discussion provides an under-
standing of Oracle’s solutions to controlled data availability, the separation of logi-
cal and physical data structures, and fine-grained control of disk space
management.

An Oracle database is a collection of data that is treated as a unit. The general pur-
pose of a database is to store and retrieve related information. The database has logi-
cal structures and physical structures.

Logical Database Structures
The following sections explain logical database structures, including tablespaces,
schema objects, data blocks, extents, and segments.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information on the Oracle Parallel Server.
1-8 Oracle8 Concepts

Database Structure and Space Management
Tablespaces
A database is divided into logical storage units called tablespaces. A tablespace is
used to group related logical structures together. For example, tablespaces com-
monly group all of an application’s objects to simplify some administrative opera-
tions.

Databases, Tablespaces, and Datafiles The relationship among databases, tablespaces,
and datafiles (datafiles are described in the next section) is illustrated in Figure 1–2.

Figure 1–2 Databases, Tablespaces, and Datafiles

This figure illustrates the following:

■ Each database is logically divided into one or more tablespaces.

■ One or more datafiles are explicitly created for each tablespace to physically
store the data of all logical structures in a tablespace.

■ The combined size of a tablespace’s datafiles is the total storage capacity of the
tablespace (SYSTEM tablespace has 2 MB storage capacity while USERS
tablespace has 4 MB).

■ The combined storage capacity of a database’s tablespaces is the total storage
capacity of the database (6 MB).

Online and Offline Tablespaces A tablespace can be online (accessible) or offline (not
accessible). A tablespace is normally online so that users can access the information
within the tablespace. However, sometimes a tablespace may be taken offline to

DATA1.ORA
1 Mb

DATA2.ORA
1 Mb

DATA3.ORA
4 Mb

System Tablespace USERS Tablespace

Database
 Introduction to the Oracle Server 1-9

Database Structure and Space Management
make a portion of the database unavailable while allowing normal access to the
remainder of the database. This makes many administrative tasks easier to perform.

Schemas and Schema Objects
A schema is a collection of database objects. Schema objects are the logical structures
that directly refer to the database’s data. Schema objects include such structures as
tables, views, sequences, stored procedures, synonyms, indexes, clusters, and data-
base links. (There is no relationship between a tablespace and a schema; objects in
the same schema can be in different tablespaces, and a tablespace can hold objects
from different schemas.) For more information about schema objects, see “Schemas
and Schema Objects” on page 1-42.

Data Blocks, Extents, and Segments
Oracle allows fine-grained control of disk space usage through the logical storage
structures, including data blocks, extents, and segments. For more information on
these, see Chapter 2, “Data Blocks, Extents, and Segments”.

Oracle Data Blocks At the finest level of granularity, an Oracle database’s data is
stored in data blocks. One data block corresponds to a specific number of bytes of
physical database space on disk. A data block size is specified for each Oracle data-
base when the database is created. A database uses and allocates free database
space in Oracle data blocks.

Extents The next level of logical database space is called an extent. An extent is a
specific number of contiguous data blocks, obtained in a single allocation, used to
store a specific type of information.

Segments The level of logical database storage above an extent is called a segment.
A segment is a set of extents allocated for a certain logical structure. For example,
the different types of segments include the following:

Data Segment Each non-clustered table has a data segment. All of
the table’s data is stored in the extents of its data
segment. Each cluster has a data segment. The
data of every table in the cluster is stored in the
cluster’s data segment.

Index Segment Each index has an index segment that stores all of
its data.
1-10 Oracle8 Concepts

Database Structure and Space Management
Oracle dynamically allocates space when the existing extents of a segment become
full. Therefore, when the existing extents of a segment are full, Oracle allocates
another extent for that segment as needed. Because extents are allocated as needed,
the extents of a segment may or may not be contiguous on disk.

Physical Database Structures
The following sections explain the physical database structures of an Oracle data-
base, including datafiles, redo log files, and control files.

Datafiles
Every Oracle database has one or more physical datafiles. A database’s datafiles con-
tain all the database data. The data of logical database structures such as tables and
indexes is physically stored in the datafiles allocated for a database.

The characteristics of datafiles are:

■ A datafile can be associated with only one database.

■ Database files can have certain characteristics set to allow them to automati-
cally extend when the database runs out of space.

■ One or more datafiles form a logical unit of database storage called a
tablespace, as discussed earlier in this chapter.

The Use of Datafiles The data in a datafile is read, as needed, during normal data-

Rollback Segment One or more rollback segments are created by the
database administrator for a database to tempo-
rarily store “undo” information. This information
is used:

■ to generate read-consistent database informa-
tion (see “Read Consistency” on page 1-21)

■ during database recovery (see “Database
Backup and Recovery” on page 1-34)

■ to rollback uncommitted transactions for users.

Temporary Segment Temporary segments are created by Oracle when a
SQL statement needs a temporary work area to
complete execution. When the statement finishes
execution, the temporary segment’s extents are
returned to the system for future use.
 Introduction to the Oracle Server 1-11

Database Structure and Space Management
base operation and stored in the memory cache of Oracle. For example, assume that
a user wants to access some data in a table of a database. If the requested informa-
tion is not already in the memory cache for the database, it is read from the appro-
priate datafiles and stored in memory.

Modified or new data is not necessarily written to a datafile immediately. To reduce
the amount of disk access and increase performance, data is pooled in memory and
written to the appropriate datafiles all at once, as determined by the DBWn back-
ground process of Oracle. (For more information about Oracle’s memory and pro-
cess structures and the algorithm for writing database data to the datafiles, see
“Memory Structure and Processes” on page 1-13.)

Redo Log Files
Every Oracle database has a set of two or more redo log files. The set of redo log files
for a database is collectively known as the database’s redo log. The primary function
of the redo log is to record all changes made to data. Should a failure prevent modi-
fied data from being permanently written to the datafiles, the changes can be
obtained from the redo log and work is never lost.

Redo log files are critical in protecting a database against failures. To protect against
a failure involving the redo log itself, Oracle allows a multiplexed redo log so that
two or more copies of the redo log can be maintained on different disks.

The Use of Redo Log Files The information in a redo log file is used only to recover
the database from a system or media failure that prevents database data from being
written to a database’s datafiles.

For example, if an unexpected power outage abruptly terminates database opera-
tion, data in memory cannot be written to the datafiles and the data is lost. How-
ever, any lost data can be recovered when the database is opened, after power is
restored. By applying the information in the most recent redo log files to the data-
base’s datafiles, Oracle restores the database to the time at which the power failure
occurred.

The process of applying the redo log during a recovery operation is called rolling
forward. See “Database Backup and Recovery” on page 1-34.

Control Files
Every Oracle database has a control file. A control file contains entries that specify
the physical structure of the database. For example, it contains the following types
of information:

■ database name
1-12 Oracle8 Concepts

Memory Structure and Processes
■ names and locations of a database’s datafiles and redo log files

■ time stamp of database creation

Like the redo log, Oracle allows the control file to be multiplexed for protection of
the control file.

The Use of Control Files Every time an instance of an Oracle database is started, its
control file is used to identify the database and redo log files that must be opened
for database operation to proceed. If the physical makeup of the database is altered
(for example, a new datafile or redo log file is created), the database’s control file is
automatically modified by Oracle to reflect the change.

A database’s control file is also used if database recovery is necessary. See “Data-
base Backup and Recovery” on page 1-34 and Chapter 28, “Database Recovery” for
more information.

Memory Structure and Processes
This section discusses the memory and process structures used by an Oracle server
to manage a database. Among other things, the architectural features discussed in
this section provide an understanding of the capabilities of the Oracle server to sup-
port:

■ many users concurrently accessing a single database

■ the high performance required by concurrent multi-user, multi-application
database systems

An Oracle server uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the database system.

Processes are jobs or tasks that work in the memory of these computers.

Figure 1–3 “Memory Structures and Processes of Oracle” on page 1-14 shows a typi-
cal variation of the Oracle server memory and process structures.

Memory Structures
Oracle creates and uses memory structures to complete several jobs. For example,
memory stores program code being executed and data that is shared among users.
Several basic memory structures are associated with Oracle: the system global area
(which includes the database buffers, redo log buffers, and the shared pool) and the
program global areas. The following subsections explain each in detail.
 Introduction to the Oracle Server 1-13

Memory Structure and Processes
Figure 1–3 Memory Structures and Processes of Oracle

Database
Files

Redo Log
Files

Control
Files

Offline
Storage
Device

SMONPMONRECOLCKn

System Global Area

Database
Buffer Cache

Redo Log
Buffer

User
Process

User Processes

D000

User
Process

LGWR

Dedicated
Server

Process

CKPT

DBW0

Legend:

LCKn
RECO
PMON
SMON
CKPT
ARCH
DBW0
LGWR

Lock process
Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer

ARCH

Shared
Server

Process
1-14 Oracle8 Concepts

Memory Structure and Processes
System Global Area (SGA)
The System Global Area (SGA) is a shared memory region that contains data and con-
trol information for one Oracle instance. An SGA and the Oracle background pro-
cesses constitute an Oracle instance. (See “An Oracle Instance” on page 1-6 and
“Background Processes” on page 1-17 for more information.)

Oracle allocates the system global area when an instance starts and deallocates it
when the instance shuts down. Each instance has its own system global area.

Users currently connected to an Oracle server share the data in the system global
area. For optimal performance, the entire system global area should be as large as
possible (while still fitting in real memory) to store as much data in memory as pos-
sible and minimize disk I/O.

The information stored within the system global area is divided into several types
of memory structures, including the database buffers, redo log buffer, and the
shared pool. These areas have fixed sizes and are created during instance startup.

Database Buffer Cache Database buffers of the system global area store the most
recently used blocks of database data; the set of database buffers in an instance is
the database buffer cache. The buffer cache contains modified as well as unmodified
blocks. Because the most recently (and often the most frequently) used data is kept
in memory, less disk I/O is necessary and performance is improved.

Redo Log Buffer The redo log buffer of the system global area stores redo entries —
a log of changes made to the database. The redo entries stored in the redo log buff-
ers are written to an online redo log file, which is used if database recovery is neces-
sary. Its size is static.

Shared Pool The shared pool is a portion of the system global area that contains
shared memory constructs such as shared SQL areas. A shared SQL area is required
to process every unique SQL statement submitted to a database (see “SQL State-
ments” on page 1-48). A shared SQL area contains information such as the parse
tree and execution plan for the corresponding statement. A single shared SQL area
is used by multiple applications that issue the same statement, leaving more shared
memory for other uses.

Statement Handles or Cursors A cursor is a handle (a name or pointer) for the mem-
ory associated with a specific statement. (The Oracle Call Interface, OCI, refers to
these as statement handles.) Although most Oracle users rely on the automatic cursor
handling of the Oracle utilities, the programmatic interfaces offer application
designers more control over cursors.
 Introduction to the Oracle Server 1-15

Memory Structure and Processes
For example, in precompiler application development, a cursor is a named resource
available to a program and can be specifically used for the parsing of SQL state-
ments embedded within the application. The application developer can code an
application so that it controls the phases of SQL statement execution and thus
improve application performance.

Program Global Area (PGA)
The Program Global Area (PGA) is a memory buffer that contains data and control
information for a server process. A PGA is created by Oracle when a server process
is started. The information in a PGA depends on the configuration of Oracle.

Process Architecture
A process is a “thread of control” or a mechanism in an operating system that can
execute a series of steps. Some operating systems use the terms job or task. A pro-
cess normally has its own private memory area in which it runs.

An Oracle server has two general types of processes: user processes and Oracle pro-
cesses.

User (Client) Processes
A user process is created and maintained to execute the software code of an applica-
tion program (such as a Pro*C/C++ program) or an Oracle tool (such as Oracle
Enterprise Manager). The user process also manages the communication with the
server processes.

User processes communicate with the server processes through the program inter-
face, which is described in a later section.

Oracle Process Architecture
Oracle processes are called by other processes to perform functions on behalf of the
invoking process. The different types of Oracle processes and their specific func-
tions are discussed in the following sections. They include server processes and
background processes.

Server Processes
Oracle creates server processes to handle requests from connected user processes. A
server process is in charge of communicating with the user process and interacting
with Oracle to carry out requests of the associated user process. For example, if a
user queries some data that is not already in the database buffers of the system glo-
1-16 Oracle8 Concepts

Memory Structure and Processes
bal area, the associated server process reads the proper data blocks from the data-
files into the system global area.

Oracle can be configured to vary the number of user processes per server process.
In a dedicated server configuration, a server process handles requests for a single user
process. A multithreaded server configuration allows many user processes to share a
small number of server processes, minimizing the number of server processes and
maximizing the utilization of available system resources.

On some systems, the user and server processes are separate, while on others they
are combined into a single process. If a system uses the multithreaded server or if
the user and server processes run on different machines, the user and server pro-
cesses must be separate. Client/server systems separate the user and server pro-
cesses and execute them on different machines.

Background Processes
Oracle creates a set of background processes for each instance. They consolidate func-
tions that would otherwise be handled by multiple Oracle programs running for
each user process. The background processes asynchronously perform I/O and
monitor other Oracle processes to provide increased parallelism for better perfor-
mance and reliability.

An SGA and the set of Oracle background processes constitute an Oracle instance.
(For information about the SGA, see “An Oracle Instance” on page 1-6 and “System
Global Area (SGA)” on page 1-15.) Each Oracle instance may use several back-
ground processes. The names of these processes are DBWn, LGWR, CKPT, SMON,
PMON, ARCH, RECO, Dnnn, LCKn, SNPn, and QMNn.

Database Writer (DBW n) The Database Writer writes modified blocks from the data-
base buffer cache to the datafiles. Although one database writer process (DBW0) is
sufficient for most systems, you can configure additional processes (DBW1 through
DBW9) to improve write performance for a system that modifies data heavily. The
initialization parameter DB_WRITER_PROCESSES specifies the number of DBWn
processes.

Since Oracle uses write-ahead logging, DBWn does not need to write blocks when a
transaction commits (see “Transactions” on page 1-49). Instead, DBWn is designed
to perform batched writes with high efficiency. In the most common case, DBWn
writes only when more data needs to be read into the system global area and too
few database buffers are free. The least recently used data is written to the datafiles
first. DBWn also performs writes for other functions such as checkpointing.
 Introduction to the Oracle Server 1-17

Memory Structure and Processes
Log Writer (LGWR) The Log Writer writes redo log entries to disk. Redo log data is
generated in the redo log buffer of the system global area. As transactions commit
and the log buffer fills, LGWR writes redo log entries into an online redo log file.

Checkpoint (CKPT) At specific times, all modified database buffers in the system glo-
bal area are written to the datafiles by DBWn; this event is called a checkpoint. The
Checkpoint process is responsible for signalling DBWn at checkpoints and updating
all the datafiles and control files of the database to indicate the most recent check-
point.

System Monitor (SMON) The system monitor performs instance recovery at instance
startup. In a multiple instance system (one that uses Oracle Parallel Server), SMON
of one instance can also perform instance recovery for other instances that have
failed. SMON also cleans up temporary segments that are no longer in use and
recovers dead transactions skipped during crash and instance recovery because of
file-read or offline errors. These transactions are eventually recovered by SMON
when the tablespace or file is brought back online. SMON also coalesces free
extents within the database to make free space contiguous and easier to allocate.

Process Monitor (PMON) The process monitor performs process recovery when a user
process fails. PMON is responsible for cleaning up the cache and freeing resources
that the process was using. PMON also checks on dispatcher (see below) and server
processes and restarts them if they have failed.

Archiver (ARCH) The archiver copies the online redo log files to archival storage
when they are full. ARCH is active only when a database’s redo log is used in
ARCHIVELOG mode. (See “The Redo Log” on page 1-37.)

Recoverer (RECO) The recoverer is used to resolve distributed transactions that are
pending due to a network or system failure in a distributed database. At timed
intervals, the local RECO attempts to connect to remote databases and automati-
cally complete the commit or rollback of the local portion of any pending distrib-
uted transactions.

Dispatcher (D nnn) Dispatchers are optional background processes, present only when
a multi-threaded server configuration is used. At least one dispatcher process is cre-
ated for every communication protocol in use (D000, . . ., Dnnn). Each dispatcher
process is responsible for routing requests from connected user processes to avail-
able shared server processes and returning the responses back to the appropriate
user processes.
1-18 Oracle8 Concepts

Memory Structure and Processes
Lock (LCK n) The lock processes (LCK0, . . ., LCK9) are used for inter-instance lock-
ing in the Oracle Parallel Server; see “The Oracle Parallel Server: Multiple Instance
Systems” on page 1-7 for information about this configuration.

Job Queue (SNP n) In a distributed database configuration, up to thirty-six job queue
processes (SNP0, ..., SNP9, SNPA, ..., SNPZ) can automatically refresh table snap-
shots. These processes wake up periodically and refresh any snapshots that are
scheduled to be automatically refreshed. If more than one job queue process is
used, the processes share the task of refreshing snapshots. These processes also exe-
cute job requests created by the DBMS_JOB package and propagate queued mes-
sages to queues on other databases.

Queue Monitor (QMN n) The queue monitor(s) are optional background processes that
monitor the message queues for Oracle Advanced Queuing (Oracle AQ). You can
configure up to ten queue monitor processes.

The Program Interface
The program interface is the mechanism by which a user process communicates
with a server process. It serves as a method of standard communication between
any client tool or application (such as Oracle Forms) and Oracle software. Its func-
tions are to:

■ act as a communications mechanism, by formatting data requests, passing data,
and trapping and returning errors

■ perform conversions and translations of data, particularly between different
types of computers or to external user program datatypes

An Example of How Oracle Works
The following example illustrates an Oracle configuration where the user and asso-
ciated server process are on separate machines (connected via a network).

1. An instance is currently running on the computer that is executing Oracle
(often called the host or database server).

2. A computer running an application (a local machine or client workstation) runs
the application in a user process. The client application attempts to establish a
connection to the server using the proper Net8 driver.

3. The server is running the proper Net8 driver. The server detects the connection
request from the application and creates a (dedicated) server process on behalf
of the user process.
 Introduction to the Oracle Server 1-19

Data Concurrency and Consistency
4. The user executes a SQL statement and commits the transaction. For example,
the user changes a name in a row of a table.

5. The server process receives the statement and checks the shared pool for any
shared SQL area that contains an identical SQL statement. If a shared SQL area
is found, the server process checks the user’s access privileges to the requested
data and the previously existing shared SQL area is used to process the state-
ment; if not, a new shared SQL area is allocated for the statement so that it can
be parsed and processed.

6. The server process retrieves any necessary data values from the actual datafile
(table) or those stored in the system global area.

7. The server process modifies data in the system global area. The DBWn process
writes modified blocks permanently to disk when doing so is efficient. Because
the transaction committed, the LGWR process immediately records the transac-
tion in the online redo log file.

8. If the transaction is successful, the server process sends a message across the
network to the application. If it is not successful, an appropriate error message
is transmitted.

9. Throughout this entire procedure, the other background processes run, watch-
ing for conditions that require intervention. In addition, the database server
manages other users’ transactions and prevents contention between transac-
tions that request the same data.

These steps describe only the most basic level of operations that Oracle performs.
(See Chapter 7, “Process Structure”.)

Data Concurrency and Consistency
This section explains the software mechanisms used by Oracle to fulfill the follow-
ing important requirements of an information management system:

■ Data must be read and modified in a consistent fashion.

■ Data concurrency of a multi-user system must be maximized.

■ High performance is required for maximum productivity from the many users
of the database system.

Concurrency
A primary concern of a multiuser database management system is how to control
concurrency, or the simultaneous access of the same data by many users. Without
1-20 Oracle8 Concepts

Data Concurrency and Consistency
adequate concurrency controls, data could be updated or changed improperly, com-
promising data integrity.

If many people are accessing the same data, one way of managing data concur-
rency is to make each user wait his or her turn. The goal of a database management
system is to reduce that wait so it is either non-existent or negligible to each user.
All data manipulation (DML) statements should proceed with as little interference
as possible and destructive interactions between concurrent transactions must be
prevented. Destructive interaction is any interaction that incorrectly updates data
or incorrectly alters underlying data structures. Neither performance nor data integ-
rity can be sacrificed.

Oracle resolves such issues by using various types of locks and a multiversion con-
sistency model. Both features are discussed later in this section. These features are
based on the concept of a transaction. As discussed in “Data Consistency Using
Transactions” on page 1-51, it is the application designer’s responsibility to ensure
that transactions fully exploit these concurrency and consistency features.

Read Consistency
Read consistency, as supported by Oracle, does the following:

■ guarantees that the set of data seen by a statement is consistent with respect to
a single point-in-time and does not change during statement execution (state-
ment-level read consistency)

■ ensures that readers of database data do not wait for writers or other readers of
the same data

■ ensures that writers of database data do not wait for readers of the same data

■ ensures that writers only wait for other writers if they attempt to update identi-
cal rows in concurrent transactions

The simplest way to think of Oracle’s implementation of read consistency is to
imagine each user operating a private copy of the database, hence the multiversion
consistency model.

Read Consistency, Rollback Segments, and Transactions
To manage the multiversion consistency model, Oracle must create a read-consis-
tent set of data when a table is being queried (read) and simultaneously updated
(written). When an update occurs, the original data values changed by the update
are recorded in the database’s rollback segments. As long as this update remains
part of an uncommitted transaction, any user that later queries the modified data
 Introduction to the Oracle Server 1-21

Data Concurrency and Consistency
views the original data values — Oracle uses current information in the system glo-
bal area and information in the rollback segments to construct a read-consistent view
of a table’s data for a query.

Only when a transaction is committed are the changes of the transaction made per-
manent. Statements that start after the user’s transaction is committed only see the
changes made by the committed transaction.

Note that a transaction is key to Oracle’s strategy for providing read consistency.
This unit of committed (or uncommitted) SQL statements:

■ dictates the start point for read-consistent views generated on behalf of readers

■ controls when modified data can be seen by other transactions of the database
for reading or updating.

Read-Only Transactions
By default, Oracle guarantees statement-level read consistency. The set of data
returned by a single query is consistent with respect to a single point in time. How-
ever, in some situations, you may also require transaction-level read consistency —
the ability to run multiple queries within a single transaction, all of which are read-
consistent with respect to the same point in time, so that queries in this transaction
do not see the effects of intervening committed transactions.

If you want to run a number of queries against multiple tables and if you are doing
no updating, you may prefer a read-only transaction. After indicating that your trans-
action is read-only, you can execute as many queries as you like against any table,
knowing that the results of each query are consistent with respect to the same point
in time.

Locking Mechanisms
Oracle also uses locks to control concurrent access to data. Locks are mechanisms
intended to prevent destructive interaction between users accessing Oracle data.

Locks are used to achieve two important database goals:

consistency Ensures that the data a user is viewing or chang-
ing is not changed (by other users) until the user is
finished with the data.

integrity Ensures that the database’s data and structures
reflect all changes made to them in the correct
sequence.
1-22 Oracle8 Concepts

Distributed Processing and Distributed Databases
Locks guarantee data integrity while allowing maximum concurrent access to the
data by unlimited users.

Automatic Locking
Oracle locking is performed automatically and requires no user action. Implicit
locking occurs for SQL statements as necessary, depending on the action requested.

Oracle’s sophisticated lock manager automatically locks table data at the row level.
By locking table data at the row level, contention for the same data is minimized.

Oracle’s lock manager maintains several different types of row locks, depending on
what type of operation established the lock. In general, there are two types of locks:
exclusive locks and share locks. Only one exclusive lock can be obtained on a resource
(such as a row or a table); however, many share locks can be obtained on a single
resource. Both exclusive and share locks always allow queries on the locked
resource, but prohibit other activity on the resource (such as updates and deletes).

Manual Locking
Under some circumstances, a user may want to override default locking. Oracle
allows manual override of automatic locking features at both the row level (by first
querying for the rows that will be updated in a subsequent statement) and the table
level.

Distributed Processing and Distributed Databases
As computer networking becomes more and more prevalent in today’s computing
environments, database management systems must be able to take advantage of
distributed processing and storage capabilities. This section explains the architec-
tural features of Oracle that meet these requirements.

Client/Server Architecture: Distributed Processing
Distributed processing uses more than one processor to divide the processing for a
set of related jobs. Distributed processing reduces the processing load on a single
processor by allowing different processors to concentrate on a subset of related
tasks, thus improving the performance and capabilities of the system as a whole.

An Oracle database system can easily take advantage of distributed processing by
using its client/server architecture. In this architecture, the database system is divided
into two parts: a front-end or a client portion and a back-end or a server portion.
 Introduction to the Oracle Server 1-23

Distributed Processing and Distributed Databases
The Client
The client portion is the front-end database application and interacts with a user
through the keyboard, display, and pointing device such as a mouse. The client por-
tion has no data access responsibilities; it concentrates on requesting, processing,
and presenting data managed by the server portion. The client workstation can be
optimized for its job. For example, it might not need large disk capacity or it might
benefit from graphic capabilities.

The Server
The server portion runs Oracle software and handles the functions required for con-
current, shared data access. The server portion receives and processes the SQL and
PL/SQL statements that originate from client applications. The computer that man-
ages the server portion can be optimized for its duties. For example, it can have
large disk capacity and fast processors.

Distributed Databases
A distributed database is a network of databases managed by multiple database serv-
ers that appears to a user as a single logical database. The data of all databases in
the distributed database can be simultaneously accessed and modified. The pri-
mary benefit of a distributed database is that the data of physically separate data-
bases can be logically combined and potentially made accessible to all users on a
network.

Each computer that manages a database in the distributed database is called a node.
The database to which a user is directly connected is called the local database. Any
additional databases accessed by this user are called remote databases. When a local
database accesses a remote database for information, the local database is a client of
the remote server (client/server architecture, discussed previously).

While a distributed database allows increased access to a large amount of data
across a network, it must also provide the ability to hide the location of the data
and the complexity of accessing it across the network. The distributed DBMS must
also preserve the advantages of administrating each local database as though it
were non-distributed.

Location Transparency
Location transparency occurs when the physical location of data is transparent to the
applications and users of a database system. Several Oracle features, such as views,
procedures, and synonyms, can provide location transparency. For example, a view
1-24 Oracle8 Concepts

Distributed Processing and Distributed Databases
that joins table data from several databases provides location transparency because
the user of the view does not need to know from where the data originates.

Site Autonomy
Site autonomy means that each database participating in a distributed database is
administered separately and independently from the other databases, as though
each database were a non-networked database. Although each database can work
with others, they are distinct, separate systems that are cared for individually.

Distributed Data Manipulation
The Oracle distributed database architecture supports all DML operations, includ-
ing queries, inserts, updates, and deletes of remote table data. To access remote
data, a reference is made including the remote object’s global object name — no
coding or complex syntax is required to access remote data.

For example, to query a table named EMP in the remote database named SALES,
you reference the table’s global object name:

SELECT * FROM emp@sales;

Two-Phase Commit
Oracle provides the same assurance of data consistency in a distributed environ-
ment as in a non-distributed environment. Oracle provides this assurance using the
transaction model and a two-phase commit mechanism.

As in nondistributed systems, transactions should be carefully planned to include a
logical set of SQL statements that should all succeed or fail as a unit. Oracle’s two-
phase commit mechanism guarantees that no matter what type of system or net-
work failure might occur, a distributed transaction either commits on all involved
nodes or rolls back on all involved nodes to maintain data consistency across the
global distributed database.

Complete Transparency to Database Users The Oracle two-phase commit mechanism
is completely transparent to users that issue distributed transactions. A simple
COMMIT statement denoting the end of a transaction automatically triggers the
two-phase commit mechanism to commit the transaction; no coding or complex
statement syntax is required to include distributed transactions within the body of
a database application.

Automatic Recovery from System or Network Failures The RECO (recoverer) background
process automatically resolves the outcome of in-doubt distributed transactions — dis-
 Introduction to the Oracle Server 1-25

Distributed Processing and Distributed Databases
tributed transactions in which the commit was interrupted by any type of system
or network failure. After the failure is repaired and communication is reestablished,
the RECO of each local Oracle server automatically commits or rolls back any in-
doubt distributed transactions consistently on all involved nodes.

Optional Manual Override Capability In the event of a long-term failure, Oracle allows
each local administrator to manually commit or roll back any distributed transac-
tions that are in doubt as a result of the failure. This option allows the local data-
base administrator to free up any locked resources that may be held indefinitely as
a result of the long-term failure.

Facilities for Distributed Recovery If a database must be recovered to a point in the
past, Oracle’s recovery facilities allow database administrators at other sites to
return their databases to the earlier point in time also. This ensures that the global
database remains consistent.

Table Replication
Distributed database systems often locally replicate remote tables that are fre-
quently queried by local users. By having copies of heavily accessed data on sev-
eral nodes, the distributed database does not need to send information across a
network repeatedly, thus helping to maximize the performance of the database
application.

Data can be replicated using snapshots or replicated master tables. For more infor-
mation, see Chapter 31, “Database Replication”.

Oracle and Net8
Net8 is Oracle’s mechanism for interfacing with the communication protocols used
by the networks that facilitate distributed processing and distributed databases.
Communication protocols define the way that data is transmitted and received on a
network. In a networked environment, an Oracle database server communicates
with client workstations and other Oracle database servers using Oracle software
called Net8.

Net8 supports communications on all major network protocols, ranging from
those supported by PC LANs to those used by the largest of mainframe computer
systems.

Additional Information: Oracle8 Replication contains detailed infor-
mation about database replication.
1-26 Oracle8 Concepts

Database Security
Using Net8, the application developer does not have to be concerned with support-
ing network communications in a database application. If a new protocol is used,
the database administrator makes some minor changes, while the application
requires no modifications and continues to function.

Startup and Shutdown Operations
An Oracle database is not available to users until the Oracle server has been started
up and the database has been opened. These operations must be performed by the
database administrator. Starting a database and making it available for systemwide
use takes three steps:

1. Start an instance of the Oracle server.

2. Mount the database.

3. Open the database.

These steps are described in “Instance and Database Startup” on page 5-5.

When the Oracle server starts up, it uses a parameter file that contains initialization
parameters. These parameters specify the name of the database, the amount of
memory to allocate, the names of control files, and various limits and other system
parameters. See “Parameter Files” on page 5-4 for a sample parameter file.

Shutting down an instance and the database to which it is connected takes three
steps:

1. Close the database.

2. Dismount the database.

3. Shut down the instance of the Oracle server.

Oracle automatically performs all three steps when an instance is shut down. See
“Database and Instance Shutdown” on page 5-8 for more information.

Database Security
Multiuser database systems, such as Oracle, include security features that control
how a database is accessed and used. For example, security mechanisms:

■ prevent unauthorized database access

Additional Information: Refer to Oracle8 Reference for more infor-
mation about initialization parameters.
 Introduction to the Oracle Server 1-27

Database Security
■ prevent unauthorized access to schema objects

■ control disk usage

■ control system resource usage (such as CPU time)

■ audit user actions

Associated with each database user is a schema by the same name. A schema is a
logical collection of database objects (tables, views, sequences, synonyms, indexes,
clusters, procedures, functions, packages, and database links). By default, each data-
base user creates and has access to all objects in the corresponding schema.

Database security can be classified into two distinct categories: system security and
data security.

System security includes the mechanisms that control the access and use of the data-
base at the system level. For example, system security includes:

■ valid username/password combinations

■ the amount of disk space available to a user’s schema objects

■ the resource limits for a user

System security mechanisms check:

■ whether a user is authorized to connect to the database

■ whether database auditing is active

■ which system operations a user can perform

Data security includes the mechanisms that control the access and use of the data-
base at the schema object level. For example, data security includes

■ which users have access to a specific schema object and the specific types of
actions allowed for each user on the schema object (for example, user SCOTT
can issue SELECT and INSERT statements but not DELETE statements using
the EMP table)

■ the actions, if any, that are audited for each schema object

Security Mechanisms
The Oracle server provides discretionary access control, which is a means of restrict-
ing access to information based on privileges. The appropriate privilege must be
assigned to a user in order for that user to access a schema object. Appropriately
privileged users can grant other users privileges at their discretion; for this reason,
this type of security is called “discretionary”.
1-28 Oracle8 Concepts

Database Security
Oracle manages database security using several different facilities:

■ database users and schemas

■ privileges

■ roles

■ storage settings and quotas

■ resource limits

■ auditing

Figure 1–4 illustrates the relationships of the different Oracle security facilities, and
the following sections provide an overview of users, privileges, and roles.

Figure 1–4 Oracle Security Features

Database Users and Schemas
Each Oracle database has a list of usernames. To access a database, a user must use
a database application and attempt a connection with a valid username of the data-
base. Each username has an associated password to prevent unauthorized use.

Security Domain Each user has a security domain — a set of properties that deter-
mine such things as the:

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users
 Introduction to the Oracle Server 1-29

Database Security
■ actions (privileges and roles) available to the user

■ tablespace quotas (available disk space) for the user

■ system resource limits (for example, CPU processing time) for the user

Each property that contributes to a user’s security domain is discussed in the fol-
lowing sections.

Privileges
A privilege is a right to execute a particular type of SQL statement. Some examples
of privileges include the

■ right to connect to the database (create a session)

■ right to create a table in your schema

■ right to select rows from someone else’s table

■ right to execute someone else’s stored procedure

The privileges of an Oracle database can be divided into two distinct categories:
system privileges and schema object privileges.

System Privileges System privileges allow users to perform a particular systemwide
action or a particular action on a particular type of schema object. For example, the
privileges to create a tablespace or to delete the rows of any table in the database
are system privileges. Many system privileges are available only to administrators
and application developers because the privileges are very powerful.

Schema Object Privileges Schema object privileges allow users to perform a particular
action on a specific schema object. For example, the privilege to delete rows of a
specific table is an object privilege. Object privileges are granted (assigned) to end-
users so that they can use a database application to accomplish specific tasks.

Granting Privileges Privileges are granted to users so that users can access and mod-
ify data in the database. A user can receive a privilege two different ways:

■ Privileges can be granted to users explicitly. For example, the privilege to insert
records into the EMP table can be explicitly granted to the user SCOTT.

■ Privileges can be granted to roles (a named group of privileges), and then the
role can be granted to one or more users. For example, the privilege to insert
records into the EMP table can be granted to the role named CLERK, which in
turn can be granted to the users SCOTT and BRIAN.
1-30 Oracle8 Concepts

Database Security
Because roles allow for easier and better management of privileges, privileges are
normally granted to roles and not to specific users. The following section explains
more about roles and their use.

Roles
Oracle provides for easy and controlled privilege management through roles. Roles
are named groups of related privileges that are granted to users or other roles. The
following properties of roles allow for easier privilege management:

■ reduced granting of privileges — Rather than explicitly granting the same set of
privileges to many users, a database administrator can grant the privileges for
a group of related users granted to a role. And then the database administrator
can grant the role to each member of the group.

■ dynamic privilege management — When the privileges of a group must change,
only the privileges of the role need to be modified. The security domains of all
users granted the group’s role automatically reflect the changes made to the
role.

■ selective availability of privileges — The roles granted to a user can be selectively
enabled (available for use) or disabled (not available for use). This allows spe-
cific control of a user’s privileges in any given situation.

■ application awareness — A database application can be designed to enable and
disable selective roles automatically when a user attempts to use the applica-
tion.

Database administrators often create roles for a database application. The DBA
grants an application role all privileges necessary to run the application. The DBA
then grants the application role to other roles or users. An application can have sev-
eral different roles, each granted a different set of privileges that allow for more or
less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the priv-
ileges granted to the role. Typically, an application is designed so that when it
starts, it enables the proper role. As a result, an application user does not need to
know the password for an application’s role.

Storage Settings and Quotas
Oracle provides means for directing and limiting the use of disk space allocated to
the database on a per user basis, including default and temporary tablespaces and
tablespace quotas.
 Introduction to the Oracle Server 1-31

Database Security
Default Tablespace Each user is associated with a default tablespace. When a user cre-
ates a table, index, or cluster and no tablespace is specified to physically contain the
schema object, the user’s default tablespace is used if the user has the privilege to
create the schema object and a quota in the specified default tablespace. The default
tablespace feature provides Oracle with information to direct space usage in situa-
tions where schema object’s location is not specified.

Temporary Tablespace Each user has a temporary tablespace. When a user executes a
SQL statement that requires the creation of temporary segments (such as the cre-
ation of an index), the user’s temporary tablespace is used. By directing all users’
temporary segments to a separate tablespace, the temporary tablespace feature can
reduce I/O contention among temporary segments and other types of segments.

Tablespace Quotas Oracle can limit the collective amount of disk space available to
the objects in a schema. Quotas (space limits) can be set for each tablespace avail-
able to a user. The tablespace quota security feature permits selective control over
the amount of disk space that can be consumed by the objects of specific schemas.

Profiles and Resource Limits
Each user is assigned a profile that specifies limitations on several system resources
available to the user, including the

■ number of concurrent sessions the user can establish

■ CPU processing time

– available to the user’s session

– available to a single call to Oracle made by a SQL statement

■ amount of logical I/O

– available to the user’s session

– available to a single call to Oracle made by a SQL statement

■ amount of idle time for the user’s session allowed

■ amount of connect time for the user’s session allowed

■ password restrictions

– account locking after multiple unsuccessful login attemts

– password expiration and grace period

– password reuse and complexity restrictions
1-32 Oracle8 Concepts

Database Security
Different profiles can be created and assigned individually to each user of the data-
base. A default profile is present for all users not explicitly assigned a profile. The
resource limit feature prevents excessive consumption of global database system
resources.

Auditing
Oracle permits selective auditing (recorded monitoring) of user actions to aid in the
investigation of suspicious database use. Auditing can be performed at three differ-
ent levels: statement auditing, privilege auditing, and schema object auditing.

For all types of auditing, Oracle allows the selective auditing of successful state-
ment executions, unsuccessful statement executions, or both. This allows monitor-
ing of suspicious statements, regardless of whether the user issuing a statement has
the appropriate privileges to issue the statement.

The results of audited operations are recorded in a table referred to as the audit trail.
Predefined views of the audit trail are available so that you can easily retrieve audit
records.

statement auditing Statement auditing is the auditing of specific SQL
statements without regard to specifically named
schema objects. (In addition, database triggers
allow a DBA to extend and customize Oracle’s
built-in auditing features.)

Statement auditing can be broad and audit all
users of the system or can be focused to audit only
selected users of the system. For example, state-
ment auditing by user can audit connections to
and disconnections from the database by the users
SCOTT and LORI.

privilege auditing Privilege auditing is the auditing of the use of pow-
erful system privileges without regard to specifi-
cally named schema objects. Privilege auditing can
be broad and audit all users or can be focused to
audit only selected users.

schema object auditing Schema object auditing is the auditing of accesses
to specific schema objects without regard to user.
Object auditing monitors the statements permitted
by object privileges, such as SELECT or DELETE
statements on a given table.
 Introduction to the Oracle Server 1-33

Database Backup and Recovery
Trusted Oracle
Trusted Oracle is Oracle Corporation’s multilevel secure database management sys-
tem product. It is designed to provide the high level of secure data management
capabilities required by organizations processing sensitive or classified informa-
tion. Trusted Oracle is compatible with Oracle base products and applications, and
it supports all of the functionality of standard Oracle.

In addition, Trusted Oracle enforces mandatory access control (MAC) across a wide
range of multilevel secure operating system environments. Mandatory access con-
trol is a means of restricting access to information based on labels. A user’s label
indicates what information a user is permitted to access and the type of access
(read or write) that the user is allowed to perform. A schema object’s label indicates
the sensitivity of the information that it contains. A user’s label must meet certain
criteria, determined by MAC policy, in order for him or her to be allowed to access
a labeled schema object. Because this type of access control is always enforced
above any discretionary controls implemented by users, this type of security is
called “mandatory”.

Database Backup and Recovery
This section covers the structures and software mechanisms used by Oracle
to provide:

■ database recovery required by different types of failures

■ flexible recovery operations to suit any situation

■ availability of data during backup and recovery operations so that users of the
system can continue to work

Why Is Recovery Important?
In every database system, the possibility of a system or hardware failure always
exists. Should a failure occur and affect the database, the database must be recov-
ered. The goals after a failure are to ensure that the effects of all committed transac-
tions are reflected in the recovered database and to return to normal operation as
quickly as possible while insulating users from problems caused by the failure.

Additional Information: See your Trusted Oracle documentation
for more information.
1-34 Oracle8 Concepts

Database Backup and Recovery
Types of Failures
Several circumstances can halt the operation of an Oracle database. The most com-
mon types of failure are described below:

user error User errors can require a database to be recov-
ered to a point in time before the error occurred.
For example, a user might accidentally drop a
table. To allow recovery from user errors and
accommodate other unique recovery require-
ments, Oracle provides for exact point-in-time
recovery. For example, if a user accidentally
drops a table, the database can be recovered to
the instant in time before the table was dropped.

statement and process
failure

Statement failure occurs when there is a logical
failure in the handling of a statement in an Ora-
cle program (for example, the statement is not a
valid SQL construction). When statement failure
occurs, the effects (if any) of the statement are
automatically undone by Oracle and control is
returned to the user.

A process failure is a failure in a user process
accessing Oracle, such as an abnormal disconnec-
tion or process termination. The failed user pro-
cess cannot continue work, although Oracle and
other user processes can. The Oracle background
process PMON automatically detects the failed
user process or is informed of it by SQL*Net.
PMON resolves the problem by rolling back the
uncommitted transaction of the user process and
releasing any resources that the process was
using.

Common problems such as erroneous SQL state-
ment constructions and aborted user processes
should never halt the database system as a
whole. Furthermore, Oracle automatically per-
forms necessary recovery from uncommitted
transaction changes and locked resources with
minimal impact on the system or other users.
 Introduction to the Oracle Server 1-35

Database Backup and Recovery
instance failure Instance failure occurs when a problem arises
that prevents an instance (system global area
and background processes) from continuing
work. Instance failure may result from a hard-
ware problem such as a power outage, or a soft-
ware problem such as an operating system
crash. When an instance failure occurs, the data
in the buffers of the system global area is not
written to the datafiles.

Instance failure requires instance recovery.
Instance recovery is automatically performed by
Oracle when the instance is restarted. The redo
log is used to recover the committed data in the
SGA’s database buffers that was lost due to the
instance failure.

media (disk) failure An error can arise when trying to write or read a
file that is required to operate the database. This
is called disk failure because there is a physical
problem reading or writing physical files on
disk. A common example is a disk head crash,
which causes the loss of all files on a disk drive.
Different files may be affected by this type of
disk failure, including the datafiles, the redo log
files, and the control files. Also, because the data-
base instance cannot continue to function prop-
erly, the data in the database buffers of the
system global area cannot be permanently writ-
ten to the datafiles.

A disk failure requires media recovery. Media
recovery restores a database’s datafiles so that
the information in them corresponds to the most
recent time point before the disk failure, includ-
ing the committed data in memory that was lost
because of the failure. To complete a recovery
from a disk failure, the following is required:
backups of the database’s datafiles, and all
online and necessary archived redo log files.
1-36 Oracle8 Concepts

Database Backup and Recovery
Oracle provides for complete and quick recovery from all possible types of hard-
ware failures including disk crashes. Options are provided so that a database can
be completely recovered or partially recovered to a specific point in time.

If some datafiles are damaged in a disk failure but most of the database is intact
and operational, the database can remain open while the required tablespaces are
individually recovered. Therefore, undamaged portions of a database are available
for normal use while damaged portions are being recovered.

Structures Used for Recovery
Oracle uses several structures to provide complete recovery from an instance or
disk failure: the redo log, rollback segments, a control file, and necessary database
backups.

The Redo Log
As described in “Redo Log Files” on page 1-12, the redo log is a set of files that pro-
tect altered database data in memory that has not been written to the datafiles. The
redo log can consist of two parts: the online redo log and the archived redo log.

The Online Redo Log The online redo log is a set of two or more online redo log files that
record all committed changes made to the database. Whenever a transaction is com-
mitted, the corresponding redo entries temporarily stored in redo log buffers of the
system global area are written to an online redo log file by the background process
LGWR.

The online redo log files are used in a cyclical fashion; for example, if two files con-
stitute the online redo log, the first file is filled, the second file is filled, the first file
is reused and filled, the second file is reused and filled, and so on. Each time a file is
filled, it is assigned a log sequence number to identify the set of redo entries.

To avoid losing the database due to a single point of failure, Oracle can maintain
multiple sets of online redo log files. A multiplexed online redo log consists of copies
of online redo log files physically located on separate disks; changes made to one
member of the group are made to all members.

If a disk that contains an online redo log file fails, other copies are still intact and
available to Oracle. System operation is not interrupted and the lost online redo log
files can be easily recovered using an intact copy.

The Archived Redo Log Optionally, filled online redo files can be archived before
being reused, creating an archived redo log. Archived (offline) redo log files constitute
the archived redo log.
 Introduction to the Oracle Server 1-37

Database Backup and Recovery
The presence or absence of an archived redo log is determined by the mode that the
redo log is using:

In ARCHIVELOG mode, the database can be completely recovered from both
instance and disk failure. The database can also be backed up while it is open and
available for use. However, additional administrative operations are required to
maintain the archived redo log.

If the database’s redo log is operated in NOARCHIVELOG mode, the database can
be completely recovered from instance failure, but not from a disk failure. Addition-
ally, the database can be backed up only while it is completely closed. Because no
archived redo log is created, no extra work is required by the database administra-
tor.

Control Files
The control files of a database keep, among other things, information about the file
structure of the database and the current log sequence number being written by
LGWR. During normal recovery procedures, the information in a control file is
used to guide the automated progression of the recovery operation.

Multiplexed Control Files This feature is similar to the multiplexed redo log feature: a
number of identical control files may be maintained by Oracle, which updates all of
them simultaneously.

Rollback Segments
As described in “Data Blocks, Extents, and Segments” on page 1-10, rollback seg-
ments record rollback information used by several functions of Oracle. During data-
base recovery, after all changes recorded in the redo log have been applied, Oracle
uses rollback segment information to undo any uncommitted transactions. Because
rollback segments are stored in the database buffers, this important recovery infor-
mation is automatically protected by the redo log.

Database Backups
Because one or more files can be physically damaged as the result of a disk failure,
media recovery requires the restoration of the damaged files from the most recent

ARCHIVELOG The filled online redo log files are archived before
they are reused in the cycle.

NOARCHIVELOG The filled online redo log files are not archived.
1-38 Oracle8 Concepts

Database Backup and Recovery
operating system backup of a database. There are several ways to back up the files
of a database.

Whole Database Backups A whole database backup is an operating system backup of
all datafiles, online redo log files, and the control file that constitutes an Oracle data-
base. Full backups are performed when the database is closed and unavailable for
use.

Partial Backups A partial backup is an operating system backup of part of a data-
base. The backup of an individual tablespace’s datafiles or the backup of a control
file are examples of partial backups. Partial backups are useful only when the data-
base’s redo log is operated in ARCHIVELOG mode.

A variety of partial backups can be taken to accommodate any backup strategy. For
example, you can back up datafiles and control files when the database is open or
closed, or when a specific tablespace is online or offline. Because the redo log is
operated in ARCHIVELOG mode, additional backups of the redo log are not neces-
sary; the archived redo log is a backup of filled online redo log files.

Basic Recovery Steps
Due to the way in which DBWn writes database buffers to datafiles, at any given
point in time, a datafile may contain some data blocks tentatively modified by
uncommitted transactions and may not contain some blocks modified by commit-
ted transactions. Therefore, two potential situations can result after a failure:

■ Blocks containing committed modifications were not written to the datafiles, so
the changes may only appear in the redo log. Therefore, the redo log contains
committed data that must be applied to the datafiles.

■ Since the redo log may have contained data that was not committed, uncommit-
ted transaction changes applied by the redo log during recovery must be
erased from the datafiles.

To solve this situation, two separate steps are always used by Oracle during recov-
ery from an instance or media failure: rolling forward and rolling back.

Rolling Forward
The first step of recovery is to roll forward, that is, reapply to the datafiles all of the
changes recorded in the redo log. Rolling forward proceeds through as many redo
log files as necessary to bring the datafiles forward to the required time.
 Introduction to the Oracle Server 1-39

The Object-Relational Model for Database Management
If all needed redo information is online, Oracle performs this recovery step auto-
matically when the database starts. After roll forward, the datafiles contain all com-
mitted changes as well as any uncommitted changes that were recorded in the redo
log.

Rolling Back
The roll forward is only half of recovery. After the roll forward, any changes that
were not committed must be undone. After the redo log files have been applied,
then the rollback segments are used to identify and undo transactions that were
never committed, yet were recorded in the redo log. This process is called rolling
back. Oracle completes this step automatically.

The Recovery Manager
The Recovery Manager is an Oracle utility that manages backup and recovery oper-
ations, creating backups of database files and restoring or recovering a database
from backups.

Recovery Manager maintains a repository called the recovery catalog, which contains
information about backup files and archived log files. Recovery Manager uses the
recovery catalog to automate both restore operations and media recovery.

The recovery catalog contains:

■ information about backups of datafiles and archivelogs

■ information about datafile copies

■ information about archived redo logs and copies of them

■ information about the physical schema of the target database

■ named sequences of commands called stored scripts.

The Object-Relational Model for Database Management
Database management systems have evolved from hierarchical to network to rela-
tional models. The most widely accepted database model is the relational model. Ora-
cle extends the relational model to an object-relational model, which makes it possible
to store complex business models in a relational database.

Additional Information: See the Oracle8 Backup and Recovery Guide
for more information about the Recovery Manager.
1-40 Oracle8 Concepts

The Object-Relational Model for Database Management
The Relational Model
The relational model has three major aspects:

Relational database management systems offer benefits such as:

■ independence of physical data storage and logical database structure

■ variable and easy access to all data

■ complete flexibility in database design

■ reduced data storage and redundancy

The Object-Relational Model
The object-relational model allows users to define object types, specifying both the
structure of the data and the methods of operating on the data, and to use these
datatypes within the relational model.

structures Structures are well-defined objects (such as tables,
views, indexes, and so on) that store or access the
data of a database. Structures and the data con-
tained within them can be manipulated by opera-
tions.

operations Operations are clearly defined actions that allow
users to manipulate the data and structures of a
database. The operations on a database must
adhere to a predefined set of integrity rules.

integrity rules Integrity rules are the laws that govern which oper-
ations are allowed on the data and structures of a
database. Integrity rules protect the data and the
structures of a database.

Attention: User-defined object types are available only if you
have purchased the Oracle8 Enterprise Edition with the Objects
Option. See Getting to Know Oracle8 and the Oracle8 Enterprise Edi-
tion for details about the features and options available with
Oracle8 Enterprise Edition.
 Introduction to the Oracle Server 1-41

The Object-Relational Model for Database Management
Object types are abstractions of the real-world entities — for example, purchase
orders — that application programs deal with. An object type has three kinds of
components:

■ A name, which serves to identify the object type uniquely.

■ Attributes, which are built-in datatypes or other user-defined types. Attributes
model the structure of the real world entity.

■ Methods, which are functions or procedures written in PL/SQL and stored in
the database, or written in a language like C and stored externally. Methods
implement specific operations that an application can perform on the data.
Every object type has a constructor method that makes a new object according to
the datatype’s specification.

Schemas and Schema Objects
A schema is a collection of database objects that are available to a user. Schema
objects are the logical structures that directly refer to the database’s data. Schema
objects include such structures as tables, views, sequences, stored procedures, syn-
onyms, indexes, clusters, and database links. (There is no relationship between a
tablespace and a schema; objects in the same schema can be in different
tablespaces, and a tablespace can hold objects from different schemas.)

Tables
A table is the basic unit of data storage in an Oracle database. The tables of a data-
base hold all of the user-accessible data.

Table data is stored in rows and columns. Every table is defined with a table name
and set of columns. Each column is given a column name, a datatype (such as CHAR,
DATE, or NUMBER), and a width (which may be predetermined by the datatype, as
in DATE) or scale and precision (for the NUMBER datatype only). Once a table is cre-
ated, valid rows of data can be inserted into it. The table’s rows can then be que-
ried, deleted, or updated.

Oracle8 provides for the partitioning of tables. For more information, see Chapter 9,
“Partitioned Tables and Indexes”.

To enforce defined business rules on a table’s data, integrity constraints and trig-
gers can also be defined for a table. For more information, see “Data Integrity” on
page 1-54.
1-42 Oracle8 Concepts

The Object-Relational Model for Database Management
Views
A view is a custom-tailored presentation of the data in one or more tables. A view
can also be thought of as a “stored query”.

Views do not actually contain or store data; rather, they derive their data from the
tables on which they are based, referred to as the base tables of the views. Base tables
can in turn be tables or can themselves be views.

Like tables, views can be queried, updated, inserted into, and deleted from, with
some restrictions. All operations performed on a view actually affect the base tables
of the view.

Views are often used to do the following:

■ Provide an additional level of table security by restricting access to a predeter-
mined set of rows and columns of a table. For example, a view of a table can be
created so that columns with sensitive data (for example, salary information)
are not included in the definition of the view.

■ Hide data complexity. For example, a single view can combine 12 monthly
sales tables to provide a year of data for analysis and reporting. A single view
can also be used to create a join, which is a display of related columns or rows
in multiple tables. However, the view hides the fact that this data actually origi-
nates from several tables.

■ Simplify commands for the user. For example, views allow users to select infor-
mation from multiple tables without requiring the users to actually know how
to perform a correlated subquery.

■ Present the data in a different perspective from that of the base table. For exam-
ple, views provide a means to rename columns without affecting the tables on
which the view is based.

■ Store complex queries. For example, a query might perform extensive calcula-
tions with table information. By saving this query as a view, the calculations
are performed only when the view is queried.

Views that involve a join (a SELECT statement that selects data from multiple
tables) of two or more tables can only be updated under certain conditions. See
“Updatable Join Views” on page 8-13 for more information.

Sequences
A sequence generates a serial list of unique numbers for numeric columns of a data-
base’s tables. Sequences simplify application programming by automatically gener-
ating unique numerical values for the rows of a single table or multiple tables.
 Introduction to the Oracle Server 1-43

The Object-Relational Model for Database Management
For example, assume two users are simultaneously inserting new employee rows
into the EMP table. By using a sequence to generate unique employee numbers for
the EMPNO column, neither user has to wait for the other to input the next avail-
able employee number. The sequence automatically generates the correct values for
each user.

Sequence numbers are independent of tables, so the same sequence can be used for
one or more tables. After creation, a sequence can be accessed by various users to
generate actual sequence numbers.

Program Units
The term “program unit” is used in this manual to refer to stored procedures, func-
tions, packages, triggers, and anonymous blocks.

A procedure or function is a set of SQL and PL/SQL (Oracle’s procedural language
extension to SQL) statements grouped together as an executable unit to perform a
specific task. For more information about SQL and PL/SQL, see “Data Access” on
page 1-48.

Procedures and functions allow you to combine the ease and flexibility of SQL with
the procedural functionality of a structured programming language. Using PL/
SQL, such procedures and functions can be defined and stored in the database for
continued use. Procedures and functions are identical, except that functions always
return a single value to the caller, while procedures do not return a value to the
caller.

Packages provide a method of encapsulating and storing related procedures, func-
tions, and other package constructs together as a unit in the database. While pack-
ages provide the database administrator or application developer organizational
benefits, they also offer increased functionality and database performance.

Synonyms
A synonym is an alias for a table, view, sequence, or program unit. A synonym is
not actually a schema object itself, but instead is a direct reference to a schema
object. Synonyms are used to

■ mask the real name and owner of a schema object

■ provide public access to a schema object

■ provide location transparency for tables, views, or program units of a remote
database

■ simplify the SQL statements for database users
1-44 Oracle8 Concepts

The Object-Relational Model for Database Management
A synonym can be public or private. An individual user can create a private syn-
onym, which is available only to that user. Database administrators most often cre-
ate public synonyms that make the base schema object available for general, system-
wide use by any database user.

Indexes, Clusters, and Hash Clusters
Indexes, clusters, and hash clusters are optional structures associated with tables,
which can be created to increase the performance of data retrieval.

Indexes are created to increase the performance of data retrieval. Just as the index in
this manual helps you locate specific information faster than if there were no index,
an Oracle index provides a faster access path to table data. When processing a
request, Oracle can use some or all of the available indexes to locate the requested
rows efficiently. Indexes are useful when applications often query a table for a
range of rows (for example, all employees with a salary greater than 1000 dollars)
or a specific row.

Indexes are created on one or more columns of a table. Once created, an index is
automatically maintained and used by Oracle. Changes to table data (such as add-
ing new rows, updating rows, or deleting rows) are automatically incorporated into
all relevant indexes with complete transparency to the users.

Indexes are logically and physically independent of the data. They can be dropped
and created any time with no effect on the tables or other indexes. If an index is
dropped, all applications continue to function; however, access to previously
indexed data may be slower.

Oracle8 enables you to partition indexes. For more information, see Chapter 9, “Par-
titioned Tables and Indexes”.

Clusters are an optional method of storing table data. Clusters are groups of one or
more tables physically stored together because they share common columns and
are often used together. Because related rows are physically stored together, disk
access time improves.

The related columns of the tables in a cluster are called the cluster key. The cluster
key is indexed so that rows of the cluster can be retrieved with a minimum amount
of I/O. Because the data in a cluster key of an index cluster (a non-hash cluster) is
stored only once for multiple tables, clusters may store a set of tables more effi-
ciently than if the tables were stored individually (not clustered).

Figure 1–5 illustrates how clustered and non-clustered data are physically stored.
 Introduction to the Oracle Server 1-45

The Object-Relational Model for Database Management
Figure 1–5 Clustered and Unclustered Tables

Related data stored
together, more

efficiently

Related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

DNAME10 LOC

SALES BOSTON

EMPNO ENAME

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

. . .

DNAME20 LOC

ADMIN NEW YORK

EMPNO ENAME

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

. . .

Clustered Key
(DEPTO)

ENAMEEMPNO

932
100
1139
1277
1321
1841

DEPTNO

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EMP Table

DNAMEDEPTNO

10
20

LOC

SALES
ADMIN

BOSTON
NEW YORK

DEPT Table
1-46 Oracle8 Concepts

The Object-Relational Model for Database Management
Clusters also can improve performance of data retrieval, depending on data distri-
bution and what SQL operations are most often performed on the data. In particu-
lar, clustered tables that are queried in joins benefit from the use of clusters because
the rows common to the joined tables are retrieved with the same I/O operation.

Like indexes, clusters do not affect application design. Whether or not a table is
part of a cluster is transparent to users and to applications. Data stored in a clus-
tered table is accessed via SQL in the same way as data stored in a non-clustered
table.

Hash clusters also cluster table data in a manner similar to normal, index clusters
(clusters keyed with an index rather than a hash function). However, a row is
stored in a hash cluster based on the result of applying a hash function to the row’s
cluster key value. All rows with the same key value are stored together on disk.

Hash clusters are a better choice than using an indexed table or index cluster when
a table is often queried with equality queries (for example, return all rows for
department 10). For such queries, the specified cluster key value is hashed. The
resulting hash key value points directly to the area on disk that stores the rows.

Database Links
A database link is a named schema object that describes a “path” from one database
to another. Database links are implicitly used when a reference is made to a global
object name in a distributed database. See “Distributed Databases” on page 1-24 and
Chapter 30, “Distributed Databases” for more information.

The Data Dictionary
Each Oracle database has a data dictionary. An Oracle data dictionary is a set of
tables and views that are used as a read-only reference about the database. For exam-
ple, a data dictionary stores information about both the logical and physical struc-
ture of the database. In addition to this valuable information, a data dictionary also
stores such information as:

■ the valid users of an Oracle database

■ information about integrity constraints defined for tables in the database

■ how much space is allocated for a schema object and how much of it is in use

A data dictionary is created when a database is created. To accurately reflect the sta-
tus of the database at all times, the data dictionary is automatically updated by
Oracle in response to specific actions (such as when the structure of the database is
altered). The data dictionary is critical to the operation of the database, which relies
 Introduction to the Oracle Server 1-47

Data Access
on the data dictionary to record, verify, and conduct ongoing work. For example,
during database operation, Oracle reads the data dictionary to verify that schema
objects exist and that users have proper access to them.

Data Access
This section introduces how Oracle meets the general requirements for a DBMS to:

■ adhere to industry accepted standards for a data access language

■ control and preserve the consistency of a database’s information while manipu-
lating its data

■ provide a system for defining and enforcing rules to maintain the integrity of a
database’s information

■ provide high performance

SQL — The Structured Query Language
SQL is a simple, powerful database access language that is the standard language
for relational database management systems. The SQL implemented by Oracle Cor-
poration for Oracle is 100 percent compliant with the ANSI/ISO standard SQL data
language.

SQL Statements
All operations on the information in an Oracle database are performed using SQL
statements. A SQL statement is a string of SQL text that is given to Oracle to exe-
cute. A statement must be the equivalent of a complete SQL sentence, as in:

SELECT ename, deptno FROM emp;

Only a complete SQL statement can be executed, whereas a sentence fragment, such
as the following, generates an error indicating that more text is required before a
SQL statement can execute:

SELECT ename

A SQL statement can be thought of as a very simple, but powerful, computer pro-
gram or instruction. SQL statements are divided into the following categories:

■ Data Definition Language (DDL) statements

■ Data Manipulation Language (DML) statements

■ transaction control statements
1-48 Oracle8 Concepts

Data Access
■ session control statements

■ system control statements

■ embedded SQL statements

Data Definition Statements (DDL) DDL statements define, maintain, and drop schema
objects when they are no longer needed. DDL statements also include statements
that permit a user to grant other users the privileges, or rights, to access the database
and specific objects within the database. (See “Database Security” on page 1-27.)

Data Manipulation Statements (DML) DML statements manipulate the database’s data.
For example, querying, inserting, updating, and deleting rows of a table are all
DML operations; locking a table or view and examining the execution plan of an
SQL statement are also DML operations.

Transaction Control Statements Transaction control statements manage the changes
made by DML statements. They allow the user or application developer to group
changes into logical transactions. (See “Transactions” on page 1-49.) Examples
include COMMIT, ROLLBACK, and SAVEPOINT.

Session Control Statements Session control statements allow a user to control the prop-
erties of his current session, including enabling and disabling roles and changing
language settings. The two session control statements are ALTER SESSION and
SET ROLE.

System Control Statements System control commands change the properties of the
Oracle server instance. The only system control command is ALTER SYSTEM; it
allows you to change such settings as the minimum number of shared servers, to
kill a session, and to perform other tasks.

Embedded SQL Statements Embedded SQL statements incorporate DDL, DML, and
transaction control statements in a procedural language program (such as those
used with the Oracle Precompilers). Examples include OPEN, CLOSE, FETCH, and
EXECUTE.

Transactions
A transaction is a logical unit of work that comprises one or more SQL statements
executed by a single user. According to the ANSI/ISO SQL standard, with which
Oracle is compatible, a transaction begins with the user’s first executable SQL state-
 Introduction to the Oracle Server 1-49

Data Access
ment. A transaction ends when it is explicitly committed or rolled back (both terms
are discussed later in this section) by that user.

Consider a banking database. When a bank customer transfers money from a sav-
ings account to a checking account, the transaction might consist of three separate
operations: decrease the savings account, increase the checking account, and record
the transaction in the transaction journal.

Oracle must guarantee that all three SQL statements are performed to maintain the
accounts in proper balance. When something prevents one of the statements in the
transaction from executing (such as a hardware failure), the other statements of the
transaction must be undone; this is called “rolling back.” If an error occurs in mak-
ing either of the updates, then neither update is made.

Figure 1–6 illustrates the banking transaction example.

Figure 1–6 A Banking Transaction

Transaction Ends

UPDATE savings_accounts
 SET balance = balance - 500
 WHERE account = 3209;

UPDATE checking_accounts
 SET balance = balance + 500
 WHERE account = 3208;

INSERT INTO journal VALUES
 (journal_seq.NEXTVAL, '1B'
 3209, 3208, 500);

COMMIT WORK;

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction
1-50 Oracle8 Concepts

Data Access
Committing and Rolling Back Transactions
The changes made by the SQL statements that constitute a transaction can be either
committed or rolled back. After a transaction is committed or rolled back, the next
transaction begins with the next SQL statement.

Committing a transaction makes permanent the changes resulting from all SQL state-
ments in the transaction. The changes made by the SQL statements of a transaction
become visible to other user sessions’ transactions that start only after the transac-
tion is committed.

Rolling back a transaction retracts any of the changes resulting from the SQL state-
ments in the transaction. After a transaction is rolled back, the affected data is left
unchanged as if the SQL statements in the transaction were never executed.

Savepoints
For long transactions that contain many SQL statements, intermediate markers, or
savepoints, can be declared. Savepoints can be used to divide a transaction into
smaller parts.

By using savepoints, you can arbitrarily mark your work at any point within a long
transaction. This allows you the option of later rolling back all work performed
from the current point in the transaction to a declared savepoint within the transac-
tion. For example, you can use savepoints throughout a long complex series of
updates, so if you make an error, you do not need to resubmit every statement.

Data Consistency Using Transactions
Transactions provide the database user or application developer with the capability
of guaranteeing consistent changes to data, as long as the SQL statements within a
transaction are grouped logically. A transaction should consist of all of the neces-
sary parts for one logical unit of work — no more and no less. Data in all refer-
enced tables are in a consistent state before the transaction begins and after it ends.
Transactions should consist of only the SQL statements that comprise one consis-
tent change to the data.

For example, recall the banking example. A transfer of funds between two accounts
(the transaction) should include increasing one account (one SQL statement),
decreasing another account (one SQL statement), and the record in the transaction
journal (one SQL statement). All actions should either fail or succeed together; the
credit should not be committed without the debit. Other non-related actions, such
as a new deposit to one account, should not be included in the transfer of funds
transaction; such statements should be in other transactions.
 Introduction to the Oracle Server 1-51

Data Access
PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL combines the
ease and flexibility of SQL with the procedural functionality of a structured pro-
gramming language, such as IF ... THEN, WHILE, and LOOP.

When designing a database application, a developer should consider the advan-
tages of using stored PL/SQL:

■ Because PL/SQL code can be stored centrally in a database, network traffic
between applications and the database is reduced, so application and system
performance increases.

■ Data access can be controlled by stored PL/SQL code. In this case, the users of
PL/SQL can access data only as intended by the application developer (unless
another access route is granted).

■ PL/SQL blocks can be sent by an application to a database, executing complex
operations without excessive network traffic.

Even when PL/SQL is not stored in the database, applications can send blocks of
PL/SQL to the database rather than individual SQL statements, thereby again
reducing network traffic.

The following sections describe the different program units that can be defined and
stored centrally in a database.

Procedures and Functions
Procedures and functions consist of a set of SQL and PL/SQL statements that are
grouped together as a unit to solve a specific problem or perform a set of related
tasks. A procedure is created and stored in compiled form in the database and can
be executed by a user or a database application. Procedures and functions are iden-
tical except that functions always return a single value to the caller, while proce-
dures do not return values to the caller.

Packages
Packages provide a method of encapsulating and storing related procedures, func-
tions, variables, and other package constructs together as a unit in the database.
While packages allow the administrator or application developer the ability to orga-
nize such routines, they also offer increased functionality (for example, global pack-
age variables can be declared and used by any procedure in the package) and
performance (for example, all objects of the package are parsed, compiled, and
loaded into memory once).
1-52 Oracle8 Concepts

Data Access
Database Triggers
Oracle allows you to write procedures that are automatically executed as a result of
an insert in, update to, or delete from a table. These procedures are called database
triggers.

Database triggers can be used in a variety of ways for the information management
of your database. For example, they can be used to automate data generation, audit
data modifications, enforce complex integrity constraints, and customize complex
security authorizations.

Methods
A method is a procedure or function that is part of the definition of a user-defined
datatype (object type, nested table, or variable array).

Methods are different from stored procedures in two ways:

■ You invoke a method by referring to an object of its associated type.

■ A method has complete access to the attributes of its associated object and to
information about its type.

Every user-defined datatype has a system-defined constructor method, that is, a
method that makes a new object according to the datatype’s specification. The
name of the constructor method is the name of the user-defined type. In the case of
an object type, the constructor method’s parameters have the names and types of
the object type’s attributes. The constructor method is a function that returns the
new object as its value. Nested tables and arrays also have constructor methods.

Comparison methods define an order relationship among objects of a given object
type. A map method uses Oracle’s ability to compare built-in types. For example,
Oracle can compare two rectangles by comparing their areas if an object type
called RECTANGLE has attributes HEIGHT and WIDTH and you define a map
method area that returns a number, namely the product of the rectangle’s HEIGHT
and WIDTH attributes. An order method uses its own internal logic to compare two
objects of a given object type. It returns a value that encodes the order relationship.
For example, it may return -1 if the first is smaller, 0 if they are equal, and 1 if the
first is larger.

Attention: User-defined datatypes are available only if you have
purchased the Oracle8 Enterprise Edition with the Objects Option.
See Getting to Know Oracle8 and the Oracle8 Enterprise Edition for
more information about Oracle8 Enterprise Edition.
 Introduction to the Oracle Server 1-53

Data Access
Data Integrity
It is very important to guarantee that data adheres to certain business rules, as
determined by the database administrator or application developer. For example,
assume that a business rule says that no row in the INVENTORY table can contain
a numeric value greater than 9 in the SALE_DISCOUNT column. If an INSERT or
UPDATE statement attempts to violate this integrity rule, Oracle must roll back the
invalid statement and return an error to the application. Oracle provides integrity
constraints and database triggers as solutions to manage a database’s data integrity
rules.

Integrity Constraints
An integrity constraint is a declarative way to define a business rule for a column of
a table. An integrity constraint is a statement about a table’s data that is always true:

■ If an integrity constraint is created for a table and some existing table data does
not satisfy the constraint, the constraint cannot be enforced.

■ After a constraint is defined, if any of the results of a DML statement violate
the integrity constraint, the statement is rolled back and an error is returned.

Integrity constraints are defined with a table and are stored as part of the table’s
definition, centrally in the database’s data dictionary, so that all database applica-
tions must adhere to the same set of rules. If a rule changes, it need only be
changed once at the database level and not many times for each application.

The following integrity constraints are supported by Oracle:

NOT NULL Disallows nulls (empty entries) in a table’s column.

UNIQUE Disallows duplicate values in a column or set of
columns.

PRIMARY KEY Disallows duplicate values and nulls in a column
or set of columns.

FOREIGN KEY Requires each value in a column or set of columns
match a value in a related table’s UNIQUE or PRI-
MARY KEY (FOREIGN KEY integrity constraints
also define referential integrity actions that dictate
what Oracle should do with dependent data if the
data it references is altered).

CHECK Disallows values that do not satisfy the logical
expression of the constraint.
1-54 Oracle8 Concepts

Data Access
Keys
The term “key” is used in the definitions of several types of integrity constraints. A
key is the column or set of columns included in the definition of certain types of
integrity constraints. Keys describe the relationships between the different tables
and columns of a relational database. The different types of keys include

Individual values in a key are called key values.

Database Triggers
Centralized actions can be defined using a non-declarative approach (writing PL/
SQL code) with database triggers. A database trigger is a stored procedure that is
fired (implicitly executed) when an INSERT, UPDATE, or DELETE statement is
issued against the associated table. Database triggers can be used to customize a
database management system with such features as value-based auditing and the
enforcement of complex security checks and integrity rules. For example, a data-
base trigger might be created to allow a table to be modified only during normal
business hours.

primary key The column or set of columns included in the defi-
nition of a table’s PRIMARY KEY constraint. A pri-
mary key’s values uniquely identify the rows in a
table. Only one primary key may be defined per
table.

unique key The column or set of columns included in the defi-
nition of a UNIQUE constraint.

foreign key The column or set of columns included in the defi-
nition of a referential integrity constraint.

referenced key The unique key or primary key of the same or dif-
ferent table that is referenced by a foreign key.

Note: While database triggers allow you to define and enforce
integrity rules, a database trigger is not the same as an integrity
constraint. Among other things, a database trigger defined to
enforce an integrity rule does not check data already loaded into a
table. Therefore, it is strongly recommended that you use database
triggers only when the integrity rule cannot be enforced by integ-
rity constraints.
 Introduction to the Oracle Server 1-55

Data Access
1-56 Oracle8 Concepts

Part II

Database Structures

Part II describes the basic structural architecture of the Oracle server, including
physical and logical storage structures. Part II contains the following chapters:

■ Chapter 2, “Data Blocks, Extents, and Segments”

■ Chapter 3, “Tablespaces and Datafiles”

■ Chapter 4, “The Data Dictionary”

Note: For more information about Oracle server structures, see:

■ Chapter 6, “Memory Structures”

■ Chapter 7, “Process Structure”

■ Chapter 8, “Schema Objects”

■ Chapter 9, “Partitioned Tables and Indexes”

 Data Blocks, Extents, and Segm
2

Data Blocks, Extents, and Segments

He was not merely a chip of the old block, but the old block itself.

Edmund Burke: On Pitt’s first speech

This chapter describes the nature of and relationships among the logical storage
structures in the Oracle server. It includes:

■ The Relationships Among Data Blocks, Extents, and Segments

■ Data Blocks

■ Extents

■ Segments

Additional Information: If you are using Trusted Oracle, see
your Trusted Oracle documentation for more information about stor-
age in that environment.
ents 2-1

The Relationships Among Data Blocks, Extents, and Segments
The Relationships Among Data Blocks, Extents, and Segments
Oracle allocates logical database space for all data in a database. The units of data-
base space allocation are data blocks, extents, and segments. The following illustra-
tion shows the relationships among these data structures:

Figure 2–1 The Relationships Among Segments, Extents, and Data Blocks

At the finest level of granularity, Oracle stores data in data blocks (also called logical
blocks, Oracle blocks, or pages). One data block corresponds to a specific number of
bytes of physical database space on disk.

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

Data Blocks

Extent
28Kb

Extent
84Kb

Segment
112Kb
2-2 Oracle8 Concepts

Data Blocks
The next level of logical database space is called an extent. An extent is a specific
number of contiguous data blocks allocated for storing a specific type of informa-
tion.

The level of logical database storage above an extent is called a segment. A segment
is a set of extents that have been allocated for a specific type of data structure. For
example, each table’s data is stored in its own data segment, while each index’s data
is stored in its own index segment. If the table or index is partitioned, each partition
is stored in its own segment.

Oracle allocates space for segments in units of one extent. When the existing
extents of a segment are full, Oracle allocates another extent for that segment.
Because extents are allocated as needed, the extents of a segment may or may not
be contiguous on disk.

A segment (and all its extents) ar stored in one tablespace. Within a tablespace, a
segment can span datafiles (have extents with data from more than one file). How-
ever, each extent can contain data from only one datafile.

Data Blocks
Oracle manages the storage space in the datafiles of a database in units called data
blocks. A data block is the smallest unit of I/O used by a database. In contrast, at
the physical, operating system level, all data is stored in bytes. Each operating sys-
tem has what is called a block size. Oracle requests data in multiples of Oracle data
blocks, not operating system blocks.

You set the data block size for each Oracle database when you create the database.
This data block size should be a multiple of the operating system’s block size
within the maximum (port-specific) limit to avoid unnecessary I/O. Oracle data
blocks are the smallest units of storage that Oracle can use or allocate.

Data Block Format
The Oracle data block format is similar regardless of whether the data block con-
tains table, index, or clustered data. Figure 2–2 illustrates the format of a data block.
 Data Blocks, Extents, and Segments 2-3

Data Blocks
Figure 2–2 Data Block Format

Header (Common and Variable)
The header contains general block information, such as the block address and the
type of segment (for example, data, index, or rollback).

Table Directory
This portion of the data block contains information about the tables having rows in
this block.

Row Directory
This portion of the data block contains information about the actual rows in the
block (including addresses for each row piece in the row data area).

Once the space has been allocated in the row directory of a data block’s overhead,
this space is not reclaimed when the row is deleted. Therefore, a block that is cur-
rently empty but had up to 50 rows at one time continues to have 100 bytes allo-
cated in the header for the row directory. Oracle reuses this space only when new
rows are inserted in the block.

Database Block

Common and Variable Header

Table Directory

Row Directory

Free Space

Row Data
2-4 Oracle8 Concepts

Data Blocks
Overhead
The data block header, table directory, and row directory are referred to collectively
as overhead. Some block overhead is fixed in size; the total block overhead size is
variable. On average, the fixed and variable portions of data block overhead total
84 to 107 bytes.

Row Data
This portion of the data block contains table or index data. Rows can span blocks;
see “Row Chaining and Migrating” on page 2-10.

Free Space
Free space is allocated for insertion of new rows and for updates to rows that
require additional space (for example, when a trailing null is updated to a non-null
value). Whether issued insertions actually occur in a given data block is a function
of current free space in that data block and the value of the space management
parameter PCTFREE. The next section, “An Introduction to PCTFREE, PCTUSED,
and Row Chaining”, contains more information on space management parameters.

In data blocks allocated for the data segment of a table or cluster, or for the index
segment of an index, free space can also hold transaction entries. A transaction entry
is required in a block for each INSERT, UPDATE, DELETE, and SELECT...FOR
UPDATE statement accessing one or more rows in the block. The space required for
transaction entries is operating system dependent; however, transaction entries in
most operating systems require approximately 23 bytes.

An Introduction to PCTFREE, PCTUSED, and Row Chaining
Two space management parameters, PCTFREE and PCTUSED, enable you to con-
trol the use of free space for inserts of and updates to the rows in all the data blocks
of a particular segment. You specify these parameters when creating or altering a
table or cluster (which has its own data segment). You can also specify the storage
parameter PCTFREE when creating or altering an index (which has its own index
segment).

Note: This discussion does not apply to LOB datatypes (BLOB,
CLOB, NCLOB, and BFILE) — they do not use the PCTFREE stor-
age parameter or free lists. See “LOB Datatypes” on page 10-9 for
more information.
 Data Blocks, Extents, and Segments 2-5

Data Blocks
The PCTFREE Parameter
The PCTFREE parameter sets the minimum percentage of a data block to be
reserved as free space for possible updates to rows that already exist in that block.
For example, assume that you specify the following parameter within a CREATE
TABLE statement:

PCTFREE 20

This states that 20% of each data block in this table’s data segment will be kept free
and available for possible updates to the existing rows already within each block.
New rows can be added to the row data area, and corresponding information can
be added to the variable portions of the overhead area, until the row data and over-
head total 80% of the total block size. Figure 2–3 illustrates PCTFREE.

Figure 2–3 PCTFREE

The PCTUSED Parameter
The PCTUSED parameter sets the minimum percentage of a block that can be used
for row data plus overhead before new rows will be added to the block. After a

PCTFREE = 20
Data Block

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block
2-6 Oracle8 Concepts

Data Blocks
data block is filled to the limit determined by PCTFREE, Oracle considers the block
unavailable for the insertion of new rows until the percentage of that block falls
below the parameter PCTUSED. Until this value is achieved, Oracle uses the free
space of the data block only for updates to rows already contained in the data
block. For example, assume that you specify the following parameter in a CREATE
TABLE statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is considered unavail-
able for the insertion of any new rows until the amount of used space in the block
falls to 39% or less (assuming that the block’s used space has previously reached
PCTFREE). Figure 2–4 illustrates this.

Figure 2–4 PCTUSED

61% Free
Space

No new rows are
inserted until amount
of used space falls
below 40%

PCTUSED = 40
Data Block
 Data Blocks, Extents, and Segments 2-7

Data Blocks
How PCTFREE and PCTUSED Work Together
PCTFREE and PCTUSED work together to optimize the utilization of space in the
data blocks of the extents within a data segment. Figure 2–5 illustrates the interac-
tion of these two parameters.

Figure 2–5 Maintaining the Free Space of Data Blocks with PCTFREE and PCTUSED

Rows are
inserted up to
80% only,
because
PCTFREE
specifies that
20% of the
block must
remain open
for updates of
existing rows.
This cycle
continues . . .

Updates to
exisiting rows
use the free
space
reserved in
the block.
No new rows
can be
inserted into
the block
until the
amount of
used
space is 39%
or less.

After the
amount of
used space
falls below
40%, new
rows can
again be
inserted into
this block.

Rows are
inserted up to
80% only,
because
PCTFREE
specifies that
20% of the
block must
remain open
for updates of
existing rows.

1

3

2

4

2-8 Oracle8 Concepts

Data Blocks
In a newly allocated data block, the space available for inserts is the block size
minus the sum of the block overhead and free space (PCTFREE). Updates to exist-
ing data can use any available space in the block; therefore, updates can reduce the
available space of a block to less than PCTFREE, the space reserved for updates but
not accessible to inserts.

For each data and index segment, Oracle maintains one or more free lists — lists of
data blocks that have been allocated for that segment’s extents and have free space
greater than PCTFREE; these blocks are available for inserts. When you issue an
INSERT statement, Oracle checks a free list of the table for the first available data
block and uses it if possible. If the free space in that block is not large enough to
accommodate the INSERT statement, and the block is at least PCTUSED, Oracle
takes the block off the free list. Multiple free lists per segment can reduce conten-
tion for free lists when concurrent inserts take place.

After you issue a DELETE or UPDATE statement, Oracle processes the statement
and checks to see if the space being used in the block is now less than PCTUSED. If
it is, the block goes to the beginning of the transaction free list, and it is the first of
the available blocks to be used in that transaction. When the transaction commits,
free space in the block becomes available for other transactions.

Availability and Compression of Free Space in a Data Block
Two types of statements can increase the free space of one or more data blocks:
DELETE statements, and UPDATE statements that update existing values to
smaller values. The released space from these types of statements is available for
subsequent INSERT statements under the following conditions:

■ If the INSERT statement is in the same transaction and subsequent to the state-
ment that frees space, the INSERT statement can use the space made available.

■ If the INSERT statement is in a separate transaction from the statement that
frees space (perhaps being executed by another user), the INSERT statement
can use the space made available only after the other transaction commits, and
only if the space is needed.

Released space may or may not be contiguous with the main area of free space in a
data block. Oracle coalesces the free space of a data block only when (1) an INSERT
or UPDATE statement attempts to use a block that contains enough free space to
contain a new row piece, and (2) the free space is fragmented so that the row piece
cannot be inserted in a contiguous section of the block. Oracle does this compres-
sion only in such situations, because otherwise the performance of a database sys-
tem would decrease due to the continuous compression of the free space in data
blocks.
 Data Blocks, Extents, and Segments 2-9

Extents
Row Chaining and Migrating
In two circumstances, the data for a row in a table may be too large to fit into a sin-
gle data block. In the first case, the row is too large to fit into one data block when it
is first inserted. In this case, Oracle stores the data for the row in a chain of data
blocks (one or more) reserved for that segment. Row chaining most often occurs
with large rows, such as rows that contain a column of datatype LONG or LONG
RAW. Row chaining in these cases is unavoidable.

However, in the second case, a row that originally fit into one data block is updated
so that the overall row length increases, and the block’s free space is already com-
pletely filled. In this case, Oracle migrates the data for the entire row to a new data
block, assuming the entire row can fit in a new block. Oracle preserves the original
row piece of a migrated row to point to the new block containing the migrated row;
the ROWID of a migrated row does not change.

When a row is chained or migrated, I/O performance associated with this row
decreases because Oracle must scan more than one data block to retrieve the infor-
mation for the row.

Extents
An extent is a logical unit of database storage space allocation made up of a num-
ber of contiguous data blocks. One or more extents in turn make up a segment.
When the existing space in a segment is completely used, Oracle allocates a new
extent for the segment.

Note: The format of a row and a row piece are described in “Row
Format and Size” on page 8-5.

Note: For more information about ROWID, see “ROWID
Datatype” on page 10-12.

Additional Information: See Oracle8 Tuning for information about
reducing chained and migrated rows and improving I/O perfor-
mance.
2-10 Oracle8 Concepts

Extents
When Extents Are Allocated
When you create a table, Oracle allocates to the table’s data segment an initial extent
of a specified number of data blocks. Although no rows have been inserted yet, the
Oracle data blocks that correspond to the initial extent are reserved for that table’s
rows.

If the data blocks of a segment’s initial extent become full and more space is
required to hold new data, Oracle automatically allocates an incremental extent for
that segment. An incremental extent is a subsequent extent of the same or greater
size than the previously allocated extent in that segment. (The next section explains
the factors controlling the size of incremental extents.)

For maintenance purposes, the header block of each segment contains a directory
of the extents in that segment.

Rollback segments always have at least two extents. For more information, see
“How Extents Are Used and Allocated for Rollback Segments” on page 2-19.

Determining the Number and Size of Extents
Storage parameters expressed in terms of extents define every segment. Storage
parameters apply to all types of segments. They control how Oracle allocates free
database space for a given segment. For example, you can determine how much
space is initially reserved for a table’s data segment or you can limit the number of
extents the table can allocate by specifying the storage parameters of a table in the
STORAGE clause of the CREATE TABLE statement.

How Extents Are Allocated
Oracle controls the allocation of incremental extents for a given segment as follows:

1. Oracle searches through the free space (in the tablespace that contains the seg-
ment) for the first free, contiguous set of data blocks of an incremental extent’s
size or larger, using the following algorithm:

a. Oracle searches for a contiguous set of data blocks that matches the size of
new extent plus one block to reduce internal fragmentation. (The size is

Note: This chapter applies to serial operations, in which one
server process parses and executes a SQL statement. Extents are
allocated somewhat differently in parallel SQL statements, which
entail multiple server processes. See “Free Space and Parallel
DDL” on page 22-27 for more information.
 Data Blocks, Extents, and Segments 2-11

Extents
rounded up to the size of the minimal extent for that tablespace, if neces-
sary.) For example, if a new extent requires 19 data blocks, Oracle searches
for exactly 20 contiguous data blocks. If the new extent is 5 or fewer blocks,
Oracle does not add an extra block to the request.

b. If an exact match is not found, Oracle then searches for a set of contiguous
data blocks greater than the amount needed. If Oracle finds a group of con-
tiguous blocks that is at least 5 blocks greater than the size of the extent
needed, it splits the group of blocks into separate extents, one of which is
the size it needs. If Oracle finds a group of blocks that is larger than the size
it needs, but less than 5 blocks larger, it allocates all the contiguous blocks
to the new extent.

In the current example, if Oracle does not find a set of exactly 20 contigu-
ous data blocks, Oracle searches for a set of contiguous data blocks greater
than 20. If the first set it finds contains 25 or more blocks, it breaks the
blocks up and allocates 20 of them to the new extent and leaves the remain-
ing 5 or more blocks as free space. Otherwise, it allocates all of the blocks
(between 21 and 24) to the new extent.

c. If Oracle does not find an equal or larger set of contiguous data blocks, it
coalesces any free, adjacent data blocks in the corresponding tablespace to
form larger sets of contiguous data blocks. (The SMON background pro-
cess also periodically coalesces adjacent free space.) After coalescing a
tablespace’s data blocks, Oracle performs the searches described in 1a and
1b again.

d. If an extent cannot be allocated after the second search, Oracle tries to
resize the files by autoextension. If Oracle cannot resize the files, it returns
an error.

2. Once Oracle finds and allocates the necessary free space in the tablespace, it
allocates a portion of the free space that corresponds to the size of the incremen-
tal extent. If Oracle found a larger amount of free space than was required for
the extent, Oracle leaves the remainder as free space (no smaller than 5 contigu-
ous blocks).

3. Oracle updates the segment header and data dictionary to show that a new
extent has been allocated and that the allocated space is no longer free.

The blocks of a newly allocated extent, although they were free, may not be empty
of old data. Usually, Oracle formats the blocks of a newly allocated extent when it
starts using the extent, but only as needed (starting with the blocks on the segment
free list). In a few cases, however, such as when a database administrator forces
allocation of an incremental extent with the ALLOCATE EXTENT option of an
2-12 Oracle8 Concepts

Extents
ALTER TABLE or ALTER CLUSTER statement, Oracle formats the extent’s blocks
when it allocates the extent.

When Extents Are Deallocated
In general, the extents of a segment do not return to the tablespace until you drop
the object whose data is stored in the segment (using a DROP TABLE or DROP
CLUSTER statement). Exceptions to this include the following:

■ The owner of a table or cluster, or a user with the DELETE ANY privilege, can
truncate the table or cluster with a TRUNCATE...DROP STORAGE statement.

■ Periodically, Oracle may deallocate one or more extents of a rollback segment if
it has the OPTIMAL size specified.

■ A database administrator (DBA) can deallocate unused extents using the fol-
lowing SQL syntax:

ALTER TABLE table_name DEALLOCATE UNUSED;

When extents are freed, Oracle updates the data dictionary to reflect the regained
extents as available space. Any data in the blocks of freed extents becomes inacces-
sible, and Oracle clears the data when the blocks are subsequently reused for other
extents.

Nonclustered Tables
As long as a nonclustered table exists or until you truncate the table, any data block
allocated to its data segment remains allocated for the table. Oracle inserts new
rows into a block if there is enough room. Even if you delete all rows of a table, Ora-
cle does not reclaim the data blocks for use by other objects in the tablespace.

After you drop a nonclustered table, this space can be reclaimed when other
extents require free space.

Oracle reclaims all the extents of its data and index segments for the tablespaces
that they were in and makes the extents available for other objects in the
tablespace. Subsequently, when other segments require large extents, Oracle identi-
fies and combines contiguous reclaimed extents to form the requested larger
extents.

Additional Information: See Oracle8 Administrator’s Guide and
Oracle8 SQL Reference for more information on deallocating extents.
 Data Blocks, Extents, and Segments 2-13

Extents
Clustered Tables
Clustered tables store their information in the data segment created for the cluster.
Therefore, if you drop one table in a cluster, the data segment remains for the other
tables in the cluster, and no extents are deallocated. You can also truncate clusters
(except for hash clusters) to free extents.

Snapshots and Snapshot Logs
Oracle deallocates the extents of snapshots and snapshot logs in the same manner
as for nonclustered and clustered tables.

Indexes
All extents allocated to an index segment remain allocated as long as the index
exists. When you drop the index or associated table or cluster, Oracle reclaims the
extents for other uses within the tablespace.

Rollback Segments
Oracle periodically checks to see if the rollback segments of the database have
grown larger than their optimal size. If a rollback segment is larger than is optimal
(that is, it has too many extents), Oracle automatically deallocates one or more
extents from the rollback segment. See “How Extents Are Deallocated from a Roll-
back Segment” on page 2-22 for more information.

Temporary Segments
When Oracle completes the execution of a statement requiring a temporary seg-
ment, Oracle automatically drops the temporary segment and returns the extents
allocated for that segment to the associated tablespace. A single sort allocates its
own temporary segment, in the temporary tablespace of the user issuing the state-
ment, and then returns the extents to the tablespace.

Multiple sorts, however, can use sort segments in a temporary tablespace desig-
nated exclusively for sorts. These sort segments are allocated only once for the
instance, and they are not returned after the sort but remain available for other mul-
tiple sorts. For more information, see “Temporary Segments” on page 2-16.

Additional Information: See Oracle8 Replication for more informa-
tion on snapshots and snapshot logs.
2-14 Oracle8 Concepts

Segments
Segments
A segment is a set of extents that contains all the data for a specific logical storage
structure within a tablespace. For example, for each table, Oracle allocates one or
more extents to form that table’s data segment; for each index, Oracle allocates one
or more extents to form its index segment.

Oracle databases use four types of segments:

■ Data Segments

■ Index Segments

■ Temporary Segments

■ Rollback Segments

The following sections discuss each type of segment.

Data Segments
Every nonclustered table or partition and every cluster in an Oracle database has a
single data segment to hold all of its data. Oracle creates this data segment when
you create the nonclustered table or cluster with the CREATE command.

The storage parameters for a nonclustered table or cluster determine how its data
segment’s extents are allocated. You can set these storage parameters directly with
the appropriate CREATE or ALTER command. These storage parameters affect the
efficiency of data retrieval and storage for the data segment associated with the
object.

Index Segments
Every index in an Oracle database has a single index segment to hold all of its data.
Oracle creates the index segment for the index when you issue the CREATE INDEX
command. In this command, you can specify storage parameters for the extents of
the index segment and a tablespace in which to create the index segment. (The seg-

Note: Oracle creates segments for snapshots and snapshot logs in
the same manner as for nonclustered and clustered tables.

Additional Information: See Oracle8 Replication for more informa-
tion on snapshots and snapshot logs, and see Oracle8 SQL Reference
for more information on the CREATE and ALTER commands.
 Data Blocks, Extents, and Segments 2-15

Segments
ments of a table and an index associated with it do not have to occupy the same
tablespace.) Setting the storage parameters directly affects the efficiency of data
retrieval and storage.

Temporary Segments
When processing queries, Oracle often requires temporary workspace for interme-
diate stages of SQL statement parsing and execution. Oracle automatically allocates
this disk space called a temporary segment. Typically, Oracle requires a temporary
segment as a work area for sorting. Oracle does not create a segment if the sorting
operation can be done in memory or if Oracle finds some other way to perform the
operation using indexes.

Operations Requiring Temporary Segments
The following commands may require the use of a temporary segment:

■ CREATE INDEX

■ SELECT ... ORDER BY

■ SELECT DISTINCT ...

■ SELECT ... GROUP BY

■ SELECT ... UNION

■ SELECT ... INTERSECT

■ SELECT ... MINUS

Some unindexed joins and correlated subqueries may also require use of a tempo-
rary segment. For example, if a query contains a DISTINCT clause, a GROUP BY,
and an ORDER BY, Oracle can require as many as two temporary segments. If
applications often issue commands in the list above, the database administrator
may want to improve performance by adjusting the initialization parameter
SORT_AREA_SIZE.

How Temporary Segments Are Allocated
Oracle allocates temporary segments as needed during a user session, in the tempo-
rary tablespace of the user issuing the statement. You specify this tablespace with
a CREATE USER or an ALTER USER command using the TEMPORARY
TABLESPACE option. If no temporary tablespace has been defined for the user,

Additional Information: See the Oracle8 Reference for information
on SORT_AREA_SIZE and other initialization parameters.
2-16 Oracle8 Concepts

Segments
the default temporary tablespace is the SYSTEM tablespace. The default storage
characteristics of the containing tablespace determine those of the extents of the
temporary segment.

Oracle drops temporary segments when the statement completes.

Because allocation and deallocation of temporary segments occur frequently, it is
reasonable to create a special tablespace for temporary segments. By doing so, you
can distribute I/O across disk devices, and you may avoid fragmentation of the
SYSTEM and other tablespaces that otherwise would hold temporary segments.

For more information about assigning a user’s temporary segment tablespace, see
Chapter 25, “Controlling Database Access”.

Entries for changes to temporary segments used for sort operations are not stored
in the redo log, except for space management operations on the temporary segment.

Rollback Segments
Each database contains one or more rollback segments. A rollback segment records
the old values of data that was changed by each transaction (whether or not com-
mitted). Rollback segments are used to provide read consistency, to roll back trans-
actions, and to recover the database. For specific information about how rollback
segments function in these situations, see the appropriate sections of this book:

Contents of a Rollback Segment
Information in a rollback segment consists of several rollback entries. Among other
information, a rollback entry includes block information (the filenumber and block
ID corresponding to the data that was changed) and the data as it existed before an
operation in a transaction. Oracle links rollback entries for the same transaction, so
the entries can be found easily if necessary for transaction rollback.

Neither database users nor administrators can access or read rollback segments;
only Oracle can write to or read them. (They are owned by the user SYS, no matter
which user creates them.)

Topic Section

Read Consistency “Multiversion Concurrency Control” on page 23-4

Transaction Rollback “Rolling Back Transactions” on page 15-6

Database Recovery “Rollback Segments and Rolling Back” on page 28-9
 Data Blocks, Extents, and Segments 2-17

Segments
Logging Rollback Entries
Rollback entries change data blocks in the rollback segment, and Oracle records all
changes to data blocks, including rollback entries, in the redo log. This second
recording of the rollback information is very important for active transactions (not
yet committed or rolled back) at the time of a system crash. If a system crash
occurs, Oracle automatically restores the rollback segment information, including
the rollback entries for active transactions, as part of instance or media recovery.
Once the recovery is complete, Oracle performs the actual rollbacks of transactions
that had been neither committed nor rolled back at the time of the system crash.

When Rollback Information Is Required
For each rollback segment, Oracle maintains a transaction table—a list of all transac-
tions that use the associated rollback segment and the rollback entries for each
change performed by these transactions. Oracle uses the rollback entries in a roll-
back segment to perform a transaction rollback and to create read-consistent results
for queries.

Rollback segments record the data prior to change on a per-transaction basis. For
every transaction, Oracle links each new change to the previous change. If you
must roll back the transaction, Oracle applies the changes in a chain to the data
blocks in an order that restores the data to its previous state.

Similarly, when Oracle needs to provide a read-consistent set of results for a query,
it can use information in rollback segments to create a set of data consistent with
respect to a single point in time.

Transactions and Rollback Segments
Each time a user’s transaction begins, the transaction is assigned to a rollback seg-
ment in one of two ways:

■ Oracle can assign a transaction automatically to the next available rollback seg-
ment. The transaction assignment occurs when you issue the first DML or DDL
statement in the transaction. Oracle never assigns read-only transactions (trans-
actions that contain only queries) to a rollback segment, regardless of whether
the transaction begins with a SET TRANSACTION READ ONLY statement.

■ An application can assign a transaction explicitly to a specific rollback segment.
At the start of a transaction, an application developer or user can specify a par-
ticular rollback segment that Oracle should use when executing the transaction.
This allows the application developer or user to select a large or small rollback
segment, as appropriate for the transaction.
2-18 Oracle8 Concepts

Segments
For the duration of a transaction, the associated user process writes rollback infor-
mation only to the assigned rollback segment.

When you commit a transaction, Oracle releases the rollback information but does
not immediately destroy it. The information remains in the rollback segment to cre-
ate read-consistent views of pertinent data for queries that started before the trans-
action committed. To guarantee that rollback data is available for as long as
possible for such views, Oracle writes the extents of rollback segments sequentially.
When the last extent of the rollback segment becomes full, Oracle continues writing
rollback data by wrapping around to the first extent in the segment. A long-run-
ning transaction (idle or active) may require a new extent to be allocated for the roll-
back segment. See Figure 2–6, Figure 2–7, and Figure 2–8 for more information
about how transactions use the extents of a rollback segment.

Each rollback segment can handle a fixed number of transactions from one
instance. Unless you explicitly assign transactions to particular rollback segments,
Oracle distributes active transactions across available rollback segments so that all
rollback segments are assigned approximately the same number of active transac-
tions. Distribution does not depend on the size of the available rollback segments.
Therefore, in environments where all transactions generate the same amount of roll-
back information, all rollback segments can be the same size.

How Extents Are Used and Allocated for Rollback Segments
When you create a rollback segment, you can specify storage parameters to control
the allocation of extents for that segment. Each rollback segment must have at least
two extents allocated.

One transaction writes sequentially to a single rollback segment. Each transaction
writes to only one extent of the rollback segment at any given time. Many active
transactions can write concurrently to a single rollback segment—even the same
extent of a rollback segment; however, each data block in a rollback segment’s
extent can contain information for only a single transaction.

When a transaction runs out of space in the current extent and needs to continue
writing, Oracle finds an available extent of the same rollback segment in one of
two ways:

Additional Information: The number of transactions that a roll-
back segment can handle is an operating system-specific function
of the data block size. See your Oracle operating system-specific
documentation for more information.
 Data Blocks, Extents, and Segments 2-19

Segments
■ It can reuse an extent already allocated to the rollback segment.

■ It can acquire (and allocate) a new extent for the rollback segment.

The first transaction that needs to acquire more rollback space checks the next
extent of the rollback segment. If the next extent of the rollback segment does not
contain information from an active transaction, Oracle makes it the current extent,
and all transactions that need more space from then on can write rollback informa-
tion to the new current extent. Figure 2–6 illustrates two transactions, T1 and T2,
which begin writing in the third extent (E3) and continue writing to the fourth
extent (E4) of a rollback segment.

Figure 2–6 Use of Allocated Extents in a Rollback Segment

As the transactions continue writing and fill the current extent, Oracle checks the
next extent already allocated for the rollback segment to determine if it is available.
In Figure 2–7, when E4 is completely full, T1 and T2 continue any further writing to
the next extent allocated for the rollback segment that is available; in this figure, E1
is the next extent. This figure shows the cyclical nature of extent use in rollback
segments.

E1

E2

E3

E4

E1

E2

E3

E4
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .

Rollback Segment

Active extent without space

Non-active extent with space

T2

T1
2-20 Oracle8 Concepts

Segments
Figure 2–7 Cyclical Use of the Allocated Extents in a Rollback Segment

To continue writing rollback information for a transaction, Oracle always tries to
reuse the next extent in the ring first. However, if the next extent contains data from
active transaction, then Oracle must allocate a new extent. Oracle can allocate new
extents for a rollback segment until the number of extents reaches the value set for
the rollback segment’s storage parameter MAXEXTENTS.

Figure 2–8 shows a new extent allocated for a rollback segment. The uncommitted
transactions are long running (either idle, active, or persistent in-doubt distributed
transactions). At this time, they are writing to the fourth extent, E4, in the rollback

E
1

E
2

E
3

E
4

E1

E2

E3

E4

E
1

E
2

E
3

E
4

E2

E3

E4

E1

Rollback Segment

Active extent without space

Non-active extent with space

T1

T2
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .
 Data Blocks, Extents, and Segments 2-21

Segments
segment. However, when E4 is completely full, the transactions cannot continue
further writing to the next extent in sequence, E1, because it contains active roll-
back entries. Therefore, Oracle allocates a new extent, E5, for this rollback segment,
and the transactions continue writing to this new extent.

Figure 2–8 Allocation of a New Extent for a Rollback Segment

How Extents Are Deallocated from a Rollback Segment
When you drop a rollback segment, Oracle returns all extents of the rollback seg-
ment to its tablespace. The returned extents are then available to other segments in
the tablespace.

E2

E3

E4

E5

E1

New Extent

Active extent without space

Non-active extent with space

Rollback Segment

T1

T2
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .
2-22 Oracle8 Concepts

Segments
When you create or alter a rollback segment, you can use the storage parameter
OPTIMAL (which applies only to rollback segments) to specify the optimal size of
the segment in bytes. If a transaction needs to continue writing rollback informa-
tion from one extent to another extent in the rollback segment, Oracle compares the
current size of the rollback segment to the segment’s optimal size. If the rollback
segment is larger than its optimal size and the extents immediately following the
extent just filled are inactive, Oracle deallocates consecutive nonactive extents from
the rollback segment until the total size of the rollback segment is equal to or close
to but not less than its optimal size. Oracle always frees the oldest inactive extents,
as these are the least likely to be used by consistent reads.

A rollback segment’s OPTIMAL setting cannot be less than the combined space
allocated for the minimum number of extents for the segment:

(INITIAL + NEXT + NEXT + ... up to MINEXTENTS) bytes

The Rollback Segment SYSTEM
Oracle creates an initial rollback segment called SYSTEM whenever a database is
created. This segment is in the SYSTEM tablespace and uses that tablespace’s
default storage parameters. You cannot drop the SYSTEM rollback segment. An
instance always acquires the SYSTEM rollback segment in addition to any other
rollback segments it needs.

If there are multiple rollback segments, Oracle tries to use the SYSTEM rollback seg-
ment only for special system transactions and distributes user transactions among
other rollback segments; if there are too many transactions for the non-SYSTEM
rollback segments, Oracle uses the SYSTEM segment as necessary. In general, after
database creation, you should create at least one additional rollback segment in the
SYSTEM tablespace.

Oracle Instances and Types of Rollback Segments
When an Oracle instance opens a database, it must acquire one or more rollback
segments so that the instance can handle rollback information produced by subse-
quent transactions. An instance can acquire both private and public rollback seg-
ments. A private rollback segment is acquired explicitly by an instance when the
instance opens a database. Public rollback segments form a pool of rollback segments
that any instance requiring a rollback segment can use.

Any number of private and public rollback segments can exist in a database. As an
instance opens a database, the instance attempts to acquire one or more rollback
segments according to the following rules:
 Data Blocks, Extents, and Segments 2-23

Segments
1. The instance must acquire at least one rollback segment. If the instance is the
only instance accessing the database, it acquires the SYSTEM segment. If the
instance is one of several instances accessing the database in an Oracle Parallel
Server, it acquires the SYSTEM rollback segment and at least one other rollback
segment. If it cannot, Oracle returns an error, and the instance cannot open the
database.

2. The instance always attempts to acquire at least the number of rollback seg-
ments equal to the quotient of the values for the following initialization param-
eters:

CEIL(TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT)

CEIL is a SQL function that returns the smallest integer greater than or equal to
the numeric input. In the example above, if TRANSACTIONS equal 155 and
TRANSACTIONS_PER_ROLLBACK_SEGMENT equal 10, then the instance
will try to acquire at least 16 rollback segments. (However, an instance can
open the database even if the instance cannot acquire the number of rollback
segments given by the division above.)

3. After acquiring the SYSTEM rollback segment, the instance next tries to
acquire all private rollback segments specified by the instance’s
ROLLBACK_SEGMENTS parameter. If one instance in an Oracle Parallel
Server opens a database and attempts to acquire a private rollback segment
already claimed by another instance, the second instance trying to acquire the
rollback segment receives an error during startup. An error is also returned if
an instance attempts to acquire a private rollback segment that does not exist.

4. If the instance has acquired enough private rollback segments in number 3, no
further action is required. However, if an instance requires more rollback seg-
ments, the instance attempts to acquire public rollback segments.

Once an instance claims a public rollback segment, no other instance can use
that segment until either the rollback segment is taken offline or the instance
that claimed the rollback segment is shut down.

A database used by the Oracle Parallel Server optionally can have only public and
no private segments, as long as the number of segments in the database is high

Note: The TRANSACTIONS_PER_ROLLBACK_SEGMENT
parameter does not limit the number of transactions that can use a
rollback segment. Rather, it determines the number of rollback seg-
ments an instance attempts to acquire when opening a database.
2-24 Oracle8 Concepts

Segments
enough to ensure that each instance that opens the database can acquire at least
two rollback segments, one of which is the SYSTEM rollback segment. However,
when using the Oracle Parallel Server, you may want to use private rollback seg-
ments.

Rollback Segment States
A rollback segment is always in one of several states, depending on whether it is
offline, acquired by an instance, involved in an unresolved transaction, in need of
recovery, or dropped. The state of the rollback segment determines whether it can
be used in transactions, as well as which administrative procedures a DBA can per-
form on it.

The rollback segment states are:

The data dictionary table DBA_ROLLBACK_SEGS lists the state of each rollback
segment, along with other rollback information. Figure 2–9 shows how a rollback
segment moves from one state to another.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information about rollback segment use in
an Oracle Parallel Server.

OFFLINE Has not been acquired (brought online) by any
instance.

ONLINE Has been acquired (brought online) by an instance;
may contain data from active transactions.

NEEDS RECOVERY Contains data from uncommitted transactions that
cannot be rolled back (because the data files
involved are inaccessible), or is corrupted.

PARTLY AVAILABLE Contains data from an in-doubt transaction (that
is, an unresolved distributed transaction).

INVALID Has been dropped (The space once allocated to
this rollback segment will later be used when a
new rollback segment is created.)
 Data Blocks, Extents, and Segments 2-25

Segments
Figure 2–9 Rollback Segment States and State Transitions

PARTLY AVAILABLE and NEEDS RECOVERY Rollback Segments The PARTLY AVAIL-
ABLE and NEEDS RECOVERY states are very similar. A rollback segment in either
state usually contains data from an unresolved transaction.

PARTLY
AVAILABLE

OFFLINE INVALID

NEEDS
RECOVERYONLINE

Network failure
causes transaction
holding data to be
in-doubt

Media failure
makes data
inaccessible,
or segment
is corrupted

Data is
successfully
recovered

Rollback
segment
is brought
offline

Rollback segment is dropped

Distributed
transaction
is resolved

Rollback
segment is
brought
online

Rollback
segment
is dropped

In-doubt
transaction
is resolved

Media failure makes data held by
in-doubt transaction inaccessible
2-26 Oracle8 Concepts

Segments
■ A PARTLY AVAILABLE rollback segment is being used by an in-doubt distrib-
uted transaction that cannot be resolved because of a network failure. A
NEEDS RECOVERY rollback segment is being used by a transaction (local or
distributed) that cannot be resolved because of a local media failure, such as a
missing or corrupted datafile, or is itself corrupted.

■ Oracle or a DBA can bring a PARTLY AVAILABLE rollback segment online. In
contrast, you must take a NEEDS RECOVERY rollback segment OFFLINE
before it can be brought online. (If you recover the database and thereby
resolve the transaction, Oracle automatically changes the state of the NEEDS
RECOVERY rollback segment to OFFLINE.)

■ A DBA can drop a NEEDS RECOVERY rollback segment. (This allows the DBA
to drop corrupted segments.) A PARTLY AVAILABLE segment cannot be
dropped; you must first resolve the in-doubt transaction, either automatically
by the RECO process or manually.

If you bring a PARTLY AVAILABLE rollback segment online (by a command or
during instance startup), Oracle can use it for new transactions. However, the in-
doubt transaction still holds some of its transaction table entries, so the number of
new transactions that can use the rollback segment is limited. (See “When Rollback
Information Is Required” on page 2-18 for information on the transaction table.)

Also, until you resolve the in-doubt transaction, the transaction continues to hold
the extents it acquired in the rollback segment, preventing other transactions from
using them. Thus, the rollback segment might need to acquire new extents for the
active transactions, and therefore grow. To prevent the rollback segment from
growing, a database administrator might prefer to create a new rollback segment
for transactions to use until the in-doubt transaction is resolved, rather than bring
the PARTLY AVAILABLE segment online.

Deferred Rollback Segments
When a tablespace goes offline so that transactions cannot be rolled back immedi-
ately, Oracle writes to a deferred rollback segment. The deferred rollback segment con-
tains the rollback entries that could not be applied to the tablespace, so that they
can be applied when the tablespace comes back online. These segments disappear
as soon as the tablespace is brought back online and recovered. Oracle automati-
cally creates deferred rollback segments in the SYSTEM tablespace.

Additional Information: See Oracle8 Distributed Database Systems
for information about failures in distributed transactions.
 Data Blocks, Extents, and Segments 2-27

Segments
2-28 Oracle8 Concepts

 Tablespaces and Da
3

Tablespaces and Datafiles

Space — the final frontier . . .

Gene Roddenberry: Star Trek

This chapter describes tablespaces, the primary logical database structures of any
Oracle database, and the physical datafiles that correspond to each tablespace. The
chapter includes:

■ An Introduction to Tablespaces and Datafiles

■ Tablespaces

■ Datafiles

Additional Information: If you are using Trusted Oracle, see your
Trusted Oracle documentation for more information about
tablespaces and datafiles in that environment.
tafiles 3-1

An Introduction to Tablespaces and Datafiles
An Introduction to Tablespaces and Datafiles
Oracle stores data logically in tablespaces and physically in datafiles associated with
the corresponding tablespace. Figure 3–1 illustrates this relationship.

Figure 3–1 Datafiles and Tablespaces

Databases, tablespaces, and datafiles are closely related, but they have important
differences:

databases and
tablespaces

An Oracle database consists of one or more logi-
cal storage units called tablespaces. The data-
base’s data is collectively stored in the
database’s tablespaces.

Tablespace
(one or more datafiles)

Table

Index

Index

Index

Index

Index

Index

Index

Table

Table

Index

Index

Index

Database Files
(physical structures associated
with only one tablespace)

Objects
(stored in tablespaces-
may span several datafiles)
3-2 Oracle8 Concepts

Tablespaces
The following sections further explain tablespaces and datafiles.

Tablespaces
A database is divided into one or more logical storage units called tablespaces. The
database administrator (DBA) uses tablespaces to:

■ control disk space allocation for database data

■ assign specific space quotas for database users

■ control availability of data by taking individual tablespaces online or offline

■ perform partial database backup or recovery operations

■ allocate data storage across devices to improve performance

A DBA can create new tablespaces, add datafiles to tablespaces, set and alter
default segment storage settings for segments created in a tablespace, make a
tablespace read-only or read-write, make a tablespace temporary or permanent,
and drop tablespaces.

This section includes the following topics:

■ The SYSTEM Tablespace

■ Allocating More Space for a Database

■ Bringing Tablespaces Online and Offline

■ Temporary Tablespaces

■ Read-Only Tablespaces

tablespaces and datafiles Each tablespace in an Oracle database consists of
one or more files called datafiles. These are phys-
ical structures that conform with the operating
system in which Oracle is running.

databases and datafiles A database’s data is collectively stored in the
datafiles that constitute each tablespace of the
database. For example, the simplest Oracle data-
base would have one tablespace and one data-
file. A more complicated database might have
three tablespaces, each consisting of two data-
files (for a total of six datafiles).
 Tablespaces and Datafiles 3-3

Tablespaces
Tablespaces are divided into logical units of storage called segments, which are dis-
cussed in detail in Chapter 2, “Data Blocks, Extents, and Segments”.

The SYSTEM Tablespace
Every Oracle database contains a tablespace named SYSTEM, which Oracle creates
automatically when the database is created. The SYSTEM tablespace always con-
tains the data dictionary tables for the entire database.

A small database might need only the SYSTEM tablespace; however, Oracle Corpo-
ration recommends that you create at least one additional tablespace to store user
data separate from data dictionary information. This gives you more flexibility in
various database administration operations and reduces contention among dictio-
nary objects and schema objects for the same datafiles.

All data stored on behalf of stored PL/SQL program units (procedures, functions,
packages, and triggers) resides in the SYSTEM tablespace. If the database will con-
tain many of these program units, the database administrator needs to allow for the
space these objects use in the SYSTEM tablespace. For more information about
these objects and the space that they require, see Chapter 17, “Procedures and Pack-
ages”, and Chapter 18, “Database Triggers”.

Allocating More Space for a Database
You can enlarge a database in three ways:

■ add a datafile to a tablespace

■ add a new tablespace

■ increase the size of a datafile

When you add another datafile to an existing tablespace, you increase the amount
of disk space allocated for the corresponding tablespace. Figure 3–2 illustrates this
kind of space increase.

Note: The SYSTEM tablespace is always online when the data-
base is open. See “Bringing Tablespaces Online and Offline” on
page 3-7.
3-4 Oracle8 Concepts

Tablespaces
Figure 3–2 Enlarging a Database by Adding a Datafile to a Tablespace

Alternatively, you can create a new tablespace (which contains at lest one addi-
tional datafile) to increase the size of a database. Figure 3–3 illustrates this.

DATA1.ORA DATA3.ORADATA2.ORA

System Tablespace

Database

ALTER TABLESPACE system
ADD DATAFILE 'DATA2.ORA'

ALTER TABLESPACE system
ADD DATAFILE 'DATA3.ORA'

Single Tablespace

Database size and
tablespace size increase
with the addition of
datafiles
 Tablespaces and Datafiles 3-5

Tablespaces
Figure 3–3 Enlarging a Database by Adding a New Tablespace

The size of a tablespace is the size of the datafile(s) that constitute the tablespace;
the size of a database is the collective size of the tablespaces that constitute the data-
base.

The third option is to change a datafile’s size or allow datafiles in existing
tablespaces to grow dynamically as more space is needed. You accomplish this by
altering existing files or by adding files with dynamic extension properties.
Figure 3–4 illustrates this.

DATA1.ORA DATA2.ORA DATA3.ORA

System Tablespace USERS Tablespace

Database

Two Tablespaces

CREATE TABLESPACE users
DATAFILE 'DATA3.ORA'
3-6 Oracle8 Concepts

Tablespaces
Figure 3–4 Enlarging a Database by Dynamically Sizing Datafiles

Bringing Tablespaces Online and Offline
A database administrator can bring any tablespace (except the SYSTEM tablespace)
in an Oracle database online (accessible) or offline (not accessible) whenever the data-
base is open.

Additional Information: See the Oracle8 Administrator’s Guide for
more information about increasing the amount of space in your
database.

DATA1.ORA DATA2.ORA

System Tablespace USERS Tablespace

DATA3.ORA

Database

ALTER DATABASE
DATAFILE 'DATA3.ORA'
 AUTOEXTEND ON NEXT 20M
 MAXSIZE 1000M;

20 M

20 M
 Tablespaces and Datafiles 3-7

Tablespaces
A tablespace is normally online so that the data contained within it is available to
database users. However, the database administrator might take a tablespace offline

■ to make a portion of the database unavailable, while allowing normal access to
the remainder of the database

■ to perform an offline tablespace backup (although a tablespace can be backed
up while online and in use)

■ to make an application and its group of tables temporarily unavailable while
updating or maintaining the application

You cannot take a tablespace offline if it contains any rollback segments that are in
use. See “Rollback Segments” on page 2-17 for more information.

When a Tablespace Goes Offline
When a tablespace goes offline, Oracle does not permit any subsequent SQL state-
ments to reference objects contained in that tablespace. Active transactions with
completed statements that refer to data in that tablespace are not affected at the
transaction level. Oracle saves rollback data corresponding to those completed
statements in a deferred rollback segment (in the SYSTEM tablespace). When the
tablespace is brought back online, Oracle applies the rollback data to the
tablespace, if needed.

When a tablespace goes offline or comes back online, this is recorded in the data
dictionary in the SYSTEM tablespace. If a tablespace was offline when you shut
down a database, the tablespace remains offline when the database is subsequently
mounted and reopened.

You can bring a tablespace online only in the database in which it was created
because the necessary data dictionary information is maintained in the SYSTEM
tablespace of that database. An offline tablespace cannot be read or edited by any
utility other than Oracle. Thus, tablespaces cannot be transferred from database to
database.

Note: The SYSTEM tablespace is always online when the data-
base is open because the data dictionary must always be available
to Oracle.

Additional Information: Transfer of Oracle data can be achieved
with tools described in Oracle8 Utilities.
3-8 Oracle8 Concepts

Tablespaces
Oracle automatically switches a tablespace from online to offline when certain
errors are encountered (for example, when the database writer process, DBWn, fails
in several attempts to write to a datafile of the tablespace). Users trying to access
tables in the offline tablespace receive an error. If the problem that causes this disk
I/O to fail is media failure, you must recover the tablespace after you correct the
hardware problem.

Using Tablespaces for Special Procedures
If you create multiple tablespaces to separate different types of data, you take spe-
cific tablespaces offline for various procedures; other tablespaces remain online and
the information in them is still available for use. However, special circumstances
can occur when tablespaces are taken offline. For example, if two tablespaces are
used to separate table data from index data, the following is true:

■ If the tablespace containing the indexes is offline, queries can still access table
data because queries do not require an index to access the table data.

■ If the tablespace containing the tables is offline, the table data in the database is
not accessible because the tables are required to access the data.

In summary, if Oracle has enough information in the online tablespaces to execute a
statement, it will do so. If it needs data in an offline tablespace, then it causes the
statement to fail.

Read-Only Tablespaces
The primary purpose of read-only tablespaces is to eliminate the need to perform
backup and recovery of large, static portions of a database. Oracle never updates
the files of a read-only tablespace, and therefore the files can reside on read-only
media, such as CD ROMs or WORM drives.

Whenever you create a new tablespace, it is always created as read-write. You can
change the tablespace to read-only with the READ ONLY option of the ALTER
TABLESPACE command, making all of the tablespace’s associated datafiles read-
only as well. You can use the READ WRITE option to make a read-only tablespace
read-write again.

Note: Because you can only bring a tablespace online in the data-
base in which it was created, read-only tablespaces are not meant
to satisfy archiving or data publishing requirements.
 Tablespaces and Datafiles 3-9

Tablespaces
Making a tablespace read-only does not change its offline or online status. Offline
datafiles cannot be accessed. Bringing a datafile in a read-only tablespace online
makes the file only readable. The file cannot be written to unless its associated
tablespace is returned to the read-write state. You can take the files of a read-only
tablespace online or offline independently using the DATAFILE option of the
ALTER DATABASE command.

Read-only tablespaces cannot be modified. To update a read-only tablespace, you
must first make the tablespace read-write. After updating the tablespace, you can
then reset it to be read-only.

Because read-only tablespaces cannot be modified, they do not need repeated
backup. Also, should you need to recover your database, you do not need to
recover any read-only tablespaces, because they could not have been modified.
However, read-only tablespaces may need attention during instance or media
recovery, depending upon whether and when they have ever been read-write.

You can drop items, such as tables and indexes, from a read-only tablespace, just as
you can drop items from an offline tablespace. However, you cannot create or alter
objects in a read-only tablespace.

You cannot add datafiles to a read-only tablespace, even if you take the tablespace
offline. When you add a datafile, Oracle must update the file header, and this write
operation is not allowed in a read-only tablespace.

Temporary Tablespaces
You can manage space for sort operations more efficiently by designating temporary
tablespaces exclusively for sorts. Doing so effectively eliminates serialization of
space management operations involved in the allocation and deallocation of sort
space. All operations that use sorts — including joins, index builds, ordering
(ORDER BY), the computation of aggregates (GROUP BY), and the ANALYZE com-
mand to collect optimizer statistics — benefit from temporary tablespaces. The per-
formance gains are significant in Oracle Parallel Server environments.

A temporary tablespace can be used only for sort segments. (It is not the same as a
tablespace that a user designates for temporary segments, which can be any
tablespace available to the user.) No permanent objects can reside in a temporary

Additional Information: See the Oracle8 SQL Reference for informa-
tion on the ALTER TABLESPACE command.

Additional Information: See Oracle8 Backup and Recovery Guide for
more information about recovery.
3-10 Oracle8 Concepts

Datafiles
tablespace. Sort segments are used when a segment is shared by multiple sort oper-
ations. One sort segment exists in every instance that performs a sort operation in a
given tablespace.

Temporary tablespaces provide performance improvements when you have multi-
ple sorts that are too large to fit into memory. The sort segment of a given tempo-
rary tablespace is created at the time of the first sort operation. The sort segment
expands by allocating extents until the segment size is equal to or greater than the
total storage demands of all of the active sorts running on that instance.

You create temporary tablespaces using the following SQL syntax:

CREATE TABLESPACE tablespace TEMPORARY | PERMANENT;

You can also alter a tablespace from PERMANENT to TEMPORARY or vice versa
using the following syntax:

ALTER TABLESPACE tablespace TEMPORARY;

Datafiles
A tablespace in an Oracle database consists of one or more physical datafiles. A data-
file can be associated with only one tablespace and only one database.

Oracle creates a datafile for a tablespace by allocating the specified amount of disk
space plus the overhead required for the file header. When a datafile is created, the
operating system in which Oracle is running is responsible for clearing old informa-
tion and authorizations from a file before allocating it to Oracle. If the file is large,
this process might take a significant amount of time.

The first tablespace in any database is always the SYSTEM tablespace, so Oracle
automatically allocates the first datafiles of any database for the SYSTEM
tablespace during database creation.

Additional Information: See Oracle8 SQL Reference for more infor-
mation on the CREATE TABLESPACE and ALTER TABLESPACE
commands.

Additional Information: For information on the amount of space
required for the file header of datafiles on your operating system,
see your Oracle operating system specific documentation.
 Tablespaces and Datafiles 3-11

Datafiles
Datafile Contents
When a datafile is first created, the allocated disk space is formatted but does not
contain any user data; however, Oracle reserves the space to hold the data for
future segments of the associated tablespace — it is used exclusively by Oracle. As
the data grows in a tablespace, Oracle uses the free space in the associated datafiles
to allocate extents for the segment. See Chapter 2, “Data Blocks, Extents, and Seg-
ments”, for more information.

The data associated with schema objects in a tablespace is physically stored in one
or more of the datafiles that constitute the tablespace. Note that a schema object
does not correspond to a specific datafile; rather, a datafile is a repository for the
data of any object within a specific tablespace. Oracle allocates space for the data
associated with an object in one or more datafiles of a tablespace. Therefore, an
object can “span” one or more datafiles. Unless table “striping” is used (where data
is spread across more than one disk), the database administrator and end users can-
not control which datafile stores an object.

Size of Datafiles
You can alter the size of a datafile after its creation or you can specify that a datafile
should dynamically grow as schema objects in the tablespace grow. This functional-
ity enables you to have fewer datafiles per tablespace and can simplify administra-
tion of datafiles.

Offline Datafiles
You can take tablespaces offline (make unavailable) or bring them online (make
available) at any time except SYSTEM. All datafiles making up a tablespace are
taken offline or brought online as a unit when you take the tablespace offline or
bring it online, respectively. You can take individual datafiles offline; however, this
is normally done only during some database recovery procedures.

Additional Information: See the Oracle8 Administrator’s Guide for
more information about resizing datafiles.
3-12 Oracle8 Concepts

 The Data Dicti
4

The Data Dictionary

LEXICOGRAPHER — A writer of dictionaries, a harmless drudge.

Samuel Johnson: Dictionary

This chapter describes the central set of read-only reference tables and views of
each Oracle database, known collectively as the data dictionary. The chapter
includes:

■ An Introduction to the Data Dictionary

■ The Structure of the Data Dictionary

■ SYS, the Owner of the Data Dictionary

■ How the Data Dictionary Is Used

■ The Dynamic Performance Tables
onary 4-1

An Introduction to the Data Dictionary
An Introduction to the Data Dictionary
One of the most important parts of an Oracle database is its data dictionary, which is
a read-only set of tables that provides information about its associated database. A
data dictionary contains:

■ the definitions of all schema objects in the database (tables, views, indexes, clus-
ters, synonyms, sequences, procedures, functions, packages, triggers, and so on)

■ how much space has been allocated for, and is currently used by, the schema
objects

■ default values for columns

■ integrity constraint information

■ the names of Oracle users

■ privileges and roles each user has been granted

■ auditing information, such as who has accessed or updated various schema
objects

■ in Trusted Oracle, the labels of all schema objects and users (see your Trusted
Oracle documentation)

■ other general database information

The data dictionary is structured in tables and views, just like other database data.
All the data dictionary tables and views for a given database are stored in that data-
base’s SYSTEM tablespace.

Not only is the data dictionary central to every Oracle database, it is an important
tool for all users, from end users to application designers and database administra-
tors. To access the data dictionary, you use SQL statements. Because the data dictio-
nary is read-only, you can issue only queries (SELECT statements) against the
tables and views of the data dictionary.

The Structure of the Data Dictionary
A database’s data dictionary consists of:

base tables The underlying tables that store information about
the associated database. Only Oracle should write
to and read these tables. Users rarely access them
directly because they are normalized, and most of
the data is stored in a cryptic format.
4-2 Oracle8 Concepts

How the Data Dictionary Is Used
SYS, the Owner of the Data Dictionary
The Oracle user SYS owns all base tables and user-accessible views of the data dic-
tionary. Therefore, no Oracle user should ever alter (update, delete, or insert) any
rows or schema objects contained in the SYS schema, because such activity can com-
promise data integrity. The security administrator should keep strict control of this
central account.

How the Data Dictionary Is Used
The data dictionary has three primary uses:

■ Oracle accesses the data dictionary to find information about users, schema
objects, and storage structures.

■ Oracle modifies the data dictionary every time that a data definition language
(DDL) statement is issued.

■ Any Oracle user can use the data dictionary as a read-only reference for infor-
mation about the database.

How Oracle Uses the Data Dictionary
Data in the base tables of the data dictionary is necessary for Oracle to function.
Therefore, only Oracle should write or change data dictionary information.

During database operation, Oracle reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle also updates
the data dictionary continuously to reflect changes in database structures, auditing,
grants, and data.

user-accessible views The views that summarize and display the infor-
mation stored in the base tables of the data dictio-
nary. These views decode the base table data into
useful information, such as user or table names,
using joins and WHERE clauses to simplify the
information. Most users are given access to the
views rather than the base tables.

WARNING: Altering or manipulating the data in underlying
data dictionary tables can permanently and detrimentally affect
the operation of a database.
 The Data Dictionary 4-3

How the Data Dictionary Is Used
For example, if user KATHY creates a table named PARTS, new rows are added to
the data dictionary that reflect the new table, columns, segment, extents, and the
privileges that KATHY has on the table. This new information is then visible the
next time the dictionary views are queried.

Public Synonyms for Data Dictionary Views
Oracle creates public synonyms on many data dictionary views so that users can
access them conveniently. (The security administrator can also create additional
public synonyms for schema objects that are used systemwide.) Users should avoid
naming their own schema objects with the same names as those used for public syn-
onyms.

Caching of the Data Dictionary for Fast Access
Much of the data dictionary information is cached in the SGA (the dictionary cache),
because Oracle constantly accesses the data dictionary during database operation
to validate user access and to verify the state of schema objects. All information is
stored in memory using the LRU (least recently used) algorithm.

Information typically kept in the caches is that required for parsing. The COM-
MENTS columns describing the tables and their columns are not cached unless
they are accessed frequently.

Other Programs and the Data Dictionary
Other Oracle products can reference existing views and create additional data dic-
tionary tables or views of their own. Application developers who write programs
that refer to the data dictionary should refer to the public synonyms rather than the
underlying tables: the synonyms are less likely to change between software releases.

Adding New Data Dictionary Items
You can add new tables or views to the data dictionary. If you add new data dictio-
nary objects, the owner of the new objects should be the user SYSTEM or a third
Oracle user.

Caution: Never create new objects belonging to user SYS, except
by running the script provided by Oracle Corporation for creating
data dictionary objects.
4-4 Oracle8 Concepts

How the Data Dictionary Is Used
Deleting Data Dictionary Items
All changes to the data dictionary are performed by Oracle in response to DDL
statements, therefore no data in any data dictionary tables should be deleted or
altered by any user.

The single exception to this rule is the table SYS.AUD$. When auditing is enabled,
this table can grow without bound. Although you should not drop the
AUDIT_TRAIL table, the security administrator can safely delete data from it
because the rows are for information only and are not necessary for Oracle to run.

How Oracle Users Can Use the Data Dictionary
The views of the data dictionary serve as a reference for all database users. You
access the data dictionary views via the SQL language. Some views are accessible
to all Oracle users; others are intended for administrators only.

The data dictionary is always available when the database is open. It resides in the
SYSTEM tablespace, which is always online.

The data dictionary consists of sets of views. In many cases, a set consists of three
views containing similar information and distinguished from each other by their
prefixes:

The set of columns is identical across views with these exceptions:

■ Views with the prefix USER usually exclude the column OWNER. This column
is implied in the USER views to be the user issuing the query.

■ Some DBA views have additional columns containing information useful to the
administrator.

Table 4–1 Data Dictionary View Prefixes

Prefix Scope

USER user’s view (what is in the user’s schema)

ALL expanded user’s view (what the user can access)

DBA database administrator’s view (what all users can access)

Additional Information: See the Oracle8 Reference for a complete
list of data dictionary views and their columns.
 The Data Dictionary 4-5

How the Data Dictionary Is Used
Views with the Prefix USER
The views most likely to be of interest to typical database users are those with the
prefix USER. These views

■ refer to the user’s own private environment in the database, including informa-
tion about schema objects created by the user, grants made by the user, and so
on

■ display only rows pertinent to the user

■ have columns identical to the other views, except that the column OWNER is
implied (the current user)

■ return a subset of the information in the ALL_ views

■ can have abbreviated PUBLIC synonyms for convenience

For example, the following query returns all the objects contained in your schema:

SELECT object_name, object_type FROM user_objects;

Views with the Prefix ALL
Views with the prefix ALL refer to the user’s overall perspective of the database.
These views return information about schema objects to which the user has access
via public or explicit grants of privileges and roles, in addition to schema objects
that the user owns. For example, the following query returns information about all
the objects to which you have access:

SELECT owner, object_name, object_type FROM all_objects;

Views with the Prefix DBA
Views with the prefix DBA show a global view of the entire database. Therefore,
they are meant to be queried only by database administrators. Any user granted
the system privilege SELECT ANY TABLE can query the DBA-prefixed views of
the data dictionary.

Synonyms are not created for these views, because the DBA views should be que-
ried only by administrators. Therefore, to query the DBA views, administrators
must prefix the view name with its owner, SYS, as in

SELECT owner, object_name, object_type FROM sys.dba_objects;

Administrators can run the script file DBA_SYNONYMS.SQL to create private syn-
onyms for the DBA views in their accounts if they have the SELECT ANY TABLE
system privilege. Executing this script creates synonyms for the current user only.
4-6 Oracle8 Concepts

The Dynamic Performance Tables
DUAL
The table named DUAL is a small table that Oracle and user-written programs can
reference to guarantee a known result. This table has one column called DUMMY
and one row containing the value “X”.

The Dynamic Performance Tables
Throughout its operation, Oracle maintains a set of “virtual” tables that record cur-
rent database activity. These tables are called dynamic performance tables.

Dynamic performance tables are not true tables, and they should not be accessed
by most users. However, database administrators can query and create views on
the tables and grant access to those views to other users.

SYS owns the dynamic performance tables; their names all begin with V_$. Views
are created on these tables, and then public synonyms are created for the views.
The synonym names begin with V$. For example, V$DATAFILE contains informa-
tion about the database’s datafiles and V$FIXED_TABLE contains information
about all of the dynamic performance tables and views in the database.

Additional Information: See the description of the SELECT com-
mand in the Oracle8 SQL Reference for more information about the
DUAL table.

Additional Information: See the Oracle8 Reference for a complete
list of the dynamic performance views’ synonyms and their col-
umns.
 The Data Dictionary 4-7

The Dynamic Performance Tables
4-8 Oracle8 Concepts

Part III

The Oracle Instance

Part III describes the memory structures and processes that make up an Oracle
server instance and explains how the Oracle instance starts up and shuts down.

Part III contains the following chapters:

■ Chapter 5, “Database and Instance Startup and Shutdown”

■ Chapter 6, “Memory Structures”

■ Chapter 7, “Process Structure”

 Database and Instance Startup and Shu
5

Database and Instance Startup

and Shutdown

Greetings, Prophet;
The Great Work begins:
The Messenger has arrived.

Tony Kushner: Angels in America, Part I

This chapter explains the procedures involved in starting and stopping an Oracle
instance and database. It includes:

■ Overview of an Oracle Instance

– Connecting with Administrator Privileges

– Parameter Files

■ Instance and Database Startup

■ Database and Instance Shutdown

Additional Information: If you are using Trusted Oracle, refer to
your Trusted Oracle documentation for information about starting
up and shutting down in that environment.
tdown 5-1

Overview of an Oracle Instance
Overview of an Oracle Instance
Every running Oracle database is associated with an Oracle instance. When a data-
base is started on a database server (regardless of the type of computer), Oracle allo-
cates a memory area called the System Global Area (SGA) and starts one or more
Oracle processes. This combination of the SGA and the Oracle processes is called
an Oracle instance. The memory and processes of an instance manage the associated
database’s data efficiently and serve the one or multiple users of the database.

Figure 5–1 shows an Oracle instance. Also see Chapter 6, “Memory Structures” and
Chapter 7, “Process Structure” for details about the SGA and Oracle processes.

Figure 5–1 An Oracle Instance

The Instance and the Database
After starting an instance, Oracle associates the instance with the specified data-
base. This is called mounting the database. The database is then ready to be opened,
which makes it accessible to authorized users.

Multiple instances can execute concurrently on the same computer, each accessing
its own physical database. In clustered and massively parallel systems (MPP), the
Oracle Parallel Server allows multiple instances to mount a single database.

Oracle Processes

System Global Area (SGA)

Redo Log
Buffer

Context Areas

Database Buffer
Cache
5-2 Oracle8 Concepts

Overview of an Oracle Instance
Only the database administrator can start up an instance and open the database. If
a database is open, the database administrator can shut down the database so that
it is closed. When a database is closed, users cannot access the information that it
contains.

Security for database startup and shutdown is controlled via connections to Oracle
with administrator privileges. Normal users do not have control over the current
status of an Oracle database.

Connecting with Administrator Privileges
Database startup and shutdown are powerful administrative options and are
restricted to users who connect to Oracle with administrator privileges. Depending
on the operating system, one of the following conditions establishes administrator
privileges for a user:

■ The user’s operating system privileges allow him or her to connect using
administrator privileges.

■ The user is granted the SYSDBA or SYSOPER privileges and the database uses
password files to authenticate database administrators.

■ The database has a password for the INTERNAL login, and the user knows the
password.

For additional security, users who connect with administrator privileges can only
connect to dedicated servers (not shared servers).

When you connect with administrator privileges, you are placed in the schema
owned by SYS. This gives you access to all the objects in the SYS schema.

For more information about password files and authentication schemes for data-
base administrators, see Chapter 25, “Controlling Database Access”.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for information about the Oracle Parallel Server.

If you are using Trusted Oracle, see your Trusted Oracle documenta-
tion for information about instances in that environment.

Additional Information: For information on how administrator
privileges work on your operating system, see your operating sys-
tem-specific Oracle documentation.
 Database and Instance Startup and Shutdown 5-3

Overview of an Oracle Instance
Parameter Files
To start an instance, Oracle must read a parameter file — a text file containing a list
of configuration parameters (initialization parameters) for that instance and database.
You set these parameters to particular values to initialize many of the memory and
process settings of an Oracle instance. Most initialization parameters belong to one
of the following groups:

■ parameters that name things (such as files)

■ parameters that set limits (such as maximums)

■ parameters that affect capacity (such as the size of the SGA), which are called
variable parameters

Among other things, the initialization parameters tell Oracle:

■ the name of the database for which to start up an instance

■ how much memory to use for memory structures in the SGA

■ what to do with filled online redo log files

■ the names and locations of the database’s control files

■ the names of private rollback segments in the database

An Example of a Parameter File
The following is an example of a typical parameter file:

db_block_buffers = 550
db_name = ORA8PROD
db_domain = US.ACME.COM
#
license_max_users = 64
#
control_files = filename1, filename2
#
log_archive_dest = c:\logarch
log_archive_format = arch%S.ora
log_archive_start = TRUE
log_buffer = 64512
log_checkpoint_interval = 256000
rollback_segments = rs_one, rs_two

Oracle treats string literals defined for National Language Support (NLS) parame-
ters in the file as if they are in the database character set.
5-4 Oracle8 Concepts

Instance and Database Startup
Changing Parameter Values
The database administrator can adjust variable parameters to improve the perfor-
mance of a database system. Exactly which parameters most affect a system is a
function of numerous database characteristics and variables.

Modified parameter values take effect only when the instance starts up and reads
the parameter file. Some parameters can also be changed dynamically by using the
ALTER SESSION or ALTER SYSTEM command while the instance is running.

Instance and Database Startup
The three steps to starting a Oracle database and making it available for system-
wide use are:

1. Start an instance.

2. Mount the database.

3. Open the database.

A database administrator can perform these steps using Oracle Enterprise Manager.

Starting an Instance
When Oracle starts an instance, first it reads a parameter file to determine the val-
ues of initialization parameters and then it allocates an SGA — a shared area of
memory used for database information — and creates background processes. At
this point, no database is associated with these memory structures and processes.

See Chapter 6, “Memory Structures”, for information about the SGA and
Chapter 7, “Process Structure”, for information about background processes.

Restricted Mode of Instance Startup
You can start an instance in restricted mode (or later alter an existing instance to be
in restricted mode). This restricts connections to only those users who have been
granted the RESTRICTED SESSION system privilege.

Additional Information: For descriptions of all initialization
parameters, see Oracle8 Reference. For information about parame-
ters that affect the SGA, see “Size of the SGA” on page 6-11.

Additional Information: See Oracle Enterprise Manager Administra-
tor’s Guide.
 Database and Instance Startup and Shutdown 5-5

Instance and Database Startup
Forcing an Instance to Startup in Abnormal Situations
In unusual circumstances, a previous instance might not have been shut down
“cleanly”, for example, one of the instance’s processes might not have terminated
properly. In such situations, the database might return an error during normal
instance startup. To resolve this problem, you must terminate all remnant Oracle
processes of the previous instance before starting the new instance.

Mounting a Database
The instance mounts a database to associate the database with that instance. After
mounting the database, the instance finds the database control files and opens
them. (Control files are specified in the CONTROL_FILES initialization parameter
in the parameter file used to start the instance.) Oracle then reads the control files
to get the names of the database’s datafiles and redo log files.

At this point, the database is still closed and is accessible only to the database
administrator. The database administrator can keep the database closed while com-
pleting specific maintenance operations. However, the database is not yet available
for normal operations.

Modes of Mounting a Database with the Parallel Server

If Oracle allows multiple instances to mount the same database concurrently, the
database administrator can choose whether to run the database in exclusive or
shared mode.

Exclusive Mode If the first instance that mounts a database does so in exclusive
mode, only that instance can mount the database. Versions of Oracle that do not
support the Parallel Server option allow an instance to mount a database only in
exclusive mode.

Shared Mode If the first instance that mounts a database is started in shared mode
(also called “parallel” mode), other instances that are started in shared mode can
also mount the database.

Attention: The features described in this chapter are available
only if you have purchased Oracle8 Enterprise Edition with the
Parallel Server Option. See Getting to Know Oracle8 and the Oracle8
Enterprise Edition for more information.
5-6 Oracle8 Concepts

Instance and Database Startup
The number of instances that can mount the database is subject to a predetermined
maximum, which you can specify when creating the database.

Opening a Database
Opening a mounted database makes it available for normal database operations.
Any valid user can connect to an open database and access its information. Usually
a database administrator opens the database to make it available for general use.

When you open the database, Oracle opens the online datafiles and online redo log
files. If a tablespace was offline when the database was previously shut down, the
tablespace and its corresponding datafiles will still be offline when you reopen the
database. See “Bringing Tablespaces Online and Offline” on page 3-7.

If any of the datafiles or redo log files are not present when you attempt to open the
database, Oracle returns an error. You must perform recovery on a backup of any
damaged or missing database files before you can open the database.

Instance Recovery
If the database was last closed abnormally, either because the database administra-
tor aborted its instance or because of a power failure, Oracle automatically per-
forms instance recovery when the database is reopened. See “Database Instance
Failure” on page 28-4.

Rollback Segment Acquisition
When you open the database, the instance attempts to acquire one or more rollback
segments. See “The Rollback Segment SYSTEM” and “Oracle Instances and Types
of Rollback Segments” on page 2-23.

Resolution of In-Doubt Distributed Transaction
Occasionally a database may close abnormally with one or more distributed trans-
actions in doubt (neither committed nor rolled back). When you reopen the database
and instance recovery is complete, the RECO background process automatically,
immediately, and consistently resolves any in-doubt distributed transactions. For
more information, see Chapter 30, “Distributed Databases”.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information about the use of multiple
instances with a single database.

Additional Information: See Oracle8 Distributed Database Systems
for information on recovery from distributed transaction failures.
 Database and Instance Startup and Shutdown 5-7

Database and Instance Shutdown
Database and Instance Shutdown
The three steps to shutting down a database and its associated instance are:

1. Close the database.

2. Dismount the database.

3. Shut down the instance.

A database administrator can perform these steps using Oracle Enterprise
Manager. Oracle automatically performs all three steps whenever an instance is
shut down.

Closing a Database
When you close a database, Oracle writes all database data and recovery data in
the SGA to the datafiles and redo log files, respectively. Next, Oracle closes all
online datafiles and online redo log files. (Any offline datafiles of any offline
tablespaces will have been closed already. If you subsequently reopen the data-
base, any tablespace that was offline and its datafiles remain offline and closed,
respectively.) At this point, the database is closed and inaccessible for normal oper-
ations. The control files remain open after a database is closed but still mounted.

Closing the Database by Aborting the Instance
In rare emergency situations, you can abort the instance of an open database to
close and completely shut down the database instantaneously. This process is fast,
because the operation of writing all data in the buffers of the SGA to the datafiles
and redo log files is skipped. The subsequent reopening of the database requires
instance recovery, which Oracle performs automatically.

Dismounting a Database
Once the database is closed, Oracle dismounts the database to disassociate it from
the instance. At this point, the instance remains in the memory of your computer.

After a database is dismounted, Oracle closes the control files of the database.

Additional Information: See Oracle Enterprise Manager Administra-
tor’s Guide.

Note: If a system crash or power failure occurs while the data-
base is open, the instance is, in effect, “aborted”, and instance
recovery is performed when the database is reopened.
5-8 Oracle8 Concepts

Database and Instance Shutdown
Shutting Down an Instance
The final step in database shutdown is shutting down the instance. When you shut
down an instance, the SGA is removed from memory and the background pro-
cesses are terminated.

Abnormal Instance Shutdown
In unusual circumstances, shutdown of an instance might not occur cleanly; all
memory structures might not be removed from memory or one of the background
processes might not be terminated. When remnants of a previous instance exist,
subsequent instance startup most likely will fail. In such situations, the database
administrator can force the new instance to start up by first removing the remnants
of the previous instance and then starting a new instance, or by issuing a
SHUTDOWN ABORT command in Oracle Enterprise Manager.

Additional Information: For more detailed information on
instance and database startup and shutdown, see Oracle8 Adminis-
trator’s Guide.
 Database and Instance Startup and Shutdown 5-9

Database and Instance Shutdown
5-10 Oracle8 Concepts

 Memory Struc
6

Memory Structures

Yea, from the table of my memory
I’ll wipe away all trivial fond records.

Shakespeare: Hamlet

This chapter discusses the memory structures and processes in an Oracle database
system. It includes:

■ Introduction to Oracle Memory Structures

■ System Global Area (SGA)

■ Program Global Areas (PGA)

■ Sort Areas

■ Virtual Memory

■ Software Code Areas
tures 6-1

Introduction to Oracle Memory Structures
Introduction to Oracle Memory Structures
Oracle uses memory to store various information:

■ program code being executed

■ information about a connected session, even if it is not currently active

■ information needed during program execution (for example, the current state
of a query from which rows are being fetched)

■ information that is shared and communicated among Oracle processes (for
example, locking information)

■ cached data that is also permanently stored on peripheral memory (for exam-
ple, data blocks and redo log entries)

The basic memory structures associated with Oracle include:

■ Software Code Areas

■ System Global Area (SGA):

– the database buffer cache

– the redo log buffer

– the shared pool

■ Program Global Areas (PGA):

– the stack areas

– the data areas

■ Sort Areas

System Global Area (SGA)
A system global area (SGA) is a group of shared memory structures that contain
data and control information for one Oracle database instance. If multiple users are
concurrently connected to the same instance, the data in the instance’s SGA is
“shared” among the users. Consequently, the SGA is sometimes referred to as the
“shared global area”.

As described in “Overview of an Oracle Instance” on page 5-2, an SGA and Oracle
processes constitute an Oracle instance. Oracle automatically allocates memory for
an SGA when you start an instance and the operating system reclaims the memory
when you shut down the instance. Each instance has its own SGA.
6-2 Oracle8 Concepts

System Global Area (SGA)
The SGA is read-write; all users connected to a multiple-process database instance
may read information contained within the instance’s SGA, and several processes
write to the SGA during execution of Oracle.

The SGA contains the following data structures:

■ the database buffer cache

■ the redo log buffer

■ the shared pool

■ the data dictionary cache

■ other miscellaneous information

Part of the SGA contains general information about the state of the database and
the instance, which the background processes need to access; this is called the fixed
SGA. No user data is stored here.

The SGA also includes information communicated between processes, such as lock-
ing information.

If the system uses multithreaded server architecture the request and response
queues, and some contents of the program global areas, are in the SGA. (See “Pro-
gram Global Areas (PGA)” on page 6-13 and “Dispatcher Request and Response
Queues” on page 7-21.)

The Database Buffer Cache
The database buffer cache is the portion of the SGA that holds copies of data blocks
read from datafiles. All user processes concurrently connected to the instance share
access to the database buffer cache.

The database buffer cache and the shared SQL cache are logically segmented into
multiple sets. This organization into multiple sets reduces contention on multipro-
cessor systems.

Organization of the Database Buffer Cache
The buffers in the cache are organized in two lists: the dirty list and the least
recently used (LRU) list. The dirty list holds dirty buffers, which contain data that
has been modified but has not yet been written to disk. The least recently used (LRU)
list holds free buffers, pinned buffers, and dirty buffers that have not yet been
moved to the dirty list. Free buffers have not been modified and are available for
use. Pinned buffers are currently being accessed.
 Memory Structures 6-3

System Global Area (SGA)
When an Oracle process accesses a buffer, the process moves the buffer to the most
recently used (MRU) end of the LRU list. As more buffers are continually moved to
the MRU end of the LRU list, dirty buffers “age” towards the LRU end of the LRU
list.

The first time an Oracle user process requires a particular piece of data, it searches
for the data in the database buffer cache. If the process finds the data already in the
cache (a cache hit), it can read the data directly from memory. If the process cannot
find the data in the cache (a cache miss), it must copy the data block from a datafile
on disk into a buffer in the cache before accessing the data. Accessing data through
a cache hit is faster than data access through a cache miss.

Before reading a data block into the cache, the process must first find a free buffer.
The process searches the LRU list, starting at the least recently used end of the list.
The process searches either until it finds a free buffer or until it has searched the
threshold limit of buffers.

If the user process finds a dirty buffer as it searches the LRU list, it moves that
buffer to the dirty list and continues to search. When the process finds a free buffer,
it reads the data block from disk into the buffer and moves the buffer to the MRU
end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a
free buffer, the process stops searching the LRU list and signals the DBW0 back-
ground process to write some of the dirty buffers to disk. For more information
about the DBW0 process (or multiple DBWn processes), see “Database Writer
(DBWn)” on page 7-8.

The LRU Algorithm and Full Table Scans
When the user process is performing a full table scan, it reads the blocks of the
table into buffers and puts them on the LRU end (instead of the MRU end) of the
LRU list. This is because a fully scanned table usually is needed only briefly, so the
blocks should be moved out quickly to leave more frequently used blocks in the
cache.

You can control this default behavior of blocks involved in table scans on a table-by-
table basis. To specify that blocks of the table are to be placed at the MRU end of
the list during a full table scan, use the CACHE clause when creating or altering a
table or cluster. You may want to specify this behavior for small lookup tables or
large static historical tables to avoid I/O on subsequent accesses of the table.

Additional Information: See Oracle8 SQL Reference for information
on the CACHE clause.
6-4 Oracle8 Concepts

System Global Area (SGA)
Size of the Database Buffer Cache
The initialization parameter DB_BLOCK_BUFFERS specifies the number of buffers
in the database buffer cache. Each buffer in the cache is the size of one Oracle data
block (which is specified by the initialization parameter DB_BLOCK_SIZE); there-
fore, each database buffer in the cache can hold a single data block read from a
datafile.

The cache has a limited size, so not all the data on disk can fit in the cache. When
the cache is full, subsequent cache misses cause Oracle to write dirty data already
in the cache to disk to make room for the new data. (If a buffer is not dirty, it does
not need to be written to disk before a new block can be read into the buffer.) Subse-
quent access to any data that was written to disk results in additional cache misses.

The size of the cache affects the likelihood that a request for data will result in a
cache hit. If the cache is large, it is more likely to contain the data that is requested.
Increasing the size of a cache increases the percentage of data requests that result in
cache hits.

Multiple Buffer Pools
You can configure the database buffer cache with separate buffer pools that either
keep data in the buffer cache or make the buffers available for new data immedi-
ately after using the data blocks. Particular schema objects (tables, clusters, indexes,
and partitions) can then be assigned to the appropriate buffer pool to control the
way their data blocks age out of the cache.

■ The KEEP buffer pool retains the schema object’s data blocks in memory.

■ The RECYCLE buffer pool eliminates data blocks from memory as soon as they
are no longer needed.

■ The DEFAULT buffer pool contains data blocks from schema objects that are
not assigned to any buffer pool, as well as schema objects that are explicitly
assigned to the DEFAULT pool.

The initialization parameters that configure the KEEP and RECYCLE buffer pools
are BUFFER_POOL_KEEP and BUFFER_POOL_RECYCLE.

Additional Information: See Oracle8 Tuning for more information
on the buffer cache.

Additional Information: See Oracle8 Tuning for more information
on buffer pools, and see Oracle8 SQL Reference for the syntax of the
BUFFER_POOL option of the STORAGE clause.
 Memory Structures 6-5

System Global Area (SGA)
The Redo Log Buffer
The redo log buffer is a circular buffer in the SGA that holds information about
changes made to the database. This information is stored in redo entries. Redo
entries contain the information necessary to reconstruct, or redo, changes made to
the database by INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP opera-
tions. Redo entries are used for database recovery, if necessary.

Redo entries are copied by Oracle server processes from the user’s memory space
to the redo log buffer in the SGA. The redo entries take up continuous, sequential
space in the buffer. The background process LGWR writes the redo log buffer to the
active online redo log file (or group of files) on disk.

The initialization parameter LOG_BUFFER determines the size (in bytes) of the
redo log buffer. In general, larger values reduce log file I/O, particularly if transac-
tions are long or numerous. The default setting is four times the maximum data
block size for the host operating system.

The Shared Pool
The shared pool portion of the SGA contains three major areas: library cache,
dictionary cache, and control structures. Figure 6–1 shows the contents of the
shared pool.

The total size of the shared pool is determined by the initialization parameter
SHARED_POOL_SIZE. The default value of this parameter is 3,500,000 bytes.
Increasing the value of this parameter increases the amount of memory reserved
for the shared pool, and therefore increases the space reserved for shared SQL areas.

Additional Information: See “Log Writer Process (LGWR)” on
page 7-9 for more information about how the redo log buffer is
written to disk, and see Oracle8 Backup and Recovery Guide for infor-
mation about online redo log files and groups.
6-6 Oracle8 Concepts

System Global Area (SGA)
Figure 6–1 Contents of the Shared Pool

Library Cache
The library cache includes the shared SQL areas, private SQL areas, PL/SQL proce-
dures and packages, and control structures such as locks and library cache handles.

Shared SQL areas must be available to multiple users, so the library cache is con-
tained in the shared pool within the SGA. The size of the library cache (along with
the size of the data dictionary cache) is limited by the size of the shared pool.

Control Structures
for example:

Locks

Shared SQL Area

PL/SQL Procedures
and Packages

Control Structures
for example:

Character Set
Conversion Memory

Network Security
Attributes

and so on . . .

Dictionary Cache

Library
Cache handles
and so on . . .

Shared
Pool

Library
Cache

Reusable Runtime
Memory

 Memory Structures 6-7

System Global Area (SGA)
Shared SQL Areas and Private SQL Areas
Oracle represents each SQL statement it executes with a shared SQL area and a pri-
vate SQL area. Oracle recognizes when two users are executing the same SQL state-
ment and reuses the shared SQL area for those users. However, each user must
have a separate copy of the statement’s private SQL area.

Shared SQL Areas A shared SQL area contains the parse tree and execution plan for
a single SQL statement, or for identical SQL statements. Oracle saves memory by
using one shared SQL area for multiple identical DML statements, particularly
when many users execute the same application. A shared SQL area is always in the
shared pool.

Oracle allocates memory from the shared pool when a SQL statement is parsed; the
size of this memory depends on the complexity of the statement. If a SQL statement
requires a new shared SQL area and the entire shared pool has already been allo-
cated, Oracle can deallocate items from the pool using a modified least recently
used algorithm until there is enough free space for the new statement’s shared SQL
area. If Oracle deallocates a shared SQL area, the associated SQL statement must be
reparsed and reassigned to another shared SQL area when it is next executed.

Private SQL Areas A private SQL area contains data such as bind information and
runtime buffers. Each session that issues a SQL statement has a private SQL area.
Each user that submits an identical SQL statement has his or her own private SQL
area that uses a single shared SQL area; many private SQL areas can be associated
with the same shared SQL area. (See “Connections and Sessions” on page 7-4 for
more information about sessions.)

A private SQL area has a persistent area and a runtime area:

■ The persistent area contains bind information that persists across executions,
code for datatype conversion (in case the defined datatype is not the same as
the datatype of the selected column), and other state information (like recursive
or remote cursor numbers or the state of a parallel query). The size of the persis-
tent area depends on the number of binds and columns specified in the state-
ment. For example, the persistent area is larger if many columns are specified
in a query.

■ The runtime area contains information used while the SQL statement is being
executed. The size of the runtime area depends on the type and complexity of
the SQL statement being executed and on the sizes of the rows that are pro-

Additional Information: See Oracle8 Tuning for information about
the criteria that determine identical SQL statements.
6-8 Oracle8 Concepts

System Global Area (SGA)
cessed by the statement. In general, the runtime area is somewhat smaller for
INSERT, UPDATE, and DELETE statements than it is for SELECT statements.

Oracle creates the runtime area as the first step of an execute request. For INSERT,
UPDATE, and DELETE statements, Oracle frees the runtime area after the state-
ment has been executed. For queries, Oracle frees the runtime area only after all
rows are fetched or the query is canceled.

The location of a private SQL area depends on the type of connection established
for a session. If a session is connected via a dedicated server, private SQL areas are
located in the user’s PGA. However, if a session is connected via the multithreaded
server, the persistent areas and, for SELECT statements, the runtime areas, are kept
in the SGA.

Cursors and SQL Areas The application developer of an Oracle Precompiler program
or OCI program can explicitly open cursors, or handles to specific private SQL
areas, and use them as a named resource throughout the execution of the program.
Recursive cursors that Oracle issues implicitly for some SQL statements also use
shared SQL areas. For more information, see “Cursors” on page 14-6.

The management of private SQL areas is the responsibility of the user process. The
allocation and deallocation of private SQL areas depends largely on which applica-
tion tool you are using, although the number of private SQL areas that a user pro-
cess can allocate is always limited by the initialization parameter
OPEN_CURSORS. The default value of this parameter is 50.

A private SQL area continues to exist until the corresponding cursor is closed or
the statement handle is freed. Although Oracle frees the runtime area after the state-
ment completes, the persistent area remains waiting. Application developers
should close all open cursors that will not be used again to free the persistent area
and to minimize the amount of memory required for users of the application.

For queries that process large amounts of data requiring sorts, application develop-
ers should cancel the query if a partial result of a fetch is satisfactory. For example,
in an Oracle Office application, a user can select from a list of over 60 templates for
creating a mail message. When Oracle Office displays the first ten template names,
if the user chooses one of these templates the application should cancel the process-
ing of the rest of the query, rather than continue trying to display more template
names.

PL/SQL Program Units and the Shared Pool
Oracle processes PL/SQL program units (procedures, functions, packages, anony-
mous blocks, and database triggers) much the same way it processes individual
 Memory Structures 6-9

System Global Area (SGA)
SQL statements. Oracle allocates a shared area to hold the parsed, compiled form of
a program unit. Oracle allocates a private area to hold values specific to the session
that executes the program unit, including local, global, and package variables (also
known as package instantiation) and buffers for executing SQL. If more than one
user executes the same program unit, then a single, shared area is used by all users,
while each user maintains a separate copy of his or her private SQL area, holding
values specific to his or her session.

Individual SQL statements contained within a PL/SQL program unit are processed
as described in the previous sections. Despite their origins within a PL/SQL pro-
gram unit, these SQL statements use a shared area to hold their parsed representa-
tions and a private area for each session that executes the statement.

Dictionary Cache
The data dictionary is a collection of database tables and views containing refer-
ence information about the database, its structures, and its users. Oracle accesses
the data dictionary frequently during the parsing of SQL statements. This access is
essential to the continuing operation of Oracle. See Chapter 4, “The Data Dictio-
nary” for more information.

The data dictionary is accessed so often by Oracle that two special locations in
memory are designated to hold dictionary data. One area is called the data dictio-
nary cache, also known as the row cache because it holds data as rows instead of buff-
ers (which hold entire blocks of data). The other area in memory to hold dictionary
data is the library cache. All Oracle user processes share these two caches for access
to data dictionary information.

Allocation and Reuse of Memory in the Shared Pool
In general, any item (shared SQL area or dictionary row) in the shared pool
remains until it is flushed according to a modified LRU algorithm. The memory for
items that are not being used regularly is freed if space is required for new items
that must be allocated some space in the shared pool. A modified LRU algorithm
allows shared pool items that are used by many sessions to remain in memory as
long as they are useful, even if the process that originally created the item termi-
nates. As a result, the overhead and processing of SQL statements associated with a
multiuser Oracle system is minimized.

When a SQL statement is submitted to Oracle for execution, Oracle automatically
performs the following memory allocation steps:

1. Oracle checks the shared pool to see if a shared SQL area already exists for an
identical statement. If so, that shared SQL area is used for the execution of the
6-10 Oracle8 Concepts

System Global Area (SGA)
subsequent new instances of the statement. Alternatively, if there is no shared
SQL area for a statement, Oracle allocates a new shared SQL area in the shared
pool. In either case, the user’s private SQL area is associated with the shared
SQL area that contains the statement.

2. Oracle allocates a private SQL area on behalf of the session. The exact location
of the private SQL area depends on the connection established for a session
(see “Shared SQL Areas and Private SQL Areas” on page 6-8).

Oracle also flushes a shared SQL area from the shared pool in these circumstances:

■ When the ANALYZE command is used to update or delete the statistics of a
table, cluster, or index, all shared SQL areas that contain statements referencing
the analyzed schema object are flushed from the shared pool. The next time a
flushed statement is executed, the statement is parsed in a new shared SQL
area to reflect the new statistics for the schema object.

■ If a schema object is referenced in a SQL statement and that object is later modi-
fied in any way, the shared SQL area is invalidated (marked invalid) and the
statement must be reparsed the next time it is executed. See Chapter 19, “Ora-
cle Dependency Management”, for more information about the invalidation of
SQL statements and dependency issues.

■ If you change a database’s global database name, all information is flushed
from the shared pool.

■ The administrator can manually flush all information in the shared pool to
assess the performance (with respect to the shared pool, not the data buffer
cache) that can be expected after instance startup without shutting down the
current instance.

Size of the SGA
The size of the SGA is determined at instance start up. For optimal performance in
most systems, the entire SGA should fit in real memory. If it does not fit in real
memory and virtual memory (see “Virtual Memory” on page 6-16) is used to store
parts of it, overall database system performance can decrease dramatically because

Note: A shared SQL area can be flushed from the shared pool,
even if the shared SQL area corresponds to an open cursor that
has not been used for some time. If the open cursor is subsequently
used to execute its statement, Oracle reparses the statement and a
new shared SQL area is allocated in the shared pool.
 Memory Structures 6-11

System Global Area (SGA)
portions of the SGA are paged (written to and read from disk) by the operating sys-
tem. The amount of memory dedicated to all shared areas in the SGA also has per-
formance impact; see Oracle8 Tuning for more information.

The size of the SGA is determined by several initialization parameters. The parame-
ters that most affect SGA size are:

The memory allocated for an instance’s SGA is displayed on instance startup when
using Oracle Enterprise Manager (or Server Manger). You can also display the cur-
rent instance’s SGA size by using the Server Manager command SHOW with the
SGA option.

Controlling the SGA’s Use of Memory
Several initialization parameters are available to control how the SGA uses mem-
ory. For details about these parameters, see Oracle8 Reference.

Physical Memory
The LOCK_SGA and LOCK_SGA_AREAS parameters lock the entire SGA or partic-
ular SGA areas into physical memory.

DB_BLOCK_SIZE The size, in bytes, of a single data block and database
buffer.

DB_BLOCK_BUFFERS The number of database buffers, each the size of
DB_BLOCK_SIZE, allocated for the SGA. (The total
amount of space allocated for the database buffer cache
in the SGA is DB_BLOCK_SIZE times
DB_BLOCK_BUFFERS.)

LOG_BUFFER The number of bytes allocated for the redo log buffer.

SHARED_POOL_SIZE The size in bytes of the area devoted to shared SQL and
PL/SQL statements.

Additional Information: See the Oracle Enterprise Manager Adminis-
trator’s Guide for more information about showing the SGA size
with Oracle Enterprise Manager (or Server Manager).

See Oracle8 Tuning for discussions of the above initialization param-
eters and how they affect the SGA. Also see your Oracle installa-
tion or user’s guide for information specific to your operating
system.
6-12 Oracle8 Concepts

Program Global Areas (PGA)
SGA Starting Address
The SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_ADDRESS
parameters specify the SGA’s starting address at runtime. These parameters are
used only on platforms that do not specify the SGA’s starting address at link time.
For 64-bit platforms, HI_SHARED_MEMORY_ADDRESS specifies the high order
32 bits of the 64-bit address.

Extended Buffer Cache Mechanism
The USE_INDIRECT_DATA_BUFFERS parameter enables the extended buffer
cache mechanism for 32-bit platforms that can support more than 4 GB of physical
memory.

Program Global Areas (PGA)
A program global area (PGA) is a memory region containing data and control infor-
mation for a single process (server or background). Consequently, a PGA is some-
times called a “process global area.”

A PGA is nonshared memory area to which a process can write. One PGA is allo-
cated for each server process; the PGA is exclusive to that server process and is
read and written only by Oracle code acting on behalf of that process.

A PGA is allocated by Oracle when a user connects to an Oracle database and a ses-
sion is created, though this varies by operating system and configuration. (See
“Connections and Sessions” on page 7-4 for information about sessions.)

Contents of a PGA
The contents of a PGA vary, depending on whether the associated instance is run-
ning the multithreaded server. (See “The Multithreaded Server” on page 7-20 for
more information on the multithreaded server.)

Stack Space
A PGA always contains a stack space, which is memory allocated to hold a session’s
variables, arrays, and other information.

Session Information
If the instance is running without the multithreaded server, the PGA also contains
information about the user’s session, such as private SQL areas. If the instance is
running in multithreaded server configuration, this session information is not in
the PGA, but is instead allocated in the SGA.
 Memory Structures 6-13

Program Global Areas (PGA)
Figure 6–2 shows where the session information is stored in different configura-
tions.

Figure 6–2 Location of Session Information with and without Multithreaded Server

Size of a PGA
A PGA’s size is fixed and operating-system specific. When the client and server are
on different machines, the PGA is allocated on the database server at connect time;
if sufficient memory is not available to connect, an Oracle error occurs with an error
number in the range for that operating system. Once connected, a user can never
run out of PGA space; there is either enough or not enough memory to connect in
the first place.

Stack
Space

PGA

Stack
Space

Shared SQL Areas

SGA

Session
Information

Shared SQL Areas

SGA

PGA

Oracle
Multithreaded

Oracle
Multithreaded

Session
Information
6-14 Oracle8 Concepts

Sort Areas
The following initialization parameters affect the sizes of PGAs:

■ OPEN_LINKS

■ DB_FILES

■ LOG_FILES

The size of the stack space in each PGA created on behalf of Oracle background pro-
cesses (such as DBW0 and LGWR) is affected by some additional parameters.

Sort Areas
Sorting requires space in memory. Portions of memory in which Oracle sorts data
are called sort areas. A sort area exists in the memory of an Oracle user process that
requests a sort.

A sort area can grow to accommodate the amount of data to be sorted but is limited
by the value of the initialization parameter SORT_AREA_SIZE. The default value,
expressed in bytes, is operating system specific.

During a sort, Oracle may perform some tasks that do not involve referencing data
in the sort area. In such cases, Oracle may decrease the size of the sort area by writ-
ing some of the data to a temporary segment on disk and then deallocating the por-
tion of the sort area that contained that data. Such deallocation may occur, for
example, if Oracle returns control to the application.

The size to which the sort area is reduced is determined by the initialization param-
eter SORT_AREA_RETAINED_SIZE. The value of this parameter is expressed in
bytes. The minimum value is the equivalent of one database block; the maximum
(and default) value is the value of the SORT_AREA_SIZE initialization parameter.

Memory released during a sort is freed for use by the same Oracle process, but it is
not released to the operating system.

If the amount of data to be sorted does not fit into a sort area, then the data is
divided into smaller pieces that do fit. Each piece is then sorted individually. The
individual sorted pieces are called “runs”. After sorting all the runs, Oracle merges
them to produce the final result.

Additional Information: See your Oracle operating-system-spe-
cific documentation for more information about the PGA.
 Memory Structures 6-15

Virtual Memory
Sort Direct Writes
Sort Direct Writes provides an automatic tuning method for deriving the size and
number of direct write buffers based upon the sort area size. The memory for the
buffers is taken from the sort area, so only one tuning parameter is necessary. In
addition, an optimizer cost model is provided.

If memory and temporary space are abundant on your system and you perform
many large sorts to disk, the setting of the initialization parameter
SORT_DIRECT_WRITES can increase sort performance.

Virtual Memory
On many operating systems, Oracle takes advantage of virtual memory — an operat-
ing system feature that offers more apparent memory than is provided by real
memory alone and more flexibility in using main memory.

Virtual memory simulates memory using a combination of real (main) memory and
secondary storage (usually disk space). The operating system accesses virtual mem-
ory by making secondary storage look like main memory to application programs.

Software Code Areas
Software code areas are portions of memory used to store code that is being executed
or may be executed. Oracle code is stored in a software area that is typically at a dif-
ferent location from users’ programs — a more exclusive or protected location.

Software areas are usually static in size, changing only when software is updated
or reinstalled. The required size of these areas varies by operating system.

Software areas are read-only and may be installed shared or nonshared. When pos-
sible, Oracle code is shared so that all Oracle users can access it without having
multiple copies in memory. This results in a saving of real main memory, and
improves overall performance.

Additional Information: See Oracle8 Tuning for more information
on sort areas and the SORT_DIRECT_WRITES parameter.

Suggestion: Usually, it is best to keep the entire SGA in real
memory. On many platforms, you can lock the SGA or parts of it
into real memory with the LOCK_SGA and LOCK_SGA_AREAS
parameters.
6-16 Oracle8 Concepts

Software Code Areas
User programs can be shared or nonshared. Some Oracle tools and utilities (such as
SQL*Forms and SQL*Plus) can be installed shared, but some cannot. Multiple
instances of Oracle can use the same Oracle code area with different databases if
running on the same computer.

Additional Information: The option of installing software shared
is not available for all operating systems (for example, on PCs oper-
ating MS DOS). See your Oracle operating-system-specific docu-
mentation for more information.
 Memory Structures 6-17

Software Code Areas
6-18 Oracle8 Concepts

 Process Stru
7

Process Structure

If the good people, in their wisdom, shall see fit to keep me in the background, I have been
too familiar with disappointments to be very much chagrined.

Abraham Lincoln, Address at New Salem (1832)

This chapter discusses the processes in an Oracle database system and the different
configurations available for an Oracle system. It includes:

■ Introduction to Processes

■ Single-Process Oracle

■ Multiple-Process Oracle

■ Variations in Oracle Configuration

■ Examples of How Oracle Works

■ The Program Interface
cture 7-1

Introduction to Processes
Introduction to Processes
All connected Oracle users must execute two modules of code to access an Oracle
database instance:

These code modules are executed by processes. A process is a “thread of control” or
a mechanism in an operating system that can execute a series of steps. (Some oper-
ating systems use the terms job or task.) A process normally has its own private
memory area in which it runs.

The process structure varies for different Oracle configurations, depending on the
operating system and the choice of Oracle options.

Single-Process Oracle
Single-process Oracle (also called single-user Oracle) is a database system in which
one process executes all parts of the Oracle server code and the single user’s appli-
cation program. Different processes do not separate the execution of the Oracle
instance from the client application program.

Figure 7–1 shows a single-process Oracle instance. The single process executes all
code associated with the database application and Oracle.

Only one user can access an Oracle instance in a single-process environment; multi-
ple users cannot access the database concurrently. For example, Oracle running
under the MS-DOS operating system on a PC can be accessed only by a single user
because MS-DOS is not capable of running multiple processes.

This configuration is not as common as multiple-process Oracle, because it doesn
not take advantage of the distributed processing normally associated with database
operations.

application or
Oracle tool

A database user executes a database application (such
as a precompiler program) or an Oracle tool (such as an
Oracle Forms application or SQL*Plus), which issues
SQL statements to an Oracle database.

Oracle server code Each user has some Oracle server code executing on his
or her behalf, which interprets and processes the appli-
cation’s SQL statements.
7-2 Oracle8 Concepts

Multiple-Process Oracle
Figure 7–1 A Single-Process Oracle Instance

Multiple-Process Oracle
Multiple-process Oracle (also called multiuser Oracle) uses several processes to exe-
cute different parts of Oracle code, and a separate process for each connected user.
Each process in a multiple-process Oracle instance performs a specific job. By divid-
ing the work of Oracle and database applications into several processes, multiple
users and applications can connect to a single database instance simultaneously
while the system maintains excellent performance.

Most database systems are multiuser, because one of the primary benefits of a data-
base is managing data needed by multiple users at the same time.

Figure 7–2 illustrates a multiple-process Oracle instance. Each connected user has a
separate user process, and several background processes execute Oracle. This fig-
ure might represent multiple concurrent users running an application on the same
machine as Oracle; this particular configuration usually runs on a mainframe or
minicomputer.

Database Application

System Global Area (SGA)

ORACLE Server

Single Process
 Process Structure 7-3

Multiple-Process Oracle
Figure 7–2 A Multiple-Process Oracle Instance

In a multiple-process system, processes can be categorized into two groups: user
processes and Oracle processes. User processes execute the application or Oracle
tool code, and Oracle processes execute the Oracle server code.

User Processes
When a user runs an application program (such as a Pro*C program) or an Oracle
tool (such as Oracle Enterprise Manager or SQL*Plus) Oracle creates a user process
to run the user’s application.

Connections and Sessions
The terms “connection” and “session” are closely related to the term “user pro-
cess”, but are very different in meaning.

A connection is a communication pathway between a user process and an Oracle
instance. A communication pathway is established using available interprocess
communication mechanisms (on a computer that executes both the user process

Oracle
Processes
(background
processes)

User
processesUser User User User

Archiver
(ARCH)

Log
Writer

(LGWR)

Recoverer
(RECO)

Process
Monitor
(PMON)

System
Monitor
(SMON)

Database
Writer

(DBW0)

System Global Area
(SGA)
7-4 Oracle8 Concepts

Multiple-Process Oracle
and Oracle) or network software (when different computers execute the database
application and Oracle, and communicate via a network).

A session is a specific connection of a user to an Oracle instance via a user process.
For example, when a user starts SQL*Plus, the user must provide a valid username
and password and then a session is established for that user. A session lasts from
the time the user connects until the time the user disconnects or exits the database
application.

Multiple sessions can be created and exist concurrently for a single Oracle user
using the same username. For example, a user with the username/password of
SCOTT/TIGER can connect to the same Oracle instance several times.

In configurations without the multithreaded server, Oracle creates a server process
on behalf of each user session; however, with the multithreaded server, many user
sessions can share a single server process. See “The Multithreaded Server” on page
7-20 for more information.

Oracle Processes
In multiple-process systems, two types of processes control Oracle: server pro-
cesses and background processes.

Oracle creates server processes to handle the requests of user processes connected
to the instance. In some situations when the application and Oracle operate on the
same machine, it is possible to combine the user process and corresponding server
process into a single process to reduce system overhead. However, when the appli-
cation and Oracle operate on different machines, a user process communicates with
Oracle via a separate server process. See “Variations in Oracle Configuration” on
page 7-16 for more information.

Server Processes
Server processes (or the server portion of combined user/server processes) created
on behalf of each user’s application may perform one or more of the following:

■ Parse and execute SQL statements issued via the application.

■ Read necessary data blocks from datafiles on disk into the shared database buff-
ers of the SGA, if the blocks are not already present in the SGA.

■ Return results in such a way that the application can process the information.
 Process Structure 7-5

Multiple-Process Oracle
Background Processes
To maximize performance and accommodate many users, a multiprocess Oracle
system uses some additional Oracle processes called background processes.

On many operating systems, background processes are created automatically when
an instance is started. On other operating systems, the server processes are created
as a part of the Oracle installation.

An Oracle instance may have many background processes; not all are always
present. The background processes in an Oracle instance include the following:

■ Database Writer (DBW0 or DBWn)

■ Log Writer (LGWR)

■ Checkpoint (CKPT)

■ System Monitor (SMON)

■ Process Monitor (PMON)

■ Archiver (ARCH)

■ Recoverer (RECO)

■ Lock (LCKn)

■ Job Queue (SNPn)

■ Queue Monitor (QMNn)

■ Dispatcher (Dnnn)

■ Server (Snnn)

Figure 7–3 illustrates how each background process interacts with the different
parts of an Oracle database, and the rest of this section describes each process.

Additional Information: See your Oracle operating-system-spe-
cific documentation for details on how these processes are created.

Additional Information: The Oracle Parallel Server is not illus-
trated in Figure 7–3; see Oracle8 Parallel Server Concepts and Adminis-
tration for more information.
7-6 Oracle8 Concepts

Multiple-Process Oracle
Figure 7–3 The Background Processes of a Multiple-Process Oracle Instance

Database
Files

Redo Log
Files

Control
Files

Offline
Storage
Device

SMONPMONRECOLCKn

System Global Area

Database
Buffer Cache

Redo Log
Buffer

User
Process

User Processes

D000

User
Process

LGWR

Dedicated
Server

Process

CKPT

DBW0

Legend:

LCKn
RECO
PMON
SMON
CKPT
ARCH
DBW0
LGWR

Lock process
Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer

ARCH

Shared
Server

Process
 Process Structure 7-7

Multiple-Process Oracle
Database Writer (DBW n) The database writer process (DBWn) writes the contents of
buffers to datafiles. The DBWn processes are responsible for writing modified
(dirty) buffers in the database buffer cache to disk. (See “The Database Buffer
Cache” on page 6-3.) Although one database writer process (DBW0) is adequate for
most systems, you can configure additional processes (DBW1 through DBW9) to
improve write performance if your system modifies data heavily. These additional
DBWn processes are not useful on uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked “dirty”. The
primary job of the DBWn process is to keep the buffer cache “clean” by writing
dirty buffers to disk. As buffers are dirtied by user processes, the number of free
buffers diminishes. If the number of free buffers drops too low, user processes that
must read blocks from disk into the cache are not able to find free buffers. DBWn
manages the buffer cache so that user processes can always find free buffers.

The DBWn process writes the least recently used (LRU) buffers to disk. By writing
the least recently used dirty buffers to disk, DBWn improves the performance of
finding free buffers while keeping recently used buffers resident in memory. For
example, blocks that are part of frequently accessed small tables or indexes are kept
in the cache so that they do not need to be read in again from disk. The LRU algo-
rithm keeps more frequently accessed blocks in the buffer cache so that when a
buffer is written to disk, it is unlikely to contain data that may be useful soon.

The initialization parameter DB_WRITER_PROCESSES specifies the number of
DBWn processes. If your system uses multiple DBWn processes, you should adjust
the value of the DB_BLOCK_LRU_LATCHES parameter so that each DBWn pro-
cess has the same number of latches (LRU buffer lists).

The DBWn process writes dirty buffers to disk under the following conditions:

■ When a server process cannot find a clean reusable buffer after scanning a
threshold number of buffers, it signals DBWn to write. DBWn writes dirty buff-
ers to disk with a single multiblock write. (The number of blocks written in a
multiblock write varies by operating system.)

■ When a checkpoint occurs, the log writer process (LGWR) signals DBWn and
DBWn writes all buffers that need to be written for the checkpoint to complete.
Checkpoints occur at each log switch, when LGWR stops writing to one online
redo log file and starts writing to another, and at regular intervals specified by
the initialization parameters LOG_CHECKPOINT_INTERVAL and
LOG_CHECKPOINT_TIMEOUT.

Additional Information: See Oracle8 Tuning for advice on setting
DB_WRITER_PROCESSES and DB_BLOCK_LRU_LATCHES.
7-8 Oracle8 Concepts

Multiple-Process Oracle
■ DBWn periodically writes buffers to advance the position in the redo thread
(log) from which crash or instance recovery needs to begin (incremental check-
pointing). This log position is determined by the oldest dirty buffer in the buffer
cache. Incremental checkpointing occurs when the number of dirty buffers in
the cache is greater than a threshold specified by the initialization parameter
DB_BLOCK_MAX_DIRTY_TARGET. See “Incremental Checkpointing” on
page 28-4 for more information.

In all cases, DBWn performs batched (multiblock) writes to improve efficiency.

On some platforms, the DBW0 process can have multiple I/O server processes. If
one of these processes blocks during a write to one disk, the others can continue
writing to other disks. These processes cannot be used on systems with multiple
DBWn processes. The initialization parameter DBWR_IO_SLAVES controls the
number of I/O server processes.

Log Writer Process (LGWR) The log writer process (LGWR) is responsible for redo log
buffer management — writing the redo log buffer to a redo log file on disk (see
“The Redo Log Buffer” on page 6-6). LGWR writes all redo entries that have been
copied into the buffer since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the
redo log buffer to a redo log file, server processes can then copy new entries over
the entries in the redo log buffer that have been written to disk. LGWR normally
writes fast enough to ensure that space is always available in the buffer for new
entries, even when access to the redo log is heavy.

LGWR writes one contiguous portion of the buffer to disk. LGWR writes:

■ a commit record when a user process commits a transaction

■ redo log buffers

– every three seconds

– when the redo log buffer is one-third full

– when a DBWn process writes modified buffers to disk, if necessary

Additional Information: See your Oracle operating system-spe-
cific documentation for information about multiple I/O server pro-
cesses on your platform.

Also see Oracle8 Tuning for information about how to monitor and
tune the performance of a single DBW0 process or multiple DBWn
processes.
 Process Structure 7-9

Multiple-Process Oracle
LGWR writes synchronously to the active mirrored group of online redo log files. If
one of the files in the group is damaged or unavailable, LGWR continues writing to
other files in the group and logs an error in the LGWR trace file and in the system
ALERT file (see “Trace Files and the ALERT File” on page 7-14). If all files in a
group are damaged, or the group is unavailable because it has not been archived,
LGWR cannot continue to function.

When a user issues a COMMIT statement, LGWR puts a commit record in the redo
log buffer and writes it to disk immediately, along with the transaction’s redo
entries. The corresponding changes to data blocks are deferred until it is more effi-
cient to write them. This is called a “fast commit” mechanism. The atomic write of
the redo entry containing the transaction’s commit record is the single event that
determines the transaction has committed. Oracle returns a success code to the com-
mitting transaction, even though the data buffers have not yet been written to disk.

When a user commits a transaction, the transaction is assigned a system change num-
ber (SCN), which Oracle records along with the transaction’s redo entries in the
redo log. SCNs are recorded in the redo log so that recovery operations can be syn-
chronized in Oracle Parallel Server configurations and distributed databases.

In times of high activity, LGWR may write to the online redo log file using group
commits. For example, assume that a user commits a transaction — LGWR must
write the transaction’s redo entries to disk and as this happens, other users issue
COMMIT statements. However, LGWR cannot write to the online redo log file to

Note: Before DBWn can write a modified buffer, all redo records
associated with the changes to the buffer must be written to disk
(the write-ahead protocol). If DBWn finds that some redo records
have not been written, it signals LGWR to write the redo records to
disk and waits for LGWR to complete writing the redo log buffer
before it can write out the data buffers.

Note: Sometimes, if more buffer space is needed, LGWR writes
redo log entries before a transaction is committed. These entries
become permanent only if the transaction is later committed.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration and the Oracle8 Administrator’s Guide for more infor-
mation about SCNs and how they are used.
7-10 Oracle8 Concepts

Multiple-Process Oracle
commit these transactions until it has completed its previous write operation. After
the first transaction’s entries are written to the online redo log file, the entire list of
redo entries of waiting transactions (not yet committed) can be written to disk in
one operation, requiring less I/O than would transaction entries handled individu-
ally. Therefore, Oracle minimizes disk I/O and maximizes performance of LGWR.
If requests to commit continue at a high rate, then every write (by LGWR) from the
redo log buffer may contain multiple commit records.

On some platforms, the LGWR process can have multiple I/O server processes. If
one of these processes blocks during a write to one disk, the others can continue
writing to other disks. The initialization parameter LGWR_IO_SLAVES controls
the number of I/O server processes.

Checkpoint Process (CKPT) When a checkpoint occurs, Oracle must update the head-
ers of all datafiles to record the details of the checkpoint. This is done by the CKPT
process. The CKPT process does not write blocks to disk; DBWn always performs
that work.

The statistic DBWR checkpoints displayed by the System_Statistics monitor in Oracle
Enterprise Manager indicates the number of checkpoint requests completed.

System Monitor (SMON) The system monitor process (SMON) performs instance recov-
ery at instance start up. SMON is also responsible for cleaning up temporary seg-
ments that are no longer in use and for coalescing contiguous free extents to make
larger blocks of free space available. SMON “wakes up” regularly to check whether
it is needed. Other processes can call SMON if they detect a need for SMON to
wake up.

In an Oracle Parallel Server environment, SMON also performs instance recovery
for a failed CPU or instance.

Additional Information: See your Oracle operating system-spe-
cific documentation for information about multiple I/O server pro-
cesses on your platform.

For information about how to monitor and tune the performance
of LGWR, see Oracle8 Tuning.

Additional Information: See the Oracle8 Administrator’s Guide for
information about the effects of changing the checkpoint interval.

See Oracle8 Parallel Server Concepts and Administration for informa-
tion about CKPT in an Oracle Parallel Server.
 Process Structure 7-11

Multiple-Process Oracle
Process Monitor (PMON) The process monitor (PMON) performs process recovery
when a user process fails. PMON is responsible for cleaning up the database buffer
cache and freeing resources that the user process was using. For example, it resets
the status of the active transaction table, releases locks, and removes the process ID
from the list of active processes.

PMON also periodically checks the status of dispatcher and server processes, and
restarts any that have died (but not any that Oracle has terminated intentionally).

Like SMON, PMON “wakes up” regularly to check whether it is needed, and can
be called if another process detects the need for it.

Recoverer Process (RECO) The recoverer process (RECO) is a background process used
with the distributed database configuration that automatically resolves failures
involving distributed transactions.

The RECO process of a node automatically connects to other databases involved in
an in-doubt distributed transaction. When the RECO process reestablishes a connec-
tion between involved database servers, it automatically resolves all in-doubt trans-
actions, removing from each database’s pending transaction table any rows that
correspond to the resolved in-doubt transactions.

If the RECO process fails to connect with a remote server, RECO automatically tries
to connect again after a timed interval. However, RECO waits an increasing
amount of time (growing exponentially) before it attempts another connection.

The RECO process is present only if the instance permits distributed transactions
and if the DISTRIBUTED_TRANSACTIONS parameter is greater than zero. If this
initialization parameter is zero, RECO is not created during instance startup.

Archiver Process (ARCH) The archiver process (ARCH) copies online redo log files to a
designated storage device once they become full. ARCH is present only when the
redo log is used in ARCHIVELOG mode and automatic archiving is enabled.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information about SMON in an Oracle
Parallel Server.

Additional Information: For more information about distributed
transaction recovery, see Oracle8 Distributed Database Systems.
7-12 Oracle8 Concepts

Multiple-Process Oracle
Lock Processes (LCK n) With the Parallel Server option, up to ten lock processes
(LCK0, . . ., LCK9) provide interinstance locking. A single LCK process (LCK0) is
sufficient for most Oracle Parallel Server systems.

Job Queue Processes (SNP n) With the distributed database configuration, up to
thirty-six job queue processes (SNP0, ..., SNP9, SNPA, ..., SNPZ) can automatically
refresh table snapshots. These processes wake up periodically and refresh any snap-
shots that are scheduled to be automatically refreshed. If more than one job queue
process is used, the processes share the task of refreshing snapshots.

Unlike other Oracle background processes, failure of an SNPn process does not
cause the instance to fail. If an SNPn process fails, Oracle restarts it.

These processes also execute job requests created by the DBMS_JOB package and
propagate queued messages to queues on other databases (see “Oracle Advanced
Queuing” on page 16-4).

Queue Monitor Processes (QMN n) The queue monitor process is an optional background
process for Oracle Advanced Queuing (Oracle AQ) which monitors the message
queues. You can configure up to ten queue monitor processes. These processes, like
the SNPn processes, are different from other Oracle background processes in that
process failure does not cause the instance to fail.

See “Oracle Advanced Queuing” on page 16-4 for more information on message
queues and the queue monitor process.

Dispatcher Processes (D nnn) The dispatcher processes support multithreaded configu-
ration by allowing user processes to share a limited number of server processes.
(See “The Multithreaded Server” on page 7-20.) With the multithreaded server,
fewer shared server processes are required for the same number of users; therefore,
the multithreaded server can support a greater number of users, particularly in cli-

Additional Information: For information on archiving the online
redo log, see “The Redo Log” on page 28-7 and Oracle8 Backup and
Recovery Guide.

See your Oracle operating system-specific documentation for
details of using the ARCH process.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information about this background process.

Additional Information: See Oracle8 Administrator’s Guide for
more information about this background process and job queues.
 Process Structure 7-13

Multiple-Process Oracle
ent/server environments where the client application and server operate on differ-
ent machines.

You can create multiple dispatcher processes for a single database instance; at least
one dispatcher must be created for each network protocol used with Oracle. The
database administrator should start an optimal number of dispatcher processes
depending on the operating system limitation on the number of connections per
process, and can add and remove dispatcher processes while the instance runs.

In a multithreaded server configuration, a network listener process waits for con-
nection requests from client applications, and routes each to a dispatcher process. If
it cannot connect a client application to a dispatcher, the listener process starts a
dedicated server process, and connects the client application to the dedicated
server. The listener process is not part of an Oracle instance; rather, it is part of the
networking processes that work with Oracle.

Shared Server Processes (S nnn) Each shared server process serves multiple client
requests in the multithreaded server configuration. For more information, see
“Shared Server Processes” on page 7-23.

Trace Files and the ALERT File
Each server and background process can write to an associated trace file. When a
process detects an internal error, it dumps information about the error to its trace
file. If an internal error occurs and information is written to a trace file, the adminis-
trator should contact Oracle support.

All filenames of trace files associated with a background process contain the name
of the process that generated the trace file. The one exception to this is trace files
generated by job queue processes (SNPn).

Note: Each user process that connects to a dispatcher must do so
through Net8 or SQL*Net Version 2, even if both processes are run-
ning on the same machine.

Additional Information: See “The Multithreaded Server” on page
7-20 and the Oracle Net8 Administrator’s Guide for more information
about the network listener.

Additional Information: See Oracle8 Error Messages for informa-
tion about error messages.
7-14 Oracle8 Concepts

Multiple-Process Oracle
Additional information in trace files can provide guidance for tuning applications
or an instance. Background processes always write this information to a trace file
when appropriate. However, server processes write tuning information to a trace
file only if the initialization parameter SQL_TRACE is set to TRUE for the instance
or session. (Information about internal errors is always written to trace files.)

Each session can enable or disable trace logging on behalf of the associated server
process by using the SQL command ALTER SESSION with the SQL_TRACE
parameter. For example, the following statement enables writing to a trace file for
the session:

ALTER SESSION SET SQL_TRACE = TRUE;

Each database also has an ALERT file. The ALERT file of a database is a chronologi-
cal log of messages and errors, including

■ all internal errors (ORA-600), block corruption errors (ORA-1578), and dead-
lock errors (ORA-60) that occur

■ administrative operations, such as the SQL statements CREATE/ALTER/
DROP DATABASE/TABLESPACE/ROLLBACK SEGMENT and the Oracle
Enterprise Manager or Server Manager statements STARTUP, SHUTDOWN,
ARCHIVE LOG, and RECOVER

■ several messages and errors relating to the functions of shared server and dis-
patcher processes

■ errors during the automatic refresh of a snapshot

Oracle uses the ALERT file to keep a record of these events as an alternative to dis-
playing the information on an operator’s console. (Many systems also display this
information on the console.) If an administrative operation is successful, a message
is written in the ALERT file as “completed” along with a timestamp.
 Process Structure 7-15

Variations in Oracle Configuration
Variations in Oracle Configuration
In a multiple-process Oracle instance, the code for connected users can be config-
ured in one of three ways:

The following sections describe each variation in more detail.

Single-Task Configuration
Figure 7–4 illustrates the single-task Oracle configuration. In this configuration, the
database application and the Oracle server code all run in the same process, called
a user process.

single-task Oracle For each user, both the database application and the Oracle
server code are combined in a single user process.

dedicated server
(two-task Oracle)

For each user, the database application is run by a different
process (a user process) than the one that executes the Oracle
server code (a dedicated server process).

multithreaded
server

The database application is run by a different process (a user
process) than the one that executes the Oracle server code;
each server process that executes Oracle server code (a shared
server process) can serve multiple user processes.

Additional Information: Some operating systems offer a choice of
configurations; see your Oracle operating-system-specific docu-
mentation for more details on your options.
7-16 Oracle8 Concepts

Variations in Oracle Configuration
Figure 7–4 Oracle Using Combined User/Server Processes

This configuration of Oracle is feasible only in operating systems that can maintain
a separation between the database application and the Oracle code in a single pro-
cess (such as on the VAX VMS operating system). This separation is required for
data integrity and privacy. Some operating systems, such as UNIX, cannot provide
this separation and thus must have separate processes run application code and
server code.

Only one Oracle connection is allowed at any time by a process using the single-
task configuration. However, in a user-written program it is possible to maintain
this type of connection while concurrently connecting to Oracle using a network
(Net8) interface.

Note: The program interface is responsible for the separation and
protection of the Oracle server code and is responsible for passing
data between the database application and the Oracle user pro-
gram. See “The Program Interface” on page 7-27.

System Global Area

User
Process

User
Process

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Application
Code

Oracle
Server Code

Application
Code

Oracle
Server Code
 Process Structure 7-17

Variations in Oracle Configuration
Dedicated Server (Two-Task) Configuration
Figure 7–5 illustrates Oracle running on two computers using the dedicated server
architecture. In this configuration, a user process executes the database application
on one machine and a server process executes the associated Oracle server on
another machine.

Figure 7–5 Oracle Using Dedicated Server Processes

The user and server processes are separate, distinct processes. The separate server
process created on behalf of each user process is called a dedicated server process (or
shadow process) because this server process acts only on behalf of the associated
user process.

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server

Process

Oracle
Server Code
7-18 Oracle8 Concepts

Variations in Oracle Configuration
This configuration maintains a one-to-one ratio between the number of user pro-
cesses and server processes. Even when the user is not actively making a database
request, the dedicated server process remains (though it is inactive and may be
paged out on some operating systems).

Figure 7–5 shows user and server processes running on separate computers con-
nected across a network. However, the dedicated server architechture is also used
if the same computer executes both the client application and the Oracle server
code but the host operating system could not maintain the separation of the two
programs if they were run in a single process. (UNIX is a common example of such
an operating system.)

In the dedicated server configuration, the user and server processes communicate
using different mechanisms:

■ If the system is configured so that the user process and the dedicated server
process run on the same computer, the program interface uses the host operat-
ing system’s interprocess communication mechanism to perform its job.

■ If the user process and the dedicated server process run on different comput-
ers, the program interface provides the communication mechanisms (such as
the network software and Net8) between the programs.

Dedicated server architecture can sometimes result in inefficiency. Consider an
order entry system with dedicated server processes. A customer places an order as
a clerk enters the order into the database. For most of the transaction, the clerk is
talking to the customer while the server process dedicated to the clerk’s user pro-
cess remains idle. The server process is not needed during most of the transaction,
and the system is slower for other clerks entering orders. For applications such as
this, the multithreaded server architecture may be preferable.

See “An Example of Oracle Using Dedicated Server Processes” on page 7-25 for a
detailed illustration of the use of dedicated servers.

Additional Information: These communications links are operat-
ing system and installation dependent; see your Oracle operating-
system-specific documentation and the Net8 documentation for
more information.
 Process Structure 7-19

Variations in Oracle Configuration
The Multithreaded Server
The multithreaded server configuration allows many user processes to share very
few server processes. The user processes connect to a dispatcher background pro-
cess, which routes client requests to the next available shared server process.

The advantage of the multithreaded server configuration is that system overhead is
reduced, increasing the number of users that can be supported. A small number of
shared server processes can perform the same amount of processing as many dedi-
cated server processes, and the amount of memory required for each user is rela-
tively small.

A number of different processes are needed in a multithreaded server system:

■ a network listener process that connects the user processes to dispatchers or
dedicated servers (the listener process is part of Net8, not Oracle).

■ one or more dispatcher processes

■ one or more shared server processes

The multithreaded server requires Net8 or SQL*Net Version 2.

When an instance starts, the network listener process opens and establishes a com-
munication pathway through which users connect to Oracle. Then, each dispatcher
process gives the listener process an address at which the dispatcher listens for con-
nection requests. At least one dispatcher process must be configured and started
for each network protocol that the database clients will use.

When a user process makes a connection request, the listener examines the request
and determines whether the user process can use a shared server process. If so, the
listener returns the address of the dispatcher process that has the lightest load and
the user process connects to the dispatcher directly.

Some user processes cannot communicate with the dispatcher (such as those that
connect using pre-Version 2 SQL*Net) so the network listener process cannot con-
nect them to a dispatcher. In this case, or if the user process requests a dedicated
server (see “Restricted Operations of the Multithreaded Server” on page 7-24), the
listener creates a dedicated server and establishes an appropriate connection.

Note: To use shared servers, a user process must connect through
Net8 or SQL*Net Version 2, even if the process runs on the same
machine as the Oracle instance.
7-20 Oracle8 Concepts

Variations in Oracle Configuration
Dispatcher Request and Response Queues
A request from a user is a single program interface call that is part of the user’s
SQL statement. When a user makes a call, its dispatcher places the request on the
request queue, where it is picked up by the next available shared server process.

The request queue is in the SGA and is common to all dispatcher processes of an
instance. The shared server processes check the common request queue for new
requests, picking up new requests on a first-in-first-out basis. One shared server
process picks up one request in the queue and makes all necessary calls to the data-
base to complete that request.

When the server completes the request, it places the response on the calling dis-
patcher’s response queue. Each dispatcher has its own response queue in the SGA. The
dispatcher then returns the completed request to the appropriate user process.

For example, in an order entry system each clerk’s user process connects to a dis-
patcher and each request made by the clerk is sent to that dispatcher, which places
the request in the request queue. The next available shared server process picks up
the request, services it, and puts the response in the response queue. When a clerk’s
request is completed, the clerk remains connected to the dispatcher but the shared
server process that processed the request is released and available for other
requests. While one clerk is talking to a customer, another clerk can use the same
shared server process.

Figure 7–6 illustrates how user processes communicate with the dispatcher across
the program interface and how the dispatcher communicates users’ requests to
shared server processes.

Additional Information: See the Oracle Net8 Administrator’s Guide
for more information about the network listener.
 Process Structure 7-21

Variations in Oracle Configuration
Figure 7–6 The Multithreaded Server Configuration and Shared Server Processes

4
3

6

1

7

Application
Code

System Global Area

User
Process

Database Server

Client Workstation

Shared
Server

Processes

2 5

Dispatcher Processes

Oracle
Server Code

Request
Queues

Response
Queues
7-22 Oracle8 Concepts

Variations in Oracle Configuration
Shared Server Processes
Shared server processes and dedicated server processes provide the same function-
ality, except that shared server processes are not associated with a specific user pro-
cess. Instead, a shared server process serves any client request in the multithreaded
server configuration.

The PGA of a shared server process does not contain user-related data (which
needs to be accessible to all shared server processes). The PGA of a shared server
process contains only stack space and process-specific variables. “Program Global
Areas (PGA)” on page 6-13 provides more information about the content of a PGA
in different types of instance configurations.

All session-related information is contained in the SGA. Each shared server process
needs to be able to access all sessions’ data spaces so that any server can handle
requests from any session. Space is allocated in the SGA for each session’s data
space. You can limit the amount of space that a session can allocate by setting the
resource limit PRIVATE_SGA to the desired amount of space in the user’s profile.
See Chapter 25, “Controlling Database Access” for more information about
resource limits and profiles.

Oracle dynamically adjusts the number of shared server processes based on the
length of the request queue. The number of shared server processes that can be cre-
ated ranges between the values of the initialization parameters MTS_SERVERS and
MTS_MAX_SERVERS.

Artificial Deadlocks
With a limited number of shared server processes, the possibility of an “artificial”
deadlock can arise. An artificial deadlock can occur in the following situation:

1. One user acquires an exclusive lock on a resource by issuing a SELECT state-
ment with the FOR UPDATE clause or a LOCK TABLE statement.

2. The shared server process that processes the locking request is released once
the statement completes.

3. Other users attempt to access the locked resource. Each shared server process is
bound to the user process it is serving until the necessary locked resource
becomes available. Eventually, all shared servers may be bound to user pro-
cesses waiting for locked resources.

4. The original user attempts to submit a new request (such as a COMMIT or
ROLLBACK statement) to release the previously acquired lock, but cannot
because all shared server processes are currently being used.
 Process Structure 7-23

Examples of How Oracle Works
When Oracle detects an artificial deadlock, new shared server processes are auto-
matically created as needed until the original user submits a request that releases
the locked resources causing the artificial deadlocks. If the maximum number of
shared server processes (as specified by the MTS_MAX_SERVERS parameter) have
been started, the database administrator must manually resolve the deadlock by
disconnecting a user. This releases a shared server process, resolving the artificial
deadlock.

If artificial deadlocks occur too frequently on your system, you should increase the
value of MTS_MAX_SERVERS.

Restricted Operations of the Multithreaded Server
Certain administrative activities cannot be performed while connected to a dis-
patcher process, including shutting down or starting an instance and media recov-
ery. An error message is issued if you attempt to perform these activities while
connected to a dispatcher process.

These activities are typically performed when connected with administrator privi-
leges. When you want to connect with administrator privileges in a system config-
ured with multithreaded servers, you must state in your connect string that you
want to use a dedicated server process (SRVR=DEDICATED) instead of a dis-
patcher process.

See “An Example of Oracle Using the Multithreaded Server” on page 7-26 for a
detailed illustration of the use of the multithreaded server configuration.

Examples of How Oracle Works
Now that the memory structures, processes, and varying configurations of an Ora-
cle database system have been discussed, it is helpful to see how all the parts work
together. The following sections demonstrate and contrast the two-task and multi-
threaded server Oracle configurations.

Additional Information: See your Oracle operating system-spe-
cific documentation or the Oracle Net8 Administrator’s Guide for the
proper connect string syntax.
7-24 Oracle8 Concepts

Examples of How Oracle Works
An Example of Oracle Using Dedicated Server Processes
The following example is a simple illustration of the dedicated server architecture.
These steps show only the most basic level of operations that Oracle performs.

1. A database server machine is currently running Oracle using multiple back-
ground processes.

2. A user process on a client workstation runs a database application such as
SQL*Plus. The client application attempts to establish a connection to the
server using a Net8 driver.

3. The database server is currently running the proper Net8 driver. The network
listener process on the database server detects the connection request from the
client database application and creates a dedicated server process on the data-
base server on behalf of the user process.

4. The user executes a single SQL statement. For example, the user inserts a row
into a table.

5. The dedicated server process receives the statement. At this point, two paths
can be followed to continue processing the SQL statement:

■ If the shared pool contains a shared SQL area for an identical SQL state-
ment, the server process uses the existing shared SQL area to execute the
client’s SQL statement.

■ If the shared pool does not contain a shared SQL area for an identical SQL
statement, a new shared SQL area is allocated for the statement in the
shared pool.

In either case, a private SQL area is created in the session’s PGA and the dedi-
cated server process checks the user’s access privileges to the requested data.

6. The server process retrieves data blocks from the actual datafile, if necessary,
or uses data blocks already stored in the buffer cache in the SGA of the instance.

7. The server process executes the SQL statement stored in the shared SQL area.
Data is first changed in the SGA. It is permanently written to disk when the
DBW0 process determines it is most efficient to do so. The LGWR process
records the transaction in the online redo log file only on a subsequent commit
request from the user.

8. If the request is successful, the server sends a message across the network to
the user. If it is not successful, an appropriate error message is transmitted.

9. Throughout this entire procedure, the other background processes are running
and watching for any conditions that require intervention. In addition, Oracle
 Process Structure 7-25

Examples of How Oracle Works
is managing other transactions and preventing contention between different
transactions that request the same data.

An Example of Oracle Using the Multithreaded Server
The following example is a simple illustration of the multithreaded server architec-
ture:

1. A database server is currently running Oracle using the multithreaded server
configuration.

2. A user process on a client workstation runs a database application such as
SQL*Forms. The client application attempts to establish a connection to the
database server using the proper Net8 driver.

3. The database server machine is currently running the proper Net8 driver. The
network listener process on the database server detects the connection request
of the user process and determines how the user process should be connected.
If the user is using Net8 or SQL*Net Version 2, the listener informs the user pro-
cess to reconnect using the address of an available dispatcher process.

4. The user issues a single SQL statement. For example, the user updates a row
into a table.

5. The dispatcher process places the user process’s request on the request queue,
which is in the SGA and shared by all dispatcher processes.

6. An available shared server process checks the common dispatcher request
queue and picks up the next SQL statement on the queue. It then processes the
SQL statement as described in Steps 5, 6, and 7 of the previous example. (In
Step 5, parts of the session’s private SQL area are created in the SGA.)

7. Once the shared server process finishes processing the SQL statement, the pro-
cess places the result on the response queue of the dispatcher process that sent
the request.

8. The dispatcher process checks its response queue and sends completed
requests back to the user process that made the request.

Note: If the user process connects with SQL*Net Version 1 or 1.1,
the SQL*Net listener creates a dedicated server process on behalf
of the user process and the remainder of the example operates as
described in the preceding example. (User processes must connect
with Net8 or SQL*Net Version 2 to use a shared server process.)
7-26 Oracle8 Concepts

The Program Interface
The Program Interface
The program interface is the software layer between a database application and Ora-
cle. The program interface:

■ provides a security barrier, preventing destructive access to the SGA by client
user processes

■ acts as a communication mechanism, formatting information requests, passing
data, and trapping and returning errors

■ converts and translates data, particularly between different types of computers
or to external user program datatypes

The Oracle code acts as a server, performing database tasks on behalf of an applica-
tion (a client), such as fetching rows from data blocks. It consists of several parts,
provided by both Oracle software and operating-system-specific software.

Program Interface Structure
The program interface consists of the following pieces:

■ Oracle call interface (OCI) or the Oracle runtime library (SQLLIB)

■ the client or user side of the program interface (also called the UPI)

■ various Net8 drivers (protocol-specific communications software)

■ operating system communications software

■ the server or Oracle side of the program interface (also called the OPI)

Both the user and Oracle sides of the program interface execute Oracle software, as
do the drivers.

Net8 is the portion of the program interface that allows the client application pro-
gram and the Oracle server to reside on separate computers in your communica-
tion network.

The Program Interface Drivers
Drivers are pieces of software that transport data, usually across a network. They
perform operations like connect, disconnect, signal errors, and test for errors. Driv-
ers are specific to a communications protocol. There is always a default driver.

You may install multiple drivers (such as the asynchronous or DECnet drivers),
and select one as the default driver, but allow an individual user to use other driv-
ers by specifying the desired driver at the time of connection. Different processes
 Process Structure 7-27

The Program Interface
can use different drivers. A single process can have concurrent connections to a sin-
gle database or to multiple databases (either local or remote) using different Net8
drivers.

The installation and configuration guide and Net8 documentation for your system
contains details about choosing and installing drivers and adding new drivers after
installation. The Net8 documentation describes selecting a driver at runtime while
accessing Oracle.

Operating System Communications Software
The lowest level software connecting the user side to the Oracle side of the pro-
gram interface is the communications software, which is provided by the host oper-
ating system. DECnet, TCP/IP, LU6.2, and ASYNC are examples.

Additional Information: See Oracle Net8 Administrator’s Guide for
more information about Net8.

Additional Information: The communication software may be sup-
plied by Oracle Corporation but is usually purchased separately
from the hardware vendor or a third party software supplier. See
your Oracle operating-system-specific documentation for more
information about the communication software of your system.
7-28 Oracle8 Concepts

Part IV

The Object-Relational DBMS

Part IV describes the Oracle relational model for database management and the
object extensions to that model.

Part IV contains the following chapters:

■ Chapter 8, “Schema Objects”

■ Chapter 9, “Partitioned Tables and Indexes”

■ Chapter 10, “Built-In Datatypes”

■ Chapter 11, “User-Defined Datatypes (Objects Option)”

■ Chapter 12, “Using User-Defined Datatypes”

■ Chapter 13, “Object Views”

 Schema O
8

Schema Objects

My object all sublime
I shall achieve in time —
To let the punishment fit the crime.

Sir William Schwenck Gilbert: The Mikado

This chapter discusses the different types of database objects contained in a user’s
schema. It includes:

■ Overview of Schema Objects

■ Tables

■ Views

■ The Sequence Generator

■ Synonyms

■ Indexes

■ Index-Organized Tables

■ Clusters

■ Hash Clusters

Additional Information: If you are using Trusted Oracle, see your
Trusted Oracle documentation for information about schema objects
in that environment.
bjects 8-1

Overview of Schema Objects
Overview of Schema Objects
Associated with each database user is a schema. A schema is a collection of schema
objects. Examples of schema objects include tables, views, sequences, synonyms,
indexes, clusters, database links, snapshots, procedures, functions, and packages.

Schema objects are logical data storage structures. Schema objects do not have a
one-to-one correspondence to physical files on disk that store their information.
However, Oracle stores a schema object logically within a tablespace of the data-
base. The data of each object is physically contained in one or more of the
tablespace’s datafiles. For some objects such as tables, indexes, and clusters, you
can specify how much disk space Oracle allocates for the object within the
tablespace’s datafiles.

There is no relationship between schemas and tablespaces: a tablespace can contain
objects from different schemas, and the objects for a schema can be contained in dif-
ferent tablespaces. Figure 8–1 illustrates the relationship among objects,
tablespaces, and datafiles.

Additional Information: This chapter explains tables, views,
sequences, synonyms, indexes, and clusters. Other kinds of schema
objects are explained elsewhere in this manual, or in other manu-
als. Specifically:

■ Database links are described in Chapter 30, “Distributed Data-
bases”.

■ Object views are described in Chapter 13, “Object Views” and
in the Oracle8 Application Developer’s Guide.

■ Procedures, functions, and packages are described in
Chapter 17, “Procedures and Packages”.

■ Triggers are described in Chapter 18, “Database Triggers”.

■ Snapshots are described in Oracle8 Replication.
8-2 Oracle8 Concepts

Tables
Figure 8–1 Schema Objects, Tablespaces, and Datafiles

Tables
Tables are the basic unit of data storage in an Oracle database. Data is stored in rows
and columns. You define a table with a table name (such as EMP) and set of columns.
You give each column a column name (such as EMPNO, ENAME, and JOB), a
datatype (such as VARCHAR2, DATE, or NUMBER), and a width (the width might
be predetermined by the datatype, as in DATE) or precision and scale (for columns
of the NUMBER datatype only). A row is a collection of column information corre-
sponding to a single record.

See Chapter 10, “Built-In Datatypes”, for a discussion of the Oracle datatypes.

System Tablespace Data Tablespace

Index

Table

Index

Cluster

Index

Index

Index

Table Index

Index

Table

Index

Index

Index

Index

Index

Table

Index

Index

Table

Database

Drive 1

DBFILE3DBFILE2DBFILE1

Drive 1
 Schema Objects 8-3

Tables
You can optionally specify rules for each column of a table. These rules are called
integrity constraints. One example is a NOT NULL integrity constraint. This con-
straint forces the column to contain a value in every row. See Chapter 24, “Data
Integrity”, for more information about integrity constraints.

Once you create a table, you insert rows of data using SQL statements. Table data
can then be queried, deleted, or updated using SQL.

Figure 8–2 shows a sample table named EMP.

Figure 8–2 The EMP Table

How Table Data Is Stored
When you create a non-clustered table, Oracle automatically allocates a data seg-
ment in a tablespace to hold the table’s future data. You can control the allocation
of space for a table’s data segment and use of this reserved space in the following
ways:

■ You can control the amount of space allocated to the data segment by setting
the storage parameters for the data segment.

■ You can control the use of the free space in the data blocks that constitute the
data segment’s extents by setting the PCTFREE and PCTUSED parameters for
the data segment.

Oracle stores data for a clustered table in the data segment created for the cluster.
Storage parameters cannot be specified when a clustered table is created or altered;
the storage parameters set for the cluster always control the storage of all tables in
the cluster.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Column not
allowing nulls

Column
allowing
nulls

Rows Columns

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CLERK
SALESMAN
SALESMAN
MANAGER

7902
7698
7698
7839

17–DEC–88
20–FEB–88
22–FEB–88
02–APR–88

800.00
1600.00
1250.00
2975.00

300.00
300.00
500.00

20
30
30
20

Column names
8-4 Oracle8 Concepts

Tables
The tablespace that contains a non-clustered table’s data segment is either the table
owner’s default tablespace or a tablespace specifically named in the CREATE
TABLE statement. See “User Tablespace Settings and Quotas” on page 25-8.

Row Format and Size
Oracle stores each row of a database table as one or more row pieces. If an entire
row can be inserted into a single data block, Oracle stores the row as one row piece.
However, if all of a row’s data cannot be inserted into a single data block or an
update to an existing row causes the row to outgrow its data block, Oracle stores
the row using multiple row pieces. A data block usually contains only one row
piece per row. When Oracle must store a row in more than one row piece, it is
“chained” across multiple blocks. A chained row’s pieces are chained together
using the ROWIDs of the pieces. See “Row Chaining and Migrating” on page 2-10.

Each row piece, chained or unchained, contains a row header and data for all or
some of the row’s columns. Individual columns might also span row pieces and,
consequently, data blocks.

Figure 8–3 shows the format of a row piece.

The row header precedes the data and contains information about

■ row pieces

■ (for chained row pieces) chaining

■ columns in the row piece

■ (for clustered data) cluster keys

A non-clustered row fully contained in one block has at least three bytes of row
header. After the row header information, each row contains column length and
data. The column length requires one byte for columns that store 250 bytes or less,
or three bytes for columns that store more than 250 bytes, and precedes the column
data. Space required for column data depends on the datatype. If the datatype of a
column is variable length, the space required to hold a value can grow and shrink
with updates to the data.
 Schema Objects 8-5

Tables
Figure 8–3 The Format of a Row Piece

To conserve space, a null in a column only stores the column length (zero). Oracle
does not store data for the null column. Also, for trailing null columns, Oracle does
not store the column length because the row header signals the start of a new row
(for example, the last three columns of a table are null, thus there is no information
stored for those columns).

Clustered rows contain the same information as non-clustered rows. In addition,
they contain information that references the cluster key to which they belong. See
“Clusters” on page 8-32.

Note: Each row uses two bytes in the data block header’s row
directory.

Row Header Column Data

Database
Block

Row Piece in a Database Block

Row Overhead

Number of Columns

Cluster Key ID (if clustered)

ROWID of Chained Row Pieces (if any)

Column Length

Column Value
8-6 Oracle8 Concepts

Tables
Column Order
The column order is the same for all rows in a given table. Columns are usually
stored in the order in which they were listed in the CREATE TABLE statement, but
this is not guaranteed. For example, if you create a table with a column of datatype
LONG, Oracle always stores this column last. Also, if a table is altered so that a
new column is added, the new column becomes the last column stored.

In general, you should try to place columns that frequently contain nulls last so
that rows take less space. Note, though, that if the table you are creating includes a
LONG column as well, the benefits of placing frequently null columns last are lost.

ROWIDs of Row Pieces
The ROWID identifies each row piece by its location or address. Once assigned, a
given row piece retains its ROWID until the corresponding row is deleted, or
exported and imported using the IMPORT and EXPORT utilities. If the cluster key
values of a row change, the row keeps the same ROWID, but also gets an addi-
tional pointer ROWID for the new values.

Because ROWIDs are constant for the lifetime of a row piece, it is useful to refer-
ence ROWIDs in SQL statements such as SELECT, UPDATE, and DELETE. See
“ROWID Datatype” on page 10-12 for more information.

Nulls
A null is the absence of a value in a column of a row. Nulls indicate missing,
unknown, or inapplicable data. A null should not be used to imply any other value,
such as zero. A column allows nulls unless a NOT NULL or PRIMARY KEY integ-
rity constraint has been defined for the column, in which case no row can be
inserted without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In
these cases they require one byte to store the length of the column (zero). Trailing
nulls in a row require no storage because a new row header signals that the remain-
ing columns in the previous row are null. In tables with many columns, the col-
umns more likely to contain nulls should be defined last to conserve disk space.

Most comparisons between nulls and other values are by definition neither true nor
false, but unknown. To identify nulls in SQL, use the IS NULL predicate. Use the
SQL function NVL to convert nulls to non-null values.

Additional Information: See Oracle8 SQL Reference for more infor-
mation about comparisons using IS NULL and the NVL function.
 Schema Objects 8-7

Tables
Nulls are not indexed, except when the cluster key column value is null or the
index is a bitmap index (see “Bitmap Indexes and Nulls” on page 8-27).

Default Values for Columns
You can assign a column of a table a default value so that when a new row is
inserted and a value for the column is omitted, a default value is supplied automati-
cally. Default column values work as though an INSERT statement actually speci-
fies the default value.

Legal default values include any literal or expression that does not refer to a col-
umn, LEVEL, ROWNUM, or PRIOR. Default values can include the SQL functions
SYSDATE, USER, USERENV, and UID. The datatype of the default literal or expres-
sion must match or be convertible to the column datatype.

If a default value is not explicitly defined for a column, the default for the column
is implicitly set to NULL.

Default Value Insertion and Integrity Constraint Checking
Integrity constraint checking occurs after the row with a default value is inserted.
For example, in Figure 8–4, a row is inserted into the EMP table that does not
include a value for the employee’s department number. Because no value is sup-
plied for the department number, Oracle inserts the DEPTNO column’s default
value “20”. After inserting the default value, Oracle checks the FOREIGN KEY
integrity constraint defined on the DEPTNO column.

For more information about integrity constraints, see Chapter 24, “Data Integrity”.
8-8 Oracle8 Concepts

Tables
Figure 8–4 DEFAULT Column Values

Nested Tables
In the Oracle object-relational database, you can create a table with a column whose
datatype is another table. That is, tables can be nested within other tables as values
in a column. The Oracle server stores nested table data “out of line” from the rows
of the parent table, using a store table which is associated with the nested table col-
umn. The parent row contains a unique set identifier value associated with a nested
table instance.

Additional Information: See Oracle8 Application Developer’s Guide.

INSERT
INTO

Table DEPT

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Default Value
(if no value is given for
this column, the default
of 20 is used)

Table EMP

Foreign Key

New row to be inserted, without value
for DEPTNO column.

DEPTNO DNAME LOC

Parent Key

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7691 OSTER SALESMAN 7521 06–APR–90 2975.00 400.00

7329
7499
7521
7566
7691

SMITH
ALLEN
WARD
JONES
OSTER

CEO
VP_SALES
MANAGER
SALESMAN
SALESMAN

7329
7499
7521
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90
06–APR–90

9000.00
7500.00
5000.00
2975.00
2975.00

100.00
200.00
400.00
400.00

20
30
30
30
20
 Schema Objects 8-9

Views
Views
A view is a tailored presentation of the data contained in one or more tables (or
other views). A view takes the output of a query and treats it as a table; therefore, a
view can be thought of as a “stored query” or a “virtual table”. You can use views
in most places where a table can be used.

For example, the EMP table has several columns and numerous rows of informa-
tion. If you only want users to see five of these columns, or only specific rows, you
can create a view of that table for other users to access. Figure 8–5 shows an exam-
ple of a view called STAFF derived from the base table EMP. Notice that the view
shows only five of the columns in the base table.

Figure 8–5 An Example of a View

Since views are derived from tables, they have many similarities. For example, you
can define views with up to 1000 columns, just like a table. You can query views,
and with some restrictions you can update, insert into, and delete from views. All
operations performed on a view actually affect data in some base table of the view
and are subject to the integrity constraints and triggers of the base tables.

Additional Information: See Oracle8 SQL Reference.

EMPNO ENAME JOB

CLERK
SALESMAN
SALESMAN
MANAGER

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MGR

7902
7698
7698
7839

HIREDATE

17–DEC–88
20–FEB–88
22–FEB–88
02–APR–88

SAL COMM

800.00
1600.00
1250.00
2975.00

300.00
300.00
5.00

DEPTNO

20
30
30
20

EMPNO ENAME JOB

CLERK
SALESMAN
SALESMAN
MANAGER

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MGR

7902
7698
7698
7839

DEPTNO

20
30
30
20

EMP

STAFFView

Base
Table
8-10 Oracle8 Concepts

Views
Storage for Views
Unlike a table, a view is not allocated any storage space, nor does a view actually
contain data; rather, a view is defined by a query that extracts or derives data from
the tables the view references. These tables are called base tables. Base tables can in
turn be actual tables or can be views themselves (including snapshots). Because a
view is based on other objects, a view requires no storage other than storage for the
definition of the view (the stored query) in the data dictionary.

How Views Are Used
Views provide a means to present a different representation of the data that resides
within the base tables. Views are very powerful because they allow you to tailor
the presentation of data to different types of users.

Views are often used

■ to provide an additional level of table security by restricting access to a prede-
termined set of rows and/or columns of a table

For example, Figure 8–5 shows how the STAFF view does not show the SAL or
COMM columns of the base table EMP.

■ to hide data complexity

For example, a single view might be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact
that this information actually originates from several tables.

■ to simplify commands for the user

For example, views allow users to select information from multiple tables with-
out actually knowing how to perform a join.

■ to present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the
tables on which the view is based.

■ to isolate applications from changes in definitions of base tables

Note: You cannot explicitly define integrity constraints and trig-
gers on views, but you can define them for the underlying base
tables referenced by the view.
 Schema Objects 8-11

Views
For example, if a view’s defining query references three columns of a four col-
umn table and a fifth column is added to the table, the view’s definition is not
affected and all applications using the view are not affected.

■ to express a query that cannot be expressed without using a view

For example, a view can be defined that joins a GROUP BY view with a table,
or a view can be defined that joins a UNION view with a table.

■ to save complex queries

For example, a query could perform extensive calculations with table informa-
tion. By saving this query as a view, the calculations can be performed each
time the view is queried.

The Mechanics of Views
Oracle stores a view’s definition in the data dictionary as the text of the query that
defines the view. When you reference a view in a SQL statement, Oracle merges the
statement that references the view with the query that defines the view and then
parses the merged statement in a shared SQL area and executes it. Oracle parses a
statement that references a view in a new shared SQL area only if no existing
shared SQL area contains an identical statement. Therefore, you obtain the benefit
of reduced memory usage associated with shared SQL when you use views.

NLS Parameters
In evaluating views containing string literals or SQL functions that have NLS
parameters as arguments (such as TO_CHAR, TO_DATE, and TO_NUMBER), Ora-
cle takes default values for these parameters from the NLS parameters for the ses-
sion. You can override these default values by specifying NLS parameters explicitly
in the view definition.

Using Indexes
Oracle determines whether to use indexes for a query against a view by transform-
ing the original query when merging it with the view’s defining query. Consider
the view

CREATE VIEW emp_view AS
 SELECT empno, ename, sal, loc
 FROM emp, dept
 WHERE emp.deptno = dept.deptno AND dept.deptno = 10;

Additional Information: See the Oracle8 SQL Reference for informa-
tion about GROUP BY or UNION.
8-12 Oracle8 Concepts

Views
Now consider the following user-issued query:

SELECT ename
 FROM emp_view
 WHERE empno = 9876;

The final query constructed by Oracle is

SELECT ename
 FROM emp, dept
 WHERE emp.deptno = dept.deptno AND
 dept.deptno = 10 AND
 emp.empno = 9876;

In all possible cases, Oracle merges a query against a view with the view’s defining
query (and those of the underlying views). Oracle optimizes the merged query as if
you issued the query without referencing the views. Therefore, Oracle can use
indexes on any referenced base table columns, whether the columns are referenced
in the view definition or the user query against the view.

In some cases, Oracle cannot merge the view definition with the user-issued query.
In such cases, Oracle may not use all indexes on referenced columns.

Dependencies and Views
Because a view is defined by a query that references other objects (tables, snap-
shots, or other views), a view is dependent on the referenced objects. Oracle auto-
matically handles the dependencies for views. For example, if you drop a base table
of a view and then recreate it, Oracle determines whether the new base table is
acceptable to the existing definition of the view. See Chapter 19, “Oracle Depen-
dency Management”, for a complete discussion of dependencies in a database.

Updatable Join Views
A join view is defined as a view with more than one table or view in its FROM
clause and which does not use any of these clauses: DISTINCT, AGGREGATION,
GROUP BY, START WITH, CONNECT BY, ROWNUM, and set operations
(UNION ALL, INTERSECT, and so on).

An updatable join view is a join view, which involves two or more base tables or
views, where UPDATE, INSERT, and DELETE operations are permitted. The data
dictionary views ALL_UPDATABLE_COLUMNS, DBA_UPDATABLE_COLUMNS,
 Schema Objects 8-13

The Sequence Generator
and USER_UPDATABLE_COLUMNS contain information that indicates which of the
view columns are updatable. Table 8–1 lists rules for updatable join views.

Views that are not updatable can be modified using INSTEAD OF triggers. See
“INSTEAD OF Triggers” on page 18-11 for more information.

Object Views
In the Oracle object-relational database, object views allow you to retrieve, update,
insert, and delete relational data as if they were stored as object types. You can also
define views that have columns which are object datatypes, such as objects, REFs,
and collections (nested tables and VARRAYs).

The Sequence Generator
The sequence generator provides a sequential series of numbers. The sequence gen-
erator is especially useful in multi-user environments for generating unique sequen-
tial numbers without the overhead of disk I/O or transaction locking. Therefore,
the sequence generator reduces “serialization” where the statements of two transac-
tions must generate sequential numbers at the same time. By avoiding the serializa-
tion that results when multiple users wait for each other to generate and use a

Table 8–1 Rules for INSERT, UPDATE, and DELETE on Join Views

Rule Description

General Rule Any INSERT, UPDATE, or DELETE operation on a join view can mod-
ify only one underlying base table at a time.

UPDATE Rule All updatable columns of a join view must map to columns of a key
preserved table. If the view is defined with the WITH CHECK
OPTION clause, then all join columns and all columns of repeated
tables are non-updatable.

DELETE Rule Rows from a join view can be deleted as long as there is exactly one
key-preserved table in the join. If the view is defined with the WITH
CHECK OPTION clause and the key preserved table is repeated, then
the rows cannot be deleted from the view.

INSERT Rule An INSERT statement must not explicitly or implicitly refer to the col-
umns of a non-key preserved table. If the join view is defined with the
WITH CHECK OPTION clause, INSERT statements are not permitted.

Additional Information: See Chapter 13, “Object Views” and the
Oracle8 Application Developer’s Guide.
8-14 Oracle8 Concepts

Synonyms
sequence number, the sequence generator improves transaction throughput and a
user’s wait is considerably shorter.

Sequence numbers are Oracle integers defined in the database of up to 38 digits. A
sequence definition indicates general information: the name of the sequence,
whether it ascends or descends, the interval between numbers, and other informa-
tion. One important part of a sequence’s definition is whether Oracle should cache
sets of generated sequence numbers in memory.

Oracle stores the definitions of all sequences for a particular database as rows in a
single data dictionary table in the SYSTEM tablespace. Therefore, all sequence defi-
nitions are always available, because the SYSTEM tablespace is always online.

Sequence numbers are used by SQL statements that reference the sequence. You
can issue a statement to generate a new sequence number or use the current
sequence number. Once a statement in a user’s session generates a sequence num-
ber, the particular sequence number is available only to that session; each user that
references a sequence has access to its own, current sequence number.

Sequence numbers are generated independently of tables. Therefore, the same
sequence generator can be used for one or for multiple tables. Sequence number
generation is useful to generate unique primary keys for your data automatically
and to coordinate keys across multiple rows or tables. Individual sequence num-
bers can be skipped if they were generated and used in a transaction that was ulti-
mately rolled back. Applications can make provisions to catch and reuse these
sequence numbers, if desired.

Synonyms
A synonym is an alias for any table, view, snapshot, sequence, procedure, function,
or package. Because a synonym is simply an alias, it requires no storage other than
its definition in the data dictionary.

Synonyms are often used for security and convenience. For example, they can do
the following:

■ mask the name and owner of an object

■ provide location transparency for remote objects of a distributed database

■ simplify SQL statements for database users

Additional Information: For performance implications when
using sequences, see the Oracle8 Application Developer’s Guide.
 Schema Objects 8-15

Synonyms
You can create both public and private synonyms. A public synonym is owned by the
special user group named PUBLIC and every user in a database can access it. A private
synonym is in the schema of a specific user who has control over its availability to others.

Synonyms are very useful in both distributed and non-distributed database envi-
ronments because they hide the identity of the underlying object, including its loca-
tion in a distributed system. This is advantageous because if the underlying object
must be renamed or moved, only the synonym needs to be redefined and applica-
tions based on the synonym continue to function without modification.

Synonyms can also simplify SQL statements for users in a distributed database sys-
tem. The following example shows how and why public synonyms are often cre-
ated by a database administrator to hide the identity of a base table and reduce the
complexity of SQL statements. Assume the following:

■ A table called SALES_DATA is in the schema owned by the user JWARD.

■ The SELECT privilege for the SALES_DATA table is granted to PUBLIC.

At this point, you would have to query the table SALES_DATA with a SQL state-
ment similar to the one below:

SELECT * FROM jward.sales_data;

Notice how you must include both the schema that contains the table along with
the table name to perform the query.

Assume that the database administrator creates a public synonym with the follow-
ing SQL statement:

CREATE PUBLIC SYNONYM sales FOR jward.sales_data;

After the public synonym is created, you can query the table SALES_DATA with a
simple SQL statement:

SELECT * FROM sales;

Notice that the public synonym SALES hides the name of the table SALES_DATA
and the name of the schema that contains the table.
8-16 Oracle8 Concepts

Indexes
Indexes
Indexes are optional structures associated with tables and clusters. You can create
indexes explicitly to speed SQL statement execution on a table. Just as the index in
this manual helps you locate information faster than if there were no index, an Ora-
cle index provides a faster access path to table data. Indexes are the primary means
of reducing disk I/O when properly used.

Oracle provides several indexing schemes, which provide complementary perfor-
mance functionality: B*-tree indexes (currently the most common), B*-tree cluster
indexes, hash cluster indexes, reverse key indexes, and bitmap indexes.

The absence or presence of an index does not require a change in the wording of
any SQL statement. An index is merely a fast access path to the data; it affects only
the speed of execution. Given a data value that has been indexed, the index points
directly to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.
You can create or drop an index at anytime without affecting the base tables or
other indexes. If you drop an index, all applications continue to work; however,
access of previously indexed data might be slower. Indexes, as independent struc-
tures, require storage space.

Oracle automatically maintains and uses indexes once they are created. Oracle auto-
matically reflects changes to data, such as adding new rows, updating rows, or
deleting rows, in all relevant indexes with no additional action by users.

Retrieval performance of indexed data remains almost constant, even as new rows
are inserted. However, the presence of many indexes on a table decreases the per-
formance of updates, deletes, and inserts because Oracle must also update the
indexes associated with the table.

The optimizer can use an existing index to build another index. This results in a
much faster index build.

Unique and Non-Unique Indexes
Indexes can be unique or non-unique. Unique indexes guarantee that no two rows
of a table have duplicate values in the columns that define the index. Non-unique
indexes do not impose this restriction on the column values.

Oracle recommends that you do not explicitly define unique indexes on tables;
uniqueness is strictly a logical concept and should be associated with the definition
of a table. Alternatively, define UNIQUE integrity constraints on the desired col-
 Schema Objects 8-17

Indexes
umns. Oracle enforces UNIQUE integrity constraints by automatically defining a
unique index on the unique key.

Composite Indexes
A composite index (also called a concatenated index) is an index that you create on multiple
columns in a table. Columns in a composite index can appear in any order and need not
be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
WHERE clause references all or the leading portion of the columns in the compos-
ite index. Therefore, the order of the columns used in the definition is important;
generally, the most commonly accessed or most selective columns go first.

Figure 8–6 illustrates the VENDOR_PARTS table that has a composite index on the
VENDOR_ID and PART_NO columns.

Figure 8–6 Indexes, Primary Keys, Unique Keys, and Foreign Keys

No more than 32 columns can form a regular composite index, and for a bitmap
index the maximum number columns is 30. A key value cannot exceed roughly one-
half (minus some overhead) the available data space in a data block.

Additional Information: See Oracle8 Tuning for more information.

VENDOR_PARTS
VEND ID PART NO UNIT COST

.25

.39
4.95

.27
5.10
1.33
1.19
5.28

10–440
10–441

457
10–440

457
08–300
08–300

457

1012
1012
1012
1010
1010
1220
1012
1292

Concatenated Index
(index with multiple columns)
8-18 Oracle8 Concepts

Indexes
Indexes and Keys
Although the terms are often used interchangeably, you should understand the dis-
tinction between “indexes” and “keys”. Indexes are structures actually stored in the
database, which users create, alter, and drop using SQL statements. You create an index to
provide a fast access path to table data. Keys are strictly a logical concept. Keys correspond
to another feature of Oracle called integrity constraints.

Integrity constraints enforce the business rules of a database (see Chapter 24, “Data
Integrity”). Because Oracle uses indexes to enforce some integrity constraints, the
terms key and index are often are used interchangeably; however, they should not
be confused with each other.

How Indexes Are Stored
When you create an index, Oracle automatically allocates an index segment to hold
the index’s data in a tablespace. You control allocation of space for an index’s seg-
ment and use of this reserved space in the following ways:

■ Set the storage parameters for the index segment to control the allocation of the
index segment’s extents.

■ Set the PCTFREE parameter for the index segment to control the free space in
the data blocks that constitute the index segment’s extents.

The tablespace of an index’s segment is either the owner’s default tablespace or a
tablespace specifically named in the CREATE INDEX statement. You do not have
to place an index in the same tablespace as its associated table. Furthermore, you
can improve performance of queries that use an index by storing an index and its
table in different tablespaces located on different disk drives because Oracle can
retrieve both index and table data in parallel. See “User Tablespace Settings and
Quotas” on page 25-8.

Format of Index Blocks
Space available for index data is the Oracle block size minus block overhead, entry
overhead, ROWID, and one length byte per value indexed. The number of bytes
required for the overhead of an index block is operating system dependent.

Additional Information: See your Oracle operating-system-spe-
cific documentation for information about the overhead of an
index block.
 Schema Objects 8-19

Indexes
When you create an index, Oracle fetches and sorts the columns to be indexed, and
stores the ROWID along with the index value for each row. Then Oracle loads the
index from the bottom up. For example, consider the statement:

CREATE INDEX emp_ename ON emp(ename);

Oracle sorts the EMP table on the ENAME column. It then loads the index with the
ENAME and corresponding ROWID values in this sorted order. When it uses the
index, Oracle does a quick search through the sorted ENAME values and then uses
the associated ROWID values to locate the rows having the sought ENAME value.

Although Oracle accepts the keywords ASC, DESC, COMPRESS, and NOCOM-
PRESS in the CREATE INDEX command, they have no effect on index data, which
is stored using rear compression in the branch nodes but not in the leaf nodes.

The Internal Structure of Indexes
Oracle uses B*-tree indexes that are balanced to equalize access times to any row.
The theory of B*-tree indexes is beyond the scope of this manual; for more informa-
tion you can refer to computer science texts dealing with data structures. Figure 8–7
illustrates the structure of a B*-tree index.
8-20 Oracle8 Concepts

Indexes
Figure 8–7 Internal Structure of a B*-Tree Index

The upper blocks (branch blocks) of a B*-tree index contain index data that points to
lower level index blocks. The lowest level index blocks (leaf blocks) contain every indexed
data value and a corresponding ROWID used to locate the actual row; the leaf blocks are
doubly linked. Indexes in columns containing character data are based on the binary val-
ues of the characters in the database character set.

For a unique index, there is one ROWID per data value. For a non-unique index,
the ROWID is included in the key in sorted order, so non-unique indexes are sorted
by the index key and ROWID. Key values containing all nulls are not indexed,
except for cluster indexes. Two rows can both contain all nulls and not violate a
unique index.

KING
MILLER
TURNER

JAMES
JONES

KING
MARTIN

BLAKE
CLARK
FORD

MILLER
SCOTT
SMITH

TURNER
WARD

ADAMS
ALLEN

<KING
KING

<BLAKE
BLAKE
JAMES

BLAKE–ROWID
CLARK–ROWID
FORD–ROWID
 Schema Objects 8-21

Indexes
Advantages of B*-Tree Structure
The B*-tree structure has the following advantages:

■ All leaf blocks of the tree are at the same depth, so retrieval of any record from
anywhere in the index takes approximately the same amount of time.

■ B*-tree indexes automatically stay balanced.

■ All blocks of the B*-tree are three-quarters full on the average.

■ B*-trees provide excellent retrieval performance for a wide range of queries,
including exact match and range searches.

■ Inserts, updates, and deletes are efficient, maintaining key order for fast
retrieval.

■ B*-tree performance is good for both small and large tables, and does not
degrade as the size of a table grows.

Reverse Key Indexes
Creating a reverse key index, compared to a standard index, reverses the bytes of
each column indexed (except the ROWID) while keeping the column order. Such
an arrangement can help avoid performance degradation in indexes in an Oracle
Parallel Server environment where modifications to the index are concentrated on a
small set of leaf blocks. By reversing the keys of the index, the insertions become
distributed across all leaf keys in the index.

Using the reverse key arrangement eliminates the ability to run an index range
scanning query on the index. Because lexically adjacent keys are not stored next to
each other in a reverse-key index, only fetch-by-key or full-index (table) scans can
be performed.

Under some circumstances using a reverse-key index can make an OLTP Oracle
Parallel Server application faster. For example, keeping the index of mail messages
in Oracle Office: some users keep old messages around, and the index must main-
tain pointers to these as well as to the most recent.

The REVERSE keyword provides a simple mechanism for creating a reverse key
index. You can specify the keyword REVERSE along with the optional index speci-
fications in a CREATE INDEX statement:

CREATE INDEX i ON t (a,b,c) REVERSE;

You can specify the keyword NOREVERSE to REBUILD a reverse-key index into
one that is not reverse keyed:
8-22 Oracle8 Concepts

Indexes
ALTER INDEX i REBUILD NOREVERSE;

Rebuilding a reverse-key index without the NOREVERSE keyword produces a
rebuilt, reverse-key index. You cannot rebuild a normal index as a reverse key
index; you must use the CREATE command instead.

Bitmap Indexes

The purpose of an index is to provide pointers to the rows in a table that contain a
given key value. In a regular index, this is achieved by storing a list of ROWIDs for
each key corresponding to the rows with that key value. (Oracle stores each key
value repeatedly with each stored ROWID.) In a bitmap index, a bitmap for each key
value is used instead of a list of ROWIDs.

Each bit in the bitmap corresponds to a possible ROWID, and if the bit is set, it
means that the row with the corresponding ROWID contains the key value. A map-
ping function converts the bit position to an actual ROWID, so the bitmap index
provides the same functionality as a regular index even though it uses a different
representation internally. If the number of different key values is small, bitmap
indexes are very space efficient.

Bitmap indexing efficiently merges indexes that correspond to several conditions in
a WHERE clause. Rows that satisfy some, but not all conditions are filtered out
before the table itself is accessed. This improves response time, often dramatically.

Benefits for Data Warehousing Applications
Bitmap indexing benefits data warehousing applications which have large amounts
of data and ad hoc queries, but a low level of concurrent transactions. For such
applications, bitmap indexing provides:

■ reduced response time for large classes of ad hoc queries

■ a substantial reduction of space usage compared to other indexing techniques

■ dramatic performance gains even on very low end hardware

■ very efficient parallel DML and loads

Attention: Bitmap indexes are available only if you have pur-
chased the Oracle8 Enterprise Edition. See Getting to Know Oracle8
and the Oracle8 Enterprise Edition for more information about the
features available in Oracle8 and the Oracle8 Enterprise Edition.
 Schema Objects 8-23

Indexes
Fully indexing a large table with a traditional B*-tree index can be prohibitively
expensive in terms of space since the index can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

Bitmap indexes are not suitable for OLTP applications with large numbers of con-
current transactions modifying the data. These indexes are primarily intended for
decision support (DSS) in data warehousing applications where users typically
query the data rather than update it.

Bitmap indexes are integrated with the Oracle cost-based optimization approach
and execution engine. They can be used seamlessly in combination with other
Oracle execution methods. For example, the optimizer can decide to perform a
hash join between two tables using a bitmap index on one table and a regular B*-
tree index on the other. The optimizer considers bitmap indexes and other available
access methods, such as regular B*-tree indexes and full table scan, and chooses the
most efficient method, taking parallelism into account where appropriate.

Parallel query and parallel DML work with bitmap indexes as with traditional
indexes. (Bitmap indexes on partitioned tables must be local indexes; see “Index
Partitioning” on page 9-22 for more information.) Parallel create index and concate-
nated indexes are also supported.

Cardinality
The advantages of using bitmap indexes are greatest for low cardinality columns:
that is, columns in which the number of distinct values is small compared to the
number of rows in the table. If the values in a column are repeated more than a
hundred times, the column is a candidate for a bitmap index. Even columns with a
lower number of repetitions (and thus higher cardinality), can be candidates if they
tend to be involved in complex conditions in the WHERE clauses of queries.

For example, on a table with one million rows, a column with 10,000 distinct values
is a candidate for a bitmap index. A bitmap index on this column can out-perform a
B*-tree index, particularly when this column is often queried in conjunction with
other columns.

B*-tree indexes are most effective for high-cardinality data: that is, data with many
possible values, such as CUSTOMER_NAME or PHONE_NUMBER. A regular B*-
tree index can be several times larger than the indexed data. Used appropriately,
bitmap indexes can be significantly smaller than a corresponding B*-tree index.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
query performance. AND and OR conditions in the WHERE clause of a query can
be quickly resolved by performing the corresponding boolean operations directly
8-24 Oracle8 Concepts

Indexes
on the bitmaps before converting the resulting bitmap to ROWIDs. If the resulting
number of rows is small, the query can be answered very quickly without resorting
to a full table scan of the table.

Bitmap Index Example
Table 8–2 shows a portion of a company’s customer data.

Since MARITAL_STATUS, REGION, GENDER, and INCOME_LEVEL are all low-
cardinality columns (there are only three possible values for marital status and
region, two possible values for gender, and four for income level) it is appropriate
to create bitmap indexes on these columns. A bitmap index should not be created
on CUSTOMER# because this is a high-cardinality column. Instead, a unique B*-
tree index on this column in order would provide the most efficient representation
and retrieval.

Table 8–3 illustrates the bitmap index for the REGION column in this example. It
consists of three separate bitmaps, one for each region.

Table 8–2 Bitmap Index Example

CUSTOMER #
MARITAL_
STATUS REGION GENDER

INCOME_
LEVEL

101 single east male bracket_1

102 married central female bracket_4

103 married west female bracket_2

104 divorced west male bracket_4

105 single central female bracket_2

106 married central female bracket_3
 Schema Objects 8-25

Indexes
Each entry (or “bit”) in the bitmap corresponds to a single row of the CUSTOMER
table. The value of each bit depends upon the values of the corresponding row in
the table. For instance, the bitmap REGION=’east’ contains a one as its first bit: this
is because the region is “east” in the first row of the CUSTOMER table. The bitmap
REGION=’east’ has a zero for its other bits because none of the other rows of the
table contain “east” as their value for REGION.

An analyst investigating demographic trends of the company’s customers might
ask, “How many of our married customers live in the central or west regions?”
This corresponds to the following SQL query:

SELECT COUNT(*) FROM CUSTOMER
 WHERE MARITAL_STATUS = ’married’ AND REGION IN (’central’,’west’);

Bitmap indexes can process this query with great efficiency by merely counting the
number of ones in the resulting bitmap, as illustrated in Figure 8–8. To identify the
specific customers who satisfy the criteria, the resulting bitmap would be used to
access the table.

Table 8–3 Sample Bitmap

REGION=’east’ REGION=’central’ REGION=’west’

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

0 1 0
8-26 Oracle8 Concepts

Indexes
Figure 8–8 Executing a Query Using Bitmap Indexes

Bitmap Indexes and Nulls
Bitmap indexes include rows that have NULL values, unlike most other types of
indexes. Indexing of nulls can be useful for some types of SQL statements, such as
queries with the group function COUNT.

Example 1:

SELECT COUNT(*) FROM EMP;

Any bitmap index can be used for this query because all table rows are indexed,
including those that have NULL data. If nulls were not indexed, the optimizer
would only be able to use indexes on columns with NOT NULL constraints.

Example 2:

SELECT COUNT(*) FROM EMP WHERE COMM IS NULL;

This query can be optimized with a bitmap index on COMM.

Example 3:

SELECT COUNT(*) FROM CUSTOMER
 WHERE GENDER = ’M’ AND STATE != ’CA’;

This query can be answered by finding the bitmap for GENDER = ’M’ and sub-
stracting the bitmap for STATE = ’CA’. If STATE may contain null values (that is, if

AND OR = AND =

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

0

0

1

status =
'married'

region =
'central'

region =
'west'
 Schema Objects 8-27

Index-Organized Tables
it does not have a NOT NULL constraint), then the bitmaps for STATE = ’NULL’
must also be subtracted from the result.

Bitmap Indexes on Partitioned Tables
Like other indexes, you can create bitmap indexes on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table — they can-
not be global indexes. (Global bitmap indexes are supported only on nonparti-
tioned tables).

For information about partitioned tables and descriptions of local and global
indexes, see Chapter 9, “Partitioned Tables and Indexes”.

Index-Organized Tables
An index-organized table differs from a regular table in that the data for the table is
held in its associated index. Changes to the table data, such as adding new rows,
updating rows, or deleting rows, result only in updating the index.

The index-organized table is like a regular table with an index on one or more of its
columns, but instead of maintaining two separate storages for the table and the B*-
tree index, the database system only maintains a single B*-tree index which con-
tains both the encoded key value and the associated column values for the corre-
sponding row. Rather than having row ROWID as the second element of the index
entry, the actual data row is stored in the B*-tree index. The data rows are built on
the primary key for the table, and each B*-tree index entry contains
<primary_key_value, non_primary_key_column_values> .

Index-organized tables are suitable for accessing data via primary key or via any
key that is a valid prefix of the primary key. There is no duplication of key values
because only non-key column values are stored with the key.

Applications manipulate the index-organized table just like a regular table, using
SQL statements. However, the database system performs all operations by manipu-
lating the corresponding B*-tree index.

Table 8–4 summarizes the differences between index-organized tables and regular
tables.

Additional Information: Oracle8 Tuning contains information
about using bitmap indexes.
8-28 Oracle8 Concepts

Index-Organized Tables
Benefits of Index-Organized Tables
Because rows are stored in the index, index-organized tables provide a faster key-
based access to table data for queries involving exact match and/or range search.
The storage requirements are reduced as key columns are not duplicated in the
table and the index. The data row stored with the key only contains non-key col-
umn values. Also, placing the data row with the key eliminates the additional stor-
age required for ROWIDs that link key values to corresponding rows in the case of
an index for a regular table.

Index-Organized Tables with Row Overflow Area
B*-tree index entries are usually quite small since they only consist of the pair
<key, ROWID> . In index-organized tables, however, the B*-tree index entries can
be very large since they consist of the pair <key, non_key_column_values> .
If the index entry gets very large then the leaf nodes may end up storing one row
or row-piece thereby destroying the dense clustering property of the B*-tree index.

Table 8–4 Comparison of Index-Organized Tables with Regular Tables

Regular Table Index-Organized Table

ROWID uniquely identifies a row; primary
key can be optionally specified

Primary key uniquely identifies a row; pri-
mary key must be specified

Implicit ROWID column; allows building
physical secondary indexes

No implicit ROWID column; cannot have
physical secondary indexes

ROWID based access Primary key based access

Sequential scan returns all rows Full-index scan returns all rows in primary
key order

UNIQUE constraint and triggers allowed UNIQUE constraint not allowed but triggers
are allowed

A table can be stored in a cluster containing
other tables.

An index-organized table cannot be stored
in a cluster.

Distribution, replication, and partitioning
supported

Distribution, replication, and partitioning
not supported

Additional Information: See Oracle8 Administrator’s Guide for infor-
mation about how to create and maintain index-organized tables.
 Schema Objects 8-29

Index-Organized Tables
Oracle provides a Row Overflow Area clause to overcome this problem. You can
specify an overflow tablespace as well as a threshold value. The threshold is speci-
fied as percentage of the block size.

If the row size is greater than the specified threshold value, then the non-key col-
umn values for the row that exceeds the threshold are stored in the specified over-
flow tablespace. In such a case the index entry contains a <key, rowhead> pair,
where the rowhead contains the beginning portion of the rest of the columns. It is
like a regular row-piece, except it points to an overflow row-piece that contains the
remaining column values.

Applications of Interest for Index-Organized Tables
Index-organized tables are especially useful for the following types of applications:

■ Information Retrieval (IR) applications

■ Spatial applications

■ OLAP applications

Information Retrieval Applications
Information Retrieval (IR) applications support content-based searches on document
collections. To provide such a capability, IR applications maintain an inverted
index for the document collection. An inverted index typically contains entries of the
form <token, document_id, occurrence_data> for each distinct word in a
document. The application performs a content-based search by scanning the
inverted index looking for tokens of interest.

You can define a regular table to model the inverted index. To speed-up retrieval of
data from the table, you can also define an index on the column corresponding to
the token. However, this scheme has the following shortcomings:

■ Retrieval of occurrence data from the inverted index using the index incurs an
extra ROWID-based fetch per row. A typical content-based IR query requires
fetching all the inverted index entries for the specified query terms. Since dupli-
cates are the norm rather than the exception in IR applications, a single query
term can contain thousands of duplicates. Thus, one ROWID-based fetch per
row overhead can be very significant, severely impacting the IR search perfor-
mance.

■ Duplication of the key (token) column in the table and in the index leads to
wasted storage. Since the inverted index can be huge, storage demands would
not be acceptable.
8-30 Oracle8 Concepts

Index-Organized Tables
In some cases, retrieval performance can be improved by defining a concatenated
index on multiple columns of the inverted index table. The concatenated index
allows for index-organized retrieval when the occurrence data is not required (that
is, for Boolean queries). In such cases, the ROWID fetches of inverted table records
is avoided. When the query involves a proximity predicate (for example, the phrase
“Oracle Corporation”), the concatenated index approach still requires the inverted
index table to be accessed. Furthermore, building and maintaining a concatenated
index is much more time consuming than using a single column index on the
token. Also, the storage overhead is higher as multiple columns of the key (token)
are duplicated in the table and the index.

Using an index-organized table to model an inverted index overcomes the prob-
lems described above. Namely:

■ Since the data row is stored along with the key, retrieval of occurrence data for
an inverted index involves traversing the index and getting the data rows from
the appropriate leaf nodes.

■ Only the non-key column values are stored with the key in the index. Thus,
there is no duplication of data. Also, this avoids the additional ROWID storage
overhead which is required if an index is maintained on a regular table.

In addition, since index-organized tables are visible to the applications, they are
suitable for supporting cooperative indexing where the application and database
jointly manage the application-specific indexes.

Spatial Applications
Spatial applications can benefit from index-organized tables as they use some form
of inverted index for maintaining application-specific indexes.

Spatial applications maintain inverted indexes for handling spatial queries. For
example, a spatial index for objects residing in a collection of grids can be modeled
as an inverted index where each entry is of the form:

<grid_id, spatial_object_id, spatial_object_data>

Index-organized tables are appropriate for modeling such inverted indexes because
they provide the required retrieval performance while minimizing storage costs.

OLAP Applications
On-line analytical processing (OLAP) applications typically manipulate multi-
dimensional blocks. To allow fast retrieval of portions of the multi-dimensional
 Schema Objects 8-31

Clusters
blocks, they maintain an inverted index to map a set of dimension values to set of
pages. An entry in the inverted index is of the form:

<dimension_value, list_of_pages>

The inverted index maintained by OLAP applications can easily be modeled as an
index-organized table.

Clusters
Clusters are an optional method of storing table data. A cluster is a group of tables
that share the same data blocks because they share common columns and are often used
together.

For example, the EMP and DEPT table share the DEPTNO column. When you clus-
ter the EMP and DEPT tables (Figure 8–9, “Clustered Table Data”), Oracle physi-
cally stores all rows for each department from both the EMP and DEPT tables in
the same data blocks.

Because clusters store related rows of different tables together in the same data
blocks, properly used clusters offer two primary benefits:

■ Disk I/O is reduced and access time improves for joins of clustered tables.

■ In a cluster, a cluster key value is the value of the cluster key columns for a partic-
ular row. Each cluster key value is stored only once each in the cluster and the
cluster index, no matter how many rows of different tables contain the value.

Therefore, less storage might be required to store related table and index data
in a cluster than is necessary in non-clustered table format. For example, in
Figure 8–9 notice how each cluster key (each DEPTNO) is stored just once for
many rows that contain the same value in both the EMP and DEPT tables.
8-32 Oracle8 Concepts

Clusters
Figure 8–9 Clustered Table Data

Related data stored
together, more

efficiently

related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

DNAME10 LOC

SALES BOSTON

EMPNO ENAME

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

. . .

DNAME20 LOC

ADMIN NEW YORK

EMPNO ENAME

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

. . .

Clustered Key
(DEPTNO)

ENAMEEMPNO

932
100
1139
1277
1321
1841

DEPTNO

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EMP TABLE

DNAMEDEPTNO

10
20

LOC

SALES
ADMIN

BOSTON
NEW YORK

DEPT Table
 Schema Objects 8-33

Clusters
Performance Considerations
Clusters can reduce the performance of INSERT statements as compared with stor-
ing a table separately with its own index. This disadvantage relates to the use of
space and the number of blocks that must be visited to scan a table; because multi-
ple tables have data in each block, more blocks must be used to store a clustered
table than if that table were stored non-clustered.

To identify data that would be better stored in clustered form than non-clustered,
look for tables that are related via referential integrity constraints and tables that
are frequently accessed together using a join. If you cluster tables on the columns
used to join table data, you reduce the number of data blocks that must be accessed
to process the query; all the rows needed for a join on a cluster key are in the same
block. Therefore, performance for joins is improved. Similarly, it might be useful to
cluster an individual table. For example, the EMP table could be clustered on the
DEPTNO column to cluster the rows for employees in the same department. This
would be advantageous if applications commonly process rows department by
department.

Like indexes, clusters do not affect application design. The existence of a cluster is
transparent to users and to applications. You access data stored in a clustered table
via SQL just like data stored in a non-clustered table.

Format of Clustered Data Blocks
In general, clustered data blocks have an identical format to non-clustered data
blocks with the addition of data in the table directory. However, Oracle stores all
rows that share the same cluster key value in the same data block.

When you create a cluster, specify the average amount of space required to store all
the rows for a cluster key value using the SIZE parameter of the CREATE CLUS-
TER command. SIZE determines the maximum number of cluster keys that can be
stored per data block.

For example, if each data block has 1700 bytes of available space and the specified
cluster key size is 500 bytes, each data block can potentially hold rows for three
cluster keys. If SIZE is greater than the amount of available space per data block,
each data block holds rows for only one cluster key value.

Although the maximum number of cluster key values per data block is fixed by
SIZE, Oracle does not actually reserve space for each cluster key value nor does it
guarantee the number of cluster keys that are assigned to a block. For example, if

Additional Information: For more information about the perfor-
mance implications of using clusters, see Oracle8 Tuning.
8-34 Oracle8 Concepts

Clusters
SIZE determines that three cluster key values are allowed per data block, this does
not prevent rows for one cluster key value from taking up all of the available space
in the block. If more rows exist for a given key than can fit in a single block, the
block is chained, as necessary.

A cluster key value is stored only once in a data block.

The Cluster Key
The cluster key is the column, or group of columns, that the clustered tables have in
common. You specify the columns of the cluster key when creating the cluster. You
subsequently specify the same columns when creating every table added to the
cluster.

For each column specified as part of the cluster key (when creating the cluster),
every table created in the cluster must have a column that matches the size and
type of the column in the cluster key. No more than 16 columns can form the clus-
ter key, and a cluster key value cannot exceed roughly one-half (minus some over-
head) the available data space in a data block. The cluster key cannot include a
LONG or LONG RAW column.

You can update the data values in clustered columns of a table. However, because
the placement of data depends on the cluster key, changing the cluster key for a
row might cause Oracle to physically relocate the row. Therefore, columns that are
updated often are not good candidates for the cluster key.

The Cluster Index
You must create an index on the cluster key columns after you have created a clus-
ter. A cluster index is an index defined specifically for a cluster. Such an index con-
tains an entry for each cluster key value.

To locate a row in a cluster, the cluster index is used to find the cluster key value,
which points to the data block associated with that cluster key value. Therefore,
Oracle accesses a given row with a minimum of two I/Os (possibly more, depend-
ing on the number of levels that must be traversed in the index).

You must create a cluster index before you can execute any DML statements
(including INSERT and SELECT statements) against the clustered tables. Therefore,
you cannot load data into a clustered table until you create the cluster index.

Like a table index, Oracle stores a cluster index in an index segment. Therefore, you
can place a cluster in one tablespace and the cluster index in a different tablespace.
 Schema Objects 8-35

Hash Clusters
A cluster index is unlike a table index in the following ways:

■ Keys that are all null have an entry in the cluster index.

■ Index entries point to the first block in the chain for a given cluster key value.

■ A cluster index contains one entry per cluster key value, rather than one entry
per cluster row.

■ The absence of a table index does not affect users, but clustered data cannot be
accessed unless there is a cluster index.

If you drop a cluster index, data in the cluster remains but becomes unavailable
until you create a new cluster index. You might want to drop a cluster index to
move the cluster index to another tablespace or to change its storage characteristics;
however, you must recreate the cluster’s index to allow access to data in the cluster.

Hash Clusters
Hashing is an optional way of storing table data to improve the performance of
data retrieval. To use hashing, you create a hash cluster and load tables into the clus-
ter. Oracle physically stores the rows of a table in a hash cluster and retrieves them
according to the results of a hash function.

Oracle uses a hash function to generate a distribution of numeric values, called hash
values, which are based on specific cluster key values. The key of a hash cluster
(like the key of an index cluster) can be a single column or composite key (multiple
column key). To find or store a row in a hash cluster, Oracle applies the hash func-
tion to the row’s cluster key value; the resulting hash value corresponds to a data
block in the cluster, which Oracle then reads or writes on behalf of the issued state-
ment.

A hash cluster is an alternative to a non-clustered table with an index or an index
cluster. With an indexed table or index cluster, Oracle locates the rows in a table
using key values that Oracle stores in a separate index.

To find or store a row in an indexed table or cluster, at least two I/Os must be per-
formed (but often more): one or more I/Os to find or store the key value in the
index, and another I/O to read or write the row in the table or cluster. In contrast,
Oracle uses a hash function to locate a row in a hash cluster (no I/O is required).
As a result, a minimum of one I/O operation is necessary to read or write a row in
a hash cluster.
8-36 Oracle8 Concepts

Hash Clusters
How Data Is Stored in a Hash Cluster
A hash cluster stores related rows together in the same data blocks. Rows in a hash
cluster are stored together based on their hash value.

When you create a hash cluster, Oracle allocates an initial amount of storage for the
cluster’s data segment. Oracle bases the amount of storage initially allocated for a
hash cluster on the predicted number and predicted average size of the hash key’s
rows in the cluster.

Figure 8–10 illustrates data retrieval for a table in a hash cluster as well as a table
with an index. The following sections further explain the internal operations of
hash cluster storage.

Note: In contrast, an index cluster stores related rows of clustered
tables together based on each row’s cluster key value.
 Schema Objects 8-37

Hash Clusters
Figure 8–10 Hashing vs. Indexing: Data Storage and Information

237 TRIALNO Other Columns ...

Hash

Cluster Holding the TRIAL Table

Key
Cluster
Key

238

TRIALNO Other Columns . . .

TRIAL Table

I/O
I/O

11103-rowid
I/O

TRIALNO Index

SELECT . . . FROM trial
WHERE trialno=11103;

I/O

Several I/Os with
use of index

Perhaps one I/O
with hash cluster

I/O

12917
13021
12981

. . .

. . .

. . .

11038
11021
11103

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

12917
13021
12981
11028
11021
11103
8-38 Oracle8 Concepts

Hash Clusters
Hash Key Values
To find or store a row in a hash cluster, Oracle applies the hash function to the
row’s cluster key value. The resulting hash value corresponds to a data block in the
cluster, which Oracle then reads or writes on behalf of an issued statement. The
number of hash values for a hash cluster is fixed at creation and is determined by
the HASHKEYS parameter of the CREATE CLUSTER command.

The value of HASHKEYS limits the number of unique hash values that can be gen-
erated by the hash function used for the cluster. Oracle rounds the number you
specify for HASHKEYS to the nearest prime number. For example, setting HASH-
KEYS to 100 means that for any cluster key value, the hash function generates val-
ues between 0 and 100 (there will be 101 hash values).

Therefore, the distribution of rows in a hash cluster is directly controlled by the
value set for the HASHKEYS parameter. With a larger number of hash keys for a
given number of rows, the likelihood of a collision (two cluster key values having
the same hash value) decreases. Minimizing the number of collisions is important
because overflow blocks (thus extra I/O) might be necessary to store rows with
hash values that collide.

The maximum number of hash keys assigned per data block is determined by the
SIZE parameter of the CREATE CLUSTER command. SIZE is an estimate of the
total amount of space in bytes required to store the average number of rows associ-
ated with each hash value. For example, if the available free space per data block is
1700 bytes and SIZE is set to 500 bytes, three hash keys are assigned per data block.

Although the maximum number of hash key values per data block is determined
by SIZE, Oracle does not actually reserve space for each hash key value in the
block. For example, if SIZE determines that three hash key values are allowed per
block, this does not prevent rows for one hash key value from taking up all of the
available space in the block. If there are more rows for a given hash key value than
can fit in a single block, the block is chained, as necessary.

Note that each row’s hash value is not stored as part of the row; however, the clus-
ter key value for each row is stored. Therefore, when determining the proper value
for SIZE, the cluster key value must be included for every row to be stored.

Note: The importance of the SIZE parameter of hash clusters is
analogous to that of the SIZE parameter for index clusters. How-
ever, with index clusters, SIZE applies to rows with the same clus-
ter key value instead of the same hash value.
 Schema Objects 8-39

Hash Clusters
Hash Functions
A hash function is a function applied to a cluster key value that returns a hash
value. Oracle then uses the hash value to locate the row in the proper data block of
the hash cluster. The job of a hash function is to provide the maximum distribution
of rows among the available hash values of the cluster. To achieve this goal, a hash
function must minimize the number of collisions.

Using Oracle’s Internal Hash Function
When you create a cluster, you can use the internal hash function of Oracle or
bypass the use of this function. The internal hash function allows the cluster key to
be a single column or composite key.

Furthermore, the cluster key can consist of columns of any datatype (except LONG
and LONG RAW). The internal hash function offers sufficient distribution of clus-
ter key values among available hash keys, producing a minimum number of colli-
sions for any type of cluster key.

Specifying the Cluster Key as the Hash Function
In cases where the cluster key is already a unique identifier that is uniformly dis-
tributed over its range, you might want to bypass the internal hash function and
simply specify the column on which to hash.

Instead of using the internal hash function to generate a hash value, Oracle checks
the cluster key value. If the cluster key value is less than HASHKEYS, the hash
value is the cluster key value; however, if the cluster key value is equal to or
greater than HASHKEYS, Oracle divides the cluster key value by the number speci-
fied for HASHKEYS, and the remainder is the hash value; that is, the hash value is
the cluster key value mod the number of hash keys.

Use the HASH IS parameter of the CREATE CLUSTER command to specify the
cluster key column if cluster key values are distributed evenly throughout the clus-
ter. The cluster key must be comprised of a single column that contains only zero
scale numbers (integers). If the internal hash function is bypassed and a non-inte-
ger cluster key value is supplied, the operation (INSERT or UPDATE statement) is
rolled back and an error is returned.

Specifying a User-Defined Hash Function
You can also specify any SQL expression as the hash function for a hash cluster. If
your cluster key values are not evenly distributed among the cluster, you should
consider creating your own hash function that more efficiently distributes cluster
rows among the hash values.
8-40 Oracle8 Concepts

Hash Clusters
For example, if you have a hash cluster containing employee information and the
cluster key is the employee’s home area code, it is likely that many employees will
hash to the same hash value. To alleviate this problem, you can place the following
expression in the HASH IS clause of the CREATE CLUSTER command:

MOD((emp.home_area_code + emp.home_prefix + emp.home_suffix), 101)

The expression takes the area code column and adds the phone prefix and suffix
columns, divides by the number of hash values (in this case 101), and then uses the
remainder as the hash value. The result is cluster rows more evenly distributed
among the various hash values.

Allocation of Space for a Hash Cluster
As with other types of segments, the allocation of extents during the creation of a
hash cluster is controlled by the INITIAL, NEXT, and MINEXTENTS parameters of
the STORAGE clause. However, with hash clusters, an initial portion of space,
called the hash table, is allocated at creation so that all hash keys of the cluster can
be mapped, with the total space equal to SIZE * HASHKEYS. Therefore, initial allo-
cation of space for a hash cluster is also dependent on the values of SIZE and
HASHKEYS. The larger of (SIZE*HASHKEYS) and that specified by the STORAGE
clause (INITIAL, NEXT, and so on) is used.

Space subsequently allocated to a hash cluster is used to hold the overflow of rows
from data blocks that are already full. For example, assume the original data block
for a given hash key is full. A user inserts a row into a clustered table such that the
row’s cluster key hashes to the hash value that is stored in a full data block; there-
fore, the row cannot be inserted into the root block (original block) allocated for the
hash key. Instead, the row is inserted into an overflow block that is chained to the
root block of the hash key.

Frequent collisions might or might not result in a larger number of overflow blocks
within a hash cluster (thus reducing data retrieval performance). If a collision
occurs and there is no space in the original block allocated for the hash key, an over-
flow block must be allocated to hold the new row. The likelihood of this happening
is largely dependent on the average size of each hash key value and corresponding
data, specified when the hash cluster is created, as illustrated in Figure 8–11.
 Schema Objects 8-41

Hash Clusters
Figure 8–11 Collisions and Overflow Blocks in a Hash Cluster

If the average size is small and each row has a unique hash key value, many hash
key values can be assigned per data block. In this case, a small colliding row can
likely fit into the space of the root block for the hash key. However, if the average
hash key value size is large or each hash key value corresponds to multiple rows,
only a few hash key values can be assigned per data block. In this case, it is likely
that the large row will not fit in the root block allocated for the hash key value and
an overflow block is allocated.

Header

Row hash key = 0
Row hash key = 0

Row hash key = 2

Row hash key=3

Row hash key = 3

Row hash key = 4

Row hash key = 1

Row hash key = 7

Row hash key = 5

Row hash key=1

Collision for
these hash
key values

Stored
in an
overflow
block

Size=160; 12 has key
values per block.
Smaller rows fit in
remaining space, even
after collisions.

Size = 500; 3 hash key
values per block.
Larger rows cannot
fit in remaining spaces
after collisions.

Hash Keys:
0, 1, 2, 3, 4,
5, 6, 7, 8, 9

Row hash key 0,1, 2
8-42 Oracle8 Concepts

 Partitioned Tables and Inde
9

Partitioned Tables and Indexes

Like to a double cherry, seeming parted,
But yet an union in partition;
Two lovely berries molded on one stem.

Wm. Shakespeare: A Midsummer-Night’s Dream

This chapter describes partitioned tables and indexes, and explains some adminis-
trative considerations for partitioning. It covers the following topics:

■ What Is Partitioning?

■ Advantages of Partitioning

■ Basic Partitioning Model

■ Rules for Partitioning Tables and Indexes

■ DML Partition Locks

■ Maintenance Operations

■ Managing Indexes

■ Privileges for Partitioned Tables and Indexes

■ Auditing for Partitioned Tables and Indexes

■ SQL Extension: Partition-Extended Table Name

Attention: The features described in this chapter are available
only if you have purchased Oracle8 Enterprise Edition with the
Partitioning Option. See Getting to Know Oracle8 and the Oracle8
Enterprise Edition for information about the features and options
available with Oracle8 Enterprise Edition.
xes 9-1

Introduction to Partitioning
Introduction to Partitioning
This section explains how partitioning can help you manage large tables and
indexes in an Oracle database.

What Is Partitioning?
Partitioning addresses the key problem of supporting very large tables and indexes
by allowing you to decompose them into smaller and more manageable pieces
called partitions.

Once partitions are defined, SQL statements can access and manipulate the parti-
tions rather than entire tables or indexes. Partitions are especially useful in data
warehouse applications, which commonly store and analyze large amounts of his-
torical data.

All partitions of a table or index have the same logical attributes, although their
physical attributes can be different. For example, all partitions in a table share the
same column and constraint definitions; and all partitions in an index share the
same index columns. However, storage specifications and other physical attributes
such as PCTFREE, PCTUSED, INITRANS, and MAXTRANS can vary for different
partitions of the same table or index.

Each partition is stored in a separate segment. Optionally, you can store each parti-
tion in a separate tablespace, which has the following advantages:

■ You can contain the impact of damaged data.

■ You can back up and recover each partition independently.

■ You can balance I/O load by mapping partitions to disk drives.

The section “Basic Partitioning Model” on page 9-11 provides more information
about partitioning concepts.

Example of a Partitioned Table
In Figure 9–1, the sales table contains historical data divided by week number into
13 four-week partitions. This SQL statement creates the partitioned table:

Note: Oracle only supports partitioning for tables and indexes; it
does not support partitioning of clustered tables and their indexes,
nor of snapshots.
9-2 Oracle8 Concepts

Introduction to Partitioning
CREATE TABLE sales (acct_no NUMBER(5),
acct_name CHAR(30),
amount_of_sale NUMBER(6),
week_no INTEGER)

PARTITION BY RANGE (week_no) ...
(PARTITION sales1 VALUES LESS THAN (4) TABLESPACE ts0,
PARTITION sales2 VALUES LESS THAN (8) TABLESPACE ts1,
...
PARTITION sales13 VALUES LESS THAN (52) TABLESPACE ts12);

Figure 9–1 SALES Table Partitioned by Week

Partition Pruning
The Oracle server incorporates the intelligence to explicitly recognize partitions.
This knowledge is exploited in optimizing SQL statements to mark the partitions
that need to be accessed, eliminating (“pruning”) unnecessary partitions from
access by those SQL statements.

For each SQL statement, depending on the selection criteria specified, unneeded
partitions can be eliminated. For example, if a query only involves Q1 sales data,
there is no need to retrieve data for the remaining three quarters. Such intelligent
pruning can dramatically reduce the data volume, resulting in substantial improve-
ments in query performance.

If the optimizer determines that the selection criteria used for pruning are satisfied
by all the rows in the accessed partition, it removes those criteria from the predicate

Additional Infromation: For more examples of partitioned tables,
see the Oracle8 Administrator’s Guide.

Weeks 0-3

TABLESPACE ts0

6, US Steel, 10000, 1
12, Motorola, 5000, 3
...

Weeks 4-7

TABLESPACE ts1

6, US Steel, 7000, 5
4, Oracle, 11000, 7
13, Fidelity, 3600, 5
...

Weeks 48-51

TABLESPACE ts12

1, Kodak, 9900, 51
17, Safeway, 8000, 51
12, Motorola, 5000, 51
...

. . .
 Partitioned Tables and Indexes 9-3

Advantages of Partitioning
list (WHERE clause) during evaluation in order to improve performance.

Partition pruning can eliminate index partitions even when the underlying table’s
partitions cannot be eliminated, if the index and table are partitioned on different
columns. You can often improve the performance of operations on large tables by
creating partitioned indexes which reduce the amount of data that your SQL state-
ments need to access or modify.

The ability to prune unneeded partitions from SQL statements increases perfor-
mance and availability for many purposes, including partition-level load, purge,
backup, restore, reorganization, and index building.

Advantages of Partitioning
This section identifies the classes of databases that could benefit from the use of par-
titioning, and characterize them in terms of the problems they present:

■ Very Large Databases (VLDBs)

■ Reducing Downtime for Scheduled Maintenance

■ Reducing Downtime Due to Data Failures

■ DSS Performance

■ I/O Performance

■ Disk Striping: Performance versus Availability

■ Partition Transparency

Very Large Databases (VLDBs)
A Very Large Database (VLDB) contains hundreds of gigabytes or even a few ter-
abytes of data. Partitioning provides support for VLDBs that contain mostly struc-
tured data, rather than unstructured data. These VLDBs typically owe their size to
the presence of a few very large data objects (tables and indexes) rather than to the
presence of a very large number of data objects.

There are two major categories of VLDB:

■ On-Line Transaction Processing (OLTP) databases are designed for large numbers
of concurrent transactions, where each transaction is a relatively simple opera-
tion processing a small amount of data.

■ Decision Support Systems (DSS) are designed for very complex queries that need
to access and process large amounts of data.
9-4 Oracle8 Concepts

Advantages of Partitioning
A VLDB may be characterized as an OLTP database if most of its workload is
OLTP. Similarly a VLDB may be characterized as a DSS database if most of its work-
load consists of DSS queries.

Partitioning efficiently supports both OLTP VLDBs and DSS VLDBs.

Historical Databases
Historical databases are the most common type of DSS VLDB. A historical database
contains two classes of tables, historical tables and enterprise tables.

■ Historical tables describe the business transactions of an enterprise over a recent
time interval, such as the last 24 months. There are two types of historical
tables:

– Base tables contain the baseline information (for example, sales, checks, and
orders).

– Rollup tables contain summary information derived from the base informa-
tion using operations such as GROUP BY, AVERAGE, and COUNT.

The time interval reflected in a historical table is a rolling window, so periodi-
cally the database administrator (DBA) deletes the set of rows describing the
oldest transactions and allocates space for the set of rows describing new trans-
actions. For example, at the close of business on April 30, 1997 the DBA deletes
the rows (and all supporting index entries) that describe May 1995 transactions
and allocates space for May 1997 transactions.

The vast majority of data in a historical VLDB is stored in few very large histori-
cal tables that present special problems due to their size and the requirement to
smoothly roll out old data and roll in new data.

■ Enterprise tables describe the business entities of the enterprise (for example,
departments, locations, and products). This information changes slowly over
time and is not modified on a periodic schedule. Although enterprise tables are
not large, they affect the performance of many long-running DSS queries that
consist of joins of a historical table with enterprise tables.

Partitioning addresses the problem of supporting large historical tables and their
indexes by dividing historical data into time-related partitions that can be managed
independently and added or deleted conveniently.

Mission-Critical Databases
Mission-critical OLTP databases present special availability and performance prob-
lems even if they are not very large. For example, it may be necessary to perform
 Partitioned Tables and Indexes 9-5

Advantages of Partitioning
scheduled maintenance operations or recover a 10-gigabyte table in a very short
period of time, perhaps an hour or less. Also, the DBA may need a degree of con-
trol over data placement that is hard to achieve when a table or index is spread
over multiple drives.

Partitioning can increase the availability of mission-critical databases if critical
tables and indexes are divided into partitions to reduce the maintenance windows,
recovery times, and impact of failures. You can also improve access performance to
a critical table or index by controllin performance parameters on a partition basis.

Reducing Downtime for Scheduled Maintenance
Partitions enable data management operations like data loads, index creation, and
data purges at the partition level, rather than on the entire table, resulting in signifi-
cantly reduced times for these operations.

Partitioning can significantly reduce the impact of scheduled downtime for mainte-
nance operations:

■ By introducing partition maintenance operations that operate on an individual
partition rather than on an entire table or index.

■ By providing partition independence so that maintenance operations can be per-
formed concurrently on different partitions.

Partition Maintenance Operations
Partition maintenance operations are faster than full table or index maintenance opera-
tions. A speedup can be achieved equal to the ratio:

(# records in full table or index) / (# records in partition)

provided there are no interpartition stored constructs (global indexes and referen-
tial integrity constraints).

To further reduce downtime, a partition maintenance operation can take advantage
of performance features that are available for table and index-level maintenance
operations, such as the PARALLEL, NOLOGGING, and DIRECT (or APPEND)
options where applicable.

Partition Independence
Partition independence for the partition maintenance operations makes it possible to
perform concurrent maintenance operations on different partitions of the same
table or index, as well as concurrent SELECT and DML operations against parti-
tions that are unaffected by maintenance operations.
9-6 Oracle8 Concepts

Advantages of Partitioning
For example, you can Direct Path Load into partitions PA and PB at the same time,
while applications are executing standard SQL SELECT and DML operations
against other partitions.

Partition independence is particularly important for operations that involve data
movement. Such operations may take a long time (minutes, hours, or even days).
Partitioning can reduce the window of unavailability on other partitions to a short
time (few seconds) during operations that involve data movement, provided there
are no inter-partition stored constructs (global indexes and referential integrity con-
straints).

Partition independence is not needed for short operations (no data movement)
because these operations complete in a short time.

Reducing Downtime Due to Data Failures
Some maintenance operations are unplanned events, required to recover from hard-
ware or software failures that cause data loss or corruption. Recovery from hard-
ware failures and many system software failures is accomplished by running the
RECOVER command on a database, tablespace, or datafile. Any tables or indexes
that have records in a tablespace or datafile being recovered remain unavailable
during recovery. Increased availability is particularly important for mission-critical
OLTP databases.

Because partitions are independent of each other, the unavailability of a piece (or a
subset of pieces) does not affect access to the rest of the data.

Storing partitions in separate tablespaces provides the following benefits:

■ Downtime due to execution of the RECOVER command is reduced because the
unit of recovery (a tablespace) is smaller.

■ Disk resources needed for recovery of an offline tablespace (deferred rollback
segments) are reduced because the unit of recovery is smaller.

■ The amount of unavailable data is reduced, because only the partition(s) stored
in the recovered tablespace have to be taken offline. User applications and
maintenance operations can still access the other partitions. This is another
example of partition independence.

DSS Performance
DSS queries on very large tables present special performance problems. An ad-hoc
query that requires a table scan may take a long time, because it must inspect every
row in the table; there is no way to identify and skip subsets of irrelevant rows. The
 Partitioned Tables and Indexes 9-7

Advantages of Partitioning
problem is particularly important for historical tables, for which many queries con-
centrate access on rows that were generated recently.

Partitions help solve this DSS performance problem. An ad-hoc query which only
requires rows that correspond to a single partition (or range of partitions) can be
executed using a partition scan rather than a table scan.

For example, a query that requests data generated in the month of October 1997
can scan just the rows stored in the October 1997 partition, rather than rows gener-
ated over many years of activity. This improves response time and it may also sub-
stantially reduce the temporary disk space requirement for queries that require
sorts.

I/O Performance
Partitioning can control how data is spread across physical devices. To balance I/O
utilization, you can specify where to store the partitions of a table or index.

With this level of location control, you can accommodate the special needs of appli-
cations that require fast response time by reducing disk contention and using faster
devices. On the other hand, data that is accessed infrequently, such as old historical
data, can be moved to slow disks or stored in subsystems that support a storage
hierarchy.

Disk Striping: Performance versus Availability
Disk striping and partitioning are both tools that can improve performance through
the reduction of contention for disk arms. Which tool to use, or in which propor-
tions to use them together, is an important issue to consider when physically
designing databases. These issues should be considered not only with respect to
performance, but also with respect to availability and partition independence.

Figure 9–2 shows the two extremes of combining partitioning and striping. Both (a)
and (b) show four partitions spread across eight disks, but (a) stripes each partition
onto its own pair of disks, whereas (b) stripes each partition onto all eight disks.

■ The performance characteristics are better in (b), but if any single disk failure
occurs, all partitions are adversely affected.

■ The availability characteristics are better in (a), because failure of a single disk
only affects one partition.

Intermediate configurations are also possible, where subsets of partitions are
striped over subsets of disks.
9-8 Oracle8 Concepts

Advantages of Partitioning
Figure 9–2 Partitions and Disk Striping

The trade-off between performance and availability must be decided when deter-
mining how to partition tables and indexes, and how to stripe the disks on which
they are stored.

For mission-critical databases it is recommended that partition independence and
availability be favored, therefore each partition that you want to stripe across disks
should be striped onto its own set of disk drives, which should include enough
drives to achieve the required I/O parallelism for accesses to that partition.

Partition Transparency
The vast majority of application programs require partition transparency, that is the
programs should be insensitive to whether the data they access is partitioned and
how it is partitioned.

A few application programs, however, can take advantage of partitions by explic-
itly requesting access to an individual partition, rather than the entire table. For
example, a user might want to break a long batch job on a very large table into a
sequence of short nightly batch jobs on individual partitions.

P1

d1 d2

P2

d3 d4

d2 d3 d4

P3

d5 d6

P4

d7 d8

(a) each partition resides on a stripe of a subset of all disks

more availability
less performance

(b) every partition is striped across all disks

less availability
more performance P1 P2 P3 P4

d1 d5 d6 d7 d8
 Partitioned Tables and Indexes 9-9

Advantages of Partitioning
Manual Partitioning with Partition Views
Instead of using partitioned tables, you can build separate tables with identical tem-
plates and define a view that does a UNION of these tables. This is known as man-
ual partitioning, and the view is known as a partition view.

Partition views were the only form of partitioning available in Oracle7 Release 7.3.
They are not recommended for new applications in Oracle8. Partition views that
were created for Oracle7 databases can be converted to partitioned tables by using
the EXCHANGE PARTITION option of the ALTER TABLE command.

The basic idea behind partition views is to divide the large table into multiple phys-
ical tables using a partitioning criterion (a WHERE clause or CHECK constraint),
then glue the smaller tables together into a whole with a UNION ALL view. You
can then define sets of “base indexes” with identical key specifications on the base
tables, which provide indexing capabilities when the UNION ALL view is used.
Partition views must be indexed to work properly.

Queries that use a key range to select from a partition view access only the base
tables that lie within the key range. The optimizer can use separate execution plans
for a partition view’s base tables. (In contrast, the optimizer uses a single execution
plan for all partitions in a partitioned table.)

Manual partitioning with partition views has a number of disadvantages:

■ Configuration complexity

The database administrator is responsible for correctly defining the base tables
and indexes that correspond to partitions, and for maintaining these defini-
tions. The equivalent of DDL operations that move data across partitions (split,
move, and so on) must be implemented via Export/Import or SQL scripts.

■ Lack of partition transparency

Some SQL operations must be performed using the base tables rather than the
UNION ALL view. For example, INSERT refers to a base table, and user code is
needed to obtain the table name that appears in an INSERT statement.

Note: Oracle8 supports partition views solely for backwards-com-
patibility with Oracle7 Release 7.3.

Additional Information: See Oracle8 Migration and the Oracle8
Administrator’s Guide for instructions on converting partition views
to partitioned tables.
9-10 Oracle8 Concepts

Basic Partitioning Model
■ Lack of performance

Some SQL operations on the UNION ALL view may perform badly because
the optimizer does not take advantage of all the existing base indexes.

■ Poor memory utilization

A SQL compiled query operating on a UNION ALL view internally replicates
descriptive information for all tables that support the view.

■ DDL restrictions

Global indexes and referential integrity constraints cannot be defined on the
UNION ALL view.

■ Load restrictions

It is not possible to perform direct loads on a UNION ALL view.

Basic Partitioning Model
Partitioning is specified with options to the CREATE TABLE and CREATE INDEX
statements. After creating a partitioned table or index, you can use ALTER TABLE
or ALTER INDEX statements to modify its partitioning attributes. The partitioning
syntax for CREATE TABLE and CREATE INDEX statements is very similar.

The CREATE TABLE statement specifies:

1. The logical attributes of the table, such as column and constraint definitions.

2. The physical attributes of the table.

– If the table is non-partitioned, these are the real physical attributes of the
segment associated with the table.

– If the table is partitioned, these table-level attributes specify defaults for the
individual partitions of the table.

3. For a partitioned table, there is also a partition specification which includes:

– the table-level algorithm used to map rows to partitions

– a list of partition descriptions, one for each partition in the table.

Each partition description includes a clause defining supplemental, partition-
level information about the algorithm used to map rows to partitions. This
clause can also specify a partition name and physical attributes for the partition.
 Partitioned Tables and Indexes 9-11

Basic Partitioning Model
Datatype Restrictions For partitioned tables, the logical attributes have additional
restrictions. Partitioned tables cannot have any columns with LONG or LONG
RAW datatypes, LOB datatypes (BLOB, CLOB, NCLOB, or BFILE), or object types.

If a table (or index) is partitioned on a column that has the DATE datatype, its parti-
tion descriptions should use the TO_DATE format mask; otherwise partition prun-
ing is not possible. See “The TO_DATE Format Mask” on page 9-16.

Bitmap Restrictions You can create bitmap indexes on partitioned tables, with the
restriction that the bitmap indexes must be local to the partitioned table — they can-
not be global indexes. (See “Index Partitioning” on page 9-22.)

Cost Based Optimization The cost based optimizer is used when a SQL statement
accesses partitioned tables or indexes; rule base optimization is not available for
partitions. A single execution plan is used for all partitions of a partitioned table.

Statistics can be gathered by partition, using the ANALYZE command. It is impor-
tant to gather statistics whenever the nature of the data in a partitioned table
changes significantly. The statistics can be found in these data dictionary views:

■ ALL_TAB_PARTITIONS, DBA_TAB_PARTITIONS, USER_TAB_PARTITIONS

■ ALL_IND_PARTITIONS, DBA_IND_PARTITIONS, USER_IND_PARTITIONS

■ ALL_PART_COL_STATISTICS, DBA_PART_COL_STATISTICS,
USER_PART_COL_STATISTICS

Range Partitioning
Range partitioning maps rows to partitions based on ranges of column values. Range
partitioning is defined by the partitioning specification for a table or index:

PARTITION BY RANGE (column_list)

and by the partitioning specifications for each individual partition:

VALUES LESS THAN (value_list)

where:

■ column_list is an ordered list of columns that determines the partition to which
a row or an index entry belongs.

– These columns are called the partitioning columns.

– The values in the partitioning columns of a particular row constitute that
row’s partitioning key.
9-12 Oracle8 Concepts

Basic Partitioning Model
■ value_list is an ordered list of values for the columns in column_list.

– Each value in value_list must be either a literal or a TO_DATE() or RPAD()
function with constant arguments. (See “The TO_DATE Format Mask” on
page 9-16.)

– The value_list contained in the partitioning specification for the ith partition
defines an open (non-inclusive) upper bound for the partition, referred to
as the partition bound.

– The partition bound for the ith partition defines an open (non-inclusive)
upper bound for the partition. The partition bound for the ith partition
must compare less than the partition bound for the (i+1)th partition.

In the ith partition, all rows (or rows pointed to by index entries) have partitioning
keys that compare less than the partition bound for that partition. Unless the ith parti-
tion is the first partition in the table or index, all of the partitioning keys in the ith
partition also compare greater than or equal to the partition bound for the (i-1)th
partition. (See “Partition Bounds and Partitioning Keys” on page 9-14 for more
information about how partitioning keys are compared to partition bounds, and in
particular how multicolumn partitioning keys are handled.)

For example, in the following table of four partitions (one for each quarter’s sales),
a row with sale_year=1997, sale_month=7, and sale_day=18 has partitioning key
(1997, 7, 18), belongs in the third partition, and would be stored in tablespace tsc. A
row with sale_year=1997, sale_month=7, and sale_day=1 has partitioning key
(1997, 7, 1), and also belongs in the third partition, stored in tablespace tsc.

CREATE TABLE sales
 (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (PARTITION sales_q1 VALUES LESS THAN (1994, 04, 01)
 TABLESPACE tsa,
 PARTITION sales_q2 VALUES LESS THAN (1994, 07, 01)
 TABLESPACE tsb,
 PARTITION sales_q3 VALUES LESS THAN (1994, 10, 01)
 TABLESPACE tsc,
 PARTITION sales_q4 VALUES LESS THAN (1995, 01, 01)
 TABLESPACE tsd);
 Partitioned Tables and Indexes 9-13

Basic Partitioning Model
Partition Names
Every partition has a name, which must conform to the usual rules for naming
schema objects and their parts. In particular:

■ The name of a table partition must be unique among all the partitions belong-
ing to the same parent table.

■ The name of an index partition must be unique among all the partitions belong-
ing to the same parent index.

You can rename a partition; however, you cannot create any synonyms on a parti-
tion name.

Referencing a Partition
Partition names can optionally be referenced in DDL and DML statements and in
utility statements like Import/Export and SQL*Loader. They always appear in con-
text with the name of their parent table or index and they are never qualified by a
schema name. (The schema name can be used to qualify the parent table or index.)

For example:

ALTER TABLE admin.patient_visits DROP PARTITION pv_dec92

See “SQL Extension: Partition-Extended Table Name” on page 9-42 for more infor-
mation about referencing partitions in SQL statements.

Partition Bounds and Partitioning Keys
This section describes how a row’s partitioning key is compared with a set of upper
and lower bounds to determine which partition the row belongs in.

Partition Bounds
Every table and index partition has a non-inclusive upper bound, which is specified
by the VALUES LESS THAN clause. Every partition except the first partition also
has a lower bound (inclusive), which is specified by the VALUES LESS THAN on the
next-lower partition.

The partition bounds collectively define an ordering of the partitions in a table or
index. The “first” partition is the partition with the lowest VALUES LESS THAN
clause, and the “last” or “highest” partition is the partition with the highest VAL-
UES LESS THAN clause.

Additional Information: See Oracle8 SQL Reference for information
about the rules for naming schema objects.
9-14 Oracle8 Concepts

Basic Partitioning Model
If you attempt to insert a row into a table and the row’s partitioning key is greater
than or equal to the partition bound for the highest partition in the table, the insert
will fail.

Partitioning Keys
A partitioning key consists of an ordered list of up to 16 columns. A row’s partition-
ing key is an ordered list of its values for the partitioning columns.

A partitioning key may not contain the LEVEL, ROWID, or MLSLABEL pseudocol-
umn or a column of type ROWID.

When comparing character values in partitioning keys and partition bounds, char-
acters are compared according to their binary values. However, if a character con-
sists of more than one byte, Oracle compares the binary value of each byte, not of
the character.

The comparison also uses the comparison rules associated with the column data
type (for example, blank-padded comparison is done for the ANSI CHAR data
type). The NLS parameters, specifically the initialization parameters NLS_SORT
and NLS_LANGUAGE and the environment variable NLS_LANG, have no effect
on the comparison.

MAXVALUE
You can specify the keyword MAXVALUE for any value in the partition bound
value_list. This keyword represents a virtual “infinite” value that sorts higher than
any other value for the data type, including the null value.

For example, you might partition the office table on state (a CHAR(10) column)
into three partitions with the following partition bounds:

■ VALUES LESS THAN (‘I’): Contains states whose names start with
A through H.

■ VALUES LESS THAN (‘S’): Contains states whose names start with
I through R.

■ VALUES LESS THAN (MAXVALUE): Contains states whose names
start with S through Z, plus special codes for non-U.S. regions.

Nulls
NULL cannot be specified as a value in a partition bound value_list. An empty
string also cannot be specified as a value in a partition bound value_list, because it
is treated as NULL within the database server.
 Partitioned Tables and Indexes 9-15

Basic Partitioning Model
For the purpose of assigning rows to partitions, Oracle sorts nulls greater than all
other values except MAXVALUE. Nulls sort less than MAXVALUE.

This means that if a table is partitioned on a nullable column, and the column is to
contain nulls, then the highest partition should have a partition bound of MAX-
VALUE for that column. Otherwise the rows that contain nulls will map above the
highest partition in the table and the insert will fail.

The TO_DATE Format Mask
If the partition key includes a column that has the DATE datatype, you must spec-
ify partition bounds using the TO_DATE() format mask; otherwise partition elimi-
nation (“pruning”) will not work.

For example, you might create the sales table using a DATE column:

CREATE TABLE sales
 (invoice_no NUMBER,
 sale_date DATE NOT NULL)
 PARTITION BY RANGE (sale_date)
 (PARTITION sales_q1
 VALUES LESS THAN (TO_DATE(‘94-04-01’,’YY-MM-DD’))
 TABLESPACE tsa,
 PARTITION sales_q2
 VALUES LESS THAN (TO_DATE(‘94-07-01’,’YY-MM-DD’))
 TABLESPACE tsb,
 PARTITION sales_q3
 VALUES LESS THAN (TO_DATE(‘94-10-01’,’YY-MM-DD’))
 TABLESPACE tsc,
 PARTITION sales_q4
 VALUES LESS THAN (TO_DATE(‘95-01-01’,’YY-MM-DD’))
 TABLESPACE tsd);

You also need to use the TO_DATE() format mask when you query or modify data
in the sales table, for example:

SELECT * FROM sales
 WHERE sale_date < TO_DATE(‘94-06-15’,’YY-MM-DD’);

Multicolumn Partitioning Keys
When a table or index is partitioned on multiple columns, each partition bound
and partitioning key is a list (or vector) of values. In this case, the keys are ordered
according to ANSI SQL2 vector comparison rules (this is also the way multicolumn
index keys are ordered in Oracle).
9-16 Oracle8 Concepts

Basic Partitioning Model
For vectors V1 and V2 which contain the same number of values, Vx[i] is the ith
value in Vx. Assuming that V1[i] and V2[i] have compatible data types:

■ V1 = V2 if and only if V1[i] = V2[i] for all i.

■ V1 < V2 if and only if V1[i] = V2[i] for all i < n and V1[n] < V2[n] for some n.

■ V1 > V2 if and only if V1[i] = V2[i] for all i < n and V1[n] > V2[n] for some n.

That is, if you want to know if a partitioning key PK is less than or equal to parti-
tion bound PB, you compare corresponding values in PK and PB until you find a
pair that is not equal and that pair decides.

For example, if the partition bound for partition P is (7, 5, 10) and the partition
bound for the next lowest partition is (6, 7, 3) then:

■ Keys (6, 9, 11) and (7, 3, 15) belong in partition P, because:

– key (6, x, x) is less than (7, x, x), and (6, 9, x) is greater than (6, 7, x)

– key (7, 3, x) is less than (7, 5, x) and greater than (6, 7, x)

■ Keys (6, 5, 0) and (7, 5, 11) belong in other partitions.

If MAXVALUE appears as an element of a partition bound value_list, then the val-
ues of all the following elements are irrelevant. For example, a partition bound of
(10, MAXVALUE, 5) is equivalent to a partition bound of (10, MAXVALUE, 6) or to
a partition bound of (10, MAXVALUE, MAXVALUE).

Multicolumn partitioning keys are useful when the primary key for the table con-
tains multiple columns, but rows are not distributed evenly over the most signifi-
cant column in the key. For example, suppose that the supplier_parts table contains
information about which suppliers provide which parts, and the primary key for
the table is (suppnum, partnum). It is not sufficient to partition on suppnum
because some suppliers provide hundreds of thousands of parts, while others pro-
vide only a few specialty parts. Instead, you can partition the table on (suppnum,
partnum).

Multicolumn partitioning keys are also useful when you represent a date as three
CHAR columns instead of a DATE column.

Implicit Constraints Imposed by Partition Bounds
If you specify a partition bound other than MAXVALUE for the highest partition in
a table, this imposes an implicit CHECK constraint on the table. This constraint is
not recorded in the data dictionary (but the partition bound itself is recorded).
 Partitioned Tables and Indexes 9-17

Basic Partitioning Model
Equipartitioning
Two tables or indexes are equipartitioned if they have identical logical partitioning
attributes. They do not have to be the same type of schema object; for example, a
table and an index can be equipartitioned.

If A and B are partitioned tables or indexes, where A[i] is the ith partition in A and
B[i] is the ith partition in B, then A and B are equipartitioned if all of the following
are true:

■ They have the same number of partitions N.

■ They have the same number of partitioning columns M.

■ For every 1 <= i <= N, A[i] and B[i] have the same partition bound.

If Apcol[i] is the ith partitioning column in A and Bpcol[i] is the ith partitioning col-
umn in B, then the following must also be true:

■ For 1 <= i <= M, Apcol[i] and Bpcol[i] have the same data type, including
length, precision, and scale.

A[i] and B[i] may differ in their physical attributes; in particular they do not have
to reside in the same tablespace.

Equipartitioning is important to consider when designing the database.

■ It reduces the downtime and the amount of data that is unavailable during par-
tition maintenance operations and tablespace recovery operations. For exam-
ple, if a table and its indexes are equipartitioned then the effect of splitting a
partition is limited to one table partition and the corresponding index parti-
tions, but if a table has an index that is not equipartitioned then splitting one
partition of the table makes it necessary to reorganize the entire index.

■ Equipartitioning between tables improves execution plans by reducing the
number of large sorts and joins that have to be performed. (This improvement
applies only to serial execution of SQL statements.)

■ It makes tablespace incomplete recovery (point-in-time recovery) on related
subsets of data easier. For example, you might equipartition a table and its pri-
mary key index, or a parent table and a child table. You could then recover cor-
responding partitions to a point in time.
9-18 Oracle8 Concepts

Basic Partitioning Model
Example of Equipartitioning
Figure 9–3 shows four logically related schema objects that are equipartitioned:

■ ACCOUNTS is a table with two partitions which is range-partitioned on col-
umn ACCOUNT_NO. The first partition contains account numbers up to 1000.
The second partition contains account numbers up to 2000.

■ ACCOUNTS_IX is an index on column ACCOUNT_NO in the ACCOUNTS
table. Like the table, the index is range-partitioned on ACCOUNT_NO into two
partitions, which have the same partition bounds as partitions of ACCOUNTS.

■ CHECKS is a table with two partitions which is range-partitioned on column
ACCT_NO. Its partitions have the same partition bounds as partitions of the
ACCOUNTS table. ACCT_NO is a foreign key that references ACCOUNT_NO
in ACCOUNTS.

■ CHECKS_IX is an index on columns (ACCT_NO, CHECK_NO) in CHECKS. It
is range-partitioned on ACCT_NO into two partitions, which have the same
partition bounds as partitions of ACCOUNTS.

The logical relationship between the four schema objects is shown on the left in
Figure 9–3; the physical partitioning is shown on the right. (Triangles represent
indexes and rectanges represent tables.)
 Partitioned Tables and Indexes 9-19

Basic Partitioning Model
Figure 9–3 Equipartitioned Tables and Indexes

Acct #s 1 to 1000

acct_no

CHECKS_IX

CHECKS

account_no

ACCOUNTS_IX

ACCOUNTS

REFERENCES

Acct #s 1001 to 2000

Partition 1 Partition 2
9-20 Oracle8 Concepts

Rules for Partitioning Tables and Indexes
Rules for Partitioning Tables and Indexes
This section describes the rules for creating partitioned tables and indexes and the
physical attributes of partitions.

Table Partitioning
The rules for partitioning tables are simple:

■ A table can be range-partitioned, provided that:

– It is not part of a cluster.

– It does not contain LOBs, LONG or LONG RAW datatypes, or object types.

– It is not an index-organized table.

■ You can mix partitioned and non-partitioned indexes with partitioned and non-
partitioned tables:

– A partitioned table can have partitioned and/or non-partitioned indexes.

– A non-partitioned table can have partitioned and/or non-partitioned
indexes. (Only global indexes can be created on non-partitioned tables —
see “Global Indexes” on page 9-25.)

Physical Attributes of Table Partitions
Default physical attributes are initially specified when the CREATE TABLE state-
ment creates a partitioned table. Since there is no segment corresponding to the par-
titioned table itself, these attributes will only be used in derivation of physical
attributes of member partitions. Default physical attributes can later be modified
using ALTER TABLE MODIFY DEFAULT ATTRIBUTES.

Physical attributes of table partitions created by CREATE TABLE and ALTER
TABLE ADD PARTITION are determined as follows:

■ Values of physical attributes specified (explicitly or by default) for the base
table are used whenever the value of a corresponding partition attribute was
not specified.

Physical attributes of an existing table partition may be modified by ALTER TABLE
MOVE PARTITION and ALTER TABLE MODIFY PARTITION. Resulting attributes
are determined as follows:

■ Values of physical attributes of the partition before the statement was issued
are used whenever a new value was not specified.
 Partitioned Tables and Indexes 9-21

Rules for Partitioning Tables and Indexes
Physical attributes of table partitions created by ALTER TABLE SPLIT PARTITION
are determined as follows:

■ Values of physical attributes of the partition being split are used whenever a
new value was not specified. (This also applies to global index split — missing
attributes are inherited from the index partition being split.)

Physical attributes of all partitions of a table may be modified by ALTER TABLE,
for example, ALTER TABLE tablename NOLOGGING changes the logging mode of
all partitions of tablename to NOLOGGING.

Index Partitioning
The rules for partitioning indexes are similar to those for tables:

■ An index can be range-partitioned with these exceptions:

– The index is not a cluster index.

– The index is not defined on a clustered table.

– A bitmap index on a partitioned table must be a local index.

■ You can mix partitioned and non-partitioned indexes with partitioned and non-
partitioned tables:

– A partitioned table can have partitioned and/or non-partitioned indexes.

– A non-partitioned table can have partitioned and/or non-partitioned B*-
tree indexes.

– Bitmap indexes on non-partitioned tables cannot be range-partitioned.

However, partitioned indexes are more complicated than partitioned tables because
there are four types of range-partitioned indexes: local prefixed, local non-prefixed,
global prefixed, and global non-prefixed. These types are described below. Oracle
supports three of the four types (global non-prefixed indexes are not useful in real
applications).

Note: ALTER TABLE MOVE PARTITION may be used to change
the tablespace in which a partition resides.
9-22 Oracle8 Concepts

Rules for Partitioning Tables and Indexes
Local Indexes
In a local index, all keys in a particular index partition refer only to rows stored in a
single underlying table partition. A local index is created by specifying the LOCAL
attribute.

Oracle constructs the local index so that it is equipartitioned with the underlying
table. Oracle range-partitions the index on the same columns as the underlying
table, creates the same number of partitions, and gives them the same partition
bounds as corresponding partitions of the underlying table. Oracle also maintains
the index partitioning automatically as partitions in the underlying table are added,
dropped, or split. This ensures that the index remains equipartitioned with the
table.

Equipartitioning a table and its index has the following advantages:

■ Only one index partition is affected when a maintenance operation (other than
SPLIT PARTITION) is performed on an underlying table partition.

– The duration of a partition maintenance operation remains proportional to
partition size if the partitioned table has only local indexes.

– Local indexes support partition independence.

– Local indexes support smooth roll-out of old data and roll-in of new data
in historical tables.

■ Oracle can take advantage of the fact that a local index is equipartitioned with
the underlying table to generate better query access plans.

■ Local indexes simplify the task of tablespace incomplete recovery. In order to
recover a partition of a table to a point in time, you must also recover the corre-
sponding index entries to the same point in time. The only way to accomplish
this is with a local index; then you can recover the corresponding table and
index partitions together.
 Partitioned Tables and Indexes 9-23

Rules for Partitioning Tables and Indexes
Local Prefixed Indexes
A local index is prefixed if it is partitioned on a left prefix of the index columns.

For example, if the sales table and its local index sales_ix are partitioned on the
week_num column, then index sales_ix is local prefixed if it is defined on the col-
umns (week_num,xaction_num). On the other hand, if index sales_ix is defined on
column product_num then it is not prefixed.

Figure 9–4 shows another example of a local prefixed index.

Local prefixed indexes can be unique or non-unique.

Figure 9–4 Local Prefixed Index

Local Non-Prefixed Indexes
A local index is non-prefixed if it is not partitioned on a left prefix of the index col-
umns.

You cannot have a unique local non-prefixed index unless the index key is a subset
of the partitioning key.

Figure 9–5 shows an example of a local non-prefixed index.

DEPTNO 0-9Index IX1 on DEPTNO
Range Partitioned
on DEPTNO

Table EMP
Range Partitioned
on DEPTNO

DEPTNO
0-9

DEPTNO 10-19

DEPTNO
10-19

DEPTNO 90-99. . .

. . .

DEPTNO
90-99
9-24 Oracle8 Concepts

Rules for Partitioning Tables and Indexes
Figure 9–5 Local Non-Prefixed Index

Global Indexes
In a global index, the keys in a particular index partition may refer to rows stored in
more than one underlying table partition. A global index is created by specifying
the GLOBAL attribute (this is the default). The user is responsible for defining the
initial partitioning of a global index at creation and for maintaining the partitioning
over time. Index partitions can be dropped or split as necessary.

Normally, a global index is not equipartitioned with the underlying table. There is
nothing to prevent an index from being equipartitioned with the underlying table,
but Oracle does not take advantage of the equipartitioning when generating query
plans or executing partition maintenance operations. So an index that is equiparti-
tioned with the underlying table should be created as LOCAL.

A global index contains (conceptually) a single B*-tree with entries for all rows in
all partitions. Each index partition may contain keys that refer to many different
partitions in the table.

The highest partition of a global index must have a partition bound all of whose
values are MAXVALUE. This insures that all rows in the underlying table can be
represented in the index.

A global index is prefixed if it is partitioned on a left prefix of the index columns.
(See Figure 9–6 for an example.) A global index is non-prefixed if it is not partitioned

ACCTNO 31
ACCTNO 82Index IX3 on ACCTNO

Range Partitioned
on CHKDATE

Table CHECKS
Range Partitioned
on CHKDATE

CHKDATE
1/97

ACCTNO 54
ACCTNO 82

CHKDATE
2/97

ACCTNO 15
ACCTNO 35. . .

. . .

CHKDATE
12/97
 Partitioned Tables and Indexes 9-25

Rules for Partitioning Tables and Indexes
on a left prefix of the index columns. Oracle does not support global non-prefixed
indexes.

Global prefixed indexes can be unique or non-unique.

Global indexes are harder to manage than local indexes:

■ When the data in an underlying table partition is moved or removed (SPLIT,
MOVE, DROP, or TRUNCATE), all partitions of a global index are affected.
Consequently global indexes cause partition maintenance (including rebuilds
of global indexes or index partitions) to have duration proportional to table
size rather than partition size, and they do not support partition independence.

■ When an underlying table partition is recovered to a point in time, all corre-
sponding entries in a global index must be recovered to the same point in time.
Because these entries may be scattered across all partitions of the index (mixed
in with entries for other partitions that are not being recovered), there is no
way to accomplish this except by recreating the entire global index.

Non-partitioned indexes are treated as global prefixed indexes.

Figure 9–6 Global Prefixed Index

EMPNO 15
EMPNO 31Index IX3 on EMPNO

Range Partitioned
on EMPNO

Table EMP
Range Partitioned
on DEPTNO

EMPNO
0-39

EMPNO 54

EMPNO
40-69

EMPNO 73
EMPNO 82
EMPNO 96. . .

. . .

EMPNO
70-MAXVALUE

DEPTNO
0-9

DEPTNO
10-19

DEPTNO
90-99
9-26 Oracle8 Concepts

Rules for Partitioning Tables and Indexes
Summary of Partitioned Index Types
Table 9–1 summarizes the three types of partitioned indexes that Oracle supports.

■ If an index is local, it is equipartitioned with the underlying table; otherwise it
is global.

■ A prefixed index is partitioned on a left prefix of the index columns; otherwise it
is non-prefixed.

Importance of Non-Prefixed Indexes
Non-prefixed indexes are particularly useful in historical databases. In a table con-
taining historical data it is common for an index to be defined on one column to
support the requirements of fast access by that column, but partitioned on another
column (the same column as the underlying table) to support the time interval for
rolling out old data and rolling in new data.

Consider the sales table presented in Figure 9–1 (“SALES Table Partitioned by
Week” on page 9-3). It contains a year’s worth of data, divided into 13 partitions. It
is range partitioned on week_no, four weeks to a partition. You might create a non-
prefixed local index sales_ix on sales. The sales_ix index is defined on acct_no
because there are queries that need fast access to the data by account number. How-
ever it is partitioned on week_no to match the sales table. Every four weeks the
oldest partitions of sales and sales_ix are dropped and new ones are added.

1 For a unique local non-prefixed index, the index key must be a subset of the partitioning key.
2 Although a global partitioned index may be equipartitioned with the underlying table, Oracle does not take advantage of

the partitioning or maintain equipartitioning after partition maintenance operations such as DROP or SPLIT PARTITION.
3 This type of index is not supported.

Table 9–1 Types of Partitioned Indexes

Type of Index Index Equi-
partitioned
with Table

Index Parti-
tioned on
Left Prefix
of Index
Columns

UNIQUE
Attribute
Allowed

Example

Table Par-
titioned On
Column

Index
Columns

Index Par-
titioned On
Column

Local Prefixed Yes Yes Yes A A,B A

Local Non-Prefixed Yes No Yes1 A B A

Global Prefixed No2 Yes Yes A B B

Global Non-Prefixed3 — — — — — —
 Partitioned Tables and Indexes 9-27

Rules for Partitioning Tables and Indexes
Performance Implications of Prefixed and Non-Prefixed Indexes
It is more expensive to scan a non-prefixed index than to scan a prefixed index.

If an index is prefixed (either local or global) and Oracle is presented with a predi-
cate involving the index columns, then partition pruning can restrict application of
the predicate to a subset of the index partitions.

For example, in Figure 9–4 (“Local Prefixed Index” on page 9-24) if the predicate is
DEPTNO=15, the optimizer knows to apply the predicate only to the second parti-
tion of the index. (If the predicate involves a bind variable, the optimizer will not
know exactly which partition but it may still know there is only one partition
involved, in which case at run time only one index partition will be accessed.)

When an index is non-prefixed Oracle often has to apply a predicate involving the
index columns to all N index partitions. This is required to look up a single key, or
to do an index range scan. For a range scan, Oracle must also combine information
from N index partitions. For example, in Figure 9–5 (“Local Non-Prefixed Index”
on page 9-25) a local index is partitioned on CHKDATE with an index key on
ACCTNO. If the predicate is ACCTNO=31, Oracle probes all 12 index partitions.

Of course, if there is also a predicate on the partitioning columns then multiple
index probes might not be necessary. Oracle takes advantage of the fact that a local
index is equipartitioned with the underlying table to prune partitions based on the
partition key. For example, if the predicate in Figure 9–5 is CHKDATE<3/97, Ora-
cle only has to probe two partitions.

So for a non-prefixed index, if the partition key is a part of the WHERE clause (but
not of the index key) the optimizer determines which index partitions to probe
based on the underlying table partition.

When many queries and DML statements using keys of local, non-prefixed, indexes
have to probe all index partitions, this effectively reduces the degree of partition
independence provided by such indexes.

Guidelines for Partitioning Indexes
When deciding how to partition indexes on a table, you must consider the mix of
applications that need to access the table. There is a trade-off between performance
on the one hand and availability and manageability on the other.

Here are some of the guidelines you should consider:

■ For OLTP applications:

– Global indexes and local prefixed indexes provide better performance than
local non-prefixed indexes because they minimize the number of index
9-28 Oracle8 Concepts

Rules for Partitioning Tables and Indexes
partition probes.

– Local indexes support more availability when there are partition mainte-
nance operations on the table. Local non-prefixed indexes are very useful
for historical databases.

■ For DSS applications, local non-prefixed indexes can improve performance
because many index partitions can be scanned in parallel by range queries on
the index key.

For example, a query using the predicate “ACCTNO between 40 and 45” on
the table CHECKS of Figure 9–5 (“Local Non-Prefixed Index” on page 9-25)
causes parallel scans of all the partitions of the non-prefixed index IX3. On the
other hand, a query using the predicate “DEPTNO between 40 and 45” on the
table DEPTNO of Figure 9–4 (“Local Prefixed Index” on page 9-24) cannot be
parallelized because it accesses a single partition of the prefixed index IX1.

■ For historical tables, indexes should be local if possible. This limits the impact
of regularly scheduled drop partition operations.

■ Unique indexes on columns other than the partitioning columns must be global
because unique local non-prefixed indexes whose key does not contain the par-
titioning key are not supported.

Physical Attributes of Index Partitions
Default physical attributes are initially specified when a CREATE INDEX statement
creates a partitioned index. Since there is no segment corresponding to the parti-
tioned index itself, these attributes are only used in derivation of physical attributes
of member partitions. Default physical attributes can later be modified using
ALTER INDEX.

Physical attributes of partitions created by CREATE INDEX are determined as
follows:

■ Values of physical attributes specified (explicitly or by default) for the index are
used whenever the value of a corresponding partition attribute was not speci-
fied. Handling of the TABLESPACE attribute of partitions of a LOCAL index
constitutes an important exception to this rule in that in the absence of a user-
specified TABLESPACE value, that of the corresponding partition of the under-
lying table will be used.

Physical attributes (other than TABLESPACE, as explained above) of partitions of
local indexes created in the course of processing ALTER TABLE ADD PARTITION
are set to the default physical attributes of each index.
 Partitioned Tables and Indexes 9-29

DML Partition Locks
Physical attributes (other than TABLESPACE, as explained above) of index parti-
tions created by ALTER TABLE SPLIT PARTITION are determined as follows:

■ Values of physical attributes (other than TABLESPACE, as explained above) of
the index partition being split are used.

Physical attributes of an existing index partition can be modified by ALTER INDEX
MODIFY PARTITION and ALTER INDEX REBUILD PARTITION. Resulting
attributes are determined as follows:

■ Values of physical attributes of the partition before the statement was issued
are used whenever a new value was not specified. Note that ALTER INDEX
REBUILD PARTITION can be used to change the tablespace in which a parti-
tion resides.

Physical attributes of global index partitions created by ALTER INDEX SPLIT PAR-
TITION are determined as follows:

■ Values of physical attributes of the partition being split are used whenever a
new value is not specified.

Physical attributes of all partitions of an index may be modified by ALTER INDEX,
for example, ALTER INDEX indexname NOLOGGING changes the logging mode of
all partitions of indexname to NOLOGGING.

DML Partition Locks
DML table locks synchronize DML statements (INSERT, UPDATE, and DELETE)
with DDL statements and LOCK TABLE statements. DML table locks also synchro-
nize DDL and LOCK TABLE statements among themselves.

In order to provide partition independence for DDL and utility operations, Oracle
supports DML partition locks. Partition independence allows you to perform DDL
and utility operations on selected partitions without quiescing activity on other par-
titions.

The purpose of a partition lock is to protect the data in an individual partition
while multiple users are accessing that partition or other partitions in the table con-
currently.

Partition locks fall between table locks and row locks in the DML locking hierarchy,
as shown in Figure 9–7.
9-30 Oracle8 Concepts

Maintenance Operations
Figure 9–7 DML Locking Hierarchy

Partition locks can be acquired in the same modes as table locks: Share (S), Exclu-
sive (X), Row Share (SS), Row Exclusive (SX), and Share Row Exclusive (SSX).

Performance Considerations for Oracle Parallel Server
Introducing an extra level of DML locking may affect the performance of short
transactions in the Oracle Parallel Server environment because extra messages are
sent to the Distributed Lock Manager.

To improve performance in the Oracle Parallel Server environment, you can turn
off DML locking on selected tables with the ALTER TABLE DISABLE TABLE
LOCK statement, which disables both table and partition DML locks. DDL state-
ments are not allowed when DML locking is disabled.

Maintenance Operations
This section covers the following topics:

■ Partition Maintenance Operations

■ Managing Indexes

■ Privileges for Partitioned Tables and Indexes

■ Auditing for Partitioned Tables and Indexes

Additional Information: See Oracle8 Parallel Server Concepts and
Administration.

Table Locks

Partition Locks

Row Locks
 Partitioned Tables and Indexes 9-31

Maintenance Operations
For the purposes of this chapter, a maintenance operation is a DDL statement or a util-
ity (like Export, Import, SQL*Loader) that alters the definition of a table or index
and/or does bulk load or unload of data.

Most maintenance operations on non-partitioned tables and indexes also work on
partitioned tables and indexes. For example, DROP TABLE can drop a partitioned
table, and Export can export a partitioned table. However, some maintenance oper-
ations must be performed on individual partitions rather than the whole parti-
tioned table or index. For example, ALTER TABLE ALLOCATE EXTENT cannot be
used for a partitioned table; instead, you use ALTER TABLE MODIFY PARTITION
ALLOCATE EXTENT for the partition or partitions that need new extents.

Maintenance operations are considered fast if their expected duration is not
affected by the size (number of records) of the schema objects they operate upon.
Fast maintenance operations result only in dictionary and segment header changes,
and do not cause data scans and data updates. They are expected to complete in a
short time (order of seconds). For example, RENAME is a fast operation while CRE-
ATE INDEX is not a fast operation.

Partition Maintenance Operations
A partition maintenance operation modifies one partition of a partitioned table or
index. For example, you might add a new partition to an existing table, or you
might move a partition to a different tablespace for better I/O load balancing, or
you might load a partition.

Some partition maintenance operations are planned events. For example, in a his-
torical database, the database administrator (DBA) periodically drops the oldest
partitions from the database and adds a set of new partitions. This drop and add
operation occurs on a regularly scheduled basis. Another example of a planned
maintenance operation is a periodic Export/Import to recluster data and reduce
fragmentation.

Other partition maintenance operations are unplanned events, required to recover
from application or system problems. For example, unexpected transaction activity
may force the DBA to split a partition to rebalance I/O load, or the DBA may need
to rebuild one or more index partitions.

The partition maintenance operations are:

■ Add a table partition to an existing table

■ Modify a partition — change the physical attributes of a partition

■ Move a table partition — move it to another tablespace, or recluster it, or
change any of its parameters (including any of its create-time parameters)
9-32 Oracle8 Concepts

Maintenance Operations
■ Rename a partition

■ Drop a partition

■ Truncate a table partition (with or without reclaiming space)

■ Split an existing partition into two partitions

■ Load data into one table partition

■ Export data from one table partition

■ Import a table partition

■ Rebuild an index partition

Concurrency Model for Maintenance Operations
The concurrency model described in this section defines when it is possible to run
more than one DDL and utility operation on the same schema object at the same
time. It also defines which query and DML operations can be run concurrently with
DDL and utility operations.

The model applies to all DDL statements. It also applies to utilities like SQL*Loader.

One-Step and Three-Step Operations There are two types of maintenance operations,
one-step and three-step.

One-step operations:

■ These operations DML lock the affected table in Exclusive (X) mode. Index
operations lock the underlying table. They also hold Exclusive dictionary locks
for the duration of the operation.

■ These operations are either fast (for example, ALTER TABLE ADD PARTI-
TION) or they offer no possibility of running other operations concurrently (for
example, ALTER TABLE ADD column).

■ All index operations are one-step except CREATE INDEX and ALTER INDEX
REBUILD (and ALTER INDEX DROP/SPLIT PARTITION, if the global parti-
tion being dropped or split is Usable).

■ All Oracle DDL statements are one-step except CREATE INDEX and MOVE,
SPLIT, REBUILD. or EXCHANGE PARTITION.

Three-step operations:

■ These operations acquire less restrictive DML locks on the affected table. They
lock only one partition in Exclusive (X) mode, or if they lock the entire table,
 Partitioned Tables and Indexes 9-33

Maintenance Operations
they lock it in an S or SS or SX mode.

■ These operations consist of three steps:

– Step 1: read dictionary while holding Share dictionary locks. Step 1 takes a
short time (seconds). At the end of this step, the appropriate DML locks are
acquired, then the dictionary locks are released.

– Step 2: scan or update table or index records. Step 2 may take a long time
(minutes or hours).

– Step 3: update dictionary while holding Exclusive dictionary locks. Step 3
takes a short time (seconds).

■ These operations are long running, but they allow other operations to run con-
currently. Exactly which operations can run concurrently depends on the spe-
cific DML locks acquired by the statement, as explained below.

■ The following operations are three-step:

– ALTER TABLE MOVE PARTITION, ALTER TABLE SPLIT PARTITION,
ALTER TABLE EXCHANGE PARTITION, Direct Path Load Table Partition:
These statements lock the base table in Row Exclusive (SX) mode and the
partition in Exclusive (X) mode.

– CREATE INDEX and ALTER INDEX REBUILD PARTITION (for a global
index): These statements lock the underlying table in Shared (S) mode.

– ALTER INDEX REBUILD PARTITION (for a local index): This statement
locks the underlying table in Row Share (SS) mode and the underlying
table partition in Shared (S) mode.

– ALTER TABLE MODIFY PARTITION REBUILD UNUSABLE LOCAL
INDEXES: This statement locks the underlying table in Row Share (SS)
mode and the underlying table partition in Shared (S) mode.

Finally, some operations may follow either one-step or three-step protocol:

■ This group consists of ALTER TABLE DROP PARTITION and ALTER TABLE
TRUNCATE PARTITION.

If the table being altered has no global indexes defined on it, or if it is refer-
enced by enabled referential constraints, statements in this group execute using
the one-step protocol and they are fast. Otherwise, they execute using the three-
step protocol. In the latter case the base table is locked in Row Exclusive (SX)
mode and the partition is locked in Exclusive (X) mode.
9-34 Oracle8 Concepts

Maintenance Operations
■ ALTER INDEX SPLIT PARTITION (allowed for global indexes only).

If the partition to be split is USABLE, the statement follows the 3-step protocol,
and partitions resulting from SPLIT are USABLE. If, on the other hand, the par-
tition being split is UNUSABLE, the operation follows the 1-step protocol, and
resulting partitions are also marked UNUSABLE.

■ ALTER INDEX DROP PARTITION (allowed for global indexes only).

If the partition to be dropped is USABLE, the statement follows the three-step
protocol; otherwise it follows the one-step protocol.

Conventional Path SQL*Loader and Import use SQL INSERT so they are classified
as DML operations for the purposes of the model. Export uses SQL SELECT so it is
classified as a query operation.

Operations That Can Run Concurrently The rules in this section can be derived from the
definitions of one-step and three-step operations.

While a one-step operation is in progress:

■ You can run queries on the table.

■ You cannot run any other operation (DDL, utility, or DML).

Since queries (READ operations) do not take DML locks, queries are allowed on a
partition which is being SPLIT or MOVEd while the SPLIT or MOVE is being pro-
cessed. However, the current segments are dropped at the end of the operation,
and the space may be reused. An error is signalled if the space is reused.

While an ALTER TABLE MOVE PARTITION, ALTER TABLE SPLIT PARTITION,
ALTER TABLE EXCHANGE PARTITION, or Direct Path Load Table Partition is in
progress on a partition:

■ You can move, split, exchange, or direct path load other partitions in the same
table.

■ You can run queries on the table.

■ You can execute DML operations on the table provided that they do not write
to that partition.

■ You can rebuild any local index partition other than the ones that correspond to
that partition.

■ You cannot run any maintenance operation on the table or its indexes other
than the ones listed above.
 Partitioned Tables and Indexes 9-35

Maintenance Operations
While a CREATE INDEX or ALTER INDEX REBUILD PARTITION or ALTER
INDEX DROP/SPLIT PARTIITON applied to a Usable partition (for a global index)
is in progress:

■ You can run queries on the underlying table.

■ You can create other indexes on the table, rebuild partitions in existing indexes,
or drop or split usable partitions in existing indexes.

■ You cannot execute any DML operation on the table or run any maintenance
operation on the table or its indexes other than the ones listed above.

While an ALTER INDEX REBUILD PARTITION (for a local index) is in progress on
a partition which corresponds to an underlying table partition:

■ You can move, split, or direct path load any partition except the underlying
table partition.

■ You can run queries on the table.

■ You can execute DML operations on the table provided that they do not write
to the underlying table partition.

■ You can rebuild other partitions in the index. You can also create other indexes
on the table or rebuild partitions in other indexes.

■ You cannot run any maintenance operation on the table or its indexes other
than the ones listed above.

Some maintenance operations on a partition of a table cause the global indexes of
the table or the index partitions to become Unusable. An example is ALTER TABLE
MOVE PARTITION. The DBA has to run a script that includes global index
rebuilds in addition to the partition maintenance operation. Consequently from a
user point of view these operations serialize access to the entire table. Operations
such as ALTER TABLE MOVE/SPLIT PARTITION make Unusable any non-parti-
tioned global indexes as well as all partitions of partitioned global indexes.

Note that table partition operations which mark all partitions of global indexes also
mark one partition of local index (the partition corresponding to the table partition
being operated on) Unusable.

Similarly some partition maintenance operations require disabling Referential
Integrity Constraints before the operation, and re-enabling them afterwards. An
example is a ALTER TABLE DROP PARTITION of a non-empty partition. The DBA
has to run a script that includes constraint re-enabling in addition to the partition
maintenance operation. Consequently from a user point of view these operations
serialize access to the entire table.
9-36 Oracle8 Concepts

Maintenance Operations
Queries and Partition Maintenance Operations
Queries whose execution starts before invocation of a partition maintenance opera-
tion, or before dictionary updates are done during a partition maintenance opera-
tion, correctly access via Consistent Read the data of the affected partitions as
existing at query snapshot time. The behavior of such queries after dictionary
updates have been done is unpredictable, in the sense that some of the data exist-
ing at snapshot time may be retrieved or errors may be returned.

Queries that use a partitioned index, and that start with some of the index parti-
tions marked as Index Unusable, return an error when they actually access one of
these partitions for the first time. This happens even if the partition has been made
usable after query start.

Cursor Invalidation
Although many of the new DDL statements are partition-based, cursor invalidation
is still table-based. This means that any DDL statement that modifies table T also
invalidates all cursors that depend on T, even if the statement affects only one parti-
tion P of T and the cursors do not access partition P.

Recoverable and Unrecoverable Operations
All partition maintenance operations can be run in recoverable (LOGGING) mode.
However, some operations support a NOLOGGING option:

■ Parallel CREATE TABLE ... AS SELECT

■ CREATE INDEX

■ Direct Path SQL*Loader

■ Direct-load INSERT

LOGGING is the default, except when the database is operating in NOAR-
CHIVELOG mode. In that case, NOLOGGING is the default. DDL and utility state-
ments that do not support the LOGGING/NOLOGGING option always run in
recoverable mode (LOGGING).

Note: [NO]LOGGING is not an attribute of an operation but of a
physical object. Hence, you cannot specify [NO]LOGGING in
INSERT, but rather if you want to alter the logging mode of a table
or index(es) involved in an INSERT, you need to issue ALTER
TABLE/INDEX [NO]LOGGING before issuing the INSERT state-
ment. For more information, see “Logging Mode” on page 21-5.
 Partitioned Tables and Indexes 9-37

Maintenance Operations
Managing Indexes
You can always rename, change the physical storage attributes, or rebuild a parti-
tion of a local or global index. Changing how an index is partitioned must be han-
dled differently depending on whether the index is local or global.

Local Indexes
Oracle guarantees that the partitioning of a local index matches the partitioning of
the underlying table. It does this by automatically creating or dropping index parti-
tions as necessary when you alter the underlying table. You cannot explicitly add,
drop, or split a partition in a local index.

For each local index:

■ When you add a partition to the underlying table, Oracle automatically creates
a new index partition with the same partition bound as the new table partition.

■ When you drop a partition in the underlying table, Oracle automatically drops
the corresponding index partition.

■ When you split a partition in the underlying table, Oracle automatically splits
the corresponding index partition. The two new index partitions have the same
partition bounds as the new table partitions.

Note that local index partitions produced as a result of splitting a parent table
partition are marked Unusable if a corresponding table partition is non-empty.

When Oracle creates a new local index partition (via ADD or SPLIT):

■ It tries to assign it the same name as the corresponding table partition. If that
fails, it generates a name with the form SYS_Pnnn (see “Partition Names” on
page 9-14). You can rename the partition later.

■ For ADD PARTITION, Oracle creates a segment with the default physical stor-
age attributes of the base index. If a tablespace (other than DEFAULT, which
causes local index partitions to be colocated with corresponding base table par-
titions) has been specified for the parent index, the index partition is placed in
that tablespace. Otherwise, the tablespace in which the new index partition
resides is that of the corresponding partition of the underlying table. You can
modify these attributes later.

■ For SPLIT PARTITION, attributes of the index partition being split are used for
the index partitions resulting from the split. Partition names are the exception,
although Oracle reuses table partition names when possible. For example, for a
table partition with name TP and a local index with name IP, if TP is split into
TP and TP1, then the names of the local index partitions are IP and TP1 (or a
9-38 Oracle8 Concepts

Maintenance Operations
system generated name if TP1 is already in use for that index). If TP is split into
TP1 and TP2, then the local index partitions are TP1 and TP2. That is, if the
table partition name is reused, Oracle tries to reuse the local index partition
name also. All other attributes, however, are inherited from the index partition
being split.

Global Indexes
The DBA is responsible for maintaining the partitioning of a global index. You can
drop or split a partition in a global index. However, you cannot add a partition to a
global index because the high partition of a global index always has a partition
bound of MAXVALUE.

Rebuild Index Partition
The ALTER INDEX REBUILD PARTITION statement can be used to regenerate a
single partition in a local or global partitioned index. This saves you from having to
perform DROP INDEX and then CREATE INDEX, which would affect all partitions
in the index.

ALTER INDEX REBUILD PARTITION has four important applications:

■ To recluster an index partition to recover space and improve performance.

■ To repair an index partition in case of a media failure on the volume where the
index partition resides or a software corruption of the segment containing the
index partition.

■ To regenerate a local index partition after loading the underlying table partition
with Import or SQL*Loader. These utilities offer a performance option to
bypass index maintenance, mark the affected index partitions Index Unusable,
and let the DBA rebuild them later. (Index Unusable is explained in the next
section.) In other words, the strategy of “drop index then re-create index” can
be replaced by a strategy of “mark index partition unusable then rebuild index
partition.”

■ To rebuild index partitions rendered unusable by partition maintenance opera-
tions on the underlying table.

Index Unusable Attribute
Some maintenance operations mark indexes Index Unusable (IU). Index Unusable is
an attribute of a non-partitioned index and of a partition in a partitioned index.
When an index or index partition is marked IU, you get an error if you try to exe-
cute a SELECT or DML statement that requires the index (or partition).
 Partitioned Tables and Indexes 9-39

Maintenance Operations
When a single index partition is marked IU, you must rebuild the partition to make
it valid again before using it. However, while one partition is marked IU the other
partitions of the index are valid and you can execute SELECT or DML statements
that require the index as long as the statements do not access the IU partition.

You can also split or rename the IU partition before rebuilding it, and you can drop
an IU partition of a GLOBAL index.

When a non-partitioned index is marked IU, you can drop the indeYou can also
drop an IU partition of a GLOBAL index.x and re-create it. You can also use ALTER
INDEX REBUILD to rebuild a non-partitioned index.

Six types of maintenance operations can mark index partitions Index Unusable. In
all cases, you must rebuild the index partitions when the operation is complete.

■ Operations like Import Partition or conventional path SQL*Loader that offer an
option to bypass local index maintenance. When the Import is complete, the
affected local index partitions are marked IU.

■ Direct path SQL*Loader leaves affected local index partitions and global
indexes in an IU state if the index is out of date with respect to the data that it
indexes. (Index Unusable was previously known as Direct Load State.) The
index can be out of date for the following reasons:

– The index could not be maintained by the load due to a space management
error (for example, out of extents).

– The user requested the SKIP_INDEX_MAINTENANCE option.

■ Partition maintenance operations like ALTER TABLE MOVE PARTITION that
change ROWIDs. These operations mark the affected local index partition and
all global index partitions IU.

■ Partition maintenance operations like ALTER TABLE TRUNCATE PARTITION
or DROP PARTITION that remove rows from the table. These operations mark
the affected local index partition and all global index partitions IU.

■ Partition maintenance operations like ALTER TABLE SPLIT PARTITION that
modify the partition definition of local indexes but do not automatically
rebuild the index data to match the new definitions. These operations mark the
affected local index partition(s) IU. (ALTER TABLE SPLIT PARTITION also
marks all global index partitions IU because it results in changes to ROWIDs.)

■ Index maintenance operations like ALTER INDEX SPLIT PARTITION that mod-
ify the partitioning definition of the index but do not automatically rebuild the
affected partitions. These operations mark the affected index partition(s) IU.
However, if you split a Usable partition of a global index, resulting partitions
9-40 Oracle8 Concepts

Maintenance Operations
are created usable. If the partition which was split was marked IU, then so are
the partitions resulting from the split. (Note that dropping a partition of a glo-
bal index which is either IU or is not empty causes the next partition of the
index to become IU.)

Privileges for Partitioned Tables and Indexes
Privileges for partitions are granted on the parent table or index, not on individual
partitions.

If a user or role has the privileges required to perform an Oracle operation on non-
partitioned tables and indexes (including the necessary resource privileges), then
the same Oracle operations are allowed on partitioned tables and indexes. For
example:

■ If you can create non-partitioned tables, then you can create partitioned tables.

■ If you can drop non-partitioned indexes, then you can drop partitioned indexes.

■ If you can add a column via ALTER to non-partitioned tables, then you can add
a column via ALTER to partitioned tables.

If a user or role has the privileges required to perform an ALTER operation on a
table or index, then the new ALTER operations on partitions of the table or index
can be invoked, with these exceptions:

■ The DROP ANY TABLE privilege (in addition to ALTER privilege) is required
by a user that is not the table owner for:

– ALTER TABLE DROP PARTITION

– ALTER TABLE TRUNCATE PARTITION

■ The following operations require space quota in the tablespace in which space
is to be acquired, in addition to the ALTER privilege:

– ALTER INDEX MODIFY PARTITION

– ALTER INDEX REBUILD PARTITION

– ALTER INDEX SPLIT PARTITION

– ALTER TABLE ADD PARTITION

– ALTER TABLE MODIFY PARTITION

– ALTER TABLE MOVE PARTITION

– ALTER TABLE SPLIT PARTITION
 Partitioned Tables and Indexes 9-41

SQL Extension: Partition-Extended Table Name
Auditing for Partitioned Tables and Indexes
All of the ALTER TABLE PARTITION operations are audited just like ALTER
TABLE operations. No new audit attributes are used for partitions.

SQL Extension: Partition-Extended Table Name
Partition-level bulk operations are restricted to just the rows of a particular parti-
tion; for example, a user who wants to drop a partition without making all the glo-
bal indexes UNUSABLE would want to delete all the rows from just that partition.

Such operations are very naturally expressed using the partition-extended table
name syntax. Trying to phrase the same operation with a where-clause predicate
becomes fairly cumbersome especially when the range partitioning key uses multi-
ple columns.

The table specification syntax for the following DML statements may contain an
optional partition specification for non-remote partitioned tables:

■ INSERT

■ UPDATE

■ DELETE

■ LOCK TABLE

■ SELECT

For example:

SELECT * FROM schema.table PARTITION part_name;

This syntax provides a simple way of viewing individual partitions as tables: A
view can be created which selects from just one partition using the partition-
extended table name, and this view can be used in lieu of a table.

With such views you can also build partition-level access control mechanisms by
granting (revoking) privileges on these views to (from) other users or roles. For
application portability and ANSI syntax compliance you may use views to insulate
your applications from this Oracle proprietary extension.

The use of partition-extended table names has the following restrictions:

1. A partition-extended table name cannot refer to a remote schema object.

A partition-extended table name cannot contain a dblink or a synonym which
translates to a table with a dblink. If you need to use remote partitions, you can
9-42 Oracle8 Concepts

SQL Extension: Partition-Extended Table Name
create a view at the remote site which uses the partition-extended table name
syntax and refer to that remote view.

2. The partition-extended table name syntax is not supported by PL/SQL.

A SQL statement using the partition-extended table name syntax cannot be
used in a PL/SQL block, though it can be used through dynamic SQL via the
DBMS_SQL package. Again, if you need to refer to a partition within a PL/
SQL block you can instead use views which in turn use the partition-extended
table name syntax.

3. Only base tables are allowed.

A partition extension must be specified with a base table. No synonyms, views,
or any other schema objects are allowed.

Examples of Partition-Extended Table Names
The following statements contain valid partition-extended table names:

SELECT * FROM sales PARTITION (nov95) s
WHERE s.amount_of_sale > 1000;

UPDATE sales PARTITION (feb96) s
SET s.account_name = UPPER(s.account_name);

DELETE FROM sales PARTITION (nov95)
WHERE amount_of_sale != 0;

INSERT INTO sales PARTITION (oct95)
SELECT * FROM lastest_data;

INSERT INTO sales PARTITION (oct95) VALUES (...);

INSERT INTO sales PARTITION (oct95) (acct_no, ..., week_no) VALUES (...);

LOCK TABLE sales PARTITION (jun95) IN EXCLUSIVE MODE;

CREATE VIEW sales_feb96 AS
SELECT * FROM sales PARTITION (feb96);
 Partitioned Tables and Indexes 9-43

SQL Extension: Partition-Extended Table Name
9-44 Oracle8 Concepts

 Built-In Data
10

Built-In Datatypes

I am the voice of today, the herald of tomorrow. ... I am the
leaden army that conquers the world — I am TYPE.

Frederic William Goudy: The Type Speaks

This chapter discusses the Oracle built-in datatypes, their properties, and how they
map to non-Oracle datatypes. Topics include:

■ Oracle Datatypes

– Character Datatypes

– NUMBER Datatype

– DATE Datatype

– LOB Datatypes

– RAW and LONG RAW Datatypes

– ROWID Datatype

– MLSLABEL Datatype

■ ANSI, DB2, and SQL/DS Datatypes

■ Data Conversion
types 10-1

Oracle Datatypes
Oracle Datatypes
You can use the following built-in datatypes in column definitions:

■ Character Datatypes

– CHAR Datatype

– VARCHAR2 Datatype

– VARCHAR Datatype

– NCHAR and NVARCHAR2 Datatypes

– LONG Datatype

■ NUMBER Datatype

■ DATE Datatype

■ LOB Datatypes

– BLOB Datatype

– CLOB and NCLOB Datatypes

– BFILE Datatype

■ RAW and LONG RAW Datatypes

■ ROWID Datatype

■ MLSLABEL Datatype

Character Datatypes
The character datatypes store character (alphanumeric) data in strings, with byte
values corresponding to the character encoding scheme (generally called a charac-
ter set or code page).

The database’s character set is established when you create the database, and never
changes. Examples of character sets are 7-bit ASCII (American Standard Code for
Information Interchange), EBCDIC (Extended Binary Coded Decimal Interchange
Code), Code Page 500, and Japan Extended UNIX. Oracle supports both single-byte
and multibyte encoding schemes.

Additional Information: PL/SQL has additional datatypes, such
as BOOLEAN, reference types, composite types (collections and
records), and user-defined subtypes. See the PL/SQL User’s Guide
and Reference for information about PL/SQL datatypes.
10-2 Oracle8 Concepts

Oracle Datatypes
CHAR Datatype
The CHAR datatype stores fixed-length character strings. When you create a table
with a CHAR column, you must specify a string length (in bytes, not characters)
between 1 and 2000 for the CHAR column width. (The default is 1.) Oracle then
guarantees that:

■ When you insert or update a row in the table, the value for the CHAR column
has the fixed length.

■ If you give a shorter value, the value is blank-padded to the fixed length.

■ If you give a longer value with trailing blanks, blanks are trimmed from the
value to the fixed length.

■ If a value is too large, Oracle returns an error.

Oracle compares CHAR values using the blank-padded comparison semantics.

VARCHAR2 Datatype
The VARCHAR2 datatype stores variable-length character strings. When you create
a table with a VARCHAR2 column, you specify a maximum string length (in bytes,
not characters) between 1 and 4000 for the VARCHAR2 column. For each row, Ora-
cle stores each value in the column as a variable-length field (unless a value
exceeds the column’s maximum length, in which case Oracle returns an error).

For example, assume you declare a column VARCHAR2 with a maximum size of
50 characters. In a single-byte character set, if only 10 characters are given for the
VARCHAR2 column value in a particular row, the column in the row’s row piece
stores only the 10 characters (10 bytes), not 50.

Oracle compares VARCHAR2 values using the nonpadded comparison semantics.

VARCHAR Datatype
The VARCHAR datatype is currently synonymous with the VARCHAR2 datatype.
However, in a future version of Oracle, VARCHARmight store variable-length char-

Additional Information: See Oracle8 Application Developer’s Guide
for information about how to select a character datatype.

Additional Information: See Oracle8 SQL Reference for information
on comparison semantics.

Additional Information: See Oracle8 SQL Reference.
 Built-In Datatypes 10-3

Oracle Datatypes
acter strings compared with different comparison semantics. Therefore, you should
use the VARCHAR2 datatype to store variable-length character strings.

Column Lengths for Character Datatypes and NLS Character Sets
The Oracle National Language Support (NLS) feature allows the use of various
character sets for the character datatypes. National Language Support enables you
to process single-byte and multi-byte character data and convert between character
sets. Client sessions can use national character sets different from the database char-
acter set.

You should consider the size of characters when you specify the column length for
character datatypes. You must consider this issue when estimating space for tables
with columns that contain character data.

NCHAR and NVARCHAR2 Datatypes
The NCHAR and NVARCHAR2 datatypes store NLS character data. The NCHAR
datatype stores fixed-length character strings that correspond to a fixed-length or
variable-length national character set. The NVARCHAR2 datatype stores variable-
length character strings.

When you create a table with an NCHAR or NVARCHAR2 column, you specify a
maximum size that is either the number of characters (for a fixed-length national
character set) or the number of bytes (for a variable-length national character set).

■ The maximum length for an NCHAR column is 2000 bytes, or the number of
characters that can be stored in 2000 bytes.

■ The maximum length for an NVARCHAR2 column is 4000 bytes, or the num-
ber of characters that can be stored in 4000 bytes.

LOB Character Datatypes
The LOB datatypes for character data are CLOB and NCLOB. They can store up to
four gigabytes of character data (CLOB) or national character set data (NCLOB).
These datatypes are described in “LOB Datatypes” on page 10-9.

Additional Information: See Oracle8 Reference and Oracle8 Utilities
for more information about the NLS feature of Oracle.

Additional Information: See Oracle8 Reference and PL/SQL User’s
Guide and Reference for more information about NCHAR and
NVARCHAR2 datatypes.
10-4 Oracle8 Concepts

Oracle Datatypes
LONG Datatype
Columns defined as LONG can store variable-length character data containing up
to two gigabytes of information. LONG data is text data that is to be appropriately
converted when moving among different systems.

LONG datatype columns are used in the data dictionary to store the text of view
definitions. You can use LONG columns in SELECT lists, SET clauses of UPDATE
statements, and VALUES clauses of INSERT statements.

NUMBER Datatype
The NUMBER datatype stores fixed and floating-point numbers. Numbers of virtu-
ally any magnitude can be stored and are guaranteed portable among different sys-
tems operating Oracle, up to 38 digits of precision.

The following numbers can be stored in a NUMBER column:

■ positive numbers in the range 1 x 10^-130 to 9.99..9 x 10^125 (with up to 38 sig-
nificant digits)

■ negative numbers from -1 x 10^-130 to 9.99..99 x 10^125 (with up to 38 signifi-
cant digits)

■ zero

■ positive and negative infinity (generated only by importing from an Oracle
Version 5 database)

For numeric columns you can specify the column as:

column_name NUMBER

Optionally, you can also specify a precision (total number of digits) and scale (num-
ber of digits to the right of the decimal point):

Note: The LONG datatype is provided for backward compatibil-
ity with existing applications. In new applications, you should use
CLOB and NCLOB datatypes for large amounts of character data.

Additional Information: The LONG datatype has many restric-
tions — see Oracle8 Application Developer’s Guide.

Also see “RAW and LONG RAW Datatypes” on page 10-11 for
information about the LONG RAW datatype.
 Built-In Datatypes 10-5

Oracle Datatypes
column_name NUMBER (precision, scale)

If a precision is not specified, the column stores values as given. If no scale is speci-
fied, the scale is zero.

Oracle guarantees portability of numbers with a precision equal to or less than 38
digits. You can specify a scale and no precision:

column_name NUMBER (*, scale)

In this case, the precision is 38 and the specified scale is maintained.

When you specify numeric fields, it is a good idea to specify the precision and
scale; this provides extra integrity checking on input.

Table 10–1 shows examples of how data would be stored using different
scale factors.

If you specify a negative scale, Oracle rounds the actual data to the specified num-
ber of places to the left of the decimal point. For example, specifying (7,-2) means
Oracle should round to the nearest hundredths, as shown in Table 10–1.

For input and output of numbers, the standard Oracle default decimal character is
a period, as in the number “1234.56”. (The decimal is the character that separates
the integer and decimal parts of a number.) You can change the default decimal
character with the initialization parameter NLS_NUMERIC_CHARACTERS. You
can also change it for the duration of a session with the ALTER SESSION state-
ment. To enter numbers that do not use the current default decimal character, use
the TO_NUMBER function.

Table 10–1 How Scale Factors Affect Numeric Data Storage

Input Data Specified As Stored As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER(*,1) 7456123.9

7,456,123.89 NUMBER(9) 7456124

7,456,123.89 NUMBER(9,2) 7456123.89

7,456,123.89 NUMBER(9,1) 7456123.9

7,456,123.89 NUMBER(6) (not accepted, exceeds precision)

7,456,123.89 NUMBER(7,-2) 7456100
10-6 Oracle8 Concepts

Oracle Datatypes
Internal Numeric Format
Oracle stores numeric data in variable-length format. Each value is stored in scien-
tific notation, with one byte used to store the exponent and up to 20 bytes to store
the mantissa. (The resulting value is limited to 38 digits of precision.) Oracle does
not store leading and trailing zeros. For example, the number 412 is stored in a for-
mat similar to 4.12 x 10^2, with one byte used to store the exponent (2) and two
bytes used to store the three significant digits of the mantissa (4, 1, 2).

Taking this into account, the column data size for a particular numeric data value
NUMBER (p), where p is the precision of a given value (scale has no effect), can be
calculated using the following formula:

 1 byte (exponent)
+ FLOOR(p/2)+1 bytes (mantissa)
+ 1 byte (only for a negative number where the number of
 significant digits is less than 38)

number of bytes of data

Zero and positive and negative infinity (only generated on import from Version 5
Oracle databases) are stored using unique representations: zero and negative infin-
ity each require one byte; positive infinity requires two bytes.

DATE Datatype
The DATE datatype stores point-in-time values (dates and times) in a table. The
DATE datatype stores the year (including the century), the month, the day, the
hours, the minutes, and the seconds (after midnight).

Oracle can store dates in the Julian era, ranging from January 1, 4712 BCE through
December 31, 4712 CE (Common Era). Unless BCE ('BC' in the format mask) is spe-
cifically used, CE date entries are the default.

Oracle uses its own internal format to store dates. Date data is stored in fixed-
length fields of seven bytes each, corresponding to century, year, month, day, hour,
minute, and second.

For input and output of dates, the standard Oracle default date format is DD-MON-
YY, as below:

’13-NOV-92’

You can change this default date format for an instance with the parameter
NLS_DATE_FORMAT. You can also change it during a user session with the
 Built-In Datatypes 10-7

Oracle Datatypes
ALTER SESSION statement. To enter dates that are not in standard Oracle date for-
mat, use the TO_DATE function with a format mask:

TO_DATE (’November 13, 1992’, ’MONTH DD, YYYY’)

Oracle stores time in 24-hour format — HH:MI:SS. By default, the time in a date
field is 00:00:00 A.M. (midnight) if no time portion is entered. In a time-only entry,
the date portion defaults to the first day of the current month. To enter the time por-
tion of a date, use the TO_DATE function with a format mask indicating the time
portion, as in

INSERT INTO birthdays (bname, bday) VALUES
 (’ANDY’,TO_DATE(’13-AUG-66 12:56 A.M.’,’DD-MON-YY HH:MI A.M.’));

Using Julian Dates
Julian dates allow continuous dating by the number of days from a common refer-
ence. (The reference is 01-01-4712 years BCE, so current dates are somewhere in the
2.4 million range.) A Julian date is nominally a noninteger, the fractional part being
a portion of a day. Oracle uses a simplified approach that results in integer values.
Julian dates can be calculated and interpreted differently; the calculation method
used by Oracle results in a seven-digit number (for dates most often used), such as
2449086 for 08-APR-93.

The format mask “J” can be used with date functions (TO_DATE or TO_CHAR) to
convert date data into Julian dates. For example, the following query returns all
dates in Julian date format:

SELECT TO_CHAR (hiredate, ’J’) FROM emp;

You must use the TO_NUMBER function if you want to use Julian dates in calcula-
tions. You can use the TO_DATE function to enter Julian dates:

Note: If you use the standard date format DD-MON-YY, YY gives
the year in the 20th century (for example, 31-DEC-92 is December
31, 1992). If you want to indicate years in any century other than
the 20th century, use a different format mask, as shown above.

Note: Oracle Julian dates might not be compatible with Julian
dates generated by other date algorithms.
10-8 Oracle8 Concepts

Oracle Datatypes
INSERT INTO emp (hiredate) VALUES (TO_DATE(2448921, ’J’));

Date Arithmetic
Oracle date arithmetic takes into account the anomalies of the calendars used
throughout history. For example, the switch from the Julian to the Gregorian calen-
dar, 15-10-1582, eliminated the previous 10 days (05-10-1582 through 14-10-1582).
The year 0 does not exist.

You can enter missing dates into the database, but they are ignored in date arith-
metic and treated as the next “real” date. For example, the next day after 04-10-1582
is 15-10-1582, and the day following 05-10-1582 is also 15-10-1582.

Centuries and the Year 2000
Oracle stores year data with the century information. For example, the Oracle data-
base stores 1996 or 2001, and not just 96 or 01. The DATE datatype always stores a
four-digit year internally, and all other dates stored internally in the database have
four digit years. Oracle utilities such as import, export, and recovery also deal prop-
erly with four-digit years.

However, some applications might be written with an assumption about the year
(such as assuming that everything is 19xx). Application programmers should there-
fore review and test their code with regard to the year 2000.

LOB Datatypes
The LOB datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store large
blocks of unstructured data (such as text, graphic images, video clips, and sound
waveforms) up to four gigabytes in size. They provide efficient, random, piece-wise
access to the data.

LOB datatypes differ from LONG and LONG RAW datatypes in several ways. For
example, LOB datatypes (except NCLOB) can be attributes of a user-defined object
type but LONG datatypes cannot. The maximum size of a LOB is four gigabytes,

Note: This discussion of date arithmetic may not apply to all
countries’ date standards (such as those in Asia).

Additional Information: For more information about centuries
and date format masks, see Oracle8 Application Developer’s Guide.
For general information about date format codes, see Oracle8 SQL
Reference.
 Built-In Datatypes 10-9

Oracle Datatypes
but the maximum size of a LONG is two gigabytes. LOBs support random access to
data, but LONGs support only sequential access.

LOB datatypes can be stored inline (within a table), out-of-line (within a tablespace,
using a LOB locator), or in an external file (BFILE datatypes).

You can use SQL statements to define LOB columns in a table and LOB attributes in
a user-defined object type. When defining LOBs in a table, you can explicitly spec-
ify the tablespace and storage characteristics for each LOB.

See “Default Logging Mode” on page 21-7 for information about the LOB attribute
LOGGING or NOLOGGING.

BLOB Datatype
The BLOB datatype stores unstructured binary data in the database. BLOBs can
store up to four gigabytes of binary data.

BLOBs participate fully in transactions. Changes made to a BLOB value by the
DBMS_LOB package, PL/SQL, or the OCI can be committed or rolled back. How-
ever, BLOB locators cannot span transactions or sessions.

CLOB and NCLOB Datatypes
The CLOB and NCLOB datatypes store up to four gigabytes of character data in the
database. CLOBs store single-byte character set data and NCLOBs store fixed-
length multibyte national character set data (NCHAR data).

CLOBs and NCLOBs participate fully in transactions. Changes made to a CLOB or
NCLOB value by the DBMS_LOB package, PL/SQL, or the OCI can be committed
or rolled back. However, CLOB and NCLOB locators cannot span transactions or
sessions.

You cannot create an object type with NCLOB attributes, but you can specify
NCLOB parameters in a method for an object type.

BFILE Datatype
The BFILE datatype stores unstructured binary data in operating-system files out-
side the database. A BFILE column or attribute stores a file locator that points to an
external file containing the data. BFILEs can store up to four gigabytes of data.

BFILEs are read-only; you cannot modify them. They support only random (not
sequential) reads, and they do not participate in transactions. The underlying oper-

Additional Information: See Oracle8 Application Developer’s Guide
for more information about LOB storage and LOB locators.
10-10 Oracle8 Concepts

Oracle Datatypes
ating system must maintain the file integrity and durability for BFILEs. The data-
base administrator must ensure that the file exists and that Oracle processes have
operating-system read permissions on the file.

RAW and LONG RAW Datatypes

The RAW and LONG RAW datatypes are used for data that is not to be interpreted
(not converted when moving data between different systems) by Oracle. These
datatypes are intended for binary data or byte strings. For example, LONG RAW
can be used to store graphics, sound, documents, or arrays of binary data; the inter-
pretation is dependent on the use.

RAW is a variable-length datatype like the VARCHAR2 character datatype, except
that Net8 (which connects user sessions to the instance) and the Import and Export
utilities do not perform character conversion when transmitting RAW or LONG
RAW data. In contrast, Net8 and Import/Export automatically convert CHAR,
VARCHAR2, and LONG data between the database character set and the user ses-
sion character set (set by the NLS_LANGUAGE parameter of the ALTER SESSION
command), if the two character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR
data, the binary data is represented in hexadecimal form with one hexadecimal
character representing every four bits of RAW data. For example, one byte of RAW
data with bits 11001011 is displayed and entered as’CB’.

LONG RAW data cannot be indexed, but RAW data can be indexed.

Note: The RAW and LONG RAW datatypes are provided for
backward compatibility with existing applications. For new appli-
cations, you should use the BLOB and BFILE datatypes for large
amounts of binary data.

Additional Information: See Oracle8 Application Developer’s Guide
for information about additional restrictions on the LONG RAW
datatype.
 Built-In Datatypes 10-11

Oracle Datatypes
ROWID Datatype
Oracle uses an extended ROWID datatype to store the address of every row in the
database. The extended ROWID efficiently identifies rows in partitioned tables and
indexes as well as nonpartitioned tables and indexes. It supports tablespace-
releative data block addresses. A restricted ROWID datatype is also available for
backward compatibility with existing applications.

ROWIDs and the ROWID Datatype
Every row in a nonclustered table is assigned a unique ROWID that corresponds to
the physical address of a row’s row piece (the initial row piece if the row is chained
among multiple row pieces). In the case of clustered tables, rows in different tables
that are in the same data block can have the same ROWID.

Each table in an Oracle database internally has a pseudocolumn named ROWID. This
pseudocolumn is not evident when listing the structure of a table by executing a
SELECT * FROM . . . statement, or a DESCRIBE . . . statement using SQL*Plus. How-
ever, each row’s address can be retrieved with a SQL query using the reserved
word ROWID as a column name, for example:

SELECT ROWID, ename FROM emp;

A row’s assigned ROWID remains unchanged unless the row is exported and
imported (using the IMPORT and EXPORT utilities). When you delete a row from a
table (and then commit the encompassing transaction), the deleted row’s associated
ROWID can be assigned to a row inserted in a subsequent transaction.

You cannot set the value of the pseudocolumn ROWID in INSERT or UPDATE
statements, and you cannot delete a ROWID value. Oracle uses the ROWIDs in the
pseudocolumn ROWID internally for various operations as described in “How
ROWIDs Are Used” on page 10-15.

You can reference ROWIDs in the pseudocolumn ROWID like other table columns
(used in SELECT lists and WHERE clauses), but ROWIDs are not stored in the data-
base, nor are they database data. However, you can create tables that contain col-
umns having the ROWID datatype, although Oracle does not guarantee that the
values of such columns are valid ROWIDs.

Extended ROWIDs
Extended ROWIDs use a base 64 encoding of the physical address for each row
selected. For example, the following query

SELECT ROWID, ename FROM emp
 WHERE deptno = 20;
10-12 Oracle8 Concepts

Oracle Datatypes
might return the following row information:

ROWID ENAME
------------------ ----------
AAAAaoAATAAABrXAAA BORTINS
AAAAaoAATAAABrXAAE RUGGLES
AAAAaoAATAAABrXAAG CHEN
AAAAaoAATAAABrXAAN BLUMBERG

An extended ROWID has a four-piece format, OOOOOOFFFBBBBBBRRR:

■ OOOOOO: The data object number identifies the database segment (AAAAao
in the example). Schema objects in the same segment, such as a cluster of
tables, have the same data object number.

■ FFF: The datafile that contains the row (file AAT in the example). File numbers
are unique within a database.

■ BBBBBB: The data block that contains the row (block AAABrX in the example).
Block numbers are relative to their datafile, not tablespace. Therefore, two rows
with identical block numbers could reside in two different datafiles of the same
tablespace.

■ RRR: The row in the block.

You can retrieve the data object number from data dictionary views
USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. For example, the following
query returns the data object number for the EMP table in the SCOTT schema:

SELECT DATA_OBJECT_ID FROM DBA_OBJECTS
 WHERE OWNER = ’SCOTT’ AND OBJECT_NAME = ’EMP’;

You can also use the DBMS_ROWID package to extract information from an
extended ROWID or to convert a ROWID from extended format to restricted for-
mat (or vice versa).

Restricted ROWIDs
Restricted ROWIDs use a binary representation of the physical address for each
row selected. When queried using SQL*Plus, the binary representation is converted
to a VARCHAR2/hexadecimal representation. The following query

Additional Information: See the Oracle8 Application Developer’s
Guide for information about the DBMS_ROWID package.
 Built-In Datatypes 10-13

Oracle Datatypes
SELECT ROWID, ename FROM emp
 WHERE deptno = 30;

might return the following row information:

ROWID ENAME
------------------ ----------
00000DD5.0000.0001 KRISHNAN
00000DD5.0001.0001 ARBUCKLE
00000DD5.0002.0001 NGUYEN

As shown above, a restricted ROWID’s VARCHAR2/hexadecimal representation is
in a three-piece format, block.row.file:

■ The data block that contains the row (block DD5 in the example). Block num-
bers are relative to their datafile, not tablespace. Therefore, two rows with iden-
tical block numbers could reside in two different datafiles of the same
tablespace.

■ The row in the block that contains the row (rows 0, 1, 2 in the example). Row
numbers of a given block always start with 0.

■ The datafile that contains the row (file 1 in the example). The first datafile of
every database is always 1, and file numbers are unique within a database.

Examples of Using ROWIDs
You can use the function SUBSTR to break the data in a ROWID into its compo-
nents. For example, you can use SUBSTR to break an extended ROWID into its four
components (database object, file, block, and row):

SELECT ROWID,
 SUBSTR(ROWID,1,6) "OBJECT",
 SUBSTR(ROWID,7,3) "FIL",
 SUBSTR(ROWID,10,6) "BLOCK",
 SUBSTR(ROWID,16,3) "ROW"
 FROM products;

ROWID OBJECT FIL BLOCK ROW
------------------ ------ --- ------ ----
AAAA8mAALAAAAQkAAA AAAA8m AAL AAAAQk AAA
AAAA8mAALAAAAQkAAF AAAA8m AAL AAAAQk AAF
AAAA8mAALAAAAQkAAI AAAA8m AAL AAAAQk AAI

Or you can use SUBSTR to break a restricted ROWID into its three components
(block, row, and file):
10-14 Oracle8 Concepts

Oracle Datatypes
SELECT ROWID, SUBSTR(ROWID,15,4) "FILE",
 SUBSTR(ROWID,1,8) "BLOCK",
 SUBSTR(ROWID,10,4) "ROW"
 FROM products;

ROWID FILE BLOCK ROW
------------------ ---- -------- ----
00000DD5.0000.0001 0001 00000DD5 0000
00000DD5.0001.0001 0001 00000DD5 0001
00000DD5.0002.0001 0001 00000DD5 0002

ROWIDs can be useful for revealing information about the physical storage of a
table’s data. For example, if you are interested in the physical location of a table’s
rows (such as for table striping), the following query of an extended ROWID tells
how many datafiles contain rows of a given table:

SELECT COUNT(DISTINCT(SUBSTR(ROWID,7,3))) "FILES" FROM tablename ;

FILES

2

ROWIDs and Non-Oracle Databases
Oracle database applications can be executed against non-Oracle database servers
using SQL*Connect or the Oracle Open Gateway. In such cases, the format of ROW-
IDs varies according to the characteristics of the non-Oracle system. Furthermore,
no standard translation to VARCHAR2/hexadecimal format is available. Programs
can still use the ROWID datatype; however, they must use a nonstandard transla-
tion to hexadecimal format of length up to 256 bytes.

How ROWIDs Are Used
Oracle uses ROWIDs internally for the construction of indexes. Each key in an
index is associated with a ROWID that points to the associated row’s address for
fast access.

Additional Information: For more information on how to use
ROWIDs, refer to the Oracle8 SQL Reference, the PL/SQL User’s
Guide and Reference, Oracle8 Tuning, and other books that document
Oracle tools and utilities.

Additional Information: Refer to the relevant manual for OCIs or
precompilers for further details on handling ROWIDs with non-
Oracle systems.
 Built-In Datatypes 10-15

Oracle Datatypes
End users and application developers can also use ROWIDs for several important
functions:

■ ROWIDs are the fastest means of accessing particular rows.

■ ROWIDs can be used to see how a table is organized.

■ ROWIDs are unique identifiers for rows in a given table.

Before you use ROWIDs in DML statements, they should be verified and guaran-
teed not to change; the intended rows should be locked so they cannot be deleted.
Under some circumstances, requesting data with an invalid ROWID could cause a
statement to fail.

You can also create tables with columns defined using the ROWID datatype. For
example, you can define an exception table with a column of datatype ROWID to
store the ROWIDs of rows in the database that violate integrity constraints. Col-
umns defined using the ROWID datatype behave like other table columns; values
can be updated, and so on. Each value in a column defined as datatype ROWID
requires six bytes to store pertinent column data.

MLSLABEL Datatype
Trusted Oracle provides the MLSLABEL datatype, which stores Trusted Oracle’s
internal representation of labels generated by multilevel secure operating systems.
Trusted Oracle uses labels to control database access.

You can define a column using the MLSLABEL datatype in Oracle8 for compatibil-
ity with Trusted Oracle applications, but the only valid value for the column in
Oracle8 is NULL.

When you create a table in Trusted Oracle, a column called ROWLABEL is automat-
ically appended to the table. This column contains a label of the MLSLABEL
datatype for every row in the table.

Additional Information: See your Trusted Oracle documentation
for more information about the MLSLABEL datatype, the
ROWLABEL column, and Trusted Oracle.
10-16 Oracle8 Concepts

Oracle Datatypes
Summary of Oracle Datatype Information
Table 10–2 summarizes the important information about each Oracle datatype.

Table 10–2 Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default

CHAR (size) Fixed-length charac-
ter data of length
size bytes.

Fixed for every row in the table (with trailing
blanks); maximum size is 2000 bytes per row,
default size is 1 byte per row. Consider the charac-
ter set (one-byte or multibyte) before setting size.

VARCHAR2
(size)

Variable-length char-
acter data. A maxi-
mum size must be
specified.

Variable for each row, up to 4000 bytes per row. Con-
sider the character set (one-byte or multibyte)
before setting size.

NCHAR(size) Fixed-length charac-
ter data of length
size characters or
bytes, depending on
the national charac-
ter set.

Fixed for every row in the table (with trailing
blanks). Column size is the number of characters for
a fixed-width national character set or the number
of bytes for a varying-width national character set.
Maximum size is determined by the number of
bytes required to store one character, with an upper
limit of 2000 bytes per row. Default is 1 character or
1 byte, depending on the character set.

NVARCHAR2
(size)

Variable-length char-
acter data of length
size characters or
bytes, depending on
national character
set. A maximum size
must be specified.

Variable for each row. Column size is the number of
characters for a fixed-width national character set or
the number of bytes for a varying-width national
character set. Maximum size is determined by the
number of bytes required to store one character,
with an upper limit of 4000 bytes per row. Default is
1 character or 1 byte, depending on the character set.

LONG Variable-length char-
acter data.

Variable for each row in the table, up to 2^31 - 1
bytes, or 2 gigabytes, per row.

NUMBER
(p, s)

Variable-length
numeric data. Maxi-
mum precision p
and/or scale s is 38.

Variable for each row. The maximum space required
for a given column is 21 bytes per row.
 Built-In Datatypes 10-17

Oracle Datatypes
DATE Fixed-length date
and time data, rang-
ing from January 1,
4712 BCE to Decem-
ber 31, 4712 CE
(“A.D.”)

Fixed at 7 bytes for each row in the table. Default
format is a string (such as DD-MON-YY) specified
by NLS_DATE_FORMAT parameter.

RAW (size) Variable-length raw
binary data. A maxi-
mum size must be
specified.

Variable for each row in the table, up to 2000 bytes
per row.

LONG RAW Variable-length raw
binary data.

Variable for each row in the table, up to 2^31 -
1 bytes, or 2 gigabytes, per row.

BLOB Binary data. Up to 2^32 - 1 bytes, or 4 gigabytes.

CLOB Single-byte charac-
ter data.

Up to 2^32 - 1 bytes, or 4 gigabytes.

NCLOB Single-byte or fixed-
length multibyte
national character
set (NCHAR) data.

Up to 2^32 - 1 bytes, or 4 gigabytes.

BFILE Binary data stored
in an external file.

Up to 2^32 - 1 bytes, or 4 gigabytes.

ROWID Binary data repre-
senting row
addresses.

Fixed at 10 bytes (extended ROWID) or 6 bytes
(restricted ROWID) for each row in the table.

MLSLABEL Trusted Oracle
datatype.

See your Trusted Oracle documentation.

Table 10–2 Summary of Oracle Built-In Datatypes (Cont.)

Datatype Description Column Length and Default
10-18 Oracle8 Concepts

ANSI, DB2, and SQL/DS Datatypes
ANSI, DB2, and SQL/DS Datatypes
The ANSI datatype conversions to Oracle datatypes are shown in Table 10–3. The
ANSI/ISO datatypes NUMERIC, DECIMAL, and DEC can specify only fixed-point
numbers. For these datatypes, s (scale) defaults to 0.

The IBM products SQL/DS, and DB2 datatypes TIME, TIMESTAMP, GRAPHIC,
VARGRAPHIC, and LONG VARGRAPHIC have no corresponding Oracle datatype
and cannot be used. The TIME and TIMESTAMP datatypes are subcomponents of
the Oracle datatype DATE.

Table 10–4 shows the DB2 and SQL/DS conversions.

Table 10–3 ANSI Datatype Conversions to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER (n), CHAR (n) CHAR (n)

NUMERIC (p,s), DECIMAL (p,s), DEC (p,s) NUMBER (p,s)

INTEGER, INT, SMALLINT NUMBER (38)

FLOAT (p) FLOAT (p)

REAL FLOAT (63)

DOUBLE PRECISION FLOAT (126)

CHARACTER VARYING(n), CHAR VARYING(n) VARCHAR2 (n)

Table 10–4 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype

CHARACTER (n) CHAR (n)

VARCHAR (n) VARCHAR2 (n)

LONG VARCHAR LONG

DECIMAL (p,s) NUMBER (p,s)

INTEGER, SMALLINT NUMBER (38)

FLOAT (p) FLOAT (p)

DATE DATE
 Built-In Datatypes 10-19

Data Conversion
Data Conversion
In some cases, Oracle supplies data of one datatype where it expects data of a differ-
ent datatype. This is allowed when Oracle can automatically convert the data to the
expected datatype using one of the following functions:

■ TO_NUMBER()

■ TO_CHAR()

■ TO_DATE()

■ CHARTOROWID()

■ ROWIDTOCHAR()

■ HEXTORAW()

■ RAWTOHEX()

Additional Information: The rules for implicit datatype conver-
sions are explained in the Oracle8 Application Developer’s Guide.

If you are using Trusted Oracle, see your Trusted Oracle documenta-
tion for additional information involving data conversions and the
MLSLABEL datatype.
10-20 Oracle8 Concepts

 User-Defined Datatypes (Objects O
11

User-Defined Datatypes (Objects Option)

We must learn to explore all the options and possibilities that confront us in a complex and
rapidly changing world.

James William Fulbright, Speech in the Senate (1964)

The Objects option allows users to define datatypes that model the structure and
behavior of the data in their applications.

This chapter contains the following major sections:

■ Introduction

■ User-Defined Datatypes

■ Application Interfaces

Attention: The features described in this chapter are available
only if you have purchased Oracle8 Enterprise Edition with the
Objects Option. Wherever the term Oracle server appears in this
chapter it refers to the Oracle8 Enterprise Edition with the Objects
Option. See Getting to Know Oracle8 and the Oracle8 Enterprise Edi-
tion for information about the features and options available with
Oracle8 Enterprise Edition.
ption) 11-1

Introduction
Introduction
Relational database management systems (RDBMSs) are the standard tool for man-
aging business data. They provide fast, efficient, and completely reliable access to
huge amounts of data for millions of businesses around the world every day.

The Objects option makes Oracle an object-relational database management system
(ORDBMS), which means that users can define additional kinds of data — specify-
ing both the structure of the data and the ways of operating on it — and use these
types within the relational model. This approach adds value to the data stored in a
database.

Oracle with the Objects option stores structured business data in its natural form
and allows applications to retrieve it that way. For that reason it works efficiently
with applications developed using object-oriented programming techniques.

Oracle’s support for user-defined datatypes makes it easier for application develop-
ers to work with complex data like images, audio, and video.

Complex Data Models
The Oracle server allows you to define complex business models in SQL and make
them part of your database schema. Applications that manage and share your data
need only contain the application logic, not the data logic.

An Example
For example, your firm may use purchase orders to organize its purchasing,
accounts payable, shipping, and accounts receivable functions.

A purchase order contains an associated supplier or customer and an indefinite
number of line items. In addition, applications often need dynamically computed
status information about purchase orders. For example, you may need the current
value of the shipped or unshipped line items.

Later sections of this chapter show how you can define a schema object, called an
object type, that serves as a template for all purchase order data in your applications.
An object type specifies the elements, called attributes, that make up a structured
data unit like a purchase order. Some attributes, such as the list of line items, may
be other structured data units. The object type also specifies the operations, called
methods, you can perform on the data unit, such as determining the total value of a
purchase order.

You can create purchase orders that match the template and store them in table col-
umns, just as you would numbers or dates.
11-2 Oracle8 Concepts

User-Defined Datatypes
You can also store purchase orders in object tables, where each row of the table corre-
sponds to a single purchase order and the table columns are the purchase order’s
attributes.

Since the logic of the purchase order’s structure and behavior is in your schema,
your applications don’t need to know the details and don’t have to keep up with
most changes.

Oracle uses schema information about object types to achieve substantial transmis-
sion efficiencies. A client-side application can request a purchase order from the
server and receive all the relevant data in a single transmission. The application can
then, without knowing storage locations or implementation details, navigate
among related data items without further transmissions from the server.

Multimedia Datatypes
Many efficiencies of database systems arise from their optimized management of
basic datatypes like numbers, dates, and characters. Facilities exist for comparing
values, determining their distributions, building efficient indexes, and performing
other optimizations.

Text, video, sound, graphics, and spatial data are examples of important business
entities that don’t fit neatly into those basic types. Oracle with the Objects option
supports modeling and implementation of these complex datatypes.

User-Defined Datatypes
Chapter 10, “Built-In Datatypes” describes Oracle’s built-in datatypes. The Objects
option adds two categories of user-defined datatypes:

■ object types

■ collection types

User-defined datatypes use the built-in datatypes and other user-defined datatypes
as the building blocks for datatypes that model the structure and behavior of data
in applications.

User-defined types are schema objects. Their use is subject to the same kinds of
administrative control as other schema objects (see Chapter 12, “Using User-
Defined Datatypes”).
 User-Defined Datatypes (Objects Option) 11-3

User-Defined Datatypes
Object Types
Object types are abstractions of the real-world entities — for example, purchase
orders — that application programs deal with. An object type is a schema object
with three kinds of components:

■ A name, which serves to identify the object type uniquely within that schema.

■ Attributes, which model the structure and state of the real world entity.
Attributes are built-in types or other user-defined types.

■ Methods, which are functions or procedures written in PL/SQL and stored in
the database, or written in a language like C and stored externally. Methods
implement operations the application can perform on the real world entity.

An object type is a template. A structured data unit that matches the template is
called an object.

Purchase Order Example
Here is an example of how you might define object types called
external_person , lineitem , and purchase_order .

The object types external_person and lineitem have attributes of built-in
types. The object type purchase_order has a more complex structure, which
closely matches the structure of real purchase orders.

The attributes of purchase_order are id , contact , and lineitems . The
attribute contact is an object, and the attribute lineitems is a nested table (see
“Nested Tables” on page 11-10).

CREATE TYPE external_person AS OBJECT (
 name VARCHAR2(30),
 phone VARCHAR2(20));

CREATE TYPE lineitem AS OBJECT (
 item_name VARCHAR2(30),
 quantity NUMBER,
 unit_price NUMBER(12,2));

CREATE TYPE lineitem_table AS TABLE OF lineitem;

CREATE TYPE purchase_order AS OBJECT (
 id NUMBER,
 contact external_person,
 lineitems lineitem_table,
11-4 Oracle8 Concepts

User-Defined Datatypes
 MEMBER FUNCTION
 get_value RETURN NUMBER);

This is a simplified example. It does not show how to specify the body of the
method get_value . Nor does it show the full complexity of a real purchase order.

An object type is a template. Defining it doesn’t result in storage allocation. You can
use lineitem , external_person , or purchase_order in SQL statements in
most of the same places you can use types like NUMBER or VARCHAR2.

For example, you might define a relational table to keep track of your contacts:

CREATE TABLE contacts (
 contact external_person
 date DATE);

The contact table is a relational table with an object type defining one of its col-
umns. Objects that occupy columns of relational tables are called column objects (see
“Row Objects and Column Objects” on page 11-8).

Methods
In the example, purchase_order has a method named get_value. Each purchase
order object has its own get_value method. For example, if x and y are PL/SQL
variables that hold purchase order objects and w and z are variables that hold num-
bers, the following two statements can leave w and z with different values:

w = x.get_value();
z = y.get_value();

After those statements, w has the value of the purchase order referred to by variable
x ; z has the value of the purchase order referred to by variable y.

The term x.get_value () is an invocation of the method get_value . Method def-
initions can include parameters, but get_value does not need them, because it
finds all of its arguments among the attributes of the object to which its invocation
is tied. That is, in the first of the sample statements, it computes its value using the
attributes of purchase order x . In the second it computes its value using the
attributes of purchase order y. This is called the selfish style of method invocation.

Every object type also has one implicitly defined method that is not tied to specific
objects, the object type’s constructor method.

Additional Information: See Oracle8 Application Developer’s Guide
for a complete purchase order example.
 User-Defined Datatypes (Objects Option) 11-5

User-Defined Datatypes
Object Type Constructor Methods Every object type has a system-defined constructor
method, that is, a method that makes a new object according to the object type’s
specification. The name of the constructor method is the name of the object type. Its
parameters have the names and types of the object type’s attributes. The construc-
tor method is a function. It returns the new object as its value.

For example, the expression

purchase_order(
 1000376,
 external_person ("John Smith","1-800-555-1212"),
 NULL)

represents a purchase order object with the following attributes:

id 1000376
contact external_person("John Smith","1-800-555-1212")
lineitems NULL

The expression external_person ("John Smith", "1-800-555-1212") is
an invocation of the constructor function for the object type external_person .

The object that it returns becomes the contact attribute of the purchase order.

See “Nulls” on page 12-6 for a discussion of null objects and null attributes.

Comparison Methods Methods play a role in comparing objects. Oracle has facilities
for comparing two data items of a given built-in type (for example, two numbers),
and determining whether one is greater than, equal to, or less than the other. Oracle
cannot, however, compare two items of an arbitrary user-defined type without fur-
ther guidance from the definer. Oracle provides two ways to define an order rela-
tionship among objects of a given object type: map methods and order methods.

Map methods use Oracle’s ability to compare built-in types. Suppose, for example,
that you have defined an object type called rectangle , with attributes height
and width . You can define a map method area that returns a number, namely the
product of the rectangle’s height and width attributes. Oracle can then compare
two rectangles by comparing their areas.

Order methods are more general. An order method uses its own internal logic to
compare two objects of a given object type. It returns a value that encodes the
order relationship. For example, it may return -1 if the first is smaller, 0 if they are
equal, and 1 if the first is larger.

Suppose, for example, that you have defined an object type called address , with
attributes street , city , state , and zip . The terms “greater than” and “less
11-6 Oracle8 Concepts

User-Defined Datatypes
than” may have no meaning for addresses in your application, but you may need
to perform complex computations to determine when two addresses are equal.

In defining an object type, you can specify either a map method or an order method
for it, but not both. If an object type has no comparison method, Oracle cannot
determine a greater than or less than relationship between two objects of that type.
It can, however, attempt to determine whether two objects of the type are equal.

Oracle compares two objects of a type that lacks a comparison method by compar-
ing corresponding attributes:

■ If all the attributes are non-null and equal, Oracle reports that the objects are
equal.

■ If there is an attribute for which the two objects have unequal non-null values,
Oracle reports them unequal.

■ Otherwise, Oracle reports that the comparison is not available (null).

Object Tables
An object table is a special kind of table that holds objects and provides a relational
view of the attributes of those objects.

For example, the following statement defines an object table for objects of the
external_person type defined earlier:

CREATE TABLE external_person_t OF external_person;

Oracle allows you to view this table in two ways:

■ A single column table in which each entry is an external_person object.

■ A multi-column table in which each of the attributes of the object type
external_person , namely name and phone , occupies a column.

For example, you can execute the following instructions:

INSERT INTO external_person_t VALUES (
 "John Smith",
 "1-800-555-1212");

SELECT VALUE(p) FROM external_person_t p
 WHERE p.name = "John Smith";

Additional Information: For examples of how to specify and use
comparison methods, see Oracle8 Application Developer’s Guide.
 User-Defined Datatypes (Objects Option) 11-7

User-Defined Datatypes
The first instruction inserts a purchase order object into external_person_t as a
multi-column table. The second selects from external_person_t as a single col-
umn table.

Row Objects and Column Objects Objects that appear in object tables are called row
objects. Objects that appear only in table columns or as attributes of other objects are
called column objects.

REFs
In the relational model, foreign keys express many-to-one relationships. Oracle
with the Objects option provides a more efficient means of expressing many-to-one
relationships when the “one” side of the relationship is a row object. Oracle gives
every row object a unique, immutable identifier, called an object identifier. Oracle
provides no documentation of or access to the internal structure of object identifi-
ers. This structure can change at any time.

An object identifier allows the corresponding row object to be referred to from
other objects or from relational tables. A built-in datatype called REF represents
such references. A REF encapsulates a reference to a row object of a specified object
type.

An object view (see Chapter 13, “Object Views”) is a virtual object table. Its rows
are row objects. Oracle materializes object identifiers, which it does not store persis-
tently, from primary keys in the underlying table or view. Oracle uses these identifi-
ers to construct REFs to the row objects in the object view.

You can use a REF to examine or update the object it refers to. You can also use a
REF to obtain a copy of the object it refers to. The only changes you can make to a
REF are to replace its contents with a reference to a different object of the same
object type or to assign it a null value.

Scoped REFs In declaring a column type, collection element, or object type attribute
to be a REF, you can constrain it to contain only references to a specified object
table. Such a REF is called a scoped REF. Scoped REFs require less storage space and
allow more efficient access than unscoped REFs.

Dangling REFs It is possible for the object identified by a REF to become unavailable
— through either deletion of the object or a change in privileges. Such a REF is
called dangling. Oracle SQL provides a predicate (called IS DANGLING) to allow
testing REFs for this condition.
11-8 Oracle8 Concepts

User-Defined Datatypes
Dereferencing REFs Accessing the object referred to by a REF is called dereferencing
the REF. Oracle provides the DEREF operator to do this. Dereferencing a dangling
REF results in a null object.

Oracle provides implicit dereferencing of REFs. For example, consider the following:

CREATE TYPE person AS OBJECT (
 name VARCHAR2(30),
 manager REF person);

If x represents an object of type person , then the expression

x.manager.name

represents a string containing the name attribute of the person object referred to
by the manager attribute of x . The above expression is a shortened form of:

y.name, where y = DEREF(x.manager)

Obtaining REFs You can obtain a REF to a row object by selecting the object from its
object table and applying the REF operator. For example, you can obtain a REF to
the purchase order with identification number 1000376 as follows:

DECLARE OrderRef REF to purchase_order;

SELECT REF(po) INTO OrderRef
 FROM purchase_order_table po
 WHERE po.id = 1000376;

For more on storage of objects and REFs, see “Storage of User-Defined Types” on
page 12-4.

Collection Types
Each collection type describes a data unit made up of an indefinite number of ele-
ments, all of the same datatype. The collection types are array types and table types.

Array types and table types are schema objects. The corresponding data units are
called VARRAYs and nested tables. When there is no danger of confusion, we often
refer to the collection types as VARRAYs and nested tables.

Collection types have constructor methods. The name of the constructor method is
the name of the type, and its argument is a comma-separated list of the new collec-

Additional Information: For examples of how to use REFs, see
Oracle8 Application Developer’s Guide.
 User-Defined Datatypes (Objects Option) 11-9

User-Defined Datatypes
tion’s elements. The constructor method is a function. It returns the new collection
as its value.

An expression consisting of the type name followed by empty parentheses repre-
sents a call to the constructor method to create an empty collection of that type. An
empty collection is different from a null.

VARRAYs
An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
element’s position in the array.

The number of elements in an array is the size of the array. Oracle allows arrays to
be of variable size, which is why they are called VARRAYs. You must specify a max-
imum size when you declare the array type.

For example, the following statement declares an array type:

CREATE TYPE prices AS VARRAY(10) OF NUMBER(12,2);

The VARRAYs of type prices have no more than ten elements, each of datatype
NUMBER(12,2).

Creating an array type does not allocate space. It defines a datatype, which you can
use as

■ The datatype of a column of a relational table.

■ An object type attribute

■ A PL/SQL variable, parameter, or function return type.

A VARRAY is normally stored in line, that is, in the same tablespace as the other
data in its row. If it is sufficiently large, however, Oracle stores it as a BLOB (see
“Import/Export of User-Defined Types” on page 12-15).

Nested Tables
A nested table is an unordered set of data elements, all of the same datatype. It has a
single column, and the type of that column is a built-in type or an object type. If an
object type, the table can also be viewed as a multi-column table, with a column for
each attribute of the object type.

Additional Information: For more information on using
VARRAYs, see Oracle8 Application Developer’s Guide.
11-10 Oracle8 Concepts

Application Interfaces
For example, in the purchase order example, the following statement declares the
table type used for the nested tables of line items:

CREATE TYPE lineitem_table AS TABLE OF lineitem;

A table type definition does not allocate space. It defines a type, which you can use
as

■ The datatype of a column of a relational table.

■ An object type attribute.

■ A PL/SQL variable, parameter, or function return type.

When a table type appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the
nested table data in a single table, which it associates with the enclosing relational
or object table (see “Nested Tables” on page 12-5). For example, the following state-
ment defines an object table for the object type purchase_order :

CREATE TABLE purchase_order_table OF purchase_order
 NESTED TABLE lineitems STORE AS lineitems_table;

The second line specifies lineitems_table as the storage table for the
lineitems attributes of all of the purchase_order objects in
purchase_order_table .

A convenient way to access the elements of a nested table individually is to use a
nested cursor.

Application Interfaces
Oracle provides a number of facilities for using user-defined datatypes in applica-
tion programs:

■ SQL

■ PL/SQL

■ Pro*C/C++

■ OCI

■ OTT

Additional Information: See Oracle8 Reference for information
about nested cursors, and see Oracle8 Application Developer’s Guide
for more information on using nested tables.
 User-Defined Datatypes (Objects Option) 11-11

Application Interfaces
SQL
Oracle SQL DDL provides the following support for user-defined datatypes:

■ defining object types, nested tables, and arrays

■ specifying privileges

■ specifying table columns of user-defined types

■ creating object tables

Oracle SQL DML provides the following support for user-defined datatypes:

■ querying and updating objects and collections

■ manipulating REFs

PL/SQL
PL/SQL is a procedural language that extends SQL. It offers modern software engi-
neering features like packages, data encapsulation, information hiding, overload-
ing, and exception handling. It is the language used for stored procedures.

PL/SQL allows use from within functions and procedures of the SQL features that
support user-defined types.

The parameters and variables of PL/SQL functions and procedures can be of user-
defined types.

PL/SQL provides all the capabilities necessary to implement the methods associ-
ated with object types. These methods (functions and procedures) reside on the
server as part of a user’s schema.

Pro*C/C++
The Oracle Pro*C/C++ precompiler allows programmers to use user-defined
datatypes in C and C++ programs.

Pro*C developers can use the Object Type Translator to map Oracle object types
and collections into C datatypes to be used in the Pro*C application.

Additional Information: For a complete description of Oracle SQL
syntax, see Oracle8 SQL Reference.

Additional Information: For a complete description of PL/SQL,
see PL/SQL User’s Guide and Reference.
11-12 Oracle8 Concepts

Application Interfaces
Pro*C provides compile time type checking of object types and collections and auto-
matic type conversion from database types to C datatypes.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two
ways to access objects in the server:

■ SQL statements and PL/SQL functions or procedures embedded in Pro*C pro-
grams.

■ A simple interface to the object cache (described under OCI), where objects can
be accessed by traversing pointers, then modified and updated on the server.

OCI
The Oracle call interface (OCI) is a set of C language interfaces to the Oracle server.
It provides programmers great flexibility in using the server’s capabilities.

An important component of OCI is a set of calls to allow application programs to
use a workspace called the object cache. The object cache is a memory block on the
client side that allows programs to store entire objects and to navigate among them
without round trips to the server.

The object cache is completely under the control and management of the applica-
tion programs using it. The Oracle server has no access to it. The application pro-
grams using it must maintain data coherency with the server and protect the
workspace against simultaneous conflicting access.

OCI provides functions to

■ Access objects on the server using SQL.

■ Access, manipulate and manage objects in the object cache by traversing point-
ers or REFs.

■ Convert Oracle dates, strings and numbers to C data types.

■ Manage the size of the object cache’s memory.

OCI improves concurrency by allowing individual objects to be locked. It improves
performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C datatypes corre-
sponding to a Oracle object types.

Additional Information: For a complete description of the Pro*C
precompiler, see Pro*C/C++ Precompiler Programmer’s Guide.
 User-Defined Datatypes (Objects Option) 11-13

Application Interfaces
OTT
The Oracle type translator (OTT) is a program that automatically generates C lan-
guage structure declarations corresponding to object types. OTT facilitates using
the Pro*C precompiler and the OCI server access package.

Additional Information: For a complete description of OCI, see
Oracle Call Interface Programmer’s Guide.

Additional Information: For complete information about OTT, see
Oracle Call Interface Programmer’s Guide and Pro*C/C++ Precompiler
Programmer’s Guide.
11-14 Oracle8 Concepts

 Using User-Defined Data
12

Using User-Defined Datatypes

It is not enough to have a good mind. The main thing is to use it well.

René Descartes, Le Discours de la Méthode

This chapter covers the main concepts you need to understand to use user-defined
datatypes. It contains the following major sections:

■ References and Name Resolution

■ Storage of User-Defined Types

■ Properties of Object Attributes

■ Privileges on User-Defined Types and Their Methods

■ Dependencies and Incomplete Types

■ Import/Export of User-Defined Types

Attention: The features described in this chapter are available
only if you have purchased Oracle8 Enterprise Edition with the
Objects Option.

See Getting to Know Oracle8 and the Oracle8 Enterprise Edition for
information about the features and options available with Oracle8
Enterprise Edition.
types 12-1

References and Name Resolution
References and Name Resolution
Oracle SQL is designed to be easy to use. For example, if projects is a table with
a column called assignment , and depts is a table that does not contain a column
called assignment , you can write

SELECT *
FROM projects
WHERE EXISTS
 (SELECT * FROM depts
 WHERE assignment = task);

Oracle determines which table each column belongs to. You can, but don’t have to,
qualify the column names with table names:

SELECT *
FROM projects
WHERE EXISTS
 (SELECT * FROM depts
 WHERE projects.assignment = depts.task);

You can, but don’t have to, qualify the column names with table aliases:

SELECT *
FROM projects pj
WHERE EXISTS
 (SELECT * FROM depts dp
 WHERE pj.assignment = dp.task);

Table Aliases
The first form of the SELECT statement above is the easiest to write and under-
stand, but it can lead to undesired results if you later add an assignment column
to the depts table and forget to change the query. Oracle automatically recompiles
the query and the new version uses the assignment column from the depts
table. This situation is called inner capture.

In order to avoid inner capture and similar misinterpretations of the intended
meanings of SQL statements, Oracle requires you to use table aliases to qualify ref-
erences to methods or attributes of objects. This also applies to attribute references
via REFs. This requirement is called the capture avoidance rule.

For example, consider the following statements:

CREATE TYPE person AS OBJECT (ssno VARCHAR(20));
CREATE TABLE ptab1 OF person;
CREATE TABLE ptab2 (c1 person);
12-2 Oracle8 Concepts

References and Name Resolution
These define an object type person and two tables. The first is an object table for
objects of type person . The second has a single column of type person .

Now consider the following queries:

SELECT ssno FROM ptab1 ; --Correct
SELECT c1.ssno FROM ptab2 ; --Wrong
SELECT p.c1.ssno FROM ptab2 p ; --Correct

■ In the first SELECT statement, ssno is the name of a column of ptab1 . No fur-
ther qualification is required.

■ In the second SELECT statement, ssno is the name of an attribute of the per-
son object in the column named c1 . This reference requires a table alias.

■ The third SELECT statement is the same as the second, but contains the
required table alias, p.

Qualifying references to object attributes with table names rather than table aliases,
even if the table names are further qualified by schema names, does not satisfy this
requirement.

For example, you cannot, in a query, use the expression

scott.projects.assignment.duedate

to refer to the duedate attribute of the assignment column of the projects
table of the scott schema.

Table aliases should be unique throughout a query and should not be the same as
schema names that could legally appear in the query.

Method Calls without Arguments
Methods are functions or subroutines. The proper syntax for invoking them uses
parentheses following the method name to enclose any calling arguments. In order
to avoid ambiguities, Oracle requires empty parentheses for method calls that do
not have arguments.

Note: Oracle recommends that you define table aliases in all
UPDATE, DELETE, and SELECT statements and subqueries and
use them to qualify column references, whether or not the columns
contain object types.
 Using User-Defined Datatypes 12-3

Storage of User-Defined Types
For example, if tb is a table with column c of object type t , and t has a method m
that does not take arguments, the following query illustrates the correct syntax:

SELECT p.c.m() FROM tb p;

This differs from the rules for PL/SQL functions and procedures, where the paren-
theses are optional for calls that have no arguments.

Storage of User-Defined Types
Oracle stores and manages data of user-defined types in tables. It automatically
and invisibly maps the complex structure of user-defined types into the simple rect-
angular structure of tables.

Leaf-Level Attributes
The structure of an object type is like a tree. The branches that grow from the trunk
go to the attributes. If an attribute is of an object type, that branch sprouts sub-
branches for the attributes of the new object type.

Ultimately each branch comes to an end at an attribute that is of a built-in type or a
collection type. These are called leaf-level attributes of the original object type. Oracle
provides a table column for each leaf-level attribute.

The leaf-level attributes that not collection types are called the leaf-level scalar
attributes of the object type.

Row Objects
In an object table, every leaf-level scalar or REF attribute has a column in which
Oracle stores its actual data. This is also true of VARRAYs, unless they are too large
(see “VARRAYs” on page 12-5). Oracle stores leaf-level attributes of table types in
separate tables associated with the object table. You must declare these tables as
part of the object table declaration (see “Nested Tables” on page 12-5).

Access to individual attributes of objects in an object table is simply access to col-
umns of the table. Accessing the value of the object itself causes Oracle to invoke
the default constructor for the type, using the columns of the object table as argu-
ments. That is, Oracle supplies a copy of the object.

Oracle stores the system-generated object identifier in a hidden column. Oracle
uses the object identifier to construct REFs to the object.
12-4 Oracle8 Concepts

Storage of User-Defined Types
Column Objects
When a table is defined with a column of an object type, Oracle invisibly adds col-
umns to the table for the object type’s leaf-level attributes. An additional column
stores the NULL information of the object (that is, the atomic nulls of the top-level
and the nested objects).

REFs
Oracle constructs a REF to a row object by invoking the built-in function REF on
the row object. The constructed REF is made up of the object identifier, some meta-
data of the object table, and, optionally, the ROWID. An unscoped REF with
ROWID to an object in an object table is 46 bytes in size. REFs to object views, REFs
without ROWID, and scoped REFs are smaller.

The ROWID in a REF is used as a hint for efficient access. When Oracle derefer-
ences a REF item, it uses the ROWID to choose a row; if the object identifier of the
identified row matches the one in the REF, the access is successful. Otherwise, Ora-
cle uses the index on the object identifier to identify the correct row.

The size of a REF in a column of REF type depends on the storage properties associ-
ated with the column. For example, if the column is declared as a REF WITH
ROWID, Oracle stores the ROWID in the REF column; otherwise, it discards the
ROWID.

If column is declared as REF with a SCOPE clause, then Oracle does not store the
object table metadata and the ROWID in the column. A scoped REF is 16 bytes long.

Nested Tables
The rows of a nested table are stored in a separate storage table. You must supply a
storage tablename when you define the table containing the nested table. If the
table definition contains more than one table type — either in columns or in object
types that appear in column definitions — you must supply a separate storage
table for each.

For each nested table in the table definition, the associated storage table contains
the rows of all instances of the given nested table in the rows of the parent table.

VARRAYs
All the elements of a VARRAY are stored in a single column. If the size of the array
is smaller than 4000 bytes, Oracle stores it in line; if it is greater than 4000 bytes,
Oracle stores it in a BLOB.
 Using User-Defined Datatypes 12-5

Properties of Object Attributes
Properties of Object Attributes
Oracle allows you to specify some properties of object attributes:

■ Nulls

■ Defaults

■ Constraints

■ Indexes

■ Triggers

Nulls
One possible property of a table column, object, object attribute, collection, or collec-
tion element is that it can be null. This means that the item has been initialized to
NULL or has been left uninitialized. Usually this means that the value of the item is
not yet known but might become available later.

An object whose value is NULL is called atomically null. In addition, attributes of an
object can be null. These two uses of nulls are different.

For example, consider the contacts table defined as follows:

CREATE TYPE external_person AS OBJECT (
 name VARCHAR2(30),
 phone VARCHAR2(20));

CREATE TABLE contacts (
 contact external_person
 date DATE);

The statement

INSERT INTO contacts VALUES (
 external_person (NULL, NULL),
 ‘24 Jun 1997’);

gives a different result from

INSERT INTO contacts VALUES (
 NULL,
 ‘24 Jun 1997’);

In both cases, Oracle allocates space in contacts for a new row and sets its date
column to the value given. In the first case, Oracle allocates space for an object in
12-6 Oracle8 Concepts

Properties of Object Attributes
the external_person column and sets each of its attributes to NULL. In the sec-
ond case, it sets the external_person column to NULL and does not allocate
space for an object.

A table row cannot be null. Therefore, Oracle does not allow you to set a row object
to NULL. Similarly, a nested table of objects cannot contain an element whose
value is NULL.

A nested table or array can be null. A null collection is different from an empty one,
that is, a collection containing no elements.

Defaults
When you declare a table column to be of an object type or collection type, you can
include a DEFAULT clause. This provides a value to use in cases where you do not
explicitly specify a value for the column. The default clause must contain a literal
invocation of the constructor method for that object or collection.

A literal invocation of a constructor method is defined recursively to be an invoca-
tion of the constructor method in which any arguments are either literals or literal
invocations of constructor methods.

For example, consider the following statements:

CREATE TYPE person AS OBJECT (
 id NUMBER
 name VARCHAR2(30),
 address VARCHAR2(30));

CREATE TYPE people AS TABLE OF person;

The following is a literal invocation of the constructor method for the nested table
type people :

people (person(1, ‘John Smith’, ‘5 Cherry Lane’),
 person(2, ‘Diane Smith’, NULL))

The following example shows how to use literal invocations of constructor meth-
ods to specify defaults:

CREATE TABLE department (
 d_no CHAR(5) PRIMARY KEY,
 d_name CHAR(20),
 d_mgr person DEFAULT person(1,’John Doe’,NULL),
 d_emps people DEFAULT people())
 NESTED TABLE d_emps STORE AS d_emps_tab;
 Using User-Defined Datatypes 12-7

Properties of Object Attributes
Note that the term people() is a literal invocation of the constructor method for
an empty people table.

Constraints
You can define constraints on an object table just as you can on other tables.

You can define constraints on the leaf-level scalar attributes of a column object,
with the exception of REFs that are not scoped (see “Scoped REFs” on page 11-8).

The following examples illustrate the possibilities.

The first example places a primary key constraint on the ssno column of the object
table person_extent :

CREATE TYPE location (
 building_no NUMBER,
 city VARCHAR2(40));

CREATE TYPE person (
 ssno NUMBER,
 name VARCHAR2(100),
 address VARCHAR2(100),
 office location);

CREATE TABLE person_extent OF person (
 ssno PRIMARY KEY);

The department table in the next example has a column whose type is the object
type location defined in the previous example. The example defines constraints
on scalar attributes of the location objects that appear in the dept_loc column
of the table.

CREATE TABLE department (
 deptno CHAR(5) PRIMARY KEY,
 dept_name CHAR(20),
 dept_mgr person,
 dept_loc location,
 CONSTRAINT dept_loc_cons1
 UNIQUE (dept_loc.building_no, dept_loc.city),
 CONSTRAINT dept_loc_cons2
 CHECK (dept_loc.city IS NOT NULL));
12-8 Oracle8 Concepts

Properties of Object Attributes
Indexes
You can define indexes on an object table or on the storage table for a nested table
column or attribute just as you can on other tables.

You can define indexes on leaf-level scalar attributes of column objects, except that
you can only define indexes on REF attributes or columns if the REF is scoped (see
“Scoped REFs” on page 11-8).

The following example defines an index on an attribute of an object column:

CREATE TABLE department (
 deptno CHAR(5) PRIMARY KEY,
 dept_name CHAR(20),
 dept_addr address);

CREATE INDEX i_dept_addr1
 ON department (dept_addr.city);

This code creates an index on the city attribute of the department address.

Wherever Oracle expects a column name in an index definition, you can also spec-
ify a scalar attribute of an object column.

Triggers
You can define triggers on an object table just as you can on other tables. You can-
not define a trigger on the storage table for a nested table column or attribute.

You cannot modify the values of collections (or LOBs) in the code that defines a trig-
ger action. Otherwise there are no special restrictions on using user-defined types
with triggers.

The following example defines a trigger on the person_extent table defined in an
earlier section:

CREATE TABLE movement (
 ssno NUMBER,
 old_office location,
 new_office location);

CREATE TRIGGER trig1
 BEFORE UPDATE
 OF office
 ON person_extent
 FOR EACH ROW
 WHEN new.office.city = ‘REDWOOD SHORES’
 Using User-Defined Datatypes 12-9

Privileges on User-Defined Types and Their Methods
 BEGIN
 IF :new.office.building_no = 600 THEN
 INSERT INTO movement (ssno, old_office, new_office)
 VALUES (:old.ssno, :old.office, :new.office);
 END IF;
 END;

Privileges on User-Defined Types and Their Methods
Privileges for user-defined types exist at the system level and schema object level.

System Privileges
Oracle defines the following system privileges for user-defined types:

■ CREATE TYPE allows you to create user-defined types in your own schema.

■ CREATE ANY TYPE allows you to create user-defined types in any schema.

■ ALTER ANY TYPE allows you to alter user-defined types in any schema.

■ DROP ANY TYPE allows you to drop named types in any schema.

■ EXECUTE ANY TYPE allows you to use and reference named types in any
schema.

The CONNECT and RESOURCE roles include the CREATE TYPE system privilege.
The DBA role includes all of the above privileges.

Schema Object Privileges
The only schema object privilege that applies to user-defined types is EXECUTE.

EXECUTE on a user-defined type allows you to use the type to:

■ Define a table.

■ Define a column in a relational table.

■ Declare a variable or parameter of the named type.

EXECUTE lets you invoke the type’s methods, including the constructor.

Method execution and the associated permissions are the same as for stored PL/
SQL procedures.
12-10 Oracle8 Concepts

Privileges on User-Defined Types and Their Methods
Using Types in New Types or Tables
In addition to the permissions detailed in the previous sections, you need specific
privileges to:

■ Create types or tables that use types created by other users.

■ Grant use of your new types or tables to other users.

You must have the EXECUTE ANY TYPE system privilege, or you must have the
EXECUTE object privilege for any type you use in defining a new type or table.
You must have received these privileges explicitly, not through roles.

If you intend to grant access to your new type or table to other users, you must
have either the required EXECUTE object privileges with the GRANT option or the
EXECUTE ANY TYPE system privilege with the option WITH ADMIN OPTION.
You must have received these privileges explicitly, not through roles.

Example
Assume that three users exist with the CONNECT and RESOURCE roles: user1,
user2, and user3

User1 performs the following DDL in the user1 schema:

CREATE TYPE type1 AS OBJECT (attr1 NUMBER);
CREATE TYPE type2 AS OBJECT (attr2 NUMBER);
GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

User2 performs the following DDL in the user2 schema:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (attr3 user1.type2);
CREATE TABLE tab2 (col1 user1.type2);

The following statements succeed, because user2 has EXECUTE on user1’s type2
with the GRANT option:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant fails, because user2 does not have EXECUTE on
user1.type1 with the GRANT option:

GRANT SELECT ON tab1 TO user3;

User3 can successfully perform the following actions:
 Using User-Defined Datatypes 12-11

Privileges on User-Defined Types and Their Methods
CREATE TYPE type4 AS OBJECT (attr4 user2.type3);
CREATE TABLE tab3 OF type4;

Privileges on Type Access and Object Access
The privileges that regulate use of tables apply equally to object tables:

■ SELECT lets you access an object and its attributes from the table.

■ UPDATE lets you modify attributes of objects in the table.

■ INSERT lets you add new objects to the table.

■ DELETE lets you delete objects from the table.

Similar table and column privileges regulate the use of table columns of user-
defined types.

Retrieving data of user-defined types does not require type information. Interpret-
ing the data, however, does require such information. When Oracle receives
requests for type information, it verifies that the requestor has EXECUTE privilege
on the type before supplying the requested information.

Consider the following schema:

CREATE TYPE emp_type (
 eno NUMBER,
 ename CHAR(31),
 eaddr addr_t);

CREATE TABLE emp OF emp_type;

and the following two queries:

SELECT VALUE(e) FROM emp e;
SELECT eno, ename FROM emp;

For either query, Oracle checks the user’s SELECT privilege for the emp table. For
the first query, the user needs to obtain the emp_type type information to interpret
the data. When the query accesses the emp_type type, Oracle checks the user’s EXE-
CUTE privilege.

Execution of the second query, however, does not involve named types, so Oracle
does not check type privileges.

Additionally, using the schema from the previous section, user3 can perform the fol-
lowing queries:

SELECT tab1.col1.attr2 from user2.tab1 tab1;
12-12 Oracle8 Concepts

Dependencies and Incomplete Types
SELECT t.attr4.attr3.attr2 FROM tab3 t;

Note that in both selects by user3, user3 does not have explicit privileges on the
underlying types, but the statement succeeds because the type and table owners
have the necessary privileges with the GRANT option.

Oracle checks privileges on the following requests, and returns an error if the
requestor does not have the privilege for the action:

■ Pinning an object in the object cache using its REF value causes Oracle to check
SELECT privilege on the containing object table.

■ Modifying an existing object or flushing an object from the object cache, causes
Oracle to check UPDATE privilege on the destination object table. Flushing a
new object causes Oracle to check INSERT privilege on the destination object
table.

■ Deleting an object causes Oracle to check DELETE privilege on the destination
table. Pinning an object of named type causes Oracle to check EXECUTE privi-
lege on the object type.

■ Invoking a method causes Oracle to check EXECUTE privilege on the corre-
sponding object type.

 Oracle does not provide column level privileges for object tables.

Dependencies and Incomplete Types
Types can depend upon each other for their definitions. For example, you might
want to define object types employee and department in such a way that one
attribute of employee is the department the employee belongs to and one attribute
of department is the employee who manages the department.

Types that depend on each other in this way, either directly or via intermediate
types, are called mutually dependent. A diagram of mutually dependent types, with
arrows representing the dependencies, always reveals a path of arrows starting and
ending at one of the types.

Oracle allows such cyclic dependencies only when at least one branch of the cycle
uses REFs.

For example, you can define the following types:

CREATE TYPE department;

CREATE TYPE employee AS OBJECT (
 name VARCHAR2(30),
 Using User-Defined Datatypes 12-13

Dependencies and Incomplete Types
 dept REF department,
 supv REF employee);

CREATE TYPE emp_list AS TABLE OF employee;

CREATE TYPE department AS OBJECT (
 name VARCHAR2(30),
 mgr REF employee,
 staff emp_list);

This is a legal set of mutually dependent types and a legal sequence of SQL DDL
statements. Oracle compiles it without errors. The first statement

CREATE TYPE department;

is optional. It makes the compilation proceed without errors. It establishes depart-
ment as an incomplete object type. A REF to an incomplete object type compiles with-
out error, so the compilation of employee proceeds.

When Oracle reaches the last statement, which completes the definition of depart-
ment , all of the components of department have compiled successfully, so the
compilation finishes without errors.

Without the optional declaration of department as an incomplete type,
employee compiles with errors. Oracle then automatically adds employee to its
library of schema objects as an incomplete object type. This makes the declarations
of emp_list and department compile without errors. When employee is recom-
piled after emp_list and department are complete, employee compiles with-
out errors and becomes a complete object type.

Completing Incomplete Types
Once you have declared an incomplete object type, you must complete it as an
object type. You cannot, for example, declare it to be a table type or an array type.
The only alternative is to drop the type.

This is also true if Oracle has made the type an incomplete object type for you — as
it did when employee failed to compile in the previous section.

This restriction applies even if there are no REFs to the incomplete object type any-
where in the schema. The rule Oracle follows is that once it flags a type as the
potential target of REFs, that type must remain a potential REF target until it is
dropped.

Oracle recognizes only object types as potential REF targets.
12-14 Oracle8 Concepts

Import/Export of User-Defined Types
Type Dependencies of Tables
If a table contains data that relies on a type definition for access, any change to the
type causes the table’s data to become inaccessible. This happens if privileges
required by the type are revoked or if the type or a type it depends on is dropped.
The table then becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges automatically becomes valid
and accessible if the required privileges are re-granted.

A table that is invalid because a type it depends on has been dropped can never be
accessed again. The only permissible action is to drop the table.

The SQL commands REVOKE and DROP TYPE return an error and abort if the
type referred to in the command has tables or other types that depend on it.

The FORCE option with either of these commands overrides that behavior. The
command succeeds and the affected tables or types become invalid.

Import/Export of User-Defined Types
The Export and Import utilities move data into and out of Oracle databases. They
are also back up or archive data and aid migration to different releases of the Ora-
cle RDBMS.

Export and Import support user-defined types. Export writes user-defined type def-
initions, foreign function library definitions, directory alias definitions, and all of
the associated data to the dump file. Import then recreates these items from the
dump file.

Additional Information: See Oracle8 Utilities for more information
about Export and Import.
 Using User-Defined Datatypes 12-15

Import/Export of User-Defined Types
12-16 Oracle8 Concepts

 Object
13

Object Views

The choice of a point of view is the initial act of a culture.

José Ortega y Gasset, The Modern Theme

This chapter describes object views. It contains the following major sections:

■ Introduction

■ Defining Object Views

■ Using Object Views

■ Updating Object Views

Attention: The features described in this chapter are available
only if you have purchased Oracle8 Enterprise Edition with the
Objects Option. Wherever the term Oracle server appears in this
chapter it refers to Oracle8 Enterprise Edition with the Objects
Option. See Getting to Know Oracle8 and the Oracle8 Enterprise Edi-
tion for information about the features and options available with
Oracle8 Enterprise Edition.
Views 13-1

Introduction
Introduction
Just as a view is a virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view mecha-
nism. By using object views, you can create virtual object tables from data — of
either built-in or user-defined types — stored in the columns of relational or object
tables in the database.

Object views provide the ability to offer specialized or restricted access to the data
and objects in a database. For example, you might use an object view to provide a
version of an employee object table that doesn’t have attributes containing sensitive
data and doesn’t have a deletion method.

Object views allow the use of relational data in object-oriented applications. They
let users

■ Try object-oriented programming techniques without converting existing tables.

■ Convert data gradually and transparently from relational tables to object-rela-
tional tables.

■ Use legacy RDBMS data with existing object-oriented applications.

Advantages of Object Views
Using object views can lead to better performance. Relational data that make up a
row of an object view traverse the network as a unit, potentially saving many
round trips.

You can fetch relational data into the client-side object cache and map it into C or
C++ structures so 3GL applications can manipulate it just like native structures.

Object views provide a gradual migration path for legacy data.

Object views provide for co-existence of relational and object-oriented applications.
They make it easier to introduce object-oriented applications to existing relational
data without having to make a drastic change from one paradigm to another.

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Thus you can use different in-memory object representations
for different applications without changing the way you store the data in the data-
base.

Defining Object Views
Conceptually, the procedure for defining an object view is simple:
13-2 Oracle8 Concepts

Defining Object Views
1. Define an object type to be represented by rows of the object view.

2. Write a query that specifies which data in which relational tables contain the
attributes for objects of that type.

3. Specify an object identifier, based on attributes of the underlying data, to allow
REFs to the objects (rows) of the object view.

The object identifier corresponds to the unique object identifier that Oracle gener-
ates automatically for rows of object tables. In the case of object views, however, the
declaration must specify something that is unique in the underlying data (for exam-
ple, a primary key).

If the object view is based on a table or another object view and you don’t specify
an object identifier, Oracle uses the object identifier from the original table or object
view.

If you wish to be able to update a complex object view, you may have to take
another step:

4. Write an INSTEAD OF trigger procedure (see “Updating Object Views” on
page 13-4) for Oracle to execute whenever an application program tries to
update data in the object view.

After these steps you can use an object view just like an object table.

For example, the following SQL statements define an object view:

CREATE TABLE emp_table (
 empnum NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9, 2),
 job VARCHAR2 (20));

CREATE TYPE employee_t (
 empno NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9, 2),
 job VARCHAR2 (20));

CREATE VIEW emp_view1 OF employee_t
 WITH OBJECT OID (empno) AS
 SELECT e.empnum, e.ename, e.salary, e.job
 FROM emp_table e
 WHERE job = ’Developer’;
 Object Views 13-3

Using Object Views
The object view looks to the user like an object table whose underlying type is
employee_t . Each row contains an object of type employee_t . Each row has a
unique object identifier.

Oracle constructs the object identifier based on the specified key. In most cases it is
the primary key of the base table. If the query that defines the object view involves
joins, however, you must provide a key across all tables involved in the joins, so
that the key still uniquely identifies rows of the object view.

Using Object Views
Data in the rows of an object view may come from more than one table, but the
object still traverses the network in one operation. When the instance is in the client
side object cache, it appears to the programmer as a C or C++ structure or as a PL/
SQL object variable. You can manipulate it like any other native structure.

You can refer to object views in SQL statements the same way you refer to an object
table. For example, object views can appear in a SELECT list, in an UPDATE-SET
clause, or in a WHERE clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use
for objects from object tables. For example, you can use OCIObjectPin() for pinning
a REF and OCIObjectFlush() for flushing an object to the server. When you update
or flush to the server an object in an object view, Oracle updates the object view.

Updating Object Views
You can update, insert, and delete the data in an object view using the same SQL
DML you use for object tables. Oracle updates the base tables of the object view if
there is no ambiguity.

A view is not updatable if its view query contains joins, set operators, group func-
tions, GROUP BY, or DISTINCT. If a view query contains pseudocolumns or expres-

Note: Columns in the WITH OBJECT OID clause — empno in the
example — must also be attributes of the underlying object type —
employee_t in the example. This makes it easy for trigger pro-
grams to identify the corresponding row in the base table uniquely.

Additional Information: See Oracle Call Interface Programmer’s
Guide for more information about OCI calls.
13-4 Oracle8 Concepts

Updating Object Views
sions, the corresponding view columns are not updatable. Object views often
involve joins.

To overcome these obstacles Oracle provides INSTEAD OF triggers (see Chapter 18,
“Database Triggers”). They are called INSTEAD OF triggers because Oracle exe-
cutes the trigger body instead of the actual DML statement.

INSTEAD OF triggers provide a transparent way to update object views or rela-
tional views. You write the same SQL DML (INSERT, DELETE, and UPDATE) state-
ments as for an object table. Oracle invokes the appropriate trigger instead of the
SQL statement, and the actions specified in the trigger body take place.

Additional Information: See Oracle8 Application Developer’s Guide
for a purchase order/line item example that uses an INSTEAD OF
trigger.
 Object Views 13-5

Updating Object Views
13-6 Oracle8 Concepts

Part V

Data Access

Part V describes how to use transactions consisting of SQL statements to access
data in an Oracle database, and it describes procedural language constructs that
provide additional functionality for data access. It also describes the optimizer,
which chooses the most efficient way to execute each SQL statement.

Part V contains the following chapters:

■ Chapter 14, “SQL and PL/SQL”

■ Chapter 15, “Transaction Management”

■ Chapter 16, “Advanced Queuing”

■ Chapter 17, “Procedures and Packages”

■ Chapter 18, “Database Triggers”

■ Chapter 19, “Oracle Dependency Management”

■ Chapter 20, “The Optimizer”

 SQL and PL
14

SQL and PL/SQL

High thoughts must have high language.

Aristophanes: Frogs

This chapter provides an overview of SQL, the Structured Query Language, and
PL/SQL, Oracle’s procedural extension to SQL. The chapter includes:

■ Structured Query Language (SQL)

■ SQL Processing

■ PL/SQL

Additional Information: For complete information on PL/SQL,
see the PL/SQL User’s Guide and Reference.
/SQL 14-1

Structured Query Language (SQL)
Structured Query Language (SQL)
SQL is a very simple, yet powerful, database access language. SQL is a nonproce-
dural language; users describe in SQL what they want done, and the SQL language
compiler automatically generates a procedure to navigate the database and per-
form the desired task.

IBM Research developed and defined SQL, and ANSI/ISO has refined SQL as the
standard language for relational database management systems. The SQL imple-
mented by Oracle Corporation for Oracle is 100% compliant at the Entry Level with
the ANSI/ISO 1992 standard SQL data language.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL language,
and Oracle tools and applications provide additional commands. The Oracle tools
SQL*Plus, Oracle Enterprise Manager, and Server Manager allow you to execute
any ANSI/ISO standard SQL statement against an Oracle database, as well as addi-
tional commands or functions that are available for those tools.

Although some Oracle tools and applications simplify or mask the use of SQL, all
database operations are performed using SQL. Any other data access method
would circumvent the security built into Oracle and potentially compromise data
security and integrity.

This section includes the following topics:

■ SQL Statements

■ Identifying Nonstandard SQL

■ Recursive SQL

■ Cursors

■ Shared SQL

■ Parsing

Additional Information: See the Oracle8 SQL Reference for detailed
information about SQL commands and other parts of SQL (such as
operators, functions, and format models).

See the Oracle Enterprise Manager Administrator’s Guide for informa-
tion about Oracle Enterprise Manager and Server Manager com-
mands, including their distinction from SQL commands.
14-2 Oracle8 Concepts

Structured Query Language (SQL)
SQL Statements
All operations performed on the information in an Oracle database are executed
using SQL statements. A SQL statement is a specific instance of a valid SQL com-
mand. A statement consists partially of SQL reserved words, which have special
meaning in SQL and cannot be used for any other purpose. For example, SELECT
and UPDATE are reserved words and cannot be used as table names.

A SQL statement can be thought of as a very simple, but powerful, computer pro-
gram or instruction. The statement must be the equivalent of a SQL “sentence,”
as in:

SELECT ename, deptno FROM emp;

Only a SQL statement can be executed, whereas a “sentence fragment” such as the
following generates an error indicating that more text is required before a SQL
statement can execute:

SELECT ename

Oracle SQL statements are divided into the following categories:

■ Data Manipulation Language statements (DML)

■ Data Definition Language statements (DDL)

■ Transaction Control statements

■ Session Control statements

■ System Control statements

■ Embedded SQL statements

Data Manipulation Language (DML) Statements
DML statements query or manipulate data in existing schema objects. They enable
you to

■ retrieve data from one or more tables or views (SELECT)

■ add new rows of data into a table or view (INSERT)

Note: Oracle also supports the use of SQL statements in PL/SQL
program units; see Chapter 17, “Procedures and Packages” and
Chapter 18, “Database Triggers” for more information about this
feature.
 SQL and PL/SQL 14-3

Structured Query Language (SQL)
■ change column values in existing rows of a table or view (UPDATE)

■ remove rows from tables or views (DELETE)

■ see the execution plan for a SQL statement (EXPLAIN PLAN)

■ lock a table or view, temporarily limiting other users’ access (LOCK TABLE)

DML statements are the most frequently used SQL statements. Some examples of
DML statements follow:

SELECT ename, mgr, comm + sal FROM emp;

INSERT INTO emp VALUES
 (1234, ’DAVIS’, ’SALESMAN’, 7698, ’14-FEB-1988’, 1600, 500, 30);

DELETE FROM emp WHERE ename IN (’WARD’,’JONES’);

Data Definition Language (DDL) Statements
DDL statements define, alter the structure of, and drop schema objects. DDL state-
ments enable you to

■ create, alter, and drop schema objects and other database structures, including
the database itself and database users (CREATE, ALTER, DROP)

■ change the names of schema objects (RENAME)

■ delete all the data in schema objects without removing the objects’ structure
(TRUNCATE)

■ gather statistics about schema objects, validate object structure, and list chained
rows within objects (ANALYZE)

■ grant and revoke privileges and roles (GRANT, REVOKE)

■ turn auditing options on and off (AUDIT, NOAUDIT)

■ add a comment to the data dictionary (COMMENT)

DDL statements implicitly commit the preceding and start a new transaction.

Some examples of DDL statements follow:

CREATE TABLE plants
 (COMMON_NAME VARCHAR2 (15), LATIN_NAME VARCHAR2 (40));

DROP TABLE plants;

GRANT SELECT ON emp TO scott;
14-4 Oracle8 Concepts

Structured Query Language (SQL)
REVOKE DELETE ON emp FROM scott;

For specific information on DDL statements that correspond to database and data
access, see Chapter 25, “Controlling Database Access”, Chapter 26, “Privileges and
Roles”, and Chapter 27, “Auditing”.

Transaction Control Statements
Transaction control statements manage the changes made by DML statements and
group DML statements into transactions. They enable you to

■ make a transaction’s changes permanent (COMMIT)

■ undo the changes in a transaction, either since the transaction started or since a
savepoint (ROLLBACK)

■ set a point to which you can roll back (SAVEPOINT)

■ establish properties for a transaction (SET TRANSACTION)

Session Control Statements
Session control statements manage the properties of a particular user’s session. For
example, they enable you to

■ alter the current session by performing a specialized function, such as enabling
and disabling the SQL trace facility (ALTER SESSION)

■ enable and disable roles (groups of privileges) for the current session (SET
ROLE)

System Control Statements
System control statements change the properties of the Oracle server instance.

The only system control command is ALTER SYSTEM. It enables you to change set-
tings (such as the minimum number of shared servers), to kill a session, and to per-
form other tasks.

Embedded SQL Statements
Embedded SQL statements incorporate DDL, DML, and transaction control state-
ments within a procedural language program. They are used with the Oracle pre-
compilers.
 SQL and PL/SQL 14-5

Structured Query Language (SQL)
Embedded SQL statements enable you to

■ define, allocate, and release cursors (DECLARE CURSOR, OPEN, CLOSE)

■ specify a database and connect to Oracle (DECLARE DATABASE, CONNECT)

■ assign variable names (DECLARE STATEMENT)

■ initialize descriptors (DESCRIBE)

■ specify how error and warning conditions are handled (WHENEVER)

■ parse and execute SQL statements (PREPARE, EXECUTE, EXECUTE
IMMEDIATE)

■ retrieve data from the database (FETCH).

Identifying Nonstandard SQL
Oracle provides extensions to the standard SQL “Database Language with Integrity
Enhancement”. The Federal Information Processing Standard for SQL (FIPS 127-2)
requires vendors to supply a method for identifying SQL statements that use such
extensions. You can identify or “flag” Oracle extensions in interactive SQL, the Ora-
cle precompilers, or SQL*Module by using the FIPS flagger.

If you are concerned with the portability of your applications to other implementa-
tions of SQL, use the FIPS flagger.

Recursive SQL
When a DDL statement is issued, Oracle implicitly issues recursive SQL statements
that modify data dictionary information. Users need not be concerned with the
recursive SQL internally performed by Oracle.

Cursors
A cursor is a handle or name for a private SQL area — an area in memory in which a
parsed statement and other information for processing the statement are kept.

Although most Oracle users rely on the automatic cursor handling of the Oracle
utilities, the programmatic interfaces offer application designers more control over
cursors. In application development, a cursor is a named resource available to a

Additional Information: For information on how to use the FIPS
flagger, see the Pro*C/C++ Precompiler Programmer’s Guide,
Pro*COBOL Precompiler Programmer’s Guide, or SQL*Module for Ada
Programmer’s Guide.
14-6 Oracle8 Concepts

Structured Query Language (SQL)
program and can be used specifically for the parsing of SQL statements embedded
within the application.

Each user session can open multiple cursors up to the limit set by the initialization
parameter OPEN_CURSORS. However, applications should close unneeded cur-
sors to conserve system memory. If a cursor cannot be opened due to a limit on the
number of cursors, the database administrator can alter the OPEN_CURSORS ini-
tialization parameter.

Some statements (primarily DDL statements) require Oracle to implicitly issue
recursive SQL statements, which also require recursive cursors. For example, a CRE-
ATE TABLE statement causes many updates to various data dictionary tables to
record the new table and columns. Recursive calls are made for those recursive cur-
sors; one cursor may execute several recursive calls. These recursive cursors also
use shared SQL areas.

Shared SQL
Oracle automatically notices when applications send identical SQL statements to
the database. The SQL area used to process the first occurrence of the statement is
shared — that is, used for processing subsequent occurrences of that same state-
ment. Therefore, only one shared SQL area exists for a unique statement. Since
shared SQL areas are shared memory areas, any Oracle process can use a shared
SQL area. The sharing of SQL areas reduces memory usage on the database server,
thereby increasing system throughput.

In evaluating whether statements are identical, Oracle considers SQL statements
issued directly by users and applications as well as recursive SQL statements
issued internally by a DDL statement.

Parsing
Parsing is one stage in the processing of a SQL statement. When an application
issues a SQL statement, the application makes a parse call to Oracle. During the
parse call, Oracle

■ checks the statement for syntactic and semantic validity

■ determines whether the process issuing the statement has privileges to
execute it

■ allocates a private SQL area for the statement

Additional Information: See the Oracle8 Application Developer’s
Guide for more information on shared SQL.
 SQL and PL/SQL 14-7

SQL Processing
Oracle also determines whether there is an existing shared SQL area containing the
parsed representation of the statement in the library cache. If so, the user process
uses this parsed representation and executes the statement immediately. If not, Ora-
cle generates the parsed representation of the statement, and the user process allo-
cates a shared SQL area for the statement in the library cache and stores its parsed
representation there.

Note the difference between an application making a parse call for a SQL statement
and Oracle actually parsing the statement. A parse call by the application associates a
SQL statement with a private SQL area. Once a statement has been associated with
a private SQL area, it can be executed repeatedly without your application making
a parse call. A parse operation by Oracle allocates a shared SQL area for a SQL state-
ment. Once a shared SQL area has been allocated for a statement, it can be executed
repeatedly without being reparsed.

Both parse calls and parsing can be expensive relative to execution, so it is desir-
able to perform them as seldom as possible.

This discussion applies also to the parsing of PL/SQL blocks and allocation of PL/
SQL areas. (See “PL/SQL” on page 14-15.) Stored procedures, functions, and pack-
ages and triggers are assigned PL/SQL areas. Oracle also assigns each SQL state-
ment within a PL/SQL block a shared and a private SQL area.

SQL Processing
This section introduces the basics of SQL processing. Topics include:

■ Overview of SQL Statement Execution

■ DML Statement Processing

■ DDL Statement Processing

■ Controlling Transactions

Overview of SQL Statement Execution
Figure 14–1 outlines the stages commonly used to process and execute a SQL state-
ment. In some cases, Oracle might execute these stages in a slightly different order.
For example, the DEFINE stage could occur just before the FETCH stage, depend-
ing on how you wrote your code.

For many Oracle tools, several of the stages are performed automatically. Most
users need not be concerned with or aware of this level of detail. However, you
might find this information useful when writing Oracle applications.
14-8 Oracle8 Concepts

SQL Processing
Figure 14–1 The Stages in Processing a SQL Statement

yes

yes

bind?reparse? no

OPEN

PARSE

query?

EXECUTE

PARALLELIZE

query?

execute
others?

CLOSE

yes

no

no

no

no

yes yes

no
no yes

describe?

DEFINE

more?

more?

BIND

more?

FETCH

more?no yes

no yes

yes

yes

no

DESCRIBE
 SQL and PL/SQL 14-9

SQL Processing
DML Statement Processing
This section provides a simple example of what happens during the execution of a
SQL statement, in each stage of DML statement processing.

Assume that you are using a Pro*C program to increase the salary for all employ-
ees in a department. Also assume that the program you are using has connected to
Oracle and that you are connected to the proper schema to update the EMP table.
You might embed the following SQL statement in your program:

EXEC SQL UPDATE emp SET sal = 1.10 * sal
 WHERE deptno = :dept_number;

DEPT_NUMBER is a program variable containing a value for department number.
When the SQL statement is executed, the value of DEPT_NUMBER is used, as pro-
vided by the application program.

The following stages are necessary for each type of statement processing:

■ Stage 1: Create a Cursor

■ Stage 2: Parse the Statement

■ Stage 5: Bind Any Variables

■ Stage 7: Execute the Statement

■ Stage 9: Close the Cursor

Optionally, you can include another stage:

■ Stage 6: Parallelize the Statement

Queries (SELECTs) require several additional stages, as shown in Figure 14–1:

■ Stage 3: Describe Results of a Query

■ Stage 4: Define Output of a Query

■ Stage 8: Fetch Rows of a Query

■ Stage 9: Close the Cursor

See “Query Processing” on page 14-11 for more information.

Stage 1: Create a Cursor
A program interface call creates a cursor. The cursor is created independent of any
SQL statement; it is created in expectation of any SQL statement. In most applica-
tions, cursor creation is automatic. However, in precompiler programs, cursor cre-
ation can either occur implicitly or be explicitly declared.
14-10 Oracle8 Concepts

SQL Processing
Stage 2: Parse the Statement
During parsing, the SQL statement is passed from the user process to Oracle, and a
parsed representation of the SQL statement is loaded into a shared SQL area. Many
errors can be caught during this stage of statement processing.

Parsing is the process of:

■ translating a SQL statement, verifying it to be a valid statement

■ performing data dictionary lookups to check table and column definitions

■ acquiring parse locks on required objects so that their definitions do not change
during the statement’s parsing

■ checking privileges to access referenced schema objects

■ determining the optimal execution plan for the statement

■ loading it into a shared SQL area

■ for distributed statements, routing all or part of the statement to remote nodes
that contain referenced data

Oracle parses a SQL statement only if a shared SQL area for an identical SQL state-
ment does not exist in the shared pool. In this case, a new shared SQL area is allo-
cated and the statement is parsed. (See “Shared SQL” on page 14-7.)

The parse stage includes processing requirements that need to be done only once
no matter how many times the statement is executed. Oracle translates each SQL
statement only once, reexecuting that parsed statement during subsequent refer-
ences to the statement.

Although the parsing of a SQL statement validates that statement, parsing only
identifies errors that can be found before statement execution. Thus, some errors
cannot be caught by parsing. For example, errors in data conversion or errors in
data (such as an attempt to enter duplicate values in a primary key) and deadlocks
are all errors or situations that can be encountered and reported only during the
execution stage.

Query Processing
Queries are different from other types of SQL statements because, if successful,
they return data as results. Whereas other statements simply return success or fail-
ure, a query can return one row or thousands of rows. The results of a query are
always in tabular format, and the rows of the result are fetched (retrieved), either a
row at a time or in groups.
 SQL and PL/SQL 14-11

SQL Processing
Several issues relate only to query processing. Queries include not only explicit
SELECT statements but also the implicit queries (subqueries) in other SQL state-
ments. For example, each of the following statements requires a query as a part of
its execution:

INSERT INTO table SELECT...

UPDATE table SET x = y WHERE...

DELETE FROM table WHERE...

CREATE table AS SELECT...

In particular, queries:

■ require read consistency

■ can use temporary segments for intermediate processing

■ can require the describe, define, and fetch stages of SQL statement processing.

Stage 3: Describe Results of a Query
The describe stage is necessary only if the characteristics of a query’s result are not
known; for example, when a query is entered interactively by a user.

In this case, the describe stage determines the characteristics (datatypes, lengths,
and names) of a query’s result.

Stage 4: Define Output of a Query
In the define stage for queries, you specify the location, size, and datatype of vari-
ables defined to receive each fetched value. Oracle performs datatype conversion if
necessary.

Stage 5: Bind Any Variables
At this point, Oracle knows the meaning of the SQL statement but still does not
have enough information to execute the statement. Oracle needs values for any
variables listed in the statement; in the example, Oracle needs a value for
DEPT_NUMBER. The process of obtaining these values is called binding variables.

A program must specify the location (memory address) where the value can be
found. End users of applications might be unaware that they are specifying bind
variables, because the Oracle utility might simply prompt them for a new value.
14-12 Oracle8 Concepts

SQL Processing
Because you specify the location (binding by reference), you need not rebind the
variable before re-execution. You can change its value and Oracle looks up the
value on each execution, using the memory address.

You must also specify a datatype and length for each value (unless they are implied
or defaulted) if Oracle needs to perform datatype conversion.

Stage 6: Parallelize the Statement
Oracle can parallelize queries (SELECTs), INSERTs, UPDATEs, DELETEs, and
some DDL operations such as index creation, creating a table with a subquery, and
operations on partitions. Parallelization causes multiple server processes to per-
form the work of the SQL statement so that it can complete faster.

See Chapter 22, “Parallel Execution”, for more information about parallel SQL.

Stage 7: Execute the Statement
At this point, Oracle has all necessary information and resources, so the statement
is executed. If the statement is a query or an INSERT statement, no rows need to be
locked because no data is being changed. If the statement is an UPDATE or
DELETE statement, however, all rows that the statement affects are locked from
use by other users of the database until the next COMMIT, ROLLBACK, or SAVE-
POINT for the transaction. This ensures data integrity.

For some statements you can specify a number of executions to be performed. This
is called array processing. Given n number of executions, the bind and define loca-
tions are assumed to be the beginning of an array of size n.

Stage 8: Fetch Rows of a Query
In the fetch stage, rows are selected and ordered (if requested by the query), and
each successive fetch retrieves another row of the result, until the last row has been
fetched.

Additional Information: For more information about specifying a
datatype and length for a value, refer to the following publications:

■ Oracle Call Interface Programmer’s Guide

■ Pro*C/C++ Precompiler Programmer’s Guide (see “Dynamic SQL
Method 4”)

■ Pro*COBOL Precompiler Programmer’s Guide (see “Dynamic SQL
Method 4”)
 SQL and PL/SQL 14-13

SQL Processing
Stage 9: Close the Cursor
The final stage of processing a SQL statement is closing the cursor.

DDL Statement Processing
The execution of DDL statements differs from the execution of DML statements
and queries because the success of a DDL statement requires write access to the
data dictionary. For these statements, parsing (Stage 2) actually includes parsing,
data dictionary lookup, and execution.

Transaction management, session management, and system management SQL
statements are processed using the parse and execute stages. To reexecute them,
simply perform another execute.

Controlling Transactions
In general, only application designers using the programming interfaces to Oracle
are concerned with the types of actions that should be grouped together as one
transaction. Transactions must be defined properly so that work is accomplished in
logical units and data is kept consistent. A transaction should consist of all of the
necessary parts for one logical unit of work, no more and no less.

■ Data in all referenced tables should be in a consistent state before the transac-
tion begins and after it ends.

■ Transactions should consist of only the SQL statements that make one consis-
tent change to the data.

For example, a transfer of funds between two accounts (the transaction or logical
unit of work) should include the debit to one account (one SQL statement) and the
credit to another account (one SQL statement). Both actions should either fail or
succeed together as a unit of work; the credit should not be committed without the
debit. Other nonrelated actions, such as a new deposit to one account, should not
be included in the transfer of funds transaction.

In addition to determining which types of actions form a transaction, when you
design an application you must also determine when it is useful to use the
BEGIN_DISCRETE_TRANSACTION procedure to improve the performance
of short, non-distributed transactions. See “Discrete Transaction Management” on
page 15-8 for more information.
14-14 Oracle8 Concepts

PL/SQL
PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL enables you to
mix SQL statements with procedural constructs. With PL/SQL, you can define and
execute PL/SQL program units such as procedures, functions, and packages.

PL/SQL program units generally are categorized as anonymous blocks and stored
procedures.

An anonymous block is a PL/SQL block that appears within your application and it
is not named or stored in the database. In many applications, PL/SQL blocks can
appear wherever SQL statements can appear.

A stored procedure is a PL/SQL block that Oracle stores in the database and can be
called by name from an application. When you create a stored procedure, Oracle
parses the procedure and stores its parsed representation in the database. Oracle
also allows you to create and store functions (which are similar to procedures) and
packages (which are groups of procedures and functions).

For information on stored procedures, functions, packages, and database triggers,
see Chapter 17, “Procedures and Packages”, and Chapter 18, “Database Triggers”.

How PL/SQL Executes
The PL/SQL engine, which processes PL/SQL program units, is a special compo-
nent of many Oracle products, including the Oracle server.

Figure 14–2 illustrates the PL/SQL engine contained in Oracle server.
 SQL and PL/SQL 14-15

PL/SQL
Figure 14–2 The PL/SQL Engine and the Oracle Server

The procedure (or package) is stored in a database. When an application calls a pro-
cedure stored in the database, Oracle loads the compiled procedure (or package)
into the shared pool in the system global area (SGA), and the PL/SQL and SQL
statement executors work together to process the statements within the procedure.

The following Oracle products contain a PL/SQL engine:

■ Oracle server

■ Oracle Forms (Version 3 and later)

■ SQL*Menu (Version 5 and later)

■ Oracle Reports (Version 2 and later)

■ Oracle Graphics (Version 2 and later)

SQL Statement
Executor

Database
Application

Oracle Server

SGA PL/SQL Engine

SQL

Procedural
Statement
Executor

Program code

Program code

Prodedure call

Program code

Program code

Database

Procedure

Begin
 Procedural
 Procedural
 SQL
 Prodedural
SQL
END;
14-16 Oracle8 Concepts

PL/SQL
You can call a stored procedure from another PL/SQL block, which can be either
an anonymous block or another stored procedure. For example, you can call a
stored procedure from Oracle Forms (Version 3 or later).

Also, you can pass anonymous blocks to Oracle from applications developed with
these tools:

■ Oracle precompilers (including user exits)

■ Oracle Call Interfaces (OCIs)

■ SQL*Plus

■ Server Manager

■ Oracle Enterprise Manager

Language Constructs for PL/SQL
PL/SQL blocks can include the following PL/SQL language constructs:

■ variables and constants

■ cursors

■ exceptions

This section gives a general description of each construct.

Variables and Constants
Variables and constants can be declared within a procedure, function, or package.
A variable or constant can be used in a SQL or PL/SQL statement to capture or pro-
vide a value when one is needed.

Cursors
Cursors can be declared explicitly within a procedure, function, or package to facili-
tate record-oriented processing of Oracle data. Cursors also can be declared implic-
itly (to support other data manipulation actions) by the PL/SQL engine.

Additional Information: See the PL/SQL User’s Guide and Reference.

Note: Some interactive tools, such as Server Manager, allow you
to define variables in your current session. You can use such vari-
ables just as you would variables declared within procedures or
packages.
 SQL and PL/SQL 14-17

PL/SQL
Exceptions
PL/SQL allows you to explicitly handle internal and user-defined error conditions,
called exceptions, that arise during processing of PL/SQL code. Internal exceptions
are caused by illegal operations, such as division by zero, or Oracle errors returned
to the PL/SQL code. User-defined exceptions are explicitly defined and signaled
within the PL/SQL block to control processing of errors specific to the application
(for example, debiting an account and leaving a negative balance).

When an exception is raised (signaled), the normal execution of the PL/SQL code
stops, and a routine called an exception handler is invoked. Specific exception han-
dlers can be written to handle any internal or user-defined exception.

Stored Procedures
Oracle also allows you to create and call stored procedures. If your application calls
a stored procedure, the parsed representation of the procedure is retrieved from
the database and processed by the PL/SQL engine in Oracle.

You can call stored procedures from applications developed using these tools:

■ Oracle precompilers (including user exits)

■ Oracle Call Interfaces (OCIs)

■ SQL*Module

■ SQL*Plus

■ Server Manager

■ Oracle Enterprise Manager

You can also call a stored procedure from another PL/SQL block, either an anony-
mous block or another stored procedure. See Chapter 17, “Procedures and Pack-
ages” for more information.

Note: While many Oracle products have PL/SQL components,
this manual specifically covers only the procedures and packages
that can be stored in an Oracle database and processed using the
PL/SQL engine of the Oracle server.

Additional Information: The PL/SQL capabilities of each Oracle
tool are described in the appropriate tool user guide.
14-18 Oracle8 Concepts

PL/SQL
Dynamic SQL in PL/SQL
You can write stored procedures and anonymous PL/SQL blocks that include
dynamic SQL by using the DBMS_SQL package. Dynamic SQL statements are not
embedded in your source program; rather, they are stored in character strings that
are entered into, or built by, the program at runtime.

This enables you to create procedures that are more general purpose. For example,
using dynamic SQL allows you to create a procedure that operates on a table
whose name is not known until runtime.

Additionally, you can parse any data manipulation language (DML) or data defini-
tion language (DDL) statement using the DBMS_SQL package. This helps solve the
problem of not being able to parse DDL statements directly using PL/SQL. For
example, you might now choose to issue a DROP TABLE statement from within a
stored procedure by using the PARSE procedure supplied with the DBMS_SQL
package.

External Procedures
A PL/SQL procedure executing on an Oracle server can call an external procedure
or function that is written in the C programming language and stored in a shared
library. The C routine executes in a separate address space from that of the Oracle
server.

Additional Information: For information on how to call stored
procedures from each type of application, see the documentation
for the specific application tool, such as the Pro*C/C++ Precompiler
Programmer’s Guide or Pro*COBOL Precompiler Programmer’s Guide.

Additional Information: For more information about dynamic
SQL, see the Oracle8 Application Developer’s Guide.

Additional Information: See the PL/SQL User’s Guide and Reference
for detailed information about external procedures.
 SQL and PL/SQL 14-19

PL/SQL
14-20 Oracle8 Concepts

 Transaction Manage
15

Transaction Management

The pigs did not actually work, but directed and supervised the others.

George Orwell: Animal Farm

This chapter defines a transaction and describes how you can manage your work
using transactions. It includes:

■ Introduction to Transactions

■ Oracle and Transaction Management

■ Discrete Transaction Management
ment 15-1

Introduction to Transactions
Introduction to Transactions
A transaction is a logical unit of work that contains one or more SQL statements. A
transaction is an atomic unit; the effects of all the SQL statements in a transaction
can be either all committed (applied to the database) or all rolled back (undone from
the database).

A transaction begins with the first executable SQL statement. A transaction ends
when it is committed or rolled back, either explicitly (with a COMMIT or ROLL-
BACK statement) or implicitly (when a DDL statement is issued).

To illustrate the concept of a transaction, consider a banking database. When a
bank customer transfers money from a savings account to a checking account, the
transaction might consist of three separate operations: decrement the savings
account, increment the checking account, and record the transaction in the transac-
tion journal.

Oracle must allow for two situations. If all three SQL statements can be performed
to maintain the accounts in proper balance, the effects of the transaction can be
applied to the database. However, if something (such as insufficient funds, invalid
account number, or a hardware failure) prevents one or two of the statements in
the transaction from completing, the entire transaction must be rolled back so that
the balance of all accounts is correct.

Figure 15–1 illustrates the banking transaction example.
15-2 Oracle8 Concepts

Introduction to Transactions
Figure 15–1 A Banking Transaction

Statement Execution and Transaction Control
A SQL statement that “executes successfully” is different from a “committed” trans-
action.

Executing successfully means that a single statement was parsed and found to be a
valid SQL construction, and that the entire statement executed without error as an
atomic unit (for example, all rows of a multirow update are changed). However,
until the transaction that contains the statement is committed, the transaction can
be rolled back, and all of the changes of the statement can be undone. A statement,
rather than a transaction, executes successfully.

Committing means that a user has said either explicitly or implicitly “make the
changes in this transaction permanent”. The changes made by the SQL statement(s)

Transaction Begins

Transaction Ends

UPDATE savings_accounts
 SET balance = balance - 500
 WHERE account = 3209;

UPDATE checking_accounts
 SET balance = balance + 500
 WHERE account = 3208;

INSERT INTO journal VALUES
 (journal_seq.NEXTVAL, '1B'
 3209, 3208, 500);

COMMIT WORK;

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction
 Transaction Management 15-3

Oracle and Transaction Management
of your transaction become permanent and visible to other users only after your
transaction has been committed. Only other users’ transactions that started after
yours will see the committed changes.

Statement-Level Rollback
If at any time during execution a SQL statement causes an error, all effects of the
statement are rolled back. The effect of the rollback is as if that statement were
never executed. This is a statement-level rollback.

Errors discovered during SQL statement execution cause statement-level rollbacks.
(An example of such an error is attempting to insert a duplicate value in a primary
key.) Errors discovered during SQL statement parsing (such as a syntax error) have
not yet been executed, so do not cause a statement-level rollback. Single SQL state-
ments involved in a deadlock (competition for the same data) may also cause a state-
ment-level rollback. See “Deadlocks” on page 23-16.

A SQL statement that fails causes the loss only of any work it would have per-
formed itself; it does not cause the loss of any work that preceded it in the current transac-
tion. If the statement is a DDL statement, the implicit commit that immediately
preceded it is not undone.

Oracle and Transaction Management
A transaction in Oracle begins when the first executable SQL statement is encoun-
tered. An executable SQL statement is a SQL statement that generates calls to an
instance, including DML and DDL statements.

When a transaction begins, Oracle assigns the transaction to an available rollback
segment to record the rollback entries for the new transaction. See “Transactions
and Rollback Segments” on page 2-18 for more information about this topic.

A transaction ends when any of the following occurs:

■ You issue a COMMIT or ROLLBACK (without a SAVEPOINT clause) state-
ment.

■ You execute a DDL statement (such as CREATE, DROP, RENAME, ALTER). If
the current transaction contains any DML statements, Oracle first commits the
transaction, and then executes and commits the DDL statement as a new, single
statement transaction.

Note: Users cannot directly refer to implicit savepoints in roll-
back statements.
15-4 Oracle8 Concepts

Oracle and Transaction Management
■ A user disconnects from Oracle. (The current transaction is committed.)

■ A user process terminates abnormally. (The current transaction is rolled back.)

After one transaction ends, the next executable SQL statement automatically starts
the following transaction.

Committing Transactions
Committing a transaction means making permanent the changes performed by the
SQL statements within the transaction.

Before a transaction that modifies data is committed, the following has occurred:

■ Oracle has generated rollback segment records in rollback segment buffers of
the system global area (SGA). The rollback information contains the old data
values changed by the SQL statements of the transaction.

■ Oracle has generated redo log entries in the redo log buffer of the SGA. These
changes may go to disk before a transaction is committed.

■ The changes have been made to the database buffers of the SGA. These
changes may go to disk before a transaction actually is committed.

When a transaction is committed, the following occurs:

■ The internal transaction table for the associated rollback segment records that
the transaction has committed, and the corresponding unique system change
number (SCN) of the transaction is assigned and recorded in the table.

■ The log writer process (LGWR) writes redo log entries in the SGA’s redo log
buffers to the online redo log file; it also writes the transaction’s SCN to the
online redo log file. This atomic event constitutes the commit of the transaction.

Note: Applications should always explicitly commit or roll back
transactions before program termination.

Note: The data changes for a committed transaction, stored in the
database buffers of the SGA, are not necessarily written immedi-
ately to the datafiles by the database writer (DBWn) background
process. This writing takes place when it is most efficient to do so.
It may happen before the transaction commits or, alternatively, it
may happen some time after the transaction commits.
 Transaction Management 15-5

Oracle and Transaction Management
■ Oracle releases locks held on rows and tables. (See “Locking Mechanisms” on
page 23-3 for a discussion of locks.)

■ Oracle marks the transaction “complete”.

See “Oracle Processes” on page 7-5 for more information about the background pro-
cesses LGWR and DBWR.

Rolling Back Transactions
Rolling back means undoing any changes to data that have been performed by SQL
statements within an uncommitted transaction.

Oracle allows you to roll back an entire uncommitted transaction. Alternatively,
you can roll back the trailing portion of an uncommitted transaction to a marker
called a savepoint; see “Savepoints” on page 15-7 for a complete explanation.

All types of rollbacks use the same procedures:

■ statement-level rollback (due to statement or deadlock execution error)

■ rollback to a savepoint

■ rollback of a transaction due to user request

■ rollback of a transaction due to abnormal process termination

■ rollback of all outstanding transactions when an instance terminates abnor-
mally

■ rollback of incomplete transactions during recovery

In rolling back an entire transaction, without referencing any savepoints, the fol-
lowing occurs:

■ Oracle undoes all changes made by all the SQL statements in the transaction by
using the corresponding rollback segments.

■ Oracle releases all the transaction’s locks of data (see “Locking Mechanisms”
on page 23-3 for a discussion of locks).

■ The transaction ends.

In rolling back a transaction to a savepoint, the following occurs:

■ Oracle rolls back only the statements executed after the savepoint.

■ The specified savepoint is preserved, but all savepoints that were established
after the specified one are lost.
15-6 Oracle8 Concepts

Oracle and Transaction Management
■ Oracle releases all table and row locks acquired since that savepoint, but retains
all data locks acquired previous to the savepoint (see “Locking Mechanisms”
on page 23-3 for a discussion of locks).

■ The transaction remains active and can be continued.

Savepoints
You can declare intermediate markers called savepoints within the context of a trans-
action. Savepoints divide a long transaction into smaller parts.

Using savepoints, you can arbitrarily mark your work at any point within a long
transaction. You then have the option later of rolling back work performed before
the current point in the transaction (the end of the transaction) but after a declared
savepoint within the transaction. For example, you can use savepoints throughout
a long complex series of updates so that if you make an error, you do not need to
resubmit every statement.

Savepoints are similarly useful in application programs in a similar way. If a proce-
dure contains several functions, you can create a savepoint before each function
begins. Then, if a function fails, it is easy to return the data to its state before the
function began and then to reexecute the function with revised parameters or per-
form a recovery action.

After a rollback to a savepoint, Oracle releases the data locks obtained by rolled
back statements. Other transactions that were waiting for the previously locked
resources can proceed. Other transactions that want to update previously locked
rows can do so.

The Two-Phase Commit Mechanism
In a distributed database, Oracle must coordinate transaction control over a net-
work and maintain data consistency, even if a network or system failure occurs.

A two-phase commit mechanism guarantees that all database servers participating in
a distributed transaction either all commit or all roll back the statements in the
transaction. A two-phase commit mechanism also protects implicit DML opera-
tions performed by integrity constraints, remote procedure calls, and triggers.

The Oracle two-phase commit mechanism is completely transparent to users who
issue distributed transactions. In fact, users need not even know the transaction is
distributed. A COMMIT statement denoting the end of a transaction automatically
triggers the two-phase commit mechanism to commit the transaction; no coding or
complex statement syntax is required to include distributed transactions within the
body of a database application.
 Transaction Management 15-7

Discrete Transaction Management
The recoverer (RECO) background process automatically resolves the outcome of
in-doubt distributed transactions — distributed transactions in which the commit was
interrupted by any type of system or network failure. After the failure is repaired
and communication is reestablished, the RECO of each local Oracle server automat-
ically commits or rolls back any in-doubt distributed transactions consistently on
all involved nodes.

In the event of a long-term failure, Oracle allows each local administrator to manu-
ally commit or roll back any distributed transactions that are in doubt as a result of
the failure. This option enables the local database administrator to free up any
locked resources that may be held indefinitely as a result of the long-term failure.

If a database must be recovered to a point in the past, Oracle’s recovery facilities
enable database administrators at other sites to return their databases to the earlier
point in time also. This ensures that the global database remains consistent.

Discrete Transaction Management
Application developers can improve the performance of short, nondistributed
transactions by using the procedure BEGIN_DISCRETE_TRANSACTION. This pro-
cedure streamlines transaction processing so short transactions can execute more
rapidly.

During a discrete transaction, all changes made to any data are deferred until the
transaction commits. Of course, other concurrent transactions are unable to see the
uncommitted changes of a transaction whether the transaction is discrete or not.

Oracle generates redo information, but stores it in a separate location in memory.
When the transaction issues a commit request, Oracle writes the redo information
to the redo log file (along with other group commits), and applies the changes to
the database block directly to the block. Oracle returns control to the application
once the commit completes. This eliminates the need to generate undo information,
since the block actually is not modified until the transaction is committed, and the
redo information is stored in the redo log buffers.

Additional Information: For more information on discrete transac-
tions, see Oracle8 Tuning.
15-8 Oracle8 Concepts

 Advanced Qu
16

Advanced Queuing

Many that are first shall be last; and the last shall be first.

Matthew 19:30: The Bible

This chapter describes the Oracle Advanced Queuing (Oracle AQ) feature. The
chapter includes:

■ Introduction to Message Queuing

■ Oracle Advanced Queuing

– Queuing Entities

– Features of Advanced Queuing

Attention:

■ If you purchase the product Oracle8, you cannot use Oracle AQ.

■ If you purchase the product Oracle8 Enterprise Edition without
the Objects Option, you can use Oracle AQ with queues of RAW
datatype only.

■ If you purchase the product Oracle8 Enterprise Edition with the
Objects Option, you can use the full functionality of Oracle AQ.

See Getting to Know Oracle8 and the Oracle8 Enterprise Edition for
more information about the features and options available with
Oracle8 Enterprise Edition.

Additional Information: For more information about Oracle AQ,
see Oracle8 Application Developer’s Guide.
euing 16-1

Introduction to Message Queuing
Introduction to Message Queuing
Communication between programs can be classified into one of two types:

■ synchronous communication (online or connected model)

■ asynchronous communication (disconnected or deferred model)

Synchronous Communication
Synchronous communication is based on the request/reply paradigm — a program
sends a request to another program and waits until the reply arrives.

This model of communication (also called online or connected) is suitable for pro-
grams that need to get the reply before they can proceed with their work. Tradi-
tional client/server architectures are based on this model.

The major drawback of the synchronous model of communication is that the pro-
grams must be available and running for the application to work. In the event of
network or machine failure, programs cease to function.

Asynchronous Communication
In the disconnected or deferred model programs communicate asynchronously, plac-
ing requests in a queue and then proceeding with their work.

For example, an application might require entry of data or execution of an opera-
tion at a later time, after specific conditions are met. The recipient program
retrieves the request from the queue and acts on it. This model is suitable for appli-
cations that can continue with their work after placing a request in the queue —
they are not blocked waiting for a reply.

For deferred execution to work correctly even in the presence of network, machine
and application failures, the requests must be stored persistently, and processed
exactly once. This can be achieved by combining persistent queuing with transac-
tion protection.

Processing each client/server request exactly once is often important to preserve the
integrity or flow of a transaction. For example, if the request is an order for a num-
ber of shares of stock at a particular price, then execution of the request zero or two
times is unacceptable even if a network or system failure occurs during transmis-
sion, receipt, or execution of the request.
16-2 Oracle8 Concepts

Oracle Advanced Queuing
Oracle Advanced Queuing
Oracle Advanced Queuing (Oracle AQ) integrates a message queuing system with
the Oracle database. This allows you to store messages into queues for deferred
retrieval and processing by the Oracle server.

Applications can access the queuing functionality through a PL/SQL interface.
This provides a reliable and efficient queuing system without additional software
like transaction processing (TP) monitors or Message Oriented Middleware.

Oracle AQ offers the following functionality:

■ priority and ordering of queue elements

■ ability to specify a window of execution for each queue element

■ ability to query queues using standard SQL

■ integrated transactions to simplify application development and management

■ ability to dequeue multiple queue elements as a bundle

■ ability to specify multiple recipients

■ ability to propagate messages to queues in local or remote Oracle databases

■ persistent queuing

■ statistics on messages in queues

Oracle AQ queues are implemented in database tables, so that all the operational
benefits of high availability, scalability, and reliability are applicable to queue data.
In addition, database development and management tools can be used with queues.

Queuing Entities
Oracle AQ has five basic entities: messages, queues, queue tables, agents, and the
queue monitor.

Messages
A message is the smallest unit of information being inserted into and retrieved from
a queue. A message consists of control information and payload data. The control
information represents message properties used by Oracle AQ to manage mes-
sages. The payload data is the information stored in the queue and is transparent to
Oracle AQ. The datatype of the payload can be either RAW or an object type.
 Advanced Queuing 16-3

Oracle Advanced Queuing
A message can reside in only one queue. A message is created by the enqueue call
and consumed by the dequeue call. Enqueue and dequeue calls are part of the
DBMS_AQ package.

Queues
A queue is the repository for messages. There are two types of queues: user (nor-
mal) queues and exception queues. The user queue is for normal message process-
ing. All messages in a queue must have the same datatype. Messages are transfered
to an exception queue if they cannot be retrieved and processed for some reason.

Queues can be created, altered, started, stopped, and dropped by using the
DBMS_AQADM package.

Queue Tables
Queues are stored in queue tables. Each queue table is a database table and contains
one or more queues. Each queue table contains a default exception queue.

Creating a queue table creates a database table with approximately 25 columns.
These columns store Oracle AQ metadata and the user-defined payload.

A view and two indexes are created on the queue table. The view allows you to
query the message data. The indexes are used to accelerate access to message data.

Agents
An agent is a queue user. There are two types of agents: producers who place mes-
sages in a queue (enqueuing) and consumers who retrieve messages (dequeuing).
Any number of producers and consumers can access the queue at a given time.

An agent is identified by its name, address, and protocol. For an agent on a remote
database, the only protocol currently supported is an Oracle database link, using an
address of the form queue_name@dblink.

Queue Monitor
The queue monitor is an optional background process that monitors messages in
the queue. It provides the mechanism for message expiration, retry, and delay (see
“Windows of Execution” on page 16-5) and allows you to collect interval statistics
(see “Queuing Statistics” on page 16-8).

The queue monitor process is different from most other Oracle background pro-
cesses in that process failure does not cause the instance to fail.

The initialization parameter AQ_TM_PROCESS specifies creation of one or more
queue monitor processes at instance startup.
16-4 Oracle8 Concepts

Oracle Advanced Queuing
Features of Advanced Queuing
This section describes the major features of Oracle Advanced Queuing.

Structured Payload
You can use object types to structure and manage the payload. (The RAW datatype
can be used for unstructured payloads.)

Integrated Database Level Operational Support
Oracle AQ stores messages in tables. All standard database features such as recov-
ery, restart, and Oracle Enterprise Manager are supported.

SQL Access
Messages are stored as database records. You can use SQL to access the message
properties, the message history, and the payload. All available SQL technology,
such as indexes, can be used to optimize the access to messages.

The AQ_ADMINISTRATOR role provides access to information about queues.

Windows of Execution
You can specify that the consumption of a message has to occur in a specific time
window. A message can be marked as available for processing only after a speci-
fied time elapses (a delay time) and as having to be consumed before a specified
time limit expires.

The initialization parameter AQ_TM_PROCESS enables time monitoring on queue
messages, which is used for messages that specify delay and expiration properties.
Time monitoring must also be enabled if you want to collect interval statistics (see
“Queuing Statistics” on page 16-8).

If this parameter is set to 1, Oracle creates one queue monitor process (QMN0) as a
background process to monitor the messages. If it is set to 2 through 10, Oracle cre-
ates that number of QMNn processes; if the parameter is not specified or is set to 0,
then queue monitor processes are not created. The procedures in the
DBMS_AQADM package for starting and stopping queue monitor operations are
only valid if at least one queue monitor process was started with this parameter as
part of instance startup.

Multiple Consumers per Message
A single message can be consumed by multiple consumers.
 Advanced Queuing 16-5

Oracle Advanced Queuing
Navigation
You have several options for selecting a message from a queue. You can select the
first message or, once you have selected a message and established a consistent-
read snapshot, you can retrieve the next message based on the current snapshot.
You will acquire a new consistent-read snapshot every time you select the first mes-
sage from the queue.

You can also retrieve a specific message using the message’s correlation identifier.

Ordering of Messages
You have three options for specifying the order in which messages are consumed:
A sort order that specifies which properties are used to order all message in a
queue, a priority that can be assigned to each message, and a sequence deviation
that allows you to position a message in relation to other messages.

If several consumers act on the same queue, a consumer will get the first message
that is available for immediate consumption. A message that is in the process of
being consumed by another consumer will be skipped.

Modes of Dequeue
A DEQUEUE request can either browse or remove a message. If a message is
browsed it remains available for further processing. If a message is removed, it is
not available any more for DEQUEUE requests. Depending on the queue proper-
ties a removed message may be retained in the queue table.

Waiting for the Arrival of Messages
A DEQUEUE could be issued against an empty queue. You can specify if and for
how long the request is allowed to wait for the arrival of a message.

Retries with Delays
A message has to be consumed exactly once. If an attempt to dequeue a message
fails and the transaction is rolled back, the message will be made available for
reprocessing after a user-specified delay elapses. Reprocessing will be attempted
up to the specified limit.

Exception Queues
A message may not be consumed within the given constraints, that is, within the
window of execution or within the limits of the retries. If such a condition arises,
the message will be moved to a user-specified exception queue.
16-6 Oracle8 Concepts

Oracle Advanced Queuing
Visibility
ENQUEUE/DEQUEUE requests are normally part of a transaction that contains
the requests. This provides the desired transactional behavior. However, you can
specify that a request is a transaction by itself, making the result of that request
immediately visible to other transactions.

Message Grouping
Messages belonging to one queue can be grouped to form a set that can only be con-
sumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping.

All messages belonging to a group have to be created in the same transaction and
all messages created in one transaction belong to the same group. This feature
allows you to segment complex messages into simple messages, for example, mes-
sages directed to a queue containing invoices could be constructed as a group of
messages starting with the header message, followed by messages representing
details, followed by the trailer message.

Retention
You can specify that messages be retained after consumption. This allows you to
keep a history of relevant messages. The history can be used for tracking, data
warehouse, and data mining operations.

Message History
Oracle AQ stores information about the history of each message. The information
contains the ENQUEUE/DEQUEUE time and the identification of the transaction
that executed each request.

Tracking
If messages are retained they can be related to each other; for example, if a message
m2 is produced as a result of the consumption of message m1, m1 is related to m2.
This allows you to track sequences of related messages. These sequences represent
“event journals” which are often constructed by applications. Oracle AQ is
designed to let applications create event journals automatically.

Propagatimg Messages to Other Databases
Messages enqueued in one database can be propagated to queues on another data-
base. The datatypes of the source and destination queues must match each other.
 Advanced Queuing 16-7

Oracle Advanced Queuing
Message propagation enables applications to communicate with each other without
being connected to the same database or the same queue. Propagation uses data-
base links and Net8 between local or remote databases, both of which must have
Oracle AQ enabled.

You can schedule (or unschedule) message propagation and specify the start time,
the propagation window, and a date function for later propagation windows in
periodic schedules. The data dictionary view DBA_QUEUE_SCHEDULES
describes the current schedules for propagating messages.

The job queue background processes (SNPn) handle message propagation. To
enable propagation, you must start at least one job queue process with the initializa-
tion parameter JOB_QUEUE_PROCESSES.

Queuing Statistics
Oracle AQ keeps statistics about the current state of the queuing system as well as
time-interval statistics in the dynamic table GV$AQ.

Statistics about the current state of the queuing system include the numbers of
ready, waiting, and expired messages.

One or more queue monitor processes must be started (see “Windows of Execu-
tion” on page 16-5) to keep interval statistics, which include:

– the number of messages in each state (ready, waiting, and expired)

– the average wait time of waiting messages

– the total wait time of waiting messages

Import/Export
The import/export of queues constitutes the import/export of the underlying
queue tables and related dictionary tables. Import and export of queues can only be
done at queue table granularity.

When a queue table is exported, both the table definition information and the
queue data are exported. When a queue table is imported, export action procedures
maintain the queue dictionary. Because the queue table data is also exported, the
user is responsible for maintaining application-level data integrity when queue
table data are being transported.

For every queue table that supports multiple recipients, there is an index-organized
table that contains important queue metadata. This metadata is essential to the
operations of the queue, so you must export and import this index-organized table
as well as the queue table for the queues in this table to work after import.
16-8 Oracle8 Concepts

Oracle Advanced Queuing
When the schema containing the queue table is exported, the index-organized table
is also automatically exported. The behavior is similar at import time. Because the
metadata table contains ROWIDs of some rows in the queue table, import issues a
note about the ROWIDs being obsolete when importing the metadata table. This
message can be ignored, as the queuing system automatically corrects the obsolete
ROWIDs as a part of the import process. However, if another problem is encoun-
tered while doing the import (such as running out of rollback segment space), the
problem should be corrected and the import should be rerun.

Correlation Identifier
You can assign an identifier to each message. This identifier can be used to retrieve
specific messages.

Oracle Enterprise Manager
Oracle Enterprise Manager provides a graphical interface (GUI) for some of the
queue administration functions, including starting and stopping a queue, schedul-
ing and unscheduling propagation, and viewing queue properties as part of the
schema manager.

Additional Information: For detailed information about Oracle
AQ, see the Oracle8 Application Developer’s Guide.
 Advanced Queuing 16-9

Oracle Advanced Queuing
16-10 Oracle8 Concepts

 Procedures and Pack
17

Procedures and Packages

We're dealing here with science, but it is science which has not yet been fully
codified by scientific minds. What we have are the memoirs of poets and occult
adventurers...

Anne Rice: The Tale of the Body Thief

This chapter discusses the procedural capabilities of Oracle. It includes:

■ An Introduction to Stored Procedures and Packages

■ Procedures and Functions

■ Packages

■ How Oracle Stores Procedures and Packages

■ How Oracle Executes Procedures and Packages

For information about the dependencies of procedures, functions, and packages,
and how Oracle manages these dependencies, see Chapter 19, “Oracle Dependency
Management”.

Additional Information: If you are using Trusted Oracle, see your
Trusted Oracle documentation.
ages 17-1

An Introduction to Stored Procedures and Packages
An Introduction to Stored Procedures and Packages
Oracle allows you to access and manipulate database information using procedural
schema objects called PL/SQL program units. Procedures, functions, and packages
are all examples of PL/SQL program units.

PL/SQL is Oracle's procedural language extension to SQL. It extends SQL with
flow control and other statements that make it possible to write complex programs
in it. The PL/SQL engine is the tool you use to define, compile, and execute PL/SQL
program units. This engine is a special component of many Oracle products, includ-
ing the Oracle server.

While many Oracle products have PL/SQL components, this chapter specifically
covers the procedures and packages that can be stored in an Oracle database and
processed using the Oracle server PL/SQL engine. The PL/SQL capabilities of each
Oracle tool are described in the appropriate tool's documentation. For more infor-
mation, see “PL/SQL” on page 14-15.

Stored Procedures and Functions
Procedures and functions are schema objects that logically group a set of SQL and
other PL/SQL programming language statements together to perform a specific
task. Procedures and functions are created in a user's schema and stored in a data-
base for continued use. You can execute a procedure or function interactively using
an Oracle tool, such as SQL*Plus, or call it explicitly in the code of a database appli-
cation, such as an Oracle Forms or Precompiler application, or in the code of
another procedure or trigger.

Figure 17–1 illustrates a simple procedure that is stored in the database and called
by several different database applications.

Procedures and functions are identical except that functions always return a single
value to the caller, while procedures do not. For simplicity, the term “procedure”
as used in the remainder of this chapter means “procedure or function”.
17-2 Oracle8 Concepts

An Introduction to Stored Procedures and Packages
Figure 17–1 A Stored Procedure

The stored procedure in Figure 17–1, which inserts an employee record into the
EMP table, is shown in Figure 17–2.

Database
Applications

Program code
.
.
Program code
.
HIRE_EMP(...);
.
Program code

Program
.
.
Program code
.
HIRE_EMP(...);
.
Program code

code

Program code
.
.
Program code
.
HIRE_EMP(...);
.
Program code

HIRE_EMP(...)

BEGIN
.
.
END;

Database

Stored
Procedure
 Procedures and Packages 17-3

An Introduction to Stored Procedures and Packages
Figure 17–2 The HIRE_EMP Procedure

All of the database applications in Figure 17–1 call the HIRE_EMP procedure. Alter-
natively, a privileged user might use Oracle Enterprise Manager or Server Manager
to execute the HIRE_EMP procedure using the following statement:

EXECUTE hire_emp ('TSMITH', 'CLERK', 1037, SYSDATE, \
 500, NULL, 20);

This statement places a new employee record for TSMITH in the EMP table.

Packages
A package is a group of related procedures and functions, together with the cursors
and variables they use, stored together in the database for continued use as a unit.
Similar to standalone procedures and functions, packaged procedures and func-
tions can be called explicitly by applications or users.

Figure 17–3 illustrates a package that encapsulates a number of procedures used to
manage an employee database.

Procedure HIRE_EMP (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER,
 comm NUMBER, deptno NUMBER)

BEGIN
.
.
INSERT INTO emp VALUES
 (emp_sequence.NEXTVAL, name, job, mgr
 hiredate, sal, comm, deptno);
.
.
END;
17-4 Oracle8 Concepts

An Introduction to Stored Procedures and Packages
Figure 17–3 A Stored Package

Database
Applications

EMP_MGMT

FIRE_EMP(...)

BEGIN
.
.
END;

HIRE_EMP(...)

BEGIN
.
.
END;

SAL_RAISE(...)

BEGIN
.
.
END;

Program code
.
EMP_MGMT.FIRE_EMP(...);

Program code
.
EMP_MGMT.HIRE_EMP(...);
.
Program code

Program code
.
EMP_MGMT.HIRE_EMP(...);

Program code
.
EMP_MGMT.SAL_RAISE(...);
.
Program code

Database
 Procedures and Packages 17-5

Procedures and Functions
Database applications explicitly call packaged procedures as necessary. After being
granted the privileges for the EMP_MGMT package, a user can explicitly execute
any of the procedures contained in it. For example, the following statement might
be issued using Oracle Enterprise Manager or Server Manager to execute the
HIRE_EMP package procedure:

EXECUTE emp_mgmt.hire_emp ('TSMITH', 'CLERK', 1037, \
 SYSDATE, 500, NULL, 20);

Packages offer several development and performance advantages over standalone
stored procedures (see “Packages” on page 17-10).

Procedures and Functions
A procedure or function is a schema object that consists of a set of SQL statements
and other PL/SQL constructs, grouped together, stored in the database, and exe-
cuted as a unit to solve a specific problem or perform a set of related tasks. Proce-
dures and functions permit the caller to provide parameters that can be input only,
output only, or input and output values. Procedures and functions allow you to
combine the ease and flexibility of SQL with the procedural functionality of a struc-
tured programming language.

For example, the following statement creates the CREDIT_ACCOUNT procedure,
which credits money to a bank account:

CREATE PROCEDURE credit_account
 (acct NUMBER, credit NUMBER) AS
/* This procedure accepts two arguments: an account
 number and an amount of money to credit to the specified
 account. If the specified account does not exist, a
 new account is created. */

 old_balance NUMBER;
 new_balance NUMBER;
 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance;

 new_balance := old_balance + credit;
 UPDATE accounts SET balance = new_balance
 WHERE acct_id = acct;
 COMMIT;
17-6 Oracle8 Concepts

Procedures and Functions
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO accounts (acct_id, balance)
 VALUES(acct, credit);
 WHEN OTHERS THEN
 ROLLBACK;
END credit_account;

Notice that this sample procedure includes both SQL and PL/SQL statements.

Procedure Guidelines
Use the following guidelines to design and use all stored procedures:

■ Define procedures to complete a single, focused task. Do not define long proce-
dures with several distinct subtasks, because subtasks common to many proce-
dures might be duplicated unnecessarily in the code of several procedures.

■ Do not define procedures that duplicate the functionality already provided by
other features of Oracle. For example, do not define procedures to enforce sim-
ple data integrity rules that you could easily enforce using declarative integrity
constraints.

Benefits of Procedures
Procedures provide advantages in the following areas.

Security
Stored procedures can help enforce data security. You can restrict the database oper-
ations that users can perform by allowing them to access data only through proce-
dures and functions.

For example, you can grant users access to a procedure that updates a table, but not
grant them access to the table itself. When a user invokes the procedure, the proce-
dure executes with the privileges of the procedure's owner. Users who have only
the privilege to execute the procedure (but not the privileges to query, update, or
delete from the underlying tables) can invoke the procedure, but they cannot
manipulate table data in any other way.

Performance
Stored procedures can improve database performance in several ways:

■ The amount of information that must be sent over a network is small compared
to issuing individual SQL statements or sending the text of an entire PL/SQL
 Procedures and Packages 17-7

Procedures and Functions
block to Oracle, because the information is sent only once and thereafter
invoked when it is used.

■ A procedure's compiled form is readily available in the database, so no compi-
lation is required at execution time.

■ If the procedure is already present in the shared pool of the SGA, retrieval from
disk is not required, and execution can begin immediately.

Memory Allocation
Because stored procedures take advantage of the shared memory capabilities of
Oracle, only a single copy of the procedure needs to be loaded into memory for exe-
cution by multiple users. Sharing the same code among many users results in a sub-
stantial reduction in Oracle memory requirements for applications.

Productivity
Stored procedures increase development productivity. By designing applications
around a common set of procedures, you can avoid redundant coding and increase
your productivity.

For example, procedures can be written to insert, update, or delete rows from the
EMP table. These procedures can then be called by any application without rewrit-
ing the SQL statements necessary to accomplish these tasks. If the methods of data
management change, only the procedures need to be modified, not all of the appli-
cations that use the procedures.

Integrity
Stored procedures improve the integrity and consistency of your applications. By
developing all of your applications around a common group of procedures, you
can reduce the likelihood of committing coding errors.

For example, you can test a procedure or function to guarantee that it returns an
accurate result and, once it is verified, reuse it in any number of applications with-
out testing it again. If the data structures referenced by the procedure are altered in
any way, only the procedure needs to be recompiled; applications that call the pro-
cedure do not necessarily require any modifications.

Anonymous PL/SQL Blocks vs. Stored Procedures
A stored procedure is created and stored in the database as a schema object. Once
created and compiled, it is a named object that can be executed without recompil-
17-8 Oracle8 Concepts

Procedures and Functions
ing. Additionally, dependency information is stored in the data dictionary to guar-
antee the validity of each stored procedure.

As an alternative to a stored procedure, you can create an anonymous PL/SQL
block by sending an unnamed PL/SQL block to the Oracle server from an Oracle
tool or an application. Oracle compiles the PL/SQL block and places the compiled
version in the shared pool of the SGA, but does not store the source code or com-
piled version in the database for reuse beyond the current instance. Shared SQL
allows anonymous PL/SQL blocks in the shared pool to be reused and shared until
they are flushed out of the shared pool.

In either case, moving PL/SQL blocks out of a database application and into data-
base procedures stored either in the database or in memory, you avoid unnecessary
procedure recompilations by Oracle at runtime, improving the overall performance
of the application and Oracle.

Standalone Procedures
Stored procedures not defined within the context of a package are called standalone
procedures. Procedures defined within a package are considered a part of the pack-
age. (See “Packages” on page 17-10 for information on the advantages of packages.)

Dependency Tracking for Stored Procedures
A stored procedure is dependent on the objects referenced in its body. Oracle auto-
matically tracks and manages such dependencies. For example, if you alter the defi-
nition of a table referenced by a procedure, the procedure must be recompiled to
validate that it will continue to work as designed. Usually, Oracle automatically
administers such dependency management.

See Chapter 19, “Oracle Dependency Management”, for more information about
dependency tracking.

External Procedures
A PL/SQL procedure executing on an Oracle server can call an external procedure
or function that is written in the C programming language and stored in a shared
library. The C routine executes in a separate address space from that of the Oracle
server.

Additional Information: See PL/SQL User’s Guide and Reference for
information about external procedures.
 Procedures and Packages 17-9

Packages
Packages
Packages encapsulate related procedures, functions, and associated cursors and
variables together as a unit in the database.

You create a package in two parts: the specification and the body. A package's speci-
fication declares all public constructs of the package and the body defines all con-
structs (public and private) of the package. This separation of the two parts
provides the following advantages:

■ The developer has more flexibility in the development cycle. You can create
specifications and reference public procedures without actually creating the
package body.

■ You can alter procedure bodies contained within the package body separately
from their publicly declared specifications in the package specification. As long
as the procedure specification does not change, objects that reference the
altered procedures of the package are never marked invalid; that is, they are
never marked as needing recompilation. (For more information about depen-
dencies, see Chapter 19, “Oracle Dependency Management”.)

The following example creates the specification and body for a package that con-
tains several procedures and functions that process banking transactions.

CREATE PACKAGE bank_transactions (null) AS
 minimum_balance CONSTANT NUMBER := 100.00;
 PROCEDURE apply_transactions;
 PROCEDURE enter_transaction (acct NUMBER,
 kind CHAR,
 amount NUMBER);
END bank_transactions;

CREATE PACKAGE BODY bank_transactions AS

/* Package to input bank transactions */

 new_status CHAR(20); /* Global variable to record status
 of transaction being applied. Used
 for update in APPLY_TRANSACTIONS. */

 PROCEDURE do_journal_entry (acct NUMBER,
 kind CHAR) IS

/* Records a journal entry for each bank transaction applied
 by the APPLY_TRANSACTIONS procedure. */
17-10 Oracle8 Concepts

Packages
 BEGIN
 INSERT INTO journal
 VALUES (acct, kind, sysdate);
 IF kind = 'D' THEN
 new_status := 'Debit applied';
 ELSIF kind = 'C' THEN
 new_status := 'Credit applied';
 ELSE
 new_status := 'New account';
 END IF;
 END do_journal_entry;

 PROCEDURE credit_account (acct NUMBER, credit NUMBER) IS

/* Credits a bank account the specified amount. If the account
 does not exist, the procedure creates a new account first. */

 old_balance NUMBER;
 new_balance NUMBER;

 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance; /* Locks account for credit update */

 new_balance := old_balance + credit;
 UPDATE accounts SET balance = new_balance
 WHERE acct_id = acct;
 do_journal_entry(acct, 'C');

 EXCEPTION
 WHEN NO_DATA_FOUND THEN /* Create new account if not found */
 INSERT INTO accounts (acct_id, balance)
 VALUES(acct, credit);
 do_journal_entry(acct, 'N');
 WHEN OTHERS THEN /* Return other errors to application */
 new_status := 'Error: ' || SQLERRM(SQLCODE);
 END credit_account;

 PROCEDURE debit_account (acct NUMBER, debit NUMBER) IS

/* Debits an existing account if result is greater than the
 allowed minimum balance. */

 old_balance NUMBER;
 Procedures and Packages 17-11

Packages
 new_balance NUMBER;
 insufficient_funds EXCEPTION;

 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance;
 new_balance := old_balance - debit;
 IF new_balance >= minimum_balance THEN
 UPDATE accounts SET balance = new_balance

 WHERE acct_id = acct;
 do_journal_entry(acct, 'D');
 ELSE
 RAISE insufficient_funds;
 END IF;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 new_status := 'Nonexistent account';
 WHEN insufficient_funds THEN
 new_status := 'Insufficient funds';
 WHEN OTHERS THEN /* Returns other errors to application */
 new_status := 'Error: ' || SQLERRM(SQLCODE);
 END debit_account;

 PROCEDURE apply_transactions IS

/* Applies pending transactions in the table TRANSACTIONS to the
 ACCOUNTS table. Used at regular intervals to update bank
 accounts without interfering with input of new transactions. */

/* Cursor fetches and locks all rows from the TRANSACTIONS
 table with a status of 'Pending'. Locks released after all
 pending transactions have been applied. */

 CURSOR trans_cursor IS
 SELECT acct_id, kind, amount FROM transactions
 WHERE status = 'Pending'
 ORDER BY time_tag
 FOR UPDATE OF status;

 BEGIN
 FOR trans IN trans_cursor LOOP /* implicit open and fetch */
 IF trans.kind = 'D' THEN
17-12 Oracle8 Concepts

Packages
 debit_account(trans.acct_id, trans.amount);
 ELSIF trans.kind = 'C' THEN
 credit_account(trans.acct_id, trans.amount);
 ELSE
 new_status := 'Rejected';
 END IF;
 /* Update TRANSACTIONS table to return result of applying
 this transaction. */
 UPDATE transactions SET status = new_status
 WHERE CURRENT OF trans_cursor;
 END LOOP;
 COMMIT; /* Release row locks in TRANSACTIONS table. */
 END apply_transactions;
 PROCEDURE enter_transaction (acct NUMBER,
 kind CHAR,
 amount NUMBER) IS

/* Enters a bank transaction into the TRANSACTIONS table. A new
 transaction is always put into this 'queue' before being
 applied to the specified account by the APPLY_TRANSACTIONS
 procedure. Therefore, many transactions can be simultaneously
 input without interference. */

 BEGIN
 INSERT INTO transactions
 VALUES (acct, kind, amount, 'Pending', sysdate);
 COMMIT;
 END enter_transaction;

END bank_transactions;

Packages allow the database administrator or application developer to organize
similar routines. They also offer increased functionality and database performance.

Benefits of Packages
Packages are used to define related procedures, variables, and cursors and are often
implemented to provide advantages in the following areas:

■ encapsulation of related procedures and variables

■ declaration of public and private procedures, variables, constants, and cursors

■ better performance
 Procedures and Packages 17-13

Packages
Encapsulation
Stored packages allow you to encapsulate (group) related stored procedures, vari-
ables, datatypes, and so forth in a single named, stored unit in the database. This
provides for better organization during the development process.

Encapsulation of procedural constructs in a package also makes privilege manage-
ment easier. Granting the privilege to use a package makes all constructs of the
package accessible to the grantee.

Public and Private Data and Procedures
The methods of package definition allow you to specify which variables, cursors,
and procedures are

For example, a package might contain ten procedures. You can define the package
so that only three procedures are public and therefore available for execution by a
user of the package; the remainder of the procedures are private and can only be
accessed by the procedures within the package.

Do not confuse public and private package variables with grants to PUBLIC, which
are described in Chapter 25, “Controlling Database Access”.

Performance Improvement
An entire package is loaded into memory when a procedure within the package is
called for the first time. This load is completed in one operation, as opposed to the
separate loads required for standalone procedures. Therefore, when calls to related
packaged procedures occur, no disk I/O is necessary to execute the compiled code
already in memory.

A package body can be replaced and recompiled without affecting the specifica-
tion. As a result, schema objects that reference a package's constructs (always via
the specification) need not be recompiled unless the package specification is also
replaced. By using packages, unnecessary recompilations can be minimized, result-
ing in less impact on overall database performance.

Dependency Tracking for Packages
A package is dependent on the objects referenced by the procedures and functions
defined in its body. Oracle automatically tracks and manages such dependencies.

public Directly accessible to the user of a package.

private Hidden from the user of a package.
17-14 Oracle8 Concepts

How Oracle Stores Procedures and Packages
See Chapter 19, “Oracle Dependency Management”, for more information about
dependency tracking.

How Oracle Stores Procedures and Packages
When you create a procedure or package, Oracle

■ compiles the procedure or package

■ stores the compiled code in memory

■ stores the procedure or package in the database

Compiling Procedures and Packages
The PL/SQL compiler compiles the source code. The PL/SQL compiler is part of
the PL/SQL engine contained in Oracle. If an error occurs during compilation, a
message is returned.

Storing the Compiled Code in Memory
Oracle caches the compiled procedure or package in the shared pool of the system
global area (SGA). This allows the code to be executed quickly and shared among
many users. The compiled version of the procedure or package remains in the
shared pool according to the modified least-recently-used algorithm used by the
shared pool, even if the original caller of the procedure terminates his or her ses-
sion. See “The Shared Pool” on page 6-6 for specific information about the shared
pool buffer.

Storing Procedures or Packages in Database
At creation and compile time, Oracle automatically stores the following informa-
tion about a procedure or package in the database:

Additional Information: Information on identifying compilation
errors is contained in the Oracle8 Application Developer’s Guide.

schema object name This name identifies the procedure or package.
You specify this name in the CREATE PROCE-
DURE, CREATE FUNCTION, CREATE PACK-
AGE, or CREATE PACKAGE BODY statement.

source code and parse
tree

The PL/SQL compiler parses the source code
and produces a parsed representation of the
source code, called a parse tree.
 Procedures and Packages 17-15

How Oracle Executes Procedures and Packages
To avoid unnecessary recompilation of a procedure or package, both the parse tree
and the P code of an object are stored in the database. This allows the PL/SQL
engine to read the compiled version of a procedure or package into the shared pool
buffer of the SGA when it is invoked and not currently in the SGA. The parse tree is
used when the code calling the procedure is compiled.

All parts of database procedures are stored in the data dictionary (which is in the
SYSTEM tablespace) of the corresponding database. When planning the size of the
SYSTEM tablespace, the database administrator should keep in mind that all stored
procedures require space in this tablespace.

How Oracle Executes Procedures and Packages
When you invoke a standalone or packaged procedure, Oracle verifies user access,
verifies procedure validity, and executes the procedure.

Verifying User Access
Oracle verifies that the calling user owns or has the EXECUTE privilege on the pro-
cedure or encapsulating package. The user who executes a procedure does not
require access to any procedures or objects referenced within the procedure; only
the creator of a procedure or package requires privileges to access referenced
schema objects.

Verifying Procedure Validity
Oracle checks the data dictionary to determine whether the status of the procedure
or package is valid or invalid. A procedure or package is invalid when one of the
following has occurred since the procedure or package was last compiled:

■ One or more of the schema objects referenced within the procedure or package
(such as tables, views, and other procedures) have been altered or dropped (for
example, if a user added a column to a table).

■ A system privilege that the package or procedure requires has been revoked
from PUBLIC or from the owner of the procedure or package.

pseudocode (P code) The PL/SQL compiler generates the pseudocode,
or P code, based on the parsed code. The PL/
SQL engine executes this when the procedure or
package is invoked.

error messages Oracle might generate errors during the compila-
tion of a procedure or package.
17-16 Oracle8 Concepts

How Oracle Executes Procedures and Packages
■ A required schema object privilege for one or more of the schema objects refer-
enced by a procedure or package has been revoked from PUBLIC or from the
owner of the procedure or package.

A procedure is valid if it has not been invalidated by any of the above operations. If
a valid standalone or packaged procedure is called, the compiled code is executed.
If an invalid standalone or packaged procedure is called, it is automatically recom-
piled before being executed.

For a complete discussion of valid and invalid procedures and packages, recompil-
ing procedures, and a thorough discussion of dependency issues, see Chapter 19,
“Oracle Dependency Management”.

Executing a Procedure
The PL/SQL engine executes the procedure or package using different steps,
depending on the situation:

■ If the procedure is valid and currently in memory, the PL/SQL engine simply
executes the P code.

■ If the procedure is valid and currently not in memory, the PL/SQL engine
loads the compiled P code from disk to memory and executes it. For packages,
all constructs of the package (all procedures, variables, and so on, compiled as
one executable piece of code) are loaded as a unit.

The PL/SQL engine processes a procedure statement by statement, handling all
procedural statements by itself and passing SQL statements to the SQL statement
executor, as illustrated in Figure 14–2 on on page 14-16.
 Procedures and Packages 17-17

How Oracle Executes Procedures and Packages
17-18 Oracle8 Concepts

 Database Tri
18

Database Triggers

You may fire when you are ready, Gridley.

George Dewey: at the battle of Manila Bay

This chapter discusses database triggers; that is, procedures that are stored in the
database and implicitly executed (“fired”) when a table is modified. This chapter
includes:

■ An Introduction to Triggers

■ Parts of a Trigger

■ Types of Triggers

■ Trigger Execution

Additional Information: If you are using Trusted Oracle, see your
Trusted Oracle documentation.
ggers 18-1

An Introduction to Triggers
An Introduction to Triggers
Oracle allows you to define procedures that are implicitly executed when an
INSERT, UPDATE, or DELETE statement is issued against the associated table.
These procedures are called database triggers.

Triggers are similar to stored procedures, discussed in Chapter 17, “Procedures and
Packages”. A trigger can include SQL and PL/SQL statements to execute as a unit
and can invoke stored procedures. However, procedures and triggers differ in the
way that they are invoked. A procedure is explicitly executed by a user, applica-
tion, or trigger. Triggers (one or more) are implicitly fired (executed) by Oracle
when a triggering INSERT, UPDATE, or DELETE statement is issued, no matter
which user is connected or which application is being used.

Figure 18–1 shows a database application with some SQL statements that implicitly
fire several triggers stored in the database.

Figure 18–1 Triggers

Notice that triggers are stored in the database separate from their associated tables.

Applications

Database

Update Trigger

BEGIN
. . .

Insert Trigger

BEGIN
. . .

Delete Trigger

BEGIN
. . .

Table t

UPDATE t SET . . . ;

INSERT INTO t . . . ;

DELETE FROM t . . . ;
18-2 Oracle8 Concepts

An Introduction to Triggers
Triggers can be defined only on tables, not on views. However, triggers on the base
table(s) of a view are fired if an INSERT, UPDATE, or DELETE statement is issued
against a view.

How Triggers Are Used
Triggers can supplement the standard capabilities of Oracle to provide a highly cus-
tomized database management system. For example, a trigger can restrict DML
operations against a table to those issued during regular business hours. A trigger
could also restrict DML operations to occur only at certain times during weekdays.
Other uses for triggers are to

■ automatically generate derived column values

■ prevent invalid transactions

■ enforce complex security authorizations

■ enforce referential integrity across nodes in a distributed database

■ enforce complex business rules

■ provide transparent event logging

■ provide sophisticated auditing

■ maintain synchronous table replicates

■ gather statistics on table access

Some Cautionary Notes about Triggers
Triggers are useful for customizing a database. However, you should use triggers
only when necessary. The excessive use of triggers can result in complex interde-
pendencies, which may be difficult to maintain in a large application. For example,
when a trigger is fired, a SQL statement within its trigger action potentially can fire
other triggers, as illustrated in Figure 18–2.

When a statement in a trigger body causes another trigger to be fired, the triggers
are said to be cascading.

Additional Information: Examples of many of these trigger uses
are included in the Oracle8 Application Developer’s Guide.
 Database Triggers 18-3

An Introduction to Triggers
Figure 18–2 Cascading Triggers

Note: Oracle Forms can define, store, and execute triggers of a dif-
ferent sort. However, do not confuse Oracle Forms triggers with
the database triggers discussed in this chapter.

etc.

Fires the
INSERT_T2
Trigger

Fires the
UPDATE_T1
Trigger

SQL Statement

UPDATE t1 SET ...;

UPDATE_T2 Trigger

BEFORE UPDATE ON t2
FOR EACH ROW
BEGIN

.

.
INSERT INTO ... VALUES (...);
.
.

END;

UPDATE_T1 Trigger

BEFORE UPDATE ON t1
FOR EACH ROW
BEGIN
 .
 .
 INSERT INTO t2 VALUES (...);
 .
 .
END;
18-4 Oracle8 Concepts

Parts of a Trigger
Triggers vs. Declarative Integrity Constraints
You can use both database triggers and integrity constraints to define and enforce
any type of integrity rule. However, Oracle Corporation strongly recommends that
you use database triggers to constrain data input only in the following situations:

■ when a required referential integrity rule cannot be enforced using the follow-
ing integrity constraints:

– NOT NULL, UNIQUE key

– PRIMARY KEY

– FOREIGN KEY

– CHECK

– update CASCADE

– update and delete SET NULL

– update and delete SET DEFAULT

■ to enforce referential integrity when child and parent tables are on different
nodes of a distributed database

■ to enforce complex business rules not definable using integrity constraints

For more information about integrity constraints, see “How Oracle Enforces Data
Integrity” on page 24-4.

Parts of a Trigger
A trigger has three basic parts:

■ a triggering event or statement

■ a trigger restriction

■ a trigger action

Figure 18–3 represents each of these parts of a trigger and is not meant to show
exact syntax. The sections that follow explain each part of a trigger in greater detail.
 Database Triggers 18-5

Parts of a Trigger
Figure 18–3 The REORDER Trigger

Triggering Event or Statement
A triggering event or statement is the SQL statement that causes a trigger to be
fired. A triggering event can be an INSERT, UPDATE, or DELETE statement on a
table. For example, in Figure 18–3, the triggering statement is

. . . UPDATE OF parts_on_hand ON inventory . . .

which means: when the PARTS_ON_HAND column of a row in the INVENTORY
table is updated, fire the trigger. Note that when the triggering event is an
UPDATE statement, you can include a column list to identify which columns must
be updated to fire the trigger. You cannot specify a column list for INSERT and
DELETE statements, because they affect entire rows of information.

A triggering event can specify multiple DML statements, as in

. . . INSERT OR UPDATE OR DELETE OF inventory . . .

REORDER Trigger

Triggering Statement

Trigger Restriction

AFTER UPDATE OF parts_on_hand ON inventory

WHEN (new.parts_on_hand < new.reorder_point)

FOR EACH ROW
DECLARE
 NUMBER X;
BEGIN
 SELECT COUNT(*) INTO X
 FROM pending_orders
 WHERE part_no=:new.part_no;

IF x = 0
THEN
 INSET INTO pending_orders
 VALUES (new.part_no, new.reorder_quantity, sysdate);
 END IF;
END;

/* a dummy variable for counting */

/* query to find out if part has already been */
/* reordered–if yes, x=1, if no, x=0 */

/* part has not been reordered yet, so reorder */

/* part has already been reordered */

Triggered Action
18-6 Oracle8 Concepts

Types of Triggers
which means: when an INSERT, UPDATE, or DELETE statement is issued against
the INVENTORY table, fire the trigger. When multiple types of DML statements
can fire a trigger, you can use conditional predicates to detect the type of triggering
statement. In this way, you can create a single trigger that executes different code
based on the type of statement that fires the trigger.

Trigger Restriction
A trigger restriction specifies a Boolean (logical) expression that must be TRUE for
the trigger to fire. The trigger action is not executed if the trigger restriction evalu-
ates to FALSE or UNKNOWN. In the example, the trigger restriction is

new.parts_on_hand < new.reorder_point

Trigger Action
A trigger action is the procedure (PL/SQL block) that contains the SQL statements
and PL/SQL code to be executed when a triggering statement is issued and the trig-
ger restriction evaluates to TRUE.

Like stored procedures, a trigger action can contain SQL and PL/SQL statements,
define PL/SQL language constructs (variables, constants, cursors, exceptions, and
so on), and call stored procedures. Additionally, for row triggers (described in the
next section), the statements in a trigger action have access to column values (new
and old) of the current row being processed by the trigger. Two correlation names
provide access to the old and new values for each column.

Types of Triggers
This section describes the different types of triggers:

■ row and statement triggers

■ BEFORE and AFTER triggers

■ INSTEAD OF triggers

Row Triggers and Statement Triggers
When you define a trigger, you can specify the number of times the trigger action is
to be executed: once for every row affected by the triggering statement (such as
might be fired by an UPDATE statement that updates many rows), or once for the
triggering statement, no matter how many rows it affects.
 Database Triggers 18-7

Types of Triggers
Row Triggers
A row trigger is fired each time the table is affected by the triggering statement. For
example, if an UPDATE statement updates multiple rows of a table, a row trigger is
fired once for each row affected by the UPDATE statement. If a triggering state-
ment affects no rows, a row trigger is not executed at all.

Row triggers are useful if the code in the trigger action depends on data provided
by the triggering statement or rows that are affected. For example, Figure 18–3 illus-
trates a row trigger that uses the values of each row affected by the triggering state-
ment.

Statement Triggers
A statement trigger is fired once on behalf of the triggering statement, regardless of
the number of rows in the table that the triggering statement affects (even if no
rows are affected). For example, if a DELETE statement deletes several rows from a
table, a statement-level DELETE trigger is fired only once, regardless of how many
rows are deleted from the table.

Statement triggers are useful if the code in the trigger action does not depend on
the data provided by the triggering statement or the rows affected. For example, if
a trigger makes a complex security check on the current time or user, or if a trigger
generates a single audit record based on the type of triggering statement, a state-
ment trigger is used.

BEFORE and AFTER Triggers
When defining a trigger, you can specify the trigger timing—whether the trigger
action is to be executed before or after the triggering statement. BEFORE and
AFTER apply to both statement and row triggers. (Another type of trigger is
described in “INSTEAD OF Triggers” on page 18-11.)

BEFORE Triggers
BEFORE triggers execute the trigger action before the triggering statement is exe-
cuted. This type of trigger is commonly used in the following situations:

■ When the trigger action should determine whether the triggering statement
should be allowed to complete. Using a BEFORE trigger for this purpose, you
can eliminate unnecessary processing of the triggering statement and its even-
tual rollback in cases where an exception is raised in the trigger action.

■ To derive specific column values before completing a triggering INSERT or
UPDATE statement.
18-8 Oracle8 Concepts

Types of Triggers
AFTER Triggers
AFTER triggers execute the trigger action after the triggering statement is executed.
AFTER triggers are used in the following situations:

■ When you want the triggering statement to complete before executing the trig-
ger action.

■ If a BEFORE trigger is already present, an AFTER trigger can perform different
actions on the same triggering statement.

Trigger Combinations
Using the options listed above, you can create four types of triggers:

■ BEFORE statement trigger

Before executing the triggering statement, the trigger action is executed.

■ BEFORE row trigger

Before modifying each row affected by the triggering statement and before
checking appropriate integrity constraints, the trigger action is executed pro-
vided that the trigger restriction was not violated.

■ AFTER statement trigger

After executing the triggering statement and applying any deferred integrity
constraints, the trigger action is executed.

■ AFTER row trigger

After modifying each row affected by the triggering statement and possibly
applying appropriate integrity constraints, the trigger action is executed for the
current row provided the trigger restriction was not violated. Unlike BEFORE
row triggers, AFTER row triggers lock rows.

You can have multiple triggers of the same type for the same statement for any
given table. For example you may have two BEFORE statement triggers for
UPDATE statements on the EMP table. Multiple triggers of the same type permit
modular installation of applications that have triggers on the same tables. Also,
Oracle snapshot logs use AFTER row triggers, so you can design your own AFTER
row trigger in addition to the Oracle-defined AFTER row trigger.

You can create as many triggers of the preceding different types as you need for
each type of DML statement (INSERT, UPDATE, or DELETE).

For example, suppose you have a table, SAL, and you want to know when the table
is being accessed and the types of queries being issued. The example below con-
 Database Triggers 18-9

Types of Triggers
tains a sample package and trigger that tracks this information by hour and type of
action (for example, UPDATE, DELETE, or INSERT) on table SAL. A global session
variable, STAT.ROWCNT, is initialized to zero by a BEFORE statement trigger.
Then it is increased each time the row trigger is executed. Finally the statistical
information is saved in the table STAT_TAB by the AFTER statement trigger.

Sample Package and Trigger for SAL Table
DROP TABLE stat_tab;
CREATE TABLE stat_tab(utype CHAR(8),
 rowcnt INTEGER, uhour INTEGER);

CREATE OR REPLACE PACKAGE stat IS
 rowcnt INTEGER;
END;
/

CREATE TRIGGER bt BEFORE UPDATE OR DELETE OR INSERT ON sal
BEGIN
 stat.rowcnt := 0;
END;
/

CREATE TRIGGER rt BEFORE UPDATE OR DELETE OR INSERT ON sal
FOR EACH ROW BEGIN
 stat.rowcnt := stat.rowcnt + 1;
END;
/

CREATE TRIGGER at AFTER UPDATE OR DELETE OR INSERT ON sal
DECLARE
 typ CHAR(8);
 hour NUMBER;
BEGIN
 IF updating
 THEN typ := ’update’; END IF;
 IF deleting THEN typ := ’delete’; END IF;
 IF inserting THEN typ := ’insert’; END IF;

 hour := TRUNC((SYSDATE - TRUNC(SYSDATE)) * 24);
 UPDATE stat_tab
 SET rowcnt = rowcnt + stat.rowcnt
 WHERE utype = typ
 AND uhour = hour;
 IF SQL%ROWCOUNT = 0 THEN
18-10 Oracle8 Concepts

Types of Triggers
 INSERT INTO stat_tab VALUES (typ, stat.rowcnt, hour);
 END IF;

EXCEPTION
 WHEN dup_val_on_index THEN
 UPDATE stat_tab
 SET rowcnt = rowcnt + stat.rowcnt
 WHERE utype = typ
 AND uhour = hour;
END;
/

INSTEAD OF Triggers
INSTEAD OF triggers provide a transparent way of modifying views that cannot
be modified directly through SQL DML statements (INSERT, UPDATE, and
DELETE). These triggers are called INSTEAD OF triggers because, unlike other
types of triggers, Oracle fires the trigger instead of executing the triggering state-
ment. The trigger performs update, insert, or delete operations directly on the
underlying tables.

You can write normal INSERT, DELETE, and UPDATE statements against the view
and the INSTEAD OF trigger works invisibly in the background to make the right
actions take place. By default, INSTEAD OF triggers are activated for each row.

Modifying Views
Modifying views has inherent problems of ambiguity.

■ Deleting a row in a view could either mean deleting it from the base table or
updating some column values so that it will no longer be selected by the view.

■ Inserting a row in a view could either mean inserting a new row into the base
table or updating an existing row so that it will be projected by the view.

■ Updating a column in a view that involves joins might change the semantics of
other columns that are not projected by the view.

Object views present additional problems (see Chapter 13, “Object Views”). For
example, a key use of object views is to represent master/detail relationships. This
inevitably involves joins, but modifying joins is inherently ambiguous.

As a result of these ambiguities, there are many restrictions on which views are
modifiable (see the next section). An INSTEAD OF trigger can be used on object
views as well as relational views that are not otherwise modifiable.
 Database Triggers 18-11

Types of Triggers
The mechanism of INSTEAD OF triggers also enables you to modify object view
instances on the client-side through OCI. To modify an object materialized by an
object view in the client-side object cache and flush it back to the persistent store,
you must specify INSTEAD OF triggers, unless the object view is modifiable. If the
object is read only, however, it is not necessary to define triggers to pin it.

Views That Are Not Modifiable
A view is inherently modifiable if it can be inserted, updated, or deleted without
using INSTEAD OF triggers and if it conforms to the restrictions listed below. If the
view query contains any of the following constructs, the view is not inherently
modifiable and you therefore cannot perform inserts, updates, or deletes on the
view:

■ set operators

■ group functions

■ GROUP BY, CONNECT BY, or START WITH clauses

■ the DISTINCT operator

■ joins (however, a subset of join views are updatable — see “Updatable Join
Views” on page 8-13)

If a view contains pseudocolumns or expressions, you can only update the view
with an UPDATE statement that does not refer to any of the pseudocolumns or
expressions.

Example of an INSTEAD OF Trigger
The following example shows an INSTEAD OF trigger for inserting rows into the
MANAGER_INFO view.

CREATE VIEW manager_info AS
 SELECT e.name, e.empno, d.dept_type, d.deptno, p.level,
 p.projno
 FROM emp e, dept d, project p
 WHERE e.empno = d.mgr_no
 AND d.deptno = p.resp_dept;

CREATE TRIGGER manager_info_insert
 INSTEAD OF INSERT ON manager_info
 REFERENCING NEW AS n -- new manager information

Additional Information: See Oracle Call Interface Programmer’s
Guide for more information.
18-12 Oracle8 Concepts

Types of Triggers
 FOR EACH ROW
 BEGIN
 IF NOT EXISTS SELECT * FROM emp
 WHERE emp.empno = :n.empno
 THEN
 INSERT INTO emp
 VALUES(:n.empno, :n.name);
 ELSE
 UPDATE emp SET emp.name = :n.name
 WHERE emp.empno = :n.empno;
 END IF;

 IF NOT EXISTS SELECT * FROM dept
 WHERE dept.deptno = :n.deptno
 THEN
 INSERT INTO dept
 VALUES(:n.deptno, :n.dept_type);
 ELSE
 UPDATE dept SET dept.dept_type = :n.dept_type
 WHERE dept.deptno = :n.deptno;
 END IF;

 IF NOT EXISTS SELECT * FROM project
 WHERE project.projno = :n.projno
 THEN
 INSERT INTO project
 VALUES(:n.projno, :n.project_level);
 ELSE
 UPDATE project SET project.level = :n.level
 WHERE project.projno = :n.projno;
 END IF;
 END;

The actions shown for rows being inserted into the MANAGER_INFO view first
test to see if appropriate rows already exist in the base tables from which
MANAGER_INFO is derived. The actions then insert new rows or update existing
rows, as appropriate. Similar triggers can specify appropriate actions for UPDATE
and DELETE.

Additional Information: See the CREATE TRIGGER command in
Oracle8 SQL Reference for more information about INSTEAD OF
triggers.
 Database Triggers 18-13

Trigger Execution
Trigger Execution
A trigger can be in either of two distinct modes:

For enabled triggers, Oracle automatically

■ executes triggers of each type in a planned firing sequence when more than one
trigger is fired by a single SQL statement

■ performs integrity constraint checking at a set point in time with respect to the
different types of triggers and guarantees that triggers cannot compromise
integrity constraints

■ provides read-consistent views for queries and constraints

■ manages the dependencies among triggers and schema objects referenced in
the code of the trigger action

■ uses two-phase commit if a trigger updates remote tables in a distributed data-
base

■ fires multiple triggers in an unspecified order, if more than one trigger of the
same type exists for a given statement

The Execution Model for Triggers and Integrity Constraint Checking
A single SQL statement can potentially fire up to four types of triggers: BEFORE
row triggers, BEFORE statement triggers, AFTER row triggers, and AFTER state-
ment triggers. A triggering statement or a statement within a trigger can cause one
or more integrity constraints to be checked. Also, triggers can contain statements
that cause other triggers to fire (cascading triggers).

Oracle uses the following execution model to maintain the proper firing sequence
of multiple triggers and constraint checking:

1. Execute all BEFORE statement triggers that apply to the statement.

2. Loop for each row affected by the SQL statement.

a. Execute all BEFORE row triggers that apply to the statement.

enabled An enabled trigger executes its trigger action if a trigger-
ing statement is issued and the trigger restriction (if any)
evaluates to TRUE.

disabled A disabled trigger does not execute its trigger action,
even if a triggering statement is issued and the trigger
restriction (if any) would evaluate to TRUE.
18-14 Oracle8 Concepts

Trigger Execution
b. Lock and change row, and perform integrity constraint checking. (The lock
is not released until the transaction is committed.)

c. Execute all AFTER row triggers that apply to the statement.

3. Complete deferred integrity constraint checking.

4. Execute all AFTER statement triggers that apply to the statement.

The definition of the execution model is recursive. For example, a given SQL state-
ment can cause a BEFORE row trigger to be fired and an integrity constraint to be
checked. That BEFORE row trigger, in turn, might perform an update that causes
an integrity constraint to be checked and an AFTER statement trigger to be fired.
The AFTER statement trigger causes an integrity constraint to be checked. In this
case, the execution model executes the steps recursively, as follows:

1. Original SQL statement issued.

2. BEFORE row triggers fired.

3. AFTER statement triggers fired by UPDATE in BEFORE row trigger.

4. Statements of AFTER statement triggers executed.

5. Integrity constraint checked on tables changed by AFTER statement
triggers.

6. Statements of BEFORE row triggers executed.

7. Integrity constraint checked on tables changed by BEFORE row triggers.

8. SQL statement executed.

9. Integrity constraint from SQL statement checked.

An important property of the execution model is that all actions and checks done as
a result of a SQL statement must succeed. If an exception is raised within a trigger,
and the exception is not explicitly handled, all actions performed as a result of the
original SQL statement, including the actions performed by fired triggers, are
rolled back. Thus, integrity constraints cannot be compromised by triggers. The exe-
cution model takes into account integrity constraints and disallows triggers that
violate declarative integrity constraints.

For example, in the previously outlined scenario, suppose that Steps 1 through 8
succeed; however, in Step 9 the integrity constraint is violated. As a result of this
violation, all changes made by the SQL statement (in Step 8), the fired BEFORE row
trigger (in Step 6), and the fired AFTER statement trigger (in Step 4) are rolled back.
 Database Triggers 18-15

Trigger Execution
Data Access for Triggers
When a trigger is fired, the tables referenced in the trigger action might be cur-
rently undergoing changes by SQL statements in other users’ transactions. In all
cases, the SQL statements executed within triggers follow the common rules used
for standalone SQL statements. In particular, if an uncommitted transaction has
modified values that a trigger being fired either needs to read (query) or write
(update), the SQL statements in the body of the trigger being fired use the follow-
ing guidelines:

■ Queries see the current read-consistent snapshot of referenced tables and any
data changed within the same transaction.

■ Updates wait for existing data locks to be released before proceeding.

The following examples illustrate these points.

Example: Assume that the SALARY_CHECK trigger (body) includes the following
SELECT statement:

SELECT minsal, maxsal INTO minsal, maxsal
 FROM salgrade
 WHERE job_classification = :new.job_classification;

For this example, assume that transaction T1 includes an update to the MAXSAL
column of the SALGRADE table. At this point, the SALARY_CHECK trigger is
fired by a statement in transaction T2. The SELECT statement within the fired trig-
ger (originating from T2) does not see the update by the uncommitted transaction
T1, and the query in the trigger returns the old MAXSAL value as of the read-con-
sistent point for transaction T2.

Example: Assume the following definition of the TOTAL_SALARY trigger, a trigger
to maintain a derived column that stores the total salary of all members in a depart-
ment:

CREATE TRIGGER total_salary

Note: Be aware that triggers of different types are fired in a spe-
cific order. However, triggers of the same type for the same state-
ment are not guaranteed to fire in any specific order. For example,
all BEFORE row triggers for a single UPDATE statement may not
always fire in the same order. Design your applications so they do
not rely on the firing order of multiple triggers of the same type.
18-16 Oracle8 Concepts

Trigger Execution
AFTER DELETE OR INSERT OR UPDATE OF deptno, sal ON emp
 FOR EACH ROW BEGIN
 /* assume that DEPTNO and SAL are non-null fields */
 IF DELETING OR (UPDATING AND :old.deptno != :new.deptno)
 THEN UPDATE dept
 SET total_sal = total_sal - :old.sal
 WHERE deptno = :old.deptno;
 END IF;
 IF INSERTING OR (UPDATING AND :old.deptno != :new.deptno)
 THEN UPDATE dept
 SET total_sal = total_sal + :new.sal
 WHERE deptno = :new.deptno;
 END IF;
 IF (UPDATING AND :old.deptno = :new.deptno AND
 :old.sal != :new.sal)
 THEN UPDATE dept
 SET total_sal = total_sal - :old.sal + :new.sal
 WHERE deptno = :new.deptno;
 END IF;
 END;

For this example, suppose that one user’s uncommitted transaction includes an
update to the TOTAL_SAL column of a row in the DEPT table. At this point, the
TOTAL_SALARY trigger is fired by a second user’s SQL statement. Because the
uncommitted transaction of the first user contains an update to a pertinent value in
the TOTAL_SAL column (in other words, a row lock is being held), the updates per-
formed by the TOTAL_SALARY trigger are not executed until the transaction hold-
ing the row lock is committed or rolled back. Therefore, the second user waits until
the commit or rollback point of the first user’s transaction.

Storage of Triggers
Oracle stores triggers in their compiled form, just like stored procedures. When a
CREATE TRIGGER statement commits, the compiled PL/SQL code, called P code
(for pseudocode), is stored in the database and the source code of the trigger is
flushed from the shared pool.

For more information about compiling and storing PL/SQL code, see “How Oracle
Stores Procedures and Packages” on page 17-15.

Execution of Triggers
Oracle executes a trigger internally using the same steps used for procedure execu-
tion. The only subtle difference is that a user has the right to fire a trigger if he or
 Database Triggers 18-17

Trigger Execution
she has the privilege to execute the triggering statement. Other than this, triggers
are validated and executed the same way as stored procedures.

For more information, see “How Oracle Executes Procedures and Packages” on
page 17-16.

Dependency Maintenance for Triggers
Like procedures, triggers are dependent on referenced objects. Oracle automati-
cally manages the dependencies of a trigger on the schema objects referenced in its
trigger action. The dependency issues for triggers are the same as those for stored
procedures. Triggers are treated like stored procedures; they are inserted into the
data dictionary.

For more information, see Chapter 19, “Oracle Dependency Management”.
18-18 Oracle8 Concepts

 Oracle Dependency Manage
19

Oracle Dependency Management

Whoever you are — I have always depended on the kindness of strangers.

Tennessee Williams: A Streetcar Named Desire

The definitions of some objects, including views and procedures, reference other
objects, such as tables. As a result, the objects being defined are dependent on the
objects referenced in their definitions. This chapter discusses the dependencies
among schema objects and how Oracle automatically tracks and manages these
dependencies. It includes:

■ An Introduction to Dependency Issues

■ Resolving Schema Object Dependencies

■ Dependency Management and Nonexistent Schema Objects

■ Shared SQL Dependency Management

■ Local and Remote Dependency Management

Additional Information: If you are using Trusted Oracle, see
your Trusted Oracle documentation for more information on
schema object dependencies in that environment.
ment 19-1

An Introduction to Dependency Issues
An Introduction to Dependency Issues
Some types of schema objects can reference other objects as part of their definition.
For example, a view is defined by a query that references tables or other views; a
procedure’s body can include SQL statements that reference other objects of a data-
base. An object that references another object as part of its definition is called a
dependent object, while the object being referenced is a referenced object. Figure 19–1
illustrates the different types of dependent and referenced objects.

Figure 19–1 Types of Possible Dependent and Referenced Schema Objects

If you alter the definition of a referenced object, dependent objects may or may not
continue to function without error, depending on the type of alteration. For exam-
ple, if you drop a table, no view based on the dropped table can be used.

Oracle automatically records dependencies among objects to alleviate the complex
job of dependency management for the database administrator and users. For
example, if you alter a table on which several stored procedures depend, Oracle
automatically recompiles the dependent procedures the next time the procedures
are referenced (executed or compiled against).

To manage dependencies among schema objects, all of the schema objects in a data-
base have a status:

VALID The object has been compiled and can be immediately
used when referenced.

Dependent Objects

View
Procedure
Function

Package Specification
Package Body

Database Trigger

Referenced Objects

Table
View

Sequence
Synonym
Procedure
Function

Package Specification
19-2 Oracle8 Concepts

An Introduction to Dependency Issues
Oracle automatically tracks specific changes in the database and records the appro-
priate status for related objects in the data dictionary.

Status recording is a recursive process; any change in the status of a referenced
object not only changes the status for directly dependent objects, but also for indi-
rectly dependent objects.

For example, consider a stored procedure that directly references a view. In effect,
the stored procedure indirectly references the base table(s) of that view. Therefore,
if you alter a base table, the view is invalidated, which then invalidates the stored
procedure. Figure 19–2 illustrates this.

INVALID The object must be compiled before it can be used. In the
case of procedures, functions, and packages, this means
compiling the object. In the case of views, this means
that the view must be reparsed, using the current defini-
tion in the data dictionary. Only dependent objects can
be invalid; tables, sequences, and synonyms are always
valid.

If a view, procedure, function, or package is invalid, Ora-
cle may have attempted to compile it, but errors relating
to the object occurred. For example, when compiling a
view, one of its base tables might not exist, or the correct
privileges for the base table might not be present. When
compiling a package, there might be a PL/SQL or SQL
syntax error, or the correct privileges for a referenced
object might not be present. Objects with such problems
remain invalid.
 Oracle Dependency Management 19-3

Resolving Schema Object Dependencies
Figure 19–2 Indirect Dependencies

Resolving Schema Object Dependencies
When a schema object is referenced (directly in a SQL statement or indirectly via a
reference to a dependent object), Oracle checks the status of the object explicitly
specified in the SQL statement and any referenced objects, as necessary. Oracle’s
action depends on the status of the objects that are directly and indirectly refer-
enced in a SQL statement:

■ If every referenced object is valid, Oracle executes the SQL statement executes
immediately without any additional work.

■ If any referenced view or procedure (including functions and packages) is
invalid, Oracle automatically attempts to compile the object.

– If all invalid referenced objects can be successfully compiled, the objects are
compiled, and the SQL statement executes successfully.

– If an invalid object cannot be successfully compiled, the object remains
invalid, an error is returned, and the transaction containing the SQL state-
ment is rolled back.

Table EMP

Table DEPT

View EMP_DEPT

Function
ADD_EMP

Dependent
Object

Referenced
by ADD_EMP
(Dependent

Object)

Referenced
by EMP DEPT

ALTER TABLE emp . . . ;

INVALID

INVALID
19-4 Oracle8 Concepts

Resolving Schema Object Dependencies
Compiling Views and PL/SQL Program Units
A view or PL/SQL program unit can be compiled and made valid if the following
conditions are satisfied:

■ The definition of the view or program unit must be correct; all SQL and PL/
SQL statements must be proper constructs.

■ All referenced objects must be present and of the expected structure. For exam-
ple, if the defining query of a view includes a column, the column must be
present in the base table.

■ The owner of the view or program unit must have the necessary privileges for
the referenced objects. For example, if a SQL statement in a procedure inserts a
row into a table, the owner of the procedure must have the INSERT privilege
for the referenced table.

Views and Base Tables
A view depends on the base tables (or views) referenced in its defining query. If the
defining query of a view is not explicit about which columns are referenced, for
example, SELECT * FROM table , the defining query is expanded when stored in
the data dictionary to include all columns in the referenced base table at that time.

If a base table (or view) of a view is altered, renamed, or dropped, the view is invali-
dated, but its definition remains in the data dictionary along with the privileges,
synonyms, other objects, and other views that reference the invalid view.

An attempt to use an invalid view automatically causes Oracle to recompile the
view dynamically. After replacing the view, the view might be valid or invalid,
depending on the following condition:

■ All base tables referenced by the defining query of a view must exist. If a base
table of a view is renamed or dropped, the view is invalidated and cannot be
used. References to invalid views cause the referencing statement to fail. The
view can be compiled only if the base table is renamed to its original name or
the base table is recreated.

Note: Oracle attempts to recompile an invalid object dynamically
only if it has not been replaced since it was detected as invalid.
This optimization eliminates unnecessary recompilations.
 Oracle Dependency Management 19-5

Resolving Schema Object Dependencies
■ If a base table is altered or re-created with the same columns, but the datatype
of one or more columns in the base table is changed, any dependent view can
be recompiled successfully.

■ If a base table of a view is altered or re-created with at least the same set of col-
umns, the view can be validated. The view cannot be validated if the base table
is re-created with new columns and the view references columns no longer con-
tained in the re-created table. The latter point is especially relevant in the case
of views defined with a SELECT * FROM table query, because the defining
query is expanded at view creation time and permanently stored in the data
dictionary.

Program Units and Referenced Objects
Oracle automatically invalidates a program unit when the definition of a referenced
object is altered. For example, assume that a standalone procedure includes several
statements that reference a table, a view, another standalone procedure, and a pub-
lic package procedure. In that case, the following conditions hold:

■ If the referenced table is altered, the dependent procedure is invalidated.

■ If the base table of the referenced view is altered, the view and the dependent
procedure are invalidated.

■ If the referenced standalone procedure is replaced, the dependent procedure is
invalidated.

■ If the body of the referenced package is replaced, the dependent procedure is
not affected. However, if the specification of the referenced package is replaced,
the dependent procedure is invalidated.

This last case reveals a mechanism for minimizing dependencies among proce-
dures and referenced objects by using packages.

Session State and Referenced Packages
Each session that references a package construct has its own instance of that pack-
age, including a persistent state of any public and private variables, cursors, and
constants. All of a session’s package instantiations (including state) can be lost if
any of the session’s instantiated packages (specification or body) are subsequently
invalidated and recompiled.

Security Authorizations
Oracle notices when a DML object or system privilege is granted to or revoked
from a user or PUBLIC and automatically invalidates all the owner’s dependent
19-6 Oracle8 Concepts

Dependency Management and Nonexistent Schema Objects
objects. Oracle invalidates the dependent objects to verify that an owner of a depen-
dent object continues to have the necessary privileges for all referenced objects.
Internally, Oracle notes that such objects do not have to be “recompiled”; only secu-
rity authorizations need to be validated, not the structure of any objects. This opti-
mization eliminates unnecessary recompilations and prevents the need to change a
dependent object’s timestamp.

Dependency Management and Nonexistent Schema Objects
When a dependent object is created, Oracle attempts to resolve all references by
first searching in the current schema. If a referenced object is not found in the cur-
rent schema, Oracle attempts to resolve the reference by searching for a private syn-
onym in the same schema. If a private synonym is not found, Oracle moves on,
looking for a public synonym. If a public synonym is not found, Oracle searches for
a schema name that matches the first portion of the object name. If a matching
schema name is found, Oracle attempts to find the object in that schema. If no
schema is found, an error is returned.

Because of how Oracle resolves references, it is possible for an object to depend on
the nonexistence of other objects. This occurs when the dependent object uses a refer-
ence that would be interpreted differently were another object present. For exam-
ple, assume the following:

■ At the current point in time, the COMPANY schema contains a table named
EMP.

■ A PUBLIC synonym named EMP is created for COMPANY.EMP and the
SELECT privilege for COMPANY.EMP is granted to the PUBLIC role.

■ The JWARD schema does not contain a table or private synonym named EMP.

■ The user JWARD creates a view in his schema with the following statement:

CREATE VIEW dept_salaries AS
 SELECT deptno, MIN(sal), AVG(sal), MAX(sal) FROM emp
 GROUP BY deptno
 ORDER BY deptno;

When JWARD creates the DEPT_SALARIES view, the reference to EMP is resolved
by first looking for JWARD.EMP as a table, view, or private synonym, none of

Additional Information: For information on forcing the recompila-
tion of an invalid view or program unit, see the Oracle8 Application
Developer’s Guide. If you are using Trusted Oracle, also see your
Trusted Oracle documentation.
 Oracle Dependency Management 19-7

Shared SQL Dependency Management
which is found, and then as a public synonym named EMP, which is found. As a
result, Oracle notes that JWARD.DEPT_SALARIES depends on the nonexistence of
JWARD.EMP and on the existence of PUBLIC.EMP.

Now assume that JWARD decides to create a new view named EMP in his schema
using the following statement:

CREATE VIEW emp AS
 SELECT empno, ename, mgr, deptno
 FROM company.emp;

Notice that JWARD.EMP does not have the same structure as COMPANY.EMP.

As it attempts to resolve references in object definitions, Oracle internally makes
note of dependencies that the new dependent object has on “nonexistent” objects
— schema objects that, if they existed, would change the interpretation of the
object’s definition. Such dependencies must be noted in case a nonexistent object is
later created. If a nonexistent object is created, all dependent objects must be invali-
dated so that dependent objects can be recompiled and verified.

Therefore, in the example above, as JWARD.EMP is created,
JWARD.DEPT_SALARIES is invalidated because it depends on JWARD.EMP. Then
when JWARD.DEPT_SALARIES is used, Oracle attempts to recompile the view. As
Oracle resolves the reference to EMP, it finds JWARD.EMP (PUBLIC.EMP is no
longer the referenced object). Because JWARD.EMP does not have a SAL column,
Oracle finds errors when replacing the view, leaving it invalid.

In summary, dependencies on nonexistent objects checked during object resolution
must be managed in case the nonexistent object is later created.

Shared SQL Dependency Management
In addition to managing dependencies among schema objects, Oracle also manages
dependencies of each shared SQL area in the shared pool. If a table, view, synonym,
or sequence is created, altered, or dropped, or a procedure or package specification
is recompiled, all dependent shared SQL areas are invalidated. At a subsequent exe-
cution of the cursor that corresponds to an invalidated shared SQL area, Oracle rep-
arses the SQL statement to regenerate the shared SQL area.

Local and Remote Dependency Management
Tracking dependencies and completing necessary recompilations are performed
automatically by Oracle. In the simplest case, Oracle must manage dependencies
among the objects in a single database (local dependency management). For exam-
19-8 Oracle8 Concepts

Local and Remote Dependency Management
ple, a statement in a procedure can reference a table in the same database. In more
complex systems, Oracle must manage dependencies in distributed environments
across a network (remote dependency management). For example, an Oracle Forms
trigger can depend on a schema object in the database. In a distributed database, a
local view’s defining query can reference a remote table.

Managing Local Dependencies
Oracle manages all local dependencies using the database’s internal “depends-on”
table, which keeps track of each schema object’s dependent objects. When a refer-
enced object is modified, Oracle uses the depends-on table to identify dependent
objects, which are then invalidated. For example, assume a stored procedure
UPDATE_SAL references the table JWARD.EMP. If the definition of the table is
altered in any way, the status of every object that references JWARD.EMP is
changed to INVALID, including the stored procedure UPDATE_SAL. As a result,
the procedure cannot be executed until it has been recompiled and is valid. Simi-
larly, when a DML privilege is revoked from a user, every dependent object in the
user’s schema is invalidated. However, an object that is invalid because authoriza-
tion was revoked can be revalidated by “reauthorization”, in which case it does not
require full recompilation.

Managing Remote Dependencies
Application-to-database and distributed database dependencies must also be man-
aged. For example, an Oracle Forms application might contain a trigger that refer-
ences a table, or a local stored procedure might call a remote procedure in a
distributed database system. The database system must account for dependencies
among such objects. Oracle uses different mechanisms to manage remote depen-
dencies, depending on the objects involved.

Dependencies Among Local and Remote Database Procedures
Dependencies among stored procedures (including functions, packages, and trig-
gers) in a distributed database system are managed using timestamp checking or sig-
nature checking.

The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE deter-
mines whether timestamps or signatures govern remote dependencies.

Additional Information: See Oracle8 Application Developer’s Guide
for details about managing remote dependencies with timestamps
or signatures.
 Oracle Dependency Management 19-9

Local and Remote Dependency Management
Timestamp Checking In the timestamp checking dependency model, whenever a pro-
cedure is compiled or recompiled its timestamp (the time it is created, altered, or
replaced) is recorded in the data dictionary. Additionally, the compiled version of
the procedure contains information about each remote procedure that it references,
including the remote procedure’s schema, package name, procedure name, and
timestamp.

When a dependent procedure is used, Oracle compares the remote timestamps
recorded at compile time with the current timestamps of the remotely referenced
procedures. Depending on the result of this comparison, two situations can occur:

■ The local and remote procedures execute without compilation if the times-
tamps match.

■ The local procedure is invalidated if any timestamps of remotely referenced
procedures do not match, and an error is returned to the calling environment.
Furthermore, all other local procedures that depend on the remote procedure
with the new timestamp are also invalidated. For example, assume several
local procedures call a remote procedure, and the remote procedure is recom-
piled. When one of the local procedures is executed and notices the different
timestamp of the remote procedure, every local procedure that depends on the
remote procedure is invalidated.

Actual timestamp comparison occurs when a statement in the body of a local proce-
dure executes a remote procedure; only at this moment are the timestamps com-
pared via the distributed database’s communications link. Therefore, all statements
in a local procedure that precede an invalid procedure call might execute success-
fully. Statements subsequent to an invalid procedure call do not execute at all (com-
pilation is required). However, any DML statements executed before the invalid
procedure call are rolled back.

Signature Checking Oracle provides the additional capability of remote dependen-
cies using signatures. The signature capability affects only remote dependencies.
Local (same server) dependencies are not affected, as recompilation is always possi-
ble in this environment.

The signature of a procedure contains information about the

■ name of the package, procedure, or function

■ base types of the parameters

■ modes of the parameters (IN, OUT, and IN OUT)
19-10 Oracle8 Concepts

Local and Remote Dependency Management
If the signature dependency model is in effect, a dependency on a remote program
unit (package, stored procedure, stored function, or trigger) causes an invalidation
of the dependent unit if the dependent unit contains a call to a procedure in the par-
ent unit, and the signature of this procedure has been changed in an incompatible
manner.

Dependencies Among Other Remote Schema Objects
Oracle does not manage dependencies among remote schema objects other than
local-procedure-to-remote-procedure dependencies.

For example, assume that a local view is created and defined by a query that refer-
ences a remote table. Also assume that a local procedure includes a SQL statement
that references the same remote table. Later, the definition of the table is altered.

As a result, the local view and procedure are never invalidated, even if the view or
procedure is used after the table is altered, and even if the view or procedure now
returns errors when used (in this case, the view or procedure must be altered manu-
ally so errors are not returned). In such cases, lack of dependency management is
preferable to unnecessary recompilations of dependent objects.

Dependencies of Applications
Code in database applications can reference objects in the connected database. For
example, OCI, Precompiler, and SQL*Module applications can submit anonymous
PL/SQL blocks; triggers in Oracle Forms applications can reference a schema object.

Such applications are dependent on the schema objects they reference. Dependency
management techniques vary, depending on the development environment. Refer
to the appropriate manuals for your application development tools and your oper-
ating system for more information about managing the remote dependencies
within database applications.

Note: Only the types and modes of parameters are significant.
The name of the parameter does not affect the signature.
 Oracle Dependency Management 19-11

Local and Remote Dependency Management
19-12 Oracle8 Concepts

 The Op
20

The Optimizer

I do the very best I know how — the very best I can;
and I mean to keep doing so until the end.

Abraham Lincoln

This chapter discusses how the Oracle optimizer chooses how to execute SQL state-
ments. It includes:

■ What Is Optimization?

– Execution Plans

– Execution Order

■ Cost-Based and Rule-Based Optimization

■ Overview of Optimizer Operations

– Evaluation of Expressions and Conditions

– Transforming and Optimizing Statements

– Choosing an Optimization Approach and Goal

– Choosing Access Paths

– Optimizing Join Statements

– Optimizing Anti-Joins and Semi-Joins

– Optimizing “Star” Queries

Additional Information: For more information on the Oracle opti-
mizer, see Oracle8 Tuning.
timizer 20-1

What Is Optimization?
What Is Optimization?
Optimization is the process of choosing the most efficient way to execute a SQL
statement. This is an important step in the processing of any data manipulation lan-
guage (DML) statement: SELECT, INSERT, UPDATE, or DELETE. Many different
ways to execute a SQL statement often exist, for example, by varying the order in
which tables or indexes are accessed. The procedure Oracle uses to execute a state-
ment can greatly affect how quickly the statement executes.

A part of Oracle called the optimizer chooses what it believes to be the most efficient
way. The optimizer evaluates a number of factors to select among alternative access
paths. Sometimes the application designer, who has more information about a par-
ticular application’s data than is available to the optimizer, can choose a more effec-
tive way to execute a SQL statement. The application designer can use hints in SQL
statements to specify how the statement should be executed.

Execution Plans
To execute a DML statement, Oracle may have to perform many steps. Each of
these steps either retrieves rows of data physically from the database or prepares
them in some way for the user issuing the statement. The combination of the steps
Oracle uses to execute a statement is called an execution plan.

Figure 20–1 shows a graphical representation of the execution plan for the follow-
ing SQL statement, which selects the name, job, salary, and department name for
all employees whose salaries do not fall into a recommended salary range:

SELECT ename, job, sal, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND NOT EXISTS
 (SELECT *
 FROM salgrade
 WHERE emp.sal BETWEEN losal AND hisal);

Note: The optimizer may not make the same decisions from one
version of Oracle to the next. In more recent versions, the opti-
mizer may make different decisions based on better, more sophisti-
cated information available to it.

Additional Information: See Oracle8 Tuning for information about
using hints in SQL statements.
20-2 Oracle8 Concepts

What Is Optimization?
Figure 20–1 An Execution Plan

Steps of Execution Plan
Each step of the execution plan returns a set of rows that either are used by the next
step or, in the last step, are returned to the user or application issuing the SQL state-
ment. A set of rows returned by a step is called a row source.

Figure 20–1 is a hierarchical diagram showing the flow of row sources from one
step to another. The numbering of the steps reflects the order in which they are dis-

TABLE ACCESS
(FULL)

emp

3 4

TABLE ACCESS
(BY ROWID)

dept

5

INDEX
(UNIQUE SCAN)

pk_deptno

6

TABLE ACCESS
(FULL)

salgrade

1

FILTER

2

NESTED LOOPS
 The Optimizer 20-3

What Is Optimization?
played in response to the EXPLAIN PLAN command (described in the next sec-
tion). This generally is not the order in which the steps are executed (see
“Execution Order” on page 20-5).

Each step of the execution plan either retrieves rows from the database or accepts
rows from one or more row sources as input:

■ Steps indicated by the shaded boxes physically retrieve data from an object in
the database. Such steps are called access paths:

– Steps 3 and 6 read all the rows of the EMP and SALGRADE tables,
respectively.

– Step 5 looks up in the PK_DEPTNO index each DEPTNO value returned
by Step 3. There it finds the ROWIDs of the associated rows in the DEPT
table.

– Step 4 retrieves from the DEPT table the rows whose ROWIDs were
returned by Step 5.

■ Steps indicated by the clear boxes operate on row sources:

– Step 2 performs a nested loops operation, accepting row sources from Steps
3 and 4, joining each row from Step 3 source to its corresponding row in
Step 4, and returning the resulting rows to Step 1.

– Step 1 performs a filter operation. It accepts row sources from Steps 2 and
6, eliminates rows from Step 2 that have a corresponding row in Step 6, and
returns the remaining rows from Step 2 to the user or application issuing
the statement.

Access paths are discussed further in the section “Choosing Access Paths” on page
20-42. Methods by which Oracle joins row sources are discussed in “Join Opera-
tions” on page 20-63.

The EXPLAIN PLAN Command
You can examine the execution plan chosen by the optimizer for a SQL statement
by using the EXPLAIN PLAN command, which causes the optimizer to choose the
execution plan and then inserts data describing the plan into a database table.

For example, the following output table is such a description for the statement
examined in the previous section:
20-4 Oracle8 Concepts

What Is Optimization?
ID OPERATION OPTIONS OBJECT_NAME
--
0 SELECT STATEMENT
1 FILTER
2 NESTED LOOPS
3 TABLE ACCESS FULL EMP
4 TABLE ACCESS BY ROWID DEPT
5 INDEX UNIQUE SCAN PK_DEPTNO
6 TABLE ACCESS FULL SALGRADE

Each box in Figure 20–1 and each row in the output table corresponds to a single
step in the execution plan. For each row in the listing, the value in the ID column is
the value shown in the corresponding box in Figure 20–1.

You can obtain such a listing by using the EXPLAIN PLAN command and then que-
rying the output table.

Execution Order
The steps of the execution plan are not performed in the order in which they are
numbered. Rather, Oracle first performs the steps that appear as leaf nodes in the
tree-structured graphical representation of the execution plan (Steps 3, 5, and 6 in
Figure 20–1). The rows returned by each step become the row sources of its parent
step. Then Oracle performs the parent steps.

To execute the statement for Figure 20–1, for example, Oracle performs the steps in
this order:

■ First, Oracle performs Step 3, and returns the resulting rows, one by one, to
Step 2.

■ For each row returned by Step 3, Oracle performs these steps:

– Oracle performs Step 5 and returns the resulting ROWID to Step 4.

– Oracle performs Step 4 and returns the resulting row to Step 2.

– Oracle performs Step 2, joining the single row from Step 3 with a single
row from Step 4, and returning a single row to Step 1.

– Oracle performs Step 6 and returns the resulting row, if any, to Step 1.

– Oracle performs Step 1. If a row is not returned from Step 6, Oracle returns
the row from Step 2 to the user issuing the SQL statement.

Additional Information: See Oracle8 Tuning for information on
how to use EXPLAIN PLAN and produce and interpret its output.
 The Optimizer 20-5

Cost-Based and Rule-Based Optimization
Note that Oracle performs Steps 5, 4, 2, 6, and 1 once for each row returned by Step
3. If a parent step requires only a single row from its child step before it can be exe-
cuted, Oracle performs the parent step (and possibly the rest of the execution plan)
as soon as a single row has been returned from the child step. If the parent of that
parent step also can be activated by the return of a single row, then it is executed
as well.

Thus the execution can cascade up the tree, possibly to encompass the rest of the
execution plan. Oracle performs the parent step and all cascaded steps once for
each row in turn retrieved by the child step. The parent steps that are triggered for
each row returned by a child step include table accesses, index accesses, nested
loops joins, and filters.

If a parent step requires all rows from its child step before it can be executed,
Oracle cannot perform the parent step until all rows have been returned from the
child step. Such parent steps include sorts, sort-merge joins, group functions, and
aggregates.

Cost-Based and Rule-Based Optimization
To choose an execution plan for a SQL statement, the optimizer uses one of two
approaches: cost-based or rule-based.

The Cost-Based Approach
Using the cost-based approach, the optimizer determines which execution plan is
most efficient by considering available access paths and factoring in information
based on statistics in the data dictionary for the schema objects (tables, clusters, or
indexes) accessed by the statement. The cost-based approach also considers hints,
or optimization suggestions placed in a Comment in the statement.

Conceptually, the cost-based approach consists of these steps:

1. The optimizer generates a set of potential execution plans for the statement
based on its available access paths and hints.

2. The optimizer estimates the cost of each execution plan based on the data distri-
bution and storage characteristics statistics for the tables, clusters, and indexes
in the data dictionary.

The cost is an estimated value proportional to the expected resource use needed
to execute the statement using the execution plan. The optimizer calculates the
cost based on the estimated computer resources, including (but not limited to)
I/O, CPU time, and memory, that are required to execute the statement using
the plan.
20-6 Oracle8 Concepts

Cost-Based and Rule-Based Optimization
Serial execution plans with greater costs take more time to execute than those
with smaller costs. When using a parallel execution plan, however, resource
use is not directly related to elapsed time.

3. The optimizer compares the costs of the execution plans and chooses the one
with the smallest cost.

Goal of the Cost-Based Approach
By default, the goal of the cost-based approach is the best throughput, or minimal
resource use necessary to process all rows accessed by the statement.

Oracle can also optimize a statement with the goal of best response time, or minimal
resource use necessary to process the first row accessed by a SQL statement. For
information on how the optimizer chooses an optimization approach and goal, see
“Choosing an Optimization Approach and Goal” on page 20-40.

Statistics for the Cost-Based Approach
The cost-based approach uses statistics to estimate the cost of each execution plan.
These statistics quantify the data distribution and storage characteristics of tables,
columns, indexes, and partitions. You can generate these statistics using the ANA-
LYZE command. The optimizer uses these statistics to estimate how much I/O,
CPU time, and memory are required to execute a SQL statement using a particular
execution plan.

You can view the statistics with these data dictionary views:

■ USER_TABLES, ALL_TABLES, and DBA_TABLES

■ USER_TAB_COLUMNS, ALL_TAB_COLUMNS, and DBA_TAB_COLUMNS

■ USER_INDEXES, ALL_INDEXES, and DBA_INDEXES

■ USER_CLUSTERS and DBA_CLUSTERS

Note: For parallel execution, the optimizer can choose to mini-
mize elapsed time at the expense of resource consumption. Use the
initialization parameter OPTIMIZER_PERCENT_PARALLEL to
specify how much the optimizer attempts to parallelize.

Additional Information: See Oracle8 Tuning for information about
using the OPTIMIZER_PERCENT_PARALLEL parameter.
 The Optimizer 20-7

Cost-Based and Rule-Based Optimization
■ USER_TAB_PARTITIONS, ALL_TAB_PARTITIONS, and
DBA_TAB_PARTITIONS

■ USER_IND_PARTITIONS, ALL_IND_PARTITIONS, and
DBA_IND_PARTITIONS

■ USER_PART_COL_STATISTICS, ALL_PART_COL_STATISTICS, and
DBA_PART_COL_STATISTICS

Histograms
Oracle’s cost-based optimizer uses data value histograms to get accurate estimates
of the distribution of column data. Histograms provide improved selectivity esti-
mates in the presence of data skew, resulting in optimal execution plans with non-
uniform data distributions. You generate histograms by using the ANALYZE
command.

One of the fundamental capabilities of any cost-based optimizer is determining the
selectivity of predicates that appear in queries. Selectivity estimates are used to
decide when to use an index and the order in which to join tables. Most attribute
domains (a table’s columns) are not uniformly distributed. The Oracle cost-based
optimizer uses height-balanced histograms on specified attributes to describe the
distributions of nonuniform domains.

Histogram Examples Consider a column C with values between 1 and 100 and a histo-
gram with 10 buckets. If the data in C is uniformly distributed, this histogram
would look like this, where the numbers are the endpoint values.

The number of rows in each bucket is one tenth the total number of rows in the
table. Four-tenths of the rows have values between 60 and 100 in this example of
uniform distribution.

Additional Information: For information on these statistics, see
the Oracle8 Reference.

1 10 20 30 40 50 60 70 80 90 100
20-8 Oracle8 Concepts

Cost-Based and Rule-Based Optimization
If the data is not uniformly distributed, the histogram might look like this:

In this case, most of the rows have the value 5 for the column. In this example, only
1/10 of the rows have values between 60 and 100.

Height-Balanced Histograms Oracle uses height-balanced histograms (as opposed to
width-balanced).

■ Width-balanced histograms divide the data into a fixed number of equal-width
ranges and then count the number of values falling into each range.

■ Height-balanced histograms place the same number of values into each range
so that the endpoints of the range are determined by how many values are in
that range.

For example, suppose that the values in a single column of a 1000-row table range
between 1 and 100, and suppose that you want a 10-bucket histogram (ranges in a
histogram are called buckets). In a width-balanced histogram, the buckets would be
of equal width (1-10, 11-20, 21-30, and so on) and each bucket would count the num-
ber of rows that fall into that bucket’s range. In a height-balanced histogram, each
bucket has the same height (in this case 100 rows) and the endpoints for each
bucket are determined by the density of the distinct values in the column.

Advantages of Height-Balanced Histograms The advantage of the height-balanced
approach is clear when the data is highly skewed. Suppose that 800 rows of a 1000-
row table have the value 5, and the remaining 200 rows are evenly distributed
between 1 and 100. A width-balanced histogram would have 820 rows in the
bucket labeled 1-10 and approximately 20 rows in each of the other buckets. The
height-based histogram would have one bucket labeled 1-5, seven buckets labeled
5-5, one bucket labeled 5-50, and one bucket labeled 50-100.

If you want to know how many rows in the table contain the value 5, it is apparent
from the height-balanced histogram that approximately 80% of the rows contain
this value. However, the width-balanced histogram does not provied a mechanism
for differentiating between the value 5 and the value 6. You would compute only
8% of the rows contain the value 5 in a width-balanced histogram. Therefore height-

1 5 5 5 5 10 10 20 35 60 100
 The Optimizer 20-9

Cost-Based and Rule-Based Optimization
based histograms are more appropriate for determining the selectivity of column
values.

When to Use Histograms For many users, it is appropriate to use the FOR ALL
INDEXED COLUMNS option of the ANALYZE command to create histograms
because indexed columns are typically the columns most often used in WHERE
clauses.

You can view histograms with the following views:

■ USER_HISTOGRAMS, ALL_HISTOGRAMS, and DBA_HISTOGRAMS

■ USER_PART_HISTOGRAMS, ALL_PART_HISTOGRAMS, and
DBA_PART_HISTOGRAMS

■ TAB_COLUMNS

Histograms are useful only when they reflect the current data distribution of a
given column. If the data distribution is not static, the histogram should be
updated frequently. (The data need not be static as long as the distribution remains
constant.)

Histograms can affect performance and should be used only when they substan-
tially improve query plans. Histograms are not useful for columns with the follow-
ing characteristics:

■ All predicates on the column use bind variables.

■ The column data is uniformly distributed.

■ The column is not used in WHERE clauses of queries.

■ The column is unique and is used only with equality predicates.

When to Use the Cost-Based Approach In general, you should use the cost-based
approach for all new applications; the rule-based approach is provided for applica-
tions that were written before cost-based optimization was available. Cost-based
optimization can be used for both relational data and object types.

The following features can only use cost-based optimization:

■ partitioned tables

■ partition views

■ index-organized tables

Additional Information: See Oracle8 Tuning for more information
about histograms.
20-10 Oracle8 Concepts

Cost-Based and Rule-Based Optimization
■ reverse key indexes

■ bitmap indexes

■ parallel query and parallel DML

■ star transformation

■ star join

The Rule-Based Approach
Using the rule-based approach, the optimizer chooses an execution plan based on
the access paths available and the ranks of these access paths (shown in Table 20–1
“Access Paths” on page 20-46). You can use rule-based optimization to access both
relational data and object types.

Oracle’s ranking of the access paths is heuristic. If there is more than one way to
execute a SQL statement, the rule-based approach always uses the operation with
the lower rank. Usually, operations of lower rank execute faster than those associ-
ated with constructs of higher rank.

For more information, see “Choosing Among Access Paths with the Rule-Based
Approach” on page 20-62.

Additional Information: See Oracle8 Tuning for more information
on when to use the cost-based approach.
 The Optimizer 20-11

Overview of Optimizer Operations
Overview of Optimizer Operations
This section summarizes the operations performed by the Oracle optimizer and
describes the types of SQL statements that can be optimized.

Optimizer Operations
For any SQL statement processed by Oracle, the optimizer does the following:

evaluation of
expressions and
conditions

The optimizer first evaluates expressions and conditions con-
taining constants as fully as possible. (See “Evaluation of
Expressions and Conditions” on page 20-14.)

statement trans-
formation

For a complex statement involving, for example, correlated
subqueries, the optimizer may transform the original state-
ment into an equivalent join statement. (See “Transforming
and Optimizing Statements” on page 20-19.)

view merging For a SQL statement that accesses a view, the optimizer often
merges the query in the statement with that in the view and
then optimizes the result. (See “Optimizing Statements That
Access Views” on page 20-24.)

choice of optimi-
zation approaches

The optimizer chooses either a cost-based or rule-based
approach to optimization and determines the goal of optimi-
zation. (See “Choosing an Optimization Approach and Goal”
on page 20-40.)

choice of access
paths

For each table accessed by the statement, the optimizer
chooses one or more of the available access paths to obtain
the table’s data. (See “Choosing Access Paths” on page 20-42.)

choice of join
orders

For a join statement that joins more than two tables, the opti-
mizer chooses which pair of tables is joined first, and then
which table is joined to the result, and so on. (See “Optimiz-
ing Join Statements” on page 20-63.)

choice of join
operations

For any join statement, the optimizer chooses an operation to
use to perform the join. (See “Optimizing Join Statements” on
page 20-63.)
20-12 Oracle8 Concepts

Overview of Optimizer Operations
Types of SQL Statements
Oracle optimizes these different types of SQL statements:

simple statement An INSERT, UPDATE, DELETE, or SELECT statement that
involves only a single table.

simple query Another name for a SELECT statement.

join A query that selects data from more than one table. A join is
characterized by multiple tables in the FROM clause. Oracle
pairs the rows from these tables using the condition specified
in the WHERE clause and returns the resulting rows. This
condition is called the join condition and usually compares
columns of all the joined tables.

equijoin A join condition containing an equality operator.

nonequijoin A join condition containing something other than an equality
operator.

outer join A join condition using the outer join operator (+) with one or
more columns of one of the tables. Oracle returns all rows
that meet the join condition. Oracle also returns all rows from
the table without the outer join operator for which there are
no matching rows in the table with the outer join operator.

Cartesian product A join with no join condition results in a Cartesian product,
or a cross product. A Cartesian product is the set of all possi-
ble combinations of rows drawn one from each table. In other
words, for a join of two tables, each row in one table is
matched in turn with every row in the other. A Cartesian
product for more than two tables is the result of pairing each
row of one table with every row of the Cartesian product of
the remaining tables.

All other kinds of joins are subsets of Cartesian products
effectively created by deriving the Cartesian product and
then excluding rows that fail the join condition.

complex statement An INSERT, UPDATE, DELETE, or SELECT statement that
contains a subquery, which is a form of the SELECT state-
ment within another statement that produces a set of values
for further processing within the statement. The outer portion
of the complex statement that contains a subquery is called
the parent statement.
 The Optimizer 20-13

Evaluation of Expressions and Conditions
Evaluation of Expressions and Conditions
The optimizer fully evaluates expressions whenever possible and translates certain
syntactic constructs into equivalent constructs. The reason for this is either that Ora-
cle can more quickly evaluate the resulting expression than the original expression,
or that the original expression is merely a syntactic equivalent of the resulting
expression. Different SQL constructs can sometimes operate identically (for exam-
ple, = ANY (subquery) and IN (subquery)); Oracle maps these to a single construct.

Constants
Computation of constants is performed only once, when the statement is opti-
mized, rather than each time the statement is executed.

Consider these conditions that test for monthly salaries greater than 2000:

sal > 24000/12

sal > 2000

sal*12 > 24000

If a SQL statement contains the first condition, the optimizer simplifies it into the
second condition.

Note that the optimizer does not simplify expressions across comparison operators:
in the examples above, the optimizer does not simplify the third expression into the
second. For this reason, application developers should write conditions that com-
pare columns with constants whenever possible, rather than conditions with
expressions involving columns.

compound query A query that uses set operators (UNION, UNION ALL,
INTERSECT, or MINUS) to combine two or more simple or
complex statements. Each simple or complex statement in a
compound query is called a component query.

statement access-
ing views

Simple, join, complex, or compound statement that accesses
one or more views as well as tables.

distributed state-
ment

A statement that accesses data on a remote database.
20-14 Oracle8 Concepts

Evaluation of Expressions and Conditions
LIKE Operator
The optimizer simplifies conditions that use the LIKE comparison operator to com-
pare an expression with no wildcard characters into an equivalent condition that
uses an equality operator instead. For example, the optimizer simplifies the first
condition below into the second:

ename LIKE ’SMITH’

ename = ’SMITH’

The optimizer can simplify these expressions only when the comparison involves
variable-length datatypes. For example, if ENAME was of type CHAR(10), the opti-
mizer cannot transform the LIKE operation into an equality operation due to the
equality operator following blank-padded semantics and LIKE not following blank-
padded semantics.

IN Operator
The optimizer expands a condition that uses the IN comparison operator to an
equivalent condition that uses equality comparison operators and OR logical opera-
tors. For example, the optimizer expands the first condition below into the second:

ename IN (’SMITH’, ’KING’, ’JONES’)

ename = ’SMITH’ OR ename = ’KING’ OR ename = ’JONES’

See “Example 2: IN Subquery” on page 20-26 for more information.

ANY or SOME Operator
The optimizer expands a condition that uses the ANY or SOME comparison opera-
tor followed by a parenthesized list of values into an equivalent condition that uses
equality comparison operators and OR logical operators. For example, the opti-
mizer expands the first condition below into the second:

sal > ANY (:first_sal, :second_sal)

sal > :first_sal OR sal > :second_sal

The optimizer transforms a condition that uses the ANY or SOME operator fol-
lowed by a subquery into a condition containing the EXISTS operator and a corre-
lated subquery. For example, the optimizer transforms the first condition below
into the second:
 The Optimizer 20-15

Evaluation of Expressions and Conditions
x > ANY (SELECT sal
 FROM emp
 WHERE job = ’ANALYST’)

EXISTS (SELECT sal
 FROM emp
 WHERE job = ’ANALYST’
 AND x > sal)

ALL Operator
The optimizer expands a condition that uses the ALL comparison operator fol-
lowed by a parenthesized list of values into an equivalent condition that uses equal-
ity comparison operators and AND logical operators. For example, the optimizer
expands the first condition below into the second:

sal > ALL (:first_sal, :second_sal)

sal > :first_sal AND sal > :second_sal

The optimizer transforms a condition that uses the ALL comparison operator fol-
lowed by a subquery into an equivalent condition that uses the ANY comparison
operator and a complementary comparison operator. For example, the optimizer
transforms the first condition below into the second:

x > ALL (SELECT sal
 FROM emp
 WHERE deptno = 10)

NOT (x <= ANY (SELECT sal
 FROM emp
 WHERE deptno = 10))

The optimizer then transforms the second query into the following query using the
rule for transforming conditions with the ANY comparison operator followed by a
correlated subquery:

NOT EXISTS (SELECT sal
 FROM emp
 WHERE deptno = 10
 AND x <= sal)
20-16 Oracle8 Concepts

Evaluation of Expressions and Conditions
BETWEEN Operator
The optimizer always replaces a condition that uses the BETWEEN comparison
operator with an equivalent condition that uses the >= and <= comparison opera-
tors. For example, the optimizer replaces the first condition below with the second:

sal BETWEEN 2000 AND 3000

sal >= 2000 AND sal <= 3000

NOT Operator
The optimizer simplifies a condition to eliminate the NOT logical operator. The sim-
plification involves removing the NOT logical operator and replacing a comparison
operator with its opposite comparison operator. For example, the optimizer simpli-
fies the first condition below into the second one:

NOT deptno = (SELECT deptno FROM emp WHERE ename = ’TAYLOR’)

deptno <> (SELECT deptno FROM emp WHERE ename = ’TAYLOR’)

Often a condition containing the NOT logical operator can be written many differ-
ent ways. The optimizer attempts to transform such a condition so that the subcon-
ditions negated by NOTs are as simple as possible, even if the resulting condition
contains more NOTs. For example, the optimizer simplifies the first condition
below into the second and dhen into the third.

NOT (sal < 1000 OR comm IS NULL)

NOT sal < 1000 AND comm IS NOT NULL

sal >= 1000 AND comm IS NOT NULL

Transitivity
If two conditions in the WHERE clause involve a common column, the optimizer
can sometimes infer a third condition using the transitivity principle. The optimizer
can then use the inferred condition to optimize the statement. The inferred condi-
tion could potentially make available an index access path that was not made avail-
able by the original conditions.

Note: Transitivity is used only by the cost-based approach.
 The Optimizer 20-17

Evaluation of Expressions and Conditions
Imagine a WHERE clause containing two conditions of these forms:

WHERE column1 comp_oper constant
 AND column1 = column2

In this case, the optimizer infers the condition:

column2 comp_oper constant

where:

Example: Consider this query in which the WHERE clause contains two conditions,
each or which uses the EMP.DEPTNO column:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = 20
 AND emp.deptno = dept.deptno;

Using transitivity, the optimizer infers this condition:

dept.deptno = 20

If an index exists on the DEPT.DEPTNO column, this condition makes available
access paths using that index.

comp_oper is any of the comparison operators =, !=, ^=, <, <>, >, <=, or >=.

constant is any constant expression involving operators, SQL functions,
literals, bind variables, and correlation variables.

Note: The optimizer only infers conditions that relate columns to
constant expressions, rather than columns to other columns. Imag-
ine a WHERE clause containing two conditions of these forms:

WHERE column1 comp_oper column3
 AND column1 = column2

In this case, the optimizer does not infer this condition:

column2 comp_oper column3
20-18 Oracle8 Concepts

Transforming and Optimizing Statements
Transforming and Optimizing Statements
SQL is a very flexible query language; there are often many statements you could
formulate to achieve the same goal. Sometimes the optimizer transforms one such
statement into another that achieves the same goal if the second statement can be
executed more efficiently.

This section discusses the following topics:

■ Transforming ORs into Compound Queries

■ Transforming Complex Statements into Join Statements

■ Optimizing Statements That Access Views

■ Optimizing Compound Queries

■ Optimizing Distributed Statements

For additional information about optimizing statements, see “Optimizing Join State-
ments” on page 20-63 and “Optimizing “Star” Queries” on page 20-75.

Transforming ORs into Compound Queries
If a query contains a WHERE clause with multiple conditions combined with OR
operators, the optimizer transforms it into an equivalent compound query that uses
the UNION ALL set operator if this makes it execute more efficiently:

■ If each condition individually makes an index access path available, the opti-
mizer can make the transformation. The optimizer then chooses an execution
plan for the resulting statement that accesses the table multiple times using the
different indexes and then puts the results together.

■ If any condition requires a full table scan because it does not make an index
available, the optimizer does not transform the statement. The optimizer
chooses a full table scan to execute the statement, and Oracle tests each row in
the table to determine whether it satisfies any of the conditions.

■ For statements that use the cost-based approach, the optimizer may use statis-
tics to determine whether to make the transformation by estimating and then
comparing the costs of executing the original statement versus the resulting
statement.

■ The cost-based optimizer does not use the OR transformation for in lists or ORs
on the same column; instead, it uses the inlist iterator operator.

Additional Information: For more information, see Oracle8 Tuning.
 The Optimizer 20-19

Transforming and Optimizing Statements
For information on access paths and how indexes make them available, see
Table 20–1 “Access Paths” on page 20-46 and the sections that follow it.

Example: Consider this query with a WHERE clause that contains two conditions
combined with an OR operator:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 OR deptno = 10;

If there are indexes on both the JOB and DEPTNO columns, the optimizer may
transform this query into the equivalent query below:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
UNION ALL
SELECT *
 FROM emp
 WHERE deptno = 10
 AND job <> ’CLERK’;

If you are using the cost-based approach, the optimizer compares the cost of execut-
ing the original query using a full table scan with that of executing the resulting
query when deciding whether to make the transformation.

If you are using the rule-based approach, the optimizer makes this UNION ALL
transformation because each component query of the resulting compound query
can be executed using an index. The rule-based approach assumes that executing
the compound query using two index scans is faster than executing the original
query using a full table scan.

The execution plan for the transformed statement might look like the illustration in
Figure 20–2:
20-20 Oracle8 Concepts

Transforming and Optimizing Statements
Figure 20–2 Execution Plan for a Transformed Query Containing OR

To execute the transformed query, Oracle performs the following steps:

■ Steps 3 and 5 scan the indexes on the JOB and DEPTNO columns using the con-
ditions of the component queries. These steps obtain ROWIDs of the rows that
satisfy the component queries.

■ Steps 2 and 4 use the ROWIDs from Steps 3 and 5 to locate the rows that satisfy
each component query.

■ Step 1 puts together the row sources returned by Steps 2 and 4.

If either of the JOB or DEPTNO columns is not indexed, the optimizer does not
even consider the transformation, because the resulting compound query would
require a full table scan to execute one of its component queries. Executing the com-
pound query with a full table scan in addition to an index scan could not possibly
be faster than executing the original query with a full table scan.

TABLE ACCESS
(BY ROWID)

emp

2 4

TABLE ACCESS
(BY ROWID)

emp

5

INDEX
(RANGE SCAN)

job_index

3

INDEX
(RANGE SCAN)
deptno_index

1

CONCATENATION
 The Optimizer 20-21

Transforming and Optimizing Statements
Example: Consider this query and assume that there is an index on the ENAME col-
umn only:

SELECT *
 FROM emp
 WHERE ename = ’SMITH’
 OR sal > comm;

Transforming the query above would result in the compound query below:

SELECT *
 FROM emp
 WHERE ename = ’SMITH’
UNION ALL
SELECT *
 FROM emp
 WHERE sal > comm;

Since the condition in the WHERE clause of the second component query (SAL >
COMM) does not make an index available, the compound query requires a full
table scan. For this reason, the optimizer does not make the transformation and it
chooses a full table scan to execute the original statement.

Transforming Complex Statements into Join Statements
To optimize a complex statement, the optimizer chooses one of these alternatives:

■ Transform the complex statement into an equivalent join statement and then
optimize the join statement.

■ Optimize the complex statement as is.

The optimizer transforms a complex statement into a join statement whenever the
resulting join statement is guaranteed to return exactly the same rows as the com-
plex statement. This transformation allows Oracle to execute the statement by tak-
ing advantage of join optimization techniques described in “Optimizing Join
Statements” on page 20-63.

Consider this complex statement that selects all rows from the ACCOUNTS table
whose owners appear in the CUSTOMERS table:

SELECT *
 FROM accounts
 WHERE custno IN
 (SELECT custno FROM customers);
20-22 Oracle8 Concepts

Transforming and Optimizing Statements
If the CUSTNO column of the CUSTOMERS table is a primary key or has a
UNIQUE constraint, the optimizer can transform the complex query into this join
statement that is guaranteed to return the same data:

SELECT accounts.*
 FROM accounts, customers
 WHERE accounts.custno = customers.custno;

The execution plan for this statement might look like Figure 20–3.

Figure 20–3 Execution Plan for a Nested Loops Join

To execute this statement, Oracle performs a nested-loops join operation. For infor-
mation on nested loops joins, see “Join Operations” on page 20-63.

If the optimizer cannot transform a complex statement into a join statement, the
optimizer chooses execution plans for the parent statement and the subquery as
though they were separate statements. Oracle then executes the subquery and uses
the rows it returns to execute the parent query.

Consider this complex statement that returns all rows from the ACCOUNTS table
that have balances greater than the average account balance:

SELECT *
 FROM accounts
 WHERE accounts.balance >
 (SELECT AVG(balance) FROM accounts);

TABLE ACCESS
(FULL)

accounts

2 3

INDEX ACCESS
(UNIQUE SCAN)
pk_customers

1

NESTED LOOPS
 The Optimizer 20-23

Transforming and Optimizing Statements
No join statement can perform the function of this statement, so the optimizer does
not transform the statement. Note that complex queries whose subqueries contain
group functions such as AVG cannot be transformed into join statements.

Optimizing Statements That Access Views
To optimize a statement that accesses a view, the optimizer chooses one of these
alternatives:

■ Transform the statement into an equivalent statement that accesses the view’s
base tables, then optimize the resulting statement. The optimizer can use one of
these techniques to transform the statement:

– Merge the view’s query into the referencing query block in the accessing
statement.

– Push the predicate of the referencing query block inside the view (for an
unmergeable view).

■ Issue the view’s query, collecting all the returned rows, and then access this set
of rows with the original statement as though it were a table. (See “Accessing
the View’s Rows with the Original Statement” on page 20-34.)

Merging the View’s Query into the Statement
To merge the view’s query into a referencing query block in the accessing state-
ment, the optimizer replaces the name of the view with the names of its base tables
in the query block and adds the condition of the view’s query’s WHERE clause to
the accessing query block’s WHERE clause.

This optimization applies to select-project-join views, which are views that contain
only selections, projections, and joins — that is, views that do not contain set opera-
tors, group functions, DISTINCT, GROUP BY, CONNECT BY, and so on (as
described in “Mergeable and Unmergeable Views” on page 20-25).

Example: Consider this view of all employees who work in department 10:

CREATE VIEW emp_10
 AS SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp
 WHERE deptno = 10;

Consider this query that accesses the view. The query selects the IDs greater than
7800 of employees who work in department 10:
20-24 Oracle8 Concepts

Transforming and Optimizing Statements
SELECT empno
 FROM emp_10
 WHERE empno > 7800;

The optimizer transforms the query into the following query that accesses the
view’s base table:

SELECT empno
 FROM emp
 WHERE deptno = 10
 AND empno > 7800;

If there are indexes on the DEPTNO or EMPNO columns, the resulting WHERE
clause makes them available.

Mergeable and Unmergeable Views The optimizer can merge a view into a referencing
query block when the view has one or more base tables, provided the view does
not contain:

■ set operators (UNION, UNION ALL, INTERSECT, MINUS)

■ a CONNECT BY clause

■ a ROWNUM pseudocolumn

■ group functions (AVG, COUNT, MAX, MIN, SUM) in the select list.

When a view contains one of the following structures, it can be merged into a refer-
encing query block only if complex view merging is enabled (as described below):

■ a GROUP BY clause

■ a DISTINCT operator in the select list

View merging is not possible for a view that has multiple base tables if it is on the
right side of an outer join. If a view on the right side of an outer join has only one
base table, however, the optimizer can use complex view merging even if an expres-
sion in the view can return a non-null value for a NULL. See “Views in Outer
Joins” on page 20-72 for more information.

Complex View Merging If a view’s query contains a GROUP BY clause or DISTINCT
operator in the select list, then the optimizer can merge the view’s query into the
accessing statement only if complex view merging is enabled. Complex merging can
also be used to merge an IN subquery into the accessing statement, if the subquery
is uncorrelated (see “Example 2: IN Subquery” on page 20-26).
 The Optimizer 20-25

Transforming and Optimizing Statements
Complex merging is not cost-based — it must be enabled with the initialization
parameter COMPLEX_VIEW_MERGING or the MERGE hint, that is, either the
COMPLEX_VIEW_MERGING parameter must be set to TRUE or the accessing
query block must include the MERGE hint. Without this hint or parameter setting,
the optimizer uses another approach (see “Pushing the Predicate into the View” on
page 20-27).

Example 1: View with a GROUP BY Clause Consider the view AVG_SALARY_VIEW,
which contains the average salaries for each department:

CREATE VIEW avg_salary_view AS
 SELECT deptno, AVG(sal) AS avg_sal_dept,
 FROM emp
 GROUP BY deptno;

If complex view merging is enabled then the optimizer can transform this query,
which finds the average salaries of departments in London:

SELECT dept.deptloc, avg_sal_dept
 FROM dept, avg_salary_view
 WHERE dept.deptno = avg_salary_view.deptno
 AND dept.deptloc = ’London’;

into this query:

SELECT dept.deptloc, AVG(sal)
 FROM dept, emp
 WHERE dept.deptno = emp.deptno
 AND dept.deptloc = ’London’
 GROUP BY dept.rowid, dept.deptloc;

The transformed query accesses the view’s base table, selecting only the rows of
employees who work in London and grouping them by department.

Example 2: IN Subquery Complex merging can be used for an IN clause with a non-
correlated subquery, as well as for views. Consider the view MIN_SALARY_VIEW,
which contains the minimum salaries for each department:

SELECT deptno, MIN(sal)
 FROM emp
 GROUP BY deptno;

Additional Information: See Oracle8 Tuning for details about the
MERGE and NO_MERGE hints.
20-26 Oracle8 Concepts

Transforming and Optimizing Statements
If complex merging is enabled then the optimizer can transform this query, which
finds all employees who earn the minimum salary for their department in London:

SELECT emp.ename, emp.sal
 FROM emp, dept
 WHERE (emp.deptno, emp.sal) IN min_salary_view
 AND emp.deptno = dept.deptno
 AND dept.deptloc = ’London’;

into this query (where E1 and E2 represent the EMP table as it is referenced in the
accessing query block and the view’s query block, respectively):

SELECT e1.ename, e1.sal
 FROM emp e1, dept, emp e2
 WHERE e1.deptno = dept.deptno
 AND dept.deptloc = ’London’
 AND e1.deptno = e2.deptno
 GROUP BY e1.rowid, dept.rowid, e1.ename, e1.sal
 HAVING e1.sal = MIN(e2.sal);

Pushing the Predicate into the View
The optimizer can transform a query block that accesses an unmergeable view by
pushing the query block’s predicates inside the view’s query.

Example 1: Consider the TWO_EMP_TABLES view, which is the union of two
employee tables. The view is defined with a compound query that uses the UNION
set operator:

CREATE VIEW two_emp_tables
 (empno, ename, job, mgr, hiredate, sal, comm, deptno) AS
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp1
 UNION
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp2;

Consider this query that accesses the view. The query selects the IDs and names of
all employees in either table who work in department 20:

SELECT empno, ename
 FROM two_emp_tables
 WHERE deptno = 20;
 The Optimizer 20-27

Transforming and Optimizing Statements
Because the view is defined as a compound query, the optimizer cannot merge the
view’s query into the accessing query block. Instead, the optimizer can transform
the accessing statement by pushing its predicate, the WHERE clause condition
(DEPTNO = 20), into the view’s compound query.

The resulting statement looks like this:

SELECT empno, ename
 FROM (SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp1
 WHERE deptno = 20
 UNION
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp2
 WHERE deptno = 20);

If there is an index on the DEPTNO column, the resulting WHERE clauses make it
available.

Figure 20–4, “Accessing a View Defined with the UNION Set Operator”, shows the
execution plan of the resulting statement.
20-28 Oracle8 Concepts

Transforming and Optimizing Statements
Figure 20–4 Accessing a View Defined with the UNION Set Operator

TABLE ACCESS
(FULL)
emp1

5 6

TABLE ACCESS
(FULL)
emp2

4

UNION-ALL

3

SORT
(UNIQUE)

2

PROJECTION

1

VIEW
two_emp_tables
 The Optimizer 20-29

Transforming and Optimizing Statements
To execute this statement, Oracle performs these steps:

■ Steps 5 and 6 perform full scans of the EMP1 and EMP2 tables.

■ Step 4 performs a UNION-ALL operation returning all rows returned by either
Step 5 or Step 6, including all copies of duplicates.

■ Step 3 sorts the result of Step 4, eliminating duplicate rows.

■ Step 2 extracts the desired columns from the result of Step 3.

■ Step 1 indicates that the view’s query was not merged into the accessing query.

Example 2: Consider the view EMP_GROUP_BY_DEPTNO, which contains the
department number, average salary, minimum salary, and maximum salary of all
departments that have employees:

CREATE VIEW emp_group_by_deptno
 AS SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal
 FROM emp
 GROUP BY deptno;

Consider this query, which selects the average, minimum, and maximum salaries
of department 10 from the EMP_GROUP_BY_DEPTNO view:

SELECT *
 FROM emp_group_by_deptno
 WHERE deptno = 10;

The optimizer transforms the statement by pushing its predicate (the WHERE
clause condition) into the view’s query. The resulting statement looks like this:

SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal,
 FROM emp
 WHERE deptno = 10
 GROUP BY deptno;

If there is an index on the DEPTNO column, the resulting WHERE clause makes it
available.
20-30 Oracle8 Concepts

Transforming and Optimizing Statements
Figure 20–5, “Accessing a View Defined with a GROUP BY Clause”, shows the exe-
cution plan for the resulting statement. The execution plan uses an index on the
DEPTNO column.

Figure 20–5 Accessing a View Defined with a GROUP BY Clause

4

INDEX
(RANGE SCAN)

emp_deptno
_index

3

TABLE ACCESS
(BY ROWID)

emp

2

SORT
(GROUP BY)

1

VIEW
emp_group_by

_deptno
 The Optimizer 20-31

Transforming and Optimizing Statements
To execute this statement, Oracle performs these operations:

■ Step 4 performs a range scan on the index EMP_DEPTNO_INDEX (an index on
the DEPTNO column of the EMP table) to retrieve the ROWIDs of all rows in
the EMP table with a DEPTNO value of 10.

■ Step 3 accesses the EMP table using the ROWIDs retrieved by Step 4.

■ Step 2 sorts the rows returned by Step 3 to calculate the average, minimum,
and maximum SAL values.

■ Step 1 indicates that the view’s query was not merged into the accessing query.

Applying a Group Function to the View The optimizer can transform a query that con-
tains a group function (AVG, COUNT, MAX, MIN, SUM) by applying the function
to the view’s query.

Example: Consider a query that accesses the EMP_GROUP_BY_DEPTNO view
defined in the previous example. This query derives the averages for the average
department salary, the minimum department salary, and the maximum department
salary from the employee table:

SELECT AVG(avg_sal), AVG(min_sal), AVG(max_sal)
 FROM emp_group_by_deptno;

The optimizer transforms this statement by applying the AVG group function to
the select list of the view’s query:

SELECT AVG(AVG(sal)), AVG(MIN(sal)), AVG(MAX(sal))
 FROM emp
 GROUP BY deptno;

Figure 20–6 shows the execution plan of the resulting statement.
20-32 Oracle8 Concepts

Transforming and Optimizing Statements
Figure 20–6 Applying Group Functions to a View Defined with GROUP BY Clause

To execute this statement, Oracle performs these operations:

■ Step 4 performs a full scan of the EMP table.

■ Step 3 sorts the rows returned by Step 4 into groups based on their DEPTNO
values and calculates the average, minimum, and maximum SAL value of each
group.

4

TABLE ACCESS
(FULL)

emp

3

SORT
(GROUP BY)

2

VIEW
emp_group_by

_deptno

1

AGGREGATE
(GROUP BY)
 The Optimizer 20-33

Transforming and Optimizing Statements
■ Step 2 indicates that the view’s query was not merged into the accessing query.

■ Step 1 calculates the averages of the values returned by Step 2.

Accessing the View’s Rows with the Original Statement
The optimizer cannot transform all statements that access views into equivalent
statements that access base table(s). For example, if a query accesses a ROWNUM
pseudocolumn in a view, the view cannot be merged into the query and the query’s
predicate cannot be pushed into the view.

To execute a statement that cannot be transformed into one that accesses base
tables, Oracle issues the view’s query, collects the resulting set of rows, and then
accesses this set of rows with the original statement as though it were a table.

Example: Consider the EMP_GROUP_BY_DEPTNO view defined in the previous
section:

CREATE VIEW emp_group_by_deptno
 AS SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal
 FROM emp
 GROUP BY deptno;

Consider this query, which accesses the view. The query joins the average, mini-
mum, and maximum salaries from each department represented in this view and to
the name and location of the department in the DEPT table:

SELECT emp_group_by_deptno.deptno, avg_sal, min_sal,
 max_sal, dname, loc
 FROM emp_group_by_deptno, dept
 WHERE emp_group_by_deptno.deptno = dept.deptno;

Since there is no equivalent statement that accesses only base tables, the optimizer
cannot transform this statement. Instead, the optimizer chooses an execution plan
that issues the view’s query and then uses the resulting set of rows as it would the
rows resulting from a table access.

Figure 20–7, “Joining a View Defined with a GROUP BY Clause to a Table”, shows
the execution plan for this statement. For more information on how Oracle per-
forms a nested loops join operation, see “Join Operations” on page 20-63.
20-34 Oracle8 Concepts

Transforming and Optimizing Statements
Figure 20–7 Joining a View Defined with a GROUP BY Clause to a Table

To execute this statement, Oracle performs these operations:

■ Step 4 performs a full scan of the EMP table.

■ Step 3 sorts the results of Step 4 and calculates the average, minimum, and max-
imum SAL values selected by the query for the EMP_GROUP_BY_DEPTNO
view.

■ Step 2 used the data from the previous two steps for a view.

VIEW
emp_group_by

_deptno

2 5

TABLE ACCESS
(BY ROWID)

dept

6

INDEX
(UNIQUE SCAN)

pk_dept

4

TABLE ACCESS
(FULL)

emp

3

SORT
(GROUP BY)

1

NESTED LOOPS
 The Optimizer 20-35

Transforming and Optimizing Statements
■ For each row returned by Step 2, Step 6 uses the DEPTNO value to perform a
unique scan of the PK_DEPT index.

■ Step 5 uses each ROWID returned by Step 6 to locate the row in the DEPTNO
table with the matching DEPTNO value.

■ Oracle combines each row returned by Step 2 with the matching row returned
by Step 5 and returns the result.

Optimizing Compound Queries
To choose the execution plan for a compound query, the optimizer chooses an exe-
cution plan for each of its component queries and then combines the resulting row
sources with the union, intersection, or minus operation, depending on the set oper-
ator used in the compound query.

Figure 20–8, “Compound Query with UNION ALL Set Operator”, shows the execu-
tion plan for this statement, which uses the UNION ALL operator to select all
occurrences of all parts in either the ORDERS1 table or the ORDERS2 table:

SELECT part FROM orders1
UNION ALL
SELECT part FROM orders2;

Figure 20–8 Compound Query with UNION ALL Set Operator

TABLE ACCESS
(FULL)
orders1

2 3

TABLE ACCESS
(FULL)
orders2

1

UNION-ALL
20-36 Oracle8 Concepts

Transforming and Optimizing Statements
To execute this statement, Oracle performs these steps:

■ Steps 2 and 3 perform full table scans on the ORDERS1 and ORDERS2 tables.

■ Step 1 performs a UNION-ALL operation returning all rows that are returned
by either Step 2 or Step 3 including all copies of duplicates.

Figure 20–9, “Compound Query with UNION Set Operator”, shows the execution
plan for the following statement, which uses the UNION operator to select all parts
that appear in either the ORDERS1 or ORDERS2 table:

SELECT part FROM orders1
UNION
SELECT part FROM orders2;

Figure 20–9 Compound Query with UNION Set Operator

TABLE ACCESS
(FULL)
orders1

3 4

TABLE ACCESS
(FULL)
orders2

2

UNION-ALL

1

SORT
(UNIQUE)
 The Optimizer 20-37

Transforming and Optimizing Statements
This execution plan is identical to the one for the UNION-ALL operator shown in
Figure 20–8 “Compound Query with UNION ALL Set Operator”, except that in
this case Oracle uses the SORT operation to eliminate the duplicates returned by
the UNION-ALL operation.

Figure 20–10, “Compound Query with INTERSECT Set Operator”, shows the exe-
cution plan for this statement, which uses the INTERSECT operator to select only
those parts that appear in both the ORDERS1 and ORDERS2 tables:

SELECT part FROM orders1
INTERSECT
SELECT part FROM orders2;

Figure 20–10 Compound Query with INTERSECT Set Operator

3

TABLE ACCESS
(FULL)
orders1

SORT
(UNIQUE)

2 4

SORT
(UNIQUE)

5

TABLE ACCESS
(FULL)
orders2

1

INTERSECTION
20-38 Oracle8 Concepts

Transforming and Optimizing Statements
To execute this statement, Oracle performs these steps:

■ Steps 3 and 5 perform full table scans of the ORDERS1 and ORDERS2 tables.

■ Steps 2 and 4 sort the results of Steps 3 and 5, eliminating duplicates in each
row source.

■ Step 1 performs an INTERSECTION operation that returns only rows that are
returned by both Steps 2 and 4.

Optimizing Distributed Statements
The optimizer chooses execution plans for SQL statements that access data on
remote databases in much the same way it chooses executions for statements that
access only local data:

■ If all the tables accessed by a SQL statement are collocated on the same remote
database, Oracle sends the SQL statement to that remote database. The remote
Oracle instance executes the statement and sends only the results back to the
local database.

■ If a SQL statement accesses tables that are located on different databases, Ora-
cle decomposes the statement into individual fragments, each of which
accesses tables on a single database. Oracle then sends each fragment to the
database that it accesses. The remote Oracle instance for each of these data-
bases executes its fragment and returns the results to the local database, where
the local Oracle instance may perform any additional processing the statement
requires.

When choosing a cost-based execution plan for a distributed statement, the opti-
mizer considers the available indexes on remote databases just as it does indexes
on the local database. The optimizer also considers statistics on remote databases
for cost-based optimization. Furthermore, the optimizer considers the location of
data when estimating the cost of accessing it. For example, a full scan of a remote
table has a greater estimated cost than a full scan of an identical local table.

For a rule-based execution plan, the optimizer does not consider indexes on
remote tables.
 The Optimizer 20-39

Choosing an Optimization Approach and Goal
Choosing an Optimization Approach and Goal
The optimizer’s behavior when choosing an optimization approach and goal for a
SQL statement is affected by these factors:

■ the OPTIMIZER_MODE initialization parameter

■ statistics in the data dictionary

■ the OPTIMIZER_GOAL parameter of the ALTER SESSION command

■ hints (comments) in the SQL statement

■ the statement being executed in a PL/SQL block

The OPTIMIZER_MODE Initialization Parameter
The OPTIMIZER_MODE initialization parameter establishes the default behavior
for choosing an optimization approach for the instance. This parameter can have
these values:

If the optimizer uses the cost-based approach for a SQL statement and some tables
accessed by the statement have no statistics, the optimizer uses internal informa-

CHOOSE The optimizer chooses between a cost-based approach and a
rule-based approach based on whether the statistics are avail-
able for the cost-based approach. If the data dictionary con-
tains statistics for at least one of the accessed tables, the
optimizer uses a cost-based approach and optimizes with a
goal of best throughput. If the data dictionary contains no sta-
tistics for any of the accessed tables, the optimizer uses a rule-
based approach. This is the default value for the parameter.

ALL_ROWS The optimizer uses a cost-based approach for all SQL state-
ments in the session regardless of the presence of statistics
and optimizes with a goal of best throughput (minimum
resource use to complete the entire statement).

FIRST_ROWS The optimizer uses a cost-based approach for all SQL state-
ments in the session regardless of the presence of statistics
and optimizes with a goal of best response time (minimum
resource use to return the first row of the result set).

RULE The optimizer chooses a rule-based approach for all SQL
statements issued to the instance regardless of the presence of
statistics.
20-40 Oracle8 Concepts

Choosing an Optimization Approach and Goal
tion (such as the number of data blocks allocated to these tables) to estimate other
statistics for these tables.

Statistics in the Data Dictionary
Oracle stores statistics about columns, tables, clusters, indexes, and partitions in the
data dictionary for use by the cost-based optimizer (see “Statistics for the Cost-
Based Approach” on page 20-7).

Two options of the ANALYZE command generate statistics:

■ COMPUTE STATISTICS generates exact statistics.

■ ESTIMATE STATISTICS generates estimations by sampling the data.

The OPTIMIZER_GOAL Parameter of the ALTER SESSION Command
The OPTIMIZER_GOAL parameter of the ALTER SESSION command can override
the optimization approach and goal established by the OPTIMIZER_MODE initial-
ization parameter for an individual session.

The value of this parameter affects the optimization of SQL statements issued by
stored procedures and functions called during the session, but it does not affect the
optimization of recursive SQL statements that Oracle issues during the session. The
optimization approach for recursive SQL statements is affected only by the value of
the OPTIMIZER_MODE initialization parameter.

The OPTIMIZER_GOAL parameter can have these values:

Additional Information: See Oracle8 Tuning for more information.

CHOOSE The optimizer chooses between a cost-based approach and a
rule-based approach based on whether statistics are available
for the cost-based approach. If the data dictionary contains
statistics for at least one of the accessed tables, the optimizer
uses a cost-based approach and optimizes with a goal of best
throughput. If the data dictionary contains no statistics for
any of the accessed tables, the optimizer uses a rule-based
approach.

ALL_ROWS The optimizer uses a cost-based approach for all SQL state-
ments in the session regardless of the presence of statistics
and optimizes with a goal of best throughput (minimum
resource use to complete the entire statement).
 The Optimizer 20-41

Choosing Access Paths
The FIRST_ROWS, ALL_ROWS, CHOOSE, and RULE Hints
A FIRST_ROWS, ALL_ROWS, CHOOSE, or RULE hint in an individual SQL state-
ment can override the effects of both the OPTIMIZER_MODE initialization parame-
ter and the OPTIMIZER_GOAL parameter of the ALTER SESSION command.

PL/SQL and the Optimizer Goal
The optimizer goal applies only to queries submitted directly, not queries submit-
ted from within PL/SQL.

■ The ALTER SESSION OPTIMIZER_GOAL statement does not affect SQL that is
run from within PL/SQL.

■ PL/SQL ignores the initialization parameter OPTIMIZER_MODE =
FIRST_ROWS.

You can use hints to determine the access path for SQL statements submitted from
within PL/SQL.

Choosing Access Paths
One of the most important choices the optimizer makes when formulating an exe-
cution plan is how to retrieve data from the database. For any row in any table
accessed by a SQL statement, there may be many access paths by which that row
can be located and retrieved. The optimizer chooses one of them.

This section discusses:

■ the basic methods by which Oracle can access data

■ each access path and when it is available to the optimizer

■ how the optimizer chooses among available access paths

FIRST_ROWS The optimizer uses a cost-based approach for all SQL state-
ments in the session regardless of the presence of statistics
and optimizes with a goal of best response time (minimum
resource use to return the first row of the result set).

RULE The optimizer chooses a rule-based approach for all SQL
statements issued to the Oracle instance regardless of the
presence of statistics.

Additional Information: See Oracle8 Tuning for information on
how to use hints.
20-42 Oracle8 Concepts

Choosing Access Paths
Access Methods
This section describes basic methods by which Oracle can access data.

Full Table Scans
A full table scan retrieves rows from a table. To perform a full table scan, Oracle
reads all rows in the table, examining each row to determine whether it satisfies the
statement’s WHERE clause. Oracle reads every data block allocated to the table
sequentially, so a full table scan can be performed very efficiently using multiblock
reads. Oracle reads each data block only once.

Table Access by ROWID
A table access by ROWID also retrieves rows from a table. The ROWID of a row
specifies the datafile and data block containing the row and the location of the row
in that block. Locating a row by its ROWID is the fastest way for Oracle to find a
single row.

To access a table by ROWID, Oracle first obtains the ROWIDs of the selected rows,
either from the statement’s WHERE clause or through an index scan of one or more
of the table’s indexes. Oracle then locates each selected row in the table based on its
ROWID.

Cluster Scans
From a table stored in an indexed cluster, a cluster scan retrieves rows that have
the same cluster key value. In an indexed cluster, all rows with the same cluster
key value are stored in the same data blocks. To perform a cluster scan, Oracle first
obtains the ROWID of one of the selected rows by scanning the cluster index. Ora-
cle then locates the rows based on this ROWID.

Hash Scans
Oracle can use a hash scan to locate rows in a hash cluster based on a hash value. In
a hash cluster, all rows with the same hash value are stored in the same data
blocks. To perform a hash scan, Oracle first obtains the hash value by applying a
hash function to a cluster key value specified by the statement. Oracle then scans
the data blocks containing rows with that hash value.

Index Scans
An index scan retrieves data from an index based on the value of one or more col-
umns of the index. To perform an index scan, Oracle searches the index for the
indexed column values accessed by the statement. If the statement accesses only
 The Optimizer 20-43

Choosing Access Paths
columns of the index, Oracle reads the indexed column values directly from the
index, rather than from the table.

The index contains not only the indexed value, but also the ROWIDs of rows in the
table having that value. Therefore, if the statement accesses other columns in addi-
tion to the indexed columns, Oracle can find the rows in the table with a table
access by ROWID or a cluster scan.

An index scan can be one of these types:

unique scan A unique scan of an index returns only a single ROWID.
Oracle performs a unique scan only in cases in which a single
ROWID is required, rather than many ROWIDs. For example,
Oracle performs a unique scan if there is a UNIQUE or a
PRIMARY KEY constraint that guarantees that the statement
accesses only a single row.

range scan A range scan of an index can return zero or more ROWIDs
depending on how many rows the statement accesses.

full scan Full index scan is available if a predicate references one of the
columns in the index. The predicate does not have to be an
index driver. Full scan is also available when there is no pred-
icate if all of the columns in the table referenced in the query
are included in the index and at least one of the index col-
umns is not nullable. Full scan can be used to eliminate a sort
operation. It reads the blocks singly.

fast full scan Fast full index scan is an alternative to a full table scan when
the index contains all the columns that are needed for the
query and at least one column in the index key has the NOT
NULL constraint. Fast full scan accesses the data in the index
itself, without accessing the table. It cannot be used to elimi-
nate a sort operation. It reads the entire index using multi-
block reads (unlike a full index scan) and can be parallelized.

Fast full scan is available only with cost-based optimization.
You can specify it with the initialization parameter
FAST_FULL_SCAN_ENABLED or the INDEX_FFS hint.
20-44 Oracle8 Concepts

Choosing Access Paths
Access Paths
Table 20–1 lists the data access paths. The optimizer can only choose to use a partic-
ular access path for a table if the statement contains a WHERE clause condition or
other construct that makes that access path available.

■ The cost-based approach chooses a path based on resource use (see “Choosing
Among Access Paths with the Cost-Based Approach” on page 20-58).

■ The rule-based approach uses the rank of each path to choose a path when
more than one path is available (see “Choosing Among Access Paths with the
Rule-Based Approach” on page 20-62).

bitmap Bitmap indexes use a bitmap for key values and a mapping
function that converts each bit position to a ROWID. Bitmaps
efficiently merge indexes that correspond to several condi-
tions in a WHERE clause, using Boolean operations to resolve
AND and OR conditions. Bitmap access is available only with
cost-based optimization. See “Bitmap Indexes” on page 8-23.

Attention: Bitmap indexes are available only if you have pur-
chased the Oracle8 Enterprise Edition. See Getting to Know Oracle8
and the Oracle8 Enterprise Edition for more information.
 The Optimizer 20-45

Choosing Access Paths
Each of the following sections describes an access path and discusses:

■ when it is available

■ the method Oracle uses to access data with it

■ the output generated for it by the EXPLAIN PLAN command

Table 20–1 Access Paths

Rank Access Path

1 Single row by ROWID

2 Single row by cluster join

3 Single row by hash cluster key with unique or primary key

4 Single row by unique or primary key

5 Cluster join

6 Hash cluster key

7 Indexed cluster key

8 Composite key

9 Single-column indexes

10 Bounded range search on indexed columns

11 Unbounded range search on indexed columns

12 Sort-merge join

13 MAX or MIN of indexed column

14 ORDER BY on indexed columns

15 Full table scan

Unranked Access Paths

— Fast full index scan (not available with the rule-based optimizer): see
Oracle8 Tuning

— Bitmap index scan (not available with the rule-based optimizer): see “Bit-
map Indexes” on page 8-23
20-46 Oracle8 Concepts

Choosing Access Paths
Path 1: Single Row by ROWID
This access path is available only if the statement’s WHERE clause identifies the
selected rows by ROWID or with the CURRENT OF CURSOR embedded SQL syn-
tax supported by the Oracle Precompilers. To execute the statement, Oracle
accesses the table by ROWID.

Example: This access path is available in the following statement:

SELECT * FROM emp WHERE ROWID = ’AAAA7bAA5AAAA1UAAA’;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP

Path 2: Single Row by Cluster Join
This access path is available for statements that join tables stored in the same clus-
ter if both of these conditions are true:

■ The statement’s WHERE clause contains conditions that equate each column of
the cluster key in one table with the corresponding column in the other table.

■ The statement’s WHERE clause also contains a condition that guarantees that
the join returns only one row. Such a condition is likely to be an equality condi-
tion on the column(s) of a unique or primary key.

These conditions must be combined with AND operators. To execute the statement,
Oracle performs a nested loops operation. (For information on the nested loops
operation, see “Join Operations” on page 20-63.)

Example: This access path is available for the following statement in which the EMP
and DEPT tables are clustered on the DEPTNO column and the EMPNO column is
the primary key of the EMP table:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND emp.empno = 7900;

The EXPLAIN PLAN output for this statement might look like this:
 The Optimizer 20-47

Choosing Access Paths
OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS BY ROWID EMP
 INDEX UNIQUE SCAN PK_EMP
 TABLE ACCESS CLUSTER DEPT

PK_EMP is the name of an index that enforces the primary key.

Path 3: Single Row by Hash Cluster Key with Unique or Primary Key
This access path is available if both of these conditions are true:

■ The statement’s WHERE clause uses all columns of a hash cluster key in equal-
ity conditions. For composite cluster keys, the equality conditions must be com-
bined with AND operators.

■ The statement is guaranteed to return only one row because the columns that
make up the hash cluster key also make up a unique or primary key.

To execute the statement, Oracle applies the cluster’s hash function to the hash clus-
ter key value specified in the statement to obtain a hash value. Oracle then uses the
hash value to perform a hash scan on the table.

Example: This access path is available in the following statement in which the
ORDERS and LINE_ITEMS tables are stored in a hash cluster, and the ORDERNO
column is both the cluster key and the primary key of the ORDERS table:

SELECT *
 FROM orders
 WHERE orderno = 65118968;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS HASH ORDERS

Path 4: Single Row by Unique or Primary Key
This access path is available if the statement’s WHERE clause uses all columns of a
unique or primary key in equality conditions. For composite keys, the equality con-
ditions must be combined with AND operators. To execute the statement, Oracle
20-48 Oracle8 Concepts

Choosing Access Paths
performs a unique scan on the index on the unique or primary key to retrieve a sin-
gle ROWID and then accesses the table by that ROWID.

Example: This access path is available in the following statement in which the
EMPNO column is the primary key of the EMP table:

SELECT *
 FROM emp
 WHERE empno = 7900;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX UNIQUE SCAN PK_EMP

PK_EMP is the name of the index that enforces the primary key.

Path 5: Clustered Join
This access path is available for statements that join tables stored in the same clus-
ter if the statement’s WHERE clause contains conditions that equate each column of
the cluster key in one table with the corresponding column in the other table. For a
composite cluster key, the equality conditions must be combined with AND opera-
tors. To execute the statement, Oracle performs a nested loops operation. (For infor-
mation on nested loops operations, see “Join Operations” on page 20-63.)

Example: This access path is available in the following statement in which the EMP
and DEPT tables are clustered on the DEPTNO column:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL DEPT
 TABLE ACCESS CLUSTER EMP
 The Optimizer 20-49

Choosing Access Paths
Path 6: Hash Cluster Key
This access path is available if the statement’s WHERE clause uses all the columns
of a hash cluster key in equality conditions. For a composite cluster key, the equal-
ity conditions must be combined with AND operators. To execute the statement,
Oracle applies the cluster’s hash function to the hash cluster key value specified in
the statement to obtain a hash value. Oracle then uses this hash value to perform a
hash scan on the table.

Example: This access path is available for the following statement in which the
ORDERS and LINE_ITEMS tables are stored in a hash cluster and the ORDERNO
column is the cluster key:

SELECT *
 FROM line_items
 WHERE orderno = 65118968;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS HASH LINE_ITEMS

Path 7: Indexed Cluster Key
This access path is available if the statement’s WHERE clause uses all the columns
of an indexed cluster key in equality conditions. For a composite cluster key, the
equality conditions must be combined with AND operators. To execute the state-
ment, Oracle performs a unique scan on the cluster index to retrieve the ROWID of
one row with the specified cluster key value. Oracle then uses that ROWID to
access the table with a cluster scan. Since all rows with the same cluster key value
are stored together, the cluster scan requires only a single ROWID to find them all.

Example: This access path is available in the following statement in which the EMP
table is stored in an indexed cluster and the DEPTNO column is the cluster key:

SELECT * FROM emp
 WHERE deptno = 10;

The EXPLAIN PLAN output for this statement might look like this:
20-50 Oracle8 Concepts

Choosing Access Paths
OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS CLUSTER EMP
 INDEX UNIQUE SCAN PERS_INDEX

PERS_INDEX is the name of the cluster index.

Path 8: Composite Index
This access path is available if the statement’s WHERE clause uses all columns of a
composite index in equality conditions combined with AND operators. To execute
the statement, Oracle performs a range scan on the index to retrieve ROWIDs of the
selected rows and then accesses the table by those ROWIDs.

Example: This access path is available in the following statement in which there is a
composite index on the JOB and DEPTNO columns:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 AND deptno = 30;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN JOB_DEPTNO_INDEX

JOB_DEPTNO_INDEX is the name of the composite index on the JOB and
DEPTNO columns.

Path 9: Single-Column Indexes
This access path is available if the statement’s WHERE clause uses the columns of
one or more single-column indexes in equality conditions. For multiple single-col-
umn indexes, the conditions must be combined with AND operators.

If the WHERE clause uses the column of only one index, Oracle executes the state-
ment by performing a range scan on the index to retrieve the ROWIDs of the
selected rows and then accessing the table by these ROWIDs.
 The Optimizer 20-51

Choosing Access Paths
Example: This access path is available in the following statement in which there is
an index on the JOB column of the EMP table:

SELECT *
 FROM emp
 WHERE job = ’ANALYST’;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN JOB_INDEX

JOB_INDEX is the index on EMP.JOB.

If the WHERE clauses uses columns of many single-column indexes, Oracle exe-
cutes the statement by performing a range scan on each index to retrieve the ROW-
IDs of the rows that satisfy each condition. Oracle then merges the sets of ROWIDs
to obtain a set of ROWIDs of rows that satisfy all conditions. Oracle then accesses
the table using these ROWIDs.

Oracle can merge up to five indexes. If the WHERE clause uses columns of more
than five single-column indexes, Oracle merges five of them, accesses the table by
ROWID, and then tests the resulting rows to determine whether they satisfy the
remaining conditions before returning them.

Example: This access path is available in the following statement in which there are
indexes on both the JOB and DEPTNO columns of the EMP table:

SELECT *
 FROM emp
 WHERE job = ’ANALYST’
 AND deptno = 20;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 AND-EQUAL
 INDEX RANGE SCAN JOB_INDEX
 INDEX RANGE SCAN DEPTNO_INDEX
20-52 Oracle8 Concepts

Choosing Access Paths
The AND-EQUAL operation merges the ROWIDs obtained by the scans of the
JOB_INDEX and the DEPTNO_INDEX, resulting in a set of ROWIDs of rows that
satisfy the query.

Path 10: Bounded Range Search on Indexed Columns
This access path is available if the statement’s WHERE clause contains a condition
that uses either the column of a single-column index or one or more columns that
make up a leading portion of a composite index:

column = expr

column >[=] expr AND column <[=] expr

column BETWEEN expr AND expr

column LIKE ’c%’

Each of these conditions specifies a bounded range of indexed values that are
accessed by the statement. The range is said to be bounded because the conditions
specify both its least value and its greatest value. To execute such a statement,
Oracle performs a range scan on the index and then accesses the table by ROWID.

This access path is not available if the expression expr references the indexed
column.

Example: This access path is available in this statement in which there is an index
on the SAL column of the EMP table:

SELECT *
 FROM emp
 WHERE sal BETWEEN 2000 AND 3000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN SAL_INDEX

SAL_INDEX is the name of the index on EMP.SAL.
 The Optimizer 20-53

Choosing Access Paths
Example: This access path is also available in the following statement in which there
is an index on the ENAME column of the EMP table:

SELECT *
 FROM emp
 WHERE ename LIKE ’S%’;

Path 11: Unbounded Range Search on Indexed Columns
This access path is available if the statement’s WHERE clause contains one of these
conditions that use either the column of a single-column index or one or more col-
umns of a leading portion of a composite index:

WHERE column >[=] expr

WHERE column <[=] expr

Each of these conditions specifies an unbounded range of index values accessed by
the statement. The range is said to be unbounded because the condition specifies
either its least value or its greatest value, but not both. To execute such a statement,
Oracle performs a range scan on the index and then accesses the table by ROWID.

Example: This access path is available in the following statement in which there is
an index on the SAL column of the EMP table:

SELECT *
 FROM emp
 WHERE sal > 2000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN SAL_INDEX

Example: This access path is available in the following statement in which there is a
composite index on the ORDER and LINE columns of the LINE_ITEMS table:

SELECT *
 FROM line_items
 WHERE order > 65118968;

The access path is available because the WHERE clause uses the ORDER column, a
leading portion of the index.
20-54 Oracle8 Concepts

Choosing Access Paths
Example: This access path is not available in the following statement in which there
is an index on the ORDER and LINE columns:

SELECT *
 FROM line_items
 WHERE line < 4;

The access path is not available because the WHERE clause only uses the LINE col-
umn, which is not a leading portion of the index.

Path 12: Sort-Merge Join
This access path is available for statements that join tables that are not stored
together in a cluster if the statement’s WHERE clause uses columns from each table
in equality conditions. To execute such a statement, Oracle uses a sort-merge opera-
tion. Oracle can also use a nested loops operation to execute a join statement. (For
information on these operations, see “Optimizing Join Statements” on page 20-63.)

Example: This access path is available for the following statement in which the EMP
and DEPT tables are not stored in the same cluster:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 MERGE JOIN
 SORT JOIN
 TABLE ACCESS FULL EMP
 SORT JOIN
 TABLE ACCESS FULL DEPT

Path 13: MAX or MIN of Indexed Column
This access path is available for a SELECT statement for which all of these condi-
tions are true:

■ The query uses the MAX or MIN function to select the maximum or minimum
value of either the column of a single-column index or the leading column of a
composite index. The index cannot be a cluster index. The argument to the
MAX or MIN function can be any expression involving the column, a constant,
 The Optimizer 20-55

Choosing Access Paths
or the addition operator (+), the concatenation operation (||), or the CONCAT
function.

■ There are no other expressions in the select list.

■ The statement has no WHERE clause or GROUP BY clause.

To execute the query, Oracle performs a range scan of the index to find the maxi-
mum or minimum indexed value. Since only this value is selected, Oracle need not
access the table after scanning the index.

Example: This access path is available for the following statement in which there is
an index on the SAL column of the EMP table:

SELECT MAX(sal) FROM emp;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 AGGREGATE GROUP BY
 INDEX RANGE SCAN SAL_INDEX

Path 14: ORDER BY on Indexed Column
This access path is available for a SELECT statement for which all of these condi-
tions are true:

■ The query contains an ORDER BY clause that uses either the column of a single-
column index or a leading portion of a composite index. The index cannot be a
cluster index.

■ There must be a PRIMARY KEY or NOT NULL integrity constraint that guaran-
tees that at least one of the indexed columns listed in the ORDER BY clause con-
tains no nulls.

■ The NLS_SORT parameter is set to BINARY.

To execute the query, Oracle performs a range scan of the index to retrieve the
ROWIDs of the selected rows in sorted order. Oracle then accesses the table by
these ROWIDs.
20-56 Oracle8 Concepts

Choosing Access Paths
Example: This access path is available for the following statement in which there is
a primary key on the EMPNO column of the EMP table:

SELECT *
 FROM emp
 ORDER BY empno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN PK_EMP

PK_EMP is the name of the index that enforces the primary key. The primary key
ensures that the column does not contain nulls.

Path 15: Full Table Scan
This access path is available for any SQL statement, regardless of its WHERE clause
conditions.

Note that these conditions make index access paths unavailable:

■ column1 > column2

■ column1 < column2

■ column1 >= column2

■ column1 <= column2

where column1 and column2 are in the same table.

■ column IS NULL

■ column IS NOT NULL

■ column NOT IN

■ column != expr

■ column LIKE ’%pattern’

regardless of whether column is indexed.

■ expr = expr2

where expr is an expression that operates on a column with an operator or function,
 The Optimizer 20-57

Choosing Access Paths
regardless of whether the column is indexed.

■ NOT EXISTS subquery

■ ROWNUM pseudocolumn in a view

■ any condition involving a column that is not indexed

Any SQL statement that contains only these constructs and no others that make
index access paths available must use full table scans.

Example: This statement uses a full table scan to access the EMP table:

SELECT *
 FROM emp;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS FULL EMP

Choosing Among Access Paths
This section describes how the optimizer chooses among available access paths:

■ when using the cost-based approach

■ when using the rule-based approach

Choosing Among Access Paths with the Cost-Based Approach
With the cost-based approach, the optimizer chooses an access path based on these
factors:

■ the available access paths for the statement

■ the estimated cost of executing the statement using each access path or combi-
nation of paths

To choose an access path, the optimizer first determines which access paths are
available by examining the conditions in the statement’s WHERE clause. The opti-
mizer then generates a set of possible execution plans using available access paths
and estimates the cost of each plan using the statistics for the index, columns, and
tables accessible to the statement. The optimizer then chooses the execution plan
with the lowest estimated cost.
20-58 Oracle8 Concepts

Choosing Access Paths
The optimizer’s choice among available access paths can be overridden with hints.

To choose among available access paths, the optimizer considers these factors:

■ Selectivity: The selectivity is the percentage of rows in the table that the query
selects. A query that selects a small percentage of a table’s rows has good selec-
tivity, while a query that selects a large percentage of rows has poor selectivity.

The optimizer is more likely to choose an index scan over a full table scan for a
query with good selectivity than for one with poor selectivity. Index scans are
usually more efficient than full table scans for queries that access only a small
percentage of a table’s rows, while full table scans are usually faster for queries
that access a large percentage.

To determine the selectivity of a query, the optimizer considers these sources of
information:

– the operators used in the WHERE clause

– unique and primary key columns used in the WHERE clause

– statistics for the table

The examples below illustrate how the optimizer uses selectivity.

■ DB_FILE_MULTIBLOCK_READ_COUNT: Full table scans use multiblock
reads, so the cost of a full table scan depends on the number of multiblock
reads required to read the entire table, which depends on the number of blocks
read by a single multiblock read, which is specified by the initialization param-
eter DB_FILE_MULTIBLOCK_READ_COUNT. For this reason, the optimizer
may be more likely to choose a full table scan when the value of this parameter
is high.

Example: Consider this query, which uses an equality condition in its WHERE
clause to select all employees named Jackson:

SELECT *
 FROM emp
 WHERE ename = ’JACKSON’;

If the ENAME column is a unique or primary key, the optimizer determines that
there is only one employee named Jackson, and the query returns only one row. In
this case, the query is very selective, and the optimizer is most likely to access the

Additional Information: See Oracle8 Tuning for information about
hints in SQL statements.
 The Optimizer 20-59

Choosing Access Paths
table using a unique scan on the index that enforces the unique or primary key
(access path 4).

Example: Consider again the query in the previous example. If the ENAME column
is not a unique or primary key, the optimizer can use these statistics to estimate the
query’s selectivity:

■ USER_TAB_COLUMNS.NUM_DISTINCT is the number of values for each col-
umn in the table.

■ USER_TABLES.NUM_ROWS is the number of rows in each table.

By dividing the number of rows in the EMP table by the number of distinct values
in the ENAME column, the optimizer estimates what percentage of employees
have the same name. By assuming that the ENAME values are uniformly distrib-
uted, the optimizer uses this percentage as the estimated selectivity of the query.

Example: Consider this query, which selects all employees with employee ID num-
bers less than 7500:

SELECT *
 FROM emp
 WHERE empno < 7500;

To estimate the selectivity of the query, the optimizer uses the boundary value of
7500 in the WHERE clause condition and the values of the HIGH_VALUE and
LOW_VALUE statistics for the EMPNO column if available. These statistics can be
found in the USER_TAB_COLUMNS view. The optimizer assumes that EMPNO
values are evenly distributed in the range between the lowest value and highest
value. The optimizer then determines what percentage of this range is less than the
value 7500 and uses this value as the estimated selectivity of the query.

Example: Consider this query, which uses a bind variable rather than a literal value
for the boundary value in the WHERE clause condition:

SELECT *
 FROM emp
 WHERE empno < :e1;

The optimizer does not know the value of the bind variable E1. Indeed, the value of
E1 may be different for each execution of the query. For this reason, the optimizer
cannot use the means described in the previous example to determine selectivity of
this query. In this case, the optimizer heuristically guesses a small value for the
selectivity of the column (because it is indexed). The optimizer makes this assump-
20-60 Oracle8 Concepts

Choosing Access Paths
tion whenever a bind variable is used as a boundary value in a condition with one
of the operators <, >, <=, or >=.

The optimizer’s treatment of bind variables can cause it to choose different execu-
tion plans for SQL statements that differ only in the use of bind variables rather
than constants. In one case in which this difference may be especially apparent, the
optimizer may choose different execution plans for an embedded SQL statement
with a bind variable in an Oracle Precompiler program and the same SQL state-
ment with a constant in SQL*Plus.

Example: Consider this query, which uses two bind variables as boundary values in
the condition with the BETWEEN operator:

SELECT *
 FROM emp
 WHERE empno BETWEEN :low_e AND :high_e;

The optimizer decomposes the BETWEEN condition into these two conditions:

empno >= :low_e
empno <= :high_e

The optimizer heuristically estimates a small selectiviy for indexed columns in
order to favor the use of the index.

Example: Consider this query, which uses the BETWEEN operator to select all
employees with employee ID numbers between 7500 and 7800:

SELECT *
 FROM emp
 WHERE empno BETWEEN 7500 AND 7800;

To determine the selectivity of this query, the optimizer decomposes the WHERE
clause condition into these two conditions:

empno >= 7500
empno <= 7800

The optimizer estimates the individual selectivity of each condition using the
means described in a previous example. The optimizer then uses these selectivities
(S1 and S2) and the absolute value function (ABS) in this formula to estimate the
selectivity (S) of the BETWEEN condition:

S = ABS(S1 + S2 - 1)
 The Optimizer 20-61

Choosing Access Paths
Choosing Among Access Paths with the Rule-Based Approach
With the rule-based approach, the optimizer chooses whether to use an access path
based on these factors:

■ the available access paths for the statement

■ the ranks of these access paths in Table 20–1 “Access Paths” on page 20-46

To choose an access path, the optimizer first examines the conditions in the state-
ment’s WHERE clause to determine which access paths are available. The opti-
mizer then chooses the most highly ranked available access path.

Note that the full table scan is the lowest ranked access path on the list. This means
that the rule-based approach always chooses an access path that uses an index if
one is available, even if a full table scan might execute faster.

The order of the conditions in the WHERE clause does not normally affect the opti-
mizer’s choice among access paths.

Example: Consider this SQL statement, which selects the employee numbers of all
employees in the EMP table with an ENAME value of ’CHUNG’ and with a SAL
value greater than 2000:

SELECT empno
 FROM emp
 WHERE ename = ’CHUNG’
 AND sal > 2000;

Consider also that the EMP table has these integrity constraints and indexes:

■ There is a PRIMARY KEY constraint on the EMPNO column that is enforced by
the index PK_EMPNO.

■ There is an index named ENAME_IND on the ENAME column.

■ There is an index named SAL_IND on the SAL column.

Based on the conditions in the WHERE clause of the SQL statement, the integrity
constraints, and the indexes, these access paths are available:

■ A single-column index access path using the ENAME_IND index is made avail-
able by the condition ENAME = ’CHUNG’. This access path has rank 9.

■ An unbounded range scan using the SAL_IND index is made available by the
condition SAL > 2000. This access path has rank 11.

■ A full table scan is automatically available for all SQL statements. This access
path has rank 15.
20-62 Oracle8 Concepts

Optimizing Join Statements
Note that the PK_EMPNO index does not make the single row by primary key
access path available because the indexed column does not appear in a condition in
the WHERE clause.

Using the rule-based approach, the optimizer chooses the access path that uses the
ENAME_IND index to execute this statement. The optimizer chooses this path
because it is the most highly ranked path available.

Optimizing Join Statements
To choose an execution plan for a join statement, the optimizer must make these
interrelated decisions:

Join Operations
The optimizer can use the following operations to join two row sources:

■ Nested Loops Join

■ Sort-Merge Join

■ Cluster Join

■ Hash Join

Nested Loops Join
To perform a nested loops join, Oracle follows these steps:

access paths As for simple statements, the optimizer must choose an
access path to retrieve data from each table in the join state-
ment. (See “Choosing Access Paths” on page 20-42.)

join operations To join each pair of row sources, Oracle must perform one of
these operations:

■ nested loops

■ sort-merge

■ cluster

■ hash join (not available with rule-based optimization)

join order To execute a statement that joins more than two tables, Oracle
joins two of the tables, and then joins the resulting row source
to the next table. This process is continued until all tables are
joined into the result.
 The Optimizer 20-63

Optimizing Join Statements
1. The optimizer chooses one of the tables as the outer table, or the driving table.
The other table is called the inner table.

2. For each row in the outer table, Oracle finds all rows in the inner table that sat-
isfy the join condition.

3. Oracle combines the data in each pair of rows that satisfy the join condition
and returns the resulting rows.

Figure 20–11 shows the execution plan for this statement using a nested loops join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Figure 20–11 Nested Loops Join

TABLE ACCESS
(FULL)

emp

2 3

TABLE ACCESS
(BY ROWID)

dept

4

INDEX
(UNIQUE SCAN)

pk_dept

1

NESTED LOOPS
20-64 Oracle8 Concepts

Optimizing Join Statements
To execute this statement, Oracle performs these steps:

■ Step 2 accesses the outer table (EMP) with a full table scan.

■ For each row returned by Step 2, Step 4 uses the EMP.DEPTNO value to per-
form a unique scan on the PK_DEPT index.

■ Step 3 uses the ROWID from Step 4 to locate the matching row in the inner
table (DEPT).

■ Oracle combines each row returned by Step 2 with the matching row returned
by Step 4 and returns the result.

Sort-Merge Join
Oracle can only perform a sort-merge join for an equijoin. To perform a sort-merge
join, Oracle follows these steps:

1. Oracle sorts each row source to be joined if they have not been sorted already
by a previous operation. The rows are sorted on the values of the columns used
in the join condition.

2. Oracle merges the two sources so that each pair of rows, one from each source,
that contain matching values for the columns used in the join condition are
combined and returned as the resulting row source.

Figure 20–12 shows the execution plan for this statement using a sort-merge join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;
 The Optimizer 20-65

Optimizing Join Statements
Figure 20–12 Sort-Merge Join

To execute this statement, Oracle performs these steps:

■ Steps 3 and 5 perform full table scans of the EMP and DEPT tables.

■ Steps 2 and 4 sort each row source separately.

■ Step 1 merges the sources from Steps 2 and 4 together, combining each row
from Step 2 with each matching row from Step 4, and returns the resulting row
source.

Cluster Join
Oracle can perform a cluster join only for an equijoin that equates the cluster key
columns of two tables in the same cluster. In a cluster, rows from both tables with
the same cluster key values are stored in the same blocks, so Oracle only accesses
those blocks.

3

TABLE ACCESS
(FULL)

dept

SORT
(JOIN)

2 4

SORT
(JOIN)

5

TABLE ACCESS
(FULL)

emp

1

MERGE JOIN
20-66 Oracle8 Concepts

Optimizing Join Statements
Figure 20–13 shows the execution plan for this statement in which the EMP and
DEPT tables are stored together in the same cluster:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Figure 20–13 Cluster Join

To execute this statement, Oracle performs these steps:

■ Step 2 accesses the outer table (DEPT) with a full table scan.

■ For each row returned by Step 2, Step 3 uses the DEPT.DEPTNO value to find
the matching rows in the inner table (EMP) with a cluster scan.

A cluster join is nothing more than a nested loops join involving two tables that are
stored together in a cluster. Since each row from the DEPT table is stored in the
same data blocks as the matching rows in the EMP table, Oracle can access match-
ing rows most efficiently.

Additional Information: Oracle8 Tuning provides guidelines for
deciding which tables to cluster for best performance.

TABLE ACCESS
(FULL)

dept

2 3

TABLE ACCESS
(CLUSTER)

emp

1

NESTED LOOPS
 The Optimizer 20-67

Optimizing Join Statements
Hash Join
Oracle can only perform a hash join for an equijoin. Hash join is not available with
rule-based optimization. You must enable hash join optimization, using the initial-
ization parameter HASH_JOIN_ENABLED (which can be set with the ALTER
SESSION command) or the USE_HASH hint.

To perform a hash join, Oracle follows these steps:

1. Oracle performs a full table scan on each of the tables and splits each into as
many partitions as possible based on the available memory.

2. Oracle builds a hash table from one of the partitions (if possible, Oracle will
select a partition that fits into available memory). Oracle then uses the corre-
sponding partition in the other table to probe the hash table. All partition pairs
that do not fit into memory are placed onto disk.

3. For each pair of partitions (one from each table), Oracle uses the smaller one to
build a hash table and the larger one to probe the hash table.

Figure 20–14 shows the execution plan for this statement using a hash join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Figure 20–14 Hash Join

TABLE ACCESS
(FULL)

dept

2 3

TABLE ACCESS
(FULL)

emp

1

HASH JOIN
20-68 Oracle8 Concepts

Optimizing Join Statements
To execute this statement, Oracle performs these steps:

■ Steps 2 and 3 perform full table scans of the EMP and DEPT tables.

■ Step 1 builds a hash table out of the rows coming from Step 2 and probes it
with each row coming from Step 3.

The initialization parameter HASH_AREA_SIZE controls the amount of memory
used for hash join operations and the initialization parameter
HASH_MULTIBLOCK_IO_COUNT controls the number of blocks a hash join
operation should read and write concurrently.

Choosing Execution Plans for Join Statements
This section describes how the optimizer chooses an execution plan for a join state-
ment:

■ when using the cost-based approach

■ when using the rule-based approach

Note these considerations that apply to the cost-based and rule-based approaches:

■ The optimizer first determines whether joining two or more of the tables defi-
nitely results in a row source containing at most one row. The optimizer recog-
nizes such situations based on UNIQUE and PRIMARY KEY constraints on the
tables. If such a situation exists, the optimizer places these tables first in the join
order. The optimizer then optimizes the join of the remaining set of tables.

■ For join statements with outer join conditions, the table with the outer join oper-
ator must come after the other table in the condition in the join order. The opti-
mizer does not consider join orders that violate this rule.

Choosing Execution Plans for Joins with the Cost-Based Approach
With the cost-based approach, the optimizer generates a set of execution plans
based on the possible join orders, join operations, and available access paths. The
optimizer then estimates the cost of each plan and chooses the one with the lowest
cost. The optimizer estimates costs in these ways:

■ The cost of a nested loops operation is based on the cost of reading each
selected row of the outer table and each of its matching rows of the inner table
into memory. The optimizer estimates these costs using the statistics in the data
dictionary.

Additional Information: See Oracle8 Tuning for more information
about these initialization parameters and the USE_HASH hint.
 The Optimizer 20-69

Optimizing Join Statements
■ The cost of a sort-merge join is based largely on the cost of reading all the
sources into memory and sorting them.

■ The optimizer also considers other factors when determining the cost of each
operation. For example:

– A smaller sort area size is likely to increase the cost for a sort-merge join
because sorting takes more CPU time and I/O in a smaller sort area. Sort
area size is specified by the initialization parameter SORT_AREA_SIZE.

– A larger multiblock read count is likely to decrease the cost for a sort-
merge join in relation to a nested loops join. If a large number of sequential
blocks can be read from disk in a single I/O, an index on the inner table for
the nested loops join is less likely to improve performance over a full table
scan. The multiblock read count is specified by the initialization parameter
DB_FILE_MULTIBLOCK_READ_COUNT.

– For join statements with outer join conditions, the table with the outer join
operator must come after the other table in the condition in the join order.
The optimizer does not consider join orders that violate this rule.

With the cost-based approach, the optimizer’s choice of join orders can be overrid-
den with the ORDERED hint. If the ORDERED hint specifies a join order that vio-
lates the rule for outer join, the optimizer ignores the hint and chooses the order.
You can also override the optimizer’s choice of join operations with hints.

Choosing Execution Plans for Joins with the Rule-Based Approach
With the rule-based approach, the optimizer follows these steps to choose an execu-
tion plan for a statement that joins R tables:

1. The optimizer generates a set of R join orders, each with a different table as the
first table. The optimizer generates each potential join order using this algo-
rithm:

a. To fill each position in the join order, the optimizer chooses the table with
the most highly ranked available access path according to the ranks for
access paths in Table 20–1 “Access Paths” on page 20-46. The optimizer
repeats this step to fill each subsequent position in the join order.

b. For each table in the join order, the optimizer also chooses the operation
with which to join the table to the previous table or row source in the

Additional Information: See Oracle8 Tuning for information on
using hints.
20-70 Oracle8 Concepts

Optimizing Join Statements
order. The optimizer does this by “ranking” the sort-merge operation as
access path 12 and applying these rules:

– If the access path for the chosen table is ranked 11 or better, the optimizer
chooses a nested loops operation using the previous table or row source in
the join order as the outer table.

– If the access path for the table is ranked lower than 12, and there is an
equijoin condition between the chosen table and the previous table or row
source in join order, the optimizer chooses a sort-merge operation.

– If the access path for the chosen table is ranked lower than 12, and there is
not an equijoin condition, the optimizer chooses a nested loops operation
with the previous table or row source in the join order as the outer table.

2. The optimizer then chooses among the resulting set of execution plans. The
goal of the optimizer’s choice is to maximize the number of nested loops join
operations in which the inner table is accessed using an index scan. Since a
nested loops join involves accessing the inner table many times, an index on
the inner table can greatly improve the performance of a nested loops join.

Usually, the optimizer does not consider the order in which tables appear in
the FROM clause when choosing an execution plan. The optimizer makes this
choice by applying the following rules in order:

a. The optimizer chooses the execution plan with the fewest nested-loops
operations in which the inner table is accessed with a full table scan.

b. If there is a tie, the optimizer chooses the execution plan with the fewest
sort-merge operations.

c. If there is still a tie, the optimizer chooses the execution plan for which the
first table in the join order has the most highly ranked access path:

– If there is a tie among multiple plans whose first tables are accessed by the
single-column indexes access path, the optimizer chooses the plan whose
first table is accessed with the most merged indexes.

– If there is a tie among multiple plans whose first tables are accessed by
bounded range scans, the optimizer chooses the plan whose first table is
accessed with the greatest number of leading columns of the composite
index.

d. If there is still a tie, the optimizer chooses the execution plan for which the
first table appears later in the query’s FROM clause.
 The Optimizer 20-71

Optimizing Join Statements
Views in Outer Joins
For a view that is on the right side of an outer join, the optimzer can use one of two
methods, depending on how many base tables the view accesses:

■ If the view has only one base table, the optimizer can use view merging.

■ If the view has multiple base tables, the optimizer can push the join predicate
into the view.

Merging a View That Has a Single Base Table
A view that has one base table and is on the right side of an outer join can be
merged into the query block of an accessing statement. (See “Merging the View’s
Query into the Statement” on page 20-24.) View merging is possible even if an
expression in the view can return a non-null value for a NULL.

Example: Consider the view NAME_VIEW, which concatenates first and last names
from the EMP table:

CREATE VIEW name_view
 AS SELECT emp.firstname || emp.lastname AS emp_fullname, emp.deptno
 FROM emp;

and consider this outer join statement, which finds the names of all employees in
London and their departments, as well as any departments that have no employees:

SELECT dept.deptno, name_view.emp_fullname
 FROM emp_fullname, dept
 WHERE dept.deptno = name_view.deptno(+)
 AND dept.deptloc = ’London’;

The optimizer merges the view’s query into the outer join statement. The resulting
statement looks like this:

SELECT dept.deptno, DECODE(emp.rowid, NULL, NULL, emp.firstname || emp.lastname)
 FROM emp, dept
 WHERE dept.deptno = emp.deptno(+)
 AND dept.deptloc = ’London’;

The transformed statement selects only the employees who work in London.

Pushing the Join Predicate into a View That Has Multiple Base Tables
For a view with multiple base tables on the right side of an outer join, the optimizer
can push the join predicate into the view (see “Pushing the Predicate into the View”
20-72 Oracle8 Concepts

Optimizing Join Statements
on page 20-27) if the initialization parameter PUSH_JOIN_PREDICATE is set to
TRUE or the accessing query contains the PUSH_JOIN_PRED hint.

Pushing a join predicate is a cost-based transformation that can enable more effi-
cient access path and join methods, such as transforming hash joins into nested
loop joins, and full table scans to index scans.

Example: Consider the view LONDON_EMP, which selects the employees who
work in London:

CREATE VIEW london_emp
 AS SELECT emp.ename
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND dept.deptloc = ’London’;

and consider this outer join statement, which finds the engineers and accountants
working in London who received bonuses:

SELECT bonus.job, london_emp.ename
 FROM bonus, london_emp
 WHERE bonus.job IN (’engineer’, ’accountant’)
 AND bonus.ename = london_emp.ename(+);

The optimizer pushes the outer join predicate into the view. The resulting state-
ment (which does not conform to standard SQL syntax) looks like this:

SELECT bonus.job, london_emp.ename
 FROM bonus, (SELECT emp.ename FROM emp, dept
 WHERE bonus.ename = london_emp.ename(+)
 AND emp.deptno = dept.deptno
 AND dept.deptloc = ’London’)
 WHERE bonus.job IN (’engineer’, ’accountant’);

Additional Information: See Oracle8 Tuning for information about
optimizer hints.
 The Optimizer 20-73

Optimizing Anti-Joins and Semi-Joins
Optimizing Anti-Joins and Semi-Joins
An anti-join returns rows from the left side of the predicate for which there is no
corresponding row on the right side of the predicate. That is, it returns rows that
fail to match (NOT IN) the subquery on the right side. For example, an anti-join can
select a list of employees who are not in a particular set of departments:

SELECT * FROM emp
 WHERE deptno NOT IN
 (SELECT deptno FROM dept
 WHERE loc = ’HEADQUARTERS’);

The optimizer uses a nested loops algorithm for NOT IN subqueries by default,
unless the initialization parameter ALWAYS_ANTI_JOIN is set to MERGE or
HASH and various required conditions are met that allow the transformation of
the NOT IN subquery into a sort-merge or hash anti-join. You can place a
MERGE_AJ or HASH_AJ hint in the NOT IN subquery to specify which algorithm
the optimizer should use.

A semi-join returns rows that match an EXISTS subquery, without duplicating rows
from the left side of the predicate when multiple rows on the right side satisfy the
criteria of the subquery. For example:

SELECT * FROM dept
 WHERE EXISTS
 (SELECT * FROM emp
 WHERE dept.ename = emp.ename
 AND emp.bonus > 5000);

In this query, only one row needs to be returned from DEPT even though many
rows in EMP might match the subquery. If there is no index on the BONUS column
in EMP, a semi-join can be used to improve query performance.

The optimizer uses a nested loops algorithm for EXISTS subqueries by default,
unless the initialization parameter ALWAYS_SEMI_JOIN is set to MERGE or
HASH and various required conditions are met. You can place a MERGE_SJ or
HASH_SJ hint in the EXISTS subquery to specify which algorithm the optimizer
should use.

Additional Information: See Oracle8 Tuning for information about
optimizer hints.
20-74 Oracle8 Concepts

Optimizing “Star” Queries
Optimizing “Star” Queries
One type of data warehouse design centers around what is known as a “star”
schema, which is characterized by one or more very large fact tables that contain
the primary information in the data warehouse and a number of much smaller
dimension tables (or “lookup” tables), each of which contains information about the
entries for a particular attribute in the fact table.

A star query is a join between a fact table and a number of lookup tables. Each
lookup table is joined to the fact table using a primary-key to foreign-key join, but
the lookup tables are not joined to each other.

The Oracle cost-based optimizer recognizes star queries and generates efficient exe-
cution plans for them. (Star queries are not recognized by the rule-based optimizer.)

A typical fact table contains keys and measures. For example, a simple fact table
might contain the measure Sales, and keys Time, Product, and Market. In this case
there would be corresponding dimension tables for Time, Product, and Market.
The Product dimension table, for example, would typically contain information
about each product number that appears in the fact table.

A star join is a primary-key to foreign-key join of the dimension tables to a fact
table. The fact table normally has a concatenated index on the key columns to facili-
tate this type of join.

Star Query Example
This section discusses star queries with reference to the following example:

SELECT SUM(dollars)
 FROM facts, time, product, market
 WHERE market.stat = ’New York’
 AND product.brand = ’MyBrand’
 AND time.year = 1995
 AND time.month = ’March’
 /* Joins*/
 AND time.key = facts.tkey
 AND product.pkey = facts.pkey
 AND market.mkey = facts.mkey;

Tuning Star Queries
To execute star queries efficiently, you must use the cost based optimizer. Begin by
using the ANALYZE command to gather statistics for each of the tables accessed
by the query.
 The Optimizer 20-75

Optimizing “Star” Queries
Indexing
In the example above, you would construct a concatenated index on the columns
tkey, pkey, and mkey. The order of the columns in the index is critical to perfor-
mance. the columns in the index should take advantage of any ordering of the data.
If rows are added to the large table in time order, then tkey should be the first key
in the index. When the data is a static extract from another database, it is worth-
while to sort the data on the key columns before loading it.

If all queries specify predicates on each of the small tables, a single concatenated
index suffices. If queries that omit leading columns of the concatenated index are
frequent, additional indexes may be useful. In this example, if there are frequent
queries that omit the time table, an index on pkey and mkey can be added.

Hints
Usually, if you analyze the tables the optimizer will choose an efficient star plan.
You can also use hints to improve the plan. The most precise method is to order the
tables in the FROM clause in the order of the keys in the index, with the large table
last. Then use the following hints:

/*+ ORDERED USE_NL(facts) INDEX(facts fact_concat) */

A more general method is to use the STAR hint /*+ STAR */.

Extended Star Schemas
Each of the small tables can be replaced by a join of several smaller tables. For
example, the product table could be normalized into brand and manufacturer
tables. Normalization of all of the small tables can cause performance problems.
One problem is caused by the increased number of permutations that the optimizer
must consider. The other problem is the result of multiple executions of the small
table joins. You can solve both of these problems by using denormalized views. For
example:

CREATE VIEW prodview AS SELECT /*+ NO_MERGE */ *
 FROM brands, mfgrs WHERE brands.mfkey = mfgrs.mfkey;

This hint reduces the optimizer’s search space and causes caching of the result of
the view.

Star Transformation
The star transformation is a cost-based query transformation aimed at executing
star queries efficiently. Whereas the star optimization works well for schemas with
20-76 Oracle8 Concepts

Optimizing “Star” Queries
a small number of dimensions and dense fact tables, the star transformation may be
considered as an alternative if any of the following holds true:

■ The number of dimensions is large.

■ The fact table is sparse.

■ There are queries where not all dimension tables have constraining predicates.

The star transformation does not rely on computing a Cartesian product of the
dimension tables, which makes it better suited for cases where fact table sparsity
and/or a large number of dimensions would lead to a large Cartesian product with
few rows having actual matches in the fact table. In addition, rather than relying on
concatenated indexes, the star transformation is based on combining bitmap
indexes on individual fact table columns.

The transformation can thus choose to combine indexes corresponding precisely to
the constrained dimensions. There is no need to create many concatenated indexes
where the different column orders match different patterns of constrained dimen-
sions in different queries.

The star transformation works by generating new subqueries that can be used to
drive a bitmap index access path for the fact table.

Consider a simple case with three dimension tables, "d1", "d2", and "d3", and a fact
table, "fact". The following query:

EXPLAIN PLAN FOR
 SELECT * FROM fact, d1, d2, d3
 WHERE fact.c1 = d1.c1 AND fact.c2 = d2.c1 AND fact.c3 = d3.c1
 AND d1.c2 IN (1, 2, 3, 4)
 AND d2.c2 < 100
 AND d3.c2 = 35

Attention: Bitmap indexes are available only if you have pur-
chased the Oracle8 Enterprise Edition. In Oracle8, bitmap indexes
are not available and star query processing uses B*-tree indexes. In
the Oracle8 Enterprise Edition, the parallel bitmap index join algo-
rithm is also available for star query processing.

See Getting to Know Oracle8 and the Oracle8 Enterprise Edition for
more information about the features available in Oracle8 and
Oracle8 Enterprise Edition.
 The Optimizer 20-77

Optimizing “Star” Queries
gets transformed by adding three subqueries:

SELECT * FROM fact, d1, d2
 WHERE fact.c1 = d1.c1 AND fact.c2 = d2.c1
 AND d1.c2 IN (1, 2, 3, 4)
 AND d2.c2 < 100
 AND fact.c1 IN (SELECT d1.c1 FROM d1 WHERE d1.c2 IN (1, 2, 3, 4))
 AND fact.c2 IN (select d2.c1 FROM d2 WHERE d2.c2 < 100)
 AND fact.c3 IN (SELECT d3.c1 FROM d3 WHERE d3.c2 = 35)

Given that there are bitmap indexes on fact.c1, fact.c2, and fact.c3, the newly gener-
ated subqueries can be used to drive a bitmap index access path in the following
way. For each value of d1.c1 that is retrieved from the first subquery, the bitmap
for that value is retrieved from the index on fact.c1 and these bitmaps are merged.
The result is a bitmap for precisely those rows in fact that match the condition on
d1 in the subquery WHERE-clause.

Similarly, the values from the second subquery are used together with the bitmap
index on fact.c2 to produce a merged bitmap corresponding to the rows in fact that
match the condition on d2 in the second subquery. The same operations apply to
the third subquery. The three merged bitmaps can then be ANDed, resulting in a
bitmap corresponding to those rows in fact that meet the conditions in all three sub-
queries simultaneously.

This bitmap can be used to access fact and retrieve the relevant rows. These are
then joined to d1, d2, and d3 to produce the answer to the query. No Cartesian
product is needed.

Execution Plan
The following execution plan might result from the query above:

 SELECT STATEMENT
 HASH JOIN
 HASH JOIN
 HASH JOIN
 TABLE ACCESS FACT BY ROWID
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP MERGE
 BITMAP KEY ITERATION
 TABLE ACCESS D3 FULL
 BITMAP INDEX FACT_C3 RANGE SCAN
 BITMAP MERGE
 BITMAP KEY ITERATION
 TABLE ACCESS D1 FULL
20-78 Oracle8 Concepts

Optimizing “Star” Queries
 BITMAP INDEX FACT_C1 RANGE SCAN
 BITMAP MERGE
 BITMAP KEY ITERATION
 TABLE ACCESS D2 FULL
 BITMAP INDEX FACT_C2 RANGE SCAN
 TABLE ACCESS D1 FULL
 TABLE ACCESS D2 FULL
 TABLE ACCESS D3 FULL

In this plan the fact table is accessed through a bitmap access path based on a bit-
map AND of three merged bitmaps. The three bitmaps are generated by the BIT-
MAP MERGE row source being fed bitmaps from row source trees underneath it.
Each such row source tree consists of a BITMAP KEY ITERATION row source
which fetches values from the subquery row source tree, which in this example is
just a full table access, and for each such value retrieves the bitmap from the bit-
map index. After the relevant fact table rows have been retrieved using this access
path, they are joined with the dimension tables to produce the answer to the query.

The star transformation is a cost-based transformation in the following sense. The
optimizer generates and saves the best plan it can produce without the transforma-
tion. If the transformation is enabled, the optimizer then tries to apply it to the
query and if applicable, generates the best plan using the transformed query. Based
on a comparison of the cost estimates between the best plans for the two versions
of the query, the optimizer will then decide whether to use the best plan for the
transformed or untransformed version.

If the query requires accessing a large percentage of the rows in the fact table, it
may well be better to use a full table scan and not use the tranformations. However,
if the constraining predicates on the dimension tables are sufficiently selective that
only a small portion of the fact table needs to be retrieved, the plan based on the
transformation will probably be superior.

Note that the optimizer will generate a subquery for a dimension table only if it
decides that it is reasonable to do so based on a number of criteria. There is no guar-
antee that subqueries will be generated for all dimension tables. The optimizer may
also decide, based on the properties of the tables and the query, that the transforma-
tion does not merit being applied to a particular query. In this case the best regular
plan will be used.

Using Star Transformation
You can enable star transformation by setting the value of the initialization
parameter STAR_TRANSFORMATION_ENABLED to TRUE. Use the
 The Optimizer 20-79

Optimizing “Star” Queries
STAR_TRANSFORMATION hint to make the optimizer use the best plan in which
the transformation has been used.

Restrictions on Star Transformation
Star transformation is not supported for tables with any of the following character-
istics:

■ tables with a table hint that is incompatible with a bitmap access path

■ tables with too few bitmap indexes (there must be a bitmap index on a fact
table column for the optimizer to consider generating a subquery for it)

■ remote tables (however, remote dimension tables are allowed in the subqueries
that are generated)

■ anti-joined tables

■ tables that are already used as a dimension table in a subquery

■ tables that are really unmerged views, which are not view partitions

■ tables that have a good single-table access path

■ tables that are too small for the transformation to be worthwhile
20-80 Oracle8 Concepts

Part VI

Parallel SQL and Direct-Load INSERT

Part VI describes parallel execution of SQL statements and the direct-load INSERT
feature. It contains the following chapters:

■ Chapter 21, “Direct-Load INSERT”

■ Chapter 22, “Parallel Execution”

 Direct-Load IN
21

Direct-Load INSERT

The translator of Homer should above all be penetrated by a sense of four qualities of his
author: that he is eminently rapid; that he is eminently plain and direct ... both in his syn-
tax and in his words; that he is eminently plain and direct in the substance of his thought,
...; and, finally, that he is eminently noble.

Matthew Arnold: On Translating Homer

This chapter describes the Oracle direct-load INSERT feature for serial or parallel
inserts. It also describes the NOLOGGING feature that is available for direct-load
INSERT and some DDL statements. This chapter’s topics include:

■ Introduction to Direct-Load INSERT

■ Varieties of Direct-Load INSERT Statements

– Serial and Parallel INSERT

– Logging Mode

■ Additional Considerations for Direct-Load INSERT

■ Restrictions on Direct-Load INSERT

See Chapter 22, “Parallel Execution” for parallel-specific issues.

Attention: The parallel direct-load INSERT feature described in
this chapter is available only if you have purchased the Oracle8
Enterprise Edition. See Getting to Know Oracle8 and the Oracle8
Enterprise Edition for more information.

Additional Information: See Oracle8 Tuning for information on
how to tune parallel direct-load INSERT.
SERT 21-1

Introduction to Direct-Load INSERT
Introduction to Direct-Load INSERT
Direct-load INSERT enhances performance during insert operations by formatting
and writing data directly into Oracle datafiles, without using the buffer cache. This
functionality is similar to that of the Direct Loader utility (SQL*Loader).

Direct-load INSERT appends the inserted data after existing data in a table; free
space within the existing data is not reused. Data can be inserted into partitioned or
nonpartitioned tables, either in parallel or serially.

Several options of direct-load INSERT exist with respect to parallelism, table parti-
tioning, and logging. “Varieties of Direct-Load INSERT Statements” on page 21-3
describes these features. For additional information about the parallellism and par-
titioning options of direct-load INSERT, see Chapter 22, “Parallel Execution”.

Advantages of Direct-Load INSERT
A major benefit of direct-load INSERT is that you can load data without logging
redo or undo entries, which improves the insert performance significantly. Both
serial and parallel direct-load INSERT have this performance advantage over con-
ventional path INSERT.

With the conventional path INSERT, in contrast, free space in the object is reused
and referential integrity can be maintained. The conventional path for insertions
cannot be parallelized.

Comparison with CREATE TABLE ... AS SELECT
With direct-load INSERT, you can insert data into existing tables instead of having
to create new tables. Direct-load INSERT updates the indexes of the table, but
CREATE TABLE ... AS SELECT only creates a new table which does not have any
indexes. See “CREATE TABLE ... AS SELECT in Parallel” on page 22-26 for more
information.

Advantage over Parallel Direct Load (SQL*Loader)
With a parallel INSERT, atomicity of the transaction is ensured. Atomicity cannot
be guaranteed if multiple parallel loads are used. Also, parallel load could leave
some table indexes in an “Unusable” state at the end of the load if errors occurred
while updating the indexes. In comparison, parallel INSERT atomically updates the
table and indexes (that is, it rolls back the statement if errors occur while updating
the index).

Additional Information: See Oracle8 Utilities for information about
parallel load.
21-2 Oracle8 Concepts

Varieties of Direct-Load INSERT Statements
INSERT ... SELECT Statements
Direct-load INSERT (serial or parallel) can only support the INSERT ... SELECT syn-
tax of an INSERT statement, not the INSERT... values syntax. The parallelism for
INSERT ... SELECT is determined from either parallel hints or parallel table defini-
tion clauses.

Varieties of Direct-Load INSERT Statements
Direct-load INSERT can be performed either:

■ serially or in parallel

■ into nonpartitioned or partitioned tables

■ with or without logging of redo data

Serial and Parallel INSERT
Direct-load INSERT can be done on partitioned or nonpartitioned tables, and it can
be done either serially or in parallel.

■ Serial direct-load INSERT into a nonpartitioned or partitioned table. Data is
inserted beyond the current high water mark of the table segment or each parti-
tion segment. When a commit executes, the high water mark is updated to the
new value, making the data visible to others.

■ Parallel direct-load INSERT into a nonpartitioned table. Each parallel server
process allocates a new temporary segment and inserts data into the temporary
segment. When a commit executes, the coordinator process merges the new
temporary segments into the primary table segment. (For information about
the coordinator process and parallel server processes, see “Process Architecture
for Parallel Execution” on page 22-5.)

■ Parallel direct-load INSERT into a partitioned table. Each parallel server pro-
cess is assigned one or more partitions, with no more than one process working
on any given partition. The parallel server process inserts data beyond the cur-
rent high water mark of the partition segment(s) assigned to it. When a commit
executes, the high water mark of each partition segment is updated by the coor-
dinator process to the new value, making the data visible to others.

Additional Information: See Oracle8 SQL Reference for information
about the syntax of INSERT ... SELECT statements.
 Direct-Load INSERT 21-3

Varieties of Direct-Load INSERT Statements
In all the cases, the bumping of the high water mark or merging of the temporary
segment is delayed until commit is issued, because this action immediately makes
the data visible to other processes (that is, it commits the insert operation).

Specifying Serial or Parallel Direct-Load INSERT
The APPEND hint is required for using serial direct-load INSERT. Parallel direct-
load INSERT requires either a PARALLEL hint in the statement or a PARALLEL
clause in the table definition; the APPEND hint is optional. Parallel direct-load
INSERT also requires parallel DML to be enabled with the ALTER SESSION
ENABLE PARALLEL DML statement.

Table 21–1 summarizes these requirements and compares direct-load INSERT with
conventional INSERT.

Examples of Serial and Parallel Direct-Load INSERT
You can specify serial direct-load INSERT with the APPEND hint, for example:

INSERT /*+ APPEND */ INTO emp
 SELECT * FROM t_emp;
COMMIT;

You can specify parallel direct-load INSERT by setting the PARALLEL attribute of
the table into which rows are inserted, for example:

ALTER TABLE emp PARALLEL (DEGREE 10);
ALTER SESSION ENABLE PARALLEL DML;
INSERT INTO emp
 SELECT * FROM t_emp;
COMMIT;

Table 21–1 Summary of Serial and Parallel INSERT ... SELECT Statements

Insert Type Serial Parallel

Direct-load INSERT Yes: requires

■ APPEND hint in
SQL statement

Yes: requires

■ ALTER SESSION ENABLE
PARALLEL DML

■ table PARALLEL attribute or
statement PARALLEL hint
(an APPEND hint is optional)

Conventional INSERT Yes (default) No
21-4 Oracle8 Concepts

Varieties of Direct-Load INSERT Statements
You can also specify parallelism for the SELECT operation by setting the
PARALLEL attribute of the table from which rows are selected:

ALTER TABLE emp PARALLEL (DEGREE 10);
ALTER TABLE t_emp PARALLEL (DEGREE 10);
ALTER SESSION ENABLE PARALLEL DML;
INSERT INTO emp
 SELECT * FROM t_emp;
COMMIT;

The PARALLEL hint for an INSERT or SELECT operation takes precedence over a
table’s PARALLEL attribute. For example, the degree of parallelism in the follow-
ing INSERT ... SELECT statement is 12 regardless of whether the PARALLEL
attributes are set for the EMP and T_EMP tables:

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ PARALLEL(emp,12) */ INTO emp
 SELECT /*+ PARALLEL(t_emp,12) */ * FROM t_emp;
COMMIT;

For more information on parallel INSERT statements, see “Rules for Parallelizing
INSERT ... SELECT” on page 22-20.

Logging Mode
Direct-load INSERT operations can be done with or without logging of redo infor-
mation. You can specify no-logging mode for the table, partition, or index into
which data will be inserted by using an ALTER TABLE, ALTER INDEX, or ALTER
TABLESPACE command.

■ Direct-load INSERT with logging. This mode does full redo logging for
instance and media recovery. Logging is the default mode.

■ Direct-load INSERT with no-logging. In this mode, data is inserted without
redo or undo logging. (Some minimal logging is still done for marking new
extents invalid, and dictionary changes are always fully logged.) When applied
during media recovery, the extent invalidation records mark a range of blocks as
logically corrupt, since the redo data is not logged.

The no-logging mode improves performance because it generates much less log.
The user is responsible for backing up the data after a no-logging insert operation
in order to be able to perform media recovery.
 Direct-Load INSERT 21-5

Varieties of Direct-Load INSERT Statements
Table 21–2 compares the LOGGING and NOLOGGING modes for direct-load and
conventional INSERT.

Examples of No-Logging Mode
You can specify no-logging mode for direct-load INSERT by setting the
NOLOGGING attribute of the table into which rows are inserted, for example:

ALTER TABLE emp NOLOGGING;
ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ PARALLEL(emp,12) */ INTO emp
 SELECT /*+ PARALLEL(t_emp,12) */ * FROM t_emp;
COMMIT;

You can also set the NOLOGGING attribute for a partition, tablespace, or index; for
example:

ALTER TABLE emp MODIFY PARTITION emp_lmnop NOLOGGING;

ALTER TABLESPACE personnel NOLOGGING;

ALTER INDEX emp_ix NOLOGGING;

ALTER INDEX emp_ix MODIFY PARTITION eix_lmnop NOLOGGING;

Note: Logging/no-logging mode is not a permanent attribute of
the table, partition, or index. After the database object inserted into
has been populated with data and backed up, you can set its status
to logging mode so that subsequent changes will be logged.

Table 21–2 Summary of LOGGING and NOLOGGING Options

Insert Type LOGGING NOLOGGING

Direct-load INSERT Yes:
recoverability requires

■ ARCHIVELOG
database mode

Yes: requires

■ NOLOGGING attribute for
tablespace, table, partition, or
index

Conventional INSERT Yes (default):
recoverability requires

■ ARCHIVELOG
database mode

No
21-6 Oracle8 Concepts

Varieties of Direct-Load INSERT Statements
SQL Statements That Can Use No-Logging Mode
Although you can set the NOLOGGING attribute for a table, partition, index, or
tablespace, no-logging mode does not apply to every operation performed on the
schema object for which you set the NOLOGGING attribute.

Only the following operations can make use of no-logging mode:

■ direct load (SQL*Loader)

■ direct-load INSERT

■ CREATE TABLE ... AS SELECT

■ CREATE INDEX

■ ALTER TABLE ... MOVE PARTITION

■ ALTER TABLE ... SPLIT PARTITION

■ ALTER INDEX ... SPLIT PARTITION

■ ALTER INDEX ... REBUILD

■ ALTER INDEX ... REBUILD PARTITION

All of these SQL statements can be parallelized (see Chapter 22, “Parallel Execu-
tion”). They can execute in logging or no-logging mode for both serial and parallel
execution.

Other SQL statements (such as UPDATE, DELETE, conventional path INSERT, and
various DDL statements not listed above) are unaffected by the NOLOGGING
attribute of the schema object.

Default Logging Mode
If the LOGGING or NOLOGGING clause is not specified, the logging attribute of
the table, partition, or index defaults to the logging attribute of the tablespace in
which it resides.

For LOBs, if the LOGGING or NOLOGGING clause is omitted, then:

■ if CACHE is specified, LOGGING is used (because LOBs cannot have CACHE
NOLOGGING)

■ otherwise, the default is obtained from the tablespace in which the LOB value
resides.
 Direct-Load INSERT 21-7

Additional Considerations for Direct-Load INSERT
Additional Considerations for Direct-Load INSERT
This section describes index maintenance, space allocation, and data locks for
direct-load INSERT.

Index Maintenance
For direct-load INSERT on nonpartitioned tables or partitioned tables that have
local or global indexes, index maintenance is done at the end of the INSERT opera-
tion. This index maintenance is performed by the parallel server processes for paral-
lel direct-load INSERT or by the single process for serial direct-load INSERT on
partitioned or nonpartitioned tables.

If your direct-load INSERT modifies most of the data in a table, you can avoid the
performance impact of index maintenance by dropping the index before the
INSERT and then rebuilding it afterwards.

Space Considerations
Direct-load INSERT requires more space than conventional path INSERT, because
direct-load INSERT ignores existing space in the free lists of the segment. For paral-
lel direct-load INSERT into nonpartitioned tables, free blocks below the high water
mark of the table segment are also ignored. Additional space requirements must be
considered before using direct-load INSERT.

Parallel direct-load INSERT into a nonpartitioned table creates temporary segments
— one segment for each degree of parallelism. For example, if you use parallel
INSERT into a nonpartitioned table with the degree of parallelism set to four, then
four temporary segments are created.

Each parallel server process first inserts its data into a temporary segment, and
finally the data in all of the temporary segments is appended to the table. (This is
the same mechanism as CREATE TABLE ... AS SELECT.)

To provide sufficient storage for temporary segments, without wasting space on
segments that are larger than you need, you should specify appropriate values for
the storage parameters NEXT and PCTINCREASE for a nonpartitioned table into
which you want to do a parallel INSERT. You can change the values of these param-
eters with the STORAGE option of the ALTER TABLE statement. After performing
the parallel DML statement, you can change the NEXT and PCTINCREASE storage
parameters back to settings appropriate for non-parallel operations.
21-8 Oracle8 Concepts

Restrictions on Direct-Load INSERT
For parallel INSERT into a partitioned table, however, no temporary segments are
created. Each parallel server process simply inserts its data into a partition above
the high water mark.

Locking Considerations
In direct-load INSERT, exclusive locks are obtained on the table (or on all the parti-
tions of a partitioned table) precluding any concurrent insert, update, or delete on
the table. Concurrent queries, however, are supported and will see only the data in
the table before the INSERT began. These locks also prevent any concurrent index
creation or rebuild operations. This must be taken into account before using direct-
load INSERT because it affects table concurrency. For more information, see “Lock
and Enqueue Resources for Parallel DML” on page 22-36.

Restrictions on Direct-Load INSERT
The restrictions on direct-load INSERT are the same as those imposed on direct-
path parallel loading with SQL*Loader, because they use the same underlying
mechanism. In addition, the general parallel DML restrictions also apply to direct-
load INSERT.

Serial and parallel direct-load INSERT have the following restrictions:

■ A transaction can contain multiple direct-load INSERT statements (or both
direct-load INSERT statements and parallel UPDATE or DELETE statements),
but after one of these statements modifies a table, no other SQL statement in
the transaction can access the same table.

– Queries that access the same table are allowed before the direct-load
INSERT statement, but not after.

– Any serial or parallel statements attempting to access a table that has
already been modified by a direct-load INSERT (or parallel DML) within
the same transaction are rejected with an error message.

Note: The PCTINCREASE storage parameter can produce very
large temporary segments, unless it is set to 0. To avoid running
out of space while doing parallel DML, make sure that PCTIN-
CREASE is set to 0.

Additional Information: Refer to the parallel execution chapter in
Oracle8 Tuning for more discussion of space management.
 Direct-Load INSERT 21-9

Restrictions on Direct-Load INSERT
■ If the initialization parameter ROW_LOCKING = INTENT, then inserts cannot
be performed by the direct-load path.

■ Direct-load INSERT does not support referential integrity.

■ Triggers are not supported for direct-load INSERT operations.

■ Replication functionality is not supported for direct-load INSERT.

■ Direct-load INSERT cannot occur on tables with object columns or LOB col-
umns, or on index-organized tables.

■ A transaction involved in a direct-load INSERT operation cannot be or become
a distributed transaction.

■ Clustered tables are not supported.

Violations of the restrictions will cause the statement to execute serially, using the
conventional insert path, without warnings or error messages. An exception is the
restriction on statements accessing the same table more than once in a transaction,
which can cause error messages.

For example, if triggers or referential integrity are present on the table, then the
APPEND hint will be ignored when you try to use direct-load INSERT (serial or
parallel), as well as the PARALLEL hint or clause, if any.

For more information about the general restrictions on parallel DML (including par-
allel INSERT), see “Restrictions on Parallel DML” on page 22-37.
21-10 Oracle8 Concepts

 Parallel Ex
22

Parallel Execution

Civilization advances by extending the number of important operations which we can per-
form without thinking about them.

Alfred North Whitehead: An Introduction to Mathematics

This chapter describes the parallel execution of SQL statements. The topics in this
chapter include:

■ Overview of Parallel Execution

■ Process Architecture for Parallel Execution

■ Setting the Degree of Parallelism

■ Parallel DDL

■ Parallel DML

■ Affinity

Attention: The parallel execution features described in this chap-
ter are available only if you have purchased the Oracle8 Enterprise
Edition. See Getting to Know Oracle8 and the Oracle8 Enterprise Edi-
tion for more information about Oracle8 Enterprise Edition.

Note: Parallel execution is not the same as the Oracle Parallel
Server (the Parallel Server option). You do not need the Parallel
Server option to perform parallel execution of SQL statements;
however, some aspects of parallel execution apply only to the
Oracle Parallel Server.
ecution 22-1

Overview of Parallel Execution
Overview of Parallel Execution
When Oracle is not parallelizing the execution of SQL statements, each SQL state-
ment is executed sequentially by a single process. With parallel execution, however,
multiple processes work together simultaneously to execute a single SQL state-
ment. By dividing the work necessary to execute a statement among multiple pro-
cesses, Oracle can execute the statement more quickly than if only a single process
executed it.

Parallel execution can dramatically improve performance for data-intensive opera-
tions associated with decision support applications or very large database environ-
ments. Symmetric multiprocessing (SMP), clustered systems, and massively
parallel systems (MPP) gain the largest performance benefits from parallel execu-
tion because statement processing can be split up among many CPUs on a single
Oracle system.

Parallel execution helps systems scale in performance by making optimal use of
hardware resources. If your system’s CPUs and disk controllers are already heavily
loaded, you need to alleviate the system’s load or increase these hardware
resources before using parallel execution to improve performance.

Operations That Can Be Parallelized
The Oracle server can use parallel execution for any of these operations:

■ table scan

■ nested loop join

■ sort merge join

■ hash join

■ “not in”

■ group by

■ select distinct

■ union and union all

■ aggregation

■ PL/SQL functions called from SQL

Additional Information: See Oracle8 Tuning for specific informa-
tion on tuning your parameter files and database to take full advan-
tage of parallel execution.
22-2 Oracle8 Concepts

Overview of Parallel Execution
■ order by

■ create table as select

■ create index

■ rebuild index

■ rebuild index partition

■ move partition

■ split partition

■ update

■ delete

■ insert ... select

■ enable constraint (the table scan is parallelized)

■ star transformation

How Oracle Parallelizes Operations
A SELECT statement only consists of a query. A DML or DDL statement usually
consists of a query portion and a DML or DDL portion. Oracle can parallelize both
the query portion and the DML or DDL portion of the SQL statements listed in the
previous section.

Oracle primarily parallelizes SQL statements in the following ways:

1. Parallelize by block ranges for scan operations (SELECTs and subqueries in
DML and DDL statements).

2. Parallelize by partitions for operations on partitioned tables and indexes.

3. Parallelize by parallel server processes for inserts into nonpartitioned tables
only.

Note: Although generally data manipulation language (DML)
includes queries, in this chapter “DML” refers only to inserts,
updates, and deletes.
 Parallel Execution 22-3

Overview of Parallel Execution
Parallelizing by Block Range
Oracle parallelizes a query dynamically at execution time. Dynamic parallelism
divides the table or index into ranges of database blocks (ROWID range) and exe-
cutes the operation in parallel on different ranges. If the distribution or location of
data changes, Oracle automatically adapts to optimize the parallelization for each
execution of the query portion of a SQL statement.

Parallel scans by block range break the table or index into pieces delimited by high
and low ROWID values. The table or index can be nonpartitioned or partitioned.

For partitioned tables and indexes, no ROWID range can span a partition although
one partition can contain multiple ROWID ranges. Oracle sends the partition num-
bers with the ROWID ranges to avoid partition map lookup. Compile and run-time
predicates on partitioning columns restrict the ROWID ranges to relevant parti-
tions, eliminating unnecessary partition scans (partition pruning).

This means that a parallel query which accesses a partitioned table by a table scan
performs the same or less overall work as the same query on a nonpartitioned
table. The query on the partitioned table executes with equivalent parallelism,
although the total number of disks accessed might be reduced by the partition
pruning.

Oracle can parallelize the following operations on tables and indexes by block
range (ROWID range):

■ queries using table scans (including queries in DML and DDL statements)

■ move partition

■ split partition

■ rebuild index partition

■ create index (nonpartitioned index)

■ create table ... as select (nonpartitioned table)

Parallelizing by Partition
Partitions are a logical static division of tables and indexes which can be used to
break some long-running operations into smaller operations executed in parallel on
individual partitions. The granule of parallelism is a partition; there is no parallel-
ism within a partition.

Operations on partitioned tables and indexes are performed in parallel by assign-
ing different parallel server processes to different partitions of the table or index.
Compile and run-time predicates restrict the partitions when the operation refer-
22-4 Oracle8 Concepts

Process Architecture for Parallel Execution
ences partitioning columns (partition pruning). The operation executes serially
when compile or run-time predicates restrict the operation to a single partition.

The parallel operation may use fewer parallel server processes than the number of
accessed partitions (because of resource limits, hints, or table attributes), but each
partition is accessed by a single parallel server process. A parallel server process,
however, can access multiple partitions.

Operations on partitioned tables and indexes are performed in parallel only when
more than one partition is accessed and when the selectivity of the table or index is
such that more than a predetermined minimum number of table or index pages
will be accessed.

Oracle can parallelize the following operations on partitioned tables and indexes
by partition:

■ create index

■ create table ... as select

■ update

■ delete

■ insert ... select

■ alter index ... rebuild

■ queries using a range scan on a partitioned index

Parallelizing by Parallel Server Processes
For nonpartitioned tables only, Oracle parallelizes insert operations by dividing the
work among parallel server processes. Since new rows do not have ROWIDs, the
rows are distributed among the parallel server processes to insert them into the free
space.

Process Architecture for Parallel Execution
When parallel execution is not being used, a single server process performs all nec-
essary processing for the sequential execution of a SQL statement. For example, to
perform a full table scan (such as SELECT * FROM EMP), one process performs the
entire operation, as illustrated in Figure 22–1.
 Parallel Execution 22-5

Process Architecture for Parallel Execution
Figure 22–1 Serial Full Table Scan

Parallel execution performs thee operations in parallel using multiple parallel pro-
cesses. One process, known as the parallel coordinator, dispatches the execution of a
statement to several parallel server processes and coordinates the results from all of
the server processes to send the results back to the user.

When an operation is divided into pieces for parallel execution in a massively par-
allel processing (MPP) configuration, Oracle assigns a particular piece of the opera-
tion to a parallel server process by taking into account the affinity of the process for
the piece of the table or index to be used for the operation. The physical layout of
partitioned tables and indexes impacts on the affinity used to assign work for paral-
lel server processes.

See “Affinity” on page 22-40 for more information.

Figure 22–2 illustrates several parallel server processes simultaneously performing
a partial scan of the EMP table, which is divided by block range dynamically
(dynamic partitioning). The parallel server processes send results back to the parallel
coordinator process, which assembles the pieces into the desired full table scan.

Note: In this context, the phrase “parallel server process” does
not mean a process of an Oracle Parallel Server, but instead means
a process that performs an operation in parallel. (In an Oracle
Parallel Server, however, the parallel server processes may be
spread across multiple instances.) Parallel server processes are
also sometimes called “slave processes”.

SELECT *
 FROM EMP;

EMP Table

Serial Process
22-6 Oracle8 Concepts

Process Architecture for Parallel Execution
Figure 22–2 Parallel Full Table Scan

The parallel coordinator breaks down execution functions into parallel pieces and
then integrates the partial results produced by the parallel server processes. The
number of parallel server processes assigned to a single operation is the degree of
parallelism for an operation. Multiple operations within the same SQL statement all
have the same degree of parallelism (see “Determining the Degree of Parallelism
for Operations” on page 22-13).

The Parallel Server Pool
When an instance starts up, Oracle creates a pool of parallel server processes
which are available for any parallel operation. The initialization parameter
PARALLEL_MIN_SERVERS specifies the number of parallel server processes that
Oracle creates at instance startup.

When executing a parallel operation, the parallel coordinator obtains parallel
server processes from the pool and assigns them to the operation. If necessary,
Oracle can create additional parallel server processes for the operation. These paral-
lel server processes remain with the operation throughout job execution, then
become available for other operations. After the statement has been processed com-
pletely, the parallel server processes return to the pool.

Note: The parallel coordinator and the parallel server processes
can only service one statement at a time. A parallel coordinator can-
not coordinate, for example, a parallel query and a parallel DML
statement at the same time.

You can set PARALLEL_MIN_SERVERS to a higher value if you
need to run concurrent parallel statements.

SELECT *
 FROM EMP;

EMP Table

Parallel Coordinator Parallel Server Processes
 Parallel Execution 22-7

Process Architecture for Parallel Execution
When a user issues a SQL statement, the optimizer decides whether to execute the
operations in parallel and determines the degree of parallelism for each operation.
You can specify the number of parallel server processes required for an operation in
various ways (see “Setting the Degree of Parallelism” on page 22-13).

If the optimizer targets the statement for parallel processing, the following
sequence of events takes place:

■ The SQL statement’s foreground process becomes a parallel coordinator.

■ The parallel coordinator obtains as many parallel server processes as needed
(determined by the degree of parallelism) from the server pool or creates new
parallel server processes as needed.

■ Oracle executes the statement as a sequence of operations. Each operation is
performed in parallel, if possible.

■ When statement processing is completed, the coordinator returns any resulting
data to the user process that issued the statement and returns the parallel
server processes to the server pool.

The parallel coordinator calls upon the parallel server processes during the execu-
tion of the SQL statement (not during the parsing of the statement). Therefore,
when parallel execution is used with the multithreaded server, the server process
that processes the EXECUTE call of a user’s statement becomes the coordinator pro-
cess for the statement.

Variations in the Number of Parallel Server Processes
If the number of parallel operations processed concurrently by an instance changes
significantly, Oracle automatically changes the number of parallel server processes
in the pool.

If the number of parallel operations increases, Oracle creates additional parallel
server processes to handle incoming requests. However, Oracle never creates more
parallel server processes for an instance than what is specified by the initialization
parameter PARALLEL_MAX_SERVERS.

If the number of parallel operations decreases, Oracle terminates any parallel
server processes that have been idle for the period of time specified by the initializa-
tion parameter PARALLEL_SERVER_IDLE_TIME. Oracle does not reduce the size
of the pool below the value of PARALLEL_MIN_SERVERS no matter how long the
parallel server processes have been idle.
22-8 Oracle8 Concepts

Process Architecture for Parallel Execution
Processing Without Enough Parallel Server Processes
Oracle can process a parallel operation with fewer than the requested number of
processes; see “Minimum Number of Parallel Server Processes” on page 22-15 for
information about specifying a minimum with the initialization parameter
PARALLEL_MIN_PERCENT.

If all parallel server processes in the pool are occupied and the maximum number
of parallel server processes has been started, the parallel coordinator switches to
serial processing.

Parallelizing SQL Statements
Each SQL statement undergoes an optimization and parallelization process when it
is parsed. Therefore, when the data changes, if a more optimal execution plan or
parallelization plan becomes available, Oracle can automatically adapt to the new
situation. (Optimization is discussed in Chapter 20, “The Optimizer”.)

After the optimizer determines the execution plan of a statement, the parallel coor-
dinator determines the parallelization method for each operation in the execution
plan (for example, parallelize a full table scan by block range or parallelize an index
range scan by partition). The coordinator must decide whether an operation can be
performed in parallel and, if so, how many parallel server processes to enlist (that
is, the degree of parallelism).

See “Setting the Degree of Parallelism” on page 22-13 and “Parallelization Rules for
SQL Statements” on page 22-17 for more information.

Dividing Work Among Parallel Server Processes
The parallel coordinator examines the redistribution requirements of each opera-
tion. An operation’s redistribution requirement is the way in which the rows operated
on by the operation must be divided, or redistributed, among the parallel server
processes.

After determining the redistribution requirement for each operation in the execu-
tion plan, the optimizer determines the order in which the operations in the execu-
tion plan must be performed. With this information, the optimizer determines the
data flow of the statement.

Figure 22–3 illustrates the data flow of the following query:

Additional Information: See Oracle8 Tuning for information about
monitoring an instance’s pool of parallel server processes and
determining the appropriate values of the initialization parameters.
 Parallel Execution 22-9

Process Architecture for Parallel Execution
SELECT dname, MAX(sal), AVG(sal)
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 GROUP BY dname;

Figure 22–3 Data Flow Diagram for a Join of the EMP and DEPT Tables

Query
Coordinator

FULL SCAN
emp

FULL SCAN
dept

GROUP
BY

SORT

MERGE
JOIN
22-10 Oracle8 Concepts

Process Architecture for Parallel Execution
Parallelism Between Operations
Operations that require the output of other operations are known as parent opera-
tions. In Figure 22–3 the GROUP BY SORT operation is the parent of the MERGE
JOIN operation because GROUP BY SORT requires the MERGE JOIN output.

Parent operations can begin consuming rows as soon as the child operations have
produced rows. In the previous example, while the parallel server processes are
producing rows in the FULL SCAN DEPT operation, another set of parallel server
processes can begin to perform the MERGE JOIN operation to consume the rows.

Each of the two operations performed concurrently is given its own set of parallel
server processes. Therefore, both query operations and the data flow tree itself have
parallelism. The parallelism of an individual operation is called intra-operation par-
allelism and the parallelism between operations in a data flow tree is called inter-
operation parallelism.

Due to the producer/consumer nature of the Oracle server’s operations, only two
operations in a given tree need to be performed simultaneously to minimize execu-
tion time.

To illustrate intra-operation parallelism and inter-operator parallelism, consider the
following statement:

SELECT * FROM emp ORDER BY ename;

The execution plan consists of a full scan of the EMP table followed by a sorting of
the retrieved rows based on the value of the ENAME column. For the sake of this
example, assume the ENAME column is not indexed. Also assume that the degree
of parallelism for the query is set to four, which means that four parallel server pro-
cesses can be active for any given operation.

Figure 22–4 illustrates the parallel execution of our example query.
 Parallel Execution 22-11

Process Architecture for Parallel Execution
Figure 22–4 Inter-Operation Parallelism and Dynamic Partitioning

As you can see from Figure 22–4, there are actually eight parallel server processes
involved in the query even though the degree of parallelism is four. This is because
a parent and child operator can be performed at the same time (inter-operation par-
allelism).

Also note that all of the parallel server processes involved in the scan operation
send rows to the appropriate parallel server process performing the sort operation.
If a row scanned by a parallel server process contains a value for the ENAME col-
umn between A and G, that row gets sent to the first ORDER BY parallel server pro-
cess. When the scan operation is complete, the sorting processes can return the
sorted results to the coordinator, which in turn returns the complete query results
to the user.

Note: When a set of parallel server processes completes its opera-
tion, it moves on to operations higher in the data flow. For exam-
ple, in the previous diagram, if there was another ORDER BY
operation after the ORDER BY, the parallel server processes per-
forming the table scan perform the second ORDER BY operation
after completing the table scan.

SELECT *
 FROM emp
 ORDER BY ename;

EMP Table

Parallel
Coordinator

T - Z

H - M

N - S

A - G

User
Process

Intra-
Operation
parallelism

Inter-
Operation
parallelism

Intra-
Operation
parallelism
22-12 Oracle8 Concepts

Setting the Degree of Parallelism
Setting the Degree of Parallelism
The parallel coordinator may enlist two or more of the instance’s parallel server
processes to process a SQL statement. The number of parallel server processes asso-
ciated with a single operation is known as the degree of parallelism.

The degree of parallelism is specified at the statement level (with hints or the
PARALLEL clause), at the table or index level (in the table’s or index’s definition),
or by default based on the number of disks or CPUs.

Note that the degree of parallelism applies directly only to intra-operation parallel-
ism. If inter-operation parallelism is possible, the total number of parallel server
processes for a statement can be twice the specified degree of parallelism. No more
than two operations can be performed simultaneously.

Determining the Degree of Parallelism for Operations
The parallel coordinator determines the degree of parallelism by considering sev-
eral specifications. The coordinator first checks for hints or a PARALLEL clause
specified in the SQL statement itself, then it looks at the table’s or index’s defini-
tion, and finally it checks for the default degree of parallelism (see “Default Degree
of Parallelism” on page 22-14). Once a degree of parallelism is found in one of these
specifications, it becomes the degree of parallelism for the operation.

For specific details of the degree of parallelism, see “Parallelization Rules for SQL
Statements” on page 22-17.

Hints, PARALLEL clauses, table or index definitions, and default values only deter-
mine the number of parallel server processes that the coordinator requests for a
given operation. The actual number of parallel server processes used depends
upon how many processes are available in the parallel server pool (see “The Paral-
lel Server Pool” on page 22-7) and whether inter-operation parallelism is possible
(see “Parallelism Between Operations” on page 22-11).

Hints
You can specify hints in a SQL statement to set the degree of parallelism for a table
or index and the caching behavior of the operation.

■ The PARALLEL hint is used only for operations on tables. You can use it to par-
allelize queries and DML statements (INSERT, UPDATE, and DELETE).

■ The PARALLEL_INDEX hint parallelizes an index range scan of a partitioned
index. (In an index operation, the PARALLEL hint is not valid and is ignored.)
 Parallel Execution 22-13

Setting the Degree of Parallelism
Table and Index Definitions
You can specify the degree of parallelism within a table or index definition. Use one
of the following SQL statements to set the degree of parallelism for a table or index:
CREATE TABLE, ALTER TABLE, CREATE INDEX, or ALTER INDEX.

Default Degree of Parallelism
The default degree of parallelism is used when you do not specify a degree of paral-
lelism in a hint or within the definition of a table or index. The default degree of
parallelism is appropriate for most applications.

The default degree of parallelism for a SQL statement is determined by the follow-
ing factors.

1. The number of CPUs in the system.

2. The number of Oracle Parallel Server instances.

3. The number of disks (or files, if affinity information is not available) that the
table or index is stored on.

4. For parallelizing by partition, the number of partitions that will be accessed,
based upon partition pruning (if approximate).

5. For parallel DML operations with global index maintenance, the minimum
number of transaction free lists among all the global indexes to be updated.
The minimum number of transaction free lists for a partitioned global index is
the minimum number across all index partitions. This is a requirement in order
to prevent self-deadlock.

For example, if your system has 20 CPUs and you issue a parallel query on a table
that is stored on 15 disk drives, then the default degree of parallelism for your
query is 15 query servers.

Additional Information: Refer to Oracle8 Tuning for a general dis-
cussion on using hints in SQL statements and the specific syntax
for the PARALLEL, NOPARALLEL, PARALLEL_INDEX, CACHE,
and NOCACHE hints.

Additional Information: Refer to the Oracle8 SQL Reference for the
complete syntax of SQL statements.

Additional Information: See Oracle8 Tuning for information about
adjusting the degree of parallelism.
22-14 Oracle8 Concepts

Setting the Degree of Parallelism
The above factors determine the default number of parallel server processes to use,
however, the actual number of processes used is limited by their availability on the
requested instances during run time. The initialization parameter
PARALLEL_MAX_SERVERS sets an upper limit on the total number of parallel
server processes that an instance can have.

If a minimum fraction of the desired parallel server processes is not available (speci-
fied by the initialization parameter PARALLEL_MIN_PERCENT), a user error is
produced. The user can then retry the query with less parallelism.

Minimum Number of Parallel Server Processes
Oracle can perform an operation in parallel as long as at least two parallel server
processes are available. If too few parallel server processes are available, your SQL
statement may execute slower than expected. You can specify that a minimum per-
centage of requested parallel server processes must be available in order for the
operation to execute. This ensures that your SQL statement executes with a mini-
mum acceptable parallel performance. If the minimum percentage of requested par-
allel server processes are not available, the SQL statement does not execute and
returns an error.

The initialization parameter PARALLEL_MIN_PERCENT specifies the desired min-
imum percentage of requested parallel server processes. This parameter affects
DML and DDL operations as well as queries.

For example, if you specify 50 for this parameter, then at least 50% of the
parallel server processes requested for any parallel operation must be available in
order for the operation to succeed. If 20 parallel server processes are requested,
then at least 10 must be available or an error is returned to the user. If
PARALLEL_MIN_PERCENT is set to null, then all parallel operations will proceed
as long as at least two parallel server processes are available for processing.

Note: Oracle obtains the information about disks and CPUs from
the operating system.

Note: The PARALLEL_DEFAULT_SCANSIZE and
PARALLEL_DEFAULT_MAX_SCANS initialization parameters
are obsolete.
 Parallel Execution 22-15

Setting the Degree of Parallelism
Limiting the Number of Available Instances
In an Oracle Parallel Server, instance groups can be used to limit the number of
instances that participate in a parallel operation. You can create any number of
instance groups, each consisting of one or more instances. You can then specify
which instance group is to be used for any or all parallel operations. Parallel server
processes will only be used on instances which are members of the specified
instance group.

Balancing the Work Load
To optimize performance, all parallel server processes should have equal work
loads. For SQL statements parallelized by block range or by parallel server pro-
cesses, the work load is dynamically divided among the parallel server processes.
This minimizes workload skewing, which occurs when some parallel server processes
perform significantly more work than the other processes.

For SQL statements parallelized by partitions, if the work load is evenly distributed
among the partitions then you can optimize performance by matching the number
of parallel server processes to the number of partitions, or by choosing a degree of
parallelism such that the number of partitions is a multiple of the number of pro-
cesses.

For example, if a table has ten partitions and a parallel operation divides the work
evenly among them, you can use ten parallel server processes (degree of parallel-
ism = 10) to do the work in approximately one-tenth the time that one process
would take, or you can use five processes to do the work in one-fifth the time, or
two processes to do the work in one-half the time.

 If, however, you use nine processes to work on ten partitions, the first process to
finish its work on one partition then begins work on the tenth partition; and as the
other processes finish their work they become idle. This does not give good perfor-
mance when the work is evenly divided among partitions. When the work is
unevenly divided, the performance varies depending on whether the partition that
is left for last has more or less work than the other partitions.

Similarly, if you use four processes to work on ten partitions and the work is evenly
divided, then each process works on a second partition after finishing its first parti-
tion, but only two of the processes work on a third partition while the other two
remain idle.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information about instance groups.
22-16 Oracle8 Concepts

Setting the Degree of Parallelism
In general, you cannot assume that the time taken to perform a parallel operation
on N partitions with P parallel server processes will be N/P, because of the possibil-
ity that some processes might have to wait while others finish working on the last
partition(s). By choosing an appropriate degree of parallelism, however, you can
minimize the workload skewing and optimize performance.

For information about balancing the work load with disk affinity, see “Affinity and
Parallel DML” on page 22-41.

Parallelization Rules for SQL Statements
A SQL statement can be parallelized if it includes a parallel hint or if the table or
index being operated on has been declared PARALLEL with a CREATE or ALTER
statement. In addition, a data definition language (DDL) statement can be parallel-
ized by using the PARALLEL clause. However, not all of these methods apply to all
types of SQL statements.

Parallelization has two components: the decision to parallelize and the degree of
parallelism. These components are determined differently for queries, DDL opera-
tions, and DML operations.

To determine the degree of parallelism, Oracle looks at the reference objects.

■ Parallel query looks at each table and index, in the portion of the query being
parallelized, to determine which is the reference table. The basic rule is to pick
the table or index with the largest degree of parallelism.

■ For parallel DML (insert, update, and delete), the reference object that deter-
mines the degree of parallelism is the table being modified by an insert, update,
or delete operation. Parallel DML also adds some limits to the degree of paral-
lelism to prevent deadlock. If the parallel DML statement includes a subquery,
the subquery’s degree of parallelism is the same as the DML operation.

■ For parallel DDL, the reference object that determines the degree of parallelism
is the table, index, or partition being created, rebuilt, split, or moved. If the par-
allel DDL statement includes a subquery, the subquery’s degree of parallelism
is the same as the DDL operation.
 Parallel Execution 22-17

Setting the Degree of Parallelism
Rules for Parallelizing Queries

Decision to Parallelize A SELECT statement can be parallelized only if the following
conditions are satisfied:

1. The query includes a “parallel” hint specification (PARALLEL or
PARALLEL_INDEX) or the schema objects referred to in the query have a
PARALLEL declaration associated with them.

2. At least one of the tables specified in the query requires one of the following:

■ a full table scan

■ an index range scan spanning multiple partitions

Degree of Parallelism The degree of parallelism for a query is determined by the fol-
lowing rules:

1. The query uses the maximum degree of parallelism taken from all of the table
declarations involved in the query and all of the potential indexes that are can-
didates to satisfy the query (the reference objects). That is, the table or index that
has the greatest degree of parallelism determines the query’s degree of parallel-
ism (maximum query directive).

2. If a table has both a “parallel” hint specification in the query and a parallel dec-
laration in its table specification, the hint specification takes precedence over
parallel declaration specification.

Rules for Parallelizing UPDATE and DELETE
Update and delete operations are parallelized by partition. Updates and deletes can
only be parallelized on partitioned tables; update/delete parallelism is not possible
within a partition, nor on a nonpartitioned table.

You have two ways to specify parallel directives for UPDATE and DELETE opera-
tions (assuming that PARALLEL DML mode is enabled):

1. Parallel clause specified in the definition of the table being updated or deleted
(the reference object).

2. Update or delete parallel hint specified at the statement.

Parallel hints are placed immediately after the UPDATE or DELETE keywords in
UPDATE and DELETE statements. The hint also applies to the underlying scan of
the table being changed.
22-18 Oracle8 Concepts

Setting the Degree of Parallelism
Parallel clauses in CREATE TABLE and ALTER TABLE commands specify table
parallelism. If a parallel clause exists in a table definition, it determines the parallel-
ism of DML statements as well as queries. If the DML statement contains explicit
parallel hints for a table, however, then those hints override the effect of parallel
clauses for that table.

Decision to Parallelize The following rule determines whether the update/delete
operation should be parallelized in an update/delete statement:

■ The UPDATE or DELETE operation will be parallelized if and only if the table
being updated/deleted has a PARALLEL specification or the PARALLEL hint
is specified in the DML statement.

If the statement contains subqueries or updatable views, they may have their own
separate parallel hints or clauses, but these parallel directives do not affect the deci-
sion to parallelize the update or delete.

Although the parallel hint or clause on the tables is used by both query and
update/delete portions to determine parallelism, the decision to parallelize the
update/delete portion is made independently of the query portion, and vice versa.

Degree of Parallelism The degree of parallelism is determined by the same rules as
for the queries. Note that in the case of update and delete operations, only one table
(the only reference object) is involved which is the target table to be modified.

The precedence rule to determine the degree of parallelism for the update/delete
operation is that the update or delete parallel hint specification takes precedence
over the parallel declaration specification of the target table:

Update/Delete hint > Parallel declaration specification of targe table

The maximum degree of parallelism you can achieve is equal to the number of par-
titions in the table. A parallel server process can update into or delete from multi-
ple partitions, but each partition can only be updated or deleted by one parallel
server process.

If the degree of parallelism is less than the number of partitions, then the first pro-
cess to finish work on one partition continues working on another partition, and so
on until the work is finished on all partitions. If the degree of parallelism is greater
than the number of partitions involved in the operation, then the excess parallel
server processes would have no work to do.

Example 1: UPDATE tbl_1 SET c1=c1+1 WHERE c1>100;
 Parallel Execution 22-19

Setting the Degree of Parallelism
If TBL_1 is a partitioned table and its table definition has a parallel clause, then the
update operation will be parallelized even if the scan on the table is serial (such as
an index scan), assuming that the table has more than one partition with C1 greater
than 100.

Example 2: UPDATE /*+ PARALLEL(tbl_2,4) */ tbl_2 SET c1=c1+1;

Both the scan and update operations on TBL_2 will be parallelized with degree 4.

Rules for Parallelizing INSERT ... SELECT
An INSERT ... SELECT statement parallelizes its INSERT and SELECT operations
independently, except for the degree of parallelism.

You can specify a “parallel” hint after the INSERT keyword in an INSERT ...
SELECT statement. Since the tables being queried are usually not the same as the
table being inserted into, the hint allows you to specify parallel directives specifi-
cally for the insert operation.

You have four ways to specify parallel directives for an INSERT... SELECT state-
ment (assuming that PARALLEL DML mode is enabled):

1. SELECT parallel hint(s) specified at the statement.

2. Parallel clause(s) specified in the definition of tables being selected.

3. INSERT parallel hint specified at the statement.

4. Parallel clause specified in the definition of tables being inserted into.

Decision to Parallelize The following rule determines whether the insert operation
should be parallelized in an INSERT... SELECT statement:

■ The INSERT operation will be parallelized if and only if the table being inserted
into (the reference object) has a PARALLEL declaration specification or the
PARALLEL hint is specified after the INSERT in the DML statement.

Hence the decision to parallelize the insert operation is made independently of the
select operation, and vice versa.

Degree of Parallelism Once the decision to parallelize the select and/or insert opera-
tion is made, one parallel directive is picked for deciding degree of parallelism of
the whole statement using the following precedence rule:

Insert Hint directive > Parallel declaration specification of the inserting table >
Maximum Query directive
22-20 Oracle8 Concepts

Setting the Degree of Parallelism
where Maximum Query directive means that among multiple tables and indexes, the
table or index that has the maximum degree of parallelism determines the parallel-
ism for the query operation.

The chosen parallel directive is applied to both the select and insert operations.

Example: In the following example, the degree of parallelism used will be 2, which
is the degree specified in the Insert hint:

INSERT /*+ PARALLEL(tbl_ins,2) */ INTO tbl_ins
 SELECT /*+ PARALLEL(tbl_sel,4) */ * FROM tbl_sel;

Rules for Parallelizing DDL Statements

Decision to Parallelize DDL operations can be parallelized if a PARALLEL clause (dec-
laration) is specified in the syntax. In the case of CREATE INDEX and ALTER
INDEX ... REBUILD or ALTER INDEX ... REBUILD PARTITION, the parallel decla-
ration is stored in the data dictionary.

Degree of Parallelism The degree of parallelism is determined by the specification in
the PARALLEL clause. A rebuild of a partitioned index is never parallelized.

Rules for Parallelizing Create Index, Rebuild Index, Merge/Split Partition

Parallel CREATE INDEX or ALTER INDEX ... REBUILD The CREATE INDEX and ALTER
INDEX ... REBUILD statements can be parallelized only by a PARALLEL clause.

ALTER INDEX ... REBUILD can be parallelized only for a nonpartitioned index,
but ALTER INDEX ... REBUILD PARTITION can be parallelized by a PARALLEL
clause.

The scan operation for ALTER INDEX ... REBUILD (nonpartitioned), ALTER
INDEX ... REBUILD PARTITION, and CREATE INDEX has the same parallelism as
the REBUILD or CREATE operation and uses the same degree of parallelism. If the
degree of parallelism is not specified for REBUILD or CREATE, the default is the
number of CPUs.

Parallel MOVE PARTITION or SPLIT PARTITION The ALTER INDEX ... MOVE
PARTITION and ALTER INDEX ... SPLIT PARTITION statements can be parallel-
ized only by a PARALLEL clause. Their scan operations have the same parallelism
as the corresponding MOVE/SPLIT operations. If the degree of parallelism is not
specified, the default is the number of CPUs.
 Parallel Execution 22-21

Setting the Degree of Parallelism
Rules for Parellelizing Create Table as Select
The CREATE TABLE ... AS SELECT statement contains two parts:

■ a CREATE part (DDL)

■ a SELECT part (query)

Oracle can parallelize both parts of the statement. The CREATE part follows the
same rules as other DDL operations.

Decision to Parallelize (Query Part) The query part of a CREATE TABLE ... AS SELECT
statement can be parallelized only if the following conditions are satisfied:

1. The query includes a “parallel” hint specification (PARALLEL or
PARALLEL_INDEX) or the CREATE part of the statement has a PARALLEL
clause specification or the schema objects referred to in the query have a
PARALLEL declaration associated with them.

2. At least one of the tables specified in the query requires one of the following:

■ a full table scan

■ an index range scan spanning multiple partitions

Degree of Parallelism (Query Part) The degree of parallelism for the query part of a
CREATE TABLE ... AS SELECT statement is determined by one of the following
rules:

1. The query part uses the values specified in the PARALLEL clause of the
CREATE part.

2. If the PARALLEL clause is not specified, the default degree of parallelism is the
number of CPUs.

Note that any values specified in a hint for parallelism will be ignored.

Decision to Parallelize (Create Part) The CREATE operation of CREATE TABLE ... AS
SELECT can be parallelized only by a PARALLEL clause.

When the CREATE operation of CREATE TABLE ... AS SELECT is parallelized,
Oracle also parallelizes the scan operation if possible. The scan operation cannot be
parallelized if, for example:

■ the SELECT clause has a NOPARALLEL hint

■ the operation scans an index of a nonpartitioned table
22-22 Oracle8 Concepts

Setting the Degree of Parallelism
When the CREATE operation is not parallelized, the SELECT can be parallelized if
it has a PARALLEL hint or if the selected table (or partitioned index) has a parallel
declaration.

Degree of Parallelism (Create Part) The degree of parallelism for the CREATE opera-
tion, and for the SELECT operation if it is parallelized, is specified by the
PARALLEL clause of the CREATE statement. If the CREATE statement does not
specify the degree of parallelism, the default is the number of CPUs. Note that any
degree of parallelism specified in a hint for the SELECT clause is ignored.

Summary of Parallelization Rules
Table 22–1 shows how various types of SQL statements can be parallelized, and
indicates which methods of specifying parallelism take precedence.

■ The priority (1) specification overrides priority (2) and priority (3).

■ The priority (2) specification overrides priority (3).

Additional Information: For details about parallel clauses and
hints in SQL statements, see Oracle8 SQL Reference.
 Parallel Execution 22-23

Setting the Degree of Parallelism
Table 22–1 Parallelization Rules

Parallel Operation

Parallelized by Clause, Hint, or Underlying Table/Index Dec-
laration (priority order: 1, 2, 3)

Parallel
Clause

Parallel
Hint

Parallel
Declaration

Parallel query table scan (partitioned or non-
partitioned table)

(1) PARALLEL (2) of table

Parallel query index range scan (partitioned
index)

(1) PARALLEL_INDEX (2) of index

Parallel UPDATE/DELETE (partitioned
table only)

(1) PARALLEL (2) of table being
updated or deleted

from

Insert operation of parallel INSERT...
SELECT (partitioned or nonpartitioned
table)

(1) PARALLEL of insert (2) of table being
inserted into

Select operation of parallel INSERT...
SELECT (partitioned or nonpartitioned
table)

(1) PARALLEL of select (2) of selecting table

Create operation of parallel CREATE
TABLE ... AS SELECT (partitioned or non-
partitioned table)

(1) (Note: Hint in select clause
does not affect the create

operation.)

Select operation of parallel CREATE
TABLE ... AS SELECT (partitioned or non-
partitioned table)

(2) (1) PARALLEL/
PARALLEL_INDEX

(3) of querying tables/
partitioned indexes

Parallel CREATE INDEX (partitioned or
nonpartitioned index)

(1)

Parallel REBUILD INDEX (nonpartitioned
index)

(1)

REBUILD INDEX (partitioned index) Never parallelized

Parallel REBUILD INDEX partition (1)

Parallel MOVE/SPLIT partition (1)
22-24 Oracle8 Concepts

Parallel DDL
Parallel DDL
This section includes the following topics on parallelism for data definiation lan-
guage (DDL) statements:

■ DDL Statements That Can Be Parallelized

■ CREATE TABLE ... AS SELECT in Parallel

■ Recoverability and Parallel DDL

■ Space Management for Parallel DDL

DDL Statements That Can Be Parallelized
You can parallelize DDL statements for tables and indexes that are nonpartitioned
or partitioned. Table 22–1 on page 22-24 summarizes the operations that can be par-
allelized in DDL statements.

The parallel DDL statements for nonpartitioned tables and indexes are:

■ CREATE INDEX

■ CREATE TABLE ... AS SELECT

■ ALTER INDEX ... REBUILD

The parallel DDL statements for partitioned tables and indexes are:

■ CREATE INDEX

■ CREATE TABLE ... AS SELECT

■ ALTER TABLE ... MOVE PARTITION

■ ALTER TABLE ... SPLIT PARTITION

■ ALTER INDEX ... REBUILD PARTITION

■ ALTER INDEX ... SPLIT PARTITION — only if the (global) index partition
being split is Usable

All of these DDL operations can be performed in no-logging mode (see “Logging
Mode” on page 21-5) for either parallel or serial execution.

Different parallelism is used for different operations (see Table 22–1 on page 22-24).
Parallel create (partitioned) table as select and parallel create (partitioned) index
execute with a degree of parallelism equal to the number of partitions.
 Parallel Execution 22-25

Parallel DDL
Partition parallel analyze table is made less necessary by the ANALYZE {TABLE,
INDEX} PARTITION commands, since parallel analyze of an entire partitioned
table can be constructed with multiple user sessions.

CREATE TABLE ... AS SELECT in Parallel
Decision support applications, for performance reasons, often require large
amounts of data to be summarized or “rolled up” into smaller tables for use with
ad hoc, decision support queries. Rollup occurs regularly (such as nightly or
weekly) during a short period of system inactivity.

Parallel execution allows you to parallelize the query and create operations of creat-
ing a table as a subquery from another table or set of tables.

Figure 22–5 illustrates creating a table from a subquery in parallel.

Figure 22–5 Creating a Summary Table in Parallel

Additional Information: See Oracle8 SQL Reference for information
about the syntax and use of parallel DDL statements.

CREATE TABLE summary
 (C1, AVGC2, SUMC3)
PARALLEL (DEGREE 5)
AS
SELECT
C1, AVG(C2), SUM(C3)
FROM DAILY_SALES
GROUP BY (C1);

DAILY_SALES
Table

SUMMARY
Table

Parallel Coordinator

Parallel Server Processes Parallel Server Processes
22-26 Oracle8 Concepts

Parallel DDL
Recoverability and Parallel DDL
When summary table data is derived from other tables’ data, the recoverability
from media failure for the smaller summary table may not be important and can be
turned off during creation of the summary table.

If you disable logging during parallel table creation (or any other parallel DDL
operation), you should take a backup of the tablespace containing the table once
the table is created to avoid loss of the table due to media failure.

Use the NOLOGGING clause of CREATE/ALTER TABLE/INDEX statements to
disable undo and redo log generation. See “Logging Mode” on page 21-5 for more
information.

Space Management for Parallel DDL
Creating a table or index in parallel has space management implications that affect
both the storage space required during the parallel operation and the free space
available after the table or index has been created.

Storage Space for CREATE TABLE ... AS SELECT and CREATE INDEX
When creating a table or index in parallel, each parallel server process uses the val-
ues in the STORAGE clause of the CREATE statement to create temporary seg-
ments to store the rows. Therefore, a table created with an INITIAL of 5M and a
PARALLEL DEGREE of 12 consumes at least 60 megabytes of storage during table
creation, because each process starts with an extent of 5 megabytes. When the paral-
lel coordinator combines the segments, some of the segments may be trimmed, and
the resulting table may be smaller than the requested 60 megabytes.

Free Space and Parallel DDL
When you create indexes and tables in parallel, each parallel server process allo-
cates a new extent and fills the extent with the table or index’s data. Thus, if you

Note: Clustered tables cannot be created and populated in
parallel.

Additional Information: See the Oracle8 Administrator’s Guide for
information about recoverability of tables created in parallel.

Additional Information: See the Oracle8 SQL Reference for a discus-
sion of the syntax of the CREATE TABLE command.
 Parallel Execution 22-27

Parallel DDL
create an index with a degree of parallelism of 3, there will be at least three extents
for that index initially. (This discussion also applies to rebuilding indexes in paral-
lel and moving, splitting, or rebuilding partitions in parallel.)

Serial operations require the schema object to have at least one extent. Parallel cre-
ations require that tables or indexes have at least as many extents as there are paral-
lel server processes creating the schema object.

When you create a table or index in parallel, it is possible to create “pockets” of free
space — either external or internal fragmentation. This occurs when the temporary
segments used by the parallel server processes are larger than what is needed to
store the rows.

■ If the unused space in each temporary segment is larger than the value of the
MINIMUM EXTENT parameter set at the tablespace level, Oracle trims the
unused space when merging rows from all of the temporary segments into the
table or index. The unused space is returned to the system free space and can
be allocated for new extents, but it cannot be coalesced into a larger segment
because it is not contiguous space (external fragmentation).

■ If the unused space in each temporary segment is smaller than the value of the
MINIMUM EXTENT parameter, unused space cannot be trimmed when the
rows in the temporary segments are merged into the table or index. This
unused space is not returned to the system free space; it becomes part of the
table or index (internal fragmentation) and is available only for subsequent
inserts or for updates that require additional space.

For example, if you specify a degree of parallelism of three for a CREATE TABLE ...
AS SELECT statement but there is only one datafile in the tablespace, the internal
fragmentation illustrated in Figure 22–6 can arise. The “pockets” of free space
within internal table extents of a datafile cannot be coalesced with other free space
and allocated as extents.

For more information about datafiles and tablespaces, see Chapter 3, “Tablespaces
and Datafiles”.

Additional Information: See Oracle8 Tuning for more information
about creating tables and indexes in parallel.
22-28 Oracle8 Concepts

Parallel DML
Figure 22–6 Unusable Free Space (Internal Fragmentation)

Parallel DML
Parallel DML (parallel insert, update, and delete) uses parallel execution mecha-
nisms to speed up or scale up large DML operations against large database tables
and indexes.

Note: Although generally data manipulation language (DML)
includes queries, in this chapter the term “DML” refers only to
inserts, updates, and deletes.

DATA1.ORA

CREATE TABLE emp
 AS SELECT ...

USERS Tablespace

EXTENT 1

Free space
for INSERTs

Free space
for INSERTs

Free space

EXTENT 2

EXTENT 3

for INSERTs

Parallel
Server

Process

Parallel
Server

Process

Parallel
Server

Process
 Parallel Execution 22-29

Parallel DML
This section discusses the following parallel DML topics:

■ Advantages of Parallel DML over Manual Parallelism

■ When to Use Parallel DML

■ Enabling Parallel DML

■ Transaction Model for Parallel DML

■ Recovery for Parallel DML

■ Space Considerations for Parallel DML

■ Lock and Enqueue Resources for Parallel DML

■ Restrictions on Parallel DML

See Chapter 21, “Direct-Load INSERT” for a detailed description of parallel insert
statements.

Advantages of Parallel DML over Manual Parallelism
You can parallelize DML operations manually by issuing multiple DML commands
simultaneously against different sets of data. For example, you can parallelize man-
ually by:

■ issuing multiple INSERT statements to multiple instances of an Oracle Parallel
Server to make use of free space from multiple free list blocks

■ issuing multiple UPDATE and DELETE statements with different key value
ranges or ROWID ranges.

However, manual parallelism has the following disadvantages:

■ Difficult to use: you have to open multiple sessions (possibly on different
instances) and issue multiple statements.

■ Lack of transactional properties: the DML statements are issued at different
times, thus the changes are done with inconsistent snapshots of the database.
To get atomicity, the commit or rollback of the various statements must be coor-
dinated manually (maybe across instances).

■ Work division complexity: you may have to query the table in order to find out
the rowid or key value ranges to correctly divide the work.

■ Lack of affinity and resource information: you need to know affinity informa-
tion to issue the right DML statement at the right instance when running an
Oracle Parallel Server. You also have to find out about current resource usage
to balance work load across instances.
22-30 Oracle8 Concepts

Parallel DML
Parallel DML removes these disadvantages by performing inserts, updates, and
deletes in parallel automatically.

When to Use Parallel DML
Parallel DML operations are mainly used to speed up large DML operations
against large database objects. Parallel DML is useful in a decision support system
(DSS) environment where the performance and scalability of accessing large objects
are important. Parallel DML complements parallel query in providing you with
both querying and updating capabilities for your DSS databases.

The overhead of setting up parallelism makes parallel DML operations infeasible
for short OLTP transactions. However, parallel DML operations can speed up batch
jobs running in an OLTP database.

Refresh Tables of a Data Warehouse System
In a data warehouse system, large tables need to be refreshed (updated) periodically
with new or modified data from the production system. You can do this efficiently
by using parallel DML combined with updatable join views.

The data that needs to be refreshed is generally loaded into a temporary table
before starting the refresh process. This table contains either new rows or rows that
have been updated since the last refresh of the data warehouse. You can use an
updatable join view with parallel UPDATE to refresh the updated rows, and you
can use an anti-hash join with parallel INSERT to refresh the new rows.

Intermediate Summary Tables
In a DSS environment, many applications require complex computations that
involve constructing and manipulating many large intermediate summary tables.
These summary tables are often temporary and frequently do not need to be
logged. Parallel DML can speed up the operations against these large intermediate
tables. One benefit is that you can put incremental results in the intermediate tables
and perform parallel updates.

In addition, the summary tables may contain cumulative or comparison informa-
tion which has to persist beyond application sessions; thus, temporary tables are
not feasible. Parallel DML operations can speed up the changes to these large sum-
mary tables.

Additional Information: For details, see Oracle8 Tuning.
 Parallel Execution 22-31

Parallel DML
Scoring Tables
Many DSS applications score customers periodically based on a set of criteria. The
scores are usually stored in large DSS tables. The score information is then used in
making a decision, for example, inclusion in a mailing list.

This scoring activity queries and updates a large number of rows in the large table.
Parallel DML can speed up the operations against these large tables.

Historical Tables
Historical tables describe the business transactions of an enterprise over a recent
time interval. Periodically, the DBA deletes the set of oldest rows and inserts a set
of new rows into the table. Parallel INSERT... SELECT and parallel DELETE opera-
tions can speed up this rollover task.

Although you can also use parallel direct loader (SQL*Loader) to insert bulk data
from an external source, parallel INSERT... SELECT will be faster in inserting data
that already exists in another table in the database.

Dropping a partition can also be used to delete old rows, but to do this, the table
has to be partitioned by date and with the appropriate time interval.

Batch Jobs
Batch jobs executed in an OLTP database during off hours have a fixed time win-
dow in which the jobs must complete. A good way to ensure timely job completion
is to parallelize their operations. As the work load increases, more machine
resources can be added; the scaleup property of parallel operations ensures that the
time constraint can be met.

Enabling Parallel DML
A DML statement can be parallelized only if you have explicitly enabled parallel
DML in the session via the ENABLE PARALLEL DML option of the ALTER
SESSION statement. This mode is required because parallel DML and serial DML
have different locking, transaction, and disk space requirements. (See “Space Con-
siderations for Parallel DML” on page 22-35 and “Lock and Enqueue Resources for
Parallel DML” on page 22-36.)

The default mode of a session is DISABLE PARALLEL DML. When PARALLEL
DML is disabled, no DML will be executed in parallel even if the PARALLEL hint
or PARALLEL clause is used.

When PARALLEL DML is enabled in a session, all DML statements in this session
will be considered for parallel execution. However, even if the PARALLEL DML is
22-32 Oracle8 Concepts

Parallel DML
enabled, the DML operation may still execute serially if there are no parallel hints
or parallel clauses or if restrictions on parallel operations are violated (see “Restric-
tions on Parallel DML” on page 22-37).

The session’s PARALLEL DML mode does not influence the parallelism of SELECT
statements, DDL statements, and the query portions of DML statements. Thus, if
this mode is not set, the DML operation is not parallelized but scans or join opera-
tions within the DML statement may still be parallelized.

Transactions with PARALLEL DML Enabled
A session that is enabled for PARALLEL DML may put transactions in the session
in a special mode: If any DML statement in a transaction modifies a table in paral-
lel, no subsequent serial or parallel query or DML statement can access the same
table again in that transaction. This means that the results of parallel modifications
cannot be seen during the transaction.

Serial or parallel statements that attempt to access a table which has already been
modified in parallel within the same transaction are rejected with an error message.

If a PL/SQL procedure or block is executed in a PARALLEL DML enabled session,
then this rule applies to statements in the procedure or block.

Transaction Model for Parallel DML
To execute a DML operation in parallel, the coordinator process acquires or spawns
parallel server processes and each parallel server process executes a portion of the
work under its own parallel process transaction.

■ Each parallel server process creates a different parallel process transaction.

■ To reduce contention on the rollback segments, only a few parallel process
transactions should reside in the same rollback segment (see the next section).

The coordinator also has its own coordinator transaction, which can have its own
rollback segment.

Rollback Segments
Oracle assigns transactions to rollback segments that have the fewest active transac-
tions. To speed up both forward and undo operations, you should create and bring
online enough rollback segments so that at most two parallel process transactions
are assigned to one rollback segment.
 Parallel Execution 22-33

Parallel DML
Create the rollback segments in tablespaces that have enough space for them to
extend when necessary and set the MAXEXTENTS storage parameters for the roll-
back segments to UNLIMITED.

Two-Phase Commit
A parallel DML operation is executed by more than one independent parallel pro-
cess transaction. In order to ensure user-level transactional atomicity, the coordina-
tor uses a two-phase commit protocol to commit the changes performed by the
parallel process transactions.

This two-phase commit protocol is a simplified version which makes use of shared
disk architecture to speed up transaction status lookups, especially during transac-
tional recovery. It does not require the Oracle XA library. In-doubt transactions
never become visible to users.

Recovery for Parallel DML
The time required to roll back a parallel DML operation is roughly equal to the
time it took to perform the forward operation.

Oracle supports parallel transaction recovery (“undo” recovery) during transaction
and process failures, and to a lesser extent during instance and system failures.

To speed up transaction recovery, the initialization parameter
CLEANUP_ROLLBACK_ENTRIES should be set to a high value approximately
equal to the number of rollback entries generated for the forward-going operation.

Transaction Recovery
A user-issued rollback in a transaction failure due to statement error is performed
in parallel by the parallel coordinator and the parallel server processes. The roll-
back takes approximately the same amount of time as the forward transaction.

Process Recovery
Recovery from the failure of a parallel DML coordinator or parallel server process
is performed by the PMON process.

■ If a single parallel server process fails, PMON rolls back that process’s work
and all other parallel server processes roll back their own work.

■ If multiple parallel server processes fail, PMON rolls back all of their work
serially.
22-34 Oracle8 Concepts

Parallel DML
■ If the coordinator process fails, PMON recovers the coordinator and all parallel
server processes roll back their own work in parallel.

The recovery time for process failures can therefore be longer than the original (for-
ward) work.

System Recovery
Recovery from a system failure needs a new startup. Recovery is performed by the
SMON process. Parallel DML statements recover serially and all resources remain
locked until recovery is complete. Recovery can therefore take much longer than
the original (forward) transaction if the forward transaction used a high degree of
parallelism and has done a lot of work.

One way to speed up transaction recovery is to rerun the parallel DML statement.
When the new coordinator and parallel server processes encounter the locked
resources, they trigger transaction recovery concurrently. After the new parallel pro-
cesses finish recovering the resources, you can either commit or roll back the trans-
action.

Instance Recovery (Oracle Parallel Server)
Recovery from an instance failure in an Oracle Parallel Server is performed by the
SMON processes of other live instances. Each SMON process of the live instances
can recover the parallel coordinator and/or parallel server process transactions of
the failed instance independently. If there are more parallel server processes in the
failed instance than there are live instances, the recovery time is longer than the for-
ward work by the failed instance.

Space Considerations for Parallel DML
Parallel UPDATE uses the space in the existing object, as opposed to direct-load
INSERT which gets new segments for the data.

Space usage characteristics may be different in parallel than they would be if the
statement executed sequentially, because multiple concurrent child transactions
modify the object.

See “Space Considerations” on page 21-8 for information about space for direct-
load INSERT.
 Parallel Execution 22-35

Parallel DML
Lock and Enqueue Resources for Parallel DML
A parallel DML operation’s lock and enqueue resource requirements are very differ-
ent from the serial DML requirements. Parallel DML holds many more locks, so
you should increase the value of the ENQUEUE_RESOURCES and DML_LOCKS
parameters.

The processes for a parallel UPDATE, DELETE, or INSERT statement acquire the
following locks:

■ The coordinator process acquires:

– 1 table lock SX

– 1 partition lock X per partition

For parallel INSERT into a partitioned table, the coordinator acquires partition
locks for all partitions. For parallel UPDATE or DELETE, the coordinator
acquires partition locks for all partitions, unless the WHERE clause limits the
partitions involved.

■ Each parallel server process acquires:

– 1 table lock SX

– 1 partition lock NULL per partition

– 1 partition-wait lock X per partition

A parallel server process can work on one or more partitions, but a partition can
only be worked on by one parallel server process.

For example, for a table with 600 partitions running with parallel degree 100, a par-
allel DML statement needs the following locks (assuming all partitions are
involved in the statement):

■ The coordinator acquires 1 table lock SX and 600 partition locks X.

■ Total parallel server processes acquire 100 table locks SX, 600 partition locks
NULL, and 600 partition-wait locks X.

Table 22–2 summarizes the types of locks acquired by coordinator and parallel
server processes for different types of parallel DML statements.
22-36 Oracle8 Concepts

Parallel DML
Restrictions on Parallel DML
The following restrictions apply to parallel DML (including direct-load INSERT):

■ Update and delete operations are not parallelized on nonpartitioned tables.

■ For parallel update operations, global unique indexes are not supported. All
other indexes are fully maintained by parallel operations.

■ A transaction can contain multiple parallel DML statements that modify differ-
ent tables, but after a parallel DML statement modifies a table, no subsequent
serial or parallel statement (DML or query) can access the same table again in
that transaction.

– This restriction also exists after a serial direct-load INSERT statement: no
subsequent SQL statement (DML or query) can access the modified table
during that transaction.

– Queries that access the same table are allowed before a parallel DML or
direct-load INSERT statement, but not after.

– Any serial or parallel statements attempting to access a table that has
already been modified by a parallel UPDATE, parallel DELETE, or direct-
load INSERT during the same transaction are rejected with an error
message.

Table 22–2 Locks Acquired by Parallel DML Statements

Type of statement
Coordinator process
acquires:

Each parallel server process
acquires:

Parallel UPDATE or DELETE
into partitioned table; WHERE
clause specifies the partition

1 table lock SX

1 partition lock X per
partition

1 table lock SX

1 partition lock NULL per
partition

1 partition-wait lock X per
partition

Parallel UPDATE, DELETE, or
INSERT into partitioned table

1 table lock SX

Partition locks X for
all partitions

1 table lock SX

1 partition lock NULL per
partition

1 partition-wait lock X per
partition

Parallel INSERT into nonparti-
tioned table

1 table lock X None
 Parallel Execution 22-37

Parallel DML
■ If initialization parameter ROW_LOCKING = INTENT, then inserts, updates,
and deletes are not parallelized (regardless of the serializable mode).

■ Triggers are not supported for parallel DML operations.

■ Replication functionality is not supported for parallel DML.

■ Parallel DML cannot occur in the presence of certain constraints: self-referential
integrity, delete cascade, and deferred integrity. In addition, for direct-load
INSERT there is no support for any referential integrity.

■ Parallel DML cannot occur on tables with object columns or LOB columns, or
on index-organized tables.

■ A transaction involved in a parallel DML operation cannot be or become a dis-
tributed transaction.

■ Clustered tables are not supported.

Violations will cause the statement to execute serially without warnings or error
messages (except for the restriction on statements accessing the same table in a
transaction, which can cause error messages). For example, an update will be serial-
ized if it requires global unique index maintenance.

The following sections give further details about restrictions.

Partitioning Key Restriction
You can only update the partitioning key of a partitioned table to a new value if the
update would not cause the row to move to a new partition. This is a general
restriction on partitioned tables.

Data Integrity Restrictions
This section describes the interactions of integrity constraints and parallel DML
statements.

NOT NULL and CHECK These types of integrity constraints are allowed. They are not
a problem for parallel DML because they are enforced on the column and row
level, respectively.

UNIQUE and PRIMARY KEY Both of these constraints are enforced with unique
indexes. An UPDATE command that modifies a unique or primary key index is par-
allelized only if the index is local.
22-38 Oracle8 Concepts

Parallel DML
FOREIGN KEY (Referential Integrity) There are restrictions for referential integrity
whenever a DML operation on one table could cause a recursive DML operation on
another table or, in order to perform the integrity check, it would be necessary to
see simultaneously all changes made to the object being modified.

Table 22–3 lists all of the operations that are possible on tables that are involved in
referential integrity constraints.

Delete Cascade Delete on tables having a foreign key with delete cascade is not par-
allelized because parallel server processes will try to delete rows from multiple par-
titions (parent and child tables).

Self-Referential Integrity DML on tables with self-referential integrity constraints is
not parallelized if the referenced keys (primary keys) are involved. For DML on all
other columns, parallelism is possible.

Deferrable Integrity Constraints If there are any deferrable constraints on the table
being operated on, the DML operation will not be parallelized.

Trigger Restrictions
A DML operation will not be parallelized if any triggers are enabled on the affected
tables that may get fired as a result of the statement. This implies that DML state-
ments on tables that are being replicated will not be parallelized.

Relevant triggers must be disabled in order to parallelize DML on the table. Note
that enabling/disabling triggers invalidates dependent shared cursors.

Function Restrictions
Only functions that don’t read or write database or package state are allowed in
parallel DML statements. A DML operation will not be parallelized if the DML
statement has embedded functions that either read or write database state or pack-
age state.

Table 22–3 Referential Integrity Restrictions

DML Statement Issued on Parent Issued on Child Self-Referential

INSERT (Not applicable) Not parallelized Not parallelized

UPDATE No Action Supported Supported Not parallelized

DELETE No Action Supported Supported Not parallelized

DELETE Cascade Not parallelized (Not applicable) Not parallelized
 Parallel Execution 22-39

Affinity
Distributed Transaction Restrictions
A DML operation cannot be parallelized if it is in a distributed transaction or if the
DML or the query operation is against a remote object.

Example 1: In a distributed transaction:

select * from t1@dblink; /* this starts a distributed transaction */
delete /*+ parallel (t2,2) */ from t2; /* not parallelized */
commit;

Example 2: DML operation on a remote object:

delete /*+ parallel *t1, 2) */ from t1@dblink;
/* cannot parallel delete from remote object */

Example 3: DML statement which queries a remote object:

insert /* append parallel (t3,2) */ into t3 select * from t4@dblink;
/* not parallelized because of reference to remote object */

Affinity
In a shared-disk cluster or massively parallel processing (MPP) configuration, an
instance of the Oracle Parallel Server is said to have affinity for a device if the
device is directly accessed from the processor(s) on which the instance is running.
Similarly, an instance has affinity for a file if it has affinity for the device(s) that the
file is stored on.

Additional Information: See the description of the pragma
RESTRICT_REFERENCES in the Oracle8 Application Developer’s
Guide.

Attention: The features described in this section are available
only if you have purchased Oracle8 Enterprise Edition with the
Parallel Server Option. See Getting to Know Oracle8 and the Oracle8
Enterprise Edition for information about the features and options
available with Oracle8 Enterprise Edition.
22-40 Oracle8 Concepts

Affinity
Determination of affinity may involve arbitrary determinations for files that are
striped across multiple devices. Somewhat arbitrarily, an instance is said to have
affinity for a tablespace (or a partition of a table or index within a tablespace) if the
instance has affinity for the first file in the tablespace.

Oracle considers affinity when allocating work to parallel server processes. The use
of affinity for parallel execution of SQL statements is transparent to users.

Affinity and Parallel Queries
Affinity in parallel queries increases the speed of scanning data from disk by doing
the scans on a processor that is “near” the data. This can provide a substantial per-
formance increase for machines that do not naturally support shared disks.

The most common use of affinity is for a table or index partition to be stored in one
file on one device. This configuration provides the highest availability by limiting
the damage done by a device failure and makes best use of partition-parallel index
scans.

DSS customers might prefer to stripe table partitions over multiple devices (proba-
bly a subset of the total number of devices). This allows some queries to prune the
total amount of data being accessed using partitioning criteria and still obtain paral-
lelism through ROWID-range parallel table (partition) scans. If the devices are con-
figured as a RAID, availability can still be very good. Even when used for DSS,
indexes should probably be partitioned on individual devices.

Other configurations (for example, multiple partitions in one file striped over multi-
ple devices) will yield correct query results, but you may need to use hints or
explicitly set object attributes to select the correct degree of parallelism.

Affinity and Parallel DML
For parallel DML (inserts, updates, and deletes), affinity enhancements improve
cache performance by routing the DML operation to the node that has affinity for
the partition.

Affinity determines how to distribute the work among the set of instances and/or
parallel server processes to perform the DML operation in parallel. Affinity can
improve performance of queries in several ways:

1. For certain MPP architectures, Oracle uses device-to-node affinity information
to determine on which nodes to spawn parallel server processes (parallel process
allocation) and which work granules (ROWID ranges or partitions) to send to
particular nodes (work assignment). Better performance is achieved by having
 Parallel Execution 22-41

Other Types of Parallelism
nodes mainly access local devices, giving a better buffer cache hit ratio for
every node and reducing the network overhead and I/O latency.

2. For SMP shared disk clusters, Oracle uses a round-robin mechanism to assign
devices to nodes. Similar to item 1, this device-to-node affinity is used in deter-
mining parallel process allocation and work assignment.

3. For SMP, cluster, and MPP architectures, process-to-device affinity is used to
achieve device isolation. This reduces the chances of having multiple parallel
server processes accessing the same device simultaneously. This process-to-
device affinity information is also used in implementing stealing between
processes.

For partitioned tables and indexes, partition-to-node affinity information deter-
mines process allocation and work assignment. For shared-nothing MPP systems,
the Oracle Parallel Server tries to assign partitions to instances taking the disk affin-
ity of the partitions into account. For shared-disk MPP and cluster systems, parti-
tions are assigned to instances in a round-robin manner.

Affinity is only available for parallel DML when running in an Oracle Parallel
Server configuration. Affinity information which persists across statements will
improve buffer cache hit ratios and reduce block pings between instances.

Other Types of Parallelism
In addition to parallel SQL execution, Oracle can use parallelism for the following
types of operations:

■ parallel recovery

■ parallel propagation (replication)

■ parallel load (the SQL*Loader utility)

Like parallel SQL, parallel recovery and parallel propagation are executed by a par-
allel coordinator process and multiple parallel server processes. Parallel load, how-
ever, uses a different mechanism.

Additional Informaion: See Oracle8 Parallel Server Concepts and
Administration for more information about the Oracle Parallel
Server.

Additional Information: See Oracle8 Utilities for information about
parallel load and general information about SQL*Loader. Also see
Oracle8 Tuning for advice about using parallel load.
22-42 Oracle8 Concepts

Other Types of Parallelism
The behavior of the parallel coordinator and parallel server processes may differ,
depending on what kind of operation they perform (SQL, recovery, or propaga-
tion). For example, if all parallel server processes in the pool are occupied and the
maximum number of parallel server processes has been started:

■ in the parallel SQL role, the parallel coordinator switches to serial processing

■ in the parallel propagation role, the parallel coordinator returns an error.

For a given session, the parallel coordinator coordinates only one kind of operation.
A parallel coordinator cannot coordinate, for example, parallel SQL and parallel
propagation or parallel recovery at the same time.

See “Performing Recovery in Parallel” on page 28-13 for general information about
parallel recovery.

Additional Information: See Oracle8 Backup and Recovery Guide for
detailed information about parallel recovery, and see Oracle8 Repli-
cation for information about parallel propagation.
 Parallel Execution 22-43

Other Types of Parallelism
22-44 Oracle8 Concepts

Part VII

 Data Protection

Part VII describes how Oracle protects the data in a database and explains what the
database administrator can do to provide additional protection for data.

Part VII contains the following chapters:

■ Chapter 23, “Data Concurrency and Consistency”

■ Chapter 24, “Data Integrity”

■ Chapter 25, “Controlling Database Access”

■ Chapter 26, “Privileges and Roles”

■ Chapter 27, “Auditing”

■ Chapter 28, “Database Recovery”

 Data Concurrency and Cons
23

Data Concurrency and Consistency

A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philoso-
phers and divines.

Ralph Waldo Emerson

This chapter explains how Oracle maintains consistent data in a multiuser database
environment. The chapter includes:

■ Data Concurrency and Consistency in a Multiuser Environment

■ How Oracle Manages Data Concurrency and Consistency

■ How Oracle Locks Data
istency 23-1

Data Concurrency and Consistency in a Multiuser Environment
Data Concurrency and Consistency in a Multiuser Environment
In a single-user database, the user can modify data in the database without concern
for other users modifying the same data at the same time. However, in a multiuser
database, the statements within multiple simultaneous transactions can update the
same data. Transactions executing at the same time need to produce meaningful
and consistent results. Therefore, control of data concurrency and data consistency
is vital in a multiuser database.

■ Data concurrency means that many users can access data at the same time.

■ Data consistency means that each user sees a consistent view of the data, includ-
ing visible changes made by the user’s own transactions and transactions of
other users.

Data integrity, which enforces business rules associated with a database, is dis-
cussed in Chapter 24, “Data Integrity”.

To describe consistent transaction behavior when transactions execute at the same
time, database researchers have defined a transaction isolation model called serializ-
ability. The serializable mode of transaction behavior tries to ensure that transac-
tions execute in such a way that they appear to be executed one at a time, or
serially, rather than concurrently.

While this degree of isolation between transactions is generally desirable, running
many applications in this mode can seriously compromise application throughput.
Complete isolation of concurrently running transactions could mean that one trans-
action cannot perform an insert into a table being queried by another transaction.
In short, real-world considerations usually require a compromise between perfect
transaction isolation and performance.

Oracle offers two isolation levels, providing application developers with opera-
tional modes that preserve consistency and provide high performance.

Preventable Phenomena and Transaction Isolation Levels
The ANSI/ISO SQL standard (SQL92) defines four levels of transaction isolation
with differing degrees of impact on transaction processing throughput. These isola-
tion levels are defined in terms of three phenomena that must be prevented
between concurrently executing transactions.

The three preventable phenomena are:

dirty read A transaction reads data that has been written by another
transaction that has not been committed yet.
23-2 Oracle8 Concepts

Data Concurrency and Consistency in a Multiuser Environment
SQL92 defines four levels of isolation in terms of the phenomena a transaction run-
ning at a particular isolation level is permitted to experience.

Oracle offers the read committed and serializable isolation levels, as well as a read-
only mode that is not part of SQL92. Read committed is the default and was the
only automatic isolation level provided before Oracle Release 7.3. The read commit-
ted and serializable isolation levels are discussed more fully in “How Oracle Man-
ages Data Concurrency and Consistency” on page 23-4.

Locking Mechanisms
In general, multiuser databases use some form of data locking to solve the prob-
lems associated with data concurrency, consistency, and integrity. Locks are mecha-
nisms that prevent destructive interaction between transactions accessing the same
resource.

Resources include two general types of objects:

■ user objects, such as tables and rows (structures and data)

■ system objects not visible to users, such as shared data structures in the mem-
ory and data dictionary rows

The various types of locks — data locks, DDL locks, and internal locks — are dis-
cussed in “How Oracle Locks Data” on page 23-14.

nonrepeatable
(fuzzy) read

A transaction rereads data it has previously read and finds
that another committed transaction has modified or
deleted the data.

phantom read A transaction reexecutes a query returning a set of rows
that satisfies a search condition and finds that another com-
mitted transaction has inserted additional rows that satisfy
the condition.

Isolation Level Dirty Read NonRepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible
 Data Concurrency and Consistency 23-3

How Oracle Manages Data Concurrency and Consistency
How Oracle Manages Data Concurrency and Consistency
Oracle maintains data consistency in a multiuser environment by using a multiver-
sion consistency model and various types of locks and transactions.

Multiversion Concurrency Control
Oracle automatically provides read consistency to a query so that all the data that
the query sees comes from a single point in time (statement-level read consistency).
Oracle can also provide read consistency to all of the queries in a transaction (trans-
action-level read consistency).

Oracle uses the information maintained in its rollback segments to provide these
consistent views. The rollback segments contain the old values of data that have
been changed by uncommitted or recently committed transactions. Figure 23–1
shows how Oracle provides statement-level read consistency using data in rollback
segments.

Figure 23–1 Transactions and Read Consistency

SELECT . . .
(SCN 10023)

10021

10021

10024

10008

10024

10011

10021

10008

10021

Data Blocks

Scan Path

Rollback Segment
23-4 Oracle8 Concepts

How Oracle Manages Data Concurrency and Consistency
As a query enters the execution stage, the current system change number (SCN) is
determined; in Figure 23–1, this system change number is 10023. As data blocks are
read on behalf of the query, only blocks written with the observed SCN are used.
Blocks with changed data (more recent SCNs) are reconstructed from data in the
rollback segments, and the reconstructed data is returned for the query. Therefore,
each query returns all committed data with respect to the SCN recorded at the time
that query execution began. Changes of other transactions that occur during a
query’s execution are not observed, guaranteeing that consistent data is returned
for each query.

The “Snapshot Too Old” Message
In rare situations, Oracle cannot return a consistent set of results (often called a
snapshot) for a long-running query. This occurs because not enough information
remains in the rollback segments to reconstruct the older data. Usually, this error is
produced when a lot of update activity causes the rollback segment to wrap around
and overwrite changes needed to reconstruct data that the long-running query
requires. In this event, error 1555 will result:

ORA-1555: snapshot too old (rollback segment too small)

You can avoid this error by creating more or larger rollback segments. Alterna-
tively, long-running queries can be issued when there are few concurrent transac-
tions, or you can obtain a shared lock on the table you are querying, thus
prohibiting any other exclusive locks during the transaction.

Statement-Level Read Consistency
Oracle always enforces statement-level read consistency. This guarantees that all the
data returned by a single query comes from a single point in time—the time that
the query began. Therefore, a query never sees dirty data nor any of the changes
made by transactions that commit during query execution. As query execution pro-
ceeds, only data committed before the query began is visible to the query. The
query does not see changes committed after statement execution begins.

A consistent result set is provided for every query, guaranteeing data consistency,
with no action on the user’s part. The SQL statements SELECT, INSERT with a sub-
query, UPDATE, and DELETE all query data, either explicitly or implicitly, and all
return consistent data. Each of these statements uses a query to determine which
data it will affect (SELECT, INSERT, UPDATE, or DELETE, respectively).

A SELECT statement is an explicit query and may have nested queries or a join
operation. An INSERT statement can use nested queries. UPDATE and DELETE
 Data Concurrency and Consistency 23-5

How Oracle Manages Data Concurrency and Consistency
statements can use WHERE clauses or subqueries to affect only some rows in a
table rather than all rows.

Queries used in INSERT, UPDATE, and DELETE statements are guaranteed a con-
sistent set of results. However, they do not see the changes made by the DML state-
ment itself. In other words, the query in these operations sees data as it existed
before the operation began to make changes.

Transaction-Level Read Consistency
Oracle also offers the option of enforcing transaction-level read consistency. When a
transaction executes in serializable mode (see below), all data accesses reflect the
state of the database as of the time the transaction began. This means that the data
seen by all queries within the same transaction is consistent with respect to a single
point in time, except that queries made by a serializable transaction do see changes
made by the transaction itself. Transaction-level read consistency produces repeat-
able reads and does not expose a query to phantoms.

Oracle Isolation Levels
Oracle provides three transaction isolation levels:

read committed This is the default transaction isolation level. Each query exe-
cuted by a transaction sees only data that was committed
before the query (not the transaction) began. An Oracle query
will never read dirty (uncommitted) data.

Because Oracle does not prevent other transactions from mod-
ifying the data read by a query, that data may be changed by
other transactions between two executions of the query.
Thus, a transaction that executes a given query twice may
experience both nonrepeatable read and phantoms.

serializable trans-
actions

Serializable transactions see only those changes that were
committed at the time the transaction began, plus those
changes made by the transaction itself through INSERT,
UPDATE, and DELETE statements. Serializable transactions
do not experience nonrepeatable reads or phantoms.

read-only Read-only transactions see only those changes that were com-
mitted at the time the transaction began and do not allow
INSERT, UPDATE, and DELETE statements.
23-6 Oracle8 Concepts

How Oracle Manages Data Concurrency and Consistency
Setting the Isolation Level
Application designers, application developers, and database administrators can
choose appropriate isolation levels for different transactions, depending on the
application and workload. You can set the isolation level of a transaction by using
one of these commands at the beginning of a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION ISOLATION LEVEL READ ONLY;

To save the networking and processing cost of beginning each transaction with a
SET TRANSACTION command, you can use the ALTER SESSION command to set
the transaction isolation level for all subsequent transactions:

ALTER SESSION SET ISOLATION_LEVEL SERIALIZABLE;

ALTER SESSION SET ISOLATION_LEVEL READ COMMITTED;

Read Committed Isolation
The default isolation level for Oracle is read committed. This degree of isolation is
appropriate for environments where few transactions are likely to conflict. Oracle
causes each query to execute with respect to its own snapshot time, thereby permit-
ting nonrepeatable reads and phantoms for multiple executions of a query, but pro-
viding higher potential throughput. Read committed isolation is the appropriate
level of isolation for environments where few transactions are likely to conflict.

Serializable Isolation
Serializable isolation is suitable for environments

■ with large databases and short transactions that update only a few rows

■ where the chance that two concurrent transactions will modify the same rows
is relatively low, and

■ where relatively long-running transactions are primarily read-only.

Serializable isolation permits concurrent transactions to make only those database
changes they could have made if the transactions had been scheduled to execute

Additional Information: See Oracle8 SQL Reference for detailed
information on any of these SQL commands.
 Data Concurrency and Consistency 23-7

How Oracle Manages Data Concurrency and Consistency
one after another. Specifically, Oracle permits a serializable transaction to modify a
data row only if it can determine that prior changes to the row were made by trans-
actions that had committed when the serializable transaction began.

To make this determination efficiently, Oracle uses control information stored in the
data block that indicates which rows in the block contain committed and uncom-
mitted changes. In a sense, the block contains a recent history of transactions that
affected each row in the block. The amount of history that is retained is controlled
by the INITRANS parameter of CREATE TABLE and ALTER TABLE.

Under some circumstances, Oracle may have insufficient history information to
determine whether a row has been updated by a “too recent” transaction. This can
occur when many transactions concurrently modify the same data block, or do so
in a very short period. You can avoid this situation by setting higher values of
INITRANS for tables that will experience many transactions updating the same
blocks. Doing so will enable Oracle to allocate sufficient storage in each block to
record the history of recent transactions that accessed the block.

Oracle generates an error when a serializable transaction tries to update or delete
data modified by a transaction that commits after the serializable transaction began:

ORA-08177: Cannot serialize access for this transaction

When a serializable transaction fails with the “Cannot serialize access” error, the
application can take any of several actions:

■ commit the work executed to that point

■ execute additional (but different) statements (perhaps after rolling back to a
savepoint established earlier in the transaction)

■ roll back the entire transaction

Figure 23–2 shows an example of an application that rolls back and retries the trans-
action after it fails with the “Cannot serialize access” error:
23-8 Oracle8 Concepts

How Oracle Manages Data Concurrency and Consistency
Figure 23–2 Serializable Transaction Failure

Comparing Read Committed and Serializable Isolation
Oracle gives the application developer a choice of two transaction isolation levels
with different characteristics. Both the read committed and serializable isolation
levels provide a high degree of consistency and concurrency. Both levels provide
the contention-reducing benefits of Oracle’s “read consistency” multiversion con-
currency control model and exclusive row-level locking implementation and are
designed for real-world application deployment.

Transaction Set Consistency
A useful way to view the read committed and serializable isolation levels in Oracle
is to consider the following scenario: Assume you have a collection of database
tables (or any set of data), a particular sequence of reads of rows in those tables,
and the set of transactions committed at any particular time. An operation (a query
or a transaction) is transaction set consistent if all its reads return data written by the
same set of committed transactions. An operation is not transaction set consistent if
some reads reflect the changes of one set of transactions and other reads reflect
changes made by other transactions. An operation that is not transaction set consis-
tent in effect sees the database in a state that reflects no single set of committed
transactions.

LOOP and retry
THEN ROLLBACK;

SET TRANSACTION ISOLATION

SELECT...

SELECT...

UPDATE...

Repeated query sees the same
data, even if it was changed by
another concurrent user

LEVEL SERIALIZABLE

Fails if attempting to update a
row changed and committed by
another transaction since this
transaction began

”Can’t Serialize Access”IF
 Data Concurrency and Consistency 23-9

How Oracle Manages Data Concurrency and Consistency
Oracle provides transactions executing in read committed mode with transaction
set consistency on a per-statement basis. Serializable mode provides transaction set
consistency on a per-transaction basis.

Table 23–1 summarizes key differences between read committed and serializable
transactions in Oracle.

Row-Level Locking
Both read committed and serializable transactions use row-level locking, and both
will wait if they try to change a row updated by an uncommitted concurrent trans-
action. The second transaction that tries to update a given row waits for the other
transaction to commit or roll back and release its lock. If that other transaction rolls
back, the waiting transaction (regardless of its isolation mode) can proceed to
change the previously locked row, as if the other transaction had not existed.

Table 23–1 Read Committed and Serializable Transactions

Read Committed Serializable

Dirty write Not possible Not possible

Dirty read Not possible Not possible

Non-repeatable read Possible Not possible

Phantoms Possible Not possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different row-writers block writers No No

Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to “cannot serialize access” No Yes

Error after blocking transaction aborts No No

Error after blocking transaction commits No Yes
23-10 Oracle8 Concepts

How Oracle Manages Data Concurrency and Consistency
However, if the other (blocking) transaction commits and releases its locks, a read
committed transaction proceeds with its intended update. A serializable transac-
tion, however, fails with the error “Cannot serialize access”, because the other trans-
action has committed a change that was made since the serializable transaction
began.

Referential Integrity
Because Oracle does not use read locks in either read-consistent or serializable
transactions, data read by one transaction can be overwritten by another. Transac-
tions that perform database consistency checks at the application level should not
assume that the data they read will remain unchanged during the execution of the
transaction (even though such changes are not visible to the transaction). Database
inconsistencies can result unless such application-level consistency checks are
coded with this in mind, even when using serializable transactions.

Oracle Parallel Server
You can use both read committed and serializable transaction isolation levels in an
Oracle Parallel Server (several Oracle instances running against a single database).

Distributed Transactions
In a distributed database environment, a given transaction updates data in multiple
physical databases (protected by two-phase commit to ensure all nodes or none
commit). In such an environment, all servers (whether Oracle or non-Oracle) that
participate in a serializable transaction are required to support serializable isolation
mode.

If a serializable transaction tries to update data in a database managed by a server
that does not support serializable transactions, the transaction receives an error.
The transaction can roll back and retry only when the remote server does support
serializable transactions.

In contrast, read committed transactions can perform distributed transactions with
servers that do not support serializable transactions.

Additional Information: See Oracle8 Application Developer’s Guide
for more information about referential integrity and serializable
transactions.
 Data Concurrency and Consistency 23-11

How Oracle Manages Data Concurrency and Consistency
Choosing an Isolation Level
Application designers and developers should choose an isolation level based on
application performance and consistency needs as well as application coding
requirements.

For environments with many concurrent users rapidly submitting transactions,
designers must assess transaction performance requirements in terms of the
expected transaction arrival rate and response time demands. Frequently, for high-
performance environments, the choice of isolation levels involves a trade-off
between consistency and concurrency (transaction throughput).

Application logic that checks database consistency must take into account the fact
that reads do not block writes in either mode.

Both Oracle isolation modes provide high levels of consistency and concurrency
(and performance) through the combination of row-level locking and Oracle’s mul-
tiversion concurrency control system. Readers and writers don’t block one another
in Oracle; therefore, while queries still see consistent data, both read committed
and serializable isolation provide a high level of concurrency for high performance,
without the need for reading uncommitted (“dirty”) data.

Choosing Read Committed Isolation
For many applications, read committed is the most appropriate isolation level. This
is the isolation level used by applications running on Oracle releases previous to
Release 7.3.

Read committed isolation can provide considerably more concurrency with a some-
what increased risk of inconsistent results (due to phantoms and non-repeatable
reads) for some transactions.

Many high-performance environments with high transaction arrival rates require
more throughput and faster response times than can be achieved with serializable
isolation. Other environments that supports fe users with a very low transaction
arrival rate also face very low risk of incorrect results due to phantoms and nonre-
peatable reads. Read committed isolation is suitable for both of these environments.

Oracle read committed isolation provides transaction set consistency for every
query (that is, every query sees data in a consistent state). Therefore, read commit-
ted isolation will suffice for many applications that might require a higher degree
of isolation if run on other database management systems that do not use multiver-
sion concurrency control.

Read committed isolation mode does not require application logic to trap the “Can-
not serialize access” error and loop back to restart a transaction. In most applica-
23-12 Oracle8 Concepts

How Oracle Manages Data Concurrency and Consistency
tions, few transactions have a functional need to reissue the same query twice, so
for many applications protection against phantoms and non-repeatable reads is not
important. Therefore many developers choose read committed to avoid the need to
write such error checking and retry code in each transaction.

Choosing Serializable Isolation
Oracle’s serializable isolation is suitable for environments where there is relatively
low chance that two concurrent transactions will modify the same rows and the rel-
atively long-running transactions are primarily read-only. It is most suitable for
environments with large databases and short transactions that update only a few
rows.

Serializable isolation mode provides somewhat more consistency by protecting
against phantoms and nonrepeatable reads and may be important where a read/
write transaction executes a query more than once.

Unlike other implementations of serializable isolation, which lock blocks for read
as well as write, Oracle provides nonblocking queries and the fine granularity of
row-level locking, both of which reduce write/write contention. For applications
that experience mostly read/write contention, Oracle serializable isolation can pro-
vide significantly more throughput than other systems. Therefore, some applica-
tions might be suitable for serializable isolation on Oracle but not on other systems.

All queries in an Oracle serializable transaction see the database as of a single point
in time, so this isolation level is suitable where multiple consistent queries must be
issued in a read-write transaction. A report-writing application that generates sum-
mary data and stores it in the database might use serializable mode because it pro-
vides the consistency that a READ ONLY transaction provides, but also allows
INSERT, UPDATE, and DELETE.

Coding serializable transactions requires extra work by the application developer
(to check for the “Cannot serialize access” error and to roll back and retry the trans-
action). Similar extra coding is needed in other database management systems to
manage deadlocks. For adherence to corporate standards or for applications that
are run on multiple database management systems, it may be necessary to design
transactions for serializable mode. Transactions that check for serializability fail-
ures and retry can be used with Oracle read committed mode (which does not gen-
erate serializability errors).

Note: Transactions containing DML statements with subqueries
should use serializable isolation to guarantee consistent read.
 Data Concurrency and Consistency 23-13

How Oracle Locks Data
Serializable mode is probably not the best choice in an environment with relatively
long transactions that must update the same rows accessed by a high volume of
short update transactions. Because a longer running transaction is unlikely to be
the first to modify a given row, it will repeatedly need to roll back, wasting work.
(Note that a conventional read-locking ”pessimistic” implementation of serializable
mode would not be suitable for this environment either, because long-running
transactions — even read transactions — would block the progress of short update
transactions and vice versa.)

Application developers should take into account the cost of rolling back and retry-
ing transactions when using serializable mode. As with read-locking systems,
where deadlocks occur frequently, use of serializable mode requires rolling back
the work done by aborted transactions and retrying them. In a high contention
environment, this activity can use significant resources.

In most environments, a transaction that restarts after receiving the “Cannot serial-
ize access” error is unlikely to encounter a second conflict with another transaction.
For this reason it can help to execute those statements most likely to contend with
other transactions as early as possible in a serializable transaction. However, there
is no guarantee that the transaction will complete successfully, so the application
should be coded to limit the number of retries.

Although Oracle serializable mode is compatible with SQL92 and offers many bene-
fits compared with read-locking implementations, it does not provide semantics
identical to such systems. Application designers must take into account the fact
that reads in Oracle do not block writes as they do in other systems. Transactions
that check for database consistency at the application level may require coding tech-
niques such as the use of SELECT FOR UPDATE. This issue should be considered
when applications using serializable mode are ported to Oracle from other environ-
ments.

How Oracle Locks Data
Locks are mechanisms that prevent destructive interaction between transactions
accessing the same resource — either user objects (such as tables and rows) or sys-
tem objects not visible to users (such as shared data structures in memory and data
dictionary rows).

In all cases, Oracle automatically obtains necessary locks when executing SQL state-
ments, so users need not be concerned with such details. Oracle automatically uses
the lowest applicable level of restrictiveness to provide the highest degree of data
concurrency yet also provide fail-safe data integrity. Oracle also allows the user to
lock data manually.
23-14 Oracle8 Concepts

How Oracle Locks Data
For a complete description of the internal locks used by Oracle, see “Types of
Locks” on page 23-18.

Transactions and Data Concurrency
Oracle provides data concurrency and integrity between transactions using its lock-
ing mechanisms. Because the locking mechanisms of Oracle are tied closely to trans-
action control, application designers need only define transactions properly, and
Oracle automatically manages locking.

Keep in mind that Oracle locking is fully automatic and requires no user action.
Implicit locking occurs for all SQL statements so that database users never need to
lock any resource explicitly. Oracle’s default locking mechanisms lock data at the
lowest level of restrictiveness to guarantee data integrity while allowing the high-
est degree of data concurrency.

Later sections also describe situations where you might wish to acquire locks manu-
ally or to alter the default locking behavior of Oracle and explain how you can do
so — see “Explicit (Manual) Data Locking” on page 23-29.

Locking Modes
Oracle uses two modes of locking in a multiuser database:

Lock Duration
All locks acquired by statements within a transaction are held for the duration of
the transaction, preventing destructive interference (including dirty reads, lost
updates, and destructive DDL operations) from concurrent transactions. The
changes made by the SQL statements of one transaction become visible only to
other transactions that start after the first transaction is committed.

exclusive lock mode Prevents the associates resource from being shared. This
lock mode is obtained to modify data. The first transaction
to lock a resource exclusively is the only transaction that
can alter the resource until the exclusive lock is released.

share lock mode Allows the associated resource to be shared, depending on
the operations involved. Multiple users reading data can
share the data, holding share locks to prevent concurrent
access by a writer (who needs an exclusive lock). Several
transactions can acquire share locks on the same resource.
 Data Concurrency and Consistency 23-15

How Oracle Locks Data
Oracle releases all locks acquired by the statements within a transaction when you
either commit or roll back the transaction. Oracle also releases locks acquired after
a savepoint when rolling back to the savepoint. However, only transactions not
waiting for the previously locked resources can acquire locks on the now available
resources. Waiting transactions will continue to wait until after the original transac-
tion commits or rolls back completely.

Data Lock Conversion Versus Lock Escalation
A transaction holds exclusive row locks for all rows inserted, updated, or deleted
within the transaction. Because row locks are acquired at the highest degree of
restrictiveness, no lock conversion is required or performed.

Oracle automatically converts a table lock of lower restrictiveness to one of higher
restrictiveness as appropriate. For example, assume that a transaction uses a
SELECT statement with the FOR UPDATE clause to lock rows of a table. As a
result, it acquires the exclusive row locks and a row share table lock for the table. If
the transaction later updates one or more of the locked rows, the row share table
lock is automatically converted to a row exclusive table lock. For more information
about table locks, see “Table Locks (TM)” on page 23-20.

Lock escalation occurs when numerous locks are held at one level of granularity (for
example, rows) and a database raises the locks to a higher level of granularity (for
example, table). For example, if a single user locks many rows in a table, some data-
base will automatically escalate the user’s row locks to a single table. The number
of locks is reduced, but the restrictiveness of what is being locked is increased.

Oracle never escalates locks. Lock escalation greatly increases the likelihood of dead-
locks (described below). Imagine the situation where the system is trying to esca-
late locks on behalf of transaction T1 but cannot because of the locks held by
transaction T2. A deadlock is created if transaction T2 also requires lock escalation
of the same data before it can proceed.

Deadlocks
A deadlock can occur when two or more users are waiting for data locked by each
other. Deadlocks prevent some transactions from continuing to work. Figure 23–3
illustrates two transactions in a deadlock.

In Figure 23–3, no problem exists at time point A, as each transaction has a row
lock on the row it attempts to update. Each transaction proceeds (without being ter-
minated). However, each tries next to update the row currently held by the other
transaction. Therefore, a deadlock results at time point B, because neither transac-
23-16 Oracle8 Concepts

How Oracle Locks Data
tion can obtain the resource it needs to proceed or terminate. It is a deadlock
because no matter how long each transaction waits, the conflicting locks are held.

Figure 23–3 Two Transactions in a Deadlock

Deadlock Detection
Oracle automatically detects deadlock situations and resolves them by rolling back
one of the statements involved in the deadlock, thereby releasing one set of the con-
flicting row locks. A corresponding message also is returned to the transaction that
undergoes statement-level rollback. The statement rolled back is the one belonging
to the transaction that detects the deadlock. Usually, the signalled transaction
should be rolled back explicitly, but it can retry the rolled-back statement after
waiting.

Note: In distributed transactions, local deadlocks are detected by
analyzing a “waits for” graph, and global deadlocks are detected
by a time-out. Once detected, nondistributed and distributed dead-
locks are handled by the database and application in the same way.

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 1000;

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 2000;

ORA–00060:
 deadlock detected while
 waiting for resource

UPDATE emp

 WHERE empno = 2000;

UPDATE emp
 SET mgr = 1342
 WHERE empno = 1000;

 SET mgr = 1342

A

B

C

Transaction 1 (T1) Time Transaction 2 (T2)
 Data Concurrency and Consistency 23-17

How Oracle Locks Data
Deadlocks most often occur when transactions explicitly override the default lock-
ing of Oracle. Because Oracle itself does no lock escalation and does not use read
locks for queries, but does use row-level locking (rather than page-level locking),
deadlocks occur infrequently in Oracle. See “Explicit (Manual) Data Locking” on
page 23-29 for more information about manually acquiring locks and for an exam-
ple of a deadlock situation.

Avoiding Deadlocks
Multitable deadlocks can usually be avoided if transactions accessing the same
tables lock those tables in the same order, either through implicit or explicit locks.
For example, all application developers might follow the rule that when both a mas-
ter and detail table are updated, the master table is locked first and then the detail
table. If such rules are properly designed and then followed in all applications,
deadlocks are very unlikely to occur.

When you know you will require a sequence of locks for one transaction, you
should consider acquiring the most exclusive (least compatible) lock first.

Types of Locks
Oracle automatically uses different types of locks to control concurrent access to
data and to prevent destructive interaction between users. Oracle automatically
locks a resource on behalf of a transaction to prevent other transactions from doing
something also requiring exclusive access to the same resource. The lock is released
automatically when some event occurs so that the transaction no longer requires
the resource.

Throughout its operation, Oracle automatically acquires different types of locks at
different levels of restrictiveness depending on the resource being locked and the
operation being performed.

Oracle locks fall into one of the following general categories:

DML locks (data locks) DML locks protect data. For example, table locks lock
entire tables, row locks lock selected rows.

DDL locks (dictionary
locks)

DDL locks protect the structure of schema objects — for
example, the definitions of tables and views.

internal locks and
latches

Internal locks and latches protect internal database
structures such as datafiles. Internal locks and latches
are entirely automatic.
23-18 Oracle8 Concepts

How Oracle Locks Data
This chapter discusses DML locks, DDL locks, and internal locks, respectively.

DML (Data) Locks
The purpose of a DML (data) lock is to guarantee the integrity of data being
accessed concurrently by multiple users. DML locks prevent destructive interfer-
ence of simultaneous conflicting DML and/or DDL operations. For example, Ora-
cle DML locks guarantee that a specific row in a table can be updated by only one
transaction at a time and that a table cannot be dropped if an uncommitted transac-
tion contains an insert into the table.

DML operations can acquire data locks at two different levels: for specific rows and
for entire tables. The following sections explain row and table locks.

Row Locks (TX)
The only DML locks Oracle acquires automatically are row-level locks. There is no
limit to the number of row locks held by a statement or transaction, and Oracle
does not escalate locks from the row level to a coarser granularity. Row locking pro-

distributed locks Distributed locks ensure that the data and other
resources distributed among the various instances of an
Oracle Parallel Server remain consistent. Distributed
locks are held by instances rather than transactions.
They communicate the current status of a resource
among the instances of an Oracle Parallel Server.

parallel cache manage-
ment (PCM) locks

Parallel cache management locks are distributed locks
that cover one or more data blocks (table or index
blocks) in the buffer cache. PCM locks do not lock any
rows on behalf of transactions.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information about distributed locks and
PCM locks.

Note: The acronym in parentheses after each type of lock or lock
mode in the following sections is the abbreviation used in the
Locks Monitor of Oracle Enterprise Manager. Oracle Enterprise
Manager might display TM for any table lock, rather than indicate
the mode of table lock (such as RS or SRX).
 Data Concurrency and Consistency 23-19

How Oracle Locks Data
vides the finest grain locking possible and so provides the best possible concur-
rency and throughput.

The combination of multiversion concurrency control and row-level locking means
that users contend for data only when accessing the same rows, specifically:

■ Readers of data do not wait for writers of the same data rows.

■ Writers of data do not wait for readers of the same data rows (unless SELECT...
FOR UPDATE is used, which specifically requests a lock for the reader).

■ Writers only wait for other writers if they attempt to update the same rows at
the same time.

A transaction acquires an exclusive DML lock for each individual row modified by
one of the following statements: INSERT, UPDATE, DELETE, and SELECT with the
FOR UPDATE clause.

A modified row is always locked exclusively so that other users cannot modify the
row until the transaction holding the lock is committed or rolled back. Row locks
are always acquired automatically by Oracle as a result of the statements listed
above.

If a transaction obtains a row lock for a row, the transaction also acquires a table
lock for the corresponding table. A table lock is also necessary to prevent conflict-
ing DDL operations that would override data changes in a current transaction. The
following section explains table locks, and “DDL Locks (Dictionary Locks)” on
page 23-26 explains the locks necessary for DDL operations.

Table Locks (TM)
A transaction acquires a table lock when a table is modified in the following DML
statements: INSERT, UPDATE, DELETE, SELECT with the FOR UPDATE clause,
and LOCK TABLE. These DML operations require table locks for two purposes: to
reserve DML access to the table on behalf of a transaction and to prevent DDL oper-
ations that would conflict with the transaction. Any table lock prevents the acquisi-
tion of an exclusive DDL lock on the same table and thereby prevents DDL
operations that require such locks. For example, a table cannot be altered or

Note: Readers of data may have to wait for writers of the same
data blocks in some very special cases of pending distributed trans-
actions.
23-20 Oracle8 Concepts

How Oracle Locks Data
dropped if an uncommitted transaction holds a table lock for it. (For more informa-
tion about exclusive DDL locks, see “Exclusive DDL Locks” on page 23-27.)

A table lock can be held in any of several modes: row share (RS), row exclusive
(RX), share (S), share row exclusive (SRX), and exclusive (X). The restrictiveness of
a table lock’s mode determines the modes in which other table locks on the same
table can be obtained and held.

Table 23–2 shows the table lock modes that statements acquire and operations that
those locks permit and prohibit.

Table 23–2 Summary of Table Locks

SQL Statement
Mode of

Table Lock

 Lock Modes Permitted?

RS RX S SRX X

SELECT...FROM table... none Y Y Y Y Y

INSERT INTO table ... RX Y Y N N N

UPDATE table ... RX Y* Y* N N N

DELETE FROM table ... RX Y* Y* N N N

SELECT ... FROM table
FOR UPDATE OF ...

RS Y* Y* Y* Y* N

LOCK TABLE table IN
ROW SHARE MODE

RS Y Y Y Y N

LOCK TABLE table IN
SHARE MODE

RX Y Y N N N

LOCK TABLE table IN
SHARE MODE

S Y N Y N N

LOCK TABLE table IN
SHARE ROW EXCLUSIVE
MODE

SRX Y N N N N

LOCK TABLE table IN
EXCLUSIVE MODE

X N N N N N

RS: row share
RX: row exclusive
S: share
SRX: share row exclusive
X: exclusive

*Yes, if no conflicting row locks are
held by another transaction; other-
wise, waits occur.
 Data Concurrency and Consistency 23-21

How Oracle Locks Data
The following sections explain each mode of table lock, from least restrictive to
most restrictive. Each section describes the mode of table lock, the actions that
cause the transaction to acquire a table lock in that mode, and which actions are per-
mitted and prohibited in other transactions by a lock in that mode. For more infor-
mation about manual locking, see “Explicit (Manual) Data Locking” on page 23-29.

Row Share Table Locks (RS) A row share table lock (also sometimes called a subshare
table lock, SS) indicates that the transaction holding the lock on the table has locked
rows in the table and intends to update them. A row share table lock is automati-
cally acquired for a table when one of the following SQL statements is executed:

SELECT . . . FROM table . . . FOR UPDATE OF . . . ;

LOCK TABLE table IN ROW SHARE MODE;

A row share table lock is the least restrictive mode of table lock, offering the highest
degree of concurrency for a table.

Permitted Operations: A row share table lock held by a transaction allows other trans-
actions to query, insert, update, delete, or lock rows concurrently in the same table.
Therefore, other transactions can obtain simultaneous row share, row exclusive,
share, and share row exclusive table locks for the same table.

Prohibited Operations: A row share table lock held by a transaction prevents other
transactions from exclusive write access to the same table using only the following
statement:

LOCK TABLE table IN EXCLUSIVE MODE;

Row Exclusive Table Locks (RX) A row exclusive table lock (also called a subexclusive
table lock, SX) generally indicates that the transaction holding the lock has made
one or more updates to rows in the table. A row exclusive table lock is acquired
automatically for a table modified by the following types of statements:

INSERT INTO table . . . ;

UPDATE table . . . ;

DELETE FROM table . . . ;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share table lock.
23-22 Oracle8 Concepts

How Oracle Locks Data
Permitted Operations: A row exclusive table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, row exclusive table locks allow multiple transactions to obtain
simultaneous row exclusive and row share table locks for the same table.

Prohibited Operations: A row exclusive table lock held by a transaction prevents
other transactions from manually locking the table for exclusive reading or writing.
Therefore, other transactions cannot concurrently lock the table using the following
statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Share Table Locks (S) A share table lock is acquired automatically for the table speci-
fied in the following statement:

LOCK TABLE table IN SHARE MODE;

Permitted Operations: A share table lock held by a transaction allows other transac-
tions only to query the table, to lock specific rows with SELECT . . . FOR UPDATE,
or to execute LOCK TABLE . . . IN SHARE MODE statements successfully; no
updates are allowed by other transactions. Multiple transactions can hold share
table locks for the same table concurrently. In this case, no transaction can update
the table (even if a transaction holds row locks as the result of a SELECT statement
with the FOR UPDATE clause). Therefore, a transaction that has a share table lock
can update the table only if no other transactions also have a share table lock on the
same table.

Prohibited Operations: A share table lock held by a transaction prevents other transac-
tions from modifying the same table and from executing the following statements:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

Share Row Exclusive Table Locks (SRX) A share row exclusive table lock (also some-
times called a share-subexclusive table lock, SSX) is more restrictive than a share table
lock. A share row exclusive table lock is acquired for a table as follows:
 Data Concurrency and Consistency 23-23

How Oracle Locks Data
LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

Permitted Operations: Only one transaction at a time can acquire a share row exclu-
sive table lock on a given table. A share row exclusive table lock held by a transac-
tion allows other transactions to query or lock specific rows using SELECT with the
FOR UPDATE clause, but not to update the table.

Prohibited Operations: A share row exclusive table lock held by a transaction pre-
vents other transactions from obtaining row exclusive table locks and modifying
the same table. A share row exclusive table lock also prohibits other transactions
from obtaining share, share row exclusive, and exclusive table locks, which pre-
vents other transactions from executing the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Exclusive Table Locks (X) An exclusive table lock is the most restrictive mode of table
lock, allowing the transaction that holds the lock exclusive write access to the table.
An exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN EXCLUSIVE MODE;

Permitted Operations: Only one transaction can obtain an exclusive table lock for a
table. An exclusive table lock permits other transactions only to query the table.

Prohibited Operations: An exclusive table lock held by a transaction prohibits other
transactions from performing any type of DML statement or placing any type of
lock on the table.

DML Locks Automatically Acquired for DML Statements
The previous sections explained the different types of data locks, the modes in
which they can be held, when they can be obtained, when they are obtained, and
what they prohibit. The following sections summarize how Oracle automatically
locks data on behalf of different DML operations.

Table 23–3 summarizes the information in the following sections.
23-24 Oracle8 Concepts

How Oracle Locks Data
Default Locking for Queries Queries are the SQL statements least likely to interfere
with other SQL statements because they only read data. INSERT, UPDATE, and
DELETE statements can have implicit queries as part of the statement. Queries
include the following kinds of statements:

SELECT

INSERT . . . SELECT . . . ;

UPDATE . . . ;

DELETE . . . ;

They do not include the following statement:

SELECT . . . FOR UPDATE OF . . . ;

Table 23–3 Locks Obtained By DML Statements

DML Statement Row Locks? Mode of Table Lock

SELECT ... FROM table

INSERT INTO table ... X RX

UPDATE table ... X RX

DELETE FROM table ... X RX

SELECT ... FROM table ...
FOR UPDATE OF ...

X RS

LOCK TABLE table IN ...

 ROW SHARE MODE RS

 ROW EXCLUSIVE MODE RX

 SHARE MODE S

 SHARE EXCLUSIVE MODE SRX

 EXCLUSIVE MODE X

X: exclusive
RX: row exclusive

RS: row share
S: share
SRX: share row exclusive
 Data Concurrency and Consistency 23-25

How Oracle Locks Data
The following characteristics are true of all queries that do not use the FOR
UPDATE clause:

■ A query acquires no data locks. Therefore, other transactions can query and
update a table being queried, including the specific rows being queried.
Because queries lacking FOR UPDATE clauses do not acquire any data locks to
block other operations, such queries are often referred to in Oracle as nonblock-
ing queries.

■ A query does not have to wait for any data locks to be released; it can always
proceed. (Queries may have to wait for data locks in some very specific cases of
pending distributed transactions.)

Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE The locking
characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE state-
ments are as follows:

■ The transaction that contains a DML statement acquires exclusive row locks on
the rows modified by the statement. Other transactions cannot update or delete
the locked rows until the locking transaction either commits or rolls back.

■ The transaction that contains a DML statement does not need to acquire row
locks on any rows selected by a subquery or an implicit query, such as a query
in a WHERE clause. A subquery or implicit query in a DML statement is guar-
anteed to be consistent as of the start of the query and does not see the effects
of the DML statement it is part of.

■ A query in a transaction can see the changes made by previous DML state-
ments in the same transaction, but cannot see the changes of other transactions
begun after its own transaction.

■ In addition to the necessary exclusive row locks, a transaction that contains a
DML statement acquires at least a row exclusive table lock on the table that con-
tains the affected rows. If the containing transaction already holds a share,
share row exclusive, or exclusive table lock for that table, the row exclusive
table lock is not acquired. If the containing transaction already holds a row
share table lock, Oracle automatically converts this lock to a row exclusive table
lock.

DDL Locks (Dictionary Locks)
A DDL lock protects the definition of a schema object (for example, a table) while
that object is acted upon or referred to by an ongoing DDL operation. (Recall that a
DDL statement implicitly commits its transaction.) For example, assume that a user
creates a procedure. On behalf of the user’s single-statement transaction, Oracle
23-26 Oracle8 Concepts

How Oracle Locks Data
automatically acquires DDL locks for all schema objects referenced in the proce-
dure definition. The DDL locks prevent objects referenced in the procedure from
being altered or dropped before the procedure compilation is complete.

Oracle acquires a dictionary lock automatically on behalf of any DDL transaction
requiring it. Users cannot explicitly request DDL locks. Only individual schema
objects that are modified or referenced are locked during DDL operations; the
whole data dictionary is never locked.

DDL locks fall into three categories: exclusive DDL locks, share DDL locks, and
breakable parse locks.

Exclusive DDL Locks
Most DDL operations (except for those listed in the next section, “Share DDL
Locks”) require exclusive DDL locks for a resource to prevent destructive interfer-
ence with other DDL operations that might modify or reference the same schema
object. For example, a DROP TABLE operation is not allowed to drop a table while
an ALTER TABLE operation is adding a column to it, and vice versa.

During the acquisition of an exclusive DDL lock, if another DDL lock is already
held on the schema object by another operation, the acquisition waits until the
older DDL lock is released and then proceeds.

DDL operations also acquire DML locks (data locks) on the schema object to be
modified.

Share DDL Locks
Some DDL operations require share DDL locks for a resource to prevent destructive
interference with conflicting DDL operations, but allow data concurrency for simi-
lar DDL operations. For example, when a CREATE PROCEDURE statement is exe-
cuted, the containing transaction acquires share DDL locks for all referenced tables.
Other transactions can concurrently create procedures that reference the same
tables and therefore acquire concurrent share DDL locks on the same tables, but no
transaction can acquire an exclusive DDL lock on any referenced table. No transac-
tion can alter or drop a referenced table. As a result, a transaction that holds a share
DDL lock is guaranteed that the definition of the referenced schema object will
remain constant for the duration of the transaction.

A share DDL lock is acquired on a schema object for DDL statements that include
the following commands: AUDIT, NOAUDIT, COMMENT, CREATE [OR
REPLACE] VIEW/ PROCEDURE/PACKAGE/PACKAGE BODY/FUNCTION/
TRIGGER, CREATE SYNONYM, and CREATE TABLE (when the CLUSTER
parameter is not included).
 Data Concurrency and Consistency 23-27

How Oracle Locks Data
Breakable Parse Locks
A SQL statement (or PL/SQL program unit) in the shared pool holds a parse lock
for each schema object it references. Parse locks are acquired so that the associated
shared SQL area can be invalidated if a referenced object is altered or dropped. See
Chapter 19, “Oracle Dependency Management”, for more information about depen-
dency management. A parse lock does not disallow any DDL operation and can be
broken to allow conflicting DDL operations, hence the name “breakable parse lock”.

A parse lock is acquired during the parse phase of SQL statement execution and
held as long as the shared SQL area for that statement remains in the shared pool.

Duration of DDL Locks
The duration of a DDL lock depends on its type. Exclusive and share DDL locks
last for the duration of DDL statement execution and automatic commit. A parse
lock persists as long as the associated SQL statement remains in the shared pool.

DDL Locks and Clusters
A DDL operation on a cluster acquires exclusive DDL locks on the cluster and on
all tables and snapshots in the cluster. A DDL operation on a table or snapshot in a
cluster acquires a share lock on the cluster, in addition to a share or exclusive DDL
lock on the table or snapshot. The share DDL lock on the cluster prevents another
operation from dropping the cluster while the first operation proceeds.

Latches and Internal Locks
Latches and internal locks protect internal database and memory structures. Both
are inaccessible to users, because users have no need to control over their occur-
rence or duration. The following information will help you interpret the Oracle
Enterprise Manager or Server Manager LOCKS and LATCHES monitors.

Latches
Latches are simple, low-level serialization mechanisms to protect shared data struc-
tures in the system global area (SGA). For example, latches protect the list of users
currently accessing the database and protect the data structures describing the
blocks in the buffer cache. A server or background process acquires a latch for a
very short time while manipulating or looking at one of these structures. The imple-
mentation of latches is operating system dependent, particularly in regard to
whether and how long a process will wait for a latch.
23-28 Oracle8 Concepts

How Oracle Locks Data
Internal Locks
Internal locks are higher-level, more complex mechanisms than latches and serve a
variety of purposes.

Dictionary Cache Locks These locks are of very short duration and are held on
entries in dictionary caches while the entries are being modified or used. They guar-
antee that statements being parsed do not see inconsistent object definitions.

Dictionary cache locks can be shared or exclusive. Shared locks are released when
the parse is complete. Exclusive locks are released when the DDL operation is com-
plete.

File and Log Management Locks These locks protect various files. For example, one
lock protects the control file so that only one process at a time can change it.
Another lock coordinates the use and archiving of the redo log files. Datafiles are
locked to ensure that multiple instances mount a database in shared mode or that
one instance mounts it in exclusive mode. Because file and log locks indicate the
status of files, these locks are necessarily held for a long time.

File and log locks are of particular importance if you are using the Oracle Parallel
Server.

Tablespace and Rollback Segment Locks These locks protect tablespaces and rollback
segments. For example, all instances accessing a database must agree on whether a
tablespace is online or offline. Rollback segments are locked so that only one
instance can write to a segment.

Explicit (Manual) Data Locking
Oracle always performs locking automatically to ensure data concurrency, data
integrity, and statement-level read consistency. However, you can override the Ora-
cle default locking mechanisms. Overriding the default locking is useful in situa-
tions such as these:

■ Applications require transaction-level read consistency or “repeatable reads”.
In other words, queries in them must produce consistent data for the duration
of the transaction, not reflecting changes by other transactions. You can achieve
transaction-level read consistency by using explicit locking, read-only transac-
tions, serializable transactions, or by overriding default locking.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information about locks.
 Data Concurrency and Consistency 23-29

How Oracle Locks Data
■ Applications require that a transaction have exclusive access to a resource so
that the transaction does not have to wait for other transactions to complete.

Oracle’s automatic locking can be overridden at two levels:

Examples of Concurrency under Explicit Locking
The following illustration shows how Oracle maintains data concurrency, integrity,
and consistency when LOCK TABLE and SELECT with the FOR UPDATE clause
statements are used.

transaction Transactions that include the following SQL statements over-
ride Oracle’s default locking:

■ the SET TRANSACTION ISOLATION LEVEL command

■ the LOCK TABLE command (which locks either a table
or, when used with views, the underlying base tables)

■ the SELECT... FOR UPDATE command

Locks acquired by these statements are released after the
transaction commits or rolls back.

session A session can set the required transaction isolation level with
the ALTER SESSION command.

Note: If Oracle’s default locking is overridden at any level, the
database administrator or application developer should ensure
that the overriding locking procedures operate correctly. The lock-
ing procedures must satisfy the following criteria: data integrity is
guaranteed, data concurrency is acceptable, and deadlocks are not
possible or are appropriately handled.

Additional Information: See the Oracle8 SQL Reference for detailed
descriptions of the SQL statements LOCK TABLE and SELECT ...
FOR UPDATE.

Note: For brevity, the message text for ORA-00054 (“resource
busy and acquire with NOWAIT specified”) is not included. User-
entered text is in bold.
23-30 Oracle8 Concepts

How Oracle Locks Data
Transaction 1
Time
Point Transaction 2

LOCK TABLE scott.dept

 IN ROW SHARE MODE;

Statement processed

 1

 2 DROP TABLE scott.dept;

DROP TABLE scott.dept

 *

ORA-00054

(exclusive DDL lock not pos-
sible because of T1’s table
lock)

 3 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE NOWAIT;

ORA-00054

 4 SELECT LOC

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

LOC

- - - - - - -

DALLAS

1 row selected

UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T2 has
locked same rows)

 5

 6 ROLLBACK;

(releases row locks)
 Data Concurrency and Consistency 23-31

How Oracle Locks Data
1 row processed.

ROLLBACK;

 7

LOCK TABLE scott.dept

 IN ROW EXCLUSIVE MODE;

Statement processed.

 8

 9 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE

 NOWAIT;

ORA-00054

10 LOCK TABLE scott.dept

 IN SHARE ROW EXCLUSIVE

 MODE NOWAIT;

ORA-00054

11 LOCK TABLE scott.dept

 IN SHARE ROW EXCLUSIVE

 MODE NOWAIT;

ORA-00054

12 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

1 row processed.

13 ROLLBACK;

Transaction 1
Time
Point Transaction 2
23-32 Oracle8 Concepts

How Oracle Locks Data
SELECT loc

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

LOC

- - - - - -

DALLAS

1 row selected.

14

15 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T1 has
locked same rows)

ROLLBACK; 16

17 1 row processed.

(conflicting locks were
released)

ROLLBACK;

LOCK TABLE scott.dept

 IN ROW SHARE MODE

Statement processed

18

19 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE NOWAIT;

ORA-00054

20 LOCK TABLE scott.dept

 IN SHARE ROW EXCLUSIVE

 MODE NOWAIT;

ORA-00054

Transaction 1
Time
Point Transaction 2
 Data Concurrency and Consistency 23-33

How Oracle Locks Data
21 LOCK TABLE scott.dept

 IN SHARE MODE;

Statement processed.

22 SELECT loc

 FROM scott.dept

 WHERE deptno = 20;

LOC

- - - - - -

DALLAS

1 row selected.

23 SELECT loc

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

LOC

- - - - - -

DALLAS

1 row selected.

24 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T1 holds con-
flicting table lock)

ROLLBACK; 25

26 1 row processed.

(conflicting table lock
released)

ROLLBACK;

Transaction 1
Time
Point Transaction 2
23-34 Oracle8 Concepts

How Oracle Locks Data
LOCK TABLE scott.dept

 IN SHARE ROW

 EXCLUSIVE MODE;

Statement processed.

27

28 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE

 NOWAIT;

ORA-00054

29 LOCK TABLE scott.dept

 IN SHARE ROW

 EXCLUSIVE MODE

 NOWAIT;

ORA-00054

30 LOCK TABLE scott.dept

 IN SHARE MODE NOWAIT;

ORA-00054

31 LOCK TABLE scott.dept

 IN ROW EXCLUSIVE

 MODE NOWAIT;

ORA-00054

32 LOCK TABLE scott.dept

 IN SHARE MODE NOWAIT;

ORA-00054

Transaction 1
Time
Point Transaction 2
 Data Concurrency and Consistency 23-35

How Oracle Locks Data
33 SELECT loc

 FROM scott.dept

 WHERE deptno = 20;

LOC

- - - - - -

DALLAS

1 row selected.

34 SELECT loc

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

LOC

- - - - - -

DALLAS

1 row selected.

35 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T1 holds con-
flicting table lock)

UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T2 has
locked same rows)

36

(deadlock)

Cancel operation

ROLLBACK;

37

38 1 row processed.

Transaction 1
Time
Point Transaction 2
23-36 Oracle8 Concepts

How Oracle Locks Data
LOCK TABLE scott.dept

 IN EXCLUSIVE MODE;

39

40 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE;

ORA-00054

41 LOCK TABLE scott.dept

 IN ROW EXCLUSIVE MODE

 NOWAIT;

ORA-00054

42 LOCK TABLE scott.dept

 IN SHARE MODE;

ORA-00054

43 LOCK TABLE scott.dept

 IN ROW EXCLUSIVE

 MODE NOWAIT;

ORA-00054

44 LOCK TABLE scott.dept

 IN ROW SHARE MODE

 NOWAIT;

ORA-00054

45 SELECT loc

 FROM scott.dept

 WHERE deptno = 20;

LOC

- - - - - -

DALLAS

1 row selected.

Transaction 1
Time
Point Transaction 2
 Data Concurrency and Consistency 23-37

How Oracle Locks Data
46 SELECT loc

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

(waits because T1 has con-
flicting table lock)

UPDATE scott.dept

 SET deptno = 30

 WHERE deptno = 20;

1 row processed.

47

COMMIT; 48

49 0 rows selected.

(T1 released conflicting
lock)

SET TRANSACTION READ ONLY; 50

SELECT loc

 FROM scott.dept

 WHERE deptno = 10;

LOC

- - - - - -

BOSTON

51

52 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 10;

1 row processed.

Transaction 1
Time
Point Transaction 2
23-38 Oracle8 Concepts

How Oracle Locks Data
SELECT loc

 FROM scott.dept

 WHERE deptno = 10;

LOC

- - - - - -

BOSTON

(T1 does not see uncommit-
ted data)

53

54 COMMIT;

SELECT loc

 FROM scott.dept

 WHERE deptno = 10;

LOC

- - - - - -

(same results seen even
after T2 commits)

55

COMMIT; 56

SELECT loc

 FROM scott.dept

 WHERE deptno = 10;

LOC

- - - - - -

NEW YORK

(committed data is seen)

57

Transaction 1
Time
Point Transaction 2
 Data Concurrency and Consistency 23-39

How Oracle Locks Data
Oracle Lock Management Services
With Oracle Lock Management services, an application developer can include state-
ments in PL/SQL blocks that

■ request a lock of a specific type

■ give the lock a unique name recognizable in another procedure in the same or
in another instance

■ change the lock type

■ release the lock

Because a reserved user lock is the same as an Oracle lock, it has all the Oracle lock
functionality including deadlock detection. User locks never conflict with Oracle
locks, because they are identified with the prefix “UL”.

The Oracle Lock Management services are available through procedures in the
DBMS_LOCK package.

Additional Information: See the Oracle8 Application Developer’s
Guide for more information about Oracle Lock Management
services.
23-40 Oracle8 Concepts

 Data I
24

Data Integrity

Does one’s integrity ever lie in what he is not able to do?

Flannery O’Connor: Wise Blood

This chapter explains how to use integrity constraints to enforce the business rules
associated with your database and prevent the entry of invalid information into
tables. The chapter includes:

■ Definition of Data Integrity

■ An Introduction to Integrity Constraints

■ Types of Integrity Constraints

■ The Mechanisms of Constraint Checking

■ Deferred Constraint Checking

■ Enabled, Disabled, and Enable Novalidate Constraints

Additional Information: If you are using Trusted Oracle, see your
Trusted Oracle documentation for more information about integrity
constraints in that environment.
ntegrity 24-1

Definition of Data Integrity
Definition of Data Integrity
It is important that data adhere to a predefined set of rules, as determined by the
database administrator or application developer. As an example of data integrity,
consider the tables EMP and DEPT and the business rules for the information in
each of the tables, as illustrated in Figure 24–1.

Figure 24–1 Examples of Data Integrity

Note that some columns in each table have specific rules that constrain the data con-
tained within them.

Types of Data Integrity
This section describes the rules that can be applied to table columns to enforce dif-
ferent types of data integrity.

Table DEPT

EMPNO ENAME SAL COMM DEPTNO

Table EMP

DEPTNO DNAME LOC

Each row must have a value
for the ENAME column

Each value in the DNAME
column must be unique

Each value in the
DEPTNO column
must match a value in
the DEPTNO column
of the DEPT table

Each row must have a value
for the EMPNO column, and
the value must be unique

Each value in the SAL column
must be less than 10,000

... Other Columns ...

20
30

RESEARCH
SALES

DALLAS
CHICAGO

6666
7329
7499
7521

MULDER
SMITH
ALLEN
WARD

5500.00
9000.00
7500.00
5000.00

100.00
200.00
400.00

20
20
30
30

7566 JONES 2975.00 30
24-2 Oracle8 Concepts

Definition of Data Integrity
Nulls
A null is a rule defined on a single column that allows or disallows inserts or
updates of rows containing a null (the absence of a value) in that column.

Unique Column Values
A unique value defined on a column (or set of columns) allows the insert or update
of a row only if it contains a unique value in that column (or set of columns).

Primary Key Values
A primary key value defined on a key (a column or set of columns) specifies that
each row in the table can be uniquely identified by the values in the key.

Referential Integrity
A rule defined on a key (a column or set of columns) in one table that guarantees
that the values in that key match the values in a key in a related table (the refer-
enced value).

Referential integrity also includes the rules that dictate what types of data manipu-
lation are allowed on referenced values and how these actions affect dependent val-
ues. The rules associated with referential integrity are:

Restrict Disallows the update or deletion of referenced data.

Set to Null When referenced data is updated or deleted, all associated
dependent data is set to NULL.

Set to Default When referenced data is updated or deleted, all associated
dependent data is set to a default value.

Cascade When referenced data is updated, all associated dependent
data is correspondingly updated; when a referenced row is
deleted, all associated dependent rows are deleted.

No Action Disallows the update or deletion of referenced data. This
differs from RESTRICT in that it is checked at the end of the
statement, or at the end of the transaction if the constraint
is deferred. (Oracle uses No Action as its default action.)
 Data Integrity 24-3

Definition of Data Integrity
Complex Integrity Checking
Complex integrity checking is a user-defined rule for a column (or set of columns)
that allows or disallows inserts, updates, or deletes of a row based on the value it
contains for the column (or set of columns).

How Oracle Enforces Data Integrity
Oracle enables you to define and enforce each type of data integrity rule defined in
the previous section. Most of these rules are easily defined using integrity con-
straints or database triggers.

Integrity Constraints
An integrity constraint is a declarative method of defining a rule for a column of a
table. Oracle supports the following integrity constraints:

■ NOT NULL constraints for the rules associated with nulls in a column

■ UNIQUE key constraints for the rule associated with unique column values

■ PRIMARY KEY constraints for the rule associated with primary identification
values

■ FOREIGN KEY constraints for the rules associated with referential integrity.
Oracle currently supports the use of FOREIGN KEY integrity constraints to
define the referential integrity actions, including

– update and delete No Action

– delete CASCADE

■ CHECK constraints for complex integrity rules

Database Triggers
Oracle also allows you to enforce integrity rules with a nondeclarative approach
using database triggers (stored database procedures automatically invoked on
insert, update, or delete operations). For more information and examples of data-
base triggers used to enforce data integrity, see Chapter 18, “Database Triggers”.

Note: You cannot enforce referential integrity using declarative
integrity constraints if child and parent tables are on different
nodes of a distributed database. However, you can enforce referen-
tial integrity in a distributed database using database triggers (see
next section).
24-4 Oracle8 Concepts

An Introduction to Integrity Constraints
An Introduction to Integrity Constraints
Oracle uses integrity constraints to prevent invalid data entry into the base tables of
the database. You can define integrity constraints to enforce the business rules you
want to associate with the information in a database. If any of the results of a DML
statement execution violate an integrity constraint, Oracle rolls back the statement
and returns an error.

For example, assume that you define an integrity constraint for the SAL column of
the EMP table. This integrity constraint enforces the rule that no row in this table
can contain a numeric value greater than 10,000 in this column. If an INSERT or
UPDATE statement attempts to violate this integrity constraint, Oracle rolls back
the statement and returns an information error message.

The integrity constraints implemented in Oracle fully comply with ANSI X3.135-
1989 and ISO 9075-1989 standards.

Advantages of Integrity Constraints
This section describes some of the advantages that integrity constraints have over
other alternatives, which include:

■ enforcing business rules in the code of a database application

■ using stored procedures to completely control access to data

■ enforcing business rules with triggered stored database procedures (see
Chapter 18, “Database Triggers”)

Declarative Ease
You define integrity constraints using SQL commands. When you define or alter a
table, no additional programming is required. The SQL statements are easy to
write, eliminate programming errors, and Oracle controls their functionality. For
these reasons, declarative integrity constraints are preferable to application code
and database triggers. The declarative approach is also better than using stored pro-
cedures, because the stored procedure solution to data integrity controls data
access, but integrity constraints do not eliminate the flexibility of ad hoc data access.

Note: Operations on views (and synonyms for tables) are subject
to the integrity constraints defined on the underlying base tables.
 Data Integrity 24-5

An Introduction to Integrity Constraints
Centralized Rules
Integrity constraints are defined for tables (not an application) and are stored in the
data dictionary. Any data entered by any application must adhere to the same integ-
rity constraints associated with the table. By moving business rules from applica-
tion code to centralized integrity constraints, the tables of a database are
guaranteed to contain valid data, no matter which database application manipu-
lates the information. Stored procedures cannot provide the same advantage of cen-
tralized rules stored with a table. Database triggers can provide this benefit, but the
complexity of implementation is far greater than the declarative approach used for
integrity constraints.

Maximum Application Development Productivity
If a business rule enforced by an integrity constraint changes, the administrator
need only change that integrity constraint and all applications automatically
adhere to the modified constraint. In contrast, if the business rule were enforced by
the code of each database application, developers would have to modify all applica-
tion source code and recompile, debug, and test the modified applications.

Immediate User Feedback
Oracle stores specific information about each integrity constraint in the data dictio-
nary. You can design database applications to use this information to provide imme-
diate user feedback about integrity constraint violations, even before Oracle
executes and checks the SQL statement. For example, a SQL*Forms application can
use integrity constraint definitions stored in the data dictionary to check for viola-
tions as values are entered into the fields of a form, even before the application
issues a statement.

Superior Performance
The semantics of integrity constraint declarations are clearly defined, and perfor-
mance optimizations are implemented for each specific declarative rule. The Oracle
query optimizer can use declarations to learn more about data to improve overall
query performance. (Also, taking integrity rules out of application code and data-
base triggers guarantees that checks are only made when necessary.)

Flexibility for Data Loads and Identification of Integrity Violations
You can disable integrity constraints temporarily so that large amounts of data can
be loaded without the overhead of constraint checking. When the data load is com-
plete, you can easily enable the integrity constraints, and you can automatically
report any new rows that violate integrity constraints to a separate exceptions table.
24-6 Oracle8 Concepts

Types of Integrity Constraints
The Performance Cost of Integrity Constraints
The advantages of enforcing data integrity rules do not come without some loss in
performance. In general, the “cost” of including an integrity constraint is, at most,
the same as executing a SQL statement that evaluates the constraint.

Types of Integrity Constraints
You can use the following integrity constraints to impose restrictions on the input
of column values:

■ NOT NULL Integrity Constraints

■ UNIQUE Key Integrity Constraints

■ PRIMARY KEY Integrity Constraints

■ FOREIGN KEY (Referential) Integrity Constraints

■ CHECK Integrity Constraints

NOT NULL Integrity Constraints
By default, all columns in a table allow nulls (the absence of a value). A NOT
NULL constraint requires a column of a table contain no null values. For example,
you can define a NOT NULL constraint to require that a value be input in the
ENAME column for every row of the EMP table.

Figure 24–2 illustrates a NOT NULL integrity constraint.

Figure 24–2 NOT NULL Integrity Constraints

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

NOT NULL CONSTRAINT

Absence of NOT
(no row may contain a null
value for this column)

NULL Constraint
(any row can contain
null for this column)

Table EMP

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP_SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30
 Data Integrity 24-7

Types of Integrity Constraints
UNIQUE Key Integrity Constraints
A UNIQUE key integrity constraint requires that every value in a column or set of
columns (key) be unique — that is, no two rows of a table have duplicate values in
a specified column or set of columns.

For example, in Figure 24–3 a UNIQUE key constraint is defined on the DNAME
column of the DEPT table to disallow rows with duplicate department names.

Figure 24–3 A UNIQUE Key Constraint

Unique Keys
The column (or set of columns) included in the definition of the UNIQUE key con-
straint is called the unique key. The term “unique key” is often incorrectly used as a
synonym for the terms “UNIQUE key constraint” or “UNIQUE index”; however,
note that the term “key” refers only to the column or set of columns used in the def-
inition of the integrity constraint.

If the UNIQUE key consists of more than one column, that group of columns is
said to be a composite unique key. For example, in Figure 24–4 the CUSTOMER table

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

UNIQUE Key Constraint
(no row may duplicate a value
in the constraint's column)

This row violates the UNIQUE key constraint,
because "SALES" is already present in another
row; therefore, it is not allowed in the table.

This row is allowed because a null value is
entered for the DNAME column; however, if a
NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

20
30
40

RESEARCH
SALES
MARKETING

DALLAS
NEW YORK
BOSTON

50

60

SALES NEW YORK

BOSTON
24-8 Oracle8 Concepts

Types of Integrity Constraints
has a UNIQUE key constraint defined on the composite unique key: the AREA and
PHONE columns.

Figure 24–4 A Composite UNIQUE Key Constraint

This UNIQUE key constraint allows you to enter an area code and telephone num-
ber any number of times, but the combination of a given area code and given tele-
phone number cannot be duplicated in the table. This eliminates unintentional
duplication of a telephone number.

UNIQUE Key Constraints and Indexes
Oracle enforces unique integrity constraints with indexes. (In Figure 24–4, Oracle
enforces the UNIQUE key constraint by implicitly creating a unique index on the
composite unique key.) Therefore, composite UNIQUE key constraints have the
same limitations imposed on composite indexes: up to 32 columns can constitute a
composite unique key, and the total size (in bytes) of a key value cannot exceed
approximately half the associated database’s block size. If a useable index exists

INSERT
INTO

CUSTNO CUSTNAME AREA PHONE

Table CUSTOMER

Composite UNIQUE
Key Constraint
(no row may duplicate
a set of values
in the key)

This row violates the UNIQUE key
constraint, because "415/506-7000"
is already present in another row;
therefore, it is not allowed in the table.

This row is allowed because a null
value is entered for the AREA
column; however, if a NOT NULL
constraint is also defined on the
AREA column, then this row is
not allowed.

230
245
257

OFFICE SUPPLIES
ORACLE CORP
INTERNAL SYSTEMS

303
415
303

506–7000
506–7000
341–8100

268

270

AEA CONSTRUCTION

WW MANUFACTURING

415 506–7000

506–7000

... Other Columns ...
 Data Integrity 24-9

Types of Integrity Constraints
when a unique key constraint is created, the constraint will use that index rather
than implicitly creating a new one.

Combining UNIQUE Key and NOT NULL Integrity Constraints
In Figure 24–3 and Figure 24–4, UNIQUE key constraints allow the input of nulls
unless you also define NOT NULL constraints for the same columns. In fact, any
number of rows can include nulls for columns without NOT NULL constraints
because nulls are not considered equal to anything. A null in a column (or in all col-
umns of a composite UNIQUE key) always satisfies a UNIQUE key constraint.

Columns with both unique keys and NOT NULL integrity constraints are common.
This combination forces the user to enter values in the unique key and also elimi-
nates the possibility that any new row’s data will ever conflict with an existing
row’s data.

PRIMARY KEY Integrity Constraints
Each table in the database can have at most one PRIMARY KEY constraint. The val-
ues in the group of one or more columns subject to this constraint constitute the
unique identifier of the row. In effect, each row is named by its primary key values.

The Oracle implementation of the PRIMARY KEY integrity constraint guarantees
that both of the following are true:

■ No two rows of a table have duplicate values in the specified column or set of
columns.

■ The primary key columns do not allow nulls (that is, a value must exist for the
primary key columns in each row).

Primary Keys
The column (or set of columns) included in the definition of a table’s PRIMARY
KEY integrity constraint is called the primary key. Although it is not required, every
table should have a primary key so that

■ each row in the table can be uniquely identified

■ no duplicate rows exist in the table

Note: Because of the search mechanism for UNIQUE constraints
on more than one column, you cannot have identical values in the
non-null columns of a partially null composite UNIQUE key con-
straint.
24-10 Oracle8 Concepts

Types of Integrity Constraints
Figure 24–5 illustrates a PRIMARY KEY constraint in the DEPT table and examples
of rows that violate the constraint.

Figure 24–5 A Primary Key Constraint

PRIMARY KEY Constraints and Indexes
Oracle enforces all PRIMARY KEY constraints using indexes. In Figure 24–5, the
primary key constraint created for the DEPTNO column is enforced by

■ the implicit creation of a unique index on that column

■ the implicit creation of a NOT NULL constraint for that column

Oracle enforces primary key constraints using indexes, and composite primary key
constraints are limited to 32 columns, which is the same limitation imposed on com-
posite indexes. The name of the index is the same as the name of the constraint.
Also, you can specify the storage options for the index by including the ENABLE
clause in the CREATE TABLE or ALTER TABLE statement used to create the con-
straint. If a useable index exists when a primary key constraint is created, the pri-
mary key constraint will use that index rather than implicitly creating a new one.

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

PRIMARY KEY
(no row may duplicate a value in the
key and no null values are allowed)

This row is not allowed because "20" duplicates
an existing value in the primary key.

This row is not allowed because it contains
a null value for the primary key.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

20 MARKETING

FINANCE

DALLAS

NEW YORK
 Data Integrity 24-11

Types of Integrity Constraints
FOREIGN KEY (Referential) Integrity Constraints
Different tables in a relational database can be related by common columns, and the
rules that govern the relationship of the columns must be maintained. Referential
integrity rules guarantee that these relationships are preserved.

Several terms are associated with referential integrity constraints:

A referential integrity constraint requires that for each row of a table, the value in
the foreign key matches a value in a parent key.

Figure 24–6 shows a foreign key defined on the DEPTNO column of the EMP table.
It guarantees that every value in this column must match a value in the primary
key of the DEPT table (also the DEPTNO column). Therefore, no erroneous depart-
ment numbers can exist in the DEPTNO column of the EMP table.

Foreign keys can consist of multiple columns. However, a composite foreign key
must reference a composite primary or unique key with the same number of col-
umns and the same datatypes. Because composite primary and unique keys are lim-
ited to 32 columns, a composite foreign key is also limited to 32 columns.

foreign key The column or set of columns included in the definition of the
referential integrity constraint that reference a referenced key
(see the following).

referenced key The unique key or primary key of the same or different table
that is referenced by a foreign key.

dependent or
child table

The table that includes the foreign key. Therefore, it is the table
that is dependent on the values present in the referenced
unique or primary key.

referenced or
parent table

The table that is referenced by the child table’s foreign key. It is
this table’s referenced key that determines whether specific
inserts or updates are allowed in the child table.
24-12 Oracle8 Concepts

Types of Integrity Constraints
Figure 24–6 Referential Integrity Constraints

7571

7571

FORD

FORD

MANAGER

MANAGER

7499

7499

23–FEB–90

23–FEB–90

5,000.00

5,000.00

200.00

200.00

40

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

Parent Key
Primary key of
referenced table

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Referenced or

Dependent or Child Table

Parent Table

Foreign Key
(values in dependent
table must match a
value in unique key
or primary key or
referenced table)

This row violates the referential
constraint because "40" is not
present in the referenced table's
primary key; therefore, the row
is not allowed in the table.

This row is allowed in the table
because a null value is entered
in the DEPTNO column;
however, if a not null constraint
is also defined for this column,
this row is not allowed.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
300.00
500.00

100.00
200.00
400.00

20
30
30
20
 Data Integrity 24-13

Types of Integrity Constraints
Self-Referential Integrity Constraints
Another type of referential integrity constraint, shown in Figure 24–7, is called a
self-referential integrity constraint. This type of foreign key references a parent key
in the same table.

In the example in Figure 24–7, the referential integrity constraint ensures that every
value in the MGR column of the EMP table corresponds to a value that currently
exists in the EMPNO column of the same table, but not necessarily in the same row
(that is, every manager must also be an employee). This integrity constraint elimi-
nates the possibility of erroneous employee numbers in the MGR column.

Figure 24–7 Single Table Referential Constraints

Nulls and Foreign Keys
The relational model permits the value of foreign keys either to match the refer-
enced primary or unique key value, or be null. Several interpretations of this basic
rule of the relational model are possible when composite (multicolumn) foreign
keys are involved.

INSERT
INTO

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Dependent or
Child TableReferenced or

Parent Table

This row violates the referential
constraint, because "7331" is
not present in the referenced
table's primary key; therefore,
it is not allowed in the table.

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7329
7499
7521

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30

Primary Key
of referenced table

Foreign Key
(values in dependent table must match a value in
unique key or primary key of referenced table)

7571 FORD MANAGER 7331 23–FEB–90 5,000.00 200.00 30
24-14 Oracle8 Concepts

Types of Integrity Constraints
The ANSI/ISO SQL92 (entry-level) standard permits a composite foreign key to
contain any value in its non-null columns if any other column is null, even if those
non-null values are not found in the referenced key. By using other constraints (for
example, NOT NULL and CHECK constraints), you can alter the treatment of par-
tially null foreign keys from this default treatment.

A composite foreign key can be all null, all non-null, or partially null. The follow-
ing terms define three alternative matching rules for composite foreign keys:

Actions Defined by Referential Integrity Constraints
Referential integrity constraints can specify particular actions to be performed on
the dependent rows in a child table if a referenced parent key value is modified.
The referential actions supported by the FOREIGN KEY integrity constraints of
Oracle are UPDATE and DELETE No Action, and DELETE CASCADE.

Update and Delete No Action The No Action (default) option specifies that referenced
key values cannot be updated or deleted if the resulting data would violate a refer-
ential integrity constraint. For example, if a primary key value is referenced by a
value in the foreign key, the referenced primary key value cannot be deleted
because of the dependent data.

match full Partially null foreign keys are not permitted. Either all compo-
nents of the foreign key must be null, or the combination of val-
ues contained in the foreign key must appear as the primary or
unique key value of a single row of the referenced table.

match partial Partially null composite foreign keys are permitted. Either all
components of the foreign key must be null, or the combina-
tion of non-null values contained in the foreign key must
appear in the corresponding portion of the primary or unique
key value of a single row in the referenced table.

match none Partially null composite foreign keys are permitted. If any col-
umn of a composite foreign key is null, then the non-null por-
tions of the key do not have to match any corresponding
portion of a parent key.

Note: Other referential actions not supported by FOREIGN KEY
integrity constraints of Oracle can be enforced using database trig-
gers. See Chapter 18, “Database Triggers” for more information.
 Data Integrity 24-15

Types of Integrity Constraints
Delete Cascade The delete cascade action specifies that when rows containing refer-
enced key values are deleted, all rows in child tables with dependent foreign key
values are also deleted — the delete “cascades”. For example, if a row in a parent
table is deleted, and this row’s primary key value is referenced by one or more for-
eign key values in a child table, the rows in the child table that reference the pri-
mary key value are also deleted from the child table.

DML Restrictions with Respect to Referential Actions Table 24–1 outlines the DML state-
ments allowed by the different referential actions on the primary/unique key val-
ues in the parent table, and the foreign key values in the child table.

CHECK Integrity Constraints
A CHECK integrity constraint on a column or set of columns requires that a speci-
fied condition be true or unknown for every row of the table. If a DML statement
results in the condition of the CHECK constraint evaluating to false, the statement
is rolled back.

The Check Condition
CHECK constraints enable you to enforce very specific or sophisticated integrity
rules by specifying a check condition. The condition of a CHECK constraint has
some limitations:

■ it must be a Boolean expression evaluated using the values in the row being
inserted or updated, and

■ it cannot contain subqueries, sequences, the SQL functions SYSDATE, UID,
USER, or USERENV, or the pseudocolumns LEVEL or ROWNUM.

Table 24–1 DML Statements Allowed by Update and Delete No Action

DML Statement Issued Against Parent Table Issued Against Child Table

INSERT Always OK if the parent key value is
unique.

OK only if the foreign key
value exists in the parent
key or is partially or all null.

UPDATE No Action Allowed if the statement does not
leave any rows in the child table with-
out a referenced parent key value.

Allowed if the new foreign
key value still references a
referenced key value.

DELETE No Action Allowed if no rows in the child table
reference the parent key value.

Always OK.

DELETE Cascade Always OK. Always OK.
24-16 Oracle8 Concepts

The Mechanisms of Constraint Checking
In evaluating CHECK constraints that contain string literals or SQL functions with
NLS parameters as arguments (such as TO_CHAR, TO_DATE, and TO_NUMBER),
Oracle uses the database’s NLS settings by default. You can override the defaults
by specifying NLS parameters explicitly in such functions within the CHECK con-
straint definition.

Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column
in its definition. There is no limit to the number of CHECK constraints that you can
define on a column.

The Mechanisms of Constraint Checking
To know what types of actions are permitted when constraints are present, it is use-
ful to understand when Oracle actually performs the checking of constraints. To
illustrate this, an example or two is helpful. Assume the following:

■ The EMP table has been defined as in Figure 24–7 on on page 24-14.

■ The self-referential constraint makes the entries in the MGR column dependent
on the values of the EMPNO column. For simplicity, the rest of this discussion
addresses only the EMPNO and MGR columns of the EMP table.

Consider the insertion of the first row into the EMP table. No rows currently exist,
so how can a row be entered if the value in the MGR column cannot reference any
existing value in the EMPNO column?

Three possibilities for doing this are:

■ A null can be entered for the MGR column of the first row, assuming that the
MGR column does not have a NOT NULL constraint defined on it. Because
nulls are allowed in foreign keys, this row is inserted successfully into the table.

■ The same value can be entered in both the EMPNO and MGR columns. This
case reveals that Oracle performs its constraint checking after the statement has
been completely executed. To allow a row to be entered with the same values in
the parent key and the foreign key, Oracle must first execute the statement (that
is, insert the new row) and then check to see if any row in the table has an
EMPNO that corresponds to the new row’s MGR.

■ A multiple row INSERT statement, such as an INSERT statement with nested
SELECT statement, can insert rows that reference one another. For example, the

Additional Information: See the Oracle8 Reference for more infor-
mation on NLS features.
 Data Integrity 24-17

The Mechanisms of Constraint Checking
first row might have EMPNO as 200 and MGR as 300, while the second row
might have EMPNO as 300 and MGR as 200.

This case also shows that constraint checking is deferred until the complete exe-
cution of the statement; all rows are inserted first, then all rows are checked for
constraint violations. (You can also defer the checking of constraints until the
end of the transaction; see “Deferred Constraint Checking” on page 24-19.)

Consider the same self-referential integrity constraint in the following scenario:

■ The company has been sold. Because of this sale, all employee numbers must
be updated to be the current value plus 5000 to coordinate with the new com-
pany’s employee numbers. Because manager numbers are really employee
numbers, these values must also increase by 5000.

The table currently exists as illustrated in Figure 24–8.

Figure 24–8 The EMP Table Before Updates

UPDATE emp
 SET empno = empno + 5000,
 mgr = mgr + 5000;

Even though a constraint is defined to verify that each MGR value matches an
EMPNO value, this statement is legal because Oracle effectively performs its con-
straint checking after the statement completes. Figure 24–9 shows that Oracle per-
forms the actions of the entire SQL statement before any constraints are checked.

EMPNO MGR

210
211
212

210
211
24-18 Oracle8 Concepts

Deferred Constraint Checking
Figure 24–9 Constraint Checking

The examples in this section illustrated the constraint checking mechanism during
INSERT and UPDATE statements. The same mechanism is used for all types of
DML statements, including UPDATE, INSERT, and DELETE statements.

The examples also used self-referential integrity constraints to illustrate the check-
ing mechanism. The same mechanism is used for all types of constraints, including
NOT NULL, UNIQUE key, PRIMARY KEY, all types of FOREIGN KEY, and
CHECK constraints.

Default Column Values and Integrity Constraint Checking
Default values are included as part of an INSERT statement before the statement is
parsed. Therefore, default column values are subject to all integrity constraint
checking.

Deferred Constraint Checking
You can defer checking constraints for validity until the end of the transaction.

■ A constraint is deferred if the system checks that it is satisfied only on commit. If
a deferred constraint is violated, then commit causes the transaction to roll
back.

■ If a constraint is immediate (not deferred), then it is checked at the end of each
statement. If it is violated, the statement is rolled back immediately.

If a constraint causes an action (for example, delete cascade), that action is always
taken as part of the statement that caused it, whether the constraint is deferred or
immediate.

Update to
second row

Update to
second row

Update to
third row

Constraints
checked

EMPNO MGR EMPNO MGR EMPNO MGR

5210
211
212

210
211

5210
5211
5212

5210
52115210

211

5210
5211
212
 Data Integrity 24-19

Deferred Constraint Checking
Constraint Attributes
You can define constraints as either deferrable or not deferrable, and either initially
deferred or initially immediate. These attributes can be different for each constraint.
You specify them with keywords in the CONSTRAINT clause:

■ DEFERRABLE or NOT DEFERRABLE

■ INITIALLY DEFERRED or INITIALLY IMMEDIATE

Constraints can be added, dropped, enabled, disabled, or validated, but not altered.
Specifically, you cannot alter a not-deferrable constraint to make it deferrable.

SET CONSTRAINTS Mode
The SET CONSTRAINTS statement makes constraints either DEFERRED or IMME-
DIATE for a particular transaction (following the ANSI SQL92 standards in both
syntax and semantics). You can use this statement to set the mode for a list of con-
straint names or for ALL constraints.

The SET CONSTRAINTS mode lasts for the duration of the transaction or until
another SET CONSTRAINTS statement resets the mode.

SET CONSTRAINTS ... IMMEDIATE causes the specified constraints to be checked
immediately on execution of each constrained statement. Oracle first checks any
constraints that were deferred earlier in the transaction and then continues immedi-
ately checking constraints of any further statements in that transaction (as long as
all the checked constraints are consistent and no other SET CONSTRAINTS state-
ment is issued). If any constraint fails the check, an error is signalled; at that point,
a COMMIT would cause the whole transaction to roll back.

The ALTER SESSION statement also has options to SET CONSTRAINTS IMMEDI-
ATE or DEFERRED. These options imply setting ALL deferrable constraints (that
is, you cannot specify a list of constraint names). They are equivalent to making a
SET CONSTRAINTS statement at the start of each transaction in the current session.

Making constraints immediate at the end of a transaction is a way of checking
whether COMMIT can succeed. You can avoid unexpected rollbacks by setting con-
straints to IMMEDIATE as the last statement in a transaction. If any constraint fails
the check, you can then correct the error before committing the transaction.

The SET CONSTRAINTS statement is disallowed inside of triggers.

Additional Information: See Oracle8 SQL Reference for information
about these constraint attributes and their default values.
24-20 Oracle8 Concepts

Enabled, Disabled, and Enable Novalidate Constraints
SET CONSTRAINTS can be a distributed statement. Existing database links that
have transactions in process are told when a SET CONSTRAINTS ALL statement
occurs, and new links learn that it occurred as soon as they start a transaction.

Unique Constraints and Indexes
A user will see inconsistent constraints, including duplicates in unique indexes,
when that user’s transaction produces these inconsistencies.

You can place deferred unique and foreign key constraints on snapshots, allowing
fast and complete refresh to complete successfully.

Deferrable unique constraints always use nonunique indexes. When you remove a
deferrable constraint, its index remains. (This is convenient because the storage
information remains available after you disable a constraint.) Not-deferrable
unique constraints and primary keys also use a nonunique index if the nonunique
index is placed on the key columns before the constraint is enforced.

Enabled, Disabled, and Enable Novalidate Constraints
You can enable or disable integrity constraints at the table level using the CREATE
TABLE or ALTER TABLE statement. The ENABLE NOVALIDATE option of the
ALTER TABLE statement resumes constraint checking on disabled constraints with-
out first validating all data in the table.

■ ENABLE CONSTRAINT ensures that all rows in the table are valid, that is, all
rows conform to the constraint.

■ DISABLE CONSTRAINT allows the table to contain rows which violate the
constraint.

■ ENABLE NOVALIDATE CONSTRAINT allows existing rows to violate the con-
straint, but ensures that all new or modified rows are valid.

Additional Information: See Oracle8 Administrator’s Guide for
more information about how to use the ENABLE, DISABLE, and
ENABLE NOVALIDATE CONSTRAINT options.
 Data Integrity 24-21

Enabled, Disabled, and Enable Novalidate Constraints
24-22 Oracle8 Concepts

 Controlling Database
25

Controlling Database Access

Allow me to congratulate you, sir. You have the most totally closed mind that I’ve
ever encountered!

Jon Pertwee (as the Doctor): Frontier in Space

This chapter explains how to control access to an Oracle database. It includes:

■ Database Security

■ Schemas, Database Users, and Security Domains

■ User Authentication

■ User Tablespace Settings and Quotas

■ The User Group PUBLIC

■ User Resource Limits and Profiles

■ Licensing

Additional Information: If you are using Trusted Oracle, see your
Trusted Oracle documentation for information on database access in
that environment.
Access 25-1

Database Security
Database Security
Database security entails allowing or disallowing user actions on the database and
the objects within it. Oracle uses schemas and security domains to control access to
data and to restrict the use of various database resources.

Oracle provides comprehensive discretionary access control. Discretionary access
control regulates all user access to named objects through privileges. A privilege is
permission to access a named object in a prescribed manner; for example, permis-
sion to query a table. Privileges are granted to users at the discretion of other users
— hence the term “discretionary access control”. For more information about privi-
leges, see Chapter 26, “Privileges and Roles”.

Schemas, Database Users, and Security Domains
A user (sometimes called a username) is a name defined in the database that can con-
nect to and access objects. A schema is a named collection of objects, such as tables,
views, clusters, procedures, and packages, associated with a particular user. Sche-
mas and users help database administrators manage database security.

To access a database, a user must run a database application (such as an Oracle
Forms form, SQL*Plus, or a precompiler program) and connect using a username
defined in the database.

When a database user is created, a corresponding schema of the same name is cre-
ated for the user. By default, once a user connects to a database, the user has access
to all objects contained in the corresponding schema. A user is associated only with
the schema of the same name; therefore, the terms user and schema are often used
interchangeably.

The access rights of a user are controlled by the different settings of the user’s secu-
rity domain. When creating a new database user or altering an existing one, the
security administrator must make several decisions concerning a user’s security
domain. These include

■ whether user authentication information is maintained by the database, the
operating system, or a network authentication service

■ settings for the user’s default and temporary tablespaces

■ a list, if any, of tablespaces accessible to the user and the associated quotas for
each listed tablespace

■ the user’s resource limit profile; that is, limits on the amount of system
resources available to the user
25-2 Oracle8 Concepts

User Authentication
■ the privileges and roles that provide the user with appropriate access to objects
needed to perform database operations

This chapter describes the first four security domain options listed above; privi-
leges and roles are discussed in Chapter 26, “Privileges and Roles”.

User Authentication
To prevent unauthorized use of a database username, Oracle provides user valida-
tion via three different methods for normal database users:

■ authentication by the operating system

■ authentication by a network service

■ authentication by the associated Oracle database

For simplicity, one method is usually used to authenticate all users of a database.
However, Oracle allows use of all methods within the same database instance.

Oracle also encrypts passwords during transmission to ensure the security of net-
work authentication.

Oracle requires special authentication procedures for database administrators,
because they perform special database operations.

Authentication by the Operating System
Some operating systems permit Oracle to use information maintained by the oper-
ating system to authenticate users. The benefits of authentication by the operating
system are:

■ Users can connect to Oracle more conveniently (without specifying a username
or password). For example, a user can invoke SQL*Plus and skip the username
and password prompts by entering

SQLPLUS /

Note: The information in this chapter applies to all user-defined
database users. It does not apply to the special database users SYS
and SYSTEM. Settings for these users’ security domains should
never be altered.

Additional Information: See the Oracle8 Administrator’s Guide for
more information about the special users SYS and SYSTEM.
 Controlling Database Access 25-3

User Authentication
■ Control over user authorization is centralized in the operating system; Oracle
need not store or manage user passwords. However, Oracle still maintains user-
names in the database.

■ Username entries in the database and operating system audit trails correspond.

If the operating system is used to authenticate database users, some special consid-
erations arise with respect to distributed database environments and database
links; see Chapter 30, “Distributed Databases”, for information on this topic.

Authentication by the Network
If network authentication services are available to you (such as DCE, Kerberos, or
SESAME), Oracle can accept authentication from the network service. To use a
network authentication service with Oracle, you must also have the Oracle Secure
Network Services product.

Authentication by the Oracle Database
Oracle can authenticate users attempting to connect to a database by using informa-
tion stored in that database. You must use this method when the operating system
cannot be used for database user validation.

When Oracle uses database authentication, you create each user with an associated
password. A user provides the correct password when establishing a connection to
prevent unauthorized use of the database. Oracle stores a user’s password in the
data dictionary in an encrypted format. A user can change his or her password at
any time.

Password Encryption while Connecting
To protect password confidentiality, Oracle allows you to encrypt passwords dur-
ing network (client/server and server/server) connections. If you enable this func-
tionality on the client and server machines, Oracle encrypts passwords using a

Additional Information: See your Oracle operating system-spe-
cific documentation for more information about authenticating via
your operating system.

Additional Information: If you use a network authentication ser-
vice, some special considerations arise for network roles and data-
base links. See Oracle8 Distributed Database Systems for more
information about network authentication.
25-4 Oracle8 Concepts

User Authentication
modified DES (Data Encryption Standards) algorithm before sending them across
the network.

Account Locking
Oracle can lock a user’s account if the user fails to login to the system within a spec-
ified number of attempts. Depending on how the account is configured, it can be
unlocked automatically after a specified time interval or it must be unlocked by the
database administrator.

The CREATE PROFILE statement configures the number of failed logins a user can
attempt and the amount of time the account remains locked before automatic
unlock. See “Profiles” on page 25-13 for information about profiles.

The database administrator can also lock accounts manually. When this occurs, the
account cannot be unlocked automatically but must be unlocked explicitly by the
database administrator.

Password Lifetime and Expiration
Password lifetime and expiration options allow the database administrator to spec-
ify a lifetime for passwords, after which time they expire and must be changed
before a login to the account can be completed. On first attempt to login to the data-
base account after the password expires, the user’s account enters the grace period,
and a warning message is issued to the user every time the user tries to login until
the grace period is over.

The user is expected to change the password within the grace period. If the pass-
word is not changed within the grace period, the account is locked and no further
logins to that account are allowed without assistance by the database administrator.

The database administrator can also set the password state to expired. When this
happens, the users account status is changed to expired, and when the user logs in,
the account enters the grace period.

Password History
The password history option checks each newly specified password to ensure that
a password is not reused for the specified amount of time or for the specified num-
ber of password changes. The database administrator can configure the rules for
password reuse with CREATE PROFILE statements.

Additional Information: See Oracle8 Distributed Database Systems
for more information about encrypting passwords in network
systems.
 Controlling Database Access 25-5

User Authentication
Password Complexity Verification
Complexity verification checks that each password is complex enough to provide
reasonable protection against intruders who try to break into the system by guess-
ing passwords.

The Oracle default password complexity verification routine requires that each
password:

■ be a minimum of four characters in length

■ not equal the userid

■ include at least one alphabet character, one numeric character, and one punctu-
ation mark

■ not match any word on an internal list of simple words like welcome, account,
database, user, and so on.

■ differ from the previous password by at least three characters.

Database Administrator Authentication
Database administrators perform special operations (such as shutting down or
starting up a database) that should not be performed by normal database users.
Oracle provides a more secure authentication scheme for database administrator
usernames.

You can choose between operating system authentication or password files to
authenticate database administrators.

Figure 25–1 illustrates the choices you have for database administrator authentica-
tion schemes, depending on whether you administer your database locally (on the
same machine on which the database resides) or if you administer many different
database machines from a single remote client.
25-6 Oracle8 Concepts

User Authentication
Figure 25–1 Database Administrator Authentication Methods

On most operating systems, OS authentication for database administrators involves
placing the OS username of the database administrator in a special group (on UNIX
systems, this is the dba group) or giving that OS username a special process right.

The database uses password files to keep track of database usernames who have
been granted the SYSDBA and SYSOPER privileges. These privileges allow data-
base administrators to perform the following actions:

Additional Information: See your Oracle operating-system-spe-
cific documentation for information about OS authentication of
database administrators.

SYSOPER Permits you to perform STARTUP, SHUTDOWN, ALTER
DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP,
ARCHIVE LOG, and RECOVER, and includes the
RESTRICTED SESSION privilege.

SYSDBA Contains all system privileges with ADMIN OPTION, and the
SYSOPER system privilege; permits CREATE DATABASE and
time-based recovery.

Additional Information: See the Oracle8 Administrator’s Guide.

Use a password file

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS
authentication

Do you
want to use OS
authentication?

Do you
have a secure

connection?
 Controlling Database Access 25-7

User Tablespace Settings and Quotas
User Tablespace Settings and Quotas
As part of every user’s security domain, the database administrator can set several
options regarding tablespace usage:

■ the user’s default tablespace

■ the user’s temporary tablespace

■ space usage quotas on tablespaces of the database for the user

Default Tablespace
When a user creates a schema object without specifying a tablespace to contain the
object, Oracle places the object in the user’s default tablespace. You set a user’s
default tablespace when the user is created; you can change it after the user has
been created.

Temporary Tablespace
When a user executes a SQL statement that requires the creation of a temporary seg-
ment, Oracle allocates that segment in the user’s temporary tablespace.

Tablespace Access and Quotas
You can assign to each user a tablespace quota for any tablespace of the database.
Doing so can accomplish two things:

■ You allow the user to use the specified tablespace to create objects, provided
that the user has the appropriate privileges.

■ You can limit the amount of space allocated for storage of a the’s objects in the
specified tablespace.

By default, each user has no quota on any tablespace in the database. Therefore, if
the user has the privilege to create some type of schema object, he or she must also
have been either assigned a tablespace quota in which to create the object or been
given the privilege to create that object in the schema of another user who was
assigned a sufficient tablespace quota.

You can assign two types of tablespace quotas to a user: a quota for a specific
amount of disk space in the tablespace (specified in bytes, kilobytes, or megabytes),
or a quota for an unlimited amount of disk space in the tablespace. You should
assign specific quotas to prevent a user’s objects from consuming too much space
in a tablespace.
25-8 Oracle8 Concepts

The User Group PUBLIC
Tablespace quotas and temporary segments have no effect on each other:

■ Temporary segments do not consume any quota that a user might possess.

■ Temporary segments can be created in a tablespace for which a user has no
quota.

You can assign a tablespace quota to a user when you create that user, and you can
change that quota or add a different quota later.

Revoke a user’s tablespace access by altering the user’s current quota to zero. With
a quota of zero, the user’s objects in the revoked tablespace remain, but the objects
cannot be allocated any new space.

The User Group PUBLIC
Each database contains a user group called PUBLIC. The PUBLIC user group pro-
vides public access to specific schema objects (tables, views, and so on) and pro-
vides all users with specific system privileges. Every user automatically belongs to
the PUBLIC user group.

As members of PUBLIC, users may see (select from) all data dictionary tables pre-
fixed with USER and ALL. Additionally, a user can grant a privilege or a role to
PUBLIC. All users can use the privileges granted to PUBLIC.

You can grant (or revoke) any system privilege, object privilege, or role to PUBLIC.
See Chapter 26, “Privileges and Roles” for more information on privileges and
roles. However, to maintain tight security over access rights, grant only privileges
and roles of interest to all users to PUBLIC.

Granting and revoking some system and object privileges to and from PUBLIC can
cause every view, procedure, function, package, and trigger in the database to be
recompiled.

PUBLIC has the following restrictions:

■ You cannot assign tablespace quotas to PUBLIC, although you can assign the
UNLIMITED TABLESPACE system privilege to PUBLIC.

■ You can create database links and synonyms as PUBLIC (using CREATE
PUBLIC DATABASE LINK/SYNONYM), but no other schema object can be
owned by PUBLIC. For example, the following statement is not legal:

CREATE TABLE public.emp . . . ;
 Controlling Database Access 25-9

User Resource Limits and Profiles
User Resource Limits and Profiles
You can set limits on the amount of various system resources available to each user
as part of a user’s security domain. By doing so, you can prevent the uncontrolled
consumption of valuable system resources such as CPU time.

This resource limit feature is very useful in large, multiuser systems, where system
resources are very expensive. Excessive consumption of these resources by one or
more users can detrimentally affect the other users of the database. In single-user
or small-scale multiuser database systems, the system resource feature is not as
important, because users’ consumption of system resources is less likely to have
detrimental impact.

You manage a user’s resource limits with his or her profile—a named set of
resource limits that you can assign to that user. Each Oracle database can have an
unlimited number of profiles. Oracle allows the security administrator to enable or
disable the enforcement of profile resource limits universally.

If you set resource limits, a slight degradation in performance occurs when users
create sessions. This is because Oracle loads all resource limit data for the user
when a user connects to a database.

Types of System Resources and Limits
Oracle can limit the use of several types of system resources, including CPU time
and logical reads. In general, you can control each of these resources at the session
level, the call level, or both:

Note: Rollback segments can be created with the keyword
PUBLIC, but these are not owned by the PUBLIC user group. All
rollback segments are owned by SYS. See Chapter 2, “Data Blocks,
Extents, and Segments”, for information about rollback segments.

Session Level Each time a user connects to a database, a session is created.
Each session consumes CPU time and memory on the computer
that executes Oracle. You can set several resource limits at the ses-
sion level.
25-10 Oracle8 Concepts

User Resource Limits and Profiles
CPU Time
When SQL statements and other types of calls are made to Oracle, an amount of
CPU time is necessary to process the call. Average calls require a small amount of
CPU time. However, a SQL statement involving a large amount of data or a run-
away query can potentially consume a large amount of CPU time, reducing CPU
time available for other processing.

To prevent uncontrolled use of CPU time, you can limit the CPU time per call and
the total amount of CPU time used for Oracle calls during a session. The limits are
set and measured in CPU one-hundredth seconds (0.01 seconds) used by a call or a
session.

Logical Reads
Input/output (I/O) is one of the most expensive operations in a database system.
SQL statements that are I/O intensive can monopolize memory and disk use and
cause other database operations to compete for these resources.

If a user exceeds a session-level resource limit, Oracle termi-
nates (rolls back) the current statement and returns a mes-
sage indicating the session limit has been reached. At this
point, all previous statements in the current transaction are
intact, and the only operations the user can perform are
COMMIT, ROLLBACK, or disconnect (in this case, the cur-
rent transaction is committed); all other operations produce
an error. Even after the transaction is committed or rolled
back, the user can accomplish no more work during the cur-
rent session.

Call Level Each time a SQL statement is executed, several steps are
taken to process the statement. During this processing, sev-
eral calls are made to the database as part of the different
execution phases. To prevent any one call from using the
system excessively, Oracle allows you to set several
resource limits at the call level.

If a user exceeds a call-level resource limit, Oracle halts the
processing of the statement, rolls back the statement, and
returns an error. However, all previous statements of the
current transaction remain intact, and the user’s session
remains connected.
 Controlling Database Access 25-11

User Resource Limits and Profiles
To prevent single sources of excessive I/O, Oracle let you limit the logical data
block reads per call and per session. Logical data block reads include data block
reads from both memory and disk. The limits are set and measured in number of
block reads performed by a call or during a session.

Other Resources
Oracle also provides for the limitation of several other resources at the session level:

■ You can limit the number of concurrent sessions per user. Each user can create
only up to a predefined number of concurrent sessions.

■ You can limit the idle time for a session. If the time between Oracle calls for a
session reaches the idle time limit, the current transaction is rolled back, the ses-
sion is aborted, and the resources of the session are returned to the system. The
next call receives an error that indicates the user is no longer connected to the
instance. This limit is set as a number of elapsed minutes.

■ You can limit the elapsed connect time per session. If a session’s duration
exceeds the elapsed time limit, the current transaction is rolled back, the ses-
sion is dropped, and the resources of the session are returned to the system.
This limit is set as a number of elapsed minutes.

■ You can limit the amount of private SGA space (used for private SQL areas) for
a session. This limit is only important in systems that use the multithreaded
server configuration; otherwise, private SQL areas are located in the PGA. This
limit is set as a number of bytes of memory in an instance’s SGA. Use the char-
acters “K” or “M” to specify kilobytes or megabytes.

Note: Shortly after a session is aborted because it has exceeded an
idle time limit, the process monitor (PMON) background process
cleans up after the aborted session. Until PMON completes this
process, the aborted session is still counted in any session/user
resource limit.

Note: Oracle does not constantly monitor the elapsed idle time or
elapsed connection time. Doing so would reduce system perfor-
mance. Instead, it checks every few minutes. Therefore, a session
can exceed this limit slightly (for example, by five minutes) before
Oracle enforces the limit and aborts the session.
25-12 Oracle8 Concepts

User Resource Limits and Profiles
Profiles
A profile is a named set of specified resource limits that can be assigned to valid
username of an Oracle database. Profiles provide for easy management of resource
limits.

When to Use Profiles
You need to create and manage user profiles only if resource limits are a require-
ment of your database security policy. To use profiles, first categorize the related
types of users in a database. Just as roles are used to manage the privileges of
related users, profiles are used to manage the resource limits of related users. Deter-
mine how many profiles are needed to encompass all types of users in a database
and then determine appropriate resource limits for each profile.

Determining Values for Resource Limits of a Profile
Before creating profiles and setting the resource limits associated with them, you
should determine appropriate values for each resource limit. You can base these val-
ues on the type of operations a typical user performs. For example, if one class of
user does not normally perform a high number of logical data block reads, then the
LOGICAL_READS_PER_SESSION and LOGICAL_READS_PER_CALL limits
should be set conservatively.

Usually, the best way to determine the appropriate resource limit values for a given
user profile is to gather historical information about each type of resource usage.
For example, the database or security administrator can use the AUDIT SESSION
option to gather information about the limits CONNECT_TIME,
LOGICAL_READS_PER_SESSION, and LOGICAL_READS_PER_CALL.
See Chapter 27, “Auditing”, for more information.

You can gather statistics for other limits using the Monitor feature of Oracle Enter-
prise Manager (or Server Manager), specifically the Statistics monitor.

Additional Information: Instructions on enabling and disabling
resource limits are included in the Oracle8 Administrator’s Guide.
 Controlling Database Access 25-13

Licensing
Licensing
Oracle is usually licensed for use by a maximum number of named users or by a
maximum number of concurrently connected users. The database administrator
(DBA) is responsible for ensuring that the site complies with its license agreement.
Oracle’s licensing facility helps the DBA monitor system use by tracking and limit-
ing the number of sessions concurrently connected to an instance or the number of
users created in a database.

If the DBA discovers that more than the licensed number of sessions need to con-
nect, or more than the licensed number of users need to be created, he or she can
upgrade the Oracle license to raise the appropriate limit. (To upgrade an Oracle
license, you must contact your Oracle representative.)

The following sections explain the two major types of licensing available for Oracle.

Concurrent Usage Licensing
In concurrent usage licensing, the license specifies a number of concurrent users,
which are sessions that can be connected concurrently to the database on the speci-
fied computer at any time. This number includes all batch processes and online
users. If a single user has multiple concurrent sessions, each session counts sepa-
rately in the total number of sessions. If multiplexing software (such as a TP moni-
tor) is used to reduce the number of sessions directly connected to the database, the
number of concurrent users is the number of distinct inputs to the multiplexing
front end.

The concurrent usage licensing mechanism allows a DBA to:

■ Set a limit on the number of concurrent sessions that can connect to an instance
by setting the LICENSE_MAX_SESSIONS parameter. Once this limit is
reached, only users who have the RESTRICTED SESSION system privilege can

Note: When Oracle is embedded in an Oracle application (such as
Oracle Office), run on some older operating systems, or purchased
for use in some countries, it is not licensed for either a set number
of sessions or a set group of users. In such cases only, the Oracle
licensing mechanisms do not apply and should remain disabled.

Additional Information: See the Oracle8 Administrator’s Guide for
more information about licensing.
25-14 Oracle8 Concepts

Licensing
connect to the instance; this allows DBA to kill unneeded sessions, allowing
other sessions to connect.

■ Set a warning limit on the number of concurrent sessions that can connect to an
instance by setting the LICENSE_SESSIONS_WARNING parameter. Once the
warning limit is reached, Oracle allows additional sessions to connect (up to
the maximum limit described above), but sends a warning message to any user
who connects with RESTRICTED SESSION privilege and records a warning
message in the database’s ALERT file.

The DBA can set these limits in the database’s parameter file so that they take effect
when the instance starts and can change them while the instance is running (using
the ALTER SYSTEM command). The latter is useful for databases that cannot be
taken offline.

The session licensing mechanism allows a DBA to check the current number of con-
nected sessions and the maximum number of concurrent sessions since the instance
started. The V$LICENSE view shows the current settings for the license limits, the
current number of sessions, and the highest number of concurrent sessions since
the instance started (the session “high water mark”). The DBA can use this informa-
tion to evaluate the system’s licensing needs and plan for system upgrades.

For instances running with the Oracle Parallel Server, each instance can have its
own concurrent usage limit and warning limit. The sum of the instances’ limits
must not exceed the site’s concurrent usage license.

The concurrent usage limits apply to all user sessions, including sessions created
for incoming database links. They do not apply to sessions created by Oracle or to
recursive sessions. Sessions that connect through external multiplexing software
are not counted separately by the Oracle licensing mechanism, although each con-
tributes individually to the Oracle license total. The DBA is responsible for taking
these sessions into account.

Named User Licensing
In named user licensing, the license specifies a number of named users, where a
named user is an individual who is authorized to use Oracle on the specified com-
puter. No limit is set on the number of sessions each user can have concurrently, or
on the number of concurrent sessions for the database.

Named user licensing allows a DBA to set a limit on the number of users that are
defined in a database, including users connected via database links. Once this limit
is reached, no one can create a new user. This mechanism assumes that each person
 Controlling Database Access 25-15

Licensing
accessing the database has a unique user name in the database and that no two (or
more) people share a user name.

The DBA can set this limit in the database’s parameter file so that it takes effect
when the instance starts and can change it while the instance is running (using the
ALTER SYSTEM command). The latter is useful for databases that cannot be taken
offline.

If multiple instances connect to the same database in an Oracle Parallel Server, all
instances connected to the same database should have the same named user limit.

Additional Information: See Oracle8 Parallel Server Concepts and
Administration for more information on the Oracle Parallel Server.
25-16 Oracle8 Concepts

 Privileges and
26

Privileges and Roles

My right and my privilege to stand here before you has been won — won in my lifetime —
by the blood and the sweat of the innocent.

Jesse Jackson: Speech at the Democratic National Convention, 1988

This chapter explains how you can control users’ ability to execute system opera-
tions and to access schema objects by using privileges and roles. The chapter
includes:

■ Privileges

– System Privileges

– Schema Object Privileges

■ Roles

Additional Information: If you are using Trusted Oracle, see your
Trusted Oracle documentation for information about roles and privi-
leges in that environment.
 Roles 26-1

Privileges
Privileges
A privilege is a right to execute a particular type of SQL statement or to access
another user’s object. Some examples of privileges include the right to

■ connect to the database (create a session)

■ create a table

■ select rows from another user’s table

■ execute another user’s stored procedure

You grant privileges to users so these users can accomplish tasks required for their
job. You should grant a privilege only to a user who absolutely requires the privi-
lege to accomplish necessary work. Excessive granting of unnecessary privileges
can compromise security. A user can receive a privilege in two different ways:

■ You can grant privileges to users explicitly. For example, you can explicitly
grant the privilege to insert records into the EMP table to the user SCOTT.

■ You can also grant privileges to a role (a named group of privileges), and then
grant the role to one or more users. For example, you can grant the privileges
to select, insert, update, and delete records from the EMP table to the role
named CLERK, which in turn you can grant to the users SCOTT and BRIAN.

Because roles allow for easier and better management of privileges, you should nor-
mally grant privileges to roles and not to specific users.

There are two distinct categories of privileges:

■ system privileges

■ schema object privileges

System Privileges
A system privilege is the right to perform a particular action, or to perform an
action on any schema objects of a particular type. For example, the privileges to cre-
ate tablespaces and to delete the rows of any table in a database are system privi-
leges. There are over 60 distinct system privileges.

Additional Information: Complete listings of all system and
schema object privileges, as well as instructions for privilege man-
agement, appear in the Oracle8 Administrator’s Guide.
26-2 Oracle8 Concepts

Privileges
Granting and Revoking System Privileges
You can grant or revoke system privileges to users and roles. If you grant system
privileges to roles, you can use the roles to manage system privileges (for example,
roles permit privileges to be made selectively available).

System privileges are granted to or revoked from users and roles using either of the
following:

■ the Grant System Privileges/Roles dialog box and Revoke System Privileges/
Roles dialog box of Oracle Enterprise Manager

■ the SQL commands GRANT and REVOKE

Who Can Grant or Revoke System Privileges?
Only users who have been granted a specific system privilege with the ADMIN
OPTION or users with the GRANT ANY PRIVILEGE system privilege (typically
database or security administrators) can grant or revoke system privileges to other
users.

Schema Object Privileges
A schema object privilege (“object privilege”) is a privilege or right to perform a par-
ticular action on a specific table, view, sequence, procedure, function, or package.
Different object privileges are available for different types of schema objects. For
example, the privilege to delete rows from the table DEPT is an object privilege.

Some schema objects (such as clusters, indexes, triggers, and database links) do not
have associated object privileges; their use is controlled with system privileges. For
example, to alter a cluster, a user must own the cluster or have the ALTER ANY
CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges; that is,
the object privileges granted for a table, view, sequence, procedure, function, or
package apply whether referencing the base object by name or using a synonym.

Note: Usually, you should grant system privileges only to admin-
istrative personnel and application developers, because end users
normally do not require the associated capabilities.
 Privileges and Roles 26-3

Privileges
For example, assume there is a table JWARD.EMP with a synonym named
JWARD.EMPLOYEE and the user JWARD issues the following statement:

GRANT SELECT ON emp TO swilliams;

The user SWILLIAMS can query JWARD.EMP by referencing the table by name or
using the synonym JWARD.EMPLOYEE:

SELECT * FROM jward.emp;
SELECT * FROM jward.employee;

If you grant object privileges on a table, view, sequence, procedure, function, or
package to a synonym for the object, the effect is the same as if no synonym were
used. For example, if JWARD wanted to grant the SELECT privilege for the EMP
table to SWILLIAMS, JWARD could issue either of the following statements:

GRANT SELECT ON emp TO swilliams;
GRANT SELECT ON employee TO swilliams;

If a synonym is dropped, all grants for the underlying schema object remain in
effect, even if the privileges were granted by specifying the dropped synonym.

Granting and Revoking Schema Object Privileges
Schema object privileges can be granted to and revoked from users and roles. If
you grant object privileges to roles, you can make the privileges selectively avail-
able. Object privileges for users and roles can be granted or revoked using the SQL
commands GRANT and REVOKE, respectively, or the Add Privilege to Role/User
dialog box and Revoke Privilege from Role/User dialog box of Oracle Enterprise
Manger.

Who Can Grant Schema Object Privileges?
A user automatically has all object privileges for schema objects contained in his or
her schema. A user can grant any object privilege on any schema object he or she
owns to any other user or role. If the grant includes the GRANT OPTION (of the
GRANT command), the grantee can further grant the object privilege to other
users; otherwise, the grantee can use the privilege but cannot grant it to other users.

Table Security Topics
Schema object privileges for tables allow table security at the level of DML and
DDL operations.
26-4 Oracle8 Concepts

Privileges
Data Manipulation Language (DML) Operations The DELETE, INSERT, SELECT, and
UPDATE privileges allow the DELETE, INSERT, SELECT, and UPDATE DML oper-
ations, respectively, on a table or view. You should grant these privileges only to
users and roles that need to query or manipulate a table’s data.

You can restrict INSERT and UPDATE privileges for a table to specific columns of
the table. With selective INSERT, a privileged user can insert a row with values for
the selected columns; all other columns receive NULL or the column’s default
value. With selective UPDATE, a user can update only specific column values of a
row. Selective INSERT and UPDATE privileges are used to restrict a user’s access to
sensitive data.

For example, if you do not want data entry users to alter the SAL column of the
employee table, selective INSERT and/or UPDATE privileges can be granted that
exclude the SAL column. (Alternatively, a view that excludes the SAL column
could satisfy this need for additional security.)

Data Definition Language (DDL) Operations The ALTER, INDEX, and REFERENCES
privileges allow DDL operations to be performed on a table. Because these privi-
leges allow other users to alter or create dependencies on a table, you should grant
privileges conservatively. A user attempting to perform a DDL operation on a table
may need additional system or object privileges (for example, to create a trigger on
a table, the user requires both the ALTER TABLE object privilege for the table and
the CREATE TRIGGER system privilege).

As with the INSERT and UPDATE privileges, the REFERENCES privilege can be
granted on specific columns of a table. The REFERENCES privilege enables the
grantee to use the table on which the grant is made as a parent key to any foreign
keys that the grantee wishes to create in his or her own tables. This action is con-
trolled with a special privilege because the presence of foreign keys restricts the
data manipulation and table alterations that can be done to the parent key. A col-
umn-specific REFERENCES privilege restricts the grantee to using the named col-
umns (which, of course, must include at least one primary or unique key of the
parent table). See Chapter 24, “Data Integrity” for more information about primary
keys, unique keys, and integrity constraints.

Additional Information: See the Oracle8 SQL Reference for more
information on these DML operations.
 Privileges and Roles 26-5

Privileges
View Security Topics
Schema object privileges for views allow various DML operations, which actually
affect the base tables from which the view is derived. DML object privileges for
tables can be applied similarly to views.

Privileges Required to Create Views To create a view, you must meet the following
requirements:

■ You must have been granted the CREATE VIEW (to create a view in your
schema) or CREATE ANY VIEW (to create a view in another user’s schema)
system privilege, either explicitly or through a role.

■ You must have been explicitly granted the SELECT, INSERT, UPDATE, or
DELETE object privileges on all base objects underlying the view or the
SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or
DELETE ANY TABLE system privileges. You may not have obtained these priv-
ileges through roles.

■ Additionally, in order to grant other users access to your view, you must have
received object privilege(s) to the base objects with the GRANT OPTION
option or appropriate system privileges with the ADMIN OPTION option. If
you have not, grantees cannot access your view.

Increasing Table Security Using Views To use a view, you require appropriate privi-
leges only for the view itself. You do not require privileges on base object(s) under-
lying the view.

Views add two more levels of security for tables, column-level security and value-
based security:

■ A view can provide access to selected columns of base table(s). For example,
you can define a view on the EMP table to show only the EMPNO, ENAME,
and MGR columns:

CREATE VIEW emp_mgr AS
 SELECT ename, empno, mgr FROM emp;

■ A view can provide value-based security for the information in a table. A
WHERE clause in the definition of a view displays only selected rows of base
tables. Consider the following two examples:

CREATE VIEW lowsal AS
 SELECT * FROM emp
 WHERE sal < 10000;
26-6 Oracle8 Concepts

Privileges
The LOWSAL view allows access to all rows of the EMP table that have a sal-
ary value less than 10000. Notice that all columns of the EMP table are accessi-
ble in the LOWSAL view.

CREATE VIEW own_salary AS
 SELECT ename, sal
 FROM emp
 WHERE ename = USER;

In the OWN_SALARY view, only the rows with an ENAME that matches the
current user of the view are accessible. The OWN_SALARY view uses the
USER pseudocolumn, whose values always refer to the current user. This view
combines both column-level security and value-based security.

Procedure Security Topics
The one schema object privilege for procedures (including standalone procedures and
functions, and packages) is EXECUTE. You should grant this privilege only to
users who need to execute a procedure.

You can use procedures to add a level of database security. A user requires only the
privilege to execute a procedure and no privileges on the underlying objects that a
procedure accesses. By writing a procedure and granting only EXECUTE privilege
to a user, the user can be forced to access the referenced objects only through the
procedure (that is, the user cannot submit ad hoc SQL statements to the database).

Procedure Execution and Security Domains A user with the EXECUTE object privilege
for a specific procedure can execute the procedure. A user with the EXECUTE ANY
PROCEDURE system privilege can execute any procedure in the database. A user
can be granted privileges through roles to execute procedures.

When you execute a procedure, it operates under the security domain of the user
who owns the procedure, regardless of who is executing it. Therefore, a user does
not need privileges on referenced objects to execute a procedure. Because the
owner of a procedure must have the necessary object privileges for referenced
objects, fewer privileges have to be granted to users of the procedure, resulting in
tighter control of database access.

The current privileges of the owner of a stored procedure are always checked
before the procedure is executed. If a necessary privilege on a referenced object is
revoked from the owner of a procedure, the procedure cannot be executed by the
owner or any other user.
 Privileges and Roles 26-7

Privileges
System Privileges Needed to Create or Alter a Procedure To create a procedure, a user
must have the CREATE PROCEDURE or CREATE ANY PROCEDURE system privi-
lege. To alter a procedure, that is, to manually recompile a procedure, a user must
own the procedure or have the ALTER ANY PROCEDURE system privilege.

The user who owns the procedure also must hav privileges for schema objects refer-
enced in the procedure body. To create a procedure, you must have been explicitly
granted the necessary privileges (system or object) on all objects referenced by the
procedure; you cannot have obtained the required privileges through roles. This
includes the EXECUTE privilege for any procedures that are called inside the proce-
dure being created.

Triggers also require that privileges to referenced objects be granted explicitly to
the trigger owner. Anonymous PL/SQL blocks can use any privilege, whether the
privilege is granted explicitly or via a role.

Packages and Package Objects A user with the EXECUTE object privilege for a pack-
age can execute any (public) procedure or function in the package and access or
modify the value of any (public) package variable. Specific EXECUTE privileges
cannot be granted for a package’s constructs. Therefore, you may find it useful to
consider two alternatives for establishing security when developing procedures,
functions, and packages for a database application. These alternatives are described
in the following examples.

Example 1: This example shows four procedures created in the bodies of two
packages.

CREATE PACKAGE BODY hire_fire AS
 PROCEDURE hire(...) IS
 BEGIN
 INSERT INTO emp . . .
 END hire;
 PROCEDURE fire(...) IS
 BEGIN
 DELETE FROM emp . . .

Note: Trigger execution follows these same patterns. The user
executes a SQL statement, which that user is privileged to execute.
As a result of the SQL statement, a trigger is fired. The statements
within the triggered action temporarily execute under the security
domain of the user that owns the trigger.
26-8 Oracle8 Concepts

Privileges
 END fire;
END hire_fire;

CREATE PACKAGE BODY raise_bonus AS
 PROCEDURE give_raise(...) IS
 BEGIN
 UPDATE EMP SET sal = . . .
 END give_raise;
 PROCEDURE give_bonus(...) IS
 BEGIN
 UPDATE EMP SET bonus = . . .
 END give_bonus;
END raise_bonus;

Access to execute the procedures is given by granting the EXECUTE privilege for
the package, using the following statements:

GRANT EXECUTE ON hire_fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Granting EXECUTE privilege granted for a package provides uniform access to all
package objects.

Example 2: This example shows four procedure definitions within the body of a
single package. Two additional standalone procedures and a package are created
specifically to provide access to the procedures defined in the main package.

CREATE PACKAGE BODY employee_changes AS
 PROCEDURE change_salary(...) IS BEGIN ... END;
 PROCEDURE change_bonus(...) IS BEGIN ... END;
 PROCEDURE insert_employee(...) IS BEGIN ... END;
 PROCEDURE delete_employee(...) IS BEGIN ... END;
END employee_changes;

CREATE PROCEDURE hire
 BEGIN
 employee_changes.insert_employee(...)
 END hire;

CREATE PROCEDURE fire
 BEGIN
 employee_changes.delete_employee(...)
 END fire;
 Privileges and Roles 26-9

Roles
PACKAGE raise_bonus IS
 PROCEDURE give_raise(...) AS
 BEGIN
 employee_changes.change_salary(...)
 END give_raise;

 PROCEDURE give_bonus(...)
 BEGIN
 employee_changes.change_bonus(...)
 END give_bonus;

Using this method, the procedures that actually do the work (the procedures in the
EMPLOYEE_CHANGES package) are defined in a single package and can share
declared global variables, cursors, on so on. By declaring top-level procedures
HIRE and FIRE, and an additional package RAISE_BONUS, you can grant selective
EXECUTE privileges on procedures in the main package:

GRANT EXECUTE ON hire, fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Roles
Oracle provides for easy and controlled privilege management through roles. Roles
are named groups of related privileges that you grant to users or other roles. Roles
are designed to ease the administration of end-user system and schema object privi-
leges. However, roles are not meant to be used for application developers, because
the privileges to access schema objects within stored programmatic constructs need
to be granted directly. See “Data Definition Language Statements and Roles” on
page 26-14 for more information about restrictions for procedures.

These properties of roles allow for easier privilege management within a database:

reduced privilege
administration

Rather than granting the same set of privileges explicitly to
several users, you can grant the privileges for a group of
related users to a role, and then only the role needs to be
granted to each member of the group.

dynamic privilege
management

If the privileges of a group must change, only the privileges
of the role need to be modified. The security domains of all
users granted the group’s role automatically reflect the
changes made to the role.
26-10 Oracle8 Concepts

Roles
Common Uses for Roles
In general, you create a role to serve one of two purposes: to manage the privileges
for a database application or to manage the privileges for a user group. Figure 26–1
and the sections that follow describe the two uses of roles.

selective availabil-
ity of privileges

You can selectively enable or disable the roles granted to a
user. This allows specific control of a user’s privileges in any
given situation.

application aware-
ness

The data dictionary records which roles exist, so you can
design applications to query the dictionary and automati-
cally enable (or disable) selective roles when a user attempts
to execute the application by way of a given username.

application-
specific security

You can protect role use with a password. Applications can
be created specifically to enable a role when supplied the
correct password. Users cannot enable the role if they do not
know the password.

Additional Information: Instructions for enabling roles from an
application are included in the Oracle8 Application Developer’s Guide.
 Privileges and Roles 26-11

Roles
Figure 26–1 Common Uses for Roles

Application Roles
You grant an application role all privileges necessary to run a given database appli-
cation. Then, you grant the application role to other roles or to specific users. An
application can have several different roles, with each role assigned a different set
of privileges that allow for more or less data access while using the application.

User Roles
You create a user role for a group of database users with common privilege require-
ments. You manage user privileges by granting application roles and privileges to
the user role and then granting the user role to appropriate users.

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users
26-12 Oracle8 Concepts

Roles
The Mechanisms of Roles
Database roles have the following functionality:

■ A role can be granted system or schema object privileges.

■ A role can be granted to other roles. However, a role cannot be granted to itself
and cannot be granted circularly (for example, role A cannot be granted to role
B if role B has previously been granted to role A).

■ Any role can be granted to any database user.

■ Each role granted to a user is, at a given time, either enabled or disabled. A
user’s security domain includes the privileges of all roles currently enabled for
the user and excludes the privileges of any roles currently disabled for the user.
Oracle allows database applications and users to enable and disable roles to
provide selective availability of privileges.

■ An indirectly granted role (a role granted to a role) can be explicitly enabled or
disabled for a user. However, by enabling a role that contains other roles, you
implicitly enable all indirectly granted roles of the directly granted role.

Granting and Revoking Roles
You grant or revoke roles from users or other roles using the following options:

■ the Grant System Privileges/Roles dialog box and Revoke System Privileges/
Roles dialog box of Oracle Enterprise Manager

■ the SQL commands GRANT and REVOKE

Privileges are granted to and revoked from roles using the same options. Roles can
also be granted to and revoked from users using the operating system that executes
Oracle, or through network services.

Who Can Grant or Revoke Roles?
Any user with the GRANT ANY ROLE system privilege can grant or revoke any
role (except a global role) to or from other users or roles of the database. You
should grant this system privilege conservatively because it is very powerful.

Additional Information: Detailed instructions on role manage-
ment are included in the Oracle8 Administrator’s Guide.

Additional Information: See Oracle8 Distributed Database Systems
for information about global roles.
 Privileges and Roles 26-13

Roles
Any user granted a role with the ADMIN OPTION can grant or revoke that role to
or from other users or roles of the database. This option allows administrative pow-
ers for roles on a selective basis.

Naming Roles
Within a database, each role name must be unique, and no username and role name
can be the same. Unlike schema objects, roles are not “contained” in any schema.
Therefore, a user who creates a role can be dropped with no effect on the role.

Security Domains of Roles and Users
Each role and user has its own unique security domain. A role’s security domain
includes the privileges granted to the role plus those privileges granted to any roles
that are granted to the role.

A user’s security domain includes privileges on all schema objects in the corre-
sponding schema, the privileges granted to the user, and the privileges of roles
granted to the user that are currently enabled. (A role can be simultaneously enabled
for one user and disabled for another.) A user’s security domain also includes the
privileges and roles granted to the user group PUBLIC.

Named PL/SQL Blocks and Roles
All roles are disabled in any named PL/SQL block (stored procedure, function, or
trigger) that

■ is created in a user schema that does not own the object being referenced in the
PL/SQL block

■ can be executed as a user other than the owner of the PL/SQL block

Anonymous PL/SQL blocks, however, are executed based on privileges granted
through enabled roles.

The SESSION_ROLES view shows all roles that are currently enabled. If a named
PL/SQL block queries SESSION_ROLES, the query does not return any rows.

Data Definition Language Statements and Roles
A user requires one or more privileges to successfully execute a data definition lan-
guage (DDL) statement, depending on the statement. For example, to create a table,
the user must have the CREATE TABLE or CREATE ANY TABLE system privi-
lege. To create a view of another user’s table, the creator requires the CREATE
26-14 Oracle8 Concepts

Roles
VIEW or CREATE ANY VIEW system privilege and either the SELECT object privi-
lege for the table or the SELECT ANY TABLE system privilege.

Oracle avoids the dependencies on privileges received by way of roles by restrict-
ing the use of specific privileges in certain DDL statements. The following rules out-
line these privilege restrictions concerning DDL statements:

■ All system privileges and schema object privileges that permit a user to per-
form a DDL operation are usable when received through a role.

Examples:

– System Privileges: the CREATE TABLE, CREATE VIEW and CREATE
PROCEDURE privileges.

– Schema Object Privileges: the ALTER and INDEX privileges for a table.

Exception: The REFERENCES object privilege for a table cannot be used to
define a table’s foreign key if the privilege is received through a role.

■ All system privileges and object privileges that allow a user to perform a DML
operation that is required to issue a DDL statement are not usable when
received through a role.

Example: If a user receives the SELECT ANY TABLE system privilege or the
SELECT object privilege for a table through a role, he or she can use neither
privilege to create a view on another user’s table.

The following example further clarifies the permitted and restricted uses of privi-
leges received through roles:

Example: Assume that a user

■ is granted a role that has the CREATE VIEW system privilege

■ is granted a role that has the SELECT object privilege for the EMP table, but the
user is indirectly granted the SELECT object privilege for the EMP table

■ is directly granted the SELECT object privilege for the DEPT table

Given these directly and indirectly granted privileges:

■ The user can issue SELECT statements on both the EMP and DEPT tables.

■ Although the user has both the CREATE VIEW and SELECT privilege for the
EMP table (both through a role), the user cannot create a usable view on the
EMP table, because the SELECT object privilege for the EMP table was granted
through a role. Any views created will produce errors when accessed.
 Privileges and Roles 26-15

Roles
■ The user can create a view on the DEPT table, because the user has the
CREATE VIEW privilege (through a role) and the SELECT privilege for the
DEPT table (directly).

Predefined Roles
The roles CONNECT, RESOURCE, DBA, EXP_FULL_DATABASE, and
IMP_FULL_DATABASE are defined automatically for Oracle databases. These
roles are provided for backward compatibility to earlier versions of Oracle and can
be modified in the same manner as any other role in an Oracle database.

The Operating System and Roles
In some environments, you can administer database security using the operating
system. The operating system can be used to manage the granting (and revoking)
of database roles and to manage their password authentication.

This capability is not available on all operating systems.

Roles in a Distributed Environment
When you use roles in a distributed database environment, you must ensure that
all needed roles are set as the default roles for a distributed (remote) session. You
cannot enable roles when connecting to a remote database from within a local data-
base session. For example, you cannot execute a remote procedure that attempts to
enable a role at the remote site.

Additional Information: See your operating system-specific
Oracle documentation for details on managing roles through the
operating system.

Additional Information: For more information about distributed
database environments, see Oracle8 Distributed Database Systems.
26-16 Oracle8 Concepts

 A
27

Auditing

You can observe a lot by watching.

Yogi Berra

This chapter discusses the auditing feature of Oracle. It includes:

■ Introduction to Auditing

■ Statement Auditing

■ Privilege Auditing

■ Schema Object Auditing

■ Focusing Statement, Privilege, and Schema Object Auditing

Additional Information: If you are using Trusted Oracle, see your
Trusted Oracle documentation for information about auditing in
that environment.
uditing 27-1

Introduction to Auditing
Introduction to Auditing
Auditing is the monitoring and recording of selected user database actions. Audit-
ing is normally used to

■ investigate suspicious activity. For example, if an unauthorized user is deleting
data from tables, the security administrator might decide to audit all connec-
tions to the database and all successful and unsuccessful deletions of rows
from all tables in the database.

■ monitor and gather data about specific database activities. For example, the
database administrator can gather statistics about which tables are being
updated, how many logical I/Os are performed, or how many concurrent
users connect at peak times.

Auditing Features
This section outlines the features of the Oracle auditing mechanism.

Types of Auditing
Oracle supports three general types of auditing:

statement auditing The selective auditing of SQL statements with respect to only
the type of statement, not the specific schema objects on
which it operates. Statement auditing options are typically
broad, auditing the use of several types of related actions per
option. For example, AUDIT TABLE tracks several DDL state-
ments regardless of the table on which they are issued. You
can set statement auditing to audit selected users or every
user in the database.

privilege auditing The selective auditing of the use of powerful system privi-
leges to perform corresponding actions, such as AUDIT
CREATE TABLE. Privilege auditing is more focused than
statement auditing because it audits only the use of the target
privilege. You can set privilege auditing to audit a selected
user or every user in the database.

schema object
auditing

The selective auditing of specific statements on a particular
schema object, such as AUDIT SELECT ON EMP. Schema
object auditing is very focused, auditing only a specific state-
ment on a specific schema object. Schema object auditing
always applies to all users of the database.
27-2 Oracle8 Concepts

Introduction to Auditing
Focus of Auditing
Oracle allows audit options to be focused or broad. You can

■ audit successful statement executions, unsuccessful statement executions, or
both

■ audit statement executions once per user session or once every time the state-
ment is executed

■ audit activities of all users or of a specific user

Audit Records and the Audit Trail
Audit records include information such as the operation that was audited, the user
performing the operation, and the date and time of the operation. Audit records
can be stored in either a data dictionary table, called the database audit trail, or an
operating system audit trail.

The database audit trail is a single table named AUD$ in the SYS schema of each
Oracle database’s data dictionary. Several predefined views are provided to help
you use the information in this table.

The audit trail records can contain different types of information, depending on the
events audited and the auditing options set. The following information is always
included in each audit trail record, provided that the information is meaningful to
the particular audit action:

■ the user name

■ the session identifier

■ the terminal identifier

■ the name of the schema object accessed

■ the operation performed or attempted

■ the completion code of the operation

■ the date and time stamp

■ the system privileges used (including MAC privileges for Trusted Oracle)

■ the label of the user session (for Trusted Oracle only)

■ the label of the schema object accessed (for Trusted Oracle only)

Additional Information: Instructions for creating and using these
views are found in the Oracle8 Administrator’s Guide.
 Auditing 27-3

Introduction to Auditing
The operating system audit trail is encoded and not readable, but it is decoded in
data dictionary files and error messages as follows:

Auditing Mechanisms
This section explains the mechanisms used by the Oracle auditing features.

When Are Audit Records Generated?
The recording of audit information can be enabled or disabled. This functionality
allows any authorized database user to set audit options at any time but reserves
control of recording audit information for the security administrator.

When auditing is enabled in the database, an audit record is generated during the
execute phase of statement execution.

SQL statements inside PL/SQL program units are individually audited, as neces-
sary, when the program unit is executed.

Action Code This describes the operation performed or attempted. The
AUDIT_ACTIONS data dictionary table contains a list of
these codes and their descriptions.

Privileges Used This describes any system privileges used to perform the
operation. The SYSTEM_PRIVILEGE_MAP table lists all of
these codes and their descriptions.

Completion Code This describes the result of the attempted operation. Success-
ful operations return a value of zero; unsuccessful operations
return the Oracle error code describing why the operation
was unsuccessful. These codes are listed in Oracle8 Error Mes-
sages.

Additional Information: Instructions on enabling and disabling
auditing are found in the Oracle8 Administrator’s Guide.

Note: If you are not familiar with the different phases of SQL
statement processing and shared SQL, see Chapter 14, “SQL and
PL/SQL”, for background information concerning the following
discussion.
27-4 Oracle8 Concepts

Introduction to Auditing
The generation and insertion of an audit trail record is independent of a user’s
transaction; therefore, if a user’s transaction is rolled back, the audit trail record
remains committed.

Events Always Audited to the Operating System Audit Trail
Regardless of whether database auditing is enabled, Oracle always records some
database-related actions into the operating system audit trail:

On operating systems that do not make an audit trail accessible to Oracle, these
audit trail records are placed in an Oracle audit trail file in the same directory as
background process trace files.

Note: Audit records are never generated by sessions established
by the user SYS or connections with administrator privileges. Con-
nections by these users bypass certain internal features of Oracle to
allow specific administrative operations to occur (for example,
database startup, shutdown, recovery, and so on).

Instance startup An audit record is generated that details the OS user
starting the instance, the user’s terminal identifier, the
date and time stamp, and whether database auditing
was enabled or disabled. This information is recorded
into the OS audit trail because the database audit trail
is not available until after startup has successfully com-
pleted. Recording the state of database auditing at star-
tup further prevents an administrator from restarting a
database with database auditing disabled so that they
are able to perform unaudited actions.

Instance shutdown An audit record is generated that details the OS user
shutting down the instance, the user’s terminal identi-
fier, the date and time stamp.

Connections to the data-
base with administrator
privileges

An audit record is generated that details the OS user
connecting to Oracle with administrator privileges.
This provides accountability of users connected with
administrator privileges.

Additional Information: See your operating system-specific
Oracle documentation for more information about the operating
system audit trail.
 Auditing 27-5

Introduction to Auditing
When Do Audit Options Take Effect?
Statement and privilege audit options in effect at the time a database user connects
to the database remain in effect for the duration of the session. A session does not
see the effects of statement or privilege audit options being set or changed. The
modified statement or privilege audit options take effect only when the current ses-
sion is ended and a new session is created. In contrast, changes to schema object
audit options become effective for current sessions immediately.

Auditing in a Distributed Database
Auditing is site autonomous; an instance audits only the statements issued by
directly connected users. A local Oracle node cannot audit actions that take place in
a remote database. Because remote connections are established through the user
account of a database link, the remote Oracle node audits the statements issued
through the database link’s connection. See Chapter 30, “Distributed Databases”,
for more information about distributed databases and database links.

Auditing to the OS Audit Trail
Both Oracle and Trusted Oracle allow audit trail records to be directed to an operat-
ing system audit trail if the operating system makes such an audit trail available to
Oracle. On some other operating systems, these audit records are written to a file
outside the database, with a format similar to other Oracle trace files.

Both Oracle and Trusted Oracle allow certain actions that are always audited to con-
tinue, even when the operating system audit trail (or the operating system file con-
taining audit records) is unable to record the audit record. The usual cause of this is
that the operating system audit trail or the file system is full and unable to accept
new records.

System administrators configuring OS auditing should ensure that the audit trail or
the file system does not fill completely. Most operating systems provide administra-
tors with sufficient information and warning to ensure this does not occur. Note,
however, that configuring auditing to use the database audit trail removes this vul-
nerability, because the Oracle server prevents audited events from occurring if the
audit trail is unable to accept the database audit record for the statement.

Additional Information: See your platform-specific Oracle docu-
mentation to see if this feature has been implemented on your oper-
ating system.
27-6 Oracle8 Concepts

Privilege Auditing
Statement Auditing
Statement auditing is the selective auditing of related groups of statements that fall
into two categories:

■ DDL statements, regarding a particular type of database structure or schema
object, but not a specifically named structure or schema object (for example,
AUDIT TABLE audits all CREATE and DROP TABLE statements)

■ DML statements, regarding a particular type of database structure or schema
object, but not a specifically named structure or schema object (for example,
AUDIT SELECT TABLE audits all SELECT . . . FROM TABLE/VIEW/SNAP-
SHOT statements, regardless of the table, view, or snapshot)

Statement auditing can be broad or focused, auditing the activities of all database
users or the activities of only a select list of database users.

Privilege Auditing
Privilege auditing is the selective auditing of the statements allowed using a sys-
tem privilege. For example, auditing of the SELECT ANY TABLE system privilege
audits users’ statements that are executed using the SELECT ANY TABLE system
privilege. You can audit the use of any system privilege.

In all cases of privilege auditing, owner privileges and schema object privileges are
checked before system privileges. If the owner and schema object privileges suffice
to permit the action, the action is not audited.

If similar statement and privilege audit options are both set, only a single audit
record is generated. For example, if the statement option TABLE and the system
privilege CREATE TABLE are both audited, only a single audit record is generated
each time a table is created.

Privilege auditing is more focused than statement auditing because each option
audits only specific types of statements, not a related list of statements. For exam-
ple, the statement auditing option TABLE audits CREATE TABLE, ALTER TABLE,
and DROP TABLE statements, while the privilege auditing option CREATE TABLE
audits only CREATE TABLE statements, since only the CREATE TABLE statement
requires the CREATE TABLE privilege.

Like statement auditing, privilege auditing can audit the activities of all database
users or the activities of only a select list of database users.
 Auditing 27-7

Schema Object Auditing
Schema Object Auditing
Schema bject auditing is the selective auditing of specific DML statements (includ-
ing queries) and GRANT and REVOKE statements for specific schema objects.
Schema object auditing audits the operations permitted by schema object privi-
leges, such as SELECT or DELETE statements on a given table, as well as the
GRANT and REVOKE statements that control those privileges.

You can audit statements that reference tables, views, sequences, standalone stored
procedures and functions, and packages (procedures in packages cannot be audited
individually).

Statements that reference clusters, database links, indexes, or synonyms are not
audited directly. However, you can audit access to these schema objects indirectly
by auditing the operations that affect the base table.

Schema object audit options are always set for all users of the database; these
options cannot be set for a specific list of users. You can set default schema object
audit options for all auditable schema objects.

Schema Object Audit Options for Views and Procedures
Views and procedures (including stored functions, packages, and triggers) refer-
ence underlying schema objects in their definition. Therefore, auditing with respect
to views and procedures has several unique characteristics. Multiple audit records
can be generated as the result of using a view or a procedure: The use of the view
or procedure is subject to enabled audit options; and the SQL statements issued as
a result of using the view or procedure are subject to the enabled audit options of
the base schema objects (including default audit options).

Consider the following series of SQL statements:

AUDIT SELECT ON emp;

CREATE VIEW emp_dept AS
 SELECT empno, ename, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

AUDIT SELECT ON emp_dept;

SELECT * FROM emp_dept;

Additional Information: See “AUDIT (Schema Objects)” in
Oracle8 SQL Reference.
27-8 Oracle8 Concepts

Focusing Statement, Privilege, and Schema Object Auditing
As a result of the query on EMP_DEPT, two audit records are generated: one for
the query on the EMP_DEPT view and one for the query on the base table EMP
(indirectly through the EMP_DEPT view). The query on the base table DEPT does
not generate an audit record because the SELECT audit option for this table is not
enabled. All audit records pertain to the user that queried the EMP_DEPT view.

The audit options for a view or procedure are determined when the view or proce-
dure is first used and placed in the shared pool. These audit options remain set
until the view or procedure is flushed from, and subsequently replaced in, the
shared pool. Auditing a schema object invalidates that schema object in the cache
and causes it to be reloaded. Any changes to the audit options of base schema
objects are not observed by views and procedures in the shared pool.

Continuing with the above example, if auditing of SELECT statements is turned off
for the EMP table, use of the EMP_DEPT view would no longer generate an audit
record for the EMP table.

Focusing Statement, Privilege, and Schema Object Auditing
Oracle allows you to focus statement, privilege, and schema object auditing in three
areas:

■ successful and unsuccessful executions of the audited SQL statement

■ BY SESSION and BY ACCESS auditing

■ for specific users or for all users in the database (statement and privilege audit-
ing only)

Auditing Successful and Unsuccessful Statement Executions
For statement, privilege, and schema object auditing, Oracle allows the selective
auditing of successful executions of statements, unsuccessful attempts to execute
statements, or both. Therefore, you can monitor actions even if the audited state-
ments do not complete successfully.

You can audit an unsuccessful statement execution only if a valid SQL statement is
issued but fails because of lack of proper authorization or because it references a
nonexistent schema object. Statements that failed to execute because they simply
were not valid cannot be audited. For example, an enabled privilege auditing
option set to audit unsuccessful statement executions audits statements that use the
target system privilege but have failed for other reasons (such as when CREATE
TABLE is set but a CREATE TABLE statement fails due to lack of quota for the
specified tablespace).
 Auditing 27-9

Focusing Statement, Privilege, and Schema Object Auditing
Using either form of the AUDIT command, you can include

■ the WHENEVER SUCCESSFUL option, to audit only successful executions of
the audited statement

■ the WHENEVER NOT SUCCESSFUL option, to audit only unsuccessful execu-
tions of the audited statement

■ neither of the previous options, to audit both successful and unsuccessful exe-
cutions of the audited statement

Auditing BY SESSION versus BY ACCESS
Most auditing options can be set to indicate how audit records should be generated
if the audited statement is issued multiple times in a single user session. This sec-
tion describes the distinction between the BY SESSION and BY ACCESS options of
the AUDIT command.

BY SESSION
For any type of audit (schema object, statement, or privilege), BY SESSION inserts
only one audit record in the audit trail, per user and schema object, during the ses-
sion that includes an audited action.

A session is the time between when a user connects to and disconnects from an Ora-
cle database.

Example 1 Assume the following:

■ The SELECT TABLE statement auditing option is set BY SESSION.

■ JWARD connects to the database and issues five SELECT statements against
the table named DEPT and then disconnects from the database.

■ SWILLIAMS connects to the database and issues three SELECT statements
against the table EMP and then disconnects from the database.

In this case, the audit trail will contain two audit records for the eight SELECT state-
ments (one for each session that issued a SELECT statement).

Example 2 Alternatively, assume the following:

■ The SELECT TABLE statement auditing option is set BY SESSION.

■ JWARD connects to the database and issues five SELECT statements against
the table named DEPT, and three SELECT statements against the table EMP,
and then disconnects from the database.
27-10 Oracle8 Concepts

Focusing Statement, Privilege, and Schema Object Auditing
In this case, the audit trail will contain two records (one for each schema object
against which the user issued a SELECT statement in a session).

BY ACCESS
Setting audit BY ACCESS inserts one audit record into the audit trail for each execu-
tion of an auditable operation within a cursor. Events that cause cursors to be
reused include the following:

■ an application, such as Oracle Forms, holding a cursor open for reuse

■ subsequent execution of a cursor using new bind variables

■ statements executed within PL/SQL loops where the PL/SQL engine opti-
mizes the statements to reuse a single cursor

Note that auditing is NOT affected by whether a cursor is shared; each user creates
her or his own audit trail records on first execution of the cursor.

Example Assume that

■ The SELECT TABLE statement auditing option is set BY ACCESS.

■ JWARD connects to the database and issues five SELECT statements against
the table named DEPT and then disconnects from the database.

■ SWILLIAMS connects to the database and issues three SELECT statements
against the table DEPT and then disconnects from the database.

The single audit trail contains eight records for the eight SELECT statements.

Defaults and Excluded Operations
The AUDIT command allows you to specify either BY SESSION or BY ACCESS.
However, several audit options can be set only BY ACCESS, including

■ all statement audit options that audit DDL statements

■ all privilege audit options that audit DDL statements

For all other audit options, BY SESSION is used by default.

Note: If you use the BY SESSION option when directing audit
records to the operating system audit trail, Oracle generates and
stores an audit record each time an access is made. Therefore, in
this auditing configuration, BY SESSION is equivalent to BY
ACCESS.
 Auditing 27-11

Focusing Statement, Privilege, and Schema Object Auditing
Auditing By User
Statement and privilege audit options can audit statements issued by any user or
statements issued by a specific list of users. By focusing on specific users, you can
minimize the number of audit records generated.

Example To audit statements by the users SCOTT and BLAKE that query or update
a table or view, issue the following statements:

AUDIT SELECT TABLE, UPDATE TABLE
 BY scott, blake;

Additional Information: See Oracle8 SQL Reference for more infor-
mation about auditing by user.
27-12 Oracle8 Concepts

 Database Re
28

Database Recovery

These unhappy times call for the building of plans...

Franklin Delano Roosevelt

This chapter introduces the structures that are used during database recovery and
describes the Recovery Manager utility, which simplifies backup and recovery oper-
ations. The topics in this chapter include:

■ An Introduction to Database Recovery

■ Structures Used for Database Recovery

■ Rolling Forward and Rolling Back

■ Recovery Manager

■ Performing Recovery in Parallel

■ Database Archiving Modes

■ Control Files

■ Database Backups

■ Survivability

Additional Information: The procedures necessary to create and
maintain the backup and recovery structures are discussed in the
Oracle8 Backup and Recovery Guide.
covery 28-1

An Introduction to Database Recovery
An Introduction to Database Recovery
A major responsibility of the database administrator is to prepare for the possibility
of hardware, software, network, process, or system failure. If such a failure affects
the operation of a database system, you must usually recover the databases and
return to normal operations as quickly as possible. Recovery should protect the
databases and associated users from unnecessary problems and avoid or reduce
the possibility of having to duplicate work manually.

Recovery processes vary depending on the type of failure that occurred, the struc-
tures affected, and the type of recovery that you perform. If no files are lost or dam-
aged, recovery may amount to no more than restarting an instance. If data has been
lost, recovery requires additional steps.

Errors and Failures
Several problems can halt the normal operation of an Oracle database or affect data-
base I/O to disk. The following sections describe the most common types. For
some of these problems, recovery is automatic and requires little or no action on the
part of the database user or database administrator.

User Error
A database administrator can do little to prevent user errors (for example, acciden-
tally dropping a table). Usually, user error can be reduced by increased training on
database and application principles. Furthermore, by planning an effective recov-
ery scheme ahead of time, the administrator can ease the work necessary to recover
from many types of user errors.

Statement Failure
Statement failure occurs when there is a logical failure in the handling of a state-
ment in an Oracle program. For example, assume all extents of a table (in other
words, the number of extents specified in the MAXEXTENTS parameter of the
CREATE TABLE statement) are allocated, and are completely filled with data; the

Note: The Recovery Manager is a utility that simplifies backup
and recovery operations. See “Recovery Manager” on page 28-10.

Additional Information: See the Oracle8 Backup and Recovery Guide
for detailed information on Recovery Manager and a description of
how to recover from loss of data.
28-2 Oracle8 Concepts

An Introduction to Database Recovery
table is absolutely full. A valid INSERT statement cannot insert a row because there
is no space available. Therefore, if issued, the statement fails.

If a statement failure occurs, the Oracle software or operating system returns an
error code or message. A statement failure usually requires no action or recovery
steps; Oracle automatically corrects for statement failure by rolling back the effects
(if any) of the statement and returning control to the application. The user can sim-
ply re-execute the statement after correcting the problem conveyed by the error
message.

Process Failure
A process failure is a failure in a user, server, or background process of a database
instance (for example, an abnormal disconnect or process termination). When a pro-
cess failure occurs, the failed subordinate process cannot continue work, although
the other processes of the database instance can continue.

The Oracle background process PMON detects aborted Oracle processes. If the
aborted process is a user or server process, PMON resolves the failure by rolling
back the current transaction of the aborted process and releasing any resources that
this process was using. Recovery of the failed user or server process is automatic. If
the aborted process is a background process, the instance usually cannot continue
to function correctly. Therefore, you must shut down and restart the instance.

Network Failure
When your system uses networks (for example, local area networks, phone lines,
and so on) to connect client workstations to database servers, or to connect several
database servers to form a distributed database system, network failures (such as
aborted phone connections or network communication software failures) can inter-
rupt the normal operation of a database system. For example:

■ A network failure might interrupt normal execution of a client application and
cause a process failure to occur. In this case, the Oracle background process
PMON detects and resolves the aborted server process for the disconnected
user process, as described in the previous section.

■ A network failure might interrupt the two-phase commit of a distributed trans-
action. Once the network problem is corrected, the Oracle background process
RECO of each involved database server automatically resolves any distributed
transactions not yet resolved at all nodes of the distributed database system.
Distributed database systems are discussed in Chapter 30, “Distributed
Databases”.
 Database Recovery 28-3

An Introduction to Database Recovery
Database Instance Failure
Database instance failure occurs when a problem arises that prevents an Oracle
database instance (SGA and background processes) from continuing to work. An
instance failure can result from a hardware problem, such as a power outage, or a
software problem, such as an operating system crash. Instance failure also results
when you issue a SHUTDOWN ABORT or STARTUP FORCE statement.

Recovery from Instance Failure Instance recovery restores a database to its transaction-
consistent state just before instance failure. If you experience instance failure dur-
ing online backup, media recovery might be required. In all other cases, recovery
from instance failure is relatively automatic. For example, when using the Oracle
Parallel Server, other instances perform instance recovery. In single-instance config-
urations, Oracle performs instance recovery for a database when the database is
restarted (mounted and opened to a new instance). The transition from a mounted
state to an open state automatically triggers instance recovery, if necessary.

Instance recovery consists of the following steps:

1. Rolling forward to recover data that has not been recorded in the datafiles, yet
has been recorded in the online redo log, including the contents of rollback seg-
ments.

2. Opening the database. Instead of waiting for all transactions to be rolled back
before making the database available, Oracle enables the database to be opened
as soon as cache recovery is complete. Any data that is not locked by unrecov-
ered transactions is immediately available. This feature is called fast warmstart.

3. Marking all transactions system-wide that were active at the time of failure as
DEAD and marking the rollback segments containing these transactions as
PARTLY AVAILABLE.

4. Recovering dead transactions as part of SMON recovery.

5. Resolving any pending distributed transactions undergoing a two-phase com-
mit at the time of the instance failure.

Incremental Checkpointing Incremental checkpointing improves the performance of
crash and instance recovery (but not media recovery). An incremental checkpoint
records the position in the redo thread (log) from which crash or instance recovery
needs to begin. This log position is determined by the oldest dirty buffer in the
buffer cache. The incremental checkpoint information is maintained periodically
with minimal or no overhead during normal processing.
28-4 Oracle8 Concepts

An Introduction to Database Recovery
Recovery performance is roughly proportional to the number of buffers that had
not been written to the database prior to the crash. You can influence the perfor-
mance of crash or instance recovery by setting the initialization parameter
DB_BLOCK_MAX_DIRTY_TARGET, which specifies an upper bound on the num-
ber of dirty buffers that can be present in the buffer cache of an instance at any
moment in time. Thus, it is possible to influence recovery time for situations where
the buffer cache is very large or where there are stringent limitations on the dura-
tion of crash/instance recovery. Smaller values of this parameter impose higher
overhead during normal processing since more buffers have to be written. On the
other hand, the smaller the value of this parameter, the better the recovery perfor-
mance, since fewer blocks need to be recovered.

Incremental checkpoint information is maintained automatically by the Oracle
server without affecting other checkpoints (such as log switch checkpoints and
user-specified checkpoints). In other words, incremental checkpointing occurs inde-
pendently of other checkpoints occurring in the instance.

Read-Only Tablespaces and Instance Recovery Recovery is not needed on read-only
datafiles during instance recovery. Recovery during startup verifies that each
online read-only file does not need any media recovery. That is, the file was not
restored from a backup taken before it was made read-only. If you restore a read-
only tablespace from a backup taken before the tablespace was made read-only,
you cannot access the tablespace until you complete media recovery.

Media (Disk) Failure
An error can arise when trying to write or read a file that is required to operate an
Oracle database. This occurrence is called media failure because there is a physical
problem reading or writing to files on the storage medium.

A common example of a media failure is a disk head crash, which causes the loss of
all files on a disk drive. All files associated with a database are vulnerable to a disk
crash, including datafiles, redo log files, and control files.

The appropriate recovery from a media failure depends on the files affected.

How Media Failures Affect Database Operation Media failures can affect one or all types
of files necessary for the operation of an Oracle database, including datafiles, online
redo log files, and control files.

Additional Information: See the Oracle8 Backup and Recovery Guide
for a discussion of media recovery.
 Database Recovery 28-5

An Introduction to Database Recovery
Database operation after a media failure of online redo log files or control files
depends on whether the online redo log or control file is multiplexed, as recom-
mended. A multiplexed online redo log or control file simply means that a second
copy of the file is maintained. If a media failure damages a single disk, and you
have a multiplexed online redo log, the database can usually continue to operate
without significant interruption. Damage to a non-multiplexed online redo log
causes database operation to halt and may cause permanent loss of data. Damage
to any control file, whether it is multiplexed or non-multiplexed, halts database
operation once Oracle attempts to read or write the damaged control file.

Media failures that affect datafiles can be divided into two categories: read errors
and write errors. In a read error, Oracle discovers it cannot read a datafile and an
operating system error is returned to the application, along with an Oracle error
indicating that the file cannot be found, cannot be opened, or cannot be read.
Oracle continues to run, but the error is returned each time an unsuccessful read
occurs. At the next checkpoint, a write error will occur when Oracle attempts to
write the file header as part of the standard checkpoint process.

If Oracle discovers that it cannot write to a datafile and Oracle is archiving the
filled online redo log files, Oracle returns an error in the DBWn trace file and takes
the datafile offline automatically. Only the datafile that cannot be written to is
taken offline; the tablespace containing that file remains online.

If the datafile that cannot be written to is in the SYSTEM tablespace, the file is not
taken offline. Instead, an error is returned and Oracle shuts down the database. The
reason for this exception is that all files in the SYSTEM tablespace must be online in
order for Oracle to operate properly. For the same reason, the datafiles of a
tablespace containing active rollback segments must remain online.

If Oracle discovers that it cannot write to a datafile, and Oracle is not archiving the
filled online redo log files, the DBWn background process fails and the current
instance fails. If the problem is temporary (for example, the disk controller was
powered off), instance recovery usually can be performed using the online redo log
files, in which case the instance can be restarted. However, if a datafile is perma-
nently damaged and archiving is not used, the entire database must be restored
using the most recent backup.
28-6 Oracle8 Concepts

Structures Used for Database Recovery
Structures Used for Database Recovery
Several structures of an Oracle database safeguard data against possible failures.
This section introduces each of these structures and its role in database recovery.

Database Backups
A database backup consists of backups of the physical files (all datafiles and a con-
trol file) that constitute an Oracle database. To begin database recovery from a
media failure, Oracle uses file backups to restore damaged datafiles or control files.

Oracle offers several options in performing database backups.

The Redo Log
The redo log, present for every Oracle database, records all changes made in an
Oracle database. The redo log of a database consists of at least two redo log files
that are separate from the datafiles (which actually store a database’s data). As part
of database recovery from an instance or media failure, Oracle applies the appropri-
ate changes in the database’s redo log to the datafiles, which updates database data
to the instant that the failure occurred.

A database’s redo log can consist of two parts: the online redo log and the archived
redo log.

The Online Redo Log
Every Oracle database has an associated online redo log. The online redo log works
with the Oracle background process LGWR to immediately record all changes
made through the associated instance. The online redo log consists of two or more
pre-allocated files that are reused in a circular fashion to record ongoing database
changes.

The Archived (Offline) Redo Log
Optionally, you can configure an Oracle database to archive files of the online redo
log once they fill. The online redo log files that are archived are uniquely identified
and make up the archived redo log. By archiving filled online redo log files, older
redo log information is preserved for more extensive database recovery operations,
while the pre-allocated online redo log files continue to be reused to store the most
current database changes.

See “Database Archiving Modes” on page 28-16 for more information.

Additional Information: See Oracle8 Backup and Recovery Guide.
 Database Recovery 28-7

Rolling Forward and Rolling Back
Rollback Segments
Rollback segments are used for a number of functions in the operation of an Oracle
database. In general, the rollback segments of a database store the old values of
data changed by ongoing transactions (that is, uncommitted transactions).

Among other things, the information in a rollback segment is used during database
recovery to “undo” any “uncommitted” changes applied from the redo log to the
datafiles. Therefore, if database recovery is necessary, the data is in a consistent
state after the rollback segments are used to remove all uncommitted data from the
datafiles.

Control Files
In general, the control file(s) of a database store the status of the physical structure
of the database. Certain status information in the control file (for example, the cur-
rent online redo log file, the names of the datafiles, and so on) guides Oracle during
instance or media recovery.

See “Control Files” on page 28-19 for more information.

Rolling Forward and Rolling Back
Database buffers in the SGA are written to disk only when necessary, using a least-
recently-used algorithm. Because of the way that the DBWn process uses this algo-
rithm to write database buffers to datafiles, datafiles might contain some data
blocks modified by uncommitted transactions and some data blocks missing
changes from committed transactions.

Two potential problems can result if an instance failure occurs:

■ Data blocks modified by a transaction might not be written to the datafiles at
commit time and might only appear in the redo log. Therefore, the redo log con-
tains changes that must be reapplied to the database during recovery.

■ Since the redo log might have also contained data that was not committed, the
uncommitted transaction changes applied by the redo log (as well as any
uncommitted changes applied by earlier redo logs) must be erased from the
database.

To solve this dilemma, two separate steps are generally used by Oracle for a suc-
cessful recovery of a system failure: rolling forward with the redo log and rolling
back with the rollback segments.
28-8 Oracle8 Concepts

Rolling Forward and Rolling Back
The Redo Log and Rolling Forward
The redo log is a set of operating system files that record all changes made to any
database buffer, including data, index, and rollback segments, whether the changes
are committed or uncommitted. The redo log protects changes made to database buff-
ers in memory that have not been written to the datafiles.

The first step of recovery from an instance or disk failure is to roll forward, or reap-
ply all of the changes recorded in the redo log to the datafiles. Because rollback
data is also recorded in the redo log, rolling forward also regenerates the corre-
sponding rollback segments.

Rolling forward proceeds through as many redo log files as necessary to bring the
database forward in time. Rolling forward usually includes online redo log files
and may include archived redo log files.

After roll forward, the data blocks contain all committed changes as well as any
uncommitted changes that were recorded in the redo log.

Rollback Segments and Rolling Back
Rollback segments record database actions that should be undone during certain
database operations. In database recovery, rollback segments undo the effects of
uncommitted transactions previously applied by the rolling forward phase.

After the roll forward, any changes that were not committed must be undone. After
redo log files have reapplied all changes made to the database, then the correspond-
ing rollback segments are used. Rollback segments are used to identify and undo
transactions that were never committed, yet were recorded in the redo log and
applied to the database during roll forward. This process is called rolling back.

Figure 28–1 illustrates rolling forward and rolling back, the two steps necessary to
recover from any type of system failure.
 Database Recovery 28-9

Recovery Manager
Figure 28–1 Basic Recovery Steps: Rolling Forward and Rolling Back

Oracle can roll back multiple transactions simultaneously as needed. All transac-
tions system-wide that were active at the time of failure are marked as DEAD.
Instead of waiting for SMON to roll back dead transactions, new transactions can
recover blocking transactions themselves to get the row locks they need. This fea-
ture is called fast transaction rollback.

Recovery Manager
Recovery Manager is a utility that manages the processes of creating backups of data-
base files and restoring or recovering files from backups.

Recovery Catalog
Recovery Manager maintains a repository called the recovery catalog, which contains
information about backup files and archived log files. Recovery Manager uses the
recovery catalog to automate both restore operations and media recovery.

Additional Information: See the Oracle8 Backup and Recovery Guide
for a full description of Recovery Manager.

Database with
committed and
uncommitted
transactions

Redo Logs
applied

Rollback Segments
applied

Backup of
Database
that needs
recovery

Database with
just committed
transactions

Committed

Uncommitted

Database

Redo
Log

Redo
Log

DatabaseDatabase
28-10 Oracle8 Concepts

Recovery Manager
The recovery catalog contains:

■ information about backups of datafiles and archivelogs

■ information about datafile copies

■ information about archived redo logs and copies of them

■ information about the physical schema of the target database

■ named sequences of commands called stored scripts.

The recovery catalog is maintained solely by Recovery Manager. The database
server never accesses the recovery catalog directly. Recovery Manager propagates
information about backup datafile sets, archived redo logs, and datafile copies into
the recovery catalog for long-term retention.

When doing a restore, Recovery Manager extracts the appropriate information
from the recovery catalog and passes it to the database server. The server performs
various integrity checks on the input files specified for a restore. Incorrect behavior
by Recovery Manager cannot corrupt the database.

The Recovery Catalog Database
The recovery catalog is stored in an Oracle database. It is the database administra-
tor’s responsibility to make such a database available to Recovery Manager. Taking
backups of the recovery catalog is also the database administrator’s responsibility.
Since the recovery catalog is stored in an Oracle database, you can use Recovery
Manager to back it up.

If the recovery catalog is destroyed and no backups are available, then it can be par-
tially reconstructed from the current control file or control file backups.

Operation Without a Recovery Catalog
Use of a recovery catalog is not required. Since most information in the recovery
catalog is also available from the control file, Recovery Manager supports an opera-
tional mode where it uses only the control file.

This operational mode is appropriate for small databases where installation and
administration of another database to serve as the recovery catalog would be bur-
densome.

Tablespace point-in-time recovery is not supported in this operational mode.
 Database Recovery 28-11

Recovery Manager
Parallelization
Recovery Manager can parallelize its operations, establishing multiple logon ses-
sions and conducting multiple operations in parallel by using non-blocking UPI.
Concurrent operations must operate on disjoint sets of database files.

Parallelization of the backup, copy, and restore commands is handled internally by
the Recovery Manager. You only need to specify:

■ a list of one or more sequential I/O devices

■ the objects to be backed-up, copied, or restored.

Recovery Manager executes commands serially, that is, it completes the previous
command before starting the next command. Parallelism is exploited only within
the context of a single command. Thus, if 10 datafile copies are desired, it is better
to issue a single copy command that specifies all 10 copies rather than 10 separate
copy commands.

Report Generation
The report and list commands provide information about backups and image cop-
ies. The output from these commands is written to the message log file.

The report command produces reports that can answer questions such as:

■ what files need a backup?

■ what files haven’t had a backup in a while?

■ what backup files can be deleted?

You can use the report need backup and report unrecoverable commands on a reg-
ular basis to ensure that the necessary backups are available to perform recovery,
and that the recovery can be performed within a reasonable length of time. The
report deletable command lists backup sets and datafile copies that can be deleted
either because they are redundant or because they could never be used by a
recover command.

Attention: Oracle8 can only allocate one Recovery Manager chan-
nel at a time, thus limiting the parallelism to one stream. The
Oracle8 Enterprise Edition allows unlimited parallelism. See Get-
ting to Know Oracle8 and the Oracle8 Enterprise Edition for more infor-
mation about the features available with Oracle8 and Oracle8
Enterprise Edition.
28-12 Oracle8 Concepts

Performing Recovery in Parallel
A datafile is considered unrecoverable if:

■ the only existing backups of the datafile are useless because the archivelogs
needed to recover them are not in the recovery catalog or the recovery catalog
does not know what logs would be needed

■ an unlogged operation has been performed against a schema object residing in
the datafile.

(A datafile that does not have a backup is not considered unrecoverable. Such data-
files can be recovered through the use of the create datafile command, provided
that logs starting from when the file was created still exist.)

The list command queries the recovery catalog and produces a listing of its con-
tents. You can use it to find out what backups or copies are available:

■ backups or copies of a specified list of datafiles

■ backups or copies of any datafile that is a member of a specified list of
tablespaces

■ backups or copies of any archivelogs with a specified name and/or within a
specified range

■ incarnations of a specified database.

Performing Recovery in Parallel
Recovery reapplies the changes generated by several concurrent processes, and
therefore instance or media recovery can take longer than the time it took to ini-
tially generate the changes to a database. With serial recovery, a single process
applies the changes in the redo log files sequentially. Using parallel recovery, sev-
eral processes simultaneously apply changes from redo log files.

Parallel recovery can be performed manually by spawning several Oracle
Enterprise Manager sessions and issuing the RECOVER DATAFILE command on a
different set of datafiles in each session. However, this method causes each Oracle
Enterprise Manager session to read the entire redo log file.

Attention: Oracle8 provides limited parallelism with Recovery
Manager; the Oracle8 Enterprise Edition allows unlimited parallel-
ism. See Getting to Know Oracle8 and the Oracle8 Enterprise Edition
for more information about the features available in Oracle8 and
Oracle8 Enterprise Edition.
 Database Recovery 28-13

Performing Recovery in Parallel
Instance and media recovery can be parallelized automatically by specifying an ini-
tialization parameter or options to the RECOVER command. Oracle uses one pro-
cess to read the log files sequentially and dispatch redo information to several
recovery processes, which apply the changes from the log files to the datafiles. The
recovery processes are started automatically by Oracle, so there is no need to use
more than one session to perform recovery.

Situations That Benefit from Parallel Recovery
In general, parallel recovery is most effective at reducing recovery time when sev-
eral datafiles on several different disks are being recovered concurrently. Crash
recovery (recovery after instance failure) and media recovery of many datafiles on
many different disk drives are good candidates for parallel recovery.

The performance improvement from parallel recovery is also dependent upon
whether the operating system supports asynchronous I/O. If asynchronous I/O is
not supported, parallel recovery can dramatically reduce recovery time. If asyn-
chronous I/O is supported, the recovery time may only be slightly reduced by
using parallel recovery.

Recovery Processes
In a typical parallel recovery situation, one process is responsible for reading and
dispatching redo entries from the redo log files. This is the dedicated server process
that begins the recovery session. The server process reading the redo log files
enlists two or more recovery processes to apply the changes from the redo entries
to the datafiles.

Figure 28–2 illustrates a typical parallel recovery session.

Additional Information: See your operating system documenta-
tion to determine whether the system supports asynchronous I/O.
28-14 Oracle8 Concepts

Performing Recovery in Parallel
Figure 28–2 Typical Parallel Recovery Session

In most situations, one recovery session and one or two recovery processes per disk
drive containing datafiles needing recovery is sufficient. Recovery is a disk-inten-
sive activity as opposed to a CPU-intensive activity, and therefore the number of
recovery processes needed is dependent entirely upon how many disk drives are
involved in recovery. In general, a minimum of eight recovery processes is needed
before parallel recovery can show improvement over a serial recovery.

Dedicated
Server

Process

Redo
File 1

Redo
File 2

Datafile
3

Datafile
4

Datafile
1

Datafile
2

Recovery
Process

Recovery
Process
 Database Recovery 28-15

Database Archiving Modes
Database Archiving Modes
A database can operate in two distinct modes: NOARCHIVELOG mode (media
recovery disabled) or ARCHIVELOG mode (media recovery enabled).

NOARCHIVELOG Mode (Media Recovery Disabled)
If a database is used in NOARCHIVELOG mode, the archiving of the online redo
log is disabled. Information in the database’s control file indicates that filled groups
are not required to be archived. Therefore, once a filled group becomes inactive and
the checkpoint at the log switch completes, the group is available for reuse by the
LGWR process.

NOARCHIVELOG mode protects a database only from instance failure, not from
disk (media) failure. Only the most recent changes made to the database, stored in
the groups of the online redo log, are available for instance recovery.

ARCHIVELOG Mode (Media Recovery Enabled)
If an Oracle database is operated in ARCHIVELOG mode, the archiving of the
online redo log is enabled. Information in a database control file indicates that a
group of filled online redo log files cannot be reused by LGWR until the group is
archived. A filled group is immediately available to the process performing the
archiving once a log switch occurs (when a group becomes inactive); the process
performing the archiving does not have to wait for the checkpoint of a log switch to
complete before it can access the inactive group for archiving.

Figure 28–3 illustrates how the database’s online redo log files are used in
ARCHIVELOG mode and how the archived redo log is generated by the process
archiving the filled groups (for example, ARCH in this illustration).

ARCHIVELOG mode permits complete recovery from disk failure as well as
instance failure, because all changes made to the database are permanently saved
in an archived redo log.
28-16 Oracle8 Concepts

Database Archiving Modes
Figure 28–3 Online Redo Log File Use in ARCHIVELOG Mode

Automatic Archiving and the ARCH (Archiver) Background Process
An instance can be configured to have an additional background process, the
archiver (ARCH), automatically archive groups of online redo log files once they
become inactive. Therefore, automatic archiving frees the database administrator
from having to keep track of, and archive, filled groups manually. For this conve-
nience alone, automatic archiving is the choice of most database systems that have
an archived redo log.

If you request automatic archiving at instance startup by setting the
LOG_ARCHIVE_START initialization parameter, Oracle starts ARCH during
instance startup. Otherwise, ARCH is not started during instance startup.

LGWR

ARCH ARCH ARCH

LGWR LGWR

0001

0002

0001

0002

0003

TIME

LGWR

Archived
Redo Log
Files

Online
Redo Log
Files

Log
0004

Log
0003

Log
0002

0001 0002

0001

0003

0002

0001

Log
0001
 Database Recovery 28-17

Database Archiving Modes
However, the database administrator can interactively start or stop automatic
archiving at any time. If automatic archiving was not specified to start at instance
startup, and the administrator subsequently starts automatic archiving, the ARCH
background process is created. ARCH then remains for the duration of the
instance, even if automatic archiving is temporarily turned off and turned on again.

ARCH always archives groups in order, beginning with the lowest sequence num-
ber. ARCH automatically archives filled groups as they become inactive. A record
of every automatic archival is written in the ARCH trace file by the ARCH process.
Each entry shows the time the archive started and stopped.

If ARCH encounters an error when attempting to archive a group (for example,
due to an invalid or filled destination), ARCH continues trying to archive the
group. An error is also written in the ARCH trace file and the ALERT file. If the
problem is not resolved, eventually all online redo log groups become full, yet not
archived, and the system halts because no group is available to LGWR. Therefore, if
problems are detected, you should either resolve the problem so that ARCH can
continue archiving (such as by changing the archive destination) or manually
archive groups until the problem is resolved.

Manual Archiving
If a database is operating in ARCHIVELOG mode, the database administrator can
manually archive the filled groups of inactive online redo log files, as necessary,
whether or not automatic archiving is enabled or disabled. If automatic archiving is
disabled, the database administrator is responsible for archiving all filled groups.

For most systems, automatic archiving is chosen because the administrator does
not have to watch for a group to become inactive and available for archiving. Fur-
thermore, if automatic archiving is disabled and manual archiving is not performed
fast enough, database operation can be suspended temporarily whenever LGWR is
forced to wait for an inactive group to become available for reuse.

The manual archiving option is provided so that the database administrator can:

■ archive a group when automatic archiving has been stopped because of a prob-
lem (for example, the offline storage device specified as archived redo log desti-
nation has experienced a failure or become full)

■ archive a group in a non-standard fashion (for example, archive one group to
one offline storage device, the next group to a different offline storage device,
and so on)

■ re-archive a group if the original archived version is lost or damaged
28-18 Oracle8 Concepts

Control Files
When a group is archived manually, the user process issuing the statement to
archive a group actually performs the process of archiving the group. Even if the
ARCH background process is present for the associated instance, it is the user pro-
cess that archives the group of online redo log files.

Control Files
The control file of a database is a small binary file necessary for the database to
start and operate successfully. A control file is updated continuously by Oracle dur-
ing database use, so it must be available for writing whenever the database is open.
If for some reason the control file is not accessible, the database will not function
properly.

Each control file is associated with only one Oracle database.

Control File Contents
A control file contains information about the associated database that is required
for the database to be accessed by an instance, both at startup and during normal
operation. A control file’s information can be modified only by Oracle; no database
administrator or end-user can edit a database’s control file.

Among other things, a control file contains information such as

■ the database name

■ the timestamp of database creation

■ the names and locations of associated datafiles and online redo log files

■ tablespace information

■ datafile offline ranges

■ the log history

■ archived log information

■ backup set and backup piece information

■ backup datafile and redo log information

■ datafile copy information

■ the current log sequence number

■ checkpoint information
 Database Recovery 28-19

Control Files
The database name and timestamp originate at database creation. The database’s
name is taken from either the name specified by the initialization parameter
DB_NAME or the name used in the CREATE DATABASE statement.

Each time that a datafile or an online redo log file is added to, renamed in, or
dropped from the database, the control file is updated to reflect this physical struc-
ture change. These changes are recorded so that

■ Oracle can identify the datafiles and online redo log files to open during data-
base startup.

■ Oracle can identify files that are required or available in case database recovery
is necessary.

Therefore, if you make a change to your database’s physical structure, you should
immediately make a backup of your control file.

Control files also record information about checkpoints. When a checkpoint starts,
the control file records information about the next entry that must be entered into
the online redo log. This information is used during database recovery to tell Ora-
cle that all redo entries recorded before this point in the online redo log group are
not necessary for database recovery; they were already written to the datafiles.

Multiplexed Control Files
As with online redo log files, Oracle allows multiple, identical control files to be
open concurrently and written for the same database.

By storing multiple control files for a single database on different disks, you can
safeguard against a single point of failure with respect to control files. If a single
disk that contained a control file crashes, the current instance fails when Oracle
attempts to access the damaged control file. However, other copies of the current
control file are available on different disks, so an instance can be restarted easily
without the need for database recovery.

The permanent loss of all copies of a database’s control file is a serious problem to
safeguard against. If all control files of a database are permanently lost during oper-
ation (several disks fail), the instance is aborted and media recovery is required.
Even so, media recovery is not straightforward if an older backup of a control file
must be used because a current copy is not available. Therefore, it is strongly recom-
mended that multiplexed control files be used with each database, with each copy
stored on a different physical disk.

Additional Information: See Oracle8 Backup and Recovery Guide for
information about backing up a database’s control file.
28-20 Oracle8 Concepts

Database Backups
Database Backups
No matter what backup and recovery scheme you devise for an Oracle database,
backups of the database’s datafiles and control files are absolutely necessary as part
of the strategy to safeguard against potential media failures that can damage these
files.

The following sections provide a conceptual overview of the different types of back-
ups that can be made and their usefulness in different recovery schemes.

Whole Database Backups
A whole database backup is an operating system backup of all datafiles and the con-
trol file that constitute an Oracle database. You can take a whole database backup
when the database is shut down or while the database is open. You should not nor-
mally take a whole backup after an instance failure or other unusual circumstances.

Consistent Whole Backups vs. Inconsistent Whole Backups
Following a clean shutdown, all of the files that constitute a database are closed
and consistent with respect to the current point in time. Thus, a whole backup
taken after a shutdown can be used to recover to the point in time of the last whole
backup. A whole backup taken while the database is open is not consistent to a
given point in time and must be recovered (with the online and archived redo log
files) before the database can become available.

Backups and Archiving Mode
The datafiles obtained from a whole backup are useful in any type of media recov-
ery scheme:

■ If a database is operating in NOARCHIVELOG mode and a disk failure dam-
ages some or all of the files that constitute the database, the most recent consis-
tent whole backup can be used to restore (not recover) the database.

Because an archived redo log is not available to bring the database up to the
current point in time, all database work performed since the backup must be
repeated. Under special circumstances, a disk failure in NOARCHIVELOG
mode can be fully recovered, but you should not rely on this.

■ If a database is operating in ARCHIVELOG mode and a disk failure damages

Additional Information: The Oracle8 Backup and Recovery Guide
provides more details, along with guidelines for performing data-
base backups.
 Database Recovery 28-21

Database Backups
some or all of the files that constitute the database, the datafiles collected by the
most recent whole backup can be used as part of database recovery.

After restoring the necessary datafiles from the whole backup, database recov-
ery can continue by applying archived and current online redo log files to bring
the restored datafiles up to the current point in time.

In summary, if a database is operated in NOARCHIVELOG mode, a consistent
whole database backup is the only method to partially protect the database against
a disk failure; if a database is operating in ARCHIVELOG mode, either a consistent
or an inconsistent whole database backup can be used to restore damaged files as
part of database recovery from a disk failure.

Partial Database Backups
A partial database backup is any backup short of a whole backup, taken while the
database is open or shut down. The following are all examples of partial database
backups:

■ a backup of all datafiles for an individual tablespace

■ a backup of a single datafile

■ a backup of a control file

Partial backups are only useful for a database operating in ARCHIVELOG mode.
Because an archived redo log is present, the datafiles restored from a partial backup
can be made consistent with the rest of the database during recovery procedures.

Datafile Backups
A partial backup includes only some of the datafiles of a database. Individual or
collections of specific datafiles can be backed up independently of the other data-
files, online redo log files, and control files of a database. You can back up a datafile
while it is offline or online.

Choosing whether to take online or offline datafile backups depends only on the
availability requirements of the data — online datafile backups are the only choice
if the data being backed up must always be available.

Control File Backups
Another form of a partial backup is a control file backup. Because a control file
keeps track of the associated database’s physical file structure, a backup of a data-
base’s control file should be made every time a structural change is made to the
database.
28-22 Oracle8 Concepts

Database Backups
Multiplexed control files safeguard against the loss of a single control file. How-
ever, if a disk failure damages the datafiles and incomplete recovery is desired, or a
point-in-time recovery is desired, a backup of the control file that corresponds to
the intended database structure should be used, not necessarily the current control
file. Therefore, the use of multiplexed control files is not a substitute for control file
backups taken every time the structure of a database is altered.

If you use Recovery Manager to restore the control file prior to incomplete or point-
in-time recovery, Recovery Manager automatically restores the most suitable
backup control file.

The Export and Import Utilities
Export and Import are utilities used to move Oracle data in and out of Oracle data-
bases. Export is a utility that writes data from an Oracle database to operating sys-
tem files in an Oracle database format. Export files store information about schema
objects created for a database. Import is a utility that reads Export files and restores
the corresponding information into an existing database. Although Export and
Import are designed for moving Oracle data, they can be used also as a supplemen-
tal method of protecting data in an Oracle database.

Read-Only Tablespaces and Backup
You can create backups of a read-only tablespace while the database is open. Imme-
diately after making a tablespace read-only, you should back up the tablespace. As
long as the tablespace remains read-only, there is no need to perform any further
backups of it.

After you change a read-only tablespace to a read-write tablespace, you need to
resume your normal backups of the tablespace, just as you do when you bring an
offline read-write tablespace back online.

Bringing the datafiles of a read-only tablespace online does not make these files
writeable, nor does it cause the file header to be updated. Thus it is not necessary to
perform a backup of these files, as is necessary when you bring a writeable datafile
back online.

Note: The Recovery Manager automatically backs up the control
file in any backup that includes datafile 1, which contains the data
dictionary.

Additional Information: See Oracle8 Utilities.
 Database Recovery 28-23

Survivability
Survivability
In the event of a power failure, hardware failure, or any other system-interrupting
disaster, Oracle offers the standby database feature. The standby database is intended
for sites where survivability and disaster recovery are of paramount importance.

Planning for Disaster Recovery
The only way to ensure rapid recovery from a system failure or other disaster is to
plan carefully. You must have a set plan with detailed procedures. Whether you are
implementing a standby database or you have a single database system, you must
have a plan for what to do in the event of a catastrophic failure.

Standby Database
Oracle provides a reliable and supported mechanism for implementing a standby
database system to facilitate quick disaster recovery. The scheme uses a secondary
system on duplicate hardware, maintained in a constant state of media recovery
through the application of log files archived at the primary site. In the event of a pri-
mary system failure, the standby can be activated with minimal recovery, provid-
ing immediate system availability. Oracle provides commands and internal
verifications for operations involved in the creation and maintenance of the
standby system, improving the reliability of the disaster recovery scheme.

A standby database uses the archived log information from the primary database,
so it is ready to perform recovery and go online at any time. When the primary
database archives its redo logs, the logs must be transferred to the remote site and
applied to the standby database. The standby database is therefore always behind
the primary database in time and transaction history.

The physical hardware on which the standby database resides should be used only
as a disaster recovery system; no other applications should run on it. Because the
standby database is designed for disaster recovery, it ideally resides in a separate
physical location from the primary database.

The standby database exists not only to guard against power failures and hardware
failures, but also to protect your data in the event of a physical disaster such as a
fire, tornado, or earthquake.

Additional Information: See the Oracle8 Backup and Recovery Guide
for information about creating and maintaining a standby database.
28-24 Oracle8 Concepts

Part VIII

Distributed Processing and

Distributed Databases

Part VIII describes distributed processing environments for the Oracle server and
database applications, and explains distributed database architecture and data repli-
cation across networks.

Part VIII contains the following chapters:

■ Chapter 29, “Distributed Processing”

■ Chapter 30, “Distributed Databases”

■ Chapter 31, “Database Replication”

 Distributed Proc
29

Distributed Processing

We must try to trust one another. Stay and cooperate.

Jomo Kenyatta

This chapter defines distributed processing and describes how the Oracle server
and database applications work in a distributed processing environment. This
material applies to almost every type of Oracle database system environment.

This chapter includes:

■ Oracle Client/Server Architecture

■ Distributed Processing
essing 29-1

Oracle Client/Server Architecture
Oracle Client/Server Architecture
In the Oracle database system environment, the database application and the data-
base are separated into two parts: a front-end or client portion, and a back-end or
server portion — hence the term client/server architecture. The client executes the
database application that accesses database information and interacts with a user
through the keyboard, screen, and pointing device such as a mouse. The server exe-
cutes the Oracle software and handles the functions required for concurrent, shared
data access to an Oracle database.

Although the client application and Oracle can be executed on the same computer,
greater efficiency can often be achieved when the client portion(s) and server por-
tion are executed by different computers connected via a network. The following
sections discuss possible variations in the Oracle client/server architecture.

Distributed Processing
Distributed processing is the use of more than one processor to perform the process-
ing for an individual task. Examples of distributed processing in Oracle database
systems appear in Figure 29–1.

■ In Part A of the figure, the client and server are located on different computers;
these computers are connected via a network.

■ In Part B of the figure, a single computer has more than one processor, and dif-
ferent processors separate the execution of the client application from Oracle.

Note: This chapter applies to environments with one database on
one server. In a distributed database, one server (Oracle) may need to
access a database on another server. See Chapter 30, “Distributed
Databases”, for more information about clients and servers in dis-
tributed databases.
29-2 Oracle8 Concepts

Distributed Processing
Figure 29–1 The Client/Server Architecture and Distributed Processing

In the networked example (Part A), the server and clients communicate via Net8,
Oracle’s network interface. See “Net8” on page 29-5 for more information.

NetworkA

B

client
client

Database Server

Database Server

Client Client
 Distributed Processing 29-3

Distributed Processing
Oracle client/server architecture in a distributed processing environment provides
the following benefits:

■ Client applications are not responsible for performing any data processing.
Rather, they request input from users, request data from the server, and then
analyze and present this data using the display capabilities of the client work-
station or the terminal (for example, using graphics or spreadsheets).

■ Client applications are not dependent on the physical location of the data. If the
data is moved or distributed to other database servers, the application contin-
ues to function with little or no modification.

■ Oracle exploits the multitasking and shared-memory facilities of its underlying
operating system. As a result, it delivers the highest possible degree of concur-
rency, data integrity, and performance to its client applications.

■ Client workstations or terminals can be optimized for the presentation of data
(for example, by providing graphics and mouse support) and the server can be
optimized for the processing and storage of data (for example, by having large
amounts of memory and disk space).

■ In networked environments, you can use inexpensive client workstations to
access the remote data of the server effectively.

■ If necessary, Oracle can be scaled as your system grows. You can add multiple
servers to distribute the database processing load throughout the network (hori-
zontally scaled), or you can move Oracle to a minicomputer or mainframe, to
take advantage of a larger system’s performance (vertically scaled). In either
case, all data and applications are maintained with little or no modification,
since Oracle is portable between systems.

■ In networked environments, shared data is stored on the servers, rather than
on all computers in the system. This makes it easier and more efficient to man-
age concurrent access.

■ In networked environments, client applications submit database requests to the
server using SQL statements. Once received, the SQL statement is processed by
the server, and the results are returned to the client application. Network traffic
is kept to a minimum because only the requests and the results are shipped
over the network.
29-4 Oracle8 Concepts

Net8
Net8
Net8 is the Oracle network interface that allows Oracle tools running on network
workstations and servers to access, modify, share, and store data on other servers.
Net8 is considered part of the program interface in network communications. See
Chapter 7, “Process Structure”, for more information about the program interface.

Net8 uses the communication protocols or application programmatic interfaces
(APIs) supported by a wide range of networks to provide a distributed database
and distributed processing for Oracle.

■ A communication protocol is a set of standards, implemented in software, that
govern the transmission of data across a network.

■ An API is a set of subroutines that provide, in the case of networks, a means
to establish remote process-to-process communication via a communication
protocol.

Communication protocols define the way that data is transmitted and received on a
network. In a networked environment, an Oracle server communicates with client
workstations and other Oracle servers using Net8. Net8 supports communications
on all major network protocols, ranging from those supported by PC LANs to those
used by the largest mainframe computer systems.

Without the use of Net8, an application developer must manually code all commu-
nications in an application that operates in a networked distributed processing
environment. If the network hardware, topology, or protocol changes, the applica-
tion has to be modified accordingly.

However, by using Net8, the application developer does not have to be concerned
with supporting network communications in a database application. If the underly-
ing protocol changes, the database administrator makes some minor changes, while
the application requires no modifications and will continue to function.

How Net8 Works
Net8 drivers provide an interface between Oracle processes running on the data-
base server and the user processes of Oracle tools running on other computers of
the network.

The Net8 drivers take SQL statements from the interface of the Oracle tools and
package them for transmission to Oracle via one of the supported industry-stan-
dard higher level protocols or programmatic interfaces. The drivers also take
replies from Oracle and package them for transmission to the tools via the same
 Distributed Processing 29-5

Net8
higher level communications mechanism. This is all done independently of the net-
work operating system.

Additional Information: Depending on the operating system that
executes Oracle, the Net8 software of the database server may
include the driver software and start an additional Oracle back-
ground process; see your Oracle operating system-specific docu-
mentation for details.

Refer to the Oracle Net8 Administrator’s Guide for additional infor-
mation on Net8.
29-6 Oracle8 Concepts

 Distributed Dat
30

Distributed Databases

Good sense is of all things in the world the most equally distributed, for every-
body thinks he is so well supplied with it, that even the most difficult to please
in all other matters never desire more of it than they already possess.

René Descartes: Le Discours de la Methode

This chapter describes the basic concepts and terminology of Oracle’s distributed
database architecture. The chapter includes:

■ Oracle’s Distributed Database Architecture

■ Heterogeneous Distributed Databases

■ Developing Distributed Database Applications

■ Administering an Oracle Distributed Database System

■ National Language Support
abases 30-1

Oracle’s Distributed Database Architecture
Oracle’s Distributed Database Architecture
A distributed database is a set of databases stored on multiple computers that typi-
cally appears to applications as a single database. Consequently, an application can
simultaneously access and modify the data in several databases in a network. Each
Oracle database in the system is controlled by its local Oracle server but cooperates
to maintain the consistency of the global distributed database.

Figure 30–1 illustrates a representative Oracle distributed database system.

Clients and Servers
A database server is the Oracle software managing a database, and a client is an
application that requests information from a server. Each computer in a system is a
node. A node in a distributed database system act as a client, a server, or both,
depending on the situation. For example, in Figure 30–1, the computer that man-
ages the HQ database is acting as a database server when a statement is issued
against its local data (for example, the second statement in each transaction issues a
query against the local DEPT table), and is acting as a client when it issues a state-
ment against remote data (for example, the first statement in each transaction is
issued against the remote table EMP in the SALES database).

Direct and Indirect Connections
A client can connect directly or indirectly to a database server. In Figure 30–1, when
the client application issues the first and third statements for each transaction, the
client is connected directly to the intermediate HQ database and indirectly to the
SALES database that contains the remote data.
30-2 Oracle8 Concepts

Oracle’s Distributed Database Architecture
Figure 30–1 An Oracle Distributed Database System

TRANSACTION

Network

Application

Database
Server

Database
Server

DEPT Table EMP Table

TRANSACTION

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

.

.

.

HQ
Database

Sales
Database

CONNECT TO...
IDENTIFY BY ...

Database Link

Net8Net8
 Distributed Databases 30-3

Oracle’s Distributed Database Architecture
The Network
To link the individual databases of a distributed database system, a network is nec-
essary. The following sections explain more about network issues in an Oracle dis-
tributed database system.

Net8
All Oracle databases in a distributed database system use Oracle’s networking soft-
ware, Net8, to facilitate inter-database communication across a network. Just as
Net8 connects clients and servers that operate on different computers of a network,
it also allows database servers to communicate across networks to support remote
and distributed transactions in a distributed database.

Net8 makes transparent the connectivity that is necessary to transmit SQL requests
and receive data for applications that use the system. Net8 takes SQL statements
from a client and packages them for transmission to an Oracle server over a sup-
ported industry-standard communication protocol or programmatic interfaces.
Net8 also takes replies from a server and packages them for transmission back to
the appropriate client. Net8 performs all processing independent of an underlying
network operating system.

Oracle Names
Optionally, an Oracle network can use Oracle Names to provide the system with a
global directory service. When an Oracle network supports a distributed database
system, you can use Oracle Names servers as a central repositories of information
about each database in the system to ease the configuration of distributed database
access.

Databases and Database Links
Each database in a distributed database is distinct from all other databases in the
system and has its own global database name. Oracle forms a database’s global data-
base name by prefixing the database’s network domain with the individual data-
base’s name.

For example, Figure 30–2 illustrates a representative hierarchical arrangement of
databases throughout a network.

Additional Information: See the Oracle Net8 Administrator’s Guide
for more information about Net8 and its features.
30-4 Oracle8 Concepts

Oracle’s Distributed Database Architecture
Figure 30–2 Network Directories and Global Database Names

While several databases can have the same individual name, each database must
have a unique global database name.

For example, the network domains US.AMERICAS.ACME_AUTO.COM and
UK.EUROPE.ACME_AUTO.COM in Figure 30–2 each contain a SALES database:

SALES.US.AMERICAS.ACME_AUTO.COM

SALES.UK.EUROPE.ACME_AUTO.COM

Other Non–Commercial
Companies Organizations

COM ORGEDU

HUMAN_RESOURCES.EMP

DIVISION1 DIVISION2 DIVISION3

ACME_TOOLS

ASIA AMERICAS EUROPE

ACME_AUTO

JAPAN US MEXICO UK GERMANY

HUMAN_RESOURCES.EMP

Educational
Institutions

SalesSalesSalesSalesHQSales

MFTGSalesFinanceHQ
 Distributed Databases 30-5

Oracle’s Distributed Database Architecture
Database Links
To facilitate application requests in a distributed database system, Oracle uses data-
base links. A database link defines a one-way communication path from an Oracle
database to another database.

Database links are essentially transparent to the users of an Oracle distributed data-
base system, because the name of a database link is the same as the global name of
the database to which the link points. For example, the following SQL statement
creates a database link in the local database that describes a path to the remote
SALES.US.AMERICAS.ACME_AUTO.COM database.

CREATE DATABASE LINK sales.us.americas.acme_auto.com ... ;

After creating a database link, applications connected to the local database can
access data in the remote SALES.US.AMERICAS.ACME_AUTO.COM database.
The next section explains how applications can reference remote schema objects in
a distributed database and includes examples of how SQL statements use database
links.

Schema Object Name Resolution
To resolve application references to schema objects (a process called name resolu-
tion) Oracle forms object names using a hierarchical approach. For example, within
a single database, Oracle guarantees that each schema has a unique name, and that
within a schema, each object has a unique name. As a result, a schema object’s
name is always unique within the database. Furthermore, Oracle can easily resolve
application references to a schema object’s local name.

In a distributed database, a schema object such as a table is accessible to all applica-
tions in the system. Oracle simply extends the hierarchical naming model with glo-
bal database names to effectively create global object names and resolve references to
the schema objects in a distributed database system. For example, a query can refer-
ence a remote table by specifying its fully qualified name, including the database in
which it resides.

SELECT * FROM scott.emp@sales.us.americas.acme_auto.com;

To complete the request, the local database server implicitly uses a database link
that connects to the remote SALES database.

Additional Information: Oracle supports several different types of
database links. See Oracle8 Distributed Database Systems for more
information.
30-6 Oracle8 Concepts

Oracle’s Distributed Database Architecture
Connecting Between Oracle Server Versions
An Oracle distributed database system can incorporate Oracle databases of differ-
ent versions. All supported releases of Oracle can participate in a distributed data-
base system. However, the applications that work with the distributed database
must understand the functionality that is available at each node in the system. For
example, a distributed database application cannot expect an Oracle7 database to
understand the object SQL extensions that are available with Oracle8.

Distributed Databases and Distributed Processing
The terms ”distributed database” and “distributed processing” are closely related,
but have very distinct meanings.

Oracle distributed database systems employ a distributed processing architecture
to function. For example, an Oracle server acts as a client when it requests data that
another Oracle server manages.

Distributed Databases and Database Replication
The terms “distributed database” and “database replication” are also closely
related, yet different. In a pure distributed database, the system manages a single
copy of all data and supporting database objects. Distributed database applications
typically use distributed transactions to access both local and remote data and mod-
ify the global database in real-time.

Distributed Database A distributed database is a set of databases stored on
multiple computers that appears to applications as a
single database.

Distributed Processing Distributed processing occurs when an application sys-
tem distributes its tasks among different computers in
a network. For example, a database application typi-
cally distributes front-end presentation tasks to client
PCs or NCs and allows a back-end database server to
manage shared access to a database. Consequently, a
distributed database application processing system is
more commonly referred to as a “client-server” data-
base application system.

Note: This chapter discusses pure distributed databases. See
Chapter 31, “Database Replication” for a discussion of replication.
 Distributed Databases 30-7

Heterogeneous Distributed Databases
Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system. While replication relies on
distributed database technology to function, database replication can offer applica-
tions benefits that are not possible within a pure distributed database environment.
Most commonly, replication is useful to improve the performance and protect the
availability of applications because alternate data access options exist. For example,
an application might normally access a local database rather than a remote server
to minimize network traffic and achieve maximum performance. Furthermore, the
application can continue to function if the local server experiences a failure, but
other servers with replicated data remain accessible.

Heterogeneous Distributed Databases
A heterogeneous distributed database is a distributed database in which at least one of
the databases is a non-Oracle system. Access to non-Oracle systems from an Oracle
server is provided by Oracle Open Gateways. The Oracle server, together with the
gateway, can provide full heterogeneity transparency to the application. That is, the
application doesn’t have to be aware that a non-Oracle system is accessed.

Database links are used between the Oracle server and the non-Oracle system to
access the data in the non-Oracle system, or to execute a remote procedure in the
non-Oracle system. By integrating the transactional system of the non-Oracle sys-
tem with the Oracle server, the integrity of the data can be guaranteed.

Transparent SQL Access
The application just issues Oracle SQL statements against the local Oracle server.
The SQL statement can refer to data in a remote non-Oracle system, just as if it
were a remote Oracle system. The Oracle server, together with the gateway, will
perform the necessary translations to access the non-Oracle system in its own SQL
dialect.

Procedural Access
Some non-Oracle systems need to be accessed procedurally. The application just
issues a PL/SQL remote procedure call, and the Oracle server, together with the
gateway, will perform translations to execute procedures or functions in the remote
non-Oracle system. For example, the remote procedure could interface with a mes-
saging system and put messages in the non-Oracle messaging system. If the mes-
saging system has transactional support, the Oracle server together with the

Additional Information: See Oracle8 Replication for more informa-
tion about Oracle’s replication features.
30-8 Oracle8 Concepts

Heterogeneous Distributed Databases
gateway, could perform operations in the messaging system in a larger Oracle dis-
tributed transaction, guaranteeing that either all changes (both in the messaging
system and in the Oracle server) are committed or rolled back.

Gateway Features
In summary, features of Oracle Open Gateways include, but are not limited to:

■ Distributed Transactions. A transaction can span both Oracle and non-Oracle sys-
tems, while still guaranteeing, through Oracle’s two phase commit mechanism,
that changes are either all committed or all rolled back.

■ Transparent SQL access. Integrate data from non-Oracle systems into the Oracle
environment as if the data is stored in one single, local database. SQL state-
ments issued by the application are transparently transformed into SQL state-
ment understood by the non-Oracle system.

■ Procedural Access. Procedural systems, like messaging and queuing systems, are
accessed from an Oracle server using PL/SQL remote procedure calls.

■ Data Dictionary translations. To make the non-Oracle system appear as another
Oracle server, SQL statements containing references to Oracle's data dictionary
tables are transformed into SQL statements containing references to a non-Ora-
cle system's data dictionary tables.

■ Pass-through SQL. Optionally, application programmers can directly access a
non-Oracle system from an Oracle application using the non-Oracle system's
SQL dialect.

■ Accessing stored procedures. Stored procedures in SQL-based non-Oracle systems
are accessed as if they were PL/SQL remote procedures.

■ National Language Support. Gateways supports multibyte character sets, and
will translate character sets between a non-Oracle system and the Oracle server.

■ Global query optimization. Cardinality and indexes on tables at the non-Oracle
system are taken into account by the Oracle query optimizer and decomposed
to produce efficient SQL statements to be executed at the non-Oracle system.

Additional Information: Not all features listed above might apply
to your particular gateway. See your gateway documentation for
the supported features.
 Distributed Databases 30-9

Developing Distributed Database Applications
Version 8 Gateways
Version 8 Gateways are tightly integrated with the Oracle server, by using the
Oracle feature Heterogeneous Services. Heterogeneous Services is integrated into
the Oracle server, and therefore, administration tasks for heterogeneous access are
now generic across the different gateways, and integrated into the Oracle server.

Version 4 Gateways
Version 4 gateways are supported against Oracle7 and Oracle8 servers.

Developing Distributed Database Applications
When you build applications on top of a distributed database system, there are sev-
eral issues to consider. The following sections explain how applications access data
in a distributed database.

Remote and Distributed SQL Statements
A remote query is a query that selects information from one or more remote tables,
all of which reside at the same remote node. For example:

SELECT * FROM scott.dept@sales.us.americas.acme_auto.com;

A remote update is an update that modifies data in one or more tables, all of which
are located at the same remote node. For example:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = ’NEW YORK’
 WHERE deptno = 10;

A distributed query retrieves information from two or more nodes. For example:

Additional Information: See Oracle8 Replication for more informa-
tion about Heterogeneous Services.

Additional Information: See Oracle Open Gateway Technology, Con-
cepts and Administration Guide Version 4 for gateway information.

Note: A remote update may include a subquery that retrieves
data from one or more remote nodes, but because the update hap-
pens at only a single remote node, the statement is classified as a
remote update.
30-10 Oracle8 Concepts

Developing Distributed Database Applications
SELECT ename, dname
 FROM scott.emp e, scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

A distributed update modifies data on two or more nodes. A distributed update is
possible using a PL/SQL subprogram unit, such as a procedure or trigger, that
includes two or more remote updates that access data on different nodes. For exam-
ple:

BEGIN
 UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
 UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
END;

Statements in the program are sent to the remote nodes, and the execution of it suc-
ceeds or fails as a unit.

Remote Procedure Calls (RPCs)
Developers can code PL/SQL packages and procedures to support applications
that work with a distributed database. Applications can make local procedure calls
to perform work at the local database and remote procedure calls (RPCs) to perform
work at a remote database. When a program calls a remote procedure, the local
server passes all procedure parameters to the remote server in the call. For example:

BEGIN
 emp_mgmt.del_emp@sales.us.americas.acme_auto.com(1257);
END;

When developing packages and procedures for distributed database systems, devel-
opers must code with an understanding of what program units should do at
remote locations, and how to return the results to a calling application.

Remote and Distributed Transactions
A remote transaction contains one or more remote statements, all of which reference
the same remote node. For example:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
 Distributed Databases 30-11

Developing Distributed Database Applications
UPDATE scott.emp@sales.us.americas.acme_auto.com
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

A distributed transaction contains one or more statements that, individually or as a
group, update data on two or more distinct nodes of a distributed database. For
example:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

Two-Phase Commit Mechanism
A DBMS must guarantee that all statements in a transaction, distributed or non-dis-
tributed, either commit or rollback as a unit, so that if the transaction is designed
properly, the data in the logical database is always consistent. The effects of an
ongoing transaction should be invisible to all other transactions at all nodes; this
should be true for transactions that include any type of operation, including que-
ries, updates, or remote procedure calls.

The general mechanisms of transaction control in a non-distributed database are
discussed in Chapter 15, “Transaction Management”. In a distributed database,
Oracle must coordinate transaction control with the same characteristics over a net-
work and maintain data consistency, even if a network or system failure occurs.

Oracle’s two-phase commit mechanism guarantees that all database servers partici-
pating in a distributed transaction either all commit or all roll back the statements
in the transaction. A two-phase commit mechanism also protects implicit DML
operations performed by integrity constraints, remote procedure calls, and triggers.

Note: If all statements of a transaction reference only a single
remote node, the transaction is remote, not distributed.

Additional Information: Oracle8 Distributed Database Systems has
more information about Oracle’s two-phase commit mechanism.
30-12 Oracle8 Concepts

Developing Distributed Database Applications
Transparency in a Distributed Database System
With minimal effort, you can make the functionality of an Oracle distributed data-
base system transparent to users that work with the system. The goal of transpar-
ency is to make a distributed database system appear as though it is a single Oracle
database. Consequently, the system does not burden developers and users of the
system with complexities that would otherwise make distributed database applica-
tion development challenging and detract from user productivity.

The following sections explain more about transparency in a distributed database
system.

Location Transparency
An Oracle distributed database system has features that allow application develop-
ers and administrators to hide the physical location of database objects from appli-
cations and users. Location transparency exists when a user can universally refer to a
database object such as a table, regardless of the node to which an application con-
nects. Location transparency has several benefits, including:

■ Access to remote data is simple, because database users do not need to know
the physical location of database objects.

■ Administrators can move database objects with no impact on end-users or exist-
ing database applications.

Most typically, administrators and developers use synonyms to establish location
transparency for the tables and supporting objects in an application schema. For
example, the following statements create synonyms in a database for tables in
another, remote database.

CREATE PUBLIC SYNONYM emp
 FOR scott.emp@sales.us.americas.acme_auto.com
CREATE PUBLIC SYNONYM dept
 FOR scott.dept@sales.us.americas.acme_auto.com

Now, rather than access the remote tables with a query such as:

SELECT ename, dname
 FROM scott.emp@sales.us.americas.acme_auto.com e,
 scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

an application can issue a much simpler query that does not have to account for the
location of the remote tables.
 Distributed Databases 30-13

Developing Distributed Database Applications
SELECT ename, dname
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

In addition to synonyms, developers can also use views and stored procedures to
establish location transparency for applications that work in a distributed database
system.

Statement and Transaction Transparency
Oracle’s distributed database architecture also provides query, update, and transac-
tion transparency. For example, standard SQL commands such as SELECT, INSERT,
UPDATE, and DELETE work just as they do in a non-distributed database environ-
ment. Additionally, applications control transactions using the standard SQL com-
mands COMMIT, SAVEPOINT, and ROLLBACK — there is no requirement for
complex programming or other special operations to provide distributed transac-
tion control.

■ The statements in a single transaction can reference any number of local or
remote tables.

■ Oracle guarantees that all nodes involved in a distributed transaction take the
same action: they either all commit or all roll back the transaction.

■ If a network or system failure occurs during the commit of a distributed trans-
action, the transaction is automatically and transparently resolved globally;
that is, when the network or system is restored, the nodes either all commit or
all roll back the transaction.

Internal Operations Each committed transaction has an associated system change num-
ber (SCN) to uniquely identify the changes made by the statements within that
transaction. In a distributed database, the SCNs of communicating nodes are coor-
dinated when:

■ A connection is established using the path described by one or more database
links.

■ A distributed SQL statement is executed.

■ A distributed transaction is committed.

Among other benefits, the coordination of SCNs among the nodes of a distributed
database system allows global distributed read-consistency at both the statement
and transaction level. If necessary, global distributed time-based recovery can also
be completed.
30-14 Oracle8 Concepts

Administering an Oracle Distributed Database System
Replication Transparency
Oracle also provides many features to transparently replicate data among the
nodes of the system.

Administering an Oracle Distributed Database System
Just as there are unique issues to consider when developing applications for an Ora-
cle distributed database system, there are special issues to understand for distrib-
uted database administration. The following sections explain the some special
topics for managing databases in an Oracle distributed database system.

Site Autonomy
Site autonomy means that each server participating in a distributed database is
administered independently from all other databases, as though each database
operates as a non-distributed database. Although several databases can work
together, each database is a distinct, separate repository of data that you manage
individually. Some of the benefits of site autonomy in an Oracle distributed data-
base include:

■ Nodes of the system can mirror the logical organization of companies or coop-
erating organizations that need to maintain an “arms length” relationship.

■ Local database administrators control corresponding local data. Therefore, each
database administrator’s domain of responsibility is smaller and more manage-
able.

■ Independent failures are less likely to disrupt other nodes of the distributed
database. The global Oracle database is partially available as long as one data-
base and the network are available; no single database failure need halt all glo-
bal operations or be a performance bottleneck.

■ Administrators can recovery from isolated system failures independent of
other nodes in the system.

■ A data dictionary exists for each local database — a global catalog is not neces-
sary to access local data.

■ Nodes can upgrade software independently.

Although Oracle allows you to manage each database in a distributed database sys-
tem independently, that is not to say that you should ignore the global require-

Additional Information: See Oracle8 Replication for more informa-
tion about Oracle’s replication features.
 Distributed Databases 30-15

Administering an Oracle Distributed Database System
ments of the system. For example, additional user accounts might be necessary in
each database are necessary to support the links that you create to facilitate server-
to-server connections. The following sections explain more about these particular
topics and demonstrate the need for a global perspective of the entire distributed
database environment when managing individual nodes in the system.

Distributed Database Security
Oracle supports all of the security features that are available with a non-distributed
database environment for distributed database systems, including:

■ password or external service authentication for users and roles

■ login packet encryption for client-to-server and server-to-server connections

The following sections explain some additional topics to consider when configur-
ing an Oracle distributed database system.

Supporting User Accounts and Roles
In a distributed database system, you must carefully plan the user accounts and
roles that are necessary to support applications using the system.

■ The user accounts necessary to establish server-to-server connections must be
available in all databases of the distributed database system.

■ The roles necessary to make available application privileges to distributed data-
base application users must be present in all databases of the distributed data-
base system.

As you create the database links for the nodes in a distributed database system,
determine what user accounts and roles each site needs to support server-to-server
connections that use the links.

Global Users and Roles
In a distributed environment, users typically require access to many network ser-
vices. When it’s necessary to configure separate authentications for each user to
access each network service, security administration can become unwieldy, espe-
cially for large systems. The use of a global authentication service is a common tech-
nique for simplifying security management for distributed environments.

Additional Information: See Oracle8 Distributed Database Systems
for more information about the user accounts that must be avail-
able to support different types of database links in the system.
30-16 Oracle8 Concepts

Administering an Oracle Distributed Database System
In an Oracle client/server or distributed database environment, you have two
options to support global authentication for users and roles:

■ Oracle Security Server is a product that supports centralized authentication
and distributed authentication in an Oracle network. Oracle Security Server is a
standard option of Oracle.

■ When global database user and role authentication must work within the
framework of a non-Oracle authentication service (for example, DCE), an Ora-
cle distributed database environment can use Net8’s Advanced Networking
Option. The Net8 Advanced Networking Option is an optional product that
bundles a number of features that you can use to enhance Net8 and the secu-
rity of an Oracle distributed database system.

Data Encryption
The Net8 Advanced Networking Option also enables Net8 and related products to
use network data encryption and checksumming so that data cannot be read or
altered. It protects data from unauthorized viewing by using the RSA Data Security
RC4 or the Data Encryption Standard (DES) encryption algorithm. To ensure that
data has not been modified, deleted, or replayed during transmission, the security
services of the Advanced Networking Option can generate a cryptographically
secure message digest and include it with each packet sent across the network.

Tools for Administering Oracle Distributed Databases
The database administrator has several choices for tools to use when managing an
Oracle distributed database system:

■ Oracle Enterprise Manager

■ third-party administration tools

■ SNMP support

Attention: The Advanced Networking Option is available only if
you have purchased Oracle8 Enterprise Edition.

Additional Information: See the Oracle Net8 Administrator’s Guide
for more information about these and other features of the
Advanced Networking Option. Also see Getting to Know Oracle8
and the Oracle8 Enterprise Edition for information about the features
and options that are available with Oracle8 Enterprise Edition.
 Distributed Databases 30-17

Administering an Oracle Distributed Database System
Oracle Enterprise Manager
Oracle Enterprise Manager is Oracle’s database administration tool. The graphical
component of Oracle Enterprise Manager allows you to perform database adminis-
tration tasks with the convenience of a graphical user interface (GUI). The line
mode component of Oracle Enterprise Manager provides a line-mode interface.

Oracle Enterprise Manager provides administrative functionality via an easy-to-use
interface. You can use Oracle Enterprise Manager to:

■ Perform traditional administrative tasks, such as database startup, shutdown,
backup, and recovery. Rather than manually entering the SQL commands to
perform these tasks, you can use Oracle Enterprise Manager’s graphical inter-
face to execute the commands quickly and conveniently by pointing and click-
ing with the mouse.

■ Concurrently perform multiple tasks. Because you can open multiple windows
simultaneously in Oracle Enterprise Manager, you can perform multiple admin-
istrative and non-administrative tasks concurrently.

■ Administer multiple databases. You can use Oracle Enterprise Manager to
administer a single database or to simultaneously administer multiple data-
bases.

■ Centralize database administration tasks. You can administer both local and
remote databases running on any Oracle platform in any location worldwide.
In addition, these Oracle platforms can be connected by any network proto-
col(s) supported by Net8.

■ Dynamically execute SQL, PL/SQL, and Oracle Enterprise Manager com-
mands. You can use Oracle Enterprise Manager to enter, edit, and execute state-
ments. Oracle Enterprise Manager also maintains a history of statements
executed. Thus, you can re-execute statements without retyping them, a partic-
ularly useful feature if you need to execute lengthy statements repeatedly in a
distributed database system.

■ Perform administrative tasks using Oracle Enterprise Manager’s line-mode
interface when a graphical user interface is unavailable or undesirable.

Third-Party Administration Tools
Currently more than 60 companies produce more than 150 products that help man-
age Oracle databases and networks, providing a truly open environment.
30-18 Oracle8 Concepts

National Language Support
SNMP Support
Besides its network administration capabilities, Oracle Simple Network Management
Protocol (SNMP) support allows an Oracle server to be located and queried by any
SNMP-based network management system. SNMP is the accepted standard under-
lying many popular network management systems such as:

■ HP’s OpenView

■ Digital’s POLYCENTER Manager on NetView

■ IBM’s NetView/6000

■ Novell’s NetWare Management System

■ SunSoft’s SunNet Manager

National Language Support
Oracle supports client/server environments where clients and servers use different
character sets. The character set used by a client is defined by the value of the
NLS_LANG parameter for the client session. The character set used by a server is
its database character set. Data conversion is done automatically between these
character sets if they are different.

Additional Information: See the Oracle SNMP Support Reference
Guide.

Additional Information: See Oracle8 Reference for more informa-
tion about National Language Support features.
 Distributed Databases 30-19

National Language Support
30-20 Oracle8 Concepts

 Database Rep
31

Database Replication

Lady, you are the cruel’st she alive,
If you will lead these graces to the grave
And leave the world no copy.

Shakespeare: Twelfth-Night

This chapter explains the basic concepts and terminology related to the Oracle repli-
cation features.

■ What Is Replication?

■ Basic Replication Concepts

■ Advanced Replication Concepts

Attention: The Advanced Replication features described in
this chapter are available only if you have purchased Oracle8
Enterprise Edition.

Additional Information: Oracle8 Replication contains detailed infor-
mation about database replication.
lication 31-1

What Is Replication?
What Is Replication?
Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system. Replication can improve the
performance and protect the availability of applications because alternate data
access options exist. For example, an application might normally access a local data-
base rather than a remote server to minimize network traffic and achieve maxi-
mum performance. Furthermore, the application can continue to function if the
local server experiences a failure, but other servers with replicated data remain
accessible.

Oracle supports two different forms of replication: basic and advanced replication.

Basic Replication
With basic replication, data replicas provide read-only access to the table data that
originates from a primary (master) site. Applications can query data from local
data replicas to avoid network access regardless of network availability. However,
applications throughout the system must access data at the primary site when
updates are necessary.

Figure 31–1 illustrates basic replication.

Oracle can support basic, read-only replication environments using read-only table
snapshots. To learn more about basic replication and read-only snapshots, see “Basic
Replication Concepts” on page 31-4.
31-2 Oracle8 Concepts

What Is Replication?
Figure 31–1 Basic, Read-Only Replication

Advanced (Symmetric) Replication
The Oracle advanced replication features extend the capabilities of basic read-only
replication by allowing applications to update table replicas throughout a repli-
cated database system. With advanced replication, data replicas anywhere in the
system can provide both read and update access to a table’s data. Participating
Oracle database servers automatically work to converge the data of all table repli-
cas, and ensure global transaction consistency and data integrity.

Figure 31–2 illustrates advanced replication.

Oracle can support the requirements of advanced replication environments using
several configurations. To learn more about advanced replication systems, see
“Advanced Replication Concepts” on page 31-11.

Replicate table data

Network

Database

Table Replica
(read-only)

Master
Database

Master Table
(updatable)

Client Applications

Remote Update

Local
Query
 Database Replication 31-3

Basic Replication Concepts
Figure 31–2 Advanced Replication.

Basic Replication Concepts
Basic replication environments support applications that require read-only access
to the table data that originates from a primary site. The following sections explain
the fundamental concepts of basic replication environments.

■ Uses of Basic Replication

■ Read-Only Table Snapshots

■ Snapshot Refreshes

Uses of Basic Replication
Basic, read-only data replication is useful for several types of applications.

Information Distribution
Basic replication is useful for information distribution. For example, consider the
operation of a large consumer department store chain. With this type of business, it

Replicate table data

Network

Database

Table Replica

Database

Table Replica

Client Applications

Local
Query or
Update

Client Applications

Local
Query or
Update
31-4 Oracle8 Concepts

Basic Replication Concepts
is critical to ensure that product price information is always available, relatively
current, and consistent at all retail outlets. To achieve these goals, each retail store
can have its own product price data that it refreshes nightly from a primary price
table at corporate headquarters.

Figure 31–3 Information Distribution

Information Off-Loading
Basic replication is useful as a way to replicate entire databases or off-load informa-
tion. For example, when the performance of high-volume transaction processing
system is critical, it can be advantageous to maintain a duplicate database to isolate
the demanding queries of decision support applications.

Figure 31–4 Information Off-Loading

HQ
Database

Retail
Outlet

Database

Retail
Outlet

Database

Retail
Outlet

Database

Prices

Prices PricesPrices

OLTP
Database

DSS
Database
 Database Replication 31-5

Basic Replication Concepts
Information Transport
Basic replication can be useful as an information transport mechanism. For exam-
ple, basic replication can periodically move data from a production transaction pro-
cessing database to a data warehouse.

Read-Only Table Snapshots
A read-only table snapshot is a local copy of table data that originates from one or
more remote master tables. An application can query the data in a read-only table
snapshot, but cannot insert, update, or delete rows in the snapshot.

Figure 31–5 and the sections that follow explain more about read-only table snap-
shots and basic replication.

Figure 31–5 Read-only Snapshots, Master Tables, and Snapshot Logs

Network

Master
Database

Master TableSnapshot
Log

Transaction
Consistent
Snapshot

Database

SELECT..
FROM..;
31-6 Oracle8 Concepts

Basic Replication Concepts
Read-Only Snapshot Architecture
Oracle supports basic data replication with its table snapshot mechanism. The fol-
lowing sections explain the architecture of simple read-only table snapshots.

A Snapshot’s Defining Query The logical data structure of a table snapshot is defined
by a query that references data in one or more remote master tables. A snapshot's
defining query determines what data the snapshot will contain.

A snapshot’s defining query should be such that each row in the snapshot corre-
sponds directly to a row or a part of a row in a single master table. Specifically, the
defining query of a snapshot should not contain a distinct or aggregate function, a
GROUP BY or CONNECT BY clause, join, restricted types of subqueries, or a set
operation. The following example shows a simple table snapshot definition.

CREATE SNAPSHOT sales.customers AS
 SELECT * FROM sales.customers@hq.acme.com

A snapshot’s defining query can include restricted types of subqueries that refer-
ence multiple tables to filter rows from the snapshot’s master table. A subquery snap-
shot can be used to create snapshots that “walk up” the many-to-one references
from child to parent tables that may involve multiple levels. The following example
creates a simple subquery snapshot.

CREATE SNAPSHOT sales.orders AS
 SELECT * FROM sales.orders@hq.acme.com o
 WHERE EXISTS
 (SELECT c_id FROM sales.customers@hq.acme.com c
 WHERE o.c_id = c.c_id AND zip = 19555);

Note: Oracle offers other basic replication features such as com-
plex snapshots and ROWID snapshots for unique application
requirements. To learn more about these special configurations, see
“Other Basic Replication Options” on page 31-10.

Note: In all cases, the defining query of the snapshot must refer-
ence all of the primary key columns in the master table.
 Database Replication 31-7

Basic Replication Concepts
Snapshot Refreshes
The data that a snapshot presents does not necessarily match the current data of its
master tables. A table snapshot is a transaction-consistent reflection of its master
data as that data existed at a specific point in time. To keep a snapshot's data rela-
tively current with the data of its master, Oracle must periodically refresh the snap-
shot. A snapshot refresh is an efficient batch operation that makes that snapshot
reflect a more current state of its master.

You must decide how and when it is appropriate to refresh each snapshot to make
it a more current representation of its master data. For example, snapshots stem-
ming from master tables that applications often update usually require frequent
refreshes. In contrast, snapshots that depend on relatively static master tables usu-
ally require infrequent refreshes. In summary, analyze application characteristics
and requirements to help determine appropriate snapshot refresh intervals.

To refresh snapshots, Oracle supports different types of refreshes (complete and
fast), snapshot refresh groups, and manual and automatic refreshes.

Complete and Fast Refreshes
Oracle can refresh an individual snapshot using either a complete refresh or a fast
refresh.

Complete Refreshes To perform a complete refresh of a snapshot, the server that man-
ages the snapshot executes the snapshot's defining query. The result set of the
query replaces the existing snapshot data to refresh the snapshot. Oracle can per-
form a complete refresh for any snapshot.

Fast Refreshes To perform a fast refresh, the server that manages the snapshot first
identifies the changes that took place in the master since the most recent refresh of
the snapshot and then applies them to the snapshot. Fast refreshes are more effi-
cient than complete refreshes when there are few changes to the master because
participating servers and networks must replicate less data. Fast refreshes are avail-
able for snapshots only when the master table has a snapshot log.

Snapshot Logs
When a master table corresponds to one or more snapshots, create a snapshot log
for the table so that fast refreshes of the snapshots are an option. A master table's
snapshot log keeps track of fast refresh data for all corresponding snapshots — only
one snapshot log is possible per master table. When a server performs a fast refresh
for a snapshot, it uses the data in its master table's snapshot log to refresh the snap-
31-8 Oracle8 Concepts

Basic Replication Concepts
shot efficiently. Oracle automatically purges specific refresh data from a snapshot
log after all snapshots perform refreshes such that the log data is no longer needed.

Snapshot Refresh Groups
To preserve referential integrity and transaction consistency among the table snap-
shots of several related master tables, Oracle organizes and refreshes each snapshot
as part of a refresh group. Oracle refreshes all snapshots in a group as a single opera-
tion. After refreshing all of the snapshots in a refresh group, the data of all snap-
shots in the group corresponds to the same transaction consistent point in time.

Automatic Snapshot Refreshes
When creating a snapshot refresh group, administrators usually configure the
group so that Oracle automatically refreshes its snapshots. Otherwise, administra-
tors would have to manually refresh the group whenever necessary.

When configuring a refresh group for automatic refreshes, it is necessary to

■ specify a refresh interval for the group

■ configure the server that manages the snapshots with one or more SNPn back-
ground processes to wake up periodically and refresh any snapshots that are
due for refreshing

Automatic Refresh Intervals When you create a snapshot refresh group, you can spec-
ify an automatic refresh interval for the group. When setting a group's refresh inter-
val, understand the following behaviors:

■ The dates or date expressions that specify the refresh interval must evaluate to
a future point in time.

■ The refresh interval must be greater than the length of time necessary to per-
form a refresh.

■ Relative date expressions evaluate to a point in time that is relative to the most
recent refresh date. If a network or system failure should interfere with a sched-
uled group refresh, the evaluation of a relative date expression could change
accordingly.

■ Explicit date expressions evaluate to a specific point in time, regardless of the
most recent refresh date.

Refresh Types By default, Oracle attempts to perform a fast refresh of each snapshot
in a refresh group. If, for some reason, Oracle cannot perform a fast refresh for an
 Database Replication 31-9

Basic Replication Concepts
individual snapshot (for example, when a master table has no snapshot log), the
server performs a complete refresh for the snapshot.

SNPn Background Processes Oracle’s automatic snapshot refresh facility functions by
using job queues to schedule the periodic execution internal system procedures.
Job queues require that at least one SNPn background process be running. An
SNPn background process wakes up periodically, checks the job queue, and executes
any outstanding jobs.

Manual Snapshot Refreshes
Scheduled, automatic snapshot refreshes may not always be adequate. For exam-
ple, immediately following a bulk data load into a master table, dependent snap-
shots will no longer represent the master table’s data. Rather than wait for the next
scheduled automatic group refreshes, you might want to manually refresh depen-
dent snapshot groups to immediately propagate the new rows of the master table
to associated snapshots.

Other Basic Replication Options
Oracle supports some additional basic replication features that can be useful in cer-
tain situations:

■ Complex Snapshots

■ ROWID Snapshots

Complex Snapshots
When the defining query of a snapshot contains a distinct or aggregate function, a
GROUP BY or CONNECT BY clause, join, restricted types of subqueries, or a set
operation, the snapshot is a complex snapshot.

The following example is a complex table snapshot definition.

CREATE SNAPSHOT scott.emp AS
 SELECT ename, dname
 FROM scott.emp@hq.acme.com a, scott.dept@hq.acme.com b
 WHERE a.deptno = b.deptno
 SORT BY dname

The primary disadvantage of a complex snapshot is that Oracle cannot perform a
fast refresh of the snapshot — Oracle can perform only complete refreshes of a com-
plex snapshot. Consequently, the use of complex snapshots can affect network per-
formance during complete snapshot refreshes.
31-10 Oracle8 Concepts

Advanced Replication Concepts
ROWID Snapshots
Primary key snapshots (discussed implicitly in earlier sections of this chapter) are the
default for Oracle. Oracle bases a primary key snapshot on the primary key of its
master table. Because of this structure, you can:

■ reorganize the master tables of a snapshot without having to complete a full
refresh of the snapshot

■ create a snapshot with a defining query that includes a restricted type of sub-
query

For backward compatibility only, Oracle also supports ROWID snapshots based on
the physical row identifiers (ROWIDs) of rows in the master table. ROWID snap-
shots should only be used for snapshots of master tables in an Oracle Release 7.3
database, and should not be used when creating new snapshots of master tables in
Oracle8 databases.

Advanced Replication Concepts
In advanced replication environments, data replicas anywhere in the system can
provide both read and update access to a table’s data.

This section explains the principal concepts of an advanced replication system,
including the following topics.

■ Uses for Advanced Replication

■ Advanced Replication Configurations

■ Replication Objects, Groups, Sites, and Catalogs

■ Oracle’s Advanced Replication Architecture

■ Replication Administrators, Propagators, and Receivers

Note: To support a ROWID snapshot, Oracle creates an addi-
tional index on the snapshot’s base table with the name
I_SNAP$_snapshotname.

Attention: The information in this section applies only to the
advanced replication feature of Oracle8 Enterprise Edition. See Get-
ting to Know Oracle8 and the Oracle8 Enterprise Edition for more infor-
mation about features available with Oracle8 Enterprise Edition.
 Database Replication 31-11

Advanced Replication Concepts
■ Replication Conflicts

■ Unique Advanced Replication Options

Uses for Advanced Replication
Advanced, symmetric data replication is useful for many types of application sys-
tems with special requirements.

Disconnected Environments
Advanced replication is useful for the deployment of transaction processing appli-
cations that operate using disconnected components. For example, consider the typ-
ical sales force automation system for a life insurance company. Each salesperson
must visit customers regularly with a laptop computer and record orders in a per-
sonal database while disconnected from the corporate computer network and cen-
tralized database system. Upon returning to the office, each salesperson must
forward all orders to a centralized, corporate database.

Failover Site
Advanced replication can be useful to protect the availability of a mission critical
database. For example, a symmetric replication system can replicate an entire data-
base to establish a failover site should the primary site become unavailable due to a
system or network outage. In contrast with Oracle's standby database feature, such
a failover site can also serve as a fully functional database to support application
access when the primary site is concurrently operational.

Distributing Application Loads
Advanced replication is useful for transaction processing applications that require
multiple points of access to database information for the purposes of distributing a
heavy application load, ensuring continuous availability, or providing more local-
ized data access.

Applications that have such requirements commonly include customer service ori-
ented applications, as shown in Figure 31–6.
31-12 Oracle8 Concepts

Advanced Replication Concepts
Figure 31–6 Advanced Replication System with Multiple Points of Update Access

Information Transport
Advanced replication can be useful as an information transport mechanism. For
example, an advanced replication system can periodically off-load data from an
update-intensive operational database to a data warehouse or data mart.

Advanced Replication Configurations
Oracle supports the requirements of advanced replication environments using mul-
timaster replication as well as snapshot sites.

Multimaster Replication
Oracle’s multimaster replication allows multiple sites, acting as equal peers, to man-
age groups of replicated database objects. Applications can update any replicated
table at any site in a multimaster configuration.

Figure 31–7 illustrates a multimaster symmetric replication system.

CS_DL

CS_SF CS_NY
 Database Replication 31-13

Advanced Replication Concepts
Figure 31–7 Multimaster Replication System

Snapshot Sites and Updatable Snapshots
Master sites in an advanced replication system can consolidate the information that
applications update at remote snapshot sites. Oracle’s symmetric replication facility
allows applications to insert, update, and delete table rows through updatable snap-
shots.

Figure 31–8 illustrates an advanced replication environment with updatable
snapshots.

Master
Site

Master
Site

Master
Site

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group
31-14 Oracle8 Concepts

Advanced Replication Concepts
Figure 31–8 Advanced Replication System with Updatable Snapshots

Updatable snapshots have the following properties.

■ Updatable snapshots are always simple, fast-refreshable table snapshots.

■ Oracle propagates the changes made through an updatable snapshot to the
snapshot’s remote master table. If necessary, the updates then cascade to all
other master sites.

■ Oracle refreshes an updatable snapshot as part of a refresh group, identical to
read-only snapshots.

■ Updatable snapshots have the same underlying objects (base table, indexes,
and views) as read-only snapshots. Additionally, Oracle creates a table
USLOG$_snapshotname to support updatable snapshots.

Hybrid Configurations
Multimaster replication and updatable snapshots can be combined in hybrid
(mixed) configurations to meet different application requirements. Mixed configura-
tions can have any number of master sites and multiple snapshot sites for each
master.

Replication

Master
Site

Snapshot
Site

Snapshot
Site

TableTableTable
TableTable

Replication
Group

Table

Subset of Replication Group

Table
TableTable

Full Copy of Replication Group
 Database Replication 31-15

Advanced Replication Concepts
For example, as shown in Figure 31–9, n-way replication between two masters can
support full-table replication between the databases that support two geographic
regions. Snapshots can be defined on the masters to replicate full tables or table sub-
sets to sites within each region.

Figure 31–9 Hybrid Configuration

Some of the key differences between updatable snapshots and replicated masters
include the following:

■ Replicated masters must contain data for the full table being replicated,
whereas snapshots can replicate subsets of master table data.

■ Multimaster replication allows you to replicate changes for each transaction as
the changes occur. Snapshot refreshes are set oriented, propagating changes
from multiple transactions in a more efficient, batch-oriented operation, but at
less frequent intervals.

■ If any conflicts occur as the result of changes being made to multiple copies of
the same data, master sites detect and resolve the conflicts.

N-Way

Snapshot
Site Replication

Group

Snapshot
Site Replication

Group

Snapshot
Site

Master
Site Replication

Group

Master
Site Replication

Group

Replication
Group
31-16 Oracle8 Concepts

Advanced Replication Concepts
Advanced Replication and the Oracle Replication Manager
Advanced replication environments that support an update-anywhere data model
can be challenging to configure and manage. To help administer advanced replica-
tion environments, Oracle provides a sophisticated management tool, Oracle Repli-
cation Manager.

Replication Objects, Groups, Sites, and Catalogs
The following sections explain the basic components of an advanced replication sys-
tem, including replication objects, groups, sites, and catalogs.

Replication Objects
A replication object is a database object that exists on multiple servers in a distrib-
uted database system. Oracle's advanced replication facility enables you to repli-
cate tables and supporting objects such as views, database triggers, packages,
indexes, and synonyms.

Replication Groups
In an advanced replication environment, Oracle manages replication objects using
replication groups. By organizing related database objects within a replication group,
it is easier to administer many objects together. Typically, you create and use a repli-
cation group to organize the schema objects necessary to support a particular data-
base application. That is not to say that replication groups and schemas must
correspond with one another — the objects in a replication group can originate
from several database schemas, and a schema can contain objects that are members
of different replication groups. The basic restriction is that a replication object can
be a member of only one group.

Replication Sites
A replication group can exist at multiple replication sites. Advanced replication envi-
ronments support two basic types of sites: master sites and snapshot sites.

■ A master site maintains a complete copy of all objects in a replication group. All
master sites in a multi-master, symmetric replication environment communi-
cate directly with one another to propagate data and schema changes in the rep-
lication group. A replication group at a master site is more specifically referred
to as a master group.

Additional Information: Oracle8 Replication contains information
and examples for using Replication Manager.
 Database Replication 31-17

Advanced Replication Concepts
■ Additionally, every replication group has one and only one master definition site.
A replication group's master definition site is a master site that serves as the
control point for managing the replication group and objects in the group.

■ A snapshot site supports simple read-only and updatable snapshots of the table
data at an associated master site. A snapshot site's table snapshots can contain
all or just a subset of the table data within a replication group, but must be sim-
ple snapshots that have a one-to-one correspondence to tables at the master
site. For example, a snapshot site may contain snapshots for only selected
tables in a replication group, and a particular snapshot might be just a selected
portion of a certain replicated table. A replication group at a snapshot site is
more specifically referred to as a snapshot group. A snapshot group can also con-
tain other replication objects.

Replication Catalog
Every master and snapshot site in an advanced replication environment has a repli-
cation catalog. A site's replication catalog is a distinct set of data dictionary tables
and views that maintain administrative information about replication objects and
replication groups at the site. Every server that participates in an advanced replica-
tion environment can automate the replication of objects in replication groups
using the information in its replication catalog.

Replication Management API and Administration Requests
To configure and manage an advanced replication environment, each participating
server uses Oracle’s replication application programming interface (API). A
server’s replication management API is a set of PL/SQL packages that encapsulate
procedures and functions that administrators can use to configure Oracle’s
advanced replication features. Oracle Replication Manager also uses the procedures
and functions of each site’s replication management API to perform work.

An administration request is a call to a procedure or function in Oracle's replication
management API. For example, when you use Replication Manager to create a new
master group, Replication Manager completes the task by making a call to the
DBMS_REPCAT.CREATE_MASTER_REPGROUP procedure. Some administration
requests generate additional replication management API calls to complete the
request.
31-18 Oracle8 Concepts

Advanced Replication Concepts
Oracle’s Advanced Replication Architecture
Oracle converges the data of typical advanced replication configurations using row-
level replication with asynchronous data propagation. The following sections
explain how these mechanisms function.

Row-Level Replication
Typical transaction processing applications modify small numbers of rows per
transaction. Such applications at work in an advanced replication environment will
usually depend on Oracle's row-level replication mechanism. With row-level replica-
tion, applications use standard DML statements to modify the data of local data rep-
licas. When transactions change local data, the server automatically captures
information about the modifications and queues corresponding deferred transac-
tions to forward local changes to remote sites.

Asynchronous (Store-and-Forward) Data Propagation
Typical advanced replication configurations that rely on row-level replication prop-
agate data level changes using asynchronous data replication. Asynchronous data rep-
lication occurs when an application updates a local replica of a table, stores
replication information in a local queue, and then forwards the replication informa-
tion to other replication sites at a later time. Consequently, asynchronous data repli-
cation is also called store-and-forward data replication.

As Figure 31–10 shows, Oracle uses its internal system of triggers, deferred transac-
tions, deferred transaction queues, and job queues to propagate data-level changes
asynchronously among master sites in an advanced replication system, as well as
from an updatable snapshot to its master table.

■ When applications work in an advanced replication environment, Oracle uses
internal triggers to capture and store information about updates to replicated
data. The internal triggers build remote procedure calls (RPCs) that will repro-
duce the data changes made at the local site to remote replication sites. The
internal triggers that support data replication are essentially components
within the Oracle server executable; therefore, Oracle can capture and store
updates to replicated data very quickly with minimal use of system resources.

Note: Oracle offers other advanced replication features such as
procedural replication and synchronous data propagation for
unique application requirements. To learn more about these spe-
cial configurations, see “Unique Advanced Replication Options”
on page 31-26.
 Database Replication 31-19

Advanced Replication Concepts
Figure 31–10 Asynchronous Data Replication Mechanisms

■ Oracle stores RPCs produced by the internal triggers in a site’s deferred transac-
tion queue for later propagation. Oracle also records information about initiat-
ing transactions so that all RPCs that make up a transaction can be propagated
and applied remotely as a transaction as well. Oracle’s advanced replication
facility implements the deferred transaction queue using Oracle’s advanced
queueing mechanism.

■ Oracle manages the propagation process using Oracle's job queue mechanism
and deferred transactions. Each server that participates in an advanced replica-
tion system has a local job queue. A server’s job queue is a database table that
stores information about local jobs such as the PL/SQL call to execute for a job,
when to run a job, and so forth. Typical jobs in an advanced replication environ-
ment include jobs to push deferred transactions to remote master sites, jobs to

Source Database

Store

ACCTNG Replication Group

Destination Database

ACCTNG Replication Group

error log

Change

error log

internal trigger

generated
procedure

Emp replicated
table

deferred transaction
queue

internal trigger

Emp replicated
table

generated
procedure

background
process

Forward

deferred transaction
queue

background
process
31-20 Oracle8 Concepts

Advanced Replication Concepts
purge applied transactions from the deferred transaction queue, and jobs to
refresh snapshot refresh groups.

■ Oracle forwards data replication information by executing RPCs as part of
deferred transactions. Oracle uses distributed transaction protocols to protect
global database integrity automatically and ensure data survivability.

Serial Propagation
With serial propagation, Oracle asynchronously propagates replicated transactions,
one at a time, in the same order of commit as on the originating site.

Parallel Propagation
With parallel propagation, Oracle asynchronously propagates replicated transactions
using multiple, parallel transit streams for higher throughput. When necessary,
Oracle orders the execution of dependent transactions to ensure global database
integrity.

Parallel propagation uses the same execution mechanism that Oracle uses for paral-
lel query, load, recovery, and other parallel operations. Each server process propa-
gates transactions through a single stream. A parallel coordinator process controls
these server processes. The coordinator tracks transaction dependencies, allocates
work to the server processes, and tracks their progress.

Purging of the Deferred Transaction Queue
After a site pushes a deferred transaction to its destination, the transaction remains
in the deferred transaction queue until another job purges the applied transaction
from the queue.

Snapshots Propagation Mechanisms
Updatable snapshots in an advanced replication environment can both “push” and
“pull” data to and from its master table, respectively.

Master Table Updates Updates to an updatable snapshot are asynchronously pushed
to its master table using Oracle’s row-level, asynchronous data propagation mecha-
nisms (RPCs, deferred transactions, and job queues).

Snapshot Refresh Identical to basic replication environments, advanced replication
systems use Oracle's snapshot refresh mechanism to pull changes asynchronously
from a master table to associated updatable (and read-only) snapshots.
 Database Replication 31-21

Advanced Replication Concepts
Other Considerations An updatable snapshot’s push and pull tasks are independent
operations that you can configure associatively or separately.

■ A snapshot site can configure a refresh group to automatically push all changes
made to the member snapshots to the master site, and then refresh the snap-
shots.

■ A snapshot site can configure updatable snapshots to push changes to the mas-
ter site and refresh snapshots at different times and intervals.

For example, an advanced replication environment that consolidates information at
a master site might configure updatable snapshots to push changes to the master
site every hour but refresh updatable snapshots infrequently, if ever.

Replication Administrators, Propagators, and Receivers
An Oracle symmetric replication environment requires several unique database
user accounts to function properly, including replication administrators, propaga-
tors, and receivers.

■ Every site in an Oracle symmetric replication system requires at least one repli-
cation administrator, a user responsible for configuring and maintaining repli-
cated database objects.

■ Each replication site in an Oracle symmetric replication system requires special
user accounts to propagate and apply changes to replicated data.

Configuration Options
In most advanced replication configurations, just one account is used for all pur-
poses — as a replication administrator, a replication propagator, and a replication
receiver. However, Oracle also supports distinct accounts for unique configurations.

Replication Conflicts
Advanced replication systems that support an update-anywhere model of data rep-
licas must address the possibility of replication conflicts. The following sections
explain the different types of replication conflicts, when they can occur, and how
Oracle can detect and resolve replication conflicts.

Types of Replication Conflicts
Three types of conflicts can occur in an advanced replication environment: unique-
ness conflicts, update conflicts, and delete conflicts.
31-22 Oracle8 Concepts

Advanced Replication Concepts
Uniqueness Conflicts A uniqueness conflict happens when the replication of a row
attempts to violate entity integrity (a PRIMARY KEY or UNIQUE constraint). For
example, consider what happens when two transactions that originate from two dif-
febent sites each insert a row into a respective table replica with the same primary
key value — replication of the transactions will cause a uniqueness conflict.

Update Conflicts An update conflict happens when the replication of an update to a
row conflicts with another update to the same row. Update conflicts can happen
when two different transactions, originating from different sites, update the same
row at nearly the same time.

Delete Conflicts A delete conflict happens when two transactions originate from differ-
ent sites, with one transaction deleting a row that the other transaction updates or
deletes.

Replicated Data Models and Conflicts
When designing applications that will work on top of a database system that uses
advanced replication, you must consider the possibility of replication conflicts. In
doing so, applications must choose to employ one of several different replicated
data ownership models that will ensure global database integrity by avoiding or
resolving replication conflicts.

Primary Site, Static Ownership Primary ownership, also called static ownership, is the rep-
licated data model that basic read-only replication environments support. Primary
ownership prevents all replication conflicts, because only a single server permits
update access to a set of replicated data.

Rather than control the ownership of data at the table level, applications can
employ horizontal and vertical partitioning to establish more granular static owner-
ship of data. For example, applications might have update access to specific col-
umns or rows in a replicated table on a site-by-site basis.

Dynamic Ownership The dynamic ownership replicated data model is less restrictive
than primary site ownership. With dynamic ownership, the capability to update a
data replica moves from site to site, still ensuring that only one site provides
update access to specific data at any given point in time. A workflow system
clearly illustrates the concept of a dynamic ownership. For example, related depart-
mental applications can read the status code of a product order to determine when
they can and cannot update the order.

Figure 31–11 illustrates an application that uses a dynamic ownership model.
 Database Replication 31-23

Advanced Replication Concepts
Figure 31–11 Dynamic Ownership in an Order Processing System

Shared Ownership Primary site ownership and dynamic ownership replication data
models, which promote conflict avoidance, are often too restrictive or impossible to
implement for some database applications. Some applications must operate using a
shared ownership replicated data model in which applications can update the data of
any table replica at any time.

When a shared data ownership system replicates changes asynchronously (store-
and-forward replication), corresponding applications must be sure to avoid, or
detect and resolve replication conflicts if and when they occur. For example:

■ Delete conflicts are difficult to resolve in an asynchronous shared ownership
model unless the replication system records historical information as transac-
tions delete data. Consequently, applications that operate within an asynchro-
nous, shared ownership data model should avoid delete conflicts by not using
DELETE statements to delete rows. Instead, applications can mark rows for
deletion and configure the system to periodically purge deleted rows using pro-
cedural replication.

■ Coordinated sequence generation is a technique that applications can use to avoid
uniqueness conflicts in a shared data ownership system. For example, typical
applications use Oracle sequences to generate numerical primary keys. At each
site in a shared data ownership system, create replica sequences so that each
sequence generates a mutually exclusive set of sequence numbers.

Conflict Detection
When an application uses a shared ownership data model with asynchronous row-
level replication, Oracle automatically detects uniqueness, update, and delete con-

Orders table
cust–no order–no

5791
1
1

1001
632

status

enterable
enterable
enterable

.

.

.

.

.

.

.

.

.

Order Entry site

Orders table
cust–no order–no

579162
163
164

1001
632

status

shippable
shippable
shippable

.

.

.

.

.

.

.

.

.

Shipping site

Orders table
cust–no order–no

579162
163
164

1001
632

satus

billable
billable
billable

.

.

.

.

.

.

.

.

.

Billing site
31-24 Oracle8 Concepts

Advanced Replication Concepts
flicts. To detect conflicts during replication, Oracle compares a minimal amount of
row data from the originating site with the corresponding row information at the
receiving site. When there are differences, Oracle detects the conflict.

To detect replication conflicts accurately, Oracle must be able to uniquely identify
and match corresponding rows at different sites during data replication. Typically,
Oracle’s advanced replication facility uses the primary key of a table to uniquely
identify rows in the table. When a table does not have a primary key, you must des-
ignate an alternate key — a column or set of columns that Oracle can use to identify
rows in the table during data replication. In either case, applications should not be
allowed to update the identity columns of a table to ensure that Oracle can identify
rows and preserve the integrity of replicated data.

Conflict Resolution
When a receiving site in an advanced replication system is using asynchronous
row-level replication and it detects a conflict in a transaction, the default behavior
is to log the conflict and the entire transaction, and leave the local version of the
data intact. In most cases, you should use Oracle’s advanced replication facility to
automate the resolution of replication conflicts. You can also check each server’s
DEFERROR data dictionary view for transactions that caused conflicts, and resolve
them manually, if necessary.

Column Groups Oracle uses column groups to detect and resolve conflicts during
asynchronous, row-level symmetric replication. A column group is a logical group-
ing of one or more columns in a table. Every column in a replicated table is part of
a single column group. When configuring replicated tables, you can create column
groups and then assign columns and corresponding conflict resolution methods to
each group.

Each column group in a replicated table can have a list of one or more conflict reso-
lution methods. Indicating multiple conflict resolution methods for a group allows
Oracle to resolve a conflict in different ways should others fail to resolve the con-
flict. When trying to resolve a conflict for a group, Oracle executes the group's reso-
lution methods in the order that you list for the group.

By default, every replicated table has a shadow column group. A table’s shadow col-
umn group contains all columns that are not within a specific column group. You
cannot assign conflict resolution methods to a table's shadow group.

Conflict Resolution Methods When designing column groups you can choose from
among many built-in conflict resolution methods. For example, to resolve update con-
flicts, you might choose to have Oracle overwrite the column values at the destina-
 Database Replication 31-25

Advanced Replication Concepts
tion site with the column values from the originating site. Oracle offers many other
conflict resolution methods.

Unique Advanced Replication Options
Some applications have special requirements of an advanced replication system.
The following sections explain the Oracle unique advanced replication options,
including

■ Procedural Replication

■ Synchronous (Real-Time) Data Propagation

Procedural Replication
Batch processing applications can change large amounts of data within a single
transaction. In such cases, typical row-level replication could saturate a network
with a huge quantity of data changes. To avoid such problems, a batch processing
application that operates in an advanced replication environment can use Oracle's
procedural replication to replicate simple stored procedure calls that will converge
data replicas. Procedural replication replicates only the call to a stored procedure
that an application uses to update a table. Procedural replication does not replicate
data modifications.

To use procedural replication, at all sites you must replicate the packages that mod-
ify data in the system. After replicating a package, you must generate a wrapper for
this package at each site. When an application calls a packaged procedure at the
local site to modify data, the wrapper ensures that the call is ultimately made to the
same packaged procedure at all other sites in the replicated environment. Proce-
dural replication can occur asynchronously or synchronously.

Conflict Detection and Procedural Replication When an advanced replication system rep-
licates data using procedural replication, the procedures that replicate data are
responsible for ensuring the integrity of the replicated data. That is, you must
design such procedures either to avoid or to detect replication conflicts and resolve
them appropriately. Consequently, procedural replication is most typically used
when databases are available only for the processing of large batch operations. In
such situations, replication conflicts are unlikely because numerous transactions are
not contending for the same data.

Additional Information: See Oracle8 Replication.
31-26 Oracle8 Concepts

Advanced Replication Concepts
Synchronous (Real-Time) Data Propagation
Asynchronous data is the normal configuration for advanced replication environ-
ments. However, Oracle also supports synchronous data propagation for applica-
tions with special requirements. Synchronous data propagation occurs when an
application updates a local replica of a table, and within the same transaction also
updates all other replicas of the same table. Consequently, synchronous data repli-
cation is also called real-time data replication. Use synchronous replication only when
applications require that replicated sites remain continuously synchronized.

As Figure 31–12 shows, Oracle uses the same system of internal database triggers
to generate RPCs that replicate data-level changes to other replication sites to sup-
port synchronous, row-level data replication. However, Oracle does not defer the
execution of such RPCs. Instead, data replication RPCs execute within the bound-
ary of the same transaction that modifies the local replica. Consequently, a data-
level change must be possible at all sites that manage a replicated table or else a
transaction rollback occurs.

You can choose to create a replicated environment in which some sites propagate
changes synchronously while others use asynchronous propagation (deferred trans-
actions).

Note: A replication system that uses real-time propagation of rep-
lication data is highly dependent on system and network availabil-
ity because it can function only when all sites in the system are
concurrently available.
 Database Replication 31-27

Advanced Replication Concepts
Figure 31–12 Synchronous Data Replication Mechanisms

Replication Conflicts and Synchronous Data Replication When a shared ownership sys-
tem replicates all changes synchronously (real-time replication), replication con-
flicts are not possible. With real-time replication, applications use distributed
transactions to update all replicas of a table at the same time. As is the case in non-
distributed database environments, Oracle automatically locks rows on behalf of
each distributed transaction to prevent all types of destructive interference among
transactions. While a real-time replication system can prevent replication conflicts,
this type of system is highly dependent on system and network availability because
it can function only when all sites in the system are available.

Additional Information: See Oracle8 Replication for a full descrip-
tion of basic and advanced database replication.

Source Database

ACCTNG Replication Group

Destination Database

ACCTNG Replication Group

error log

Change

error log

internal trigger

generated
procedure

Emp replicated
table

Emp replicated
table

generated
procedure Remote Procedure Call

internal trigger
31-28 Oracle8 Concepts

Part IX

Appendix

Part IX contains the following appendix:

■ Appendix A, “Operating System-Specific Information”

 Operating System-Specific Inform
A

Operating System-Specific Information

This manual occasionally refers to other Oracle manuals that contain detailed infor-
mation for using Oracle on a specific operating system. These Oracle manuals are
often called installation and configuration guides, although the exact name may vary
on different operating systems. Throughout this manual, references to these manu-
als are marked with the icon shown in the left margin.

This appendix lists all the references in this manual to operating system-specific
Oracle manuals, and lists the operating system (OS) dependent initialization param-
eters. If you are using Oracle on multiple operating systems, this appendix can help
you ensure that your applications are portable across these operating systems.
ation A-1

Operating system-specific topics in this manual are listed alphabetically, with refer-
ences to the sections that discuss these topics.

■ Administrator privileges, prerequisites: “Connecting with Administrator Privi-
leges” on page 5-3

■ Auditing: “Auditing to the OS Audit Trail” on page 27-6

■ Authenticating users: “Authentication by the Operating System” on page 25-3

■ Authenticating database administrators: “Connecting with Administrator Privi-
leges” on page 5-3 and “Database Administrator Authentication” on page 25-6

■ Background processes, creating: “Background Processes” on page 7-6

■ Background processes, multiple DBWR processes: “Database Writer (DBWn)”
on page 7-8

■ Background processes, using ARCH: “Archiver Process (ARCH)” on page 7-12

■ Client/server communication: “Dedicated Server (Two-Task) Configuration”
on page 7-18

■ Communication software: “Operating System Communications Software” on
page 7-28

■ Configuring Oracle: “Variations in Oracle Configuration” on page 7-16

■ Datafiles, size of file header: “Size of Datafiles” on page 3-12

■ Dedicated server, requesting for administrative operations: “Restricted Opera-
tions of the Multithreaded Server” on page 7-24

■ Indexes, overhead of index blocks: “Format of Index Blocks” on page 8-19

■ Parallel recovery and asynchronous I/O: “Situations That Benefit from Parallel
Recovery” on page 28-14

■ Role management by the operating system: “The Operating System and Roles”
on page 26-16

■ Rollback segments, number of transactions per: “Transactions and Rollback
Segments” on page 2-18

■ Software code areas, shared or unshared: “Software Code Areas” on page 6-16

■ Net8, choosing and installing network drivers: “The Program Interface Driv-
ers” on page 7-27

■ Net8, drivers included in Net8 software: “How Net8 Works” on page 29-5
A-2 Oracle8 Concepts

Index

A
access control, 26-2

discretionary, 1-28
mandatory, 1-34
password encryption, 25-4
privileges, 26-2
roles, 26-10

access paths
cluster join, 20-49
composite index, 20-51
defined, 20-4
hash cluster key, 20-50
indexed cluster key, 20-50
list of, 20-45
optimization, 20-42
single row by cluster join, 20-47
single row by hash cluster key (with unique

key), 20-48
single row by ROWID, 20-47
single row by unique or primary key, 20-48

ADMIN OPTION
roles, 26-14
system privileges, 26-3
with EXECUTE ANY TYPE, 12-11

administration request, 31-18
administrator privileges

not audited, 27-5
ADT, See object type
Advanced Networking Option, 30-17

data encryption, 30-17
Advanced Queuing (Oracle AQ), 16-1

exporting queue tables, 16-8
message queuing, 16-2

queue monitor process, 1-19, 7-13, 16-4
interval statistics, 16-8
window of execution, 16-5

queue tables, 16-4
remote databases, 16-8

advanced replication, 31-3
asynchronous propagation, 31-19
deferred transactions and, 31-20
hybrid configurations, 31-15
job queues and, 31-20
multi-master configuration, 31-13
overview, 31-11
procedural replication, 31-26
row-level replication, 31-19
RPCs and, 31-19
sequences and, 31-24
synchronous propagation, 31-27
updatable snapshots, 31-14
uses for, 31-12

affinity
parallel DML, 22-41
partitions, 22-40

AFTER triggers, 18-9
defined, 18-9
when fired, 18-14

agents for queuing, 16-4
ALERT files, 7-14

redo log, 7-10
aliases

qualifying column names, 12-2, 12-3
ALL, 20-16
ALL_ views, 4-6
ALL_ROWS hint, 20-42
ALL_UPDATABLE_COLUMNS view, 8-13
 Index-1

ALTER ANY TYPE privilege, 12-10
See also privileges

ALTER command, 14-4
auditing partitions, 9-42

ALTER INDEX command
REBUILD PARTITION, 9-39

ALTER SESSION command, 14-5
dynamic parameters, 5-5
ENABLE PARALLEL DML, 22-32
HASH_JOIN_ENABLED, 20-68
OPTIMIZER_GOAL, 20-41
SET CONSTRAINTS DEFERRED, 24-20
transaction isolation level, 23-7, 23-30

ALTER SYSTEM command, 14-5
dynamic parameters, 5-5

ALTER TABLE command
auditing, 27-7
CACHE clause, 6-4
DEALLOCATE UNUSED, 2-13
disable or enable constraints, 24-21
EXCHANGE PARTITION, 9-10
no-logging mode for SPLIT PARTITION, 21-7
novalidate constraints, 24-21

ALTER USER command
temporary segments and, 2-16

alternate key
detecting conflicts and, 31-25

ALWAYS_ANTI_JOIN parameter, 20-74
ALWAYS_SEMI_JOIN parameter, 20-74
ANALYZE command, 14-4

COMPUTE STATISTICS clause, 20-41
creating histograms, 20-8
ESTIMATE STATISTICS clause, 20-41
partition statistics, 9-12
shared pool and, 6-11

anonymous PL/SQL blocks, 14-15, 17-8
applications, 14-17
calling a stored procedure, 14-18
contrasted with stored procedures, 17-8
dynamic SQL, 14-19
performance, 17-9

ANSI SQL standard
datatypes of, 10-19
Oracle certification, 1-3

ANSI/ISO SQL standard, 1-3
composite foreign keys, 24-15
data concurrency, 23-2
isolation levels, 23-10

anti-joins, 20-74
ANY, 20-15
applications

application vs. database triggers, 18-4
can find constraint violations, 24-6
data dictionary references, 4-4
data warehousing, 8-23, 20-75
database access through, 7-2
decision support systems (DSS), 8-24

parallel SQL, 22-2, 22-26
dependencies of, 19-9
direct-load INSERT, 22-32
discrete transactions, 15-8
enhancing security with, 1-31, 24-5
index-organized tables, 8-30
information retrieval (IR), 8-30
network communication and, 29-5
object dependencies and, 19-11
online analytical processing (OLAP), 8-31
online transaction processing (OLTP)

reverse key indexes, 8-22
parallel DML, 22-31
processes, 7-2, 7-4
program interface and, 7-27
roles and, 26-12
sharing code, 6-17
spatial applications, 8-31
transaction termination and, 15-5

AQ
exporting queue tables, 16-8
message queuing, 16-2
queue monitor process, 1-19, 7-13, 16-4

interval statistics, 16-8
window of execution, 16-5

queue tables, 16-4
remote databases, 16-8

AQ_ADMINISTRATOR role, 16-5
AQ_TM_PROCESS parameter, 16-5
ARCH background process, 7-12

See also archiver process
Index-2

architecture
client/server, 1-23
MPP, 22-41
of Oracle, 1-13
SMP, 22-41

archived redo log, 1-37
automatic archiving, 28-17
enabling, 28-16
manual archiving, 28-18

ARCHIVELOG mode
archiver process (ARCH) and, 7-12, 28-16
defined, 28-16
overview, 1-38
partial database backups, 1-39, 28-22
whole database backups, 28-21

archiver process (ARCH)
automatic archiving, 28-17
defined, 1-18
described, 7-12
example, 28-16

array processing, 14-13
arrays

size of VARRAYs, 11-10
variable (VARRAYs), 11-10

asynchronous I/O
parallel recovery and, 28-14

asynchronous processing, 16-2
asynchronous replication, 31-19
atomic nulls, 12-6
attributes of object types, 11-2, 11-4
AUDIT command, 14-4

locks, 23-27
audit trail

deleting data in dictionary, 4-5
auditing, 1-33, 27-1

audit options, 27-3
audit records, 27-3
audit trails, 27-3

database, 27-3
operating system, 27-5, 27-6

by access, 27-11
mandated for, 27-11

by session, 27-10
prohibited with, 27-11

data dictionary used for, 4-5
database and OS usernames, 25-4
DDL statements, 27-7
described, 1-33, 27-2
distributed databases and, 27-6
DML statements, 27-7
partitioned tables and indexes, 9-42
privilege use, 27-2, 27-7
range of focus, 27-3, 27-9
schema object, 27-2, 27-8
security and, 27-6
statement, 27-2, 27-7
successful executions, 27-9
transaction independence, 27-5
types of, 27-2
unsuccessful executions, 27-9
user, 27-12
when options take effect, 27-6

authentication
described, 25-3
network, 25-4
operating system, 25-3
Oracle, 25-4

automatic refresh
refresh group, 31-9
refresh interval, 31-9

B
B*-tree indexes, 8-20

bitmap indexes vs., 8-23, 8-24
index-organized tables, 8-28

back-ends, 29-2
background processes, 1-17, 7-6

described, 7-6
diagrammed, 7-6
overview of, 1-17
trace files for, 7-14
See also processes

backups
control files, 28-22
datafiles, 28-22
for read-only tablespaces, 28-23
overview of, 1-34, 28-21

backups (continued)
 Index-3

backups (continued)
parallel, 28-12
partial, 1-39, 28-22
Recovery Manager, 1-40, 28-10
types of, 1-38
using Export to supplement, 28-23
whole database backup, 1-39, 28-21

base tables, 1-43
data dictionary, 4-2
See also views

basic replication, 31-2, 31-4
uses of, 31-4

BEFORE triggers, 18-8
defined, 18-8
when fired, 18-14

BETWEEN, 20-17
BFILE datatype, 10-10
binary data

BFILEs, 10-10
BLOBs, 10-10
RAW and LONG RAW, 10-11

bind variables
optimization, 20-60
user-defined types, 11-12

bitmap indexes, 8-23
nulls and, 8-8, 8-27
parallel query and DML, 8-24
partitioned tables, 9-12
scans of, 20-45
star transformation, 20-77

BLOBs, 10-10
blocking transactions, 23-10
blocks

anonymous, 14-15, 17-8
database, 2-3

See also data blocks
BOOLEAN datatype, 10-2
branch blocks, 8-21
buffer cache, 6-3, 7-8

extended buffer cache (32-bit), 6-13
multiple buffer pools, 6-5

buffer pools, 6-5
BUFFER_POOL_KEEP parameter, 6-5
BUFFER_POOL_RECYCLE parameter, 6-5
buffers

database buffer cache, 1-15, 6-3, 7-8
incremental checkpoint, 7-9, 28-4

redo log buffer, 1-15, 6-6
business rules

enforcing in application code, 24-5
enforcing using stored procedures, 24-5
enforcing with constraints, 1-54, 24-1

advantages of, 24-5
enforcing with triggers, 1-55

C
CACHE clause, 6-4
caches

buffer cache, 6-3
multiple buffer pools, 6-5

cache hit, 6-4
cache miss, 6-4
data dictionary, 4-4, 6-10

location of, 6-6
database buffer, 1-15
library cache, 6-6
object cache, 11-13, 12-13

object views, 13-4
private SQL area, 6-8
shared SQL area, 6-6, 6-8
writing of buffers, 7-8

calls
Oracle call interface, 7-27
remote procedure, 30-11

cannot serialize access, 23-10
capture avoidance rule, 12-2
Cartesian products, 20-13
CASCADE actions

DELETE statements and, 24-16
catalog, replication, 31-18
century, 10-9
chaining of rows, 2-10, 8-5
CHAR datatype, 10-3

blank-padded comparison semantics, 10-3
character sets

CLOB and NCLOB datatyes, 10-10
column lengths, 10-4
for various languages, 5-4
NCHAR and NVARCHAR2, 10-4
Index-4

CHECK constraints, 24-16
checking mechanism, 24-19
defined, 24-16
multiple constraints on a column, 24-17
partially null foreign keys, 24-15
partition views, 9-10
subqueries prohibited in, 24-16

checkpoint process (CKPT), 1-18, 7-11
checkpoints

checkpoint process (CKPT), 1-18, 7-11
control files and, 28-20
DBWn process, 7-11
incremental, 7-9, 28-4
signal DBWn process, 7-8
statistics on, 7-11

CHOOSE hint, 20-42
CKPT background process, 1-18, 7-11
CLEANUP_ROLLBACK_ENTRIES

parameter, 22-34
client/server architectures, 29-2

clients, 1-24
diagrammed, 29-3
direct and indirect connections, 30-2
distributed databases and, 30-2
distributed processing in, 29-3
overview of, 1-23, 29-2
program interface, 7-27

CLOB datatype, 10-10
cluster joins, 20-66
cluster keys, 1-45, 8-32
clustered computer systems

Oracle Parallel Server, 5-2
clusters

choosing data to cluster, 8-34
defined, 1-45
dictionary locks and, 23-28
hash, 8-36

allocation of space for, 8-41
collision resolution, 8-39
contrasted with index, 8-36
root blocks, 8-41
scans of, 20-43, 20-48, 20-50
storage of, 8-37

index, 8-35
contrasted with hash, 8-36

scans of, 20-50
indexes and, 8-17
joins and, 8-34, 20-47, 20-49, 20-66
keys, 1-45, 8-32, 8-35

affect indexing of nulls, 8-8
overview of, 8-32
performance considerations of, 8-34
ROWIDs and, 8-7
scans of, 6-4, 20-43, 20-47

hash, 20-48, 20-50
joins, 20-49

setting parameters of, 8-34
storage format of, 8-34
storage parameters of, 8-4

collections, 11-9
nested tables, 11-10
variable arrays (VARRAYs), 11-10

column group, 31-25
shadow, 31-25

columns
column names

qualifying in queries, 12-2, 12-3
column objects, 11-8

indexes, 12-9
default values for, 8-8
defined, 1-42
described, 8-3
integrity constraints, 8-4, 8-8, 24-4, 24-7
maximum in concatenated indexes, 8-18
maximum in view or table, 8-10
nested tables, 8-9
order of, 8-7
prohibiting nulls in, 24-7
pseudocolumns

ROWID, 10-12
ROWNUM, 20-25, 20-34, 20-58
USER, 26-7

COMMENT command, 14-4
COMMIT command, 14-5

ending a transaction, 15-2, 15-4
fast commit, 7-10
implied by DDL, 15-2, 15-4
two-phase commit and, 15-7, 30-12
two-phase commit in parallel DML, 22-34
 Index-5

committing transactions
defined, 15-2
fast commit, 7-10
group commits, 7-10
implementation, 7-10
overview, 1-51
parallel DML, 22-34

communication protocols, 29-5
comparison methods, 11-6
compatibility, 1-4
compilation of object types, 12-14
compiled PL/SQL, 17-15

advantages of, 17-8
procedures, 17-8
pseudocode, 17-16, 18-17
recompiling, 17-17
shared pool, 14-16
triggers, 18-17

compiled triggers, 18-17
complete refresh, 31-8
complex snapshot, 31-10
complex view merging, 20-25
COMPLEX_VIEW_MERGING parameter, 20-26
composite indexes, 8-18
compression of free space in data blocks, 2-9
COMPUTE STATISTICS clause, 20-41
concatenated indexes, 8-18
concurrency

defined, 1-20
described, 23-2
direct-load INSERT, 21-9
enforced with locks, 1-22
limits on

per database, 25-14
per user, 25-12

partition maintenance, 9-33
restrictions on, 1-32, 21-9
transactions and, 23-15

configuration of a database
parameter file, 5-4
process structure, 7-2, 7-16

conflict resolution, 31-25
conflicts, 31-22

column groups and, 31-25
data models and, 31-23

delete, 31-23
detecting, 31-24
procedural replication, 31-26
replication, 31-22
resolving, 31-25
row-level replication, 31-24
uniqueness, 31-23
update, 31-23

CONNECT BY clause
optimizing view queries, 20-25

CONNECT INTERNAL, 5-3
CONNECT role, 26-16

user-defined types, 12-10, 12-11
connectibility, 1-4
connections

defined, 7-4
embedded SQL, 14-6
listener process and, 7-14
restricting, 5-5
sessions contrasted with, 7-4
usernames, 25-2
with administrator privileges, 5-3

consistency of data, 1-51
multiversion consistency model, 1-21
See also read consistency

constants
comparisons and, 20-14
in stored procedures, 14-17
when computed, 20-14

constraints, 1-54
alternatives to, 24-5
applications can find violations, 24-6
CHECK, 24-16
default values and, 24-19
defined, 8-4
disabling temporarily, 24-6
effect on performance, 24-6
enable or disable constraints, 24-21
enforced with indexes, 8-19

PRIMARY KEY, 24-11
UNIQUE, 24-9

FOREIGN KEY, 1-55, 24-12
mechanisms of enforcement, 24-17
NOT NULL, 24-7, 24-10
novalidate constraints, 24-21
Index-6

constraints (continued)
object tables, 12-8
overview, 1-54
parallel create table, 22-22
PRIMARY KEY, 1-55, 24-10
prohibited in views, 8-11
referential

effect of updates, 24-15
self-referencing, 24-14

triggers cannot violate, 18-14
triggers contrasted with, 18-5
types listed, 1-54, 24-1
UNIQUE key, 1-55, 24-8

partially null, 24-10
what happens when violated, 24-5
when evaluated, 8-8

constructor methods, 1-53, 11-6, 12-4
literal invocation of, 12-7

contention
for data

deadlocks, 7-23, 23-16
lock escalation does not occur, 23-16

for rollback segments, 2-19
control files, 1-12, 28-19

backing up, 28-22
changes recorded, 28-20
checkpoints and, 28-20
contents, 28-19
how specified, 5-4
multiplexed, 1-38, 28-20
overview, 1-12, 28-19
physical database structure, 1-5
recovery and, 1-38
used in mounting database, 5-6

converting data
ANSI datatypes, 10-19
program interface, 7-27
SQL/DS and DB2 datatypes, 10-19

coordinated sequence generation, 31-24
cost-based optimization, 20-6

histograms, 20-8
statistics, 20-41

CPU time limit, 25-11
CREATE ANY TYPE privilege, 12-10

See also privileges

CREATE command, 14-4
CREATE FUNCTION command, 17-15
CREATE INDEX command

no-logging mode, 21-7
object types, 12-9
rules of parallelism, 22-21
temporary segments and, 2-16

CREATE PACKAGE BODY command, 17-10,
17-15

CREATE PACKAGE command
examples, 17-10, 18-10
locks, 23-27
package name, 17-15

CREATE PROCEDURE command
example, 17-6
locks, 23-27
procedure name, 17-15

CREATE SYNONYM command
locks, 23-27

CREATE TABLE AS SELECT
direct-load INSERT vs., 21-2
no-logging mode, 21-7
rules of parallelism, 22-22
space fragmentation, 22-27

CREATE TABLE command
auditing, 27-7, 27-9
CACHE clause, 6-4
enable or disable constraints, 24-21
examples

column objects, 11-5, 12-2
nested tables, 11-11
object tables, 11-7, 11-11, 12-2, 12-8

locks, 23-27
parallelism, 22-26

CREATE TRIGGER command
compiled and stored, 18-17
examples, 18-10, 18-12, 18-16

object tables, 12-9
locks, 23-27

CREATE TYPE command
incomplete types, 12-13
nested tables, 11-4, 11-11, 12-7
object types, 11-4, 12-2, 12-6, 12-7
object views, 13-3
VARRAYs, 11-10
 Index-7

CREATE TYPE privilege, 12-10
See also privileges

CREATE USER command
temporary segments and, 2-16

CREATE VIEW command
examples, 18-12

object views, 13-3
locks, 23-27

cross joins, 20-13
cursors

creating, 14-10
defined, 14-6
embedded SQL, 14-6
maximum number of, 14-7
object dependencies and, 19-8
opening, 6-9, 14-7
overview of, 1-15
private SQL areas and, 6-9, 14-6
recursive, 14-7
recursive SQL and, 14-7
stored procedures and, 14-17

D
dangling REFs, 11-8, 11-9
data

access to, 1-48
control of, 25-2
message queues, 16-5
security domains, 25-2

concurrent access to, 23-2
consistency of

defined, 1-51
examples of lock behavior, 23-30
locks, 23-3
manual locking, 23-29
read consistency, 1-21
repeatable reads, 23-6
transaction level, 23-6
underlying principles, 23-14

distributed manipulation of, 1-25
how stored in tables, 8-4
integrity of, 1-20, 8-4, 24-2

CHECK constraints, 24-16
enforcing, 24-4, 24-5

overview, 1-54
parallel DML restrictions, 22-38
referential, 24-3
two-phase commit, 1-25
types, 24-2

locks on, 23-19
replicating, 1-26, 31-2

data blocks, 1-10, 2-2
allocating for extents, 2-11
cached in memory, 7-8
clustered, 8-34
coalescing free, 2-12
controlling free space in, 2-5
format, 2-3
free lists and, 2-9
hash keys and, 8-41
how rows stored in, 8-5
overview, 2-2
read-only transactions and, 23-30
row directory, 8-6
shared in clusters, 8-32
shown in ROWIDs, 10-13, 10-14
space available for inserted rows, 2-9
stored in the buffer cache, 6-3
writing to disk, 7-8

data conversion
ANSI datatypes, 10-19
program interface, 7-27
SQL/DS and DB2 datatypes, 10-19

Data Definition Language (DDL)
auditing, 27-7
commit implied by, 15-4
defined, 1-49
described, 14-4
locks, 23-26
parallel DDL, 22-3
parsing with DBMS_SQL, 14-19
processing statements, 14-14
roles and privileges, 26-14

data dictionary
access to, 4-2
adding objects to, 4-4
ALL prefixed views, 4-6
audit trail (SYS.AUD$), 4-5
backups, 28-23
Index-8

data dictionary (continued)
cache, 6-10

location of, 6-6
content of, 4-2, 6-10

procedures, 17-16
DBA prefixed views, 4-6
defined, 1-47, 4-2
dependencies tracked by, 19-3
DUAL table, 4-7
dynamic performance tables, 4-7
locks, 23-26
owner of, 4-3
prefixes to views of, 4-5
public synonyms for, 4-4
row cache and, 6-10
statistics in, 20-41

partition statistics, 9-12
structure of, 4-2
updates of, 4-5
USER prefixed views, 4-6
uses of, 4-3

table and column definitions, 14-11
validity of procedures, 17-16
views used in optimization, 20-7

data locks
conversion, 23-16
duration of, 23-15
escalation, 23-16

Data Manipulation Language (DML)
auditing, 27-7
defined, 1-49
described, 14-3
distributed transactions, 30-10
locks acquired by, 23-24
parallel DML, 22-3, 22-29
partition locks, 9-30
privileges controlling, 26-5
processing statements, 14-10
serializable isolation for subqueries, 23-13
transaction model for parallel DML, 22-33
triggers and, 18-3, 18-16

data models, 1-40
data object number

extended ROWID, 10-13

data ownership models, 31-23
dynamic ownership, 31-23
primary ownership, 31-23
shared ownership, 31-24
static ownership, 31-23

data segments, 1-11, 2-15, 8-4
data warehousing, 20-75

bitmap indexes, 8-23
refreshing table data, 22-31
star queries, 20-75

database administrators (DBAs)
authentication, 25-6
data dictionary views, 4-6
DBA role, 12-10, 26-16
password files, 25-7
responsible for backup and recovery, 28-2

database buffers
after committing transactions, 15-6
buffer cache, 6-3, 7-8
clean, 7-8
committing transactions, 7-10
defined, 1-15, 6-3
dirty, 6-3, 7-8
free, 6-3
multiple buffer pools, 6-5
pinned, 6-3
size of cache, 6-5
writing of, 7-8

database links, 1-47
defined, 1-47
overview of, 30-6

database management system (DBMS), 1-2
object-relational DBMS, 11-2
Oracle server, 1-4
principles, 1-40

database triggers, 1-55, 18-1
See also triggers

database writer process (DBWn), 7-8
checkpoints signal, 7-8
defined, 7-8
least recently used algorithm (LRU), 7-8
media failure, 28-6
multiple DBWn processes, 7-8
multiple I/O processes, 7-9
overview of, 1-17
 Index-9

database writer process (DBWn) (continued)
trace file, 28-6
when active, 7-8
write-ahead, 7-10
writing to disk at checkpoints, 7-11

databases
access control

overview, 1-48
password encryption, 25-4
security domains, 25-2

backing up, 1-39, 28-21
closing, 5-8

aborting the instance, 5-8
configuring, 5-4
contain schemas, 25-2
defined, 1-8
dismounting, 5-8
distributed, 1-24, 30-1

changing global database name, 6-11
nodes of, 1-24, 30-2
overview of, 1-23, 1-24, 30-1
site autonomy of, 30-15
statement optimization on, 20-39
table replication, 1-26
two-phase commit, 1-25

global database names, 30-4
limitations on usage, 25-10
logical structure of, 1-6
logical structures (objects) in, 1-8
modes of archiving, 28-16
mounting, 5-6
name stored in control file, 28-19
open and closed, 5-2
opening, 5-7

acquiring rollback segments, 2-23
physical structure, 1-5, 1-11, 2-2

revealing with ROWIDs, 10-14
recovery of, 1-34, 28-2
scalability, 22-2, 22-31, 29-4
shutting down, 5-8
size of

how determined, 3-6
standby, 28-24
starting up, 5-2

forced, 5-9

datafiles
backing up, 28-22
contents of, 3-12
dictionary in datafile 1, 28-23
in online or offline tablespaces, 3-12
named in control files, 28-19
overview of, 1-9, 1-11, 3-11
parallel recovery, 28-13
physical database structure, 1-5
read-only, 3-9

recovery, 28-5
read-only tablespaces and, 3-10
relationship to tablespaces, 3-2
shown in ROWIDs, 10-13, 10-14
taking offline, 3-12
unrecoverable, 28-13

datatypes, 10-2, 10-17
ANSI, 10-19
array types, 11-10
BOOLEAN, 10-2
CHAR, 10-3
character, 10-2, 10-10
collections, 11-9
conversions of

by program interface, 7-27
non-Oracle types, 10-19
Oracle to another Oracle type, 10-20

DATE, 10-7
DB2, 10-19
how they relate to tables, 8-3
in PL/SQL, 10-2
list of available, 10-2
LOB datatypes, 10-9

BFILE, 10-10
BLOB, 10-10
CLOB and NCLOB, 10-10
default logging mode, 21-7

LONG, 10-5
storage of, 8-7

MLSLABEL, 10-16
multimedia, 11-3
NCHAR and NVARCHAR2, 10-4
nested tables, 8-9, 11-10
NUMBER, 10-5
object types, 1-41, 11-4
Index-10

datatypes (continued)
of columns, 1-42
RAW and LONG RAW, 10-11
REF, 11-8
ROWID, 10-12
SQL/DS, 10-19
summary, 10-17
user-defined, 11-1, 11-3
VARCHAR, 10-3
VARCHAR2, 10-3

DATE datatype, 10-7
arithmetic with, 10-9
changing default format of, 10-7
Julian dates, 10-8
partitioning, 9-12, 9-16

DB_BLOCK_BUFFERS parameter
buffer cache and, 6-5
system global area size and, 6-12

DB_BLOCK_LRU_LATCHES parameter, 7-8
DB_BLOCK_MAX_DIRTY_TARGET

parameter, 7-9, 28-5
DB_BLOCK_SIZE parameter

buffer cache and, 6-5
system global area size and, 6-12

DB_FILE_MULTIBLOCK_READ_COUNT
parameter, 20-59

cost-based optimization, 20-70
DB_FILES parameter, 6-15
DB_NAME parameter, 28-20
DB_WRITER_PROCESSES parameter, 1-17, 7-8
DBA role, 26-16

user-defined types, 12-10
DBA_ views, 4-6
DBA_QUEUE_SCHEDULES view, 16-8
DBA_SYNONYMS.SQL script

using, 4-6
DBA_UPDATABLE_COLUMNS view, 8-13
DBMS, 1-2

general requirements, 1-48
object-relational DBMS, 11-2

DBMS_AQ package, 16-4
DBMS_AQADM package, 16-4, 16-5
DBMS_JOB package, 7-13
DBMS_LOCK package, 23-40

DBMS_SQL package, 14-19
parsing DDL statements, 14-19

DBWn background process, 7-8
See also database writer process

DBWR_IO_SLAVES parameter, 7-9
DDL, 1-49, 14-4

See also Data Definition Language
deadlocks

artificial, 7-23
avoiding, 23-18
defined, 23-16
detection of, 23-17
distributed transactions and, 23-17

deallocating extents, 2-13
decision support systems (DSS), 9-4

bitmap indexes, 8-24
disk striping, 22-41
parallel DML, 22-31
parallel SQL, 22-2, 22-26, 22-31
partitions, 9-4
performance, 9-7, 22-31
scoring tables, 22-32

dedicated servers, 7-18
defined, 1-17
examples of use, 7-25
multithreaded servers vs., 7-20

default values, 8-8
constraints effect on, 8-8, 24-19
user-defined types, 12-7

deferred constraints
deferrable or nondeferrable, 24-20
initially deferred or immediate, 24-20

deferred transactions, 31-20
DefError view

conflicts and, 31-25
define phase of query processing, 14-12
defining query of a snapshot, 31-7
degree of parallelism, 22-17, 22-19

between query operations, 22-11
parallel SQL, 22-7, 22-13

delete cascade constraint, 24-16
DELETE command, 14-4

foreign key references and, 24-15
freeing space in data blocks, 2-9
 Index-11

DELETE command (continued)
parallel DELETE, 22-18
triggers and, 18-2, 18-6

INSTEAD OF triggers, 18-11
delete conflict, 31-23
delete no action constraint, 24-15
DELETE privilege for object tables, 12-12, 12-13
dependencies

between schema objects, 19-2
local, 19-9
non-existent referenced objects and, 19-7
object type definitions, 12-13, 12-15
on non-existence of other objects, 19-7
Oracle Forms triggers and, 19-11
privileges and, 19-6
remote objects and, 19-8
shared pool and, 19-8

dereferencing, 11-9
implicit, 11-9

describe phase of query processing, 14-12
dictionary

See data dictionary
dictionary cache locks, 23-29
different row-writers block writers, 23-10
Digital POLYCENTER Manager on

NetView, 30-19
direct-load INSERT, 21-2

logging mode, 21-5
parallel INSERT, 21-3
parallel load vs. parallel INSERT, 21-2
restrictions, 21-9, 22-37
serial INSERT, 21-3
space management, 21-8

dirty buffer, 6-3
incremental checkpoint, 7-9, 28-4

dirty read, 23-2, 23-10
dirty write, 23-10
disable constraints, 24-21
disaster recovery, 28-24
discrete transaction management, 15-8
discretionary access control, 1-28, 25-2
disk affinity

parallel DML, 22-41
partitions, 22-40

disk failures, 1-36, 28-5

disk space
controlling allocation for tables, 8-4
datafiles used to allocate, 3-11

disk striping
affinity, 22-40
partitions, 9-8

dispatcher processes (Dnnn)
defined, 1-18
described, 7-13
limiting SGA space per session, 25-12
listener process and, 7-14
network protocols and, 7-14
prevent startup and shutdown, 7-24
response queue and, 7-21
user processes connect via Net8, 7-14, 7-20

DISTINCT operator
optimizing views, 20-25

distributed databases, 30-1
auditing and, 27-6
client/server architectures and, 29-2
database links, 30-6
deadlocks and, 23-17
dependent schema objects and, 19-8
diagrammed, 30-3
different Oracle versions, 30-7
distributed queries, 30-10
distributed updates, 30-10
global schema object names, 30-6
heterogeneous, 30-8
job queue processes (SNPn), 1-19, 7-13
management tools, 30-17
message propagation, 16-8
nodes of, 30-2
overview of, 1-24, 30-2
recoverer process (RECO) and, 7-12
remote dependencies, 19-9
remote queries and updates, 30-10
server can also be client in, 29-2
site autonomy of, 30-15
statement optimization on, 20-39
table replication, 1-26, 31-2, 31-3

for read and update, 31-11
for read only, 31-2, 31-4

transparency of, 30-13
two-phase commit, 1-25, 30-12
Index-12

distributed processing environment
client/server architecture in, 1-23, 29-3
data manipulation statements, 14-10
described, 1-23, 29-2
distributed databases vs., 30-7

distributed transactions
defined, 30-11
optimizing, 20-39
parallel DML restrictions, 22-40
routing statements to nodes, 14-11
two-phase commit and, 1-25, 15-7

DISTRIBUTED_TRANSACTIONS parameter, 7-12
DML, 1-49, 14-3

See also Data Manipulation Language
Dnnn background processes, 7-13

See also dispatcher processes
drivers, 7-27
DROP ANY TYPE privilege, 12-10

See also privileges
DROP command, 14-4
DROP TABLE command

auditing, 27-7
DROP TYPE command

dependencies and, 12-15
FORCE option, 12-15

DSS database
disk striping, 22-41
parallel DML, 22-31
partitioning indexes, 9-29
partitions, 9-5
performance, 9-7
scoring tables, 22-32

DUAL table, 4-7
dump files

Export and Import, 12-15
dynamic ownership, 31-23
dynamic partitioning, 22-6
dynamic performance tables (V$ tables), 4-7
dynamic SQL

DBMS_SQL package, 14-19

E
embedded SQL statements, 1-49, 14-5
enable constraints, 24-21
encryption, 30-17
Enterprise Manager

advanced queuing, 16-9
ALERT file, 7-15
checkpoint statistics, 7-11
distributed databases, 30-18
executing a package, 17-6
executing a procedure, 17-4
granting roles, 26-13
granting system privileges, 26-3
lock and latch monitors, 23-28
parallel recovery, 28-13
PL/SQL, 14-17, 14-18
schema object privileges, 26-4
showing size of SGA, 6-12
shutdown, 5-8, 5-9
SQL statements, 14-2
startup, 5-5
statistics monitor, 25-13

equijoins
cluster joins, 20-66
defined, 20-13
hash joins, 20-68
sort-merge, 20-65

equipartitioning, 9-18
errors

in embedded SQL, 14-6
tracked in trace files, 7-14

ESTIMATE STATISTICS clause, 20-41
exceptions

during trigger execution, 18-15
raising, 14-18
stored procedures and, 14-18

EXCHANGE PARTITION, 9-10
exclusive locks

row locks (TX), 23-19
RX locks, 23-22
table locks (TM), 23-20

exclusive mode, 2-24, 5-6
EXECUTE ANY TYPE privilege, 12-10, 12-11

See also privileges
 Index-13

EXECUTE privilege
user-defined types, 12-11, 12-12, 12-13
verifying user access, 17-16
See also privileges

EXECUTE user-defined type, 12-10
execution plan

accessing views, 20-28, 20-31, 20-32
complex statements, 20-23
compound queries, 20-36, 20-37, 20-38
joining views, 20-34
joins, 20-63, 20-69
OR operators, 20-20
star transformation, 20-78

execution plans
examples, 20-23
execution sequence of, 20-5
EXPLAIN PLAN, 14-4
location of, 6-8
overview of, 20-2
parsing SQL, 14-11
partitions and partition views, 9-10, 9-12
viewing, 20-4

EXP_FULL_DATABASE role, 26-16
EXPLAIN PLAN command, 14-4

access paths, 20-47, 20-48, 20-49, 20-50, 20-51,
20-52, 20-53, 20-54, 20-55, 20-56, 20-57, 20-58

star query, 20-77
star transformation, 20-78

explicit locking, 23-29
Export utility

partition maintenance operations, 9-31
use in backups, 28-23
user-defined types, 12-15

extended ROWID format, 10-12
extents

allocating data blocks for, 2-11
allocation to rollback segments

after segment creation, 2-21
at segment creation, 2-19

allocation, how performed, 2-11
as collections of data blocks, 2-10
deallocation

from rollback segments, 2-22
when performed, 2-13

defined, 2-3

dropping rollback segments and, 2-22
in rollback segments

changing current, 2-20
incremental, 2-11
overview of, 2-10
parallel DDL, 22-27

external procedures, 14-19, 17-9

F
failover database, 31-12
failures, 28-2

archiving redo log files, 28-18
database buffers and, 28-8
described, 1-35, 28-2
instance, 1-36, 28-4

recovery from, 28-4
internal errors

tracked in trace files, 7-14
media, 1-36, 28-5
network, 28-3
safeguards provided, 28-7
statement and process, 1-35, 7-12, 28-2
survivability, 28-24
user error, 1-35, 28-2
See also recovery

fast commit, 7-10
fast full index scans, 20-44
fast refresh, 31-8
fast transaction rollback, 28-10
fast warmstart, 28-4
FAST_FULL_SCAN_ENABLED parameter, 20-44
fetching rows in a query, 14-13

embedded SQL, 14-6
file management locks, 23-29
files

ALERT and trace files, 7-10, 7-14
Export and Import dump file, 12-15
initialization parameter, 5-4, 5-5
operating system, 1-5
Oracle database, 1-9, 1-11, 28-7
password, 25-7

administrator privileges, 5-3
See also control files, datafiles, redo log files

FIPS standard, 1-3, 14-6
Index-14

FIRST_ROWS hint, 20-42
flagging of nonstandard features, 1-3, 14-6
FORCE option

object type dependencies, 12-15
FOREIGN KEY constraints

changes in parent key values, 24-15
constraint checking, 24-19
deleting parent table rows and, 24-16
maximum number of columns in, 24-12
nulls and, 24-14
updating parent key tables, 24-15

foreign keys, 1-54
defined, 1-55
partially null, 24-15
privilege to use parent key, 26-5

fragmentation
parallel DDL, 22-28

free lists, 2-9
free space (section of data blocks), 2-5
front-ends, 29-2
full index scans, 20-44
full table scans, 20-43, 20-57

LRU algorithm and, 6-4
multiblock reads, 20-59
parallel query, 22-5, 22-6
rule-based optimizer, 20-62
selectivity and, 20-59

functions
hash functions, 8-40
PL/SQL, 17-2, 17-6

contrasted with procedures, 1-52, 17-2
parallel DML restrictions, 22-39
privileges for, 26-7
roles disabled in, 26-14
See also procedures

SQL, 14-2
COUNT, 8-27
default column values, 8-8
in CHECK constraints, 24-16
in views, 8-12
NVL, 8-7
optimizing view queries, 20-25, 20-32

fuzzy reads, 23-3

G
gateways, 30-8
global database names

shared pool and, 6-11
global indexes, 9-25, 9-27

managing partitions, 9-39
global schema object names, 1-47, 30-6
GRANT ANY PRIVILEGE system privilege, 26-3
GRANT command, 14-4

locks, 23-27
GRANT option for EXECUTE privilege, 12-11
granting

execute user-defined type, 12-11
privileges and roles, 26-3

GROUP BY clause
optimizing views, 20-25

group commits, 7-10
groups, instance, 22-16

H
handles for SQL statements, 1-15, 6-9
hash clusters, 1-47, 8-36

overview of, 1-47
scans of, 20-43, 20-48, 20-50

hash join, 20-68
HASH_AREA_SIZE parameter, 20-69
HASH_MULTIBLOCK_IO_COUNT

parameter, 20-69
HASH_AJ hint, 20-74
HASH_AREA_SIZE parameter, 20-69
HASH_JOIN_ENABLED parameter, 20-68
HASH_MULTIBLOCK_IO_COUNT

parameter, 20-69
HASH_SJ hint, 20-74
HASHKEYS parameter, 8-39
headers

of data blocks, 2-4
of row pieces, 8-5

heterogeneous distributed databases, 30-8
Heterogeneous Services, 30-10
HI_SHARED_MEMORY_ADDRESS

parameter, 6-13
 Index-15

HIGH_VALUE column
of USER_TAB_COLUMNS view, 20-60

hints
INDEX, 20-76
INDEX_FFS, 20-44
MERGE, 20-26
MERGE_AJ and HASH_AJ, 20-74
MERGE_SJ and HASH_SJ, 20-74
ORDERED, 20-70, 20-76
overriding OPTIMIZER_MODE and

OPTIMIZER_GOAL, 20-42
PARALLEL, 22-13
PARALLEL_INDEX, 22-13
PUSH_JOIN_PRED, 20-73
STAR, 20-76
USE_HASH, 20-68

histograms, 20-8
historical database

maintenance operations, 9-32
partitions, 9-5

HP OpenView, 30-19
hybrid configurations

advanced replication, 31-15

I
IBM NetView/6000, 30-19
identity column

detecting conflicts and, 31-25
immediate constraints, 24-19
IMP_FULL_DATABASE role, 26-16
implicit dereferencing, 11-9
Import utility

partition maintenance operations, 9-31
use in recovery, 28-23
user-defined types, 12-15

IN operator, 20-15
merging views, 20-26

IN subquery, 20-25
incomplete object types, 12-14
incremental checkpoint, 7-9, 28-4
index segments, 1-10, 2-15
INDEX_FFS hint, 20-44

indexes, 1-45, 8-17
auditing partitions, 9-42
B*-tree structure of, 8-20
bitmap indexes, 8-23, 8-28

nulls and, 8-8
parallel query and DML, 8-24

branch blocks, 8-21
building

using an existing index, 8-17
cluster, 8-35

contrasted with table, 8-36
dropping, 8-36
scans of, 20-50

composite, 8-18
scans of, 20-51

concatenated, 8-18
described, 1-45, 8-17
enforcing integrity constraints, 24-9, 24-11
fast full scans of, 20-44
global indexes, 9-25, 9-39
index unusable (IU), 9-39
index-organized tables, 8-28
internal structure of, 8-20
keys and, 8-19

primary key constraints, 24-11
unique key constraints, 24-9

leaf blocks, 8-21
local indexes, 9-23, 9-38
location of, 8-19
LONG RAW datatypes prohibit, 10-11
managing partitions, 9-38
no-logging mode, 21-7
non-unique, 8-17
nulls and, 8-8, 8-27
on attribute of object column, 12-9
on object identifiers, 12-5
on REFs, 12-9
optimization and, 20-19
overview of, 1-45, 8-17
parallel DDL storage, 22-27
parallel index scans, 22-5
partition pruning, 9-4
partitioned tables, 8-28
partitioning guidelines, 9-28
partitions, 9-2, 9-22
Index-16

indexes (continued)
performance and, 8-17
privileges for partitions, 9-41
range scans, 20-44
rebuild partition, 9-39
rebuilt after direct-load INSERT, 21-8
reverse key indexes, 8-22
ROWIDs and, 8-21
scans of, 20-43

bounded range, 20-53
cluster key, 20-50
composite, 20-51
MAX or MIN, 20-55
ORDER BY, 20-56
restrictions, 20-57
single-column, 20-51
unbounded range, 20-54

statement conversion and, 20-19
storage format of, 8-19
unique, 8-17
unique scans, 20-44
user-defined types, 12-9
when used with views, 8-12

index-organized tables, 8-28
applications, 8-30
benefits, 8-29
queue tables, 16-9
row overflow area, 8-29

in-doubt transactions, 2-21, 5-7
information consolidation

advanced replication and, 31-14
Information Retrieval (IR) applications

index-organized tables, 8-30
initialization parameters

ALWAYS_ANTI_JOIN, 20-74
ALWAYS_SEMI_JOIN, 20-74
AQ_TM_PROCESS, 16-5
BUFFER_POOL_KEEP, 6-5
BUFFER_POOL_RECYCLE, 6-5
CLEANUP_ROLLBACK_ENTRIES, 22-34
COMPLEX_VIEW_MERGING, 20-26
DB_BLOCK_BUFFERS, 6-5, 6-12
DB_BLOCK_LRU_LATCHES, 7-8
DB_BLOCK_MAX_DIRTY_TARGET, 7-9, 28-5
DB_BLOCK_SIZE, 6-5, 6-12

DB_FILE_MULTIBLOCK_READ_COUNT,
20-59, 20-70

DB_FILES, 6-15
DB_NAME, 28-20
DB_WRITER_PROCESSES, 1-17, 7-8
DBWR_IO_SLAVES, 7-9
DISTRIBUTED_TRANSACTIONS, 7-12
FAST_FULL_SCAN_ENABLED, 20-44
HASH_AREA_SIZE, 20-69
HASH_JOIN_ENABLED, 20-68
HASH_MULTIBLOCK_IO_COUNT, 20-69
HI_SHARED_MEMORY_ADDRESS, 6-13
JOB_QUEUE_PROCESSES, 16-8
LGWR_IO_SLAVES, 7-11
LICENSE_MAX_SESSIONS, 25-14
LICENSE_SESSIONS_WARNING, 25-15
LOCK_SGA, 6-12, 6-16
LOCK_SGA_AREAS, 6-12, 6-16
LOG_ARCHIVE_START, 28-17
LOG_BUFFER, 6-6, 6-12
LOG_CHECKPOINT_INTERVAL, 7-8
LOG_CHECKPOINT_TIMEOUT, 7-8
LOG_FILES, 6-15
MTS_MAX_SERVERS, 7-23, 7-24
MTS_SERVERS, 7-23
NLS_LANGUAGE, 9-15
NLS_NUMERIC_CHARACTERS, 10-6
NLS_SORT, 9-15
OPEN_CURSORS, 6-9, 14-7
OPEN_LINKS, 6-15
OPTIMIZER_MODE, 20-40
PARALLEL_DEFAULT_MAX_SCANS

(obsolete), 22-15
PARALLEL_DEFAULT_SCANSIZE

(obsolete), 22-15
PARALLEL_MAX_SERVERS, 22-8
PARALLEL_MIN_PERCENT, 22-15
PARALLEL_MIN_SERVERS, 22-7, 22-8
PARALLEL_SERVERS_IDLE_TIME, 22-8
PUSH_JOIN_PREDICATE, 20-73
REMOTE_DEPENDENCIES_MODE, 19-9
ROLLBACK_SEGMENTS, 2-24
SHARED_MEMORY_ADDRESS, 6-13
SHARED_POOL_SIZE, 6-6, 6-12
SORT_AREA_RETAINED_SIZE, 6-15
 Index-17

initialization parameters (continued)
SORT_AREA_SIZE, 2-16, 6-15, 20-70
SORT_DIRECT_WRITES, 6-16
SQL_TRACE, 7-15
STAR_TRANSFORMATION_ENABLED, 20-79
TRANSACTIONS, 2-24
TRANSACTIONS_PER_ROLLBACK_SEGMENT,

2-24
USE_INDIRECT_DATA_BUFFERS, 6-13

initially deferred constraints, 24-20
initially immediate constraints, 24-20
INIT.ORA files, 5-4, 5-5
inner capture, 12-2
INSERT command, 14-3

direct-load INSERT, 21-2
free lists and, 2-9
parallelizing INSERT ... SELECT, 22-20
storage for parallel INSERT, 21-8
triggers and, 18-2, 18-6

BEFORE triggers, 18-8
INSTEAD OF triggers, 18-11, 18-13

INSERT privilege for object tables, 12-12, 12-13
instance groups for parallel operations, 22-16
instances, 1-6

acquire rollback segments, 2-24
associating with databases, 5-2, 5-6
defined, 1-15
described, 5-2
diagrammed, 7-6
failure in, 1-36, 28-4
instance groups, 22-16
memory structures of, 6-2
multiple-process, 7-3, 7-16
overview of, 1-6
process structure, 7-2
recovery of, 28-4

incremental checkpoints, 28-4
opening a database, 5-7
SMON process, 7-11

restricted mode, 5-5
sharing databases, 1-8
shutting down, 5-8, 5-9
single-process, 7-2
starting, 5-5
virtual memory, 6-16

INSTEAD OF triggers, 18-11
object views, 13-5

integrity constraints, 24-2
default column values and, 8-8
See also constraints

integrity rules, 1-41
parallel DML restrictions, 22-38

INTERNAL connection, 5-3
audit records not generated by, 27-5

internal errors tracked in trace files, 7-14
inter-operator parallelism, 22-11
INTERSECT operator

compound queries, 20-14
example, 20-38
optimizing view queries, 20-25

intra-operator parallelism, 22-11
INVALID status, 19-3
IS NULL predicate, 8-7
ISO SQL standard, 1-3, 10-19

composite foreign keys, 24-15
isolation levels

choosing, 23-12
read committed, 23-7
setting, 23-7, 23-30

J
job queue processes (SNPn), 1-19, 7-13

automatic snapshot refresh, 31-9, 31-10
message propagation, 16-8

job queues, 31-20
snapshot refresh, 31-10

JOB_QUEUE_PROCESSES parameter, 16-8
jobs, 7-2
join views, 8-13
joins

anti-joins, 20-74
Cartesian products, 20-13
cluster, 8-34, 20-47, 20-66

searches on, 20-49
convert to subqueries, 20-22
cross, 20-13
defined, 20-13
encapsulated in views, 1-43, 8-11
equijoins, 20-13
Index-18

joins (continued)
execution plans and, 20-63
hash joins, 20-68
nested loops, 20-63

cost-based optimization, 20-69
nonequijoins, 20-13
optimization of, 20-70
outer, 20-13

non-null values for nulls, 20-72
select-project-join views, 20-24
semi-joins, 20-74
sort-merge, 20-65

cost-based optimization, 20-70
example, 20-55

views, 1-43, 8-13

K
keys

cluster, 1-45, 8-32
defined, 24-8
foreign, 24-12
hash, 8-39
in constraints, 1-55
indexes and, 8-19, 8-22, 24-9, 24-11
key values, 1-55
maximum storage for values, 8-18
parent, 24-12, 24-14
primary, 24-10
referenced, 1-55, 24-12
reverse key indexes, 8-22
searches, 20-48
unique, 24-8

composite, 24-8, 24-10

L
labels

MLSLABEL datatype, 10-16
latches

described, 23-28
LRU, 7-8

LCKn background processes, 7-13
See also lock processes

leaf blocks, 8-21

least recently used algorithm (LRU)
database buffers and, 6-3
dictionary cache, 4-4
full table scans and, 6-4
latches, 7-8
shared SQL pool, 6-8, 6-10

LGWR background process, 7-9
See also log writer process

LGWR_IO_SLAVES parameter, 7-11
LICENSE_MAX_SESSIONS parameter, 25-14
LICENSE_SESSIONS_WARNING

parameter, 25-15
licensing

concurrent usage, 25-14
named user, 25-15
viewing current limits, 25-15

LIKE, 20-15
links, 30-6
listener processes, 7-14
literal invocation

constructor methods, 12-7
LOB datatypes, 10-9

BFILE, 10-10
BLOBs, 10-10
CLOBs and NCLOBs, 10-10
default logging mode, 21-7

local databases, 1-24
local indexes, 9-23, 9-27

bitmap indexes
on partitioned tables, 8-28
parallel query and DML, 8-24

managing partitions, 9-38
location transparency, 1-24
lock processes (LCKn), 1-19, 7-13
LOCK TABLE command, 14-4
LOCK_SGA parameter, 6-12, 6-16
LOCK_SGA_AREAS parameter, 6-12, 6-16
locks, 1-22, 23-3

after committing transactions, 15-6
automatic, 1-23, 23-14, 23-18
conversion, 23-16
data, 23-19

duration of, 23-15
deadlocks, 23-16, 23-17

avoiding, 23-18
 Index-19

locks (continued)
dictionary, 23-26

clusters and, 23-28
duration of, 23-28

dictionary cache, 23-29
DML acquired, 23-26

diagrammed, 23-24
DML partition locks, 9-30
escalation does not occur, 23-16
exclusive table locks (X), 23-24
file management locks, 23-29
how Oracle uses, 23-14
internal, 23-28
latches and, 23-28
log management locks, 23-29
manual, 1-23, 23-29

examples of behavior, 23-30
object level locking, 11-13
Oracle Lock Management Services, 23-40
overview of, 1-22, 23-3
parallel cache management (PCM), 23-19
parallel DML, 22-36
parse, 14-11, 23-28
rollback segment, 23-29
row (TX), 23-19
row exclusive locks (RX), 23-22
row share table locks (RS), 23-22
share row exclusive locks (SRX), 23-23
share table locks (S), 23-23
share-sub-exclusive locks (SSX), 23-23
sub-exclusive table locks (SX), 23-22
sub-share table locks (SS), 23-22
table (TM), 23-20
table lock modes, 23-21
tablespace, 23-29
types of, 23-18

log management locks, 23-29
log sequence numbers, 1-37
log writer process (LGWR), 1-18, 7-9

archiving modes, 28-16
group commits, 7-10
manual archiving and, 28-18
multiple I/O processes, 7-11
redo log buffers and, 6-6
system change numbers, 15-5

write-ahead, 7-10
LOG_ARCHIVE_START parameter, 28-17
LOG_BUFFER parameter, 6-6

system global area size and, 6-12
LOG_CHECKPOINT_INTERVAL parameter, 7-8
LOG_CHECKPOINT_TIMEOUT parameter, 7-8
LOG_FILES parameter, 6-15
logging mode

direct-load INSERT, 21-5
NOARCHIVELOG mode and, 21-5
parallel DDL, 22-25, 22-27
partitions, 9-37
SQL operations affected by, 21-7

logical blocks, 2-2
logical database structure, 1-6
logical reads limit, 25-11
logical structures, 1-8
LONG datatype

automatically the last column, 8-7
defined, 10-5
partitioning restriction, 9-12
storage of, 8-7

LONG RAW datatype, 10-11
indexing prohibited on, 10-11
partitioning restriction, 9-12
similarity to LONG datatype, 10-11

LOW_VALUE column
of USER_TAB_COLUMNS view, 20-60

LRU, 6-3, 6-4, 7-8
dictionary cache, 4-4
latches, 7-8
shared SQL pool, 6-8, 6-10

M
MAC, 1-34
mandatory access control, 1-34
manual locking, 1-23, 23-29
manual refresh, 31-10
map methods, 1-53, 11-6
massively parallel processing (MPP)

affinity, 22-6, 22-40, 22-41
multiple Oracle instances, 5-2
parallel SQL execution, 22-2

master definition site, 31-18
Index-20

master group, 31-17
master site, 31-17
master table

snapshot log, 31-8
matching foreign keys

full, partial, or none, 24-15
MAXVALUE

partitioned tables and indexes, 9-15
media failure, 1-36, 28-5
memory

allocation for SQL statements, 6-10
content of, 6-2
cursors (statement handles), 1-15
extended buffer cache (32-bit), 6-13
overview of structures in, 1-13
processes use of, 7-2
shared SQL areas, 6-8
software code areas, 6-16
sort areas, 6-15
stored procedures, 17-8, 17-15
structures in, 6-2
system global area (SGA)

allocation in, 6-2
initialization parameters, 6-12
locking into physical memory, 6-12, 6-16
SGA size, 6-11
starting address, 6-13

virtual, 6-16
MERGE hint, 20-26
MERGE_AJ hint, 20-74
MERGE_SJ hint, 20-74
merging complex views, 20-25
merging views into statements, 20-24
message queuing, 16-2

exporting queue tables, 16-8
messages, 16-3
queue monitor process, 1-19, 7-13, 16-4

interval statistics, 16-8
window of execution, 16-5

queue tables, 16-4
remote databases, 16-8

methods
comparison methods, 11-6
constructor methods, 11-6

literal invocation, 12-7

methods of collections
constructor methods, 1-53

methods of object types, 1-53, 11-4
constructor methods, 1-53, 12-4
execution privilege for, 12-10
map methods, 1-53, 11-6
order methods, 1-53, 11-6
PL/SQL, 11-12
purchase order example, 11-2, 11-5
selfish style of invocaton, 11-5
use of empty parentheses with, 12-3

MINIMUM EXTENT parameter, 22-28
MINUS operator

compound queries, 20-14
optimizing view queries, 20-25

MLSLABEL datatype, 10-16
modes

archive log, 28-16
exclusive, 5-6
shared, 5-6
single-task, 7-16
table lock, 23-21
two-task, 7-16, 7-18

monitoring user actions, 1-33, 27-2
MOVE PARTITION command

no-logging mode, 21-7
rules of parallelism, 22-21

MPP
See massively parallel processing

MTS_MAX_SERVERS parameter, 7-23
artificial deadlocks and, 7-24

MTS_SERVERS parameter, 7-23
multiblock writes, 7-8
multi-master replication, 31-13
multimedia datatypes, 11-3
multiple-process systems (multiuser systems), 7-3
multiplexing

control files, 1-38, 28-20
recovery and, 28-6
redo log files, 1-37

multithreaded server, 7-20
artificial deadlocks in, 7-23
dedicated server contrasted with, 7-20
described, 7-16, 7-20
dispatcher processes, 1-18, 7-13
 Index-21

multithreaded server (continued)
example of use, 7-26
Net8 or SQL*Net V2 requirement, 7-14, 7-20
processes needed for, 7-20
restricted operations in, 7-24
server processes, 1-17, 7-14, 7-23
shared server processes, 7-14, 7-23

multiuser environments, 1-2, 7-3
multiverison consistency model, 1-21
multiversion concurrency control, 23-5

N
name resolution in distributed databases, 30-6
named user licensing, 25-15
National Language Support (NLS)

character sets for, 10-4
CHECK constraints and, 24-17
clients and servers may diverge, 30-19
NCHAR and NVARCHAR2 datatypes, 10-4
NCLOB datatype, 10-10
parameters, 5-4
views and, 8-12

NCHAR datatype, 10-4
NCLOB datatype, 10-10
nested loops joins, 20-63

cost-based optimization, 20-69
nested tables, 8-9, 11-10

indexes, 12-9
Net8, 1-7, 1-26, 29-5, 30-4

Advanced Networking Option, 30-17
applications and, 29-5
client/server systems use of, 29-5
multithreaded server requirement, 7-14, 7-20
overview of, 29-5

networks
client/server architecture use of, 29-2
communication protocols, 7-27, 7-28, 29-5
dispatcher processes and, 7-14, 7-20
distributed databases, 30-2, 30-4
drivers, 7-27
failures of, 28-3
listener processes of, 7-14
Net8, 29-5, 30-4
network authentication service, 25-4

Oracle Names, 30-4
two-task mode and, 7-19
using Oracle on, 1-7, 1-26

NEXT storage parameter
parallel DML, 21-8

NLS
See National Language Support

NLS_DATE_FORMAT parameter, 10-7
NLS_LANG environment variable, 9-15
NLS_LANGUAGE parameter, 9-15
NLS_NUMERIC_CHARACTERS parameter, 10-6
NLS_SORT parameter

no effect on partitioning keys, 9-15
ORDER BY access path, 20-56

NOARCHIVELOG mode, 28-16
database backups for recovery, 28-21
defined, 28-16
LOGGING mode and, 21-5
overview, 1-38

NOAUDIT command, 14-4
locks, 23-27

nodes
disk affinity in a Parallel Server, 22-40
of distributed databases, 1-24

NOLOGGING mode
direct-load INSERT, 21-5
parallel DDL, 22-25, 22-27
partitions, 9-37
SQL operations affected by, 21-7

nonequijoins
defined, 20-13

non-prefixed indexes, 9-27
non-repeatable reads, 23-3, 23-10
non-unique indexes, 8-17
NOREVERSE option for indexes, 8-22
NOT, 20-17
NOT IN subquery, 20-74
NOT NULL constraints

constraint checking, 24-19
defined, 24-7
implied by PRIMARY KEY, 24-11
UNIQUE keys and, 24-10

novalidate constraints, 24-21
Novell NetWare Management System, 30-19
Index-22

nulls
as default values, 8-8
atomic, 12-6
column order and, 8-7
converting to values, 8-7

optimization, 20-72
defined, 8-7
foreign keys and, 24-14, 24-15
how stored, 8-7
indexes and, 8-8, 8-27
inequality in UNIQUE key, 24-10
non-null values for, 8-7, 20-72
object types, 12-6
partitioned tables and indexes, 9-15
prohibited in primary keys, 24-10
prohibiting, 24-7
UNIQUE key constraints and, 24-10
unknown in comparisons, 8-7

NUM_DISTINCT column
USER_TAB_COLUMNS view, 20-60

NUM_ROWS column
USER_TABLES view, 20-60

NUMBER datatype, 10-5
internal format of, 10-7
rounding, 10-6

NVARCHAR2 datatype, 10-4
NVL function, 8-7

O
object cache

object views, 13-4
OCI, 11-13
privileges, 12-13
Pro*C, 11-13

object identifiers, 11-8, 13-3
for object types, 12-4

index on, 12-5
for object views, 13-3, 13-4
for row objects, 11-8
WITH OBJECT OID clause, 13-3, 13-4

object privileges, 26-3
See also schema object privileges

object tables, 11-3, 11-7
constraints, 12-8

indexes, 12-9
row objects, 11-8
triggers, 12-9
virtual object tables, 13-2

object types, 1-41, 11-2, 11-4
attributes of, 11-2, 11-4
column objects, 11-8

indexes, 12-9
comparison methods for, 11-6
constructor methods for, 1-53, 11-6, 12-4
incomplete, 12-14
locking in cache, 11-13
message queuing, 16-5
methods of, 1-53, 11-4

method calls, 12-3
PL/SQL, 11-12
purchase order example, 11-2, 11-5

mutually dependent, 12-13
object views, 8-14
Oracle type translator, 11-14
purchase order example, 11-2, 11-4
row objects, 11-8
use of table aliases, 12-2

object views, 8-14, 13-1
advantages of, 13-2
defining, 13-2
modifiability, 18-11
object identifiers for, 13-3, 13-4
row objects, 11-8
updating, 13-4
use of INSTEAD OF triggers with, 13-5

object-relational DBMS (ORDBMS), 1-41, 11-2
objects in a database schema, 1-6

See also schema objects
OCI, 7-27

anonymous blocks, 14-17
bind variables, 14-13
object cache, 11-13
OCIObjectFlush, 13-4
OCIObjectPin, 13-4
stored procedures, 14-18

offline backups
whole database backup, 28-21

offline redo log files, 1-37, 28-7
OIDs, 11-8, 12-4, 13-3, 13-4
 Index-23

WITH OBJECT OID clause, 13-3, 13-4
OLTP database, 9-4

batch jobs, 22-32
parallel DML, 22-31
partitioning indexes, 9-28
partitions, 9-5

online analytical processing (OLAP)
index-organized tables, 8-31

online redo log, 1-37, 28-7
archiving, 28-16, 28-17
checkpoints, 28-20
media failure, 28-6
multiplexed, 28-6
recorded in control file, 28-19

online transaction processing (OLTP), 9-4
reverse key indexes, 8-22

OPEN_CURSORS parameter, 14-7
managing private SQL areas, 6-9

OPEN_LINKS parameter, 6-15
operating systems

authentication by, 25-3
block size, 2-3
communications software, 7-28
privileges for administrator, 5-3
roles and, 26-16

operations in a relational database, 1-41
OPTIMAL storage parameter, 2-22
optimization, 20-2

choosing the approach, 20-40
conversion of expressions and predicates, 20-14
cost-based, 20-6, 20-69

choosing an access path, 20-58
examples of, 20-59
histograms, 20-8
remote databases and, 20-39

described, 20-2
DISTINCT, 20-25
distributed SQL statements, 20-39
execution plan for partitions, 9-10, 9-12
GROUP BY views, 20-25
hints, 20-42, 20-44
index build, 8-17
manual, 20-42
merging complex views, 20-25
merging views into statements, 20-24

non-null values for nulls, 20-72
operations performed, 20-12
parallel SQL, 22-9
partition pruning, 9-3

indexes, 9-28
partitioned indexes, 9-28
PL/SQL, 20-42
rule-based, 20-11, 20-70

choosing an access path, 20-62
examples of, 20-62

selectivity of queries and, 20-59
select-project-join views, 20-24
semi-joins, 20-74
statistics, 20-41
transitivity and, 20-17
types of SQL statements, 20-13
without merging, 20-34

OPTIMIZER_GOAL option, 20-41
OPTIMIZER_MODE, 20-40

hints affecting, 20-42
Oracle

adherence to standards, 1-3
integrity constraints, 24-5

architecture, 1-8, 1-13
client/server architecture of, 29-2
compatibility, 1-4
configurations of, 7-2, 7-16

multiple-process Oracle, 7-3, 7-16
single-process Oracle, 7-2

connectibility, 1-4
different Oracle versions, 30-7

data access, 1-48
examples of operations, 1-19, 7-24
features, 1-2
instances, 1-6, 1-15, 5-2
licensing of, 25-14
Oracle server, 1-4
Parallel Server option, 1-8

See also Parallel Server
portability, 1-4
processes of, 1-16, 7-5
scalability of, 29-4
SQL processing, 14-8
Trusted Oracle, 1-34
using on networks, 1-4, 1-26
Index-24

Oracle AQ, 16-1
exporting queue tables, 16-8
message queuing, 16-2
queue monitor process, 1-19, 7-13, 16-4

interval statistics, 16-8
window of execution, 16-5

queue tables, 16-4
remote databases, 16-8

Oracle blocks, 1-10, 2-2
See also data blocks

Oracle Call Interface (OCI), 7-27
anonymous blocks, 14-17
bind variables, 14-13
object cache, 11-13
OCIObjectFlush, 13-4
OCIObjectPin, 13-4
stored procedures, 14-18

Oracle code, 7-2, 7-27
Oracle Enterprise Manager

See Enterprise Manager
Oracle Forms

object dependencies and, 19-11
PL/SQL, 14-16

Oracle Names
global directory service, 30-4

Oracle Open Gateways, 30-8
Oracle Parallel Server, 1-8

See also Parallel Server
Oracle precompilers

anonymous blocks, 14-17
bind variables, 14-13
cursors, 14-10
embedded SQL, 14-5
FIPS flagger, 14-6
stored procedures, 14-18

Oracle program interface (OPI), 7-27
Oracle Replication Manager, 31-17
Oracle Security Server, 30-17
Oracle server, 1-4

See also Oracle
Oracle type translator (OTT), 11-14
ORDBMS, 1-41, 11-2
order methods, 1-53, 11-6
ORDERED hint, 20-70
OTT, 11-14

outer joins
defined, 20-13
non-null values for nulls, 20-72

P
P code, 17-16
packages, 17-4, 17-10

advantages of, 17-13
as program units, 1-52
auditing, 27-8
dynamic SQL, 14-19
examples of, 17-10, 26-8, 26-9
executing, 14-16, 17-16
for locking, 23-40
overview of, 1-44
private, 17-14
privileges

divided by construct, 26-8
executing, 26-7, 26-8

public, 17-14
queuing, 16-4
session state and, 19-6
shared SQL areas and, 6-9
storing, 17-15
validity of, 17-16

pages, 2-2
parallel backup operations, 28-12
PARALLEL clause

parallelization rules, 22-17
parallel coordinator process, 22-6
parallel DDL

extent allocation, 22-27
parallelism types, 22-3
parallelization rules, 22-17
partitioned tables and indexes, 22-25

parallel DELETE, 22-18
parallel DML, 22-29

applications, 22-31
bitmap indexes, 8-24
degree of parallelism, 22-17, 22-19
enabling PARALLEL DML, 22-32
lock and enqueue resources, 22-36
parallelism types, 22-3
parallelization rules, 22-17
 Index-25

parallel DML (continued)
recovery, 22-34
restrictions, 22-37
transaction model, 22-33

PARALLEL hint, 22-13
parallelization rules, 22-17
UPDATE and DELETE, 22-18

parallel mode, 5-6
parallel propagation, 31-21
parallel query, 22-2

bitmap indexes, 8-24
full table scans, 22-5
inter-operator parallelism, 22-11
intra-operator parallelism, 22-11
parallelization rules, 22-17
partitioned tables and indexes, 22-4

parallel recovery, 28-12, 28-13
Parallel Server, 1-8

concurrency limits and, 25-15
databases and instances, 5-2
disk affinity, 22-40
distributed locks, 23-19
DML locks and performance, 9-31
exclusive mode, 5-6

rollback segments and, 2-24
file and log management locks, 23-29
instance groups, 22-16
isolation levels, 23-11
lock processes, 1-19, 7-13
mounting a database using, 5-6
named user licensing and, 25-16
parallel SQL, 22-1
PCM locks, 23-19
reverse key indexes, 8-22
shared mode, 5-6

rollback segments and, 2-24
system change numbers, 7-10
system monitor process and, 7-11

parallel server process, 22-6
parallel SQL

allocating rows to parallel server
processes, 22-9

coordinator process, 22-6
degree of parallelism, 22-13

instance groups, 22-16
multithreaded server, 22-8
number of parallel server processes, 22-7
operations in execution plan, 22-9
optimizer, 22-9
Parallel Server and, 22-1
parallelization rules, 22-17
summary or rollup tables, 22-26

parallel UPDATE, 22-18
PARALLEL_DEFAULT_MAX_SCANS parameter

(obsolete), 22-15
PARALLEL_DEFAULT_SCANSIZE parameter

(obsolete), 22-15
PARALLEL_INDEX hint, 22-13
PARALLEL_MAX_SERVERS parameter, 22-8
PARALLEL_MIN_PERCENT parameter, 22-15
PARALLEL_MIN_SERVERS parameter, 22-7, 22-8
PARALLEL_SERVER_IDLE_TIME parameter, 22-8
parameter files, 5-4

example of, 5-4
used at startup, 5-5

parameters
initialization, 5-4

locking behavior, 23-18
See also initialization parameters

National Language Support, 5-4
storage, 2-5, 2-11

parentheses, use of in method calls, 12-3
parse trees, 17-15

construction of, 14-7
in shared SQL area, 6-8
stored in database, 17-16

parsing, 14-11
DBMS_SQL package, 14-19
embedded SQL, 14-6
parse calls, 14-8
parse locks, 14-11, 23-28
performed, 14-8
SQL statements, 14-11, 14-19

partial backups, 28-22
partition views, 9-10
partitioning columns, 9-12
partitioning keys, 9-12, 9-15

multi-column keys, 9-16
Index-26

partitions, 9-2, 9-11
advantages of, 9-4, 9-6
affinity, 22-40
basic partitioning model, 9-11
bitmap indexes, 8-28
concurrent maintenance operations, 9-33
DML partition locks, 9-30
dynamic partitioning, 22-6
equipartitioning, 9-18
EXCHANGE PARTITION, 9-10
execution plan, 9-10, 9-12
global indexes, 9-25, 9-39
local indexes, 9-23, 9-38
LONG and LONG RAW restriction, 9-12
maintenance operations, 9-31
no-logging mode, 21-7
OLTP databases, 9-5
parallel DDL, 22-25
parallel queries, 22-4
partition bounds, 9-14
partition names, 9-14
partition pruning, 9-3

disk striping and, 22-41
indexes, 9-28
parallelizing by block range, 22-4
TO_DATE format mask, 9-12, 9-16

partition transparency, 9-9
partition-extended table names, 9-42
partitioning indexes, 9-22, 9-28
partitioning keys, 9-12, 9-15
partitioning tables, 9-21
physical attributes, 9-21, 9-29
prefixed indexes, 9-24
range partitioning, 9-12

disk striping and, 22-41
rebuild partition, 9-39
referencing a partition, 9-14
restrictions

bitmap indexes, 9-12
datatypes, 9-12, 9-16
partition-extended table names, 9-42

rules of parallelism, 22-21, 22-23
statistics, 9-12
VLDB, 9-4

passwords
account locking, 25-5
administrator privileges, 5-3
complexity verification, 25-6
connecting with, 7-5
connecting without, 25-3
database user authentication, 25-4
encryption, 25-4
expiration, 25-5
password files, 25-7
password reuse, 25-5
used in roles, 1-31

PCTFREE storage parameter
how it works, 2-6
PCTUSED and, 2-8

PCTINCREASE storage parameter
parallel DML, 21-9

PCTUSED storage parameter
how it works, 2-6
PCTFREE and, 2-8

performance
clusters and, 8-34
constraint effects on, 24-6
DSS database, 9-7, 22-31
dynamic performance tables (V$), 4-7
group commits, 7-10
I/O, 9-8
index build, 8-17
Oracle Parallel Server and DML locks, 9-31
packages, 17-14
parallel recovery and, 28-14
partitions, 9-7
prefixed and non-prefixed indexes, 9-28
recovery, 28-5
resource limits and, 25-10
SGA size and, 6-11
structures that improve, 1-45
viewing execution plans, 20-4

persistent areas, 6-8
persistent queuing, 16-2
PGA, 1-16, 6-13

multithreaded server, 7-23
phantom reads, 23-3, 23-10
physical database structure, 1-5
 Index-27

PL/SQL, 1-52, 14-15
anonymous blocks, 14-15, 17-9
auditing of statements within, 27-4
bind variables

user-defined types, 11-12
database triggers, 1-55, 18-1
datatypes, 10-2
dynamic SQL, 14-19
exception handling, 14-18
executing, 14-15, 17-16, 17-17
external procedures, 14-19, 17-9
language constructs, 14-17
object views, 13-4
optimizer goal, 20-42
packages, 17-4, 17-10
parse locks, 23-28
parsing DDL statements, 14-19
PL/SQL engine, 14-15, 17-2

compiler, 17-15
executing a procedure, 17-17
products containing, 14-16

program units, 1-44, 6-9, 14-15, 17-2
compiled, 14-16, 17-8, 17-15
shared SQL areas and, 6-9

roles disabled in named PL/SQL blocks, 26-14
stored procedures, 1-44, 14-15, 17-2, 17-6
user locks, 23-40
user-defined datatypes, 11-12

plan
accessing views, 20-28, 20-31, 20-32
complex statements, 20-23
compound queries, 20-36, 20-37, 20-38
joining views, 20-34
joins, 20-63, 20-69
OR operators, 20-20
SQL execution, 14-4, 14-11
star transformation, 20-78

PMON background process, 7-12
See also process monitor process

portability, 1-4
precompilers

anonymous blocks, 14-17
bind variables, 14-13
cursors, 14-10
embedded SQL, 14-5

FIPS flagger, 14-6
stored procedures, 14-18

predicates
optimizing view queries, 20-24
partition pruning, 9-3

indexes, 9-28
pushing into a view, 20-27, 20-32

examples, 20-28, 20-30
prefixed indexes, 9-24, 9-27
prefixes of data dictionary views, 4-5
PRIMARY KEY constraints, 24-10

constraint checking, 24-19
described, 24-10
indexes used to enforce, 24-11

name of, 24-11
maximum number of columns, 24-11
NOT NULL constraints implied by, 24-11

primary key snapshot, 31-11
primary keys, 1-55, 24-10

advantages of, 24-10
defined, 24-3
optimization, 20-23
searches, 20-48

primary ownership, 31-23
private rollback segments, 2-23
private SQL areas

cursors and, 6-9
described, 6-8
how managed, 6-9
persistent areas, 6-8
runtime areas, 6-8

privileges
administrator

not audited, 27-5
auditing use of, 1-33, 27-7
checked when parsing, 14-11
granting, 1-30, 26-3, 26-4

examples of, 26-8, 26-9
grouping into roles, 1-30
overview of, 1-30, 26-2
partitioned tables and indexes, 9-41
procedures, 26-7

creating and altering, 26-8
executing, 17-16, 26-7
in packages, 26-8
Index-28

privileges (continued)
RESTRICTED SESSION, 25-15
revoked

object dependencies and, 19-6
revoking, 26-3, 26-4
roles, 26-10

restrictions on, 26-15
schema object, 26-3

DML and DDL operations, 26-4
granting and revoking, 26-4
overview of, 1-30
packages, 26-8
procedures, 26-7

system, 26-2
granting and revoking, 26-3
overview of, 1-30
user-defined types, 12-10

to start up or shut down a database, 5-3
trigger privileges, 26-8
user-defined types

acquired by role, 12-10
ALTER ANY TYPE, 12-10
checked when pinning, 12-13
column level for object tables, 12-13
CREATE ANY TYPE, 12-10
CREATE TYPE, 12-10
DELETE, 12-12, 12-13
DROP ANY TYPE, 12-10
EXECUTE, 12-10, 12-11, 12-12, 12-13
EXECUTE ANY TYPE, 12-10, 12-11
EXECUTE ANY TYPE with ADMIN

OPTION, 12-11
EXECUTE with GRANT option, 12-11
INSERT, 12-12, 12-13
SELECT, 12-12, 12-13
system privileges, 12-10
UPDATE, 12-12, 12-13
using, 12-11, 12-15

views, 26-6
creating, 26-6
using, 26-6

Pro*C/C++
processing SQL statements, 14-10
user-defined datatypes, 11-12

procedural replication, 31-26
detecting conflicts, 31-26
wrapper, 31-26

procedures, 14-15, 17-1, 17-6, 19-7
advantages of, 17-7
auditing, 27-8
contrasted with anonymous blocks, 17-8
contrasted with functions, 1-52, 17-2
cursors and, 14-17
dependency tracking in, 19-6
examples of, 17-6, 26-8, 26-9
executing, 14-16, 17-16
external procedures, 14-19, 17-9
INVALID status, 19-3, 19-6
prerequisites for compilation of, 19-5
privileges

create or alter, 26-8
executing, 26-7
executing in packages, 26-8

remote procedure calls, 30-11
roles disabled in, 26-14
security enhanced by, 17-7, 26-7
shared SQL areas and, 6-9
stored procedures, 14-15, 14-18, 17-2
storing, 17-15
triggers, 18-2
validity of, 17-16

process global area (PGA), 6-13
See also program global area

process monitor process (PMON)
cleans up timed-out sessions, 25-12
described, 1-18, 7-12
network failure, 28-3
parallel DML process recovery, 22-34
process failure, 28-3

processes, 7-2
archiver (ARCH), 1-18, 7-12
background, 1-17, 7-6

diagrammed, 7-6
checkpoint (CKPT), 1-18, 7-11
checkpoints and, 7-8
database writer (DBWn), 1-17, 7-8
dedicated server, 7-23
dispatcher (Dnnn), 1-18, 7-13
 Index-29

processes (continued)
distributed transaction resolution, 7-12
during recovery, 28-14
failure in, 28-3
job queue (SNPn), 1-19, 7-13

message propagation, 16-8
snapshot refresh, 31-9, 31-10

listener, 7-14
shared servers and, 7-20

lock (LCKn), 1-19, 7-13
log writer (LGWR), 1-18, 7-9
multiple-process Oracle, 7-3
multithreaded server, 7-20

artificial deadlocks and, 7-23
client requests and, 7-21

Oracle, 1-16, 7-5
single-process Oracle, 7-2

overview of, 1-16
parallel coordinator, 22-6
parallel server processes, 22-6
process monitor (PMON), 1-18, 7-12
queue monitor (QMNn), 1-19, 7-13, 16-4
recoverer (RECO), 1-18, 7-12

and in-doubt transactions, 1-25
server, 1-16, 1-24, 7-5

dedicated, 7-18
shared, 7-13, 7-14, 7-23

shadow, 7-18
structure, 7-2
system monitor (SMON), 1-18, 7-11
trace files for, 7-14
user, 1-16, 7-4

allocate PGAs, 6-13
recovery from failure of, 7-12
sharing server processes, 7-13, 7-14

processing
DDL statements, 14-14
distributed, 1-23
DML statements, 14-10
overview, 14-8
parallel SQL, 22-2
queries, 14-11

profiles
overview of, 1-32

password management, 25-5
when to use, 25-13

program global area (PGA), 1-16, 6-13
allocation of, 6-13
contents of, 6-13
multithreaded servers, 7-23
nonshared and writable, 6-13
size of, 6-14

program interface, 7-27
Oracle side (OPI), 7-27
overview of, 1-19
single-task mode in, 7-17
structure of, 7-27
two-task mode in, 7-19
user side (UPI), 7-27

program units, 1-44, 14-15, 17-2
prerequisites for compilation of, 19-5
shared pool and, 6-9

propagation
parallel, 31-21
serial, 31-21

propagator of replicated data, 31-22
pruning partitions, 9-3, 22-4, 22-41

index partitions, 9-4
indexes, 9-28
TO_DATE format mask, 9-12, 9-16

pseudocode, 17-16
triggers, 18-17

pseudocolumns
CHECK constraints prohibit

LEVEL and ROWNUM, 24-16
modifying views, 18-12
ROWID, 10-12
ROWNUM

cannot use indexes, 20-58
optimizing view queries, 20-25, 20-34

USER, 26-7
public rollback segments, 2-23
PUBLIC user group, 25-9, 26-14

validity of procedures, 17-16
purchase order example

object types, 11-2, 11-4
PUSH_JOIN_PRED hint, 20-73
PUSH_JOIN_PREDICATE parameter, 20-73
Index-30

Q
QMNn background process, 1-19, 7-13, 16-4

interval statistics, 16-8
window of execution, 16-5

queries
ad hoc, 22-26
compound

defined, 20-14
optimization of, 20-36
ORs converted to, 20-19

default locking of, 23-25
define phase, 14-12
defined, 20-13
describe phase, 14-12
distributed or remote, 30-10
fetching rows, 14-11
in DML, 14-3
index scans parallelized by partition, 22-5
location transparency and, 30-14
merged with view queries, 8-12
optimizing IN subquery, 20-25
optimizing view queries, 20-24
parallel processing, 22-2
phases of, 23-5
processing, 14-11
read consistency of, 1-22, 23-5
selectivity of, 20-59
star queries, 20-75
stored as views, 1-43, 8-10
table scans parallelized by rowid, 22-4
temporary segments and, 2-16, 14-12
triggers use of, 18-16

queue monitor process (QMNn), 1-19, 7-13, 16-4
interval statistics, 16-8
window of execution, 16-5

queuing, 16-2
exporting queue tables, 16-8
queue monitor process, 1-19, 7-13, 16-4

interval statistics, 16-8
window of execution, 16-5

queue tables, 16-4, 16-8
remote databases, 16-8

quotas
revoking tablespace access and, 25-9

setting to zero, 25-9
tablespace, 1-32, 25-8

temporary segments ignore, 25-9

R
range partitioning, 9-12
RAW datatype, 10-11
RDBMS, 1-41

object-relational DBMS, 1-41, 11-2
See also Oracle

read committed isolation, 23-6, 23-7
read consistency

defined, 1-21
multiversion consistency model, 1-21
queries, 14-12
rollback segments and, 2-18
snapshot too old message, 23-5
subqueries in DML, 23-13
transactions, 1-21, 23-6
triggers and, 18-14, 18-16

read snapshot time, 23-10
read uncommitted, 23-3
readers block writers, 23-10
read-only replication, 31-2, 31-4

uses of, 31-4
read-only snapshot, 31-6

refresh types, 31-9
read-only tablespaces

backing up, 28-23
described, 3-9
restrictions on, 3-10

read-only transactions, 1-22
reads

data block
limits on, 25-11

dirty, 23-2
repeatable, 23-6

real-time replication, 31-27
REBUILD INDEX command

no-logging mode, 21-7
rules of parallelism, 22-21

REBUILD INDEX PARTITION command, 9-39
no-logging mode, 21-7
rules of parallelism, 22-21
 Index-31

receiver of replicated data, 31-22
recoverer process (RECO), 1-18, 7-12

in-doubt transactions, 1-25, 5-7, 15-8
recovery

basic steps, 1-39, 28-9
database buffers and, 28-8
diagrammed, 28-15
disaster recovery, 28-24
distributed processing in, 7-12
instance

SMON process, 7-11
instance recovery, 28-4

incremental checkpoint, 28-5
opening a database, 5-7
parallel DML, 22-35
required after abort, 5-8

media recovery
dispatcher processes, 7-24
enabled or disabled, 28-16

of distributed transactions, 5-7
overview of, 1-34, 28-8
parallel DML, 22-34
parallel recovery, 28-13
parallel restore, 28-12
process recovery, 7-12, 28-3
recommendations for, 28-15
Recovery Manager, 1-40, 28-10
rolling back during, 28-9
rolling forward and, 28-9
standby database, 28-24
statement failure, 28-3
structures used in, 1-37, 28-7
whole database backups, 28-21

Recovery Manager, 1-40, 28-10
generating reports, 28-12
operating without a catalog, 28-11
parallel operations, 28-12
recovery catalog, 28-10

recursive SQL
cursors and, 14-7

redo log buffers, 1-15, 6-6
circularity, 7-9
committing a transaction, 7-10
log writer process and, 6-6
size of, 6-6

writing, 7-9
redo log files, 1-12, 28-7

archived, 1-37, 28-16
automatically, 28-17
errors in archiving, 28-18
manually, 28-18

archiver process (ARCH), 7-12
buffer management, 7-9
files named in control file, 28-19
log sequence numbers, 1-37

recorded in control file, 28-19
log writer process, 7-9
mode of, 1-38
multiplexed, 1-37

purpose of, 1-12
online or offline, 1-37, 28-7
overview of, 1-12, 1-37
parallel recovery, 28-13
physical database structure, 1-5
recovery and, 28-7
rolling forward and, 28-9
when temporary segments in, 2-17
written before transaction commit, 7-10

REF targets, 12-14
See also REFs

referenced
keys, 1-55, 24-12
objects, 19-2
partitions, 9-14

REFERENCES privilege
when granted through a role, 26-15

referential integrity, 23-11, 24-12
cascade rule, 24-3
examples of, 24-17
partially null foreign keys, 24-15
PRIMARY KEY constraints, 24-10
restrict rule, 24-3
self-referential constraints, 24-14, 24-17
set to default rule, 24-3
set to null rule, 24-3

refresh
job queue processes (SNPn), 1-19, 7-13

refresh group, 31-9
automatic refresh, 31-9
manual refresh, 31-10
Index-32

refresh interval
snapshot refresh group, 31-9

refresh types
read-only snapshots, 31-9

REFs, 11-8
constructing from object identifiers, 12-4, 12-5
dangling, 11-8, 11-9
dereferencing of, 11-9
for rows of object views, 13-3
implicit dereferencing of, 11-9
indexes on, 12-9
mutually dependent types, 12-13
pinning, 12-13, 13-4
potential REF targets
REF targets, 12-14
scoped, 11-8, 12-5
size of, 12-5
use of table aliases, 12-2

relational DBMS (RDBMS)
object-relational DBMS, 11-2
principles, 1-40
SQL and, 14-2
See also Oracle

relations, 1-42
remote databases, 1-24, 30-2

database links, 30-6
See also distributed databases

remote dependencies, 19-9
remote procedure calls, 30-11, 31-19
remote transactions, 30-11
REMOTE_DEPENDENCIES_MODE

parameter, 19-9
RENAME command, 14-4
repeatable reads, 23-3
replication, 31-1

administrator, 31-22
basic, 31-2, 31-4
catalog, 31-18
conflicts, 31-22

column groups, 31-25
data models and, 31-23
detecting, 31-24
procedural replication, 31-26
resolution methods, 31-25
resolving, 31-25

row-level replication, 31-24
definition, 31-2

distributed databases vs., 30-7
group, 31-17
object, 31-17
procedural, 31-26
propagator, 31-22
real-time, 31-27
receiver, 31-22
restrictions

direct-load INSERT, 21-10
parallel DML, 22-38

site, 31-17
symmetric, 31-11, 31-12
uses of read-only, 31-4
uses of symmetric, 31-12

replication management API, 31-18
Replication Manager, 31-17
reserved words, 14-3
resource limits

call level, 25-11
connect time per session, 25-12
CPU time limit, 25-11
determining values for, 25-13
idle time per session, 25-12
logical reads limit, 25-11
overview of, 1-32
private SGA space per session, 25-12
session level, 25-10
sessions per user, 25-12

RESOURCE role, 26-16
user-defined types, 12-10, 12-11

response queues, 7-21
response time, 20-7

cost-based approach, 20-40
restricted mode

starting instances in, 5-5
restricted ROWID format, 10-13
RESTRICTED SESSION privilege, 25-15
restrictions

direct-load INSERT, 21-9
parallel DML and direct-load INSERT, 22-37
partition views, 9-11
partitions

bitmap indexes, 9-12
 Index-33

restrictions (continued)
datatypes, 9-12, 9-16
partition-extended table names, 9-42

reverse key indexes, 8-22
REVERSE option for indexes, 8-22
REVOKE command, 14-4

FORCE option, 12-15
locks, 23-27
object types and dependencies, 12-15

roles, 1-31, 26-10
application, 26-12
CONNECT role, 12-10, 12-11, 26-16
DBA role, 12-10, 26-16
DDL statements and, 26-14
dependency management in, 26-15
disabled in named PL/SQL blocks, 26-14
distributed database applications, 30-16
enabled or disabled, 26-13
EXP_FULL_DATABASE role, 26-16
functionality, 26-2
global authentication service, 30-16
granting, 26-3, 26-13
IMP_FULL_DATABASE role, 26-16
in applications, 1-31
managing via operating system, 26-16
naming, 26-14
overview of, 1-31
predefined, 26-16
queue administrator, 16-5
RESOURCE role, 12-10, 12-11, 26-16
restrictions on privileges of, 26-15
revoking, 26-13
schemas do not contain, 26-14
security domains of, 26-14
use of passwords with, 1-31
user, 26-12
users capable of granting, 26-13
uses of, 26-11

rollback, 2-17, 15-6
defined, 1-50
described, 15-6
during recovery, 1-40, 28-9
ending a transaction, 15-2, 15-4, 15-6
fast transaction rollback, 28-10
statement-level, 15-4

to a savepoint, 15-6
ROLLBACK command, 14-5
rollback entries, 2-17
rollback segments, 1-11, 2-17

access to, 2-17
acquired during startup, 5-7
allocation of extents for, 2-19

new extents, 2-21
clashes when acquiring, 2-24
committing transactions and, 2-19
contention for, 2-19
deallocating extents from, 2-22
deferred, 2-27
defined, 1-11
dropping, 2-22

restrictions on, 2-27
how transactions write to, 2-19
in-doubt distributed transactions, 2-21
invalid, 2-25
locks on, 23-29
moving to the next extent of, 2-20
number of transactions per, 2-19
offline, 2-25, 2-27
offline tablespaces and, 2-27
online, 2-25, 2-27
overview of, 2-17, 28-8
parallel recovery, 28-10
partly available, 2-25, 28-4
private, 2-23
public, 2-23
read consistency and, 1-21, 2-18, 23-4
recovery needed for, 2-25
states of, 2-25
SYSTEM rollback segment, 2-23
transactions and, 2-18
use of in recovery, 1-38, 28-9
when acquired, 2-23
when used, 2-18
written circularly, 2-19

rolling back during recovery, 28-9
rolling back transactions, 1-51, 15-2, 15-6

fast warmstart, 28-4
rolling forward during recovery, 1-39, 28-9
root blocks, 8-41
row cache, 6-10
Index-34

row data (section of data block), 2-5
row directories, 2-4
row locking, 23-10, 23-19

serializable transactions and, 23-8
row objects, 11-8
row pieces, 8-5

headers, 8-5
how identified, 8-7

row sources, 20-3
row triggers, 18-7, 18-8

when fired, 18-14
See also triggers

ROWID datatype, 10-12
extended ROWID format, 10-12
restricted ROWID format, 10-13

ROWID snapshot, 31-11
ROWIDs, 8-7

accessing, 10-12
changes in, 10-12
in non-Oracle databases, 10-15
in REFs, 12-5
internal use of, 10-15
of clustered rows, 8-7
sorting indexes by, 8-21
table access by, 20-43

ROWLABEL column, 10-16
row-level locking, 23-10, 23-19
row-level replication, 31-19

detecting conflicts, 31-24
ROWNUM pseudocolumn

cannot use indexes, 20-58
optimizing view queries, 20-25, 20-34

rows, 1-42, 8-3
addresses of, 8-7
chaining across blocks, 2-10, 8-5
clustered, 8-6

ROWIDs of, 8-7
defined, 1-42
described, 8-3
fetched, 14-11
format of in data blocks, 2-4
headers, 8-5
locking, 23-10, 23-19
locks on, 9-30, 23-19, 23-22
pieces of, 8-5

row objects, 11-8
row overflow in index-organized tables, 8-29
row sources, 20-3
ROWIDs used to locate, 20-43, 20-47
shown in ROWIDs, 10-13, 10-14
size of, 8-5
storage format of, 8-5
triggers on, 18-8
when ROWID changes, 10-12

RPC, 30-11, 31-19
RULE hint

OPTIMIZER_MODE and, 20-42
rule-based optimization, 20-11
runtime areas, 6-8

S
same-row writers block writers, 23-10
SAVEPOINT command, 14-5
savepoints, 1-51, 15-7

described, 15-7
implicit, 15-4
overview of, 1-51
rolling back to, 15-6

scalability
batch jobs, 22-32
client/server architecture, 29-4
parallel DML, 22-31
parallel SQL execution, 22-2

scans, 20-43
cluster, 20-47, 20-48, 20-49, 20-50

indexed, 20-50
fast full index scan, 20-44
full table, 20-43, 20-57

LRU algorithm, 6-4
multiblock reads, 20-59
parallel query, 22-5
rule-based optimizer, 20-62

hash cluster, 20-48, 20-50
index, 20-43

bitmap, 20-45
bounded range, 20-53
cluster key, 20-50
composite, 20-51
MAX or MIN, 20-55
 Index-35

scans, index (continued)
ORDER BY, 20-56
restrictions, 20-57
selectivity and, 20-59
single-column, 20-51
unbounded range, 20-54

range, 20-44, 20-51
bounded, 20-53
MAX or MIN, 20-55
ORDER BY, 20-56
unbounded, 20-54

table scan and CACHE clause, 6-4
unique, 20-44, 20-48, 20-50

schema names
in distributed databases, 30-6
qualifying column names, 12-3
unique within a database, 30-6

schema object privileges, 26-3
DML and DDL operations, 26-4
granting and revoking, 26-4
overview of, 1-30
views, 26-6

schema objects, 8-1
auditing, 1-33, 27-8
creating

tablespace quota required, 25-8
default tablespace for, 25-8
defined, 1-6
dependencies of, 19-2

and distributed databases, 19-11
and views, 8-13
on non-existence of other objects, 19-7
triggers manage, 18-14

dependent on lost privileges, 19-6
global names, 30-6
in a revoked tablespace, 25-9
information about, 4-2
INVALID status, 19-3
names in distributed databases, 30-6
overview of, 1-10, 1-42, 8-2
privileges on, 26-3
relationship to datafiles, 3-12, 8-2
trigger dependencies on, 18-18
user-defined types, 11-3

schemas, 25-2
associated with users, 1-28, 8-2
contents of, 8-2
contrasted with tablespaces, 8-2
defined, 25-2
objects in, 8-2
user-defined datatypes, 11-12

SCN, 15-5
See also system change numbers

scoped REFs, 11-8, 12-5
security, 1-31, 25-2

administrator privileges, 5-3
application enforcement of, 1-31
auditing, 27-2, 27-6
auditing user actions, 1-33
data, 1-28
data encryption, 30-17
deleting audit data, 4-5
described, 1-27
discretionary access control, 1-28, 25-2
distributed databases, 30-16
domains, 1-29, 25-2
enforcement mechanisms, 1-28
message queues, 16-5
passwords, 25-4
procedures enhance, 26-7
program interface enforcement of, 7-27
system, 1-28, 4-3
views and, 8-11
views enhance, 26-6

security domains, 1-29, 25-2
enabled roles and, 26-13
tablespace quotas, 25-8

segments, 1-10, 2-15
data, 2-15
deallocating extents from, 2-13
defined, 2-3
header block, 2-11
index, 2-15
overview of, 1-10, 2-15
rollback, 2-17
temporary, 1-11, 2-16

allocating, 2-16
cleaned up by SMON, 7-11
Index-36

segments, temporary (continued)
dropping, 2-14
ignore quotas, 25-9
operations that require, 2-16
parallel INSERT, 21-8
tablespace containing, 2-14, 2-16

SELECT command, 14-3
subqueries, 14-12
See also queries

SELECT privilege for object tables, 12-12, 12-13
selectivity of queries, 20-59
select-project-join views, 20-24
selfish style of method invocation, 11-5
semi-joins, 20-74
sequences, 1-43, 8-15

auditing, 27-8
CHECK constraints prohibit, 24-16
coordinated generation, 31-24
independence from tables, 8-15
length of numbers, 8-15
number generation, 8-14

serial propagation, 31-21
Server Manager

ALERT file, 7-15
executing a package, 17-6
executing a procedure, 17-4
lock and latch monitors, 23-28
PL/SQL, 14-17, 14-18
session variables, 14-17
showing size of SGA, 6-12
SQL statements, 14-2
statistics monitor, 25-13

server processes, 1-16, 7-5
servers, 1-23

client/server architecture, 29-2
dedicated, 1-17, 7-18

multithreaded contrasted with, 7-20
dedicated server architecture, 7-16
defined, 1-24
multithreaded, 1-17

architecture, 7-16, 7-20
dedicated contrasted with, 7-20
processes of, 7-13, 7-14, 7-20, 7-23

processes of, 1-16
shared, 1-17

session control statements, 1-49, 14-5
SESSION_ROLES view

queried from PL/SQL block, 26-14
sessions

auditing by, 27-10
connections contrasted with, 7-4
defined, 7-5, 27-10
enabling PARALLEL DML, 22-32
limit on concurrent, 1-32

by license, 25-14
limits per user, 25-12
package state and, 19-6
resource limits and, 25-10
stack space in PGA, 6-13
time limits on, 25-12
transaction isolation level, 23-30
when auditing options take effect, 27-6
where information is stored, 6-13

SET CONSTRAINTS command
DEFERRABLE or IMMEDIATE, 24-20

SET ROLE command, 14-5
SET TRANSACTION command, 14-5

ISOLATION LEVEL, 23-7, 23-30
READ ONLY, 2-18

SGA
See system global area

shadow column group, 31-25
shadow processes, 7-18
share locks

share table locks (S), 23-23
shared global area (SGA), 6-2

See also system global area
shared mode, 5-6

rollback segments, 2-24
shared ownership, 31-24
shared pool, 6-6

allocation of, 6-10
ANALYZE command and, 6-11
dependency management and, 6-11
flushing, 6-11
object dependencies and, 19-8
overview of, 1-15
procedures and packages, 17-15
row cache and, 6-10
size of, 6-6
 Index-37

shared server processes (Snnn), 7-14, 7-23
described, 7-23

shared servers, 1-17
cannot connect with administrator

privileges, 5-3
shared SQL areas, 6-8, 14-7

ANALYZE command and, 6-11
dependency management and, 6-11
described, 6-8
loading SQL into, 14-11
overview of, 1-15, 14-7
parse locks and, 23-28
procedures, packages, triggers and, 6-9
size of, 6-8

SHARED_MEMORY_ADDRESS parameter, 6-13
SHARED_POOL_SIZE parameter, 6-6

system global area size and, 6-12
shutdown, 5-8, 5-9

abnormal, 5-6, 5-9
deallocation of the SGA, 6-2
prohibited by dispatcher processes, 7-24
steps, 5-8

SHUTDOWN ABORT command, 5-9
signature checking, 19-9
Simple Network Management Protocol (SNMP)

support
database management, 30-19

simple snapshot
structure, 31-7

single-process systems (single-user systems), 7-2
single-task mode, 7-16
site autonomy, 1-25, 30-15
skewing parallel DML workload, 22-16
SMON background process, 7-11

See also system monitor process
SMP architecture

disk affinity, 22-41
snapshot

complex, 31-10
defining query, 31-7
group, 31-18
log, 31-8
primary key, 31-11
read-only, 31-6
refresh, 7-13, 31-8, 31-10

rowid, 31-11
simple

structure, 31-7
site, 31-18
subquery, 31-7
updatable, 31-14
updating, 31-8

snapshot refresh
complete, 31-8
fast, 31-8
group

refresh interval, 31-9
groups, 31-9
job queue processes (SNPn), 1-19, 7-13

automatic snapshot refresh, 31-9
snapshot log and, 31-8

snapshot too old message, 23-5
Snnn background processes, 7-14
SNPn background processes, 1-19, 7-13

for automatic snapshot refresh, 31-9, 31-10
message propagation, 16-8

software code areas, 6-16
shared by programs and utilities, 6-17

SOME, 20-15
sort areas, 6-15
sort direct writes feature, 6-16
SORT_AREA_RETAINED_SIZE parameter, 6-15
SORT_AREA_SIZE parameter, 2-16, 6-15

cost-based optimization and, 20-70
SORT_DIRECT_WRITES parameter, 6-16
sort-merge joins, 20-65

access path, 20-55
cost-based optimization, 20-70
example, 20-55

space management
compression of free space, 2-9
direct-load INSERT, 21-8
MINIMUM EXTENT parameter, 22-28
parallel DDL, 22-27
PCTFREE, 2-6
PCTUSED, 2-6
row chaining, 2-10
segments, 2-15

spatial applications
index-organized tables, 8-31
Index-38

SPLIT PARTITION command
no-logging mode, 21-7
rules of parallelism, 22-21

SQL, 14-2
cursors used in, 14-6
Data Definition Language (DDL), 14-4
Data Manipulation Language (DML), 14-3
dynamic SQL, 14-19
embedded, 1-49, 14-5

user-defined datatypes, 11-13
functions, 14-2

column default values, 8-8
COUNT, 8-27
in CHECK constraints, 24-16
NVL, 8-7
optimizing view queries, 20-25, 20-32

memory allocation for, 6-10
overview of, 1-48, 14-2
parallel execution, 22-2
parsing of, 14-7
PL/SQL and, 1-52, 14-15
recursive, 14-6

cursors and, 14-7
reserved words, 14-3
session control statements, 14-5
shared SQL, 14-7
statement-level rollback, 15-4
system control statements, 14-5
transaction control statements, 14-5
transactions and, 1-49, 15-2, 15-5
types of statements in, 1-48, 14-3

optimizing, 20-13
user-defined datatypes, 11-12, 12-2

embedded SQL, 11-13
OCI, 11-13

SQL areas
private, 6-8

persistent, 6-8
runtime, 6-8

shared, 1-15, 6-8, 14-7
SQL statements, 1-48, 14-3, 14-8

array processing, 14-13
auditing, 27-7, 27-9

overview, 1-33
when records generated, 27-4

complex, 20-13, 20-22
optimizing, 20-22

converting
examples of, 20-19

creating cursors, 14-10
dictionary cache locks and, 23-29
distributed

defined, 20-14
optimization of, 20-39
routing to nodes, 14-11

distributed databases and, 30-10
embedded, 14-5
execution, 14-8, 14-13
execution plans of, 20-2
failure in, 28-2
handles, 1-15
number of triggers fired by single, 18-14
optimization

complex statements, 20-22
types of statements, 20-13

parallel query, 22-2
parallelizing, 22-2, 22-9
parse locks, 23-28
parsing, 14-11
privileges required for, 26-3
recursive

OPTIMIZER_GOAL does not affect, 20-41
referencing dependent objects, 19-4
resource limits and, 25-11
simple, 20-13
successful execution, 15-3
transactions, 14-14
triggers on, 18-2, 18-8

triggering events, 18-6
types of, 1-48, 14-3, 20-13

SQL*Loader
Direct Loader, 21-2
partition operations, 9-31, 9-33

SQL*Menu
PL/SQL, 14-16

SQL*Module
FIPS flagger, 14-6
stored procedures, 14-18

SQL*Net
See Net8
 Index-39

SQL*Plus
anonymous blocks, 14-17
connecting with, 25-3
SQL statements, 14-2
stored procedures, 14-18

SQL_TRACE parameter, 7-15
SQL92, 23-2
stack space, 6-13
standards, 1-3

ANSI/ISO, 1-3, 24-5, 24-15
isolation levels, 23-2, 23-10

FIPS, 1-3, 14-6
integrity constraints, 24-5, 24-15
Oracle adherence, 1-3

standby databases, 28-24
STAR hint, 20-76
star query, 20-76

extended star schemas, 20-76
hints, 20-76
indexes, 20-76
tuning, 20-75

star transformation, 20-76
example, 20-77
restrictions, 20-80

STAR_TRANSFORMATION hint, 20-79
STAR_TRANSFORMATION_ENABLED

parameter, 20-79
startup, 5-2, 5-5

allocation of the SGA, 6-2
starting address, 6-13

exclusive mode, 5-6
fast warmstart, 28-4
forcing, 5-6
prohibited by dispatcher processes, 7-24
recovery during, 28-4
restricted mode, 5-5
shared mode, 5-6
steps, 5-5

statement triggers, 18-7
described, 18-8
when fired, 18-14
See also triggers

statement-level read consistency, 23-5
statements

See SQL statements

static ownership, 31-23
statistics

ANALYZE command, 20-41
checkpoint, 7-11
optimizer use of, 20-6, 20-7
partitioned tables and indexes, 9-12
queuing, 16-8

storage
datafiles, 3-11
for parallel INSERT, 21-8
fragmentation in parallel DDL, 22-28
logical structures, 3-3, 8-2
nested tables, 12-5
object tables, 12-4
of hash clusters, 8-37
of index clusters, 8-34
of index partitions, 9-29
of indexes, 8-19
of nulls, 8-7
of table partitions, 9-21
of views, 8-12
REFs, 12-5
restricting for users, 25-8
revoking tablespaces and, 25-9
tablespace quotas and, 25-8
triggers, 18-2, 18-17
user quotas on, 1-32

STORAGE clause
parallel query, 22-27
using, 2-11

storage parameters
NEXT, 21-8
OPTIMAL (in rollback segments), 2-22
PCTINCREASE, 21-8
setting, 2-11

store-and-forward replication, 31-19
stored functions, 1-44, 17-2, 17-6
stored procedures, 1-44, 14-15, 17-2, 17-6

calling, 14-18
contrasted with anonymous blocks, 17-8
triggers contrasted with, 18-2
variables and constants, 14-17
See also procedures

Structured Query Language (SQL), 1-48, 14-2
See also SQL
Index-40

structures
locking, 23-26
logical, 1-6, 1-8

tablespaces, 3-3
physical, 1-5, 1-11

datafiles, 3-11
schema objects, 8-2

subqueries, 14-12
CHECK constraints prohibit, 24-16
converting to joins, 20-22
in DML statements

serializable isolation, 23-13
in remote updates, 30-10
NOT IN, 20-74
optimizing IN subquery, 20-25
See also queries

subquery snapshot, 31-7
SunSoft

SunNet Manager, 30-19
survivability, 28-24
symmetric replication, 31-3, 31-12

overview, 31-11
uses for, 31-12

synchronous data propagation, 31-27
synonyms, 19-7

constraints indirectly affect, 24-5
described, 8-15
for data dictionary views, 4-4
inherit privileges from object, 26-3
overview of, 1-44
private, 8-16
public, 8-16
uses of, 8-16

SYS username
audit records not generated by, 27-5
data dictionary tables owned by, 4-3
security domain of, 25-3

SYS.AUD$ view
purging, 4-5

SYSDBA privilege, 5-3
SYSOPER privilege, 5-3
system change numbers (SCN)

committed transactions, 15-5
defined, 15-5

read consistency and, 23-5
redo logs, 7-10
when determined, 23-5

system control statements, 1-49, 14-5
system global area (SGA), 6-2

allocating, 5-5
contents of, 6-3
data dictionary cache, 4-4
database buffer cache, 6-3
diagram, 5-2
fixed, 6-3
limiting use of in multithreaded server, 25-12
overview of, 1-15, 6-2
redo log buffer, 6-6, 15-5
rollback segments and, 15-5
shared and writable, 6-3
shared pool, 6-6
size of, 6-11

variable parameters, 5-4
when allocated, 6-2

system monitor process (SMON), 7-11
defined, 1-18, 7-11
instance recovery, 28-4
parallel DML instance recovery, 22-35
parallel DML system recovery, 22-35
Parallel Server and, 7-11, 22-35
rolling back transactions, 28-10
temporary segment cleanup, 7-11

system privileges, 26-2
ADMIN OPTION, 12-11, 26-3
described, 26-2
granting and revoking, 26-3
user-defined types, 12-10
See also privileges

SYSTEM rollback segment, 2-23
SYSTEM tablespace, 3-4

data dictionary stored in, 4-2, 4-5
media failure, 28-6
online requirement of, 3-7
procedures stored in, 17-16

SYSTEM username
security domain of, 25-3
 Index-41

T
table directories, 2-4
tables

affect dependent views, 19-5
auditing, 9-42, 27-8
base, 1-43

data dictionary use of, 4-2
relationship to views, 8-11

clustered, 8-32
contain integrity constraints, 1-54
contained in tablespaces, 8-5
controlling space allocation for, 8-4, 21-8
DUAL, 4-7
dynamic partitioning, 22-6
enable or disable constraints, 24-21
full table scan and buffer cache, 6-4
hash, 8-41
historical, 22-32
how data is stored in, 8-4
indexes and, 8-17
index-organized tables, 8-28
integrity constraints, 24-2, 24-5
locks on, 9-30, 23-20, 23-22, 23-23
maximum number of columns in, 8-10
nested tables, 8-9, 11-10

indexes, 12-9
no-logging mode, 21-7
novalidate constraints, 24-21
object tables, 11-3, 11-7

constraints, 12-8
indexes, 12-9
triggers, 12-9
virtual, 13-2

overview of, 1-42, 8-3
parallel creation, 22-26
parallel DDL storage, 22-27
parallel table scans, 22-4
partition-extended table names, 9-42
partitions, 9-2, 9-21
presented in views, 8-10
privileges for partitions, 9-41
privileges on, 26-4
queue tables, 16-4, 16-8
refreshing in data warehouse, 22-31

replicating, 1-26, 31-2, 31-3
specifying tablespaces for, 8-5
STORAGE clause with parallel query, 22-27
summary or rollup, 22-26
table aliases, 12-2, 12-3
table names

qualifying column names, 12-2, 12-3
triggers used in, 18-2
virtual or viewed, 1-43

tablespaces, 3-3
contrasted with schemas, 8-2
default for object creation, 1-32, 25-8
described, 3-3
how specified for tables, 8-5
locks on, 23-29
no-logging mode, 21-7
offline, 1-9, 3-7, 3-12

and index data, 3-9
cannot be read-only, 3-10
remain offline on remount, 3-8

online, 1-9, 3-7, 3-12
overview of, 1-9, 3-3
quotas on, 1-31, 1-32, 25-8

limited and unlimited, 25-8
no default, 25-8

read-only, 3-9
dropping objects from, 3-10

relationship to datafiles, 3-2
revoking access from users, 25-9
size of, 3-6
temporary, 1-32, 3-11

default for user, 25-8
used for temporary segments, 2-14, 2-16

tasks, 7-2
temporary segments, 2-14, 2-16

allocating, 2-16
deallocating extents from, 2-14
dropping, 2-14
ignore quotas, 25-9
operations that require, 2-16
parallel DDL, 22-28
parallel INSERT, 21-8
tablespace containing, 2-14, 2-16
when not in redo log, 2-17

temporary tablespaces, 3-11
Index-42

threads
multithreaded server, 7-13, 7-20

three-valued logic (true, false, unknown)
produced by nulls, 8-7

throughput, 20-7
cost-based approach, 20-40

timestamp checking, 19-9
TO_DATE function, 10-7

partition pruning, 9-12, 9-16
trace files, 7-14

DBWn, 28-6
LGWR trace file, 7-10

transaction control statements, 1-49, 14-5
transaction set consistency, 23-9, 23-10
transaction tables, 2-18

reset at recovery, 7-12
transactions, 1-49, 15-1

advanced queuing, 16-3
assigning system change numbers, 15-5
assigning to rollback segments, 2-18
asynchronous processing, 16-2
committing, 1-51, 7-10, 15-3, 15-5

group commits, 7-10
use of rollback segments, 2-19

concurrency and, 23-15
controlling transactions, 14-14
deadlocks and, 15-4, 23-16
defining and controlling, 14-14
described, 15-2
discrete transactions, 14-14, 15-8
distributed, 1-22

deadlocks and, 23-17
parallel DML restrictions, 22-40
resolving automatically, 7-12
two-phase commit, 1-25, 15-7, 30-12

distribution among rollback segments of, 2-19
end of, 15-4

consistent data, 14-14
in-doubt

limit rollback segment access, 2-27
resolving automatically, 1-25, 5-7, 15-8
resolving manually, 1-26
rollback segments and, 2-21
use partly available segments, 2-27

manual locking of, 23-30

overview of, 1-49
read consistency of, 1-21, 23-6
read-only, 1-22, 23-6

not assigned to rollback segments, 2-18
redo log files written before commit, 7-10
rollback segments and, 2-18
rolling back, 1-51, 15-6

and offline tablespaces, 2-27
partially, 15-6
use of rollback segments, 2-18

savepoints in, 1-51, 15-7
serializable, 23-6
space used in data blocks for, 2-5
start of, 15-4
statement level rollback and, 15-4
system change numbers, 7-10
terminating the application and, 15-5
transaction control statements, 14-5
triggers and, 18-16
two-phase commit in parallel DML, 22-34
writing to rollback segments, 2-19

TRANSACTIONS parameter, 2-24
TRANSACTIONS_PER_ROLLBACK_SEGMENT

parameter, 2-24
triggers, 1-55, 18-1, 19-7

action, 18-7
timing of, 18-8

AFTER triggers, 18-9
as program units, 1-53
auditing, 27-8
BEFORE triggers, 18-8
cascading, 18-3
constraints apply to, 18-14
constraints contrasted with, 18-5
data access and, 18-16
dependency management of, 18-18, 19-6

enabled triggers, 18-14
enabled or disabled, 18-14
enforcing data integrity with, 24-4
events, 18-6
examples of, 18-10, 18-12, 18-16
firing (executing), 18-2, 18-17

privileges required, 18-17
steps involved, 18-14
timing of, 18-14
 Index-43

triggers (continued)
INSTEAD OF triggers, 18-11

object views and, 13-5
INVALID status, 19-3, 19-6
maintain data integrity, 1-55
Oracle Forms triggers vs., 18-4
overview of, 1-55, 18-2
parts of, 18-5
privileges for executing, 26-8
procedures contrasted with, 18-2
prohibited in views, 8-11
restrictions, 18-7, 22-39

direct-load INSERT, 21-10
parallel DML, 22-38

roles disabled in, 26-14
row, 18-8
schema object dependencies, 18-14, 18-18
sequence for firing multiple, 18-14
shared SQL areas and, 6-9
statement, 18-8
storage of, 18-17
types of, 18-7
UNKNOWN does not fire, 18-7
user-defined types, 12-9
uses of, 18-3

TRUNCATE command, 14-4
Trusted Oracle

described, 1-34
mandatory access control, 1-34
MLSLABEL datatype, 10-16
mounting multiple databases in, 5-3

two-phase commit
described, 1-25, 30-12
manual override of, 1-26
parallel DML, 22-34
transaction management, 15-7
triggers, 18-14

two-task mode, 7-16, 7-18
described, 7-18
listener process and, 7-14
network communication and, 7-19
program interface in, 7-19

types
See datatypes, object types

U
undo, 1-11

See also rollback
UNION ALL operator

examples, 20-20, 20-22, 20-36
optimizing view queries, 20-25
transforming OR into, 20-19

UNION ALL views, 9-10
UNION operator

compound queries, 20-14
examples, 20-27, 20-37
optimizing view queries, 20-25

unique indexes, 8-17
UNIQUE key constraints, 24-8

composite keys, 24-8, 24-10
constraint checking, 24-19
indexes used to enforce, 24-9
maximum number of columns, 24-9
NOT NULL constraints and, 24-10
nulls and, 24-10
size limit of, 24-9

unique keys, 1-54, 1-55, 24-8
composite, 24-8, 24-10
optimization, 20-23
searches, 20-48

uniqueness conflict, 31-23
updatable snapshot, 31-14
UPDATE command, 14-4

foreign key references and, 24-15
freeing space in data blocks, 2-9
parallel UPDATE, 22-18
triggers and, 18-2, 18-6

BEFORE triggers, 18-8
INSTEAD OF triggers, 18-11

update no action constraint, 24-15
UPDATE privilege for object tables, 12-12, 12-13
updates

conflict in replicated data, 31-23
distributed, 30-11
location transparency and, 30-14
object views, 13-4
remote, 30-10
updatability of object views, 13-4
Index-44

updates (continued)
updatability of views, 8-13, 18-11, 18-12
updatable join views, 8-13
update intensive environments, 23-8

USE_INDIRECT_DATA_BUFFERS
parameter, 6-13

user locks, 23-40
user processes

allocate PGAs, 6-13
connections and, 7-4
dedicated server processes and, 7-18
sessions and, 7-5
shared server processes and, 7-23

user program interface (UPI), 7-27
USER pseudocolumn, 26-7
USER_ views, 4-6
USER_TAB_COLUMNS view, 20-60
USER_TABLES view, 20-60
USER_UPDATABLE_COLUMNS view, 8-14
user-defined datatypes, 11-1, 11-3, 12-1

collections, 11-9
nested tables, 11-10
variable arrays (VARRAYs), 11-10

Export and Import, 12-15
incomplete types, 12-13
object types, 11-2, 11-4

use of table aliases, 12-2
object-relational model, 1-41
privileges, 12-10
storage, 12-4

users, 25-2
access rights, 25-2
associated with schemas, 8-2
auditing, 27-12
authentication of, 25-3
coordinating concurrent actions of, 1-20
dedicated servers and, 7-18
default tablespaces of, 25-8
distributed databases, 30-16
licensing by number of, 25-15
licensing of, 25-14
listed in data dictionary, 4-2
multiuser environments, 1-2, 7-3
password encryption, 25-4

privileges of, 1-30
processes of, 1-16, 7-4
profiles of, 1-32, 25-13
PUBLIC user group, 25-9, 26-14
resource limits of, 25-10
restrictions on resource use of, 1-31
roles and, 26-10

for types of users, 26-12
schemas of, 1-28, 25-2
security domains of, 1-29, 25-2, 26-14
single-user Oracle, 7-2
tablespace quotas of, 1-32, 25-8
tablespaces of, 1-32
temporary tablespaces of, 1-32, 2-16, 25-8
usernames, 1-29, 25-2

sessions and connections, 7-5

V
V_$ and V$ views, 4-7

V$LICENSE, 25-15
VARCHAR datatype, 10-3
VARCHAR2 datatype, 10-3

non-padded comparison semantics, 10-3
similarity to RAW datatype, 10-11

variables
bind variables

optimization, 20-60
user-defined types, 11-12

embedded SQL, 14-6
in stored procedures, 14-17
object variables, 13-4

VARRAYs, 11-10
very large database (VLDB), 9-4

parallel SQL, 22-2
partitions, 9-4

views, 1-43, 8-10
altering base tables and, 19-5
auditing, 27-8
base tables, 1-43
complex view merging, 20-25
constraints and triggers prohibited in, 8-11
constraints indirectly affect, 24-5
containing expressions, 18-12
 Index-45

views (continued)
data dictionary

updatable columns, 8-13
user-accessible views, 4-3

definition expanded, 19-5
dependency status of, 19-5
histograms, 20-10
how stored, 8-11
indexes and, 8-12
inherently modifiable, 18-12
INVALID status, 19-3
maximum number of columns in, 8-10
modifiable, 18-12
modifying, 18-11
NLS parameters in, 8-12
non-null values for nulls, 20-72
object views, 8-14, 13-1

row objects, 11-8
updatability, 13-4

optimization, 20-24
overview of, 1-43, 8-10
partition statistics, 9-12
partition views, 9-10
prerequisites for compilation of, 19-5
privileges for, 26-6
pseudocolumns, 18-12
schema object dependencies, 8-13, 19-4, 19-7
security applications of, 26-6
select-project-join views, 20-24
SQL functions in, 8-12
updatability, 8-13, 13-4, 18-12
uses of, 8-11

virtual memory, 6-16
virtual tables, 1-43
VLDB

parallel SQL, 22-2
partitions, 9-4

W
waits for blocking transaction, 23-10
warehouse

refreshing table data, 22-31
See also data warehousing

whole database backups, 1-39, 28-21
WITH OBJECT OID clause, 13-3, 13-4
workload skewing, 22-16
wrapper

procedural replication, 31-26
write-ahead, 7-10
writers block readers, 23-10

Y
year 2000, 10-9
Index-46

	Contents
	Send Us Your Comments
	Preface
	Audience
	How This Manual Is Organized
	Part IX: Appendix

	How to Use This Manual
	Conventions Used in This Manual
	Your Comments Are Welcome

	Part I� What Is Oracle?
	1 Introduction to the Oracle Server
	Databases and Information Management
	The Oracle Server
	Oracle Databases

	Database Structure and Space Management
	Logical Database Structures
	Physical Database Structures

	Memory Structure and Processes
	Memory Structures
	Process Architecture
	The Program Interface
	An Example of How Oracle Works

	Data Concurrency and Consistency
	Concurrency
	Read Consistency
	Locking Mechanisms

	Distributed Processing and Distributed Databases
	Client/Server Architecture: Distributed Processing...
	Distributed Databases
	Table Replication
	Oracle and Net8

	Startup and Shutdown Operations
	Database Security
	Security Mechanisms
	Trusted Oracle

	Database Backup and Recovery
	Why Is Recovery Important?
	Types of Failures
	Structures Used for Recovery
	Basic Recovery Steps
	The Recovery Manager

	The Object-Relational Model for Database Managemen...
	The Relational Model
	The Object-Relational Model
	Schemas and Schema Objects
	The Data Dictionary

	Data Access
	SQL — The Structured Query Language
	Transactions
	PL/SQL
	Data Integrity

	Part II� Database Structures
	2 Data Blocks, Extents, and Segments
	The Relationships Among Data Blocks, Extents, and ...
	Data Blocks
	Data Block Format
	An Introduction to PCTFREE, PCTUSED, and Row Chain...

	Extents
	When Extents Are Allocated
	Determining the Number and Size of Extents
	How Extents Are Allocated
	When Extents Are Deallocated

	Segments
	Data Segments
	Index Segments
	Temporary Segments
	Rollback Segments

	3 Tablespaces and Datafiles
	An Introduction to Tablespaces and Datafiles
	Tablespaces
	The SYSTEM Tablespace
	Allocating More Space for a Database
	Bringing Tablespaces Online and Offline
	Read-Only Tablespaces
	Temporary Tablespaces

	Datafiles
	Datafile Contents
	Size of Datafiles
	Offline Datafiles

	4 The Data Dictionary
	An Introduction to the Data Dictionary
	The Structure of the Data Dictionary
	SYS, the Owner of the Data Dictionary
	How the Data Dictionary Is Used
	How Oracle Uses the Data Dictionary
	How Oracle Users Can Use the Data Dictionary

	The Dynamic Performance Tables

	Part III� The Oracle Instance
	5 Database and Instance Startup and Shutdown
	Overview of an Oracle Instance
	The Instance and the Database
	Connecting with Administrator Privileges
	Parameter Files

	Instance and Database Startup
	Starting an Instance
	Mounting a Database
	Opening a Database

	Database and Instance Shutdown
	Closing a Database
	Dismounting a Database
	Shutting Down an Instance

	6 Memory Structures
	Introduction to Oracle Memory Structures
	System Global Area (SGA)
	The Database Buffer Cache
	The Redo Log Buffer
	The Shared Pool
	Size of the SGA
	Controlling the SGA’s Use of Memory

	Program Global Areas (PGA)
	Contents of a PGA
	Size of a PGA

	Sort Areas
	Sort Direct Writes

	Virtual Memory
	Software Code Areas

	7 Process Structure
	Introduction to Processes
	Single-Process Oracle
	Multiple-Process Oracle
	User Processes
	Oracle Processes
	Trace Files and the ALERT File

	Variations in Oracle Configuration
	Single-Task Configuration
	Dedicated Server (Two-Task) Configuration
	The Multithreaded Server

	Examples of How Oracle Works
	An Example of Oracle Using Dedicated Server Proces...
	An Example of Oracle Using the Multithreaded Serve...

	The Program Interface
	Program Interface Structure
	The Program Interface Drivers
	Operating System Communications Software

	Part IV� The Object-Relational DBMS
	8 Schema Objects
	Overview of Schema Objects
	Tables
	How Table Data Is Stored
	Nulls
	Default Values for Columns
	Nested Tables

	Views
	Storage for Views
	How Views Are Used
	The Mechanics of Views
	Dependencies and Views
	Updatable Join Views
	Object Views

	The Sequence Generator
	Synonyms
	Indexes
	Unique and Non-Unique Indexes
	Composite Indexes
	Indexes and Keys
	How Indexes Are Stored
	Reverse Key Indexes
	Bitmap Indexes

	Index-Organized Tables
	Benefits of Index-Organized Tables
	Index-Organized Tables with Row Overflow Area
	Applications of Interest for Index-Organized Table...

	Clusters
	Performance Considerations
	Format of Clustered Data Blocks
	The Cluster Key
	The Cluster Index

	Hash Clusters
	How Data Is Stored in a Hash Cluster
	Hash Key Values
	Hash Functions
	Allocation of Space for a Hash Cluster

	9 Partitioned Tables and Indexes
	Introduction to Partitioning
	What Is Partitioning?

	Advantages of Partitioning
	Very Large Databases (VLDBs)
	Reducing Downtime for Scheduled Maintenance
	Reducing Downtime Due to Data Failures
	DSS Performance
	I/O Performance
	Disk Striping: Performance versus Availability
	Partition Transparency
	Manual Partitioning with Partition Views

	Basic Partitioning Model
	Range Partitioning
	Partition Names
	Partition Bounds and Partitioning Keys
	Equipartitioning

	Rules for Partitioning Tables and Indexes
	Table Partitioning
	Index Partitioning

	DML Partition Locks
	Performance Considerations for Oracle Parallel Ser...

	Maintenance Operations
	Partition Maintenance Operations
	Managing Indexes
	Privileges for Partitioned Tables and Indexes
	Auditing for Partitioned Tables and Indexes

	SQL Extension: Partition-Extended Table Name
	Examples of Partition-Extended Table Names

	10 Built-In Datatypes
	Oracle Datatypes
	Character Datatypes
	NUMBER Datatype
	DATE Datatype
	LOB Datatypes
	RAW and LONG RAW Datatypes
	ROWID Datatype
	MLSLABEL Datatype
	Summary of Oracle Datatype Information

	ANSI, DB2, and SQL/DS Datatypes
	Data Conversion

	11 User-Defined Datatypes (Objects Option)
	Introduction
	Complex Data Models
	Multimedia Datatypes

	User-Defined Datatypes
	Object Types
	Collection Types

	Application Interfaces
	SQL
	PL/SQL
	Pro*C/C++
	OCI
	OTT

	12 Using User-Defined Datatypes
	References and Name Resolution
	Table Aliases
	Method Calls without Arguments

	Storage of User-Defined Types
	Leaf-Level Attributes
	Row Objects
	Column Objects
	REFs
	Nested Tables
	VARRAYs

	Properties of Object Attributes
	Nulls
	Defaults
	Constraints
	Indexes
	Triggers

	Privileges on User-Defined Types and Their Methods...
	System Privileges
	Schema Object Privileges
	Using Types in New Types or Tables
	Example
	Privileges on Type Access and Object Access

	Dependencies and Incomplete Types
	Completing Incomplete Types
	Type Dependencies of Tables

	Import/Export of User-Defined Types

	13 Object Views
	Introduction
	Advantages of Object Views

	Defining Object Views
	Using Object Views
	Updating Object Views

	Part V� Data Access
	14 SQL and PL/SQL
	Structured Query Language (SQL)
	SQL Statements
	Identifying Nonstandard SQL
	Recursive SQL
	Cursors
	Shared SQL
	Parsing

	SQL Processing
	Overview of SQL Statement Execution
	DML Statement Processing
	DDL Statement Processing
	Controlling Transactions

	PL/SQL
	How PL/SQL Executes
	Language Constructs for PL/SQL
	Stored Procedures
	External Procedures

	15 Transaction Management
	Introduction to Transactions
	Statement Execution and Transaction Control
	Statement-Level Rollback

	Oracle and Transaction Management
	Committing Transactions
	Rolling Back Transactions
	Savepoints
	The Two-Phase Commit Mechanism

	Discrete Transaction Management

	16 Advanced Queuing
	Introduction to Message Queuing
	Synchronous Communication
	Asynchronous Communication

	Oracle Advanced Queuing
	Queuing Entities
	Features of Advanced Queuing

	17 Procedures and Packages
	An Introduction to Stored Procedures and Packages
	Stored Procedures and Functions
	Packages

	Procedures and Functions
	Procedure Guidelines
	Benefits of Procedures
	Anonymous PL/SQL Blocks vs. Stored Procedures
	Standalone Procedures
	Dependency Tracking for Stored Procedures
	External Procedures

	Packages
	Benefits of Packages
	Dependency Tracking for Packages

	How Oracle Stores Procedures and Packages
	Compiling Procedures and Packages
	Storing the Compiled Code in Memory
	Storing Procedures or Packages in Database

	How Oracle Executes Procedures and Packages
	Verifying User Access
	Verifying Procedure Validity
	Executing a Procedure

	18 Database Triggers
	An Introduction to Triggers
	How Triggers Are Used
	Some Cautionary Notes about Triggers
	Triggers vs. Declarative Integrity Constraints

	Parts of a Trigger
	Triggering Event or Statement
	Trigger Restriction
	Trigger Action

	Types of Triggers
	Row Triggers and Statement Triggers
	BEFORE and AFTER Triggers
	Trigger Combinations
	INSTEAD OF Triggers

	Trigger Execution
	The Execution Model for Triggers and Integrity Con...
	Data Access for Triggers
	Storage of Triggers
	Execution of Triggers
	Dependency Maintenance for Triggers

	19 Oracle Dependency Management
	An Introduction to Dependency Issues
	Resolving Schema Object Dependencies
	Compiling Views and PL/SQL Program Units

	Dependency Management and Nonexistent Schema Objec...
	Shared SQL Dependency Management
	Local and Remote Dependency Management
	Managing Local Dependencies
	Managing Remote Dependencies

	20 The Optimizer
	What Is Optimization?
	Execution Plans
	Execution Order

	Cost-Based and Rule-Based Optimization
	The Cost-Based Approach

	Overview of Optimizer Operations
	Optimizer Operations
	Types of SQL Statements

	Evaluation of Expressions and Conditions
	Constants
	LIKE Operator
	IN Operator
	ANY or SOME Operator
	ALL Operator
	BETWEEN Operator
	NOT Operator
	Transitivity

	Transforming and Optimizing Statements
	Transforming ORs into Compound Queries
	Transforming Complex Statements into Join Statemen...
	Optimizing Statements That Access Views
	Optimizing Compound Queries
	Optimizing Distributed Statements

	Choosing an Optimization Approach and Goal
	The OPTIMIZER_MODE Initialization Parameter
	Statistics in the Data Dictionary
	The OPTIMIZER_GOAL Parameter of the ALTER SESSION ...
	The FIRST_ROWS, ALL_ROWS, CHOOSE, and RULE Hints
	PL/SQL and the Optimizer Goal

	Choosing Access Paths
	Access Methods
	Access Paths
	Choosing Among Access Paths

	Optimizing Join Statements
	Join Operations
	Choosing Execution Plans for Join Statements
	Views in Outer Joins

	Optimizing Anti-Joins and Semi-Joins
	Optimizing “Star” Queries
	Star Query Example
	Tuning Star Queries
	Star Transformation

	Part VI� Parallel SQL and Direct-Load INSERT
	21 Direct-Load INSERT
	Introduction to Direct-Load INSERT
	Advantages of Direct-Load INSERT
	INSERT ... SELECT Statements

	Varieties of Direct-Load INSERT Statements
	Serial and Parallel INSERT
	Logging Mode

	Additional Considerations for Direct-Load INSERT
	Index Maintenance
	Space Considerations
	Locking Considerations

	Restrictions on Direct-Load INSERT

	22 Parallel Execution
	Overview of Parallel Execution
	Operations That Can Be Parallelized
	How Oracle Parallelizes Operations

	Process Architecture for Parallel Execution
	The Parallel Server Pool
	Parallelizing SQL Statements

	Setting the Degree of Parallelism
	Determining the Degree of Parallelism for Operatio...
	Balancing the Work Load
	Parallelization Rules for SQL Statements

	Parallel DDL
	DDL Statements That Can Be Parallelized
	CREATE TABLE ... AS SELECT in Parallel
	Recoverability and Parallel DDL
	Space Management for Parallel DDL

	Parallel DML
	Advantages of Parallel DML over Manual Parallelism...
	When to Use Parallel DML
	Enabling Parallel DML
	Transaction Model for Parallel DML
	Recovery for Parallel DML
	Space Considerations for Parallel DML
	Lock and Enqueue Resources for Parallel DML
	Restrictions on Parallel DML

	Affinity
	Other Types of Parallelism

	Part VII� Part VII� Data Protection
	23 Data Concurrency and Consistency
	Data Concurrency and Consistency in a Multiuser En...
	Preventable Phenomena and Transaction Isolation Le...
	Locking Mechanisms

	How Oracle Manages Data Concurrency and Consistenc...
	Multiversion Concurrency Control
	Statement-Level Read Consistency
	Transaction-Level Read Consistency
	Oracle Isolation Levels
	Setting the Isolation Level
	Comparing Read Committed and Serializable Isolatio...
	Choosing an Isolation Level

	How Oracle Locks Data
	Transactions and Data Concurrency
	Deadlocks
	Types of Locks
	DML (Data) Locks
	DDL Locks (Dictionary Locks)
	Latches and Internal Locks
	Explicit (Manual) Data Locking
	Oracle Lock Management Services

	24 Data Integrity
	Definition of Data Integrity
	Types of Data Integrity
	How Oracle Enforces Data Integrity

	An Introduction to Integrity Constraints
	Advantages of Integrity Constraints
	The Performance Cost of Integrity Constraints

	Types of Integrity Constraints
	NOT NULL Integrity Constraints
	UNIQUE Key Integrity Constraints
	PRIMARY KEY Integrity Constraints
	FOREIGN KEY (Referential) Integrity Constraints
	CHECK Integrity Constraints

	The Mechanisms of Constraint Checking
	Default Column Values and Integrity Constraint Che...

	Deferred Constraint Checking
	Constraint Attributes
	SET CONSTRAINTS Mode
	Unique Constraints and Indexes

	Enabled, Disabled, and Enable Novalidate Constrain...

	25 Controlling Database Access
	Database Security
	Schemas, Database Users, and Security Domains
	User Authentication
	Authentication by the Operating System
	Authentication by the Network
	Authentication by the Oracle Database
	Database Administrator Authentication

	User Tablespace Settings and Quotas
	Default Tablespace
	Temporary Tablespace
	Tablespace Access and Quotas

	The User Group PUBLIC
	User Resource Limits and Profiles
	Types of System Resources and Limits
	Profiles

	Licensing
	Concurrent Usage Licensing
	Named User Licensing

	26 Privileges and Roles
	Privileges
	System Privileges
	Schema Object Privileges

	Roles
	Common Uses for Roles
	The Mechanisms of Roles
	Granting and Revoking Roles
	Who Can Grant or Revoke Roles?
	Naming Roles
	Security Domains of Roles and Users
	Named PL/SQL Blocks and Roles
	Data Definition Language Statements and Roles
	Predefined Roles
	The Operating System and Roles
	Roles in a Distributed Environment

	27 Auditing
	Introduction to Auditing
	Auditing Features
	Auditing Mechanisms

	Statement Auditing
	Privilege Auditing
	Schema Object Auditing
	Schema Object Audit Options for Views and Procedur...

	Focusing Statement, Privilege, and Schema Object A...
	Auditing Successful and Unsuccessful Statement Exe...
	Auditing BY SESSION versus BY ACCESS
	Auditing By User

	28 Database Recovery
	An Introduction to Database Recovery
	Errors and Failures

	Structures Used for Database Recovery
	Database Backups
	The Redo Log
	Rollback Segments
	Control Files

	Rolling Forward and Rolling Back
	The Redo Log and Rolling Forward
	Rollback Segments and Rolling Back

	Recovery Manager
	Recovery Catalog
	Parallelization
	Report Generation

	Performing Recovery in Parallel
	Situations That Benefit from Parallel Recovery
	Recovery Processes

	Database Archiving Modes
	NOARCHIVELOG Mode (Media Recovery Disabled)
	ARCHIVELOG Mode (Media Recovery Enabled)

	Control Files
	Control File Contents
	Multiplexed Control Files

	Database Backups
	Whole Database Backups
	Partial Database Backups
	The Export and Import Utilities
	Read-Only Tablespaces and Backup

	Survivability
	Planning for Disaster Recovery
	Standby Database

	Part VIII� Distributed Processing and Distributed�...
	29 Distributed Processing
	Oracle Client/Server Architecture
	Distributed Processing
	Net8
	How Net8 Works

	30 Distributed Databases
	Oracle’s Distributed Database Architecture
	Clients and Servers
	The Network
	Databases and Database Links
	Database Links
	Schema Object Name Resolution
	Connecting Between Oracle Server Versions
	Distributed Databases and Distributed Processing
	Distributed Databases and Database Replication

	Heterogeneous Distributed Databases
	Transparent SQL Access
	Procedural Access
	Gateway Features
	Version 8 Gateways
	Version 4 Gateways

	Developing Distributed Database Applications
	Remote and Distributed SQL Statements
	Remote Procedure Calls (RPCs)
	Remote and Distributed Transactions
	Transparency in a Distributed Database System

	Administering an Oracle Distributed Database Syste...
	Site Autonomy
	Distributed Database Security
	Tools for Administering Oracle Distributed Databas...
	Oracle Enterprise Manager
	Third-Party Administration Tools
	SNMP Support

	National Language Support

	31 Database Replication
	What Is Replication?
	Basic Replication
	Advanced (Symmetric) Replication

	Basic Replication Concepts
	Uses of Basic Replication
	Read-Only Table Snapshots
	Snapshot Refreshes
	Other Basic Replication Options

	Advanced Replication Concepts
	Uses for Advanced Replication
	Advanced Replication Configurations
	Advanced Replication and the Oracle Replication Ma...
	Replication Objects, Groups, Sites, and Catalogs
	Oracle’s Advanced Replication Architecture
	Replication Administrators, Propagators, and Recei...
	Replication Conflicts
	Unique Advanced Replication Options

	Part IX� Appendix
	A Operating System-Specific Information

	Index

