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Chapter 0

Introduction

Ambjørn, Boulatov, Durhuus, Gross, Jonsson, and other physicists have
worked to develop a three-dimensional analogue of the simplicial quan-
tum gravity theory, as provided for two dimensions by Regge [122]. (See
Ambjørn et al. [5] [7], Loll [98] or Regge–Williams [123] for surveys.) The
discretized version of quantum gravity considers simplicial complexes in-
stead of smooth manifolds; the metric properties are artificially introduced
by assigning length a to any edge. (This approach is due to Weingarten
[142] and known as Theory of Dynamical Triangulations.) A crucial path
integral over metrics, the “partition function for gravity”, is then defined
via a weighted sum over all triangulated manifolds of fixed topology. In
three dimensions, the whole model is convergent only if the number of
triangulated 3-spheres with N facets grows not faster than CN , for some
constant C. But does this hold? How many simplicial spheres are there
with N facets, for N large?

Without the restriction to local constructibility this crucial question
still represents a major open problem, which was also put into the spot-
light by Gromov [61, pp. 156-157]. Its 2D analogue, however, was answered
long time ago by Tutte [137] [138], who proved that there are asymptoti-

cally fewer than
(

16
3
√

3

)N
combinatorial types of triangulated 2-spheres. By

Steinitz’ theorem, cf. [153, Lect. 4], this quantity equivalently counts the
maximal planar maps on n ≥ 4 vertices, which have N = 2n− 4 faces, and
also the combinatorial types of 3-dimensional simplicial polytopes with N
facets.
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0. Introduction

Why are 2-spheres “not so many”? Every combinatorial type of simpli-
cial 2-sphere can be generated as follows (Figure 0.1): First for some even
N ≥ 4 build a tree of N triangles (which combinatorially is the same thing
as a triangulation of an (N + 2)-gon without interior vertices), and then
glue edges according to a complete matching of the boundary edges.

According to Jordan’s theorem, a necessary condition in order to ob-
tain a 2-sphere is that such a matching is planar. (See Figure 0.1 below.)
Planar matchings and triangulations of (N + 2)-gons are both enumerated
by a Catalan number CN+2, and since the Catalan numbers satisfy an ex-
ponential bound CN = 1

N+1

(
2N
N

)
< 4N , we get an exponential upper bound

for the number of triangulations.

Figure 0.1: Left: How to get an octahedron from a tree of eight triangles
(i.e., a triangulated decagon). Right: How not to get an octahedron: No
matter how you complete the matching, the obtained 2-complex will not be a
2-sphere, otherwise the dashed path would form a non-separating loop inside it
(a contradiction with Jordan’s theorem).

Neither this simple argument nor Tutte’s precise count can be easily
extended to higher dimensions. While it is still true that there are only
exponentially-many “trees of N d-simplices”, the matchings that can be
used to glue d-spheres are not planar any more.

An observation by Durhuus [49] [50, p. 184] led to a new approach. If
our goal is to produce a 2-sphere from a tree of polygons, there is no loss
of generality in considering only local gluings, i.e. pairwise identifications
of edges that are adjacent. Adjacency is meant as a dynamic requirement:
After two edges have been glued together, new pairs of edges become ad-
jacent and may thus be identified. For example, a dice can be constructed
via local gluings as shown in Figure 0.2.

The intermediate steps in the gluing process might fail to be polytopal
complexes. For example, after the red and the green identifications in Figure
0.2 are performed, what we get is a regular CW complex homeomorphic to
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Figure 0.2: A local construction for a dice: Perform red, green and blue iden-
tifications in this order.

a ball, but not a polytopal complex. Ignore this difficulty for the moment.
Note, however, that the boundary of any tree of polygons is a 1-sphere, and
each local gluing (except the last one) does not change the homeomorphism
type of the boundary. Therefore, the only closed 2-manifolds that we can
produce via local gluings are 2-spheres. Conversely, once we start to perform
local gluings in the boundary of a given a tree of polygons, no matter
which sequence we choose we will never get stuck. From this it follows that
every 2-sphere can be obtained via local gluings from some (actually, any)
“spanning tree of polygons”.

How much of this generalizes to 3-spheres? In 1995, Durhuus and Jons-
son [50] introduced the notion of “locally constructible” (LC) 3-manifolds,
to describe the manifolds obtainable from a tree of polytopes by identifying
pairs of adjacent polygons in the boundary. (Of course a boundary triangle
has to be identified with another triangle, a square with a square, and so
on.) “Adjacent” means here “sharing at least an edge”, and represents (as
before) a dynamic requirement.

Durhuus and Jonsson [50, Theorem 1] found an exponential upper bound
on the number of combinatorially distinct simplicial LC 3-manifolds with
N facets. Based also on computer simulations by Ambjørn–Varsted [8] (see
also Hamber–Williams [70] and others [2] [4] [6] [33] [38]) they conjectured
that the class of 3-spheres and the class of LC 3-manifolds coincide.

In fact, they were able to show [50, Theorem 2] one of the two inclusions:
all LC 3-manifolds are spheres. The idea is a more complicated version of
the analogous statement for 2-manifolds (explained before): The boundary
of every tree of polytopes is a 2-sphere, and each local gluing either preserves
the topology of the boundary, or kills one of its connected components, or
pinches the boundary in a vertex, or disconnects the boundary at some pinch
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0. Introduction

point. However, each connected component of the boundary stays simply
connected (cf. Theorem 1.6.6), so that the closed 3-manifolds that we may
produce via local constructions are all simply connected and homeomorphic
to the 3-sphere.

A positive solution of the Durhuus–Jonsson conjecture would have im-
plied that there are are at most CN simplicial 3-spheres with N facets (for
a suitable constant C) — which would have been the desired missing link
to implement discrete quantum gravity in three dimensions. This drew fur-
ther attention to the subject and at the same time raised deeper and deeper
questions: Are (LC) simplicial 4-spheres exponentially many? Is it possible
that all simply connected 3-manifolds are LC? Can we tackle these prob-
lems using combinatorial group theory? Compare the following (adapted)
quotes by Ambjørn et al. [5, pp. 295–296]

There is still no asymptotic estimate of the number of non-isomorphic
triangulations with a given number of simplices for d > 2. In [50]
it is proved that the number of triangulations of S3 is exponentially
bounded if a plausible technical assumption holds.

Progress has been made on related problems of counting so-called
ball coverings as well as the counting of possible curvature assign-
ments to a given manifold [14]. Computer simulations support these
analytic results [6] [33] and indicate that the number of non-isomor-
phic triangulations of S4 is exponentially bounded as a function of
the number of 4-dimensional simplices.

by Durhuus–Jonsson themselves [50, p. 191]

it should be noted that proving the local constructibility of all simply
connected simplicial 3-manifolds is a far more ambitious project than
proving this for manifolds with the topology of S3. By Corollary
1.6.7, such a result would imply the Poincaré conjecture.

and by Boulatov [30, p. 21], who gave an incomplete proof that 3-spheres
are exponentially many [29] [30]:

Combinatorial group theory gives a natural mathematical framework
and sets up a standard language for physical problems related to lat-
tice models of 3-dimensional quantum gravity. All the formal group
constructions with relators and generators have a natural geometri-
cal realization in terms of 2-dimensional complexes (or fake surfaces,
in a less formal parlance). And vice versa, geometrical constructions
can be formalized in the group theory terms. It would be interest-
ing to find physical models which could be formulated and solved

10



0.1. Main results

entirely in terms of abelian presentations. It might be a mathemat-
ically adequate way to make physically meaningful approximations.

In 2002, the sensational work by Perelman [117] [118], who managed to
prove the Poincaré conjecture, nurtured the hopes in a positive answer to
Durhuus–Jonsson’s question.

We will show here that the conjecture of Durhuus and Jonsson has in
fact a negative answer: There are both simplicial and non-simplicial 3-
spheres that are not LC. We will also give elementary topological obstruc-
tions to local constructibility, using tools from combinatorial group theory,
as Boulatov had foreseen.

With this, however, we will not resolve the question whether there are
fewer than CN simplicial 3-spheres on N facets, for some constant C. Via
Heegaard splittings, we will link this question to the following concrete geo-
metric problem (cf. Section 2.4): Given a specific triangulation of a handle-
body H with N facets, can you complete it with linearly many tetrahedra
to a triangulation of a 3-sphere?

0.1 Main results

By LC d-manifolds we mean those obtained from a tree of d-polytopes by
repeatedly identifying two adjacent boundary facets. (We assume d ≥ 2,
as we find it vacuous to talk about local constructibility when d = 0 or
d = 1.) One of our first results is the following extension and sharpening of
Durhuus–Jonsson’s one [50, Theorem 1].

Main Theorem 1 (Theorem 2.5.1). For fixed d ≥ 2, the number of
combinatorially distinct simplicial LC d-manifolds with N facets grows no
faster than 2d

2·N .

Durhuus and Jonsson discussed only the case when d = 3 and in addition
the produced complexes are simplicial spheres. We will give a proof for
Main Theorem 1 in Chapter 2; an analogous upper bound, with the same
type of proof, holds for LC non-simplicial d-manifolds if the d-polytopes
have a bounded number of facets.

On the contrary, the other main result of Durhuus–Jonsson [50], i.e.
“all LC d-manifolds are spheres for d ≤ 3”, does not extend to higher
dimensions:

Main Theorem 2 (Corollary 5.2.7). Any product of LC manifolds is an
LC manifold. In particular, some LC 4-manifolds are not 4-spheres.

11



0. Introduction

This depends on some facts on product complexes that will be proven
in Section 3.3. Most of all, though, Main Theorem 2 relies on the following
characterization of LC manifolds, which relates the locally constructible
notion defined by physicists to concepts that originally arose in topological
combinatorics:

Main Theorem 3 (Theorem 5.2.6). A closed d-manifold (d ≥ 2) is LC
if and only if the manifold minus a facet can be collapsed down to a complex
of dimension d−2. Furthermore, there are the following inclusion relations
between families of d-spheres (d ≥ 3):

{shellable} ⊆ {constructible} ( {LC} ( {all d-spheres}.

The inclusions all hold with equality for d = 2: All 2-spheres are
shellable (see Newman [112]). It is not known whether a non-shellable con-
structible 3-sphere exists. The fact that for each d ≥ 3 not all d-spheres are
locally constructible answers the Durhuus–Jonsson conjecture negatively in
all dimensions.

In 1988, Kalai [81] constructed for each d ≥ 4 a family of more than
exponentially many simplicial d-spheres on n vertices; Lee [90] later showed
that all of Kalai’s spheres are shellable. Combining this with Main Theo-
rem 1 and Main Theorem 3, we obtain the following asymptotic result:

Corollary. For fixed d ≥ 4, the number of shellable simplicial d-spheres
grows more than exponentially with respect to the number n of vertices, but
only exponentially with respect to the number N of facets.

In general, the asymptotic counts of combinatorial types of spheres ac-
cording to the number n of vertices and according to the number N of
facets are equivalent only for d = 2: In fact, by the Lower resp. Upper
Bound Theorem for d-spheres (see Kalai [80] resp. Stanley [133]), there
are sharp inequalities l(n) ≤ N ≤ u(n), for some functions l = Θ(n) and

u = Θ(nb
d+1
2 c). (For example, in the case of 3-spheres one has l(n) = 3n−10

and u(n) = 1
2
n(n− 3). Note that when d ≥ 3, the exponent

⌊
d+1

2

⌋
is bigger

than one.)
Inspired by finiteness theorems by Cheeger–Grove–Petersen–Wu [39] [62]

[63], in 1996 Bartocci et al. [14] focused on d-manifolds of “fluctuating
topology” (not necessarily spheres) but “bounded geometry” (curvature
and diameter bounded from above, and volume bounded from below). In
[14], they obtained an exponential upper bound for the number of simplicial
d-manifolds with bounded Grove–Petersen constant (cf. [62, Lemma 3.3]).
This constant is the smallest integer C such that, for any ε-net (i.e. a

12



0.1. Main results

family of open balls of radius ε that cover the manifold and would become
pairwise disjoint if we halved their radius), the number of radius-ε-balls that
intersect a given one is at most C. The combinatorial interpretation of this
technical condition is unclear. However, Bartocci et al. [14, p. 7] suggested
that a possible “translation” for d = 2 could be to consider triangulated
orientable surfaces with bounded vertex degree.

(In a related paper, Ambjørn et al. studied manifolds with bounded
average curvature [3, p. 5]. The combinatorial counterpart seems to be the
class of d-manifolds with

∑
F deg(F ) ≤ C · fd−2(M), where the sum ranges

over all (d−2)-faces F of M and deg(F ) counts the number of (d−1)-faces
containing F . For d = 2 the surfaces in this class might have vertices with
a high degree: “Bounded vertex degree” is a stronger requirement than
“bounded average vertex degree”.)

In Chapter 2, we show that focusing on (average) vertex degrees might
be misleading: When d = 2, the right strategy consists in bounding the
genus (which is stronger than bounding the average vertex degree), while
bounding the vertex degree is not enough.

Main Theorem 4 (Corollaries 2.3.2 & 5.5.3, Remark 2.3.3). Sim-
plicial orientable 2-manifolds are more than exponentially many.
Simplicial orientable 2-manifolds with bounded vertex degree, or bounded
average vertex degree, are still more than exponentially many.
However, simplicial orientable 2-manifolds with bounded genus are expo-
nentially many.

In other words, for each d ≥ 2 the class of d-manifolds is so numer-
ous (measured with respect to the number of facets) that an integral like
the partition function for gravity diverges on it. However, for d = 2 the
topological genus yields a good cut-off: If we integrate only on 2-manifolds
with genus bounded by g, and then let g grow, the partition function is
not ill-defined. (Obviously every surface has genus bounded by some g, but
there is no g such that all surfaces have genus ≤ g.)

Let us state clearly that this result and its interpretation are not new.
The consistency of discrete quantum gravity for d = 2 is well-known to all
quantum gravity experts, see for example [5] [7]. That said, our proof of
Main Theorem 4 is not based on simulations or Monte-Carlo methods; it
is entirely combinatorial, and it generalizes to d-manifolds via k-local con-
structibility, a concept related to a computer science paper [54] by Eğecioğlu
and Gonzalez (see Section 5.5). As a matter of fact,

(1) for fixed k and for each d ≥ 3 there exists a d-manifold (and actually
even a d-sphere) that is not k-LC (Corollary 5.5.6);

(2) every d-manifold is k-LC for a suitable k > 0;

13



0. Introduction

(3) for fixed k and d, the number of k-LC d-manifolds with N facets grows
exponentially in N .

So the partition function for gravity restricted to k-LC d-manifolds would
be well-defined for any fixed k, but unless d = 2 there is no k large enough
to include all spheres in the k-LC class.

In order to show that not all spheres are neither LC nor k-LC, we study
in detail 3-spheres with a “knotted triangle”; these are obtained by adding
a cone over the boundary of a ball with a knotted spanning edge. This is
an old trick in combinatorial topology, dating back to Furch’s 1924 paper
[57, p. 73] and rediscovered by Bing in 1959 [21, p. 110]; we will explain it
in Chapter 4, providing also some background notions in knot theory.

Spheres with a knotted triangle cannot be boundaries of polytopes. Lick-
orish [93] showed in 1991 that

a 3-sphere with a knotted triangle is not shellable if the knot is
at least 3-complicated.

Here “at least 3-complicated” refers to the technical requirement that the
fundamental group of the complement of the knot has no presentation with
less than four generators. A concatenation of three or more trefoil knots sat-
isfies this condition. In 2000, Hachimori and Ziegler [65] [69] demonstrated
that Lickorish’s technical requirement is not necessary for his result:

a 3-sphere with any knotted triangle is not constructible.

We re-justify Lickorish’s technical assumption, showing that this is exactly
what is needed if we are to reach a stronger conclusion, namely, a topological
obstruction to local constructibility. Thus, the following result is established
in order to prove that the last inclusion of the hierarchy in Main Theorem 3
is strict.

Main Theorem 5 (Theorem 5.3.3 and Cor. 5.5.5). A 3-sphere with a
knotted triangle is not LC if the knot is at least 3-complicated.

More generally, the (d−3)-rd suspension of a 3-sphere with a triangular
knot in its 1-skeleton is a d-sphere that

– cannot be LC if the knot is at least 3 · 2d−3-complicated, and
– cannot be k-LC, if the knot is at least (3 · 2d−3 + k)-complicated.

The requirement about knot complexity is now necessary, as non-con-
structible spheres with a single trefoil knot can still be LC (see Theo-
rem 5.3.7). Also, in order to derive Main Theorem 5 we had to strengthen
and generalize Lickorish’s result: See Theorems 3.5.1 and 5.5.4.

14



0.2. Where to find what

We point out that the presence of some knot in the 1-skeleton can be
realized as a local property, so the number of knotted spheres (resp. knotted
balls) with N facets has the same asymptotic growth as the global number of
spheres (resp. balls). So, in some sense, most of the 3-spheres are knotted.

The combinatorial topology of d-balls and that of d-spheres are of course
closely related. In Chapter 6, we adapted our methods to manifolds with
boundary:

Main Theorem 6 (Theorems 6.1.9 & 6.0.1, Lemmas 1.6.3 & 5.1.1).
A d-manifold with boundary (d ≥ 2) is LC if and only if after the removal
of a facet it collapses down to the union of the boundary with a complex
of dimension at most d− 2. Furthermore, there are the following inclusion
relations between families of d-manifolds with boundary (d ≥ 3):

{shellable} ( {constructible} ( {LC} (
{ all simply connected
d-manifolds with boundary

}
.

In particular, for each d ≥ 3 we have the following hierarchy for d-balls:

{shellable} ( {constr.} ( {LC} (
{collapsible onto a

(d− 2)-complex

}
( {all d-balls}.

Again, the 2-dimensional case is much simpler and had been completely
solved quite some time ago: All simply connected 2-manifolds with bound-
ary are 2-balls (or 2-spheres, if the boundary is empty), and all 2-balls and
2-spheres are shellable [113].

When d ≤ 3, collapsibility onto a (d − 2)-complex is equivalent to col-
lapsibility. Thus Main Theorem 6 settles the question by Hachimori [66,
pp. 54, 66] of whether all constructible 3-balls are collapsible. Furthermore,
we show in Corollary 6.3.7 that some collapsible 3-balls do not collapse onto
their boundary minus a facet, a property that comes up in classical studies
in combinatorial topology (see e.g. Chillingworth [40] or Lickorish [95]). In
particular, a result of Chillingworth can be rephrased as “if for any geomet-
ric simplicial complex ∆ the support (union) |∆| is a convex 3-dimensional
polytope, then ∆ is necessarily an LC 3-ball”; see Theorem 6.3.10. Hence,
any geometric subdivision of the 3-simplex is LC.

0.2 Where to find what

We divided the material according to the topics it relates to, and not ac-
cording to the chronological order of discovery. So the first chapter already
contains new results, whereas the last chapter still contains elementary def-
initions. In case you find this too chaotic, we hope these guidelines will
help you.

15



0. Introduction

Chapter 1 collects most of the basic definitions, as well as the (easy
and not so easy) results that directly follow from them. For example, in
Chapter 1 we prove that local constructibility is maintained under taking
cones or barycentric subdivisions. In a subsection called “Operations on
complexes”, we also explain the meaning of expressions like “coning off the
boundary”, “suspending” or “taking links”, all of which occur frequently
in the combinatorial topology literature. Don’t miss the definition of local
constructibility in Section 1.6.

Chapter 2 contains all the asymptotic enumeration results, with the
exception of the count of bounded genus surfaces, which will be presented in
Section 5.5. Indeed, it is in Chapter 2 that we demonstrate why surfaces are
more than exponentially many, while LC d-manifolds are only exponentially
many for each d ≥ 2.

Chapter 3 collects all we know about collapses. We present this classical
notion from a new perspective, focusing on how many dimensions down
one can get via collapsing sequences. (Such integer will be called “collapse
depth”.) These results may seem a little abstruse and plethoric, but they
are all needed to prove that neither all d-spheres are LC (for each d ≥ 3),
nor all LC d-manifolds are spheres (for each d ≥ 4).

Chapter 4 briefly explains what knots are, and why they might show up
inside a finely triangulated 3-ball (or 3-sphere); the main focus is on knots
as obstructions to collapsibility and shellability.

Chapter 5 contains all our main results on LC spheres. All the notions
introduced and discussed in the previous chapters converge into Main The-
orem 3 and our hierarchy for 3-spheres (Theorem 5.3.12). If instead what
you are looking for is a result on LC balls, or more generally on manifolds
with boundary, look into Chapter 6.

The authorship of theorems, propositions etc. is usually displayed within
the claim, like for example Theorem 6.3.10 (Chillingworth [40]). Some
results have no explicit authorship, but are announced as “well known” in
the text preceding them. The remaining results with no author displayed
are to be understood as new, in the sense that either they appeared in the
preprint [18], possibly in slightly more specific formulations, or they appear
here for the first time, as far as we know. The paper [18] is joint work with
Günter Ziegler, who is also the present thesis’ advisor. Finally, subsections
5.4.1 and 5.4.2 are joint work with Frank Lutz.
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Chapter 1

Getting started

1.1 Polytopal complexes

A polytope P is the convex hull of a finite set of points in some Rk. A face
of P is any set of the form F = P ∩ {x ∈ Rk : c · x = c0}, provided
c · x ≤ c0 is a linear inequality satisfied by all points of P . The dimension
of a face is the dimension of its affine hull. Taking c = 0 and c0 = 0 in the
definition above, we see that P is a face of itself; all other faces of P all
called proper.

A polytopal complex is a finite, nonempty collection C of polytopes
(called the faces of C) in some Euclidean space Rk, such that:

1. if σ is in C then all the faces of the polytope σ are elements of C;
2. the intersection of any two polytopes σ and τ of C is a face of both σ

and τ .

A polytopal complex C is called simplicial complex if all of its facets are
simplices.

Given a polytopal complex C, the face poset of C is the finite set of
all polytopes in C, ordered by inclusion. Two polytopal complexes are
(combinatorially) equivalent if the respective face posets are isomorphic.

Conventionally, the inclusion-maximal faces of a d-complex are called
facets, and the inclusion-maximal proper subfaces of the facets are called
ridges. The k-faces are the faces of dimension k; the 0-faces are called ver-
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1. Getting started

tices, and the 1-faces edges1. The dimension of C is the largest dimension of
a polytope of C; d-complex is just a shortening for d-dimensional polytopal
complex. The k-skeleton of a d-complex C (k ≤ d) is the k-complex of all
the polytopes of C that have dimension at most k.

Figure 1.1: The dual graph.

Pure complexes are complexes where all facets have the same dimension.
The dual graph of a pure d-complex C is a graph whose vertices are the
facets of C; two vertices of the graph are connected by an edge if and only
if the corresponding facets of C have a common ridge. (See Fig. 1.1.)

A pure d-complex is strongly connected if its dual graph is connected2.
The underlying space |C| of a polytopal complex C is the union of all its

faces. Conversely, if C is a simplicial complex, C is called triangulation of
|C| (and of any topological space homeomorphic to |C|). A d-sphere is a d-
complex whose underlying space is homeomorphic to {x ∈ Rd+1 : |x| = 1}.
Similarly, a d-ball is a complex whose underlying space is homeomorphic to
{x ∈ Rd : |x| ≤ 1}.

With a little abuse of notation, we will call d-manifold (resp. d-manifold
with boundary) any d-dimensional polytopal complex whose underlying space
is homeomorphic to a topological manifold (resp. to a topological manifold
with boundary). All d-manifolds are pure and strongly connected3. Fur-

1In quantum gravity literature, the edges are usually called links; we will refrain from
this notation, since the word “link” has a different meaning in combinatorial topology,
namely, a “localization” of a complex at a given face. For the same reason, unlike most
knot theory studies, we will not use the word “link” to denote a disjoint union of knots.

2Some authors prefer to write “connected in codimension one” instead of “strongly
connected”, especially in view of the connection with Commutative Algebra established
via Stanley-Reisner rings. See Stanley [134].

3In the combinatorial topology literature, a “strongly connected d-complex such that
every ridge lies in exactly two facets” is often called a “pseudomanifold”. We will refrain
from this notation since we have a different use in mind for the word “pseudomanifold”:
something that might be disconnected, too. (See Section 1.6.)
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1.1. Polytopal complexes

thermore, every ridge in a manifold lies in at most two facets; the boundary
consists precisely of those ridges that lie in one facet only.

A tree of d-polytopes is a d-manifold with boundary whose dual graph is
a tree. Every tree of d-polytopes is a d-ball, but some d-balls are not trees
of polytopes (for example, balls with interior vertices). A stacked d-sphere
is any simplicial sphere which is combinatorially equivalent to the boundary
of a tree of (d+ 1)-simplices.

Let P be a d-dimensional polytope. For each k ∈ {0, . . . , d} and for each
k-dimensional face Fi of P , denote by bi the barycenter of Fi. For example,
the barycenter of an edge is its midpoint, while the barycenter of a vertex
is the vertex itself.

Figure 1.2: Barycentric subdivision (in blue).

Definition 1.1.1 (Barycentric subdivision). The barycentric subdivision
sd(P ) of a polytope P is the simplicial complex described as follows:

– the vertices of sd(P ) are the barycenters of all the faces of P ;
– the facets of sd(P ) are the convex hulls of (d+ 1) barycenters b0, . . . , bd

whose corresponding faces Fi form a flag F0 ( F1 ( . . . ( Fd = P .

The barycentric subdivision sd(C) of a polytopal complex C is the simplicial
complex obtained by subdividing each polytope of C barycentrically.

The underlying spaces of C and sd(C) are the same, but sd(C) is sim-
plicial even when C is not. Bayer [15] showed that if P and Q are polytopes
with combinatorially equivalent barycentric subdivisions, then P is combi-
natorially equivalent either to Q or to Q∗, where Q∗ is the dual polytope of Q
(also known as “polar polytope”: see Ziegler [153, Sect. 2.3]). Surprisingly,
this holds no more for regular CW complexes (see Bayer [15, p. 7]).

21



1. Getting started

1.2 PL manifolds

Let C be a simplicial complex, and σ a face of C. The closed star of σ is
the subcomplex of all faces containing σ, together with their faces. The link
of a face σ is the subcomplex linkC σ of C consisting of the simplices that
are disjoint from σ but contained in a face that contains σ. For example,
the link of any vertex in a 2-sphere is a 1-sphere. The link of any edge in a
2-sphere is a disjoint union of two points (in other words, a 0-sphere).

Remark 1.2.1. The definition of “link” above creates some difficulties in the
non-simplicial case. Following the notation of Courdurier [43], for polytopal
complexes we will distinguish between

(i) the link of σ, i.e. the subcomplex of all the faces disjoint from σ but
contained in a face that contains σ, and

(ii) the spherical link of σ, i.e. any polytopal complex whose face poset is
isomorphic to the upper ideal of σ in the face poset of C.

In simplicial complexes, the two notions above coincide; in addition, the
facets of the link are in 1–1 correspondence with the facets of the closed
star.

Definition 1.2.2 (PL). A d-sphere is called PL if it is piecewise-linearly
homeomorphic to the boundary of a (d + 1)-simplex; a d-ball is PL if it
is piecewise-linearly homeomorphic to a d-simplex. PL manifolds (with or
without boundary) are usually defined as follows:

– all simplicial 1-spheres and 1-balls are PL;
– a simplicial d-manifold with boundary is PL if and only if the links of

its vertices are either PL (d− 1)-spheres, or PL (d− 1)-balls;
– a non-simplicial d-manifold with boundary is called PL if its barycentric

subdivision is PL.

The definition is non-ambiguous for all d 6= 4 [26, p. 5] [104, pp. 9-11].
When d = 4, non-ambiguity is an open problem: a priori, there might be a
4-sphere S that is not piecewise-linearly homeomorphic to the boundary of a
5-simplex, so that all vertex links in S are piecewise-linearly homeomorphic
to the boundary of a 4-simplex. To be on the safe side, we will call a
simplicial 4-sphere “PL as manifold” when its links are PL 3-spheres and
“PL” if it is also piecewise linearly homeomorphic to the boundary of a
5-simplex.

Are all spheres PL? This classical question (see e.g. [45]) was solved
negatively in 1975 by Edwards [51], who showed that the double suspen-
sion of the Mazur “homology 3-sphere” is a non-PL 5-sphere. Cannon [35]
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1.2. PL manifolds

later generalized Edwards’ result proving that the double suspension of any
“homology d-sphere” is a non-PL (d+2)-sphere; more recently Björner and
Lutz [26] [27] found a triangulation of a non-PL simplicial 5-sphere with 18
vertices and 261 facets. Every triangulated d-sphere with less than d + 6
vertices is PL by [13].

While non-PL d-spheres exist for each d ≥ 5, it is known that all d-sphe-
res are PL for each d ≤ 3. Whether all 4-spheres are PL is still an open
question [104, pp. 9–11]. However, all 4-manifolds are “PL as manifolds”
[34, p. 10] in virtue of the Poincaré conjecture, which was recently proven
by Perelman [117] [118] [88] [36] [107] [108].

Given two disjoint simplices α and β, the join α ∗ β is a simplex whose
vertices are the vertices of α plus the vertices of β. By convention, ∅ ∗ β
is β itself. The join of two simplicial complexes A and B is defined as
A ∗ B := {α ∗ β : α ∈ A , β ∈ B}. We quote from Lickorish [94, p. 380]
adapting the notation:

Piecewise linear topology is always dominated by the idea of a join.
Suppose a (d + 1)-simplex C is regarded as the join of two of its
disjoint faces A and B. Then dimA+ dimB = d and

∂C = ∂(A ∗B) = (∂A ∗B) ∪ (A ∗ ∂B).

Assuming the pair (A,B) is ordered, this gives, up to isomorphism,
d+1 ways of expressing the standard triangulation of the d-sphere (as
the boundary of a (d+1)-simplex) as the union of two triangulations
of d-balls glued along their boundaries. Suppose that A is an r-sim-
plex in a triangulated PL d-manifold K and that linkK A = ∂B for
some (d− r)-simplex B /∈ K. Note that B is a new simplex not seen
in K. Ignore the fact that this condition may seem unlikely. The
bistellar move χ(A,B) consists of changing K to K̃ by removing
A ∗ ∂B and inserting ∂A ∗B.

Figure 1.3: The three types of bistellar move in dimension two. Note that the
move χ(A,B) has χ(B,A) as an inverse.

Bistellar moves are also known as bistellar flips or Pachner moves. Each
two-dimensional Pachner move can be viewed as a switch from the top view
to the bottom view of a given tetrahedron. Analogously, the four three-
dimensional Pachner moves correspond to top view/bottom view switches
in the visualization of a 4-simplex (cf. Eppstein [19]).
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Pachner moves are named after Udo Pachner, who showed that these
d + 1 operations suffice for moving from one triangulated manifold with
boundary to any PL-homeomorphic triangulation of it [115] [116] (see also
[37]). In other words, Pachner moves are local and ergodic:

– a simplicial d-sphere is PL if and only if it can be obtained from the
boundary of the (d+ 1)-simplex via a finite sequence of Pachner moves;

– a simplicial d-ball is PL if and only if it can be obtained from the d-
simplex via a finite sequence of Pachner moves.

If we start with a PL d-sphere S, a helter-skelter sequence of Pachner
moves might not result in the boundary of the (d+1)-simplex. (For example,
a Pachner move followed by its inverse leaves S unchanged.) However,
suppose that no sequence of m moves transforms S into the boundary of
a (d + 1)-simplex: If m is sufficiently large, can we conclude that S is not
PL? The answer is

• “yes” for d = 3 and m greater than 6 · 106 ·N2 · 25·104·N2
, by the work

of Mijatovic [103] (see also King [86]);
• unknown for d = 4 (even if the expected answer is negative: see

Nabutovski–Ben Av [111]);
• negative for d ≥ 5: A deep result of Novikov [140] (see also Stillwell

[136]) states that PL d-spheres are not algorithmically recognizable
for any d ≥ 5.

In the terminology of quantum gravity papers (e.g. [32]), this translates into
saying that Pachner moves are ergodic for all d, but finitely ergodic only for
d ≤ 3.

Pachner moves are specific for simplicial PL manifolds. However, there
is an analogous set of moves for d-dimensional cubical PL manifolds, corre-
sponding to switching from the top view to the bottom view of a (d+1)-cube
(cf. Bern et al. [19]).

1.3 Shellability and constructibility

Definition 1.3.1 (Shellability [153, p. 233]). Let C be a pure d-dimensional
polytopal complex, d ≥ 1. A shelling of C is a linear ordering F1, . . . , Fs
of the facets of C, so that for each i ∈ {2, . . . , s} the polytopal complex
Fi∩

⋃i−1
j=1 Fj is pure (d− 1)-dimensional and yields a beginning segment for

a shelling of the boundary ∂Fi of Fi.
A pure polytopal d-complex C is shellable if it has a shelling, or if it is

0-dimensional.

24



1.3. Shellability and constructibility

Definition 1.3.1 can be simplified for simplicial or cubical complexes,
because d-simplices and d-cubes are “extendably shellable” [46, p. 37] [153,
pp. 235–236]. If the intersection of Fj with the previous facets is shellable,
it yields automatically a beginning segment for a shelling of ∂Fj.

Also, any pure (d− 1)-dimensional subcomplex of the boundary of a d-
simplex is necessarily connected, strongly connected and shellable. (On the
contrary, a pure subcomplex of the d-cube need not be connected: Cubes
contain pairs of disjoint facets.) So, for pure simplicial complexes, shella-
bility can be characterized as follows:

– every simplex is shellable;
– a d-dimensional pure simplicial complex C, different from a simplex, is

shellable if and only if it can be written as C = C1 ∪ C2, where C1 is a
shellable simplicial d-complex, C2 is a d-simplex, and C1 ∩C2 is a pure
(d− 1)-complex.

For a short history of the shellability notion, see Ziegler [154]. One of
the most celebrated result is certainly Bruggesser and Mani’s theorem (see
[153, Lect. 8]), which says that the boundary of any (d + 1)-polytope is a
shellable d-sphere.

Constructibility is a weakening of shellability, defined by:

– every simplex is constructible;
– a d-dimensional pure simplicial complex C (different than a simplex)

is constructible if and only if it can be written as C = C1 ∪ C2, where
C1 and C2 are constructible simplicial d-complexes, and C1 ∩ C2 is a
constructible simplicial (d− 1)-complex.

This notion was introduced in 1972 by Hochster [75], in connection with
notions from commutative algebra (“constructible complexes are Cohen–
Macaulay”), but it had been implicitly used long before by combinatorial
topologists [101, p. 103]. For example, Zeeman’s work [152] contains a
proof of the fact that any constructible polytopal d-complex C such that
each ridge of C belongs to at most two facets is either a PL d-ball or a PL
d-sphere. Also, Lickorish’s two-page paper from 1970 [92] shows that some
3-balls do not have embedded 2-discs, thus proving that not all 3-balls are
constructible.

In 1960 Curtis and Zeeman [45] conjectured the existence of non-PL 5-
spheres; the conjecture was proven by Edwards in 1975 [51]. Since non-PL
spheres are a subclass of non-constructible spheres, from Edwards’ work it
follows that for all d ≥ 5 some d-spheres are not constructible. Recently
Hachimori [65] extended this claim to d ≥ 3: In fact, arbitrary 3-spheres
may contain a knot, while constructible 3-spheres may not [69].
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The following examples show that shellability is strictly stronger than
constructibility:

Example 1.3.2 (Ziegler’s 3-ball [154]). Let B1 be the 3-ball on the vertices
1, . . . , 8 given by the seven facets

{1, 3, 4, 7} {1, 4, 5, 7} {2, 3, 4, 8} {2, 3, 6, 8} {3, 4, 7, 8}
{3, 6, 7, 8} {4, 5, 7, 8}.

Let B be the 3-ball on ten vertices (labelled by 0, . . . , 9) given by the twenty-
one facets

{1, 3, 4, 7} {1, 4, 5, 7} {2, 3, 4, 8} {2, 3, 6, 8} {3, 4, 7, 8}
{3, 6, 7, 8} {4, 5, 7, 8} {0, 1, 2, 3} {0, 1, 2, 5} {0, 2, 3, 7}
{0, 2, 5, 6} {0, 2, 6, 7} {1, 2, 3, 4} {1, 2, 4, 9} {1, 2, 5, 6}
{1, 2, 6, 9} {1, 4, 5, 8} {1, 4, 8, 9} {1, 5, 6, 9} {1, 5, 8, 9}
{2, 3, 6, 7}.

We can see B1 as a subcomplex of B. Let B2 be the closure of B−B1, that
is, the smallest subcomplex of B that contains all faces of B not in B1. It
is known [154] that:

– both B1 and B2 are shellable 3-balls;
– the intersection B1 ∩B2 is a 2-ball, hence B is constructible;
– B is not shellable.

Example 1.3.3 (Lutz’s 3-ball [99]). Let B be the 3-ball on nine vertices
(labelled by 0, . . . , 8) given by the eighteen facets

{0, 1, 2, 3} {0, 1, 2, 4} {0, 1, 4, 5} {0, 1, 5, 7} {0, 1, 6, 8}
{0, 1, 7, 8} {0, 2, 3, 4} {0, 6, 7, 8} {1, 2, 3, 6} {1, 2, 4, 5}
{1, 2, 5, 8} {1, 2, 6, 8} {1, 5, 7, 8} {2, 3, 4, 7} {2, 3, 6, 7}
{2, 4, 6, 7} {2, 4, 6, 8} {4, 6, 7, 8}.

This B is constructible, but not shellable. It is in fact a “vertex-minimal”
example of a non-shellable ball: In fact, all 3-balls with less than nine
vertices are shellable [99].

Example 1.3.4 (Rudin’s 3-ball). The following 14 points lie on the boundary
of a tetrahedron in R3.

X1 = (0, 0, 0) X2 = (0.5, 0.866, 0)
X3 = (1, 0, 0) X4 = (0.5, 0.289, 0.75)
Y1 = (0.2245, 0.019941, 0.05175) Y2 = (0.4655, 0.696616, 0.1425)
Y3 = (0.7755, 0.059754, 0) Y4 = (0.5345, 0.378689, 0.55575)
U1 = (0.5, 0, 0) U2 = (0.5, 0.5775, 0.375)
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Rudin’s 3-ball is the simplicial ball whose vertices are the previous 14 points.
This ball is non-shellable [126] but constructible [121]; see also Wotzlaw
[149].

A very recent paper in Communications in Algebra [114] ends with the
following problem: Are there many examples of constructible simplicial
complexes that are not shellable?

The following simple observation (cf. Hachimori [65, Lemma 1]) will
enable the reader to answer the question positively. If we glue together
two simplicial 3-balls B1 and B2 alongside a triangle in their boundary,
then B1 ∪B2 is constructible if and only if both the Bi’s are constructible,
while B1 ∪ B2 is shellable only if the Bi’s are both shellable. So every
shellable 3-ball with N−18 facets, when glued onto Lutz’s 3-ball alongside a
boundary triangle, yields a constructible non-shellable 3-ball with N facets.
(In Chapter 2 we will see that there are exponentially many shellable 3-balls
with N − 18 facets, for N large. So counting with respect to the number
N of facets, there are exponentially many examples of constructible non-
shellable 3-balls.)

Surprisingly, it is still not known whether a constructible non-shellable
3-sphere exists; see Kamei [82] for a survey of the attempts done so far.
Examples of non-shellable spheres were obtained with different methods by
Armentrout [9], Hachimori [66], Lickorish [84] [93] and Vince [139]. The first
three examples are not constructible. Chronologically, the first example of
a non-shellable ball dates back to 1924 and is due to Furch [57, p. 73].
Recently Hachimori proved that Furch’s ball is not constructible [65]; we
will prove an even stronger statement in Example 6.3.4.

Shellability and constructibility are not topological properties, for a
shellable complex can be homeomorphic to a non-shellable one. However,
when a simplicial complex is shellable (resp. constructible), its barycentric
subdivision is also shellable (resp. constructible). Provan and Billera [121,
Theorem 3.3.1] showed that the barycentric subdivision of every shellable
simplicial complex is even vertex decomposable (see Paragraph 1.4 for the
definition; see also Björner and Wachs [28, p. 3967]).

Bruggesser and Mani [31, p. 200] proved that every d-ball or d-sphere
becomes shellable, and thus also constructible, after performing sufficiently
many barycentric subdivisions. However, for each d ≥ 2, there are con-
structible d-complexes that remain non-shellable even after performing ar-
bitrarily many barycentric subdivisions [67, p. 2310]. Also, there is no
integer r such that the r-th subdivision of every 3-sphere is shellable [60].
An analogous result holds for d-spheres or d-balls as well: See Kearton–
Lickorish’s revision [84] of the work by Goodrick [60].
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1.4 Vertex-decomposability

Let C be a simplicial complex and let v be one of its vertices. The deletion
delC v is the subcomplex of C formed by all the faces of C that do not
contain the vertex v. A pure simplicial d-complex C is vertex decomposable
if either d = 0, or C is a simplex, or there is a vertex v of C such that

(1) linkC v is (d− 1)-dimensional and vertex decomposable, and
(2) delC v is d-dimensional and vertex decomposable.

The notion of vertex decomposability was introduced by Provan and Billera
in their proof of 1980 [121] that vertex decomposable simplicial complexes
satisfy the famous Hirsch conjecture from linear programming, which states
that the diameter of the dual graph of a pure simplicial d-complex with n
vertices is bounded above by n− (d+ 1). (At present, the conjecture is still
open: see e.g. [153, Chapter 3].) All vertex decomposable complexes are
shellable [121]: this follows (by induction on the dimension and the number
of facets) from the following well known fact:

Lemma 1.4.1. Let v be a vertex of a simplicial complex C. If linkC v and
delC v are both shellable, then C is shellable too.

Whether an analogous Lemma holds true for polytopal complexes as
well, is still an open question; the expected answer is a negative one, which
is why Ehrenborg and Hachimori wrote [52, p. 475] that

shellability and constructibility naturally extend to polytopal com-
plexes, whereas vertex decomposability only applies to simplicial
complexes.

Provan and Billera [121, Theorem 3.3.1] (see also [28, p. 3967]) showed
that the barycentric subdivision of every shellable (simplicial) complex is
vertex decomposable. This means that every sphere or ball becomes vertex
decomposable, after performing sufficiently many barycentric subdivisions.
Provan and Billera also showed that all simplicial 2-balls and 2-spheres are
vertex decomposable. For d ≥ 3, Klee and Kleinschmidt [87] proved that all
simplicial d-balls (resp. d-spheres) with at most d+ 3 (resp. d+ 4) vertices
are vertex-decomposable.

However, not all shellable 3-spheres are vertex decomposable: Lockeberg
[97] [87] (see also [66, p. 26] for the correction of a typo) gave an example
of a simplicial 4-polytope with a non-vertex-decomposable boundary. Since
the boundary of a polytope can be shelled starting at the star of any ver-
tex [153, Corollary 8.13], the deletion of any vertex from the boundary of
Lockeberg’s polytope yields a simplicial shellable 3-ball which is not vertex-
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decomposable. A vertex-minimal example of non-vertex-decomposable shell-
able 3-ball is given in [100].

Further obstructions to vertex decomposability arise from knot theory:
See the work of Hachimori–Ziegler [69], or wait for Section 4.4.

1.5 Regular CW complexes

Björner [23] showed how to extend the notion of shellability to finite pure
regular CW complexes; Hachimori and Shimokawa [68] did the same with
constructibility. Let us introduce some notation (cf. Hatcher [72, p. 519]).

A d-disk ēdα is a topological space homeomorphic to the closed unit ball
in Rd. The part of ēdα homeomorphic to the unit sphere in Rd under the
previous homeomorphism is called boundary of the disk; its removal from
ēdα yields an open d-disk, denoted edα.

Definition 1.5.1 (CW complex). A (finite)4 CW complex is a space con-
structed via the following procedure:

(1) start with a set X0 of n points, the so-called 0-cells ;
(2) recursively, form the d-skeleton Xd by attaching open d-disks edα (called

d-cells) onto Xd−1, via maps

ϕα : Sd−1 −→ Xd−1;

the word “attaching” means that Xd is the quotient space of the disjoint
union Xd−1 tα ēdα under the identifications x ≡ ϕα(x), for each x in the
boundary of ēdα;

(3) stop the inductive process at a finite stage, setting X = Xd for some d
(called the dimension of X).

A CW complex is regular if the attaching maps for the cells are injective
(see e.g. Björner [24]). A regular CW-complex is simplicial if for every
proper face F , the interval [0, F ] in the face poset of the complex is boolean
(i.e. isomorphic to the poset Bk :=

(
2[k],⊆

)
of all subsets of a k-element

set, for some k).

Every polytopal complex is a regular CW-complex; every simplicial com-
plex (and in particular, any triangulated manifold) is a simplicial regular
CW-complex.

The k-dimensional cells of a regular CW complex C are called k-faces ;
the inclusion-maximal faces are called facets, and the inclusion-maximal
proper subfaces of the facets are called ridges. Conventionally, the 0-faces

4All complexes that we consider are finite, therefore also finite-dimensional.
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are called vertices, and the 1-faces edges. The dimension of C is the largest
dimension of a facet; pure complexes are complexes where all facets have
the same dimension.

Let C be a pure regular CW-complex of dimension d ≥ 1. A shelling of
C is a linear ordering F1, . . . , Fs of the facets of C, such that:

(1) the boundary ∂F1 of F1 is shellable;
(2) for each i ∈ {2, . . . , s}, the CW complex Fi ∩

⋃i−1
j=1 Fj is pure, regular,

(d − 1)-dimensional, and it is also a beginning segment for a shelling
of the boundary ∂Fi of Fi.

A pure CW complex C is shellable if either C is 0-dimensional, or C has a
shelling.

A d-dimensional pure regular CW complex is constructible if:

– either d = 0, or
– it consists of only one facet whose boundary is constructible, or
– it splits into the union of two d-dimensional constructible subcomplexes

C1 and C2, such that the intersection C1 ∩ C2 is a (d− 1)-dimensional
constructible CW complex.

All shellable CW complexes are constructible [68]. Furthermore, if C
is a constructible regular CW complex and if each ridge of C lies in at
most two facets of C, then by Zeeman’s work [152] C is homeomorphic
either to a PL ball or to a PL sphere. A partial converse of this theorem
is given by Newman’s result [113], according to which every regular CW
complex homeomorphic to a 2-ball or to a 2-sphere must be shellable and
in particular constructible. Newman’s claim is best possible, since 3-balls
(and 3-spheres) might be non-shellable and non-constructible.

1.6 Local constructibility

Definition 1.6.1 (Pseudomanifold). By a d-pseudomanifold we mean a
finite regular CW-complex P that is d-dimensional, pure, and such that each
(d−1)-dimensional cell belongs to at most two d-cells. A d-pseudomanifold
is simplicial if it is simplicial as CW complex, that is, if all its facets are
d-simplices. The boundary of the pseudomanifold P , denoted ∂P , is the
smallest subcomplex of P (possibly empty) containing all the (d − 1)-cells
of P that belong to exactly one d-cell of P .

According to our definition, a pseudomanifold need not be a polytopal
complex; it might be disconnected; and its boundary might not be a pseu-
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domanifold (compare Lemma 1.6.4). Every d-manifold with boundary is
also a d-pseudomanifold.

Definition 1.6.2 (Locally constructible pseudomanifold). For d ≥ 2, let
C be a pure d-dimensional polytopal complex with N facets. A local con-
struction for C is a sequence T1, T2, . . . , TN , TN+1, . . . , Tk (k ≥ N) such that
Ti is a d-pseudomanifold for each i and

(1) T1 is a d-dimensional polytope;
(2) if i ≤ N − 1, then Ti+1 is obtained from Ti by gluing a new d-polytope

to Ti alongside one of the (d− 1)-cells in ∂Ti;
(3) if i ≥ N , then Ti+1 is obtained from Ti by identifying a pair σ, τ of

combinatorially equivalent (d − 1)-cells in the boundary ∂Ti, provided
the intersection of σ and τ contains at least a (d− 2)-cell;

(4) Tk = C.

We say that C is locally constructible, or LC, if a local construction for C
exists. With a little abuse of notation, we will call each Ti an LC pseudo-
manifold. We also say that C is locally constructed along T , if T is the dual
graph of TN , and thus a spanning tree of the dual graph of C.

The identifications described in item (3) above (called local gluings)
are operations that are not closed with respect to the class of polytopal
complexes. Local constructions where all steps are polytopal complexes
produce only a very limited class of pseudomanifolds, consisting of d-balls
with no interior (d−3)-faces. (When in an LC step the identified boundary
facets intersect in exactly a (d − 2)-cell, no (d − 3)-face is sunk into the
interior, and the topology stays the same; compare Lemma 6.3.1.)

However, since by definition the local construction in the end must arrive
at a pseudomanifold C that is a polytopal complex, each intermediate step
Ti must satisfy severe restrictions: for each t ≤ d,

– distinct t-polytopes that are not in the boundary of Ti share at most
one (t− 1)-face;

– distinct t-polytopes in the boundary of Ti that share more than one
(t− 1)-face will need to be identified by the time the construction of C
is completed.

Moreover,

– if σ, τ are the two (d − 1)-cells glued together in the step from Ti to
Ti+1, σ and τ cannot belong to the same d-polytope of Ti; nor can they
belong to two d-polytopes that are already adjacent in Ti.

For example, in each step of the local construction of a simplicial 3-sphere,
no two tetrahedra share more than one triangle. Moreover, any two distinct
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1. Getting started

interior triangles either are disjoint, or they share a vertex, or they share an
edge; but they cannot share two edges, nor three; and they also cannot share
one edge and the opposite vertex. If we glue together two boundary triangles
that belong to adjacent tetrahedra, no matter what we do afterwards, we
will not end up with a simplicial complex any more. So,

a locally constructible 3-sphere is a combinatorial 3-sphere ob-
tained from a tree of polytopes TN by repeatedly identifying two
adjacent polygons in the boundary.

LC pseudomanifolds were introduced in 1995 by two physicists, Durhuus
and Jonsson [50], in connection with enumerative results (cf. Chapter 2).
To get acquainted with this class of complexes, we present a few preliminary
results.

Lemma 1.6.3 (Durhuus-Jonsson). Every LC pseudomanifold is simply
connected and strongly connected.

Proof. A tree of polytopes satisfies both simply connectedness and strongly
connectedness; any local gluing maintains these properties.

(In spite of their name, simply connectedness and strongly connected-
ness are independent properties: A wedge of 2-balls yields a simply-, not
strongly-connected 2-complex, while a triangulated annulus is a strongly-,
not simply-connected 2-complex.)

Lemma 1.6.4. The boundary of an LC d-pseudomanifold is a (not neces-
sarily LC) (d− 1)-pseudomanifold.

Proof. Let P be an LC d-pseudomanifold. If P is a tree of d-polytopes then
∂P is a (stacked) (d− 1)-sphere, and the claim is obvious. Any LC gluing
does not increase the number of (d − 2)-faces per (d − 1)-face: Therefore,
every pseudomanifold in the local construction of P has a boundary which
is a regular CW (d− 1)-complex, and every (d− 2)-face of such boundary
belongs to at most two boundary facets.

A fake cube, which is a 3 × 3 × 3 pile of cubes with the central cube
missing, is an LC 3-manifold (one can show this either directly or via Lem-
ma 5.1.1, cf. Figure 5.1) whose boundary is homeomorphic to the disjoint
union of two 2-spheres. Being disconnected, the boundary of the fake cube
cannot be LC: Compare Lemma 1.6.3.

In order to reach the conclusion of Lemma 1.6.4, the LC assumption is
essential: in fact, two triangles sharing a vertex yield an easy example of a
2-pseudomanifold whose boundary is not a 1-pseudomanifold.
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1.6. Local constructibility

Lemma 1.6.5. The barycentric subdivision of an LC d-pseudomanifold is
an LC simplicial pseudomanifold.

Proof. We prove the theorem only in case d = 3, the general case being
analogous.

The barycentric subdivision of a tree of polytopes is locally constructible:
this can be shown either directly, or via Lemma 5.1.1, since the barycentric
subdivision of a shellable complex is shellable. Thus it suffices to show that
a sequence of local gluings that produces a pseudomanifold C from a tree
of polytopes TN corresponds to a (longer) sequence of local gluings that
produces sd(C) from sd(TN).

Consider a single local gluing σ′ ≡ σ′′ of two boundary m-gons sharing
an edge e in ∂Ti. Let σ be the interior m-gon of Ti+1 generated by the
gluing. Since the barycentric subdivision of σ is strongly connected, the
facets of sd(σ) can be labeled 1, 2, . . . , 2m, so that:

• the facet labeled by 1 contains a “portion” of e;
• each facet labeled by k > 1 is adjacent to some facet labeled j with
j < k.

This induces a corresponding labeling 1′, 2′, . . . , (2m)′ (resp. 1′′, 2′′, . . . , (2m)′′)
of the facets of sd(σ)′ (resp. sd(σ)′′). Now glue together the two copies k′

and k′′ of the facet k, in the labeling order. All these gluings are local by
definition. Eventually, they produce sd(Ti+1) from sd(Ti).

In case d = 3, the topology of LC 3-pseudomanifolds (and of their
boundaries) is controlled by the following result.

Figure 1.4: The boundary of an LC 3-pseudomanifold is a disjoint union of ‘cacti
of 2-spheres’. (Every LC 3-pseudomanifold is simply- and strongly-connected,
so obviously the 3-pseudomanifold “inside” the pink surface cannot be LC. Its
complement inside S3 can be LC.)
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1. Getting started

Theorem 1.6.6 (Durhuus–Jonsson [50]). Every LC 3-pseudomanifold
P is homeomorphic to a 3-sphere with a finite number of “cacti of 3-balls”
removed. (A cactus of 3-balls is a tree-like connected structure in which
any two 3-balls share at most one point.) Thus the boundary ∂P is a finite
disjoint union of cacti of 2-spheres. In particular, each connected component
of ∂P is a simply-connected 2-pseudomanifold.

(Durhuus and Jonsson proved the result above only in the simplicial
case. That said, if P is an LC polytopal complex, by Lemma 1.6.5 the
barycentric subdivision sd(P ) is an LC simplicial complex with the same
topology of P .)

Corollary 1.6.7 (Durhuus-Jonsson). Every 3-dimensional LC pseudo-
manifold without boundary is a sphere.

We will see in Theorem 5.2.7 that for d > 3 other topological types such
as products of spheres are possible.

1.7 Operations on complexes

Let X and Y be (finite) regular CW complexes. The product X × Y is a
regular CW complex with cells the products eiα × e

j
β, where eiα ranges over

the cells of X and ejβ ranges over the cells of Y (cf. Hatcher [72, p. 8]). If
A is a subcomplex of X, the quotient space X/A also inherits a natural
CW complex structure from X (cf. Hatcher [72, p. 8]): The cells of X/A
are the cells of X not in A, plus one new 0-cell, the image of A in X/A.
If ϕα : Sd−1 −→ Xd−1 is the attaching map of a cell edα of X, then the
attaching map for the corresponding cell in X/A is the composition

Sd−1 −→ Xd−1 −→ Xd−1/Ad−1.

If I is the interval [0, 1], the cone over X is defined as the quotient
(X × I)/(X × {0}); the apex of the cone is the 0-cell given by the image of
{X × 0} in (X × I)/(X ×{0}). The union alongside X of two copies of the
cone over X is called suspension of X. For example, if X is a d-sphere, the
suspension of X is a (d+ 1)-sphere.

If σ is a cell of a regular CW complex C, the link of σ is the complex of
the cells disjoint from σ but contained in a cell that contains σ; the spherical
link of σ is instead any regular CW complex whose face poset is isomorphic
to the upper ideal of σ in the face poset of C. As we noticed in Remark
1.2.1, the two notions coincide for simplicial complexes, but are distinct for
polytopal complexes and also for simplicial regular CW complexes.
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All spherical links in a shellable polytopal complex are shellable (see
Björner [22, p. 170]). Also, spherical links in a constructible complexes are
constructible (see e.g. [66, p. 23]). It is an open question whether the same
results hold true for links as well: Courdurier [43] recently showed that the
closed star of a vertex in a shellable polytopal complex is shellable; however,
shellable complexes might have nonshellable boundaries [115, Theorem 2].

If the closed star of a vertex v in C coincides with the join of v with
its link, then the link and the spherical link are the same. In particular,
the (spherical) link of v inside the cone v ∗ C is just C. This leads to the
following (known) Lemma:

Lemma 1.7.1. Let C be a regular CW complex and v a new vertex. Then
C is shellable (resp. constructible) if and only if v ∗ C is shellable (resp.
constructible).

We will show in Figure 5.2 an example of an LC simplicial complex
with a vertex v whose (spherical) link is not LC. In other words, the LC
property, differently from shellability, constructibility and vertex decom-
posability, is not inherited by spherical links. Nevertheless, the analogous
result to Lemma 1.7.1 still holds:

Proposition 1.7.2. Let C be a d-pseudomanifold and v a new vertex. Then
C is LC if and only if v ∗ C is LC.

Proof. The implication “if C is LC, then v ∗ C is LC” is straightforward.
For the converse, assume Ti and Ti+1 are intermediate steps in the local

construction of v ∗ C, so that passing from Ti to Ti+1 we glue together two
adjacent (d−1)-faces σ′, σ′′ of ∂Ti. Let F be any (d−2)-face of Ti. If F does
not contain v, then F is in the boundary of v ∗C, so F ∈ ∂Ti+1. Therefore,
F cannot belong to the intersection of σ′ and σ′′, because all (d− 2)-faces
of σ′ ∩ σ′′ are sunk into the interior of Ti+1.

So, every (d− 2)-face in the intersection σ′∩σ′′ must contain the vertex
v. This implies that σ′ = v ∗ S ′ and σ′′ = v ∗ S ′′, with S ′ and S ′′ distinct
(d − 2)-faces. Certainly S ′ and S ′′ share at least a codimension-one face,
otherwise σ′ and σ′ would not be adjacent. Thus, from a local construction
of v ∗ C we can read off a local construction of C.

Even if the links in an LC pseudomanifold need not be LC, they all have
to be strongly connected:

Proposition 1.7.3. In a simplicial LC d-pseudomanifold, all links are
strongly connected.
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The spherical link of any (d − 2)-face in an LC d-pseudomanifold is a
1-ball if the face lies on the boundary, and a 1-sphere otherwise.

Proof. We fix a local construction T1, . . . , Tk for P and proceed by induction
on the number of local gluings. If P is a tree of simplices, the link of a k-face
is a (d− k− 1)-ball. By contradiction, suppose that the link of each k-face
of Ti is strongly connected, but the link of some k-face F inside Ti+1 is not
strongly connected. The only way this could happen is if F is obtained
identifying two k-faces F ′, F ′′ of ∂Ti, and the strongly connected links of F ′

and F ′′ have merged “wrongly”.
Now, for any triple of t-complexes A,B,C, suppose that B and C are

both strongly connected and A = B ∪ C: Then A is strongly connected if
and only if B ∩ C is (t− 1)-dimensional. In particular, since

link Ti+1
F = link Ti

F ′ ∪ link Ti
F ′′,

the strongly connectedness of the complexes on the right and the non-
strongly-connectedness of the one on the left imply that the intersection
link Ti

F ′ ∩ link Ti
F ′′ cannot be (d − k − 2)-dimensional. In the following,

we will obtain a contradiction by pinpointing a (d − k − 2)-face contained
in the complex link Ti

F ′ ∩ link Ti
F ′′.

Let σ′ and σ′′ be the boundary facets sharing a (d− 2)-face r that have
been identified in the step Ti ; Ti+1. Up to relabeling, F ′ is contained in σ′

and F ′′ is contained in σ′′, but neither F ′ nor F ′′ are completely contained
in r, so that dim(F ∩ r) = dimF − 1.

Define ρ := linkr(F ∩ r); clearly ρ lies in linkTi
F ′ ∩ linkTi

F ′′. On the
other hand,

dim ρ = dim r − dim(F ∩ r)− 1 = dim r − (dimF − 1)− 1 = (d− 2)− k,

a contradiction.
As far as the second part of the claim is concerned, the spherical link

of a (d − 2)-face of a d-pseudomanifold is a 1-pseudomanifold. Strongly
connected 1-pseudomanifolds can only be 1-spheres or 1-balls. The spherical
link of a face is a sphere if and only if such face lies in the interior of the
pseudomanifold.

The previous proof can be adapted to show that all spherical links in
an LC pseudomanifolds are strongly connected. On the contrary, in the
second part of the claim of Proposition 1.7.3, the word “spherical links”
cannot be replaced by “links”: In fact, the link of F might be a 1-sphere
even if F lies on the boundary. For example, let S be any 2-sphere, and let
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T1, T2, . . . , TN , . . . , Tk be any local construction of S. Then Tk−1 is a regular
CW complex homeomorphic to a 2-ball, with exactly two vertices on the
boundary which are connected by a double edge. The link of any vertex in
Tk−1 is a 1-sphere.

We leave it to the reader to generalize Proposition 1.7.3 to the non-
simplicial case.

A very common operation that transforms a d-ball in a d-sphere consists
in “coning off the boundary”. When d = 2 the name is self-explanatory:
given a disk, we look at the boundary of a cone that has the given disk
as basis. This yields a 2-sphere. In higher dimensions, if B is a polytopal
d-ball (resp. a simplicial d-ball) and v is a new vertex, then B ∪ (v ∗ ∂B)
is a polytopal d-sphere (resp. a simplicial d-sphere). The following results
are known:

Lemma 1.7.4. Let B be a d-ball. Let SB := B ∪ (v ∗ ∂B).

(i) If B and ∂B are both shellable (resp. constructible), then SB is also
shellable (resp. constructible).

(ii) If SB is shellable (resp. constructible), then ∂B is shellable (resp.
constructible).

(iii) The converses of both the previous implications are false. In addition,
if B is shellable, SB might be nonshellable.

Proof. Any shelling of ∂B translates into a shelling of v ∗ ∂B, which placed
after any shelling of B yields a shelling for SB. (Similarly for constructibil-
ity: if ∂B is constructible, then v ∗ ∂B is also constructible.) A counterex-
ample for the converse of the implication in (i) was given by Kamei [82]:
He found constructible nonshellable 3-balls B with SB shellable (and also
non-constructible 3-balls B with SB shellable).

The item (ii) follows from the fact that linkSB
v = ∂B. By Lemma

1.7.1, the link of v in SB coincides with the spherical link of v in SB. The
spherical link of any face in a shellable (resp. constructible) complex is
shellable (resp. constructible). A counterexample for the converse of (ii) is
given by any non-constructible 3-sphere S, because every 3-sphere can be
obtained coning off the boundary of some 3-ball: In fact, for each vertex
v of S, if C = delSB

(v) one has S = SC . Yet ∂C is a 2-sphere and thus
shellable.

Shellable balls B such that SB is non-shellable can be obtained by the
work of Pachner [115, Theorem 2, p. 79], who proved that any 3-sphere
is combinatorially equivalent to the boundary of some shellable 4-ball. In
particular, if B is a shellable ball with nonshellable boundary, by (ii) SB
cannot be shellable.
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Remark 1.7.5. An alternative way to show the strictness of the implication
(i) comes from knot theory. Hachimori and Ziegler proved the existence of
shellable simplicial 3-sphere S with a quadrilateral knot (cf. Theorem 4.4.3)
and the non-existence of constructible 3-balls with a knotted spanning arc
of two edges (cf. Theorem 4.4.1). Yet the deletion from S of one of the four
knot vertices yields a ball with a knotted spanning arc of two edges.

Remark 1.7.6. If B is an LC d-ball and ∂B is an LC (d − 1)-sphere, then
SB is also LC. In fact, by Proposition 1.7.2 the d-sphere SB is the union of
two LC d-balls (B and v ∗ ∂B) that intersect in a (d − 1)-sphere (namely,
∂B). We will see in Lemma 5.1.1 that this suffices to prove that SB is LC.
(See also Remark 6.2.2 for a more general result.) However, B might be
non-LC even if SB is LC: To see this, choose as B the collapsible ball C2

that we will construct in Theorem 6.3.6 (cf. Proposition 3.4.2).

38



Chapter 2

Asymptotic enumeration of manifolds

In Weingarten’s discrete approach [142] to the physical theory of quantum
gravity (cf. Regge [122] [123]), the partition function for gravity is rendered
by a weighted sum over all orientable d-manifolds. The model converges
if the number of triangulated d-manifolds with N facets grows not faster
than CN , for some constant C. However, this is false for each d ≥ 2: As we
explain in Corollary 2.3.2, orientable simplicial 2-manifolds with N facets
are at least

(
N
20

)
! .

To bypass this obstacle, one cuts off artificially the class of manifolds
over which one is integrating. When d = 2, restricting the topology does
the trick. In fact, as we will see in Corollaries 2.3.2 and 5.5.3,

– simplicial orientable 2-manifolds are more than exponentially many
(both in N and n), but

– 2-spheres are exponentially many (both in N and n),
– 2-dimensional tori are exponentially many (both in N and n), and
– simplicial orientable 2-manifolds with genus bounded by a constant are

exponentially many (both in N and n).

Note that the key assumption to obtain an exponential bound is neither
“bounded average curvature” nor “bounded vertex degree”, as previous
studies on the subject seemed to suggest [3, p. 5] [14, p. 7], but rather
“bounded genus”. Indeed, we will see in Remark 2.3.3 that surfaces with
bounded curvature but unbounded genus are still more than exponentially
many.

When d ≥ 3, however, the strategy of fixing the topology encounters
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2. Asymptotic enumeration of manifolds

deep problems. As mentioned by Gromov [61, pp. 156-157] in his list of
crucial open problems in modern geometry, we still do not know whether
simplicial 3-spheres with N facets are exponentially many, or more.

In 1995 two quantum gravity physicists, Durhuus and Jonsson [50], in-
troduced the class of LC 3-spheres (see Definition 1.6.2) proving an expo-
nential upper bound for its cardinality. We show here that their bound
extends from spheres to manifolds (with or without boundary), from di-
mension d ∈ {2, 3} to any dimension d ≥ 2, from simplicial complexes
to polytopal complexes of “bounded facet complexity”, and from “LC” to
broader classes (such as k-LC manifolds: cf. Definition 2.6.4).

Main Theorem 7 (Corollary 2.5.2, Theorem 2.6.5, Theorem 2.6.3).
Let k, d, A be nonnegative integers, with A > d > 1. There are exponentially
many simplicial k-LC d-manifolds (with or without boundary) with N facets.
The same holds for k-LC d-manifolds (with or without boundary, simplicial
or not) provided each facet is a d-polytope with at most A faces.

Thus one has the following prospect:

� The asymptotics of 3-spheres is unknown. If v(n) is the number of
3-spheres with n vertices, by the work of Pfeifle and Ziegler [120]

Ω(n
5
4 ) ≤ log v(n) ≤ O(n2 log n);

on the other hand, if f(N) is the number of 3-spheres with N facets,
one has

Ω(N) ≤ log f(N) ≤ O(N logN).

(The lower bound Ω(N) follows for example from the count of stacked
3-spheres, cf. Corollary 2.1.4, while the upper bound O(N logN) may
be derived from Corollary 2.1.5.)

� If p(n, d) (resp. p(N, d) ) counts the number of d-spheres with n ver-
tices (resp. with N facets) that are combinatorially equivalent to the
boundary of some (d+ 1)-polytope, one has

log p(n, d) = Θ(n log n),

by the work of Shemer [129], Goodman–Pollack [59] and Alon [1]; at
the same time, (

1 +
1

d

)N
≤ p(N, d) ≤ 2d

2·N ,

by Corollary 2.1.4 and by Theorem 2.5.1, together with the fact that
all boundaries of polytopes are shellable [153, Lect. 8] and all shellable
spheres are LC (cf. Lemma 5.1.1).
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� Simplicial 3-manifolds are more than exponentially many, both in n
and N :

logm(N) = Θ(N logN),

wherem(N) counts simplicial 3-manifolds withN tetrahedra (see Corol-
lary 2.1.5 resp. Corollary 2.3.5 for an upper resp. lower bound);

� however, if h(N) (resp. hk(N) ) is the number of LC (resp. k-LC)
simplicial 3-manifolds on N tetrahedra, then by Theorem 2.6.5

log h(N) = Θ(N) and log hk(N) = Θ(N) for fixed k.

Most of the previous bounds generalize to higher dimensions. For d ≥ 4,
we know by the work of Kalai [81] and Lee [90] that shellable d-spheres are
more than exponentially many in n (cf. Pfeifle [119]); at the same time,
we will show in Lemma 5.1.1 that shellable d-spheres are LC; via Main
Theorem 7, this implies that shellable d-spheres are exponentially many
in N .

From these conclusions it is clear that counting with respect to vertices
or facets is not the same. That said, since n < N what is more than
exponential in N is also more than exponential in n.

2.1 Few trees of simplices

We will here establish that there are less than Cd(N) := 1
(d−1)N+1

(
dN
N

)
trees

of N d-simplices. The idea is that there are less trees of d-simplices than
planted plane d-ary trees, which are counted by order d Fuss–Catalan num-
bers. Also, we will see that this exponential upper bound for trees of sim-
plices is essentially sharp. This will be crucial in determining upper and
lower bounds for d-manifolds.

Lemma 2.1.1. Every tree of N d-simplices has (d−1)N+2 boundary facets
of dimension d− 1 and N − 1 interior faces of dimension d− 1.
It has d

2
((d − 1)N + 2) faces of dimension d − 2, all of them lying in the

boundary.

Proof. By induction: A d-simplex has d + 1 boundary facets and
(
d+1

2

)
(boundary) ridges. Whenever we attach a d-simplex alongside a boundary
facet onto a tree of d-simplices,

– we create one interior (d− 1)-face,
– we add (d− 1) boundary facets and
– we add d ridges, which all lie on the boundary.
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By rooted tree of simplices we mean a tree of simplices B together with
a distinguished facet δ of ∂B, whose vertices have been labeled 1, 2, . . . , d.
Rooted trees of d-simplices are in bijection with “planted plane d-ary trees”,
that is, plane rooted trees such that every non-leaf vertex has exactly d
(left-to-right-ordered) sons; cf. [102].

Proposition 2.1.2. There is a bijection between rooted trees of N d-simplices
and planted plane d-ary trees with N non-leaf vertices, which in turn are
counted by the Fuss–Catalan numbers Cd(N) = 1

(d−1)N+1

(
dN
N

)
. Thus, the

number of combinatorially-distinct trees of N d-simplices satisfies

1

(d− 1)N + 2

1

d!
Cd(N) ≤ # { trees of N d-simplices } ≤ Cd(N).

Proof. Given a rooted tree of d-simplices with a distinguished facet δ in its
boundary, there is a unique extension of the labeling of the vertices of δ
to a labeling of all the vertices by labels 1, 2, . . . , d + 1, such that no two
adjacent vertices get the same label. Thus each d-simplex receives all d+ 1
labels exactly once.

Now, label each (d−1)-face by the unique label that none of its vertices
has. With this we get an edge-labeled rooted d-ary tree whose non-leaf
vertices correspond to the N d-simplices; the root corresponds to the d-
simplex that contains δ, and the labeled edges correspond to all the (d−1)-
faces other than δ. We get a plane tree by ordering the down-edges at each
non-leaf vertex left to right according to the label of the corresponding
(d− 1)-face.

The whole process can be reversed. Given an arbitrary rooted planted
plane d-ary tree T , we (d + 1)-color it as follows: First we label its root
by 1, and then recursively we label by 1, . . . , i − 1, i + 1, . . . , d + 1, in this
order, the left-to-right sons of each non-leaf node labeled by i. Next, we
take a d-simplex ΣR (where R stands for “root”), we label its vertices by
1, . . . , d + 1, and we introduce new simplices Σv in bijection with the non-
leaves v of the tree T as follows: If the i-labeled son w of a non-leaf v is
itself a non-leaf,

(1) we stack the facet of Σv opposite to the vertex of Σv labeled by i,
(2) we call Σw the newly introduced d-simplex, and
(3) we label by i the newly introduced vertex (i.e. the vertex of Σw that is

not in Σv).

This way from a rooted planted plane d-ary tree we obtain a rooted tree
of d-simplices, the “distinguished facet” being the (d− 1)-face spanned by
the d vertices of ΣR that are labeled by 1, . . . , d.
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There are exactly Cd(N) = 1
(d−1)N+1

(
dN
N

)
planted plane d-ary trees with

N interior vertices (see e.g. Aval [11]; the integers C2(N) are the “Catalan
numbers”, which appear in many combinatorial problems, see e.g. Stanley
[135, Ex. 6.19] [132]). Any tree of N d-simplices has exactly (d − 1)N + 2
boundary facets, so it can be rooted in exactly ((d− 1)N + 2) d! ways, which
however need not be inequivalent. This explains the first inequality claimed
in the lemma. Finally, combinatorially-inequivalent trees of d-simplices also
yield inequivalent rooted trees, whence the second inequality follows.

Corollary 2.1.3. The number of trees of N d-simplices, for N large, is
bounded by (

dN

N

)
∼
(
d ·
(

d
d−1

)d−1
)N

< (de)N .

Corollary 2.1.4. The number of stacked d-spheres on N facets for N large
is approximately (

(N − 2)d+1
d

N−2
d

)
≈
(
d+ 1

d
d
√
d+ 1

)N
.

Proof. By Lemma 2.1.1, any stacked d-sphere on N facets is the boundary
of a tree of N−2

d
simplices of dimension d + 1. The conclusion follows by

Corollary 2.1.3.

Corollary 2.1.5. The number of simplicial d-manifolds with boundary with
N facets, for N large, is bounded by

(de)N · ( (d− 1)N + 2)!!,

which is smaller than (dN)dN .

Proof. Any triangulated d-manifold (with boundary) with N facets can be
obtained from a tree of N d-simplices by pairwise identifying boundary
facets. (Just look at the tree of simplices determined by a spanning tree of
the dual graph of the manifold.) By Lemma 2.1.1 there are (d − 1)N + 2
boundary facets in a tree of d-simplices; the conclusion follows then via
Corollary 2.1.3, because the number of perfect matchings of a set of 2k
objects is

(2k)!! = (2k) · (2k − 2) · . . . · 4 · 2 = k! · 2k.

We point out that the previous bound is far from being sharp, because
not every matching results in a manifold, but most of all because each mani-
fold is overcounted several times: In fact, every manifold can be constructed
out of any of its “spanning trees of simplices”.
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2. Asymptotic enumeration of manifolds

2.2 Few 2-spheres

The fact that 2-spheres are exponentially many was discovered in the Sixties
by Tutte [137] [138] (see also Richmond–Wormald [124], Bender [16] [17],
Gao [58] and Di Francesco [55]), who gave the asymptotic estimate

3

16
√

6πn5

(
256

27

)n−2

for combinatorially distinct rooted simplicial 3-polytopes with n vertices.
This implies that the number of simplicial 2-spheres with N triangles is
approximately (

16

3
√

3

)N
.

Out of these 16
3
√

3

N ≈ 3.08N 2-spheres, roughly 3
√

3
2

N
≈ 2.6N are stacked, by

Corollary 2.1.4.
An elementary exponential upper bound (independently from Tutte’s

work) can be found with various approaches:

� As we mentioned in the Introduction, every simplicial 2-sphere with N
triangles can be generated from an (N + 2)-gon (triangulated without
interior vertices!) by identifying the boundary edges pairwise, accord-
ing to a complete matching. A necessary condition in order to obtain
a 2-sphere from a tree of N triangles is that this matching be planar.
Planar matchings and triangulations of (N + 2)-gons are both enumer-
ated by a Catalan number CN+2, and since the Catalan numbers satisfy
a polynomial bound CN = 1

N+1

(
2N
N

)
< 4N , we get an exponential upper

bound for the number of triangulations.
� A variation of the previous approach uses convexity rather than pla-

narity: By Steinitz’ theorem (cf. [153, Lect. 4]), all 2-spheres are “poly-
topal”, i.e. combinatorially equivalent to the boundary of some convex
3-polytope. Yet 3-polytopes (and (d + 1)-polytopes in general) are
not so many: compare Goodman–Pollack [59], Alon [1], and Corol-
lary 5.1.3. (Note that this approach works for all 2-spheres, simplicial
or not.)

� Durhuus [49] [50, p. 184] observed that all simplicial 2-spheres are
locally constructible. Also this approach leads to an exponential upper
bound, since LC spheres are exponentially many (cf. Theorem 2.5.1).

The last approach generalizes from spheres to surfaces of bounded genus:
see Section 5.5.
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2.3. Many surfaces and many handlebodies

2.3 Many surfaces and many handlebodies

In this paragraph we show that there are many orientable 2-manifolds with
N facets. The idea is to take out 2g holes from a finely triangulated sphere
of “size” Θ(g), and then to complete it to a genus-g-surface by attaching g
handles — which can be done in g! inequivalent ways.

We introduce some notation first, referring the reader to Stillwell [136,
pp. 252-253], Johannson [78] or Scharlemann [127] for details. A handlebody
is the tubular neighbourhood of some finite graph G inside S3 (or inside R3).
All triangulated handlebodies are simplicial orientable compact 3-manifolds
with boundary.

Figure 2.1: A genus-3-handlebody with three disjoint meridian discs (shaded).

Every handlebody H has a family of g disjoint 1-spheres in its boundary
(called meridians) that bound disjoint discs B1, . . . , Bg inside H, so that
the manifold obtained cutting H open along B1, . . . , Bg is a 3-ball. The
meridians of H can be always be completed to a homology basis for the
surface ∂H; one way to do this is to add the ‘parallels’, i.e. the meridians
of the ‘complement handlebody’ inside S3 (cf. Section 2.4 or [47, Theorem 1,
p. 358]).

We show now how to construct many triangulated handlebodies with
the same number of facets:

Theorem 2.3.1. For any g ≥ 1, there are at least g! combinatorially dis-
tinct triangulated orientable surfaces with genus g and 20g triangles. Fur-
thermore, each of these surfaces can be realized in R3 as boundary of a
triangulated handlebody of genus g, with exactly 11g−1 tetrahedra and with
g triangular meridians in its 1-skeleton.

Proof. Take a horizontal 1×4g strip of squares and triangulate the first resp.
the last 2g squares by inserting backslash resp. slash diagonals. Cutting
away the last triangle we obtain a 2-ball B with 8g − 1 triangles.
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2. Asymptotic enumeration of manifolds

Set aj :=

{
4j − 2 if j ∈ {1, . . . , g}
4j − 1 if j ∈ {g + 1, . . . , 2g} ; obviously the ai-th trian-

gle is disjoint from the aj-th, unless i = j. Relabel these 2g disjoint triangles
by 1, . . . , g, 1′, . . . , g′, in this order.

Given a new vertex v, we form the 2-sphere SB := B∪ v∗∂B and remove
from SB the interiors of the triangles 1, . . . , g, 1′, . . . , g′. The resulting “2-
sphere with holes” can be completed to a closed 2-manifold by attaching
g handles. First we need to fix a bijection π : {1, . . . , g} −→ {1′, . . . , g′}.
In the triangle i, let xi resp. ui be the leftmost resp. the upper vertex;
symmetrically, in the triangle i′ let xi′ resp. ui′ be the rightmost resp. the
upper vertex. For each i ∈ {1, . . . , g}, we attach a non-twisted triangular
prism onto the holes i and π(i), so that xi resp. ui gets connected via
an edge to xi′ resp. ui′ . Each prism can be triangulated with six facets
by subdividing each lateral rectangle into two; as a result, we obtain a
simplicial closed 2-manifold Mg(π).

The number of triangles of Mg(π) equals the number of triangles of SB,
minus 2g (the holes), plus 6g (the handles). Being the boundary of a tree of
8g− 1 tetrahedra, SB has 2(8g− 1) + 2 facets: Therefore, Mg(π) has genus
g and 20g facets. A system of homotopy generators for Mg(π) is given by
the following 2g 1-spheres (i = 1, . . . , g):

(A) the triangle [xi, yi], [yi, ui], [ui, xi] (which is the boundary of the triangle
i in B);

(B) the triangle [ui, v], [v, uπ(i)], [ui, uπ(i)].

The 1-spheres of type (A) are pairwise disjoint, while any two spheres of
type (B) intersect at v. (Every sphere of type (A) intersects exactly one
sphere of type (B), in exactly one point.) Since SB is boundary of a tree
of 8g − 1 tetrahedra, if we triangulate the interior of each prism using
three tetrahedra we can view Mg(π) as the boundary of a handlebody with
exactly 11g−1 tetrahedra. By construction, the 1-spheres of type (A) form
a system of meridians for such handlebody.

The conclusion follows by noticing that any two different permutations
π and ρ give rise to two combinatorially different surfaces Mg(π) and Mg(ρ).

Corollary 2.3.2. Simplicial 2-manifolds are more than exponentially many
with respect to the number of facets (and thus also with respect to the number
of vertices).

Proof. By Theorem 2.3.1, when N is a multiple of 20 there are (N
20

)! combi-
natorially distinct simplicial 2-manifolds with N facets (and genus N

20
). For

each real number R, the ratio of RN to (N
20

)! tends to zero for N large.
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2.3. Many surfaces and many handlebodies

Remark 2.3.3. A variant of the main idea in Theorem 2.3.1 consists in
starting with a tree of 6g tetrahedra in which no vertex has degree larger
than six. Again, one can locate 2g disjoint boundary triangles and remove
them: this way one gets a sphere with 2g holes that can be completed to a
genus-g-surface (by attaching g handles) in g! different ways. The news is
that no vertex of the genus-g-surface has degree larger than eight.

Thus, there are more than exponentially many simplicial 2-manifolds
with N facets, even if the degree of each vertex is at most eight.

Remark 2.3.4. We point out that all of the surfaces constructed in Theorem
2.3.1 and in Remark 2.3.3 have relatively high genus: Compare Corollary
5.5.3.

Corollary 2.3.5. There are more than exponentially many combinatorial
types of simplicial 3-manifolds with boundary with N tetrahedra.

Proof. By Theorem 2.3.1, when N is congruent to 10 modulo 11 there are
N+1

11
! triangulated handlebodies with N facets.

On the other hand, we have seen in Corollary 2.1.5 that there are less
than (dN)dN simplicial d-manifolds with boundary, for N large. Therefore,
the number m(N) of simplicial 3-manifolds with boundary with N facets
satisfies

logm(N) = Θ(N logN).

Given an arbitrary surface embedded in R3, is it possible to ‘fill it up’
with linearly many tetrahedra (with respect to the number of facets of the
surface)?

Theorem 2.3.6. Let H be a handlebody of genus g. Suppose that a trian-
gulation T of ∂H contains in its 1-skeleton a family of meridians γ1, . . . , γg
of H. Then T can be extended to a triangulation T̃ of H, so that

f3( T̃ ) = 24 f2( T ) + 24

g∑
i=1

f1(γi).

Moreover, T̃ determines T uniquely.

Proof. For each i = 1, . . . , g, we triangulate the meridian disk Bi spanned
by the polygonal curve γi by inserting an interior vertex and coning. This
produces f1(γi) new triangles.

The manifold obtained cutting H open along the meridian disks is a 3-
ball, by definition of “meridian”. We can triangulate it by taking a point v
inside H (but disjoint from all the meridian disks) and coning. The result is
a CW complex homeomorphic to H; however, it is not a simplicial complex
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2. Asymptotic enumeration of manifolds

(unless g = 0), because there are pairs of distinct tetrahedra sharing all
four vertices (namely, all tetrahedra of the type v ∗ σ, with σ in some Bi).

To obtain a simplicial complex, the simplest way is to take the barycen-
tric subdivision, which increases the number of facets by a factor of twenty-
four. (Different subdivision methods may lead to better constants.)

The uniqueness part can be proven by analysing the vertex degrees: The
vertex with the highest degree has to be v. Once we know v, from its link
we can easily recover the starting surface and the meridian disks. (Thus
from T̃ one can recover not only T, but also the meridians chosen.)

Note that
∑g

i=1 f1(γi) is certainly smaller or equal than 3
2
f2( T), which

is the total number of edges of T. Therefore, f3( T̃ ) ≤ 60 · f2(T).

Corollary 2.3.7. Let H be a handlebody. Any triangulation of ∂H with N
triangles that contains a family of meridians of H in its 1-skeleton can be
uniquely extended to a triangulation of H with O(N) tetrahedra.

2.4 Many 3-spheres?

There is a well known relation between handlebodies and 3-spheres, given
by Heegaard splittings. Again, we refer to Stillwell [136, pp. 252-253],
Johannson [78] or Scharlemann [127] for details and proofs.

Theorem 2.4.1 (Heegaard [73]). For each g ∈ N, there exists a de-
composition of a 3-sphere into two solid handlebodies H1 and H2 that are
identified along a surface Mg = H1 ∩H2 of genus g.

The previous decomposition is determined up to isotopy by the genus
(see Waldhausen [141]), and thus it is usually called the Heegaard splitting
of genus g.

Conversely, given any orientable 2-manifold Mg of genus g, any em-
bedding of Mg in S3 separates S3 into two distinct genus-g handlebodies,
the “inside” I and the “outside” O. Following [47], let us call handle loop a
1-sphere in the 1-skeleton of Mg that has trivial first homology in I and non-
trivial first homology in O, and tunnel loop a 1-sphere in Mg that has trivial
first homology in O and nontrivial first homology in I. (By definition, sets
of tunnel loops and handle loops are always disjoint; however, some loops
in Mg might be neither tunnel nor handles, having nontrivial homology in
I as well as in O, cf. [47, Figure 2].) Dey, Li and Sun [47, Theorem 1,
p. 358] showed that every orientable genus-g-surface, once embedded in S3,
admits a homology basis that consists of g handle loops (which themselves
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2.4. Many 3-spheres?

form a basis of H1(O)) and g tunnel loops (which themselves form a basis
of H1(I)).

This “handles & tunnels homology basis” depends of course on the em-
bedding chosen. However, it is possible to define a homology basis for a
surface in a way that does not refer to an embedding:

Definition 2.4.2 (Lazarus et al. [89]). A canonical polygonal schema for an
orientable 2-manifold of genus g is a (4g)-gon with successive edges labeled
by

−→x1,
−→y1 ,
←−x1,
←−y1 , . . . ,

−→xg ,−→yg ,←−xg ,←−yg ,
where corresponding edges −→xi and ←−xi (resp. −→yi and ←−yi ) are oriented in
different directions, such that gluing together corresponding edges recovers
the original manifold.

The “edges” of the polygon correspond to “loops” inside the manifold; it is
easy to see that all these loops have a common point.

The definition above is purely topological and does not refer to a specific
triangulation. We say that a triangulated 2-manifold M has a canonical
polygonal schema in its 1-skeleton if M has a subcomplex homeomorphic
to a bouquet of 2g 1-spheres, so that cutting M open along this subcomplex
one gets a 2-ball that is a triangulation of a canonical polygonal schema.
(See Figure 2.2 below).

Figure 2.2: A triangulated 2-manifold M with a canonical polygonal schema
in its 1-skeleton. (The rest of the triangulation is not drawn.) Cutting M open
alongside this bouquet of 2g loops recovers the original “polygon” (= a triangu-
lated 2-ball).

Not all 2-manifolds have a canonical polygonal schema in their 1-skeleton
[89]; however, it is possible to induce one by cleverly subdividing:
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Lemma 2.4.3 (Lazarus et al. [89, Theorem 1], see also [42], [120]).
Any triangulation of a closed 2-manifold of genus g with a total of f =
f0 + f1 + f2 cells can be refined to a triangulation with O(fg) vertices that
contains a canonical polygonal schema in its 1-skeleton. Furthermore, each
meridian uses O(f) vertices and edges.

Theorem 2.4.4 (essentially Pfeifle–Ziegler [120, p. 835]). Let M be a
closed 2-manifold of genus g with N facets that contains a canonical polyg-
onal schema in its 1-skeleton. There exists a 3-sphere SM with O(N) facets
such that the barycentric subdivision of M is a subcomplex of SM . Moreover,
M determines SM uniquely.

Proof. As in the proof of Theorem 2.3.6, the idea is to fill in the meridian
disks of each handlebody first; the remaining two 3-balls are then triangu-
lated by coning. Uniqueness is shown as in Theorem 2.3.6.

(The original proof of Pfeifle and Ziegler is slightly more complicated
because it was carried out with the intent to triangulate SM with as few
additional vertices as possible. This goal was achieved by doubling all the
meridian disks of M , cf. [120, p. 835].)

When g = (q−1)(q−4)
4

and q is a prime number congruent to 1 modulo 4, a
genus-g surface admits a special triangulation (called Heffter triangulation)
that uses only O(

√
g ) vertices and O(g) facets [120, Prop. 1]. Using Lemma

2.4.3 and Theorem 2.4.4, one can extend the Heffter triangulation Tg of a
surface Mg to a triangulation T̃g of a 3-sphere with O(g2) facets that admits
a Heegard splitting along Mg. “Saving” as many vertices as possible, Pfeifle
and Ziegler managed to realize T̃g with only O(g2) vertices.

From here, they were able to conclude that 3-spheres are more than
exponentially many with respect to the number of vertices. In fact, they
“thickened” the starting surfaceMg a bit, by pulling the handlebodies apart;
the interior of this thickening was subdivided into a stack of prisms over Mg,
which in turn were subdivided into O(g2√g ) octahedra using only O(g2)
vertices. Triangulating each octahedron independently, they achieved the
following result:

Theorem 2.4.5 (Pfeifle–Ziegler [120, Theorem 1]). There are at least
2Ω(n 4√n) simplicial 3-spheres on n vertices.

Now, in Theorem 2.4.4 we have seen that any triangulation of a genus-g-
surface with a canonical polygonal schema in its 1-skeleton can be completed
to a triangulation of a 3-sphere with linearly many facets. On the other
hand, we had produced in Theorem 2.3.1 many genus-g-surfaces Mg(π) with
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a homology basis – which is “almost” a canonical polygonal schema, in some
sense – in their 1-skeleton. This motivates the following concrete problem:

Question 1. Can each triangulated surface Mg(π) be completed to a trian-
gulation of a 3-sphere using O(g) tetrahedra?

A “yes” answer to the previous question would instantly imply that
there are more than exponentially many 3-spheres with N facets. On the
contrary, a “no” answer would also be interesting in connection with the
natural follow-up question, “For which bijections π can the surface MG(π)
be completed with O(g) tetrahedra to a triangulation of S3?”

For the moment, we know that it is possible to fill the inside of the
surface with linearly many tetrahedra, by Theorem 2.3.6, and that the
outside can be triangulated with quadratically many tetrahedra, basically
according to Lemma 2.4.3 and Theorem 2.4.4.

Another interesting problem that naturally arises from Theorem 2.4.4
is the following:

Question 2. Are there more than exponentially many orientable surfaces
with a canonical polygonal schema in their 1-skeleton?

(Orientable surfaces with a canonical polygonal schema in their 1-skeleton
are at least exponentially many. To see this, apply Lemma 2.4.3 to surfaces
with bounded genera.)

Again, a “yes” answer1 would imply that 3-spheres with N facets are
more than exponentially many. If instead the numerical simulations by
Ambjørn–Varsted [8] and Hamber–Williams [70] are accurate and indeed
there are only exponentially many 3-spheres, we could use Theorem 2.4.4
to conclude that most of the orientable simplicial surfaces do not have any
canonical polygonal schema in their 1-skeleton.

2.5 Few LC simplicial d-manifolds

For fixed d ≥ 2 and a suitable constant C that depends on d, there are
less than CN combinatorial types of simplicial LC d-spheres with N facets.
Our proof for this fact is a d-dimensional version of the main theorem of
Durhuus & Jonsson [50] and allows us to determine an explicit constant C,
for any d.

We know from Corollary 2.1.3 that there are exponentially many trees
of N d-simplices. The idea is now to count the number of “LC matchings”
according to ridges in the tree of simplices.

1After the submission of the present thesis, we established that Question 2 has a
negative answer. The details will be found elsewhere.
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Theorem 2.5.1. Fix d ≥ 2. The number of combinatorially distinct sim-
plicial LC d-manifolds (with boundary) with N facets, for N large, is not
larger than (

d ·
(

d
d−1

)d−1 · 2
2d2−d

3

)N
.

Proof. Let S be a simplicial LC d-manifold with N facet. Let us fix a tree
of N d-simplices B inside S. We adopt the word “couple” to denote a pair
of facets in the boundary of B that are glued to one another during the
local construction of S.

Let us set D := 1
2
(2 +N(d− 1)). Note that the number of ridges in a d-

manifold is (d+1)N
2

, so (d+1)N is even: therefore (d−1)N is also even, which
implies that D is an integer. By Lemma 2.1.1, the boundary of the tree of
N d-simplices contains 2D facets, so each perfect matching is just a set of D
pairwise disjoint couples. We are going to partition every perfect matching
into “rounds”. The first round will contain couples that are adjacent in the
boundary of the tree of simplices. Recursively, the (i + 1)-th round will
consist of all pairs of facets that become adjacent only after a pair of facets
are glued together in the i-th round.

Selecting a pair of adjacent facets is the same as choosing the ridge
between them; and by Lemma 2.1.1, the boundary contains dD ridges.
Thus the first round of identifications consists in choosing n1 ridges out of
dD, where n1 is some positive integer. After each identification, at most
d − 1 new ridges are created; so, after this first round of identifications,
there are at most (d− 1)n1 new pairs of adjacent facets.

In the second round, we identify 2n2 of these newly adjacent facets: as
before, it is a matter of choosing n2 ridges, out of the at most (d−1)n1 just
created ones. Once this is done, at most (d− 1)n2 ridges are created. And
so on.

We proceed this way until all the 2D facets in the boundary of B have
been matched (after f steps, say). Clearly n1 + . . .+nf = D, and since the
ni’s are positive integers, f ≤ D must hold. This means there are at most

D∑
f=1

∑
n1, . . . , nf

ni ≥ 1,
∑
ni = D

ni+1 ≤ (d− 1)ni

(
dD

n1

)(
(d− 1)n1

n2

)(
(d− 1)n2

n3

)
· · ·
(

(d− 1)nf−1

nf

)

possible perfect matchings of (d− 1)-simplices in the boundary of a tree of
N d-simplices.

We sharpen this bound by observing that not all ridges may be chosen
in the first round of identifications. For example, we should exclude those
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ridges that belong to just two d-simplices of B. An easy double-counting
argument reveals that in a tree of d-simplices, the number of ridges belong-
ing to at least 3 d-simplices is smaller or equal than N

3

(
d+1

2

)
. So in the

upper bound above we may replace the first factor
(
dD
n1

)
with the smaller

factor
(N

3 (d+1
2 )

n1

)
.

To bound the sum from above, we use
(
a
b

)
≤ 2a and n1 + · · · + nf−1 <

< n1 + · · ·+ nf = D, while ignoring the conditions ni+1 ≤ (d− 1)ni. Thus
we obtain the upper bound

2
N
3 (d+1

2 )+ N
2

(d−1)2+(d−1) ·
D∑
f=1

(
D − 1

f − 1

)
= 2

N
3

(2d2−d)+(d−1)
.

Thus the number of ways to fold a tree of N d-simplices into a manifold

via a local construction sequence is smaller than 2
2d2−d

3
N . Combining this

with Proposition 2.1.2, we conclude the proof for the case of simplicial d-
manifolds. We leave the adaption of the proof for simplicial d-manifolds
with boundary (or simplicial LC d-pseudomanifolds) to the reader.

The upper bound of Theorem 2.5.1 can be simplified in many ways. For

example, for d ≥ 16 it is smaller than 3
√

4
d2

. From Theorem 2.5.1 we obtain
explicit upper bounds:

• there are less than 216N simplicial LC 3-spheres with N facets,
• there are less than 6117N simplicial LC 4-spheres with N facets,

and so on. We point out that these upper bounds are not sharp, as we
overcounted both on the combinatorial side and on the algebraic side. When
d = 3, however, our constant is smaller than what follows from Durhuus–
Jonsson’s original argument:

– we improved the matchings-bound from 384N to 32N ;
– for the count of trees of N tetrahedra we obtain an essentially sharp

bound of 6.75N . (The value implicit in the Durhuus–Jonsson argument
[50, p. 184] is larger since one has to take into account that different
trees of tetrahedra can have the same unlabeled dual graph.)

Corollary 2.5.2. For any fixed d ≥ 2, there are exponential lower and
upper bounds for the number of simplicial LC d-manifolds on N facets.

Proof. Juxtapose Corollary 2.1.4 and Theorem 2.5.1.
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2.6 Beyond the LC class

In the proof of Theorem 2.5.1, the final exponential bound is the output of
three factors:

(1) the total number of (d− 1)-faces to match is linear in N ;
(2) there is a restriction (namely, the adjacency condition) on the couples

of (d− 1)-faces that may be identified in the first round. As a result,
the number of admissible couples is just linear in N (while the number
of all pairs of boundary facets is quadratic in N);

(3) the number of new admissible couples created after every single gluing
is bounded by a constant (specifically, the constant d− 1).

In the following, we weaken the LC notion maintaining the properties
(1), (2) and (3). As a result, we will still have exponential upper bounds.

2.6.1 LC manifolds with bounded facet complexity

If we try to consider polytopal complexes instead of simplicial complexes,
how do we bound the number of trees of polytopes?

Definition 2.6.1. Let A > d > 1 be integers. A d-manifold M on N facets
has facet complexity bounded by A if every d-polytope of M has at most A
facets.

Proposition 2.6.2. There are exponentially many trees of N d-polytopes
of bounded facet complexity.

Proof. Enumerate from 1 to CA the different combinatorial types of d-
polytopes with at most A facets. By looking at its dual graph, a tree of N
polytopes of complexity bounded by A can be represented by a tree of N
“coloured” nodes, where each colour is just an integer in {1, . . . , CA}. Since
CA is a constant, there are only exponentially many coloured unlabeled
trees on N nodes.

Already for d = 2, however, different trees of triangles may have the
same dual graph. Thus the previous representation is not unique. Now,
let RA be the number of different ways in which one can glue together two
d-polytopes with at most A facets: This “rotational factor” RA is finite
and (like CA) should be regarded as a constant. Given a tree T on N
vertices, there are at most (RA)N different trees of d-simplices whose dual
graph is T . Multiplying this exponential factor with the one obtained from
counting the coloured trees on N nodes, one gets the desired exponential
upper bound.
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Suppose that every boundary facet of a tree of d-polytopes for M has at
most B ridges. The existence of A implies the existence of such a constant
B: in fact, B ≤ A− 1, because if F is a facet of a polytope P , the number
of ridges of F equals the number of facets of P that are adjacent to F ,
which is certainly not bigger than the number of facets of P different from
F . Note that in the simplicial case A = d + 1 and B = d, while in the
cubical case A = 2d and B = 2d− 2.

Let us check that the conditions (1), (2) and (3) are fulfilled:

(1) The total number of facets to match is at most A+(N−1)(A−2). (The
bound is sharp if every d-face has exactly A subfaces of codimension
one.) Any matching (and a fortiori any partial matching) will consist

of at most DA := A+(N−1)(A−2)
2

pairs.
(2) In the first round, we are allowed to identify only adjacent (d−1)-faces

that belong to different, non-adjacent d-polytopes. Pairs of adjacent
(d−1)-faces are counted by (d−2)-faces, namely, the boundary ridges.
Since each d-polytope has at most AB

2
boundary ridges, the global

number of boundary ridges in a tree of N d-polytopes is at most AB
2

+
(N − 1)(AB

2
− d), which is linear in N . (In the cubical case, we may

replace the summand d by 2d− 2.)
(3) The constant B can be used to (over)count how many new adjacencies

we produce after a single identification: At most B − 1.

Theorem 2.6.3. Let A, d ∈ N, with A > d > 1. There are at most exponen-
tially many LC d-manifolds with N d-polytopes, provided each d-polytope
has at most A facets.

Proof. In view of Proposition 2.6.2, we only need to find an exponential
upper bound for the number of matchings. Analogously to the proof of
Theorem 2.5.1, such a bound is given by

DA∑
f=1

∑
n1, . . . , nf

ni ≥ 1,
∑
ni = DA

ni+1 ≤ (B − 1)ni

(
AB
2
N − dN + d

n1

)(
(B − 1)n1

n2

)
· · ·
(

(B − 1)nf−1

nf

)

where B ≤ A − 1 is the maximal number of “ridges-per-polytope”, and
DA := A+(N−1)(A−2)

2
. To check that this bound is exponential in N , apply

everywhere the inequality
(
a
b

)
< 2a.
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2.6.2 Simplicial k-LC manifolds

Definition 2.6.4. Let k, d ∈ N, with d ≥ 2. Let M be a simplicial d-
manifold on N facets. M is k-LC if and only if M can be obtained from
a tree of N d-simplices by gluing together 2k boundary facets pairwise
(preserving the orientation) and then by repeatedly identifying two adjacent
boundary facets.

When k = 0 we recover the classical LC notion: “0-LC” is just another
word for “LC”. As k gets larger, however, more and more manifolds are
captured in the k-LC class. Eventually, every d-manifold is k-LC for some
k. (In fact, when k = fd−1(M)− fd(M)− 2, all of the boundary facets but
two are matched in the first phase: Since the two (d− 1)-faces left have to
be adjacent, their gluing is a local one.)

As in the proof of Theorem 2.5.1, we divide the sequence of LC gluings
into “rounds”. The novelty is that there is now a round zero in which we are
allowed to match a constant number of faces wildly. A tree of N d-simplices
has (d− 1)N + 2 boundary facets of dimension d− 1. There are

(
(d−1)N+2

2k

)
ways to choose 2k facets out of them and (2k)!! = 2k ·(2k−2) · . . . ·2 = 2k ·k!
ways to match these 2k facets. This leads to a factor

2k · k! ·
(

(d− 1)N + 2

2k

)
≤ 2k · k! · 2(d−1)N+2,

which is exponential in N because k and d are to be regarded as constants.
Each wild matching produces at most d new adjacencies: Thus when round
zero is over at most dk new adjacencies have been formed. We proceed then
via local gluings, so conditions (1), (2) and (3) are met.

Theorem 2.6.5. Let k, d ∈ N, with d ≥ 2. There are at most 2d
2·N ·k!·(de)N

combinatorial types of k-LC simplicial d-manifolds with N facets.

Proof. The number of distinct trees of d-simplices is bounded by (de)N ac-
cording to Corollary 2.1.3. As far as the matchings are concerned, reasoning
as in the proof of Theorem 2.5.1 we obtain the exponential upper bound

2(d−1)N+k+2 ·k!
D∑
f=1

∑
n1, . . . , nf∑
ni = D

(
dD + dk

n1

)(
(d− 1)n1

n2

)
· · ·
(

(d− 1)nf−1

nf

)
,

where D = (d−1)N+2
2

. Applying the inequality
(
a
b

)
< 2a everywhere, we

obtain the upper bound

k! · 2(2d+1)(d−1) N
2 · 2(k+2)(d+1),
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2.6. Beyond the LC class

whence we conclude using that k + 2 ≤ fd−1(M)− fd(M) = N
2

.

We leave it to the reader to adapt the previous Theorem to the case of
k-LC manifolds with bounded facet complexity.

2.6.3 Distance-m-to-LC spheres

Definition 2.6.6. The distance of two facets in a strongly connected pure
regular CW complex is their distance as vertices of the dual graph, that is,
the minimal length of a dual path that connects them. If m is a positive
integer, a simplicial d-pseudomanifold is distance-m-to-LC if it can be ob-
tained from a tree of d-simplices by repeatedly identifying two boundary
facets (preserving orientation) that are at distance at most m+ 1 from one
another.

When m = 0, distance-m-to-LC spheres are just LC spheres. As m gets
larger, the class of distance-m-to-LC manifolds gets larger too. Eventually,
every simplicial d-sphere is distance-m-to-LC for some m.

We proceed now to check whether condition (1), (2) and (3) hold. Let
us assume d ≥ 3. (The case d = 2 is not so interesting, since we already
know that 2-spheres are “not so many”). Fix a facet σ of the boundary of
a tree of d-simplices B.

– The number cm+1(σ) of boundary facets at distance m + 1 from σ is
bounded above by the number of non-self-intersecting walks in the dual
graph of ∂B, starting at σ and having length (m + 1). Since we have
d choices of where to go with our first step and d − 1 choices in each
subsequent step, we obtain that

cm+1(σ) ≤ d · (d− 1)m.

– The number c≤m+1(σ) of boundary facets at distance at most m + 1
from σ is thus bounded above by

m+1∑
i=1

d · (d− 1)i−1 = d ·
(

(d− 1)m+1 − 1

(d− 1)− 1
− 1

)
<

<
d

d− 2
(d− 1)m+1 ≤ 3 (d− 1)m+1.

– The number fm+1 of pairs of facets at distance m+ 1 from one another
can be estimated by recursion. The initial value is f1 = d

2
((d−1)N+2),

since the pairs of adjacent (d− 1)-faces in ∂B are in bijection with the
ridges of ∂B. Further, f2 = ((d−1)N+2)

(
d
2

)
= (d−1)f1: In fact, every
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2. Asymptotic enumeration of manifolds

pair {σ, τ} of (d − 1)-simplices at distance two is uniquely determined
by the (d − 1)-simplex in between them, once you choose two (d − 2)-
faces of it (the ones adjacent to σ and τ). Finally, fm+1 ≤ (d−1)2fm−1,
because every path of length m + 1 has a central subpath of length
m− 1 which can be re-extended laterally to a path of length (m+ 1) in
(d− 1)2 possible ways. Recursively,

fm+1 ≤ (d− 1)mf1 =
d

2
((d− 1)N + 2) · (d− 1)m.

– In particular, the number f≤m+1 of (unordered) pairs of facets at dis-

tance ≤ m+ 1 from one another is d
2
· ((d− 1)N + 2) ·

(
(d−1)m+1−1

(d−1)−1
− 1
)

,

which is at most 3
2
((d− 1)N + 2) (d− 1)m+1.

Thus conditions (1) and (2) are satisfied, since the admissible couples
(meaning in this case the pairs of facets at distance at most m + 1) are
at most

Fm+1 :=
3

2
((d− 1)N + 2) (d− 1)m+1.

To check that condition (3) holds as well, fix two facets σ and σ′ at distance
at most m + 1 from one another, and define gm+1(σ, σ′) as the number of
new admissible couples created by an identification σ ≡ σ′. Our goal is to
show that gm+1(σ, σ′) is bounded by a linear function in N that does not
depend on σ or σ′.

Each new couple created by the identification σ ≡ σ′ consist of two
boundary facets µ, µ′ whose distance have become smaller or equal than
m + 1 after we glued σ and σ′ together. Thus (up to relabeling) µ was at
distance j from σ for some j ∈ {1, . . . ,m + 1}, while µ′ was at distance at
most m− j + 2 from σ′. (For example, when m = 0, µ had to be adjacent
to σ and µ′ had to be adjacent to σ′.) So, µ belongs to a class of cardinality
cj(σ) ≤ d (d − 1)j−1, while µ′ is in a class of cardinality c≤m−j+2(σ) ≤
3(d − 1)m−j+2. Since j can be arbitrarily chosen in {1, . . . ,m + 1}, we
obtain

gm+1(σ, σ′) ≤
m+1∑
j=1

3d(d− 1)j−1(d− 1)m−j+2 ≤

≤ 3d
m+1∑
j=1

(d− 1)m+1 = 3 (m+ 1)d(d− 1)m+1.

Thus gm+1(σ, σ′) is bounded above by a constant

Gm+1 := 3 (m+ 1)d(d− 1)m+1,
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2.6. Beyond the LC class

and condition (3) is safe. So, we can announce the following result:

Theorem 2.6.7. For every m ∈ N, there are exponentially many simplicial
distant-m-to-LC d-spheres with N facets.

Proof. Trees of d-simplices are exponentially many in N . To bound the
number of matchings, define Fm+1 and Gm+1 as above and proceed as in
the proof of Theorem 2.5.1 to obtain the upper bound

N+1∑
f=1

∑
n1, . . . , nf

ni ≥ 1,
∑
ni = D

ni+1 ≤ Gm+1ni

(
Fm+1

n1

)(
Gm+1 n1

n2

)(
Gm+1 n2

n3

)
· · ·
(
Gm+1 nf−1

nf

)
,

which is exponential in N .

2.6.4 Mogami’s “weakly LC spheres”

In 1995 Mogami [106] proposed a weaker version of local constructibility.
Here is his idea: During a local construction of a 3-sphere, one is also
allowed to identify two (or even more) edges that share a common vertex
v in the boundary, provided (1) no edge participates in this process twice
and (2) the identified edges do not belong to the same 3-face, nor to 2-faces
that are already adjacent.2 We will call this identification a Mogami move
on the vertex v.

Any two boundary facets that share a vertex v can be identified per-
forming a Mogami move on the vertex v, followed by an LC move. Thus, all
the simplicial manifolds obtained from a tree of tetrahedra by repeatedly
identifying two non-disjoint boundary triangles (preserving orientation) are
“weakly LC” in the sense of Mogami.

Mogami moves preserve simply connectedness. However, Mogami moves
are not internal to the world of pseudomanifolds: If we identify two adjacent
edges in the boundary of a finely triangulated 3-ball, we obtain a CW
complex in which one boundary edge is shared by four distinct boundary
triangles.

2Condition (2) is not explicitly mentioned in Mogami’s paper. However, identifying
two edges that belong to the same polytope would destroy the regularity of the CW com-
plex, whereas we are interested in local constructions that eventually yield a polytopal
complex. On the other hand, identifying edges that belong to already adjacent faces σ′

and σ′′ is a waste of time: Later σ′ and σ′′ must be glued together if we want to reach
a polytopal complex, so why not performing the local gluing σ′ ≡ σ′′ in the first place?
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2. Asymptotic enumeration of manifolds

Mogami showed that “weakly-LC” simplicial 3-manifolds on N facets
are exponentially many in N . His proof [106] is slightly different from the
proof of Theorem 2.5.1 and we do not present it here. However, from [106]
it is not clear how much Mogami moves help in expanding the classical
LC notion: Are there non-weakly LC 3-spheres? Are there weakly-LC 3-
spheres that are not LC? As far as we know, both questions are still open.
However, in Figure 5.3 we will give an example of a 3-pseudomanifold that
is weakly-LC but not LC.
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Chapter 3

Collapses

If we remove the interior of a d-face from a d-manifold M , does the resulting
complex collapse onto a (d − 1)-complex? Does it collapse onto a (d − 2)-
complex? Does it collapse onto a (d−t)-complex, for some t ≤ d−1? These
questions will have great consequence in the rest of this book.

Let us first recall the meaning of the word ‘collapse’. Let C be a d-
dimensional polytopal complex. An elementary collapse is the simultaneous
removal from C of a pair of faces (σ,Σ) with the following prerogatives:

– dim Σ = dimσ + 1;
– σ is a proper face of Σ;
– σ is not a proper face of any other face of C.

The three conditions above (the first of which is implied by the other
two) are usually abbreviated in the expression “σ is a free face of Σ”. Some
complexes (like any 2-sphere, or the Dunce Hat, cf. Figure 3.1) have no free
face.

If C ′ := C − Σ − σ, we say that the complex C collapses onto the
complex C ′. We also say that the complex C collapses onto the complex
D, and write C ↘ D, if C can be reduced to D by a finite nonempty
sequence of elementary collapses. (Thus a collapse refers to a sequence of
elementary collapses, cf. Figure 3.2.) A collapsible complex is a complex
that can be collapsed onto a single vertex. Since C ′ := C − Σ − σ is a
deformation retract of C, each collapse preserves the homotopy type. In
particular, all collapsible complexes are contractible. The converse holds for
1-complexes: “contractible 1-complex” is a synonime of “tree”, and trees
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3. Collapses

can be collapsed by removing one leaf at the time. However, the Dunce Hat
(Fig. 3.1) is a contractible 2-complex without free edges, and thus with no
elementary collapse to start with. If we restrict the topology to balls, it is

1

2

3

1

3

2

1

8 5

47
6

3 2

Figure 3.1: The Dunce Hat.

easy to see that every contractible 2-dimensional polytopal complex that is
homeomorphic to a 2-ball is collapsible. But even this statement does not
generalize to d ≥ 3, as shown in 1964 by Bing [21], who gave an example of
non-collapsible 3-ball.

Also, a connected 2-dimensional complex is collapsible if and only if it
does not contain a 2-dimensional complex without a free edge. In particular,
for 2-dimensional complexes, if C ↘ D and D is not collapsible, then C is
also not collapsible [76]. This holds no more for complexes C of dimension
larger than two: for example, there are collapsible simplicial 3-balls that can
be collapsed onto the Dunce Hat as well (see Section 5.4.) Due to the work
of Cohen [41], a complex C is contractible if and only if some collapsible
complex D collapses also onto C.

By a result of Dong [48, Lemma 17, p. 1116], for every integer d > 0,
if a contractible d-complex C is shellable then C is also collapsible. This
implication is also known to be strict: as early as 1958 Mary E. Rudin [126]
obtained a non-shellable 3-ball by subdividing a tetrahedron (see Example
1.3.4), and nine years later Chillingworth [40] showed that every subdivided
tetrahedron is collapsible. Thus Rudin’s 3-ball is collapsible, contractible,
constructible, but not shellable.

Note that a shellable 3-ball B has some boundary facet σ such that the
removal of σ and of the unique tetrahedron Σ containing it deforms the
3-ball B into another (shellable) 3-ball B′.1 Constructible or collapsible
balls might not satisfy this property: for example, any elementary collapse
deforms Rudin’s ball into a contractible complex that is not homeomorphic
to a 3-ball any more.

1In [154] the tetrahedron Σ with this property is called “free facet”, and a 3-ball
without free facets is called “strongly non-shellable”. We will refrain from this notation
to avoid any possible confusion with the notion of “free face”.
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3.1. Collapsing a manifold minus a facet

3.1 Collapsing a manifold minus a facet

Definition 3.1.1. A natural labeling of a rooted tree T (on n vertices) is
a bijection

b : V (T ) −→ {1, . . . , n}

such that the root is mapped to 1, and if v is not the root, then there exists
a vertex w adjacent to v such that b(w) < b(v).

Definition 3.1.2. By a facet-killing sequence for a d-dimensional complex
C we mean a sequence C0, C1, . . . , Ct−1, Ct of complexes such that t = fd(C),
C0 = C and Ci+1 is obtained by an elementary collapse that removes a free
(d− 1)-face σ of Ci, together with the unique d-face Σ containing σ.

If C is a d-complex and D is a lower-dimensional complex such that
C ↘ D, then there exists a facet-killing sequence C0, . . ., Ct for C such
that Ct ↘ D. In other words, the collapse of C onto D can always be
rearranged so that the pairs ((d− 1)- face, d- face) are removed first. In
particular, for any d-complex C, the following are equivalent:

1. there exists a facet-killing sequence for C;
2. there exists a k-complex D with k ≤ d− 1 such that C ↘ D.

Let M be a manifold; fix a facet ∆ of M and a spanning tree T of the
dual graph of M . Viewing T as rooted tree with root ∆, we may collapse
the d-complex C −∆ along T , obtaining a lower dimensional complex KT .
More precisely, any natural labeling of the rooted tree T naturally induces
a facet-killing collapse of M −∆: The i-th facet to be collapsed is the node
of T labelled by i+ 1.

A crucial remark is that the (d− 1)-complex obtained collapsing along
T does not depend on the natural labeling, nor on the ∆ chosen: it is
simply the pure (d − 1)-dimensional subcomplex of M formed by all the
(d− 1)-faces of M that are not intersected by T .

Definition 3.1.3 (KT). Let M be a manifold and T a spanning tree of
its dual graph. We call KT the pure (d− 1)-dimensional subcomplex of M
formed by all the (d− 1)-faces of M that are not intersected by T .

In case M is simplicial, it is easy to compute the number of facets of
KT : Every facet of M contains d+ 1 ridges and every ridge lies in exactly
two facets, so M has d+1

2
·N ridges, N − 1 of which are hit by T . Therefore

KT has exactly d+1
2
N − (N − 1) facets, all of them of dimension d − 1.

Analogously, in case M is cubical each of the N facets of M contains 2d
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ridges, so we get that KT has exactly d ·N − (N − 1) facets (all of them of
dimension d− 1).

We have seen that for any facet ∆ of M , M −∆ collapses “along T”
onto KT . On the other hand, any collapse of a d-manifold M minus a
facet ∆ onto a complex of dimension at most d − 1 proceeds along a dual
spanning tree T . To see this, fix a collapsing sequence; we may assume that
the collapse of M −∆ is ordered so that the pairs ( (d− 1)-face, d-face ) are
removed first. Whenever

1. σ is the intersection of the d-faces Σ and Σ′ of M , and
2. the pair (σ,Σ) is one of the elementary collapses in the collapsing

sequence of M −∆,

draw an oriented arrow from the barycenter of Σ to the barycenter of Σ′.
This yields a directed spanning tree T of the dual graph of M , where ∆
is the root. Indeed, T is spanning because all d-simplices of M − ∆ are
removed in the collapse; it is acyclic, because the barycenter of each d-
simplex of M −∆ is reached by exactly one arrow; it is connected, because
the only free (d − 1)-faces of M − ∆, where the collapse can start at, are
the proper (d − 1)-faces of the “missing simplex” ∆. We will say that
the collapsing sequence acts along the tree T (in its top-dimensional part).
Thus the complex KT appears as intermediate step of the collapse: It is
the complex obtained after the (N − 1)-st pair of faces has been removed
from M −∆.

Figure 3.2: (Above): A facet-killing sequence of M −
∆, where M is the boundary of a tetrahedron (d = 2),
and ∆ one of its facets (not drawn here). (Right): The
1-complex KT [in black] onto which M − ∆ collapses,
and the directed spanning tree T [in purple] along which
the collapse above acts.

What we argued so far can be rephrased as follows:

Proposition 3.1.4. Let M be a d-manifold, ∆ a d-face of M . Let C be
any k-dimensional subcomplex of M , with k ≤ d− 2. Then,

M −∆ ↘ C ⇐⇒ ∃ T s.t. KT ↘ C.
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The right-hand side in the equivalence of Proposition 3.1.4 does not depend
on the ∆ chosen. So, for any d-polytope ∆, either M −∆ is collapsible for
every ∆, or M −∆ is not collapsible for any ∆.

Take a d-manifold M , a facet ∆ of M , and a rooted spanning tree T of
the dual graph of M , with root ∆. By Proposition 3.1.4, natural labelings
of T are in bijection with collapses M − ∆ ↘ KT (the i-th facet to be
collapsed is the node of T labelled i+ 1).

If we fix M and ∆, but not T , the previous reasoning yields a bijection
among the set of all facet-killing sequences of M −∆ and the set of natural
labelings of spanning trees of M , rooted at ∆.

Remark 3.1.5. For the results in this section it is not necessary for M to be
a manifold: It suffices that M is a strongly-connected polytopal complex
such that every ridge of M lies in two facets of M . Also, suppose a polytopal
complex C is connected but not strongly-connected, and let k be the number
of “strongly-connected components” of C (which is the same as the number
of connected components of the dual graph of C). If every ridge of C lies
in two facets, then C collapses onto a (d− 1)-complex after the removal of
exactly k faces. (These k faces may be chosen arbitrarily, provided we pick
one per each strongly-connected component.)

3.2 Collapse depth

Definition 3.2.1 (Collapse depth). The collapse depth of a d-complex C
is defined as

cdepth(C) := d−min{ dimD : (C −∆)↘ D, for some d-face ∆ of C }.

In other words, cdepth(C) ≥ c if and only if C minus a facet collapses
onto a complex of dimension dimC − c. We showed in the previous section
that every manifold has collapse depth greater or equal than one. Recall
that when C is a manifold, the complex of minimal dimension onto which
C −∆ collapses does not depend on the ∆ chosen.

Definition 3.2.2. Let K be a d-manifold, A an r-face in K, and Â the
barycenter of A. Consider the barycentric subdivision sd(K) of K. The
dual A∗ of A is the subcomplex of sd(K) given by all flags

A = A0 ( A1 ( · · · ( Ar

where r = dimA, and dimAi+1 = dimAi + 1 for each i.

A∗ is a cone with apex Â [110, pp. 377-380], and thus collapsible by
Proposition 3.4.1.
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Lemma 3.2.3 (“Newman’s theorem”[77, pp. 29-30][110, pp. 377-380]).
Let K be a PL d-manifold (without boundary) and let A be a polytope in K
of dimension r. Then

• A∗ is a (d− r)-ball, and
• if A is a face of an (r + 1)-polytope B, then B∗ is a (d− r − 1)-sub-

complex of ∂A∗.

Theorem 3.2.4. Every PL manifold M is (cdepth(M)− 1)-connected.

Proof. Let M be a PL d-manifold; suppose that M−∆ collapses onto some
t-complex. We can assume that the collapse of M −∆ is ordered so that:

– first all pairs (d-face, (d− 1)-face) are collapsed;
– then all pairs ((d− 1)-face , (d− 2)-face) are collapsed;

–
...

– finally, all pairs ((t+ 1)-face, t-face) are collapsed.

Let us put together all the faces that appear above, maintaining their
order, to form a unique list of faces

A1, A2, . . . , A2E−1, A2E.

In this list A1 is a free face of A2; A3 is a free face of A4 with respect to
the complex M −A1 −A2; and so on. In general, A2i−1 is a face of A2i for
each i, and in addition, if j > 2i, A2i−1 is not a face of Aj.

We set X0 = A0 := ∆̂ and define a finite sequence X1, . . . , XE of CW
complexes as follows:

Xj :=
⋃
{A∗i s.t. i ∈ {0, . . . , 2j}} , for j ∈ {1, . . . , E}.

In other words, Xj = Xj−1 ∪ A∗2j−1 ∪ A∗2j. By Lemma 3.2.3, A∗2j−1 is a
(d − r)-ball that contains in its boundary the (d − r − 1)-ball A∗2j, where
r = dimA2j−1. Thus |Xj| is just |Xj−1| with a (d − r)-cell attached via a
cell in its boundary, and such an attachment does not change the homotopy
type. Since X0 is a point, it follows that XE is contractible.

Now, let us list by (weakly) decreasing dimension all the faces of M that
did not previously appear in the list A1, A2, . . . , A2E−1, A2E. We name the
elements of such new list

A2E+1, A2E+2, . . . , AF ,

where
∑d

i=1 fi(M) = F + 1 because all faces appear in A0, . . . , AF .
Correspondingly, we define a new sequence of CW complexes setting

Y0 := XE and Yh := Yh−1 ∪ A∗2E+h.
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Since dimA2E+h ≤ dimA2E+1 = t, we have that |Yh| is just |Yh−1| with
a cell of dimension at least d − t attached via its whole boundary. Let us
consider the homotopy groups of the Yh ’s: Recall that Y0 was homotopy
equivalent to a point and that by construction Y2E−F coincides with sd(M).
Therefore πj(Yh) = 0, for all h and for each j in {1, . . . , d− t− 1}.

The conclusion follows taking t maximal with respect to the property
that M − ∆ collapses onto a t-complex: in this case t = d − cdepth(M),
whence πj(M) = 0 for each j ∈ {1, . . . , cdepth(M)− 1}.

Corollary 3.2.5. Let d ≥ 3. Let M be a PL d-manifold. If cdepth(M) ≥
d− 1 then M is a d-sphere and cdepth(M) = d.

Proof. By Theorem 3.2.4, πi(M) = 0 for all i ≤ d− 2. It is an outstanding
result of algebraic topology that this implies M is a d-sphere (provided
d ≥ 3). In fact, by Hurewicz’ theorem, by the Universal Coefficient Theorem
for cohomology and by Poincaré duality, πi(M) = Hi(M) = 0 for all i in
{1, . . . , d − 1}. Every simply connected manifolds is orientable: Thus by
Hurewicz’ theorem πd(M) = Hd(M) = Z. So M is a homotopy d-sphere.
This implies that M is a d-sphere by the generalized Poincaré conjecture,
which was proven (in inverse chronological order) for d = 3 by Perelman
[117] [118] [88] [36] [107] [108], for d = 4 by Freedman [56] and for d ≥ 5 by
Smale [130] on the beaches of Rio de Janeiro [131] [155].

A d-sphere minus a facet yields a contractible complex and contractibil-
ity is preserved throughout a collapse. Since all contractible 1-complexes
are collapsible, a d-sphere has collapse depth ≥ d − 1 if and only if it has
collapse depth d.

Remark 3.2.6. The validity of the proof above does not rely on Perelman’s
proof of the Poincaré conjecture. When d = 3, in fact, Corollary 3.2.5 boils
down (via Theorem 5.2.6) to Corollary 1.6.7, which was proven by Durhuus
and Jonsson with elementary methods.

When d = 3, also Theorem 3.2.4 boils down via Theorem 5.2.6 to a result
of Durhuus and Jonsson, namely, “all locally constructible 3-manifolds are
simply connected” (cf. Lemma 1.6.3).

Remark 3.2.7. While every manifold with collapse depth greater than k
is k-connected, not every k-connected manifold has collapse depth greater
than k: We will show in Corollary 4.3.9 that for each d ≥ 3, some d-spheres
have cdepth = 1. (All d-spheres are (d−1)-connected.) In Chapter 5 we will
characterize the manifolds with cdepth ≥ 2 in terms of local constructibility.

Remark 3.2.8. Corollary 3.2.5 strengthens a result of Whitehead, “every
collapsible d-manifold is a d-ball” [144, Thm. 23, Cor. 1]. The assumption
d ≥ 3 is crucial: Any triangulated torus has collapse depth one.
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3.3 Collapses and products

In this section we investigate the relation between collapses and products.
We have seen in Corollary 3.2.5 that all 3-manifolds with cdepth ≥ 2 are
spheres: Here we show, for each d ≥ 4, that d-manifolds with cdepth ≥ 2
might as well be products of spheres.

Recall that the product of two polytopal complexes X×Y is a polytopal
complex whose nonempty cells are the products P i

α × P
j
β , where P i

α ranges

over the nonempty polytopes of X and P j
β ranges over the nonempty poly-

topes of Y (cf. Ziegler [153, p.10]). In general, the product of two simplicial
complexes is not a simplicial complex; however, the product of two cubical
complexes is a cubical complex.

Proposition 3.3.1 (Cohen [41, p. 254]). Let A and B be two polytopal
complexes. If A collapses onto a complex CA then A × B collapses onto
CA ×B.

Proof. Let B1, . . . , BM be an ordered list of all the faces of B, ordered
by weakly decreasing dimension. Let (σA1 ,Σ

A
1 ) be the first pair of faces

appearing in the collapse of A onto CA. We perform the M collapses (σA1 ×
B1,Σ

A
1 ×B1), . . ., (σA1 ×BM ,Σ

A
1 ×BM), in this order. It is easy to check that

each of the steps above is a legitimate collapse: When we remove σA1 ×Bi all
the faces of the type σA1 ×β containing σA1 ×Bi have already been removed,
because in the list B1, . . . , BM the face β appears before Bi. On the other
hand, σA1 is a free face of ΣA

1 , thus no face of the type α× Bi may contain
σA1 ×Bi other than ΣA

1 ×Bi.
Next, we consider the second pair of faces (σA2 ,Σ

A
2 ) that appears in the

collapse of A onto CA and we repeat the procedure above, and so on: In
the end, the only faces left are those of CA ×B.

Corollary 3.3.2 (cf. Welker [143, Theorem 2.6]). If A is collapsible,
then A× B collapses onto a copy of B. In particular, A× B is collapsible
if both A and B are collapsible.

The converse of the latter implication is false: the product of an interval
with the Dunce Hat is collapsible [150].

Now, consider a 1-sphere S consisting of four edges. The 2-complex S×S
is a cubical torus; after the removal of a facet, it collapses onto the union of
a meridian and a parallel. (In fact, a punctured torus topologically retracts
to a bouquet of two circles.) In the next result, we give an explanation to
this fact in the generality of polytopal complexes (even if the same proof
work also for regular CW complexes).
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Proposition 3.3.3. Let A and B be two polytopal complexes. Let ∆A (resp.
∆B) be a facet of A (resp. B). If A−∆A collapses onto some complex CA
and if B−∆B collapses onto some complex CB then (A×B)− (∆A×∆B)
collapses onto (A× CB) ∪ (CA ×B).

Proof. We start by forming three ordered lists of pairs of faces.
Let (σ1,Σ1), . . . , (σU ,ΣU) be the list of the removed pairs of faces in

the collapse of A minus ∆A onto CA. (We assume that higher dimensional
faces are collapsed first.) Analogously, let (γ1,Γ1), . . . , (γV ,ΓV ) be the
list of all the removed pairs in the collapse of B minus ∆B onto CB. Let
then B1, . . . , BW be the list of all the faces of B that are not in CB, ordered
by weakly decreasing dimension. The desired collapsing sequence for (A×
B)− (∆A ×∆B) consists of U + 1 distinct phases:

Phase 0: We remove from (A × B) − (∆A × ∆B) the V pairs of faces
(∆A × γ1,∆A × Γ1), (∆A × γ2,∆A × Γ2), . . . , , (∆A × γV ,∆A × ΓV ),
in this order. Analogously to the proof of Proposition 3.3.1, one sees
that all these removals are elementary collapses. They wipe away
the “∆A-layer” of A × B, but not entirely: The faces α × β with β
in CB are still present. What we have written is in fact a collapse of
(A×B)−(∆A×∆B) onto the complex ( (A−∆A)×B) ∪ (∆A×CB).

Phase 1: We take the first pair (σ1,Σ1) in the first list and we perform the
W elementary collapses (σ1 ×B1,Σ1 ×B1), . . ., (σ1 ×BW ,Σ1 ×BW ).
This way we remove (with the exception of Σ1 × CB) the Σ1-layer
of A × B, where Σ1 is the first facet of A to be collapsed away in
A−∆A ↘ CA.

...
Phase j: We consider (σj,Σj) and proceed as in Phase 1, performing W

collapses to remove the Σj-layer of A×B (except Σj × CB).
...

Phase U: We consider (σU ,ΣU) and proceed as in Phase 1, performing W
collapses to remove the ΣU -layer of A×B (except ΣU × CB).

Eventually, the only faces of A×B left are those of A×CB ∪ CA×B.

Corollary 3.3.4. Given s polytopal complexes A1, . . . , As , suppose that
each Ai after the removal of a facet collapses onto some lower-dimensional
complex Ci . Then the complex A1 × . . . × As after the removal of a facet
collapses onto

(C1×A2×. . .×As) ∪ (A1×C2×A3×. . .×As) ∪ . . . ∪ (A1×. . .×As−1×Cs) .

Proof. It follows directly from Proposition 3.3.3, by induction on s.

69
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Corollary 3.3.5. Given s manifolds M1, . . . ,Ms, one has that

cdepth(M1×M2×. . .×Ms) ≥ min{cdepthM1, cdepthM2, . . . , cdepthMs}.

Proof. By definition, each Mi minus a facet collapses onto a subcomplex Ci
of dimension dimMi − cdepthCi (i = 1, 2). By Corollary 3.3.4, the union
of complexes onto which the product of the Mi minus a facet collapses has
dimension

∑s
i=1 dimMi −min{cdepthC1, . . . , cdepthCn}.

Corollary 3.3.6. Let Cd denote the boundary complex of the (d + 1)-cube
(d ≥ 2). Then:

– the cubical 4-manifold C2 × C2 has collapse depth equal to two;
– the cubical (d+2)-manifold C2×Cd has collapse depth not smaller than

two;
– the cubical 2d-manifold Cd × Cd has collapse depth not smaller than d.

Proof. The collapse depth of C2 × C2 cannot be larger than two, because
π2(C2 × C2) is non-trivial (compare Theorem 3.2.4). Since the collapse
depth of Cd is d, the collapse depth of Cd × Ck is at least min(d, k), by
Corollary 3.3.5.

3.4 Collapses and cones

It is well known that taking cones induces collapsibility:

Proposition 3.4.1 (Welker [143, Prop. 2.4]). The join of two complexes
C1 and C2 is collapsible if at least one of the Ci is collapsible. In particular,
given a vertex v and an arbitrary polytopal complex C, the cone v ∗ C is
collapsible.

What about coning off the boundary of a 3-ball? When B is a collapsible
3-ball, coning off the boundary of B yields a sphere that collapses after the
removal of a facet:

Proposition 3.4.2. Let B be a 3-ball and let SB = B ∪ v ∗ ∂B. Let C be a
complex of dimension ≤ 2 such that B ↘ C. For every facet ∆ of SB, one
has SB −∆↘ C.

Proof. By Proposition 3.1.4, it suffices to prove that SB −∆↘ C for some
facet ∆. Choose a (d−1)-face σ in the boundary ∂B and consider ∆ = v∗σ.
As B collapses onto C, if we show that (B ∪ v ∗ ∂B)− v ∗ σ collapses onto
B we are done.
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3.4. Collapses and cones

Since all 2-balls are collapsible, there is some vertex P in ∂B such that
∂B − σ ↘ P . This induces a collapse of v ∗ ∂B − v ∗ σ onto ∂B ∪ v ∗ P ,
according to the correspondence

σ is a free face of Σ ⇐⇒ v ∗ σ is a free face of v ∗ Σ.

Furthermore, in such collapse the removed pairs of faces are all of the
form (v ∗ σ, v ∗ Σ); thus, the facets of ∂B are removed together with sub-
faces and not with superfaces. This means that the freeness of the faces in
∂B is not needed; so when we glue back B, the collapse

v ∗ ∂B − v ∗ σ ↘ ∂B ∪ v ∗ P

can be read off as

B ∪ v ∗ ∂B − v ∗ σ ↘ B ∪ v ∗ P.

Collapsing the edge v ∗ P down to P , we conclude.

Remark 3.4.3. The converse of Proposition 3.4.2 does not hold: SB minus
a facet might be collapsible even if B is not collapsible (cf. Remark 5.3.5).
See also Proposition 5.3.10 for a tricky variant of Proposition 3.4.2.

Proposition 3.4.2 can be extended to d-manifolds with (strongly con-
nected) boundary:

Proposition 3.4.4. Let d > t ≥ 2 be two integers. Let B be a d-manifold
with non-empty boundary and let MB = B ∪ v ∗ ∂B. Suppose B collapses
onto some (d− t)-complex. If cdepth(∂B) ≥ t, then cdepth(MB) ≥ t.

Proof. For each facet σ of ∂B, the (d − 1)-complex ∂B − σ collapses onto
some (d− 1− t)-complex P , which does not depend on σ. Reasoning as in
the proof of Proposition 3.4.2, one obtains a collapse

B ∪ v ∗ ∂B − v ∗ σ ↘ B ∪ v ∗ P.

By assumption, B collapses onto some (d− t)-complex. Gluing the (d− t)-
complex v ∗ P onto B at P does not interfere with such collapse. (Some
k-faces of B might not be free any more, but their dimension k is too small
to matter.) Therefore, B ∪ v ∗P still collapses onto a (d− t)-complex.

Remark 3.4.5. If a ball B collapses onto ∂B − σ and ∂B − σ is collapsi-
ble, then B is collapsible, too. Apart from this implication, these three
properties seem to be independent:
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� since all 2-balls are collapsible, for each non-collapsible 3-ball B one
has that ∂B − σ is collapsible and B does not collapse onto it;

� for each 3-sphere S such that S minus a facet is not collapsible (see
Example 5.3.4), given a new vertex v one has that B := v ∗ S is a
collapsible 4-ball such that ∂B minus a facet is not collapsible; anyway,
B does not collapse onto ∂B − σ (cf. Prop. 1.7.2);

� in Theorem 6.3.6 we will give an example of a ball B such that B is
collapsible, ∂B−σ is collapsible, but B does not collapse onto ∂B−σ.

We do not know any non-collapsible 4-ball B that collapses onto ∂B − σ.

3.5 Collapses and subcomplexes

The manifolds that have maximal collapse depth are spheres, by Corollary
3.2.5. Lickorish [93] proved that if S−∆ is collapsible and L is any (d−2)-
dimensional subcomplex of a d-sphere S, then the fundamental group of
|S| − |L| has a presentation with (at most) fd(L) generators.

We present here a strengthened version of Lickorish’s result. We show
that if M is a d-manifold and cd(M) ≥ k, the (k−1)-th homotopy groups of
the complements of any (d−k)-subcomplex of M cannot be too complicated
to present:

Theorem 3.5.1. Let t, d be integers with 0 ≤ t ≤ d−2, and let M be a PL
d-manifold. Suppose that, for some facet ∆ of M , M − ∆ collapses onto
a t-dimensional complex. For each t-dimensional subcomplex L of M , the
homotopy group

πd−t−1 (|M | − |L|)

has a presentation with exactly ft(L) generators, while the homotopy groups

πi (|M | − |L|) , 1 ≤ i < d− t− 1,

are all trivial.

Proof. As in the proof of Theorem 3.2.4, let us form the list of faces

A1, A2, . . . , A2E−1, A2E.

In such a list A2i−1 is a face of A2i for each i; also, if j > 2i then A2i−1 is
not a face of Aj. Set X0 = A0 := ∆̂ and define a finite sequence X1, . . . , XE

of (not necessarily regular) CW complexes as follows:

Xj :=
⋃
{A∗i s.t. i ∈ {0, . . . , 2j} and Ai /∈ L} , for j ∈ {1, . . . , E}.
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None of the A2i’s can be in L, because L is t-dimensional and dimA2i ≥
dimA2E = t+ 1 for each i. However, exactly ft(L) of the A2i−1’s are in L.
Consider how Xj differs from Xj−1. There are two cases:

(1) If A2j−1 is not in L,

Xj = Xj−1 ∪ A∗2j−1 ∪ A∗2j.

By Lemma 3.2.3, setting r = dimA2j−1, A∗2j−1 is a (d − r)-ball that
contains in its boundary the (d − r − 1)-ball A∗2j. Thus |Xj| is just
|Xj−1| with a (d− r)-cell attached via a cell in its boundary, and such
an attachment does not change the homotopy type.

(2) If A2j−1 is in L, then
Xj = Xj−1 ∪ A∗2j.

As this occurs only when dimA2j−1 = t, we have that dimA2j = t+ 1
and dimA2j = d− t−1; hence |Xj| is just |Xj−1| with a (d− t−1)-cell
attached via its whole boundary.

Only in case (2) the homotopy type of |Xj| changes at all, and this case
(2) occurs exactly ft(L) times. Since X0 is one point, it follows that XE is
homotopy equivalent to a bouquet of ft(L) many (d− t− 1)-spheres.

Now, as in the proof of Theorem 3.2.4, let us list by (weakly) de-
creasing dimension all the faces of M that did not appear in the list
A1, A2, . . . , A2E−1, A2E. We name the elements of the new list

A2E+1, A2E+2, . . . , AF .

Correspondingly, we define a new sequence of subcomplexes of sd(M)
setting Y0 := XE and

Yh :=

{
Yh−1 if A2E+h ∈ L,
Yh−1 ∪ A∗2E+h otherwise.

Since dimA2E+h ≤ dimA2E+1 = t, we have that |Yh| is just |Yh−1| with
possibly a cell of dimension at least d− t attached via its whole boundary.
Y0 is homotopy equivalent to a bouquet of ft(L) (d−t−1)-spheres; therefore,
for each h and for each j in {1, . . . , d− t− 1}, one has that πj(Yh) = 0.

Moreover, the higher-dimensional cell attached to |Yh−1| to get |Yh| cor-
responds to the addition of relators to a presentation of πd−t−1(Yh−1) to get
a presentation of πd−t−1(Yh). This means that for all h the group πd−t−1(Yh)
is generated by (at most) ft(L) elements.

The conclusion follows from the fact that Y2E−F is the subcomplex of
sd(M) consisting of all simplices of sd(M) that have no face in L; and
it is known [110, Lemma 70.1][93, Lemma 1] that such a complex is a
deformation retract of |M | − |L|.
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In particular, if M−∆ collapses onto a (d−2)-dimensional complex, the
fundamental group π1 (|M | − |L|) has a presentation with ft(L) generators,
for each (d− 2)-dimensional subcomplex L of M .
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Chapter 4

Knots

A (non-trivial) knot in a 3-sphere is a closed curve that neither intersects
itself nor bounds a disc. The trefoil knot (also known among sailors as
“overhand knot” or “thumb knot”, see Figure 4.2) yields a classical example;
another one is the connected sum of two trefoils, which is obtained1 by
cutting out a tiny arc from each and them sewing the resulting curves
together along the boundary of the cutouts. (See Figure 4.3.)

All the knots we consider are tame, that is, realizable as 1-dimensional
subcomplexes of some triangulated 3-sphere. A regular projection for a
tame knot L is an orthogonal projection p : R3 → R2 such that:

(1) the preimage of any point of p(L) contains at most two points of L;
(2) there are only finitely many points of p(L) (called crossings) whose

preimage contains two points of L;
(3) the preimage of a crossing contains no vertex of L.

Regular projections always exist [83, pp. 7–8]: if we assume that the
projection determined by the z-axis is regular, we can distinguish the two
points in the preimage of each crossing as the overcrossing and the under-

1The reader should be warned that two distinct knots — the so-called “granny knot”
and the “square knot” — may be formed by summing two trefoils [125, pp. 40–41]. The
reason is that two trefoils can be merged with consistent or with opposite orientations.
However, the granny knot and the square knot have the same group. Since our excursion
in knot theory will be exclusively focused on knot groups, we will talk about “connected
sums of knots” without specifying the orientation of the summands — in fact, as far as
the group is concerned, it does not matter.
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crossing, according to the obvious convention that the z-coordinate of the
undercrossing should be smaller than the z-coordinate of the overcrossing.

A diagram of a knot is its image under a regular projection. Given two
diagrams of the same knot, it is always possible to pass from one diagram to
the other via a finite sequence of Reidemeister moves, described in Figure
4.1. In general, two knots are of the same type if a diagram of the first one is
related to a diagram of the second one by a finite sequence of Reidemeister
moves [83]. In other words, Reidemeister moves are local and ergodic —
like the Pachner moves we encountered in Section 1.2.

Figure 4.1: The three Reidemeister moves (from Wikipedia).

4.1 Knot groups

A knot is m-complicated if the fundamental group of the complement of
the knot in the 3-sphere has a presentation with m + 1 generators, but no
presentation with m generators. By “at least m-complicated” we mean “k-
complicated for some k ≥ m”. There exist arbitrarily complicated knots:
Goodrick [60] showed that the connected sum of m trefoil knots is at least
m-complicated.

A more common measure of how tangled a knot can be is the bridge
index, that can be defined as follows [83, p. 18]. Let DL be a diagram of
a knot L. A bridge is a subarc of DL which contains only overcrossings
(cf. Figure 4.2). The bridge number of a diagram DL is the minimum
number of disjoint bridges which together include all overcrossings. The
bridge number depends on the diagram chosen. For example, the standard
diagram of the trefoil knot has three bridges, but there is also a diagram

76



4.1. Knot groups

Figure 4.2: Two diagrams of the trefoil knot with bridge number three resp.
two. Distinct bridges are colored differently.

with bridge number two: See Figure 4.2 above. The bridge index of a knot
L is the minimum of the bridge numbers of all diagrams of L.

If a knot has bridge index b, the fundamental group of the knot comple-
ment admits a presentation with b generators and b−1 relations [83, p. 82].
In other words, the bridge index of a t-complicated knot is at least t + 1.
As a matter of fact, the connected sum of t trefoil knots is t-complicated,
and its bridge index is exactly t + 1 [52]. More generally, the bridge index
of the connected sum of two knots equals the sum of their bridge indices,
minus one: See Figure 4.3 below.

Figure 4.3: The bridge index of the connected union of two trefoils is three.

4.1.1 Spinning

A (d−2)-knot (d ≥ 3) is a subcomplex L homeomorphic to a (d−2)-sphere
of a triangulated d-sphere S. The group of L is the fundamental group of
the complement of L inside S. The “spinning” process, introduced by Artin
[10] in 1925, lifts a (d− 2)-knot to a (d− 1)-knot preserving the group: we
quote the passage in which Zeeman [151, p. 478] explained how to do it.
(Here d = 3 and L is the trefoil knot.)

The formula Spin(D1) = S2 means map the arcD1 onto a merid-
ian of S2 and, keeping ∂D1 fixed at the poles, multiply the in-
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terior of D1 by S1, or in other words spin the meridian about
the poles to form S2.

Similarly Spin(Dn) = Sn+1 means keep ∂Dn fixed and multiply
the interior of Dn by S1. In particular, Spin(D3) = S4.

Now in D3 draw an arc D1 running from the North pole to
the South pole via a trefoil knot. The spinning process induces
S2 = Spin(D1) ⊂ Spin(D3) = S4, which is the Artin 2-knot.

The Artin 2-knot can be triangulated with exactly five vertices and six
triangles. In fact, let us subdivide the arc D1 by inserting a new vertex
x1 in the middle of it, so that x1 is not on the North-South axis. Let x2

resp. x3 be the points in R3 obtained rotating x1 of π
3

resp. 2π
3

around the
North-South axis. The triangulation we seek has

{PN , x1, x2}, {PN , x1, x3}, {PN , x2, x3},
{PS, x1, x2}, {PS, x1, x3} and {PS, x2, x3}

as facets, where PN is the North pole and PS is the South pole. By a result
of Bing [20], this triangulation of S2 can be completed to a triangulation of
the whole S4. The knot groups of the Artin 2-knot and the trefoil knot are
the same; in general, the spinning process “lifts” knot groups one dimension
up.

Note that the way we constructed the knotted surface above did not
depend on the chosen knot. This justifies the following new result:

Proposition 4.1.1. Every 2-knot obtained from spinning a 1-knot can be
realized with only five vertices and six triangles in some simplicial 4-sphere.

However, there are 2-knots whose group is not the fundamental group
of the complement of any knot in a 3-sphere. (See Kawauchi [83, p. 190].)
Hence, there are more 2-knot groups than knot groups: Therefore, not all
2-knots arise from spinning.

4.2 Putting knots inside 3-spheres or 3-balls

Given an arbitrary knot L, in this section we show how to build:

– a 3-ball where the knot is realized with a single interior edge plus a
boundary path;

– a 3-sphere where the knot L is realized with three edges;
– a 3-ball where the knot L is realized with three edges.
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4.2.1 Knotted spanning edges in 3-balls

A spanning edge of a 3-ball B is an interior edge that has both endpoints on
the boundary ∂B. An L-knotted spanning edge of a 3-ball B is a spanning
edge [x, y] such that some simple path on ∂B between x and y completes the
edge to a (non-trivial) knot L. From the simply-connectedness of 2-spheres
it follows that the knot type does not depend on the boundary path chosen;
in other words, the knot is determined by the edge.

More generally, a spanning arc is a path of interior edges in a 3-ball B,
such that both extremes of the path lie on the boundary ∂B. If every path
on ∂B between the two endpoints of a spanning arc completes the latter to
a knot L, the arc is called L-knotted. Note that the relative interior of the
arc is allowed to intersect the boundary of the 3-ball; compare Ehrenborg–
Hachimori [52].

For any positive integer l, there exists a 3-ball with a knotted spanning
arc of exactly l edges. To see this, take a sufficently large pile of cubes, and
drill a tubular hole from the top to the bottom along a trefoil knot. Stop
l steps before “perforating” the 3-ball completely (that is, stop when you
are at a distance of l edges from the bottom). The result is a 3-ball with a
knotted spanning arc of l edges; any boundary path completes such arc to
a trefoil knot.

The previous model can be easily triangulated yielding an example of a
simplicial ball with a knotted spanning edge. Also, the trefoil knot might
be replaced with any knot L you fancy, yielding a 3-ball with an L-knotted
spanning arc. For example, L might be a connected sum of m trefoil knots:

For any positive integers l and m, there is a cubical/simplicial
3-ball with a knotted spanning arc so that (1) the arc consists of
l consecutive edges and (2) the knot is m-complicated.

It is also known that knotted spanning edges can be ‘summed’:

Lemma 4.2.1. Let L1, . . . ,Lh be knots, and let B1, . . . , Bh be 3-balls. Sup-
pose that each Bi contains an Li-knotted spanning arc of li edges. Then
there exists a simplicial 3-ball B containing a (

∑h
i=1 Li)-knotted spanning

arc of
∑h

i=1 li edges.

Proof. We prove the statement only in the simplicial case, the general case
being analogous. For i = 1, . . . h, let xi and yi denote the endpoints of the
spanning knotted arc inside Bi. For each i, choose triangles {vi, wi, xi} and
{yi, zi, ti} in the boundary of ∂Bi. Now, merge all the Bi’s by identifying
xi+1 and yi, for each i. The resulting 3-complex C is a cactus of 3-balls.
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To obtain the requested 3-ball, attach onto C square pyramids with apex
xi+1 ≡ yi and basis {ti, zi, vi+1, wi+1}, for each i. To obtain a simplicial
3-ball, it suffices to subdivide each pyramid into two simplices.

4.2.2 Knotted 3-balls and 3-spheres

From a knotted spanning arc inside a 3-ball, one can easily produce a knot-
ted sphere: We just have to “cone off the boundary”. In fact, given a 3-ball
B and a new point v, consider SB = B ∪ (v ∗ ∂B): If B is simplicial, so is
SB. (If B is cubical, SB is not cubical, because all the facets of the form
v ∗ σ, with σ ∈ ∂B, are square pyramids; however, it can be made cubical
by dicing [105] [12] [128, p. 37]. Note that dicing increases the number of
edges in the knot.)

By definition, the sphere SB contains the three edges [v, x], [x, y], [v, y],
but it does not contain the face {v, x, y}. The spanning edge [x, y] closes
up to a triangular 1-complex, which is knotted : In fact, the knot is the
same in SB as in B, because there is an obvious homotopy between the
two-edges-path [x, v], [v, y] on SB and the path on the boundary of B that
closed up [x, y] to a knot. Similarly, any L-knotted spanning arc of l edges
closes up to a knotted (l + 2)-gon with the same knot type.

Taking out a facet from a knotted 3-sphere, one produces a 3-ball that
contains a complete knot (and not just a knotted spanning edge!) in its 1-
skeleton. Such ball cannot be rectilinearly embedded in R3; see Lutz [101]
for a small example (a trefoil-knotted 3-ball with 12 vertices and 37 facets).

For any positive integers l and m, there exist a simplicial 3-
sphere and a simplicial 3-ball with a knotted spanning arc so
that (1) the knot consists of l+ 2 consecutive edges and (2) the
knot is m-complicated.

Recall that when B is a shellable (resp. constructible) 3-ball, SB is a
shellable (resp. constructible) 3-sphere, in view of Lemma 1.7.4; when B
is collapsible, then SB minus a facet is collapsible, by Proposition 3.4.2. In
Section 4.3 we will see that shellability and constructibility are incompatible
with the presence of a knot, while knotted 3-balls might be collapsible.

A simplicial 3-sphere can have an arbitrarily complicated knot in its 1-
skeleton; however, the connected union of many trefoils can only be realized
in a 3-sphere with many facets. Recently King [85] [86] demonstrated that
any knot in a 3-sphere with N facets must have bridge index smaller than
2196N2

. In particular, all knots in a sphere with N facets are at most 2196N2
-

complicated.
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King’s result extends to knotted balls or balls with knotted spanning
edges, in the following way. Among all the simplicial 3-balls with N facets,
the trees of tetrahedra are the ones with the biggest number of boundary
triangles, namely 2N+2. (See Lemma 2.1.1.) Thus if B is a simplicial 3-ball
with N tetrahedra, SB has at most 3N + 2 tetrahedra. So, all knots and all
knotted spanning edges in a 3-ball with N facets are at most 29·196N2

-com-
plicated.

4.3 Knots versus collapsibility

Knot theory and the theory of elementary collapses are closely related. In
the Sixties, the work by Bing, Goodrick, Lickorish and Martin has shown
that out of the 3-balls with a knotted spanning edge some are collapsible
and some are not, depending on how complicated the knot is.

The same holds for knotted spheres: after the removal of a facet, some
collapse and some do not, depending on the intricacy of the knot.

4.3.1 Knots that are simple enough

Let us start by guaranteeing2 that balls with knotted spanning edges can
be collapsible.

Theorem 4.3.1 (Lickorish–Martin [96], Hamstrom–Jerrard [71]).
Let L be any 2-bridge knot (for example, the trefoil knot). There exists a
collapsible triangulated 3-ball B with an L-knotted spanning edge.

Theorem 4.3.1 extends to knotted spanning arcs by concatenating knotted
spanning edges as in Lemma 4.2.1:

Theorem 4.3.2. Let B1, . . . , Bh be collapsible triangulated 3-balls. Suppose
that each Bi contains in its 1-skeleton an Li-knotted spanning arc of li edges.
Then there exists a collapsible triangulated 3-ball B with a (

∑h
i=1 Li)-knotted

spanning arc of
∑h

i=1 li edges in its 1-skeleton.

Proof. Every collapsible ball collapses onto a tree, and every tree can be
collapsed onto any of its vertices. By induction on h this implies that any
cactus of collapsible 3-balls is collapsible. Given a cactus of collapsible
balls, if we thicken their junctions a bit to obtain a ball — for example by
attaching pyramids, as in the proof of Lemma 4.2.1 — we still maintain the
collapsibility property: In fact, the added pyramids can be collapsed away.

2For the proof of the next statement, see the proof of Theorem 6.3.6.
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Thus the sum of the Bi described in Lemma 4.2.1 is collapsible, provided
each Bi is collapsible.

Corollary 4.3.3. For every positive integer m, there exist:

(1) a collapsible simplicial 3-ball Bm with an L-knotted spanning arc con-
sisting of m edges, where L is the connected sum of m trefoils;

(2) a simplicial 3-sphere Sm with an m-complicated (m + 2)-gonal knot in
its 1-skeleton, such that Sm −∆ is collapsible for every facet ∆ of Sm.

Proof. Bm is obtained via Theorem 4.3.2, summing m copies of the collapsi-
ble 3-ball B with a knotted spanning edge given by Theorem 4.3.1. The
3-sphere Sm is then obtained coning off the boundary of Bm: by Theorem
3.4.2, since Bm is collapsible, Sm −∆ is collapsible for every ∆.

Remark 4.3.4. With the notation of Cor. 4.3.3, if B has i interior vertices
then Bm has exactly mi interior vertices. Note also that the knotted span-
ning arc produced in Theorem 4.3.2 intersects in its relative interior the
boundary of the ball Bm exactly (m− 1) times.

4.3.2 Knots that are complicated enough

In the Sixties, Bing [21] showed that a knotted ball cannot be collapsible, if
the knot is sufficiently complicated: A sum of two trefoils is enough. (See
also Goodrick [60] and Kearton–Lickorish [84].)

Theorem 4.3.5 (Bing–Goodrick). A simplicial 3-ball with an L-knotted
spanning edge cannot be collapsible, if the knot L has bridge index larger
than two.

Later Lickorish [93] showed that if the knot L is even more compli-
cated (a sum of three trefoils would do), the sphere obtained coning off the
boundary of the ball does not become collapsible after the removal of any
facet. This is a stronger result than claiming that the knotted ball cannot
be collapsible, in view of Proposition 3.4.2.

Theorem 4.3.6 (Lickorish [93]). Let B be a 3-ball with an L-knotted
spanning edge, and SB := B ∪ v ∗ ∂B. If the knot L is at least 3-complicated,
neither B nor SB −∆ are collapsible, for any facet ∆ of S.

(In fact, there is a 3-ball B with a 2-complicated knot such that B is
collapsible, but the sphere SB does not become collapsible after the removal
of any facet. See Proposition 5.3.10.)
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4.3. Knots versus collapsibility

The previous result was achieved through a careful understanding of
what goes on during a collapse of S −∆: In particular, Lickorish was able
to read off from the collapsing sequence crucial information on the knot
group.

Theorem 4.3.7 (Lickorish [93]). Let L be an m-edges knot in a simplicial
3-sphere S. Suppose that S−∆ is collapsible, for some facet ∆ of S. Then
|S|− |L| is homotopy equivalent to a connected CW complex with one 0-cell
and at most m 1-cells. In particular, the fundamental group of |S| − |L|
admits a presentation with m generators.

Recall that in Section 3.2 we proved a stronger statement:

Theorem 3.5.1. Let t, d with 0 ≤ t ≤ d− 2, and let S be a PL d-sphere.
Suppose that S−∆ collapses onto a t-complex, for some facet ∆ of S. Then,
for each t-dimensional subcomplex L of S, the homotopy group

πd−t−1 (|S| − |L|)

has a presentation with exactly ft(L) generators.

Now we are repaid of our efforts in replacing Theorem 4.3.7 by Theorem
3.5.1: Via the latter, we can reach the following results.

Corollary 4.3.8. Let B be a 3-ball with an L-knotted spanning edge, the
knot L being the sum of six (or more) trefoil knots. Then spinning B one
gets a 4-sphere S with an embedded knotted surface such that S −∆ is not
collapsible onto any 2-complex, for any facet ∆ of S.

Proof. Juxtapose Theorem 3.5.1 and Proposition 4.1.1.

Corollary 4.3.9. Let k be a non-negative integer. Let S be a 3-sphere with
an m · 2k-complicated m-edges knot. The k-th suspension of S is a PL
(k + 3)-sphere such that:

1. S −∆ is not collapsible;
2. S − ∆ does not collapse onto any (d − 2)-complex (in other words,

cdepth(S) = 1).

Proof. Let S ′ be the k-th suspension of S and let L′ be the subcomplex of S ′

obtained taking the k-th suspension of the m-gonal knot L. Since |S| − |L|
is a deformation retract of |S ′|− |L′|, they have the same homotopy groups.
In particular, the fundamental group of |S ′| − |L′| has no presentation with
m · 2d−3 generators.

Since fd−2(L′) = 2d−3 · f1(L) = m · 2d−3, via Theorem 3.5.1 we conclude.
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4.4 Knots versus shellability

Since for contractible complexes “shellable” implies “collapsible”, knots in
spheres and balls are obstructions to shellability as well. For example:
Bing’s ball contains a double-trefoil knotted spanning edge, so it cannot
be collapsible by Theorem 4.3.5, so it cannot be shellable. To prevent
shellability, however, a single trefoil would be enough: the first example
ever of non-shellable ball, due to Furch [57], had a knotted spanning edge
with the same knot type of the trefoil. A 3-ball with a trefoil-knotted
spanning edge might be collapsible (see Section 4.3.1). However, Furch’s
ball cannot be constructible, in view of the following result.

Theorem 4.4.1 (Hachimori–Ziegler [69, Ex. 1&3, Lemmas 1&4]).
Let B be a 3-ball with a knotted spanning arc consisting of m edges.

(i) if m = 1 or m = 2, B cannot be shellable nor constructible, but it
might be collapsible;

(ii) if m = 3, B might be shellable and constructible (for example if the
knot is the trefoil, cf. [146]), but it cannot be vertex decomposable;

(iii) if m ≥ 4 and B is simplicial, B might be vertex decomposable (for
example if the knot is the trefoil, cf. [145]).

The 3-ball B we obtained in Theorem 4.3.2 is constructible if and only
if each Bi is constructible [65, Lemma 1]. Thus via Theorem 4.3.2 and
Theorem 4.4.1 we may produce examples of:

– constructible 3-balls with a double-trefoil-knotted spanning arc of six
edges (for example, the sum of two constructible balls with three-edges
trefoil-knotted spanning arcs (cf. [69, Example 1]), and

– non-constructible 3-balls with a double-trefoil-knotted spanning arc of
six edges (for example, the sum of a ball with a five-edges trefoil-knotted
spanning arc, which might be constructible, with a ball with a knotted
spanning edge, which cannot be constructible by [69, Lemma 1]).

Therefore, constructibility can be excluded, but not decided, by looking at
the tightness of a knot. As a matter of fact, there are non-constructible balls
that have no knot at all (e.g. Bing’s house with two rooms, cf. Example
6.3.3).

Some simplicial 3-balls contain an entire triangular knot L in their 1 -
skeleton. In order to obtain such a “knotted” ball, start with any 3-ball
B with an L-knotted spanning edge, cone off the boundary of B obtaining
a knotted sphere SB, and finally subtract a facet from SB. We have seen
in Section 4.3.1 that some knotted balls are collapsible; furthermore, the
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collapsibility of B (strictly) implies the collapsibility of SB −∆, by Propo-
sition 3.4.2 (resp. Remark 3.4.3). However, balls with a knotted triangle
cannot be constructible, no matter how complicated the knot is:

Theorem 4.4.2 (Hachimori–Ziegler [69, Ex. 2&4, Thms. 3&5]).
Let B be a 3-ball with a knotted m-gon in its 1-skeleton.

(i) If m = 3, B cannot be shellable nor constructible.
(ii) If m = 4 or m = 5, B might be shellable and constructible (for example

if the knot is a trefoil, cf. [148]), but (in the simplicial case) B cannot
be vertex decomposable.

(iii) If m ≥ 6 and B is simplicial, B might be vertex decomposable (for
example if the knot is a trefoil, cf. [147]).

Note that there is a discrepancy between this hierarchy and the hierarchy
of Theorem 4.4.1: if B has a 2-edges knotted spanning arc, B cannot be
shellable, but SB minus a facet might be shellable, because the arc is closed
up to a quadrilateral knot. (Compare Remark 1.7.5.) The discrepancy will
be partially explained by Proposition 5.3.10.

A 3-sphere S is shellable if and only if S−∆ is shellable for some facet ∆.
A 3-sphere S is constructible if and only if S −∆ is constructible for some
(or equivalently, for each) facet ∆ [69, Theorem 4]. A simplicial 3-sphere
is vertex decomposable if and only if the deletion of some vertex yields a
vertex decomposable 3-ball. Using these facts, one can easily lift Theorem
4.4.2 to spheres:

Theorem 4.4.3 (Hachimori–Ziegler [69, Ex. 2&4, Thms. 3&5]).
Let S be a 3-sphere with a knotted m-gon.

(i) if m = 3, S cannot be shellable nor constructible;
(ii) if m = 4 or m = 5, S might be shellable and constructible (for example

if the knot is a trefoil), but (in the simplicial case) S cannot be vertex
decomposable;

(iii) if m ≥ 6 and S is simplicial, S might be vertex decomposable.

These results partially extend to 3-spheres with knots of prescribed in-
tricacy. Ehrenborg and Hachimori [52] showed in 2001 that a 3-sphere (or
a 3-ball) containing a knot of m edges

– (in the simplicial case) cannot be vertex decomposable, if the bridge
index of the knot exceeds m

3
, and

– cannot be shellable, if the bridge index of the knot exceeds m
2

.

The latter claim was later strengthened by Hachimori and Shimokawa [68],
who proved that a regular CW complex homeomorphic to a 3-sphere or a
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3-ball cannot be constructible if it contains a knot on m edges whose bridge
index exceeds m

2
. These bounds are sharp by Theorems 4.4.2 and 4.4.3,

since the trefoil knot has bridge index two.
Also, the bridge index of a t-complicated knot is at least t+1, so if a knot

is at least bm
3
c-complicated then its bridge index automatically exceeds m

3
.

Thus the results above imply the following statement, which will be used
to establish our Theorem 5.3.12.

Proposition 4.4.4 (Ehrenborg–Hachimori–Shimokawa). A 3-sphere
or 3-ball containing a knot of m edges

– cannot be constructible, if the knot is at least bm
2
c-complicated, and

– (in the simplicial case) cannot be vertex decomposable, if the knot is at
least bm

3
c-complicated.

Furthermore, both these lower bounds are sharp.

Remark 4.4.5. An analogous bound holds for 3-balls with an L-knotted
spanning arc of m − 2 edges: If the knot L is at least bm

2
c-complicated,

then B cannot be constructible. (Otherwise SB would be constructible,
a contradiction with Proposition 4.4.4.) This derived bound is not sharp,
though: When m = 2, it claims that a knotted spanning arc of two edges
obstructs constructibility provided the knot is at least 2-complicated, while
we know from Theorem 4.4.1 that already a 1-complicated knot is enough.

4.5 Barycentric subdivisions versus knots

Performing a barycentric subdivision on a knotted 3-sphere doubles the
number of edges in the knot, simply because every edge of the sphere is
subdivided into two subedges. The knot type remains unchanged: Subdi-
viding a 3-ball with an L-knotted spanning arc of m edges one gets a 3-ball
with an L-knotted spanning arc of 2m edges. Therefore, the obstructions to
collapsibility, shellability and vertex decomposability discussed in the pre-
vious sections will sooner or later vanish, if we perform sufficiently many
barycentric subdivisions.

Indeed, it was shown by Zeeman [152, Chapters I and III] in the Sixties
that every ball becomes collapsible after a sufficient number of barycentric
subdivision. Later Bruggesser and Mani showed that after sufficiently many
subdivisions, any ball gets shellable (and performing one more subdivision
it gets even vertex decomposable).

Is there an integer r such that the r-th barycentric subdivision of every
simplicial 3-ball is collapsible?
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The answer is negative, as established by Goodrick [60]: If B is a simpli-
cial 3-ball with a knotted spanning edge and the bridge index of the knot is
bigger than 2r + 1, then the r-th subdivision of B is not collapsible. Licko-
rish and Martin [96] showed that Goodrick’s result is best possible: for any
knot L of bridge index ≤ 2r + 1, they constructed a 3-ball with collapsible
r-th barycentric subdivision and with an L-knotted spanning edge. Also,
Goodrick’s result extends to higher dimensions: Kearton and Lickorish [84,
Theorem 2], bridging a gap in Goodrick’s original proof [60], showed that
for all r ∈ N, for all d ≥ 3, there exists a d-ball whose r-th barycentric
subdivision is not collapsible.

A similar results holds for spheres: for any integer r, there exists a
knot Lr complicated enough (cf. Theorem 4.3.7) such that any 3-sphere Sr
that contains an Lr-knotted triangle must satisfy the following condition:
The removal of any facet from the r-th barycentric subdivision of Sr is not
collapsible. In particular, the r-th barycentric subdivision of Sr cannot be
shellable, either.
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Chapter 5

Locally constructible manifolds

In this chapter, we characterize local constructibility in terms of the col-
lapse depth: The LC manifolds are precisely the manifolds with cdepth ≥ 2.
Thus while all LC 3-manifolds are spheres (Corollary 1.6.7), an LC d-
manifold (d ≥ 4) might be a product of spheres (cf. Example 5.2.8), or
perhaps something more complicated1. However, by Lemma 1.6.3 all LC
d-pseudomanifolds are simply connected.

Our characterization enables us to prove the following hierarchy for d-
spheres announced in the introduction:

Theorem 5.0.1. For all d ≥ 3, we have the following inclusion relations
between families of simplicial d-spheres:

{vertex dec.} ( {shellable} ⊆ {constructible} ( {LC} ( {all d-spheres}.

Proof. The first two inclusions are known (see Chapter 1). The third inclu-
sion follows from Lemma 5.1.1; its strictness is shown via Theorem 5.3.7.
Finally, Theorem 5.3.2 establishes the strictness of the fourth inclusion for
all d ≥ 3.

1Using Frank Lutz’s greedy collapsing algorithm, after the submission of the present
thesis we found out that Kühnel’s vertex-minimal triangulation of the complex projective
plane, with 8 vertices and 36 facets, has collapse depth two. Therefore, LC 4-manifolds
are not just spheres or product of spheres. The details will be found elsewhere.
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5.1 Constructible complexes are LC

Here we show that all constructible pseudomanifolds are LC.

Lemma 5.1.1. Let C be a d-pseudomanifold. If C can be split in the form
C = C1 ∪C2, where C1 and C2 are LC d-pseudomanifolds and C1 ∩C2 is a
strongly connected (d− 1)-pseudomanifold, then C is LC.

Proof. Notice first that C1 ∩ C2 = ∂C1 ∩ ∂C2. In fact, every ridge of C
belongs to at most two facets of C, so that every (d− 1)-face σ of C1 ∩ C2

is contained in exactly one d-face of C1 and in exactly one d-face of C2.
Each Ci is LC; let us fix a local construction for each of them, and call

Ti the tree along which Ci is locally constructed. Choose some (d− 1)-face
σ in C1 ∩ C2, which thus specifies a (d − 1)-face in the boundary of C1

and of C2. Let C ′ be the manifold with boundary obtained attaching C1

to C2 along the two copies of σ. C ′ can be locally constructed along the
tree obtained by joining T1 and T2 by an edge across σ: Just redo the same
moves of the local constructions of the Ci’s. So C ′ is LC.

If C1∩C2 consists of one polytope only, then C ′ ≡ C and we are already
done. Otherwise, by the strongly connectedness assumption, the facets of
C1 ∩ C2 can be labeled 0, 1, . . . , s so that:

• the facet labeled by 0 is σ;
• each facet labeled by k ≥ 1 is adjacent to some facet labeled j with
j < k.

Now for each i ≥ 1, glue together the two copies of the facet i inside C ′.
All these gluings are local because of the labeling chosen, and we eventually
obtain C. Thus, C is LC.

Constructible complexes are strongly connected, simply connected and
even (d−1)-connected (see Björner [24, pp. 1846–1848, 1854]). As a matter
of fact, any constructible d-pseudomanifold must be either a d-ball or a
d-sphere [68, Proposition 1.4]. Thus from Lemma 5.1.1 we obtain for d-
complexes that

{constructible} ⊆ {LC}.

Since all shellable complexes are constructible, using Theorems 2.5.1
and 2.6.3 we arrive to the following conclusions:

Corollary 5.1.2. For fixed d ≥ 2, there are exponential upper and lower
bounds for the number of constructible d-spheres and d-balls with N facets,
with bounded facet complexity.

90



5.1. Constructible complexes are LC

Corollary 5.1.3. For all d ≥ 4, shellable simplicial d-spheres are expo-
nentially many when counted with respect to the number N of facets, but
more than exponentially many when counted with respect to the number n
of vertices.

Proof. Kalai [81] and Lee [90] showed that for d ≥ 4, there are at least

2Ω (nb d
2c )

simplicial shellable d-spheres with n vertices; however, it follows from The-
orem 2.5.1 that there are at most 2d

2·N simplicial shellable d-spheres with
N facets.

The containment {constructible} ⊆ {LC} is strict: Let C1 be a cubical
3-ball with 17 facets obtained from a 2× 3× 3 pile of cubes by performing
an elementary collapse (see Figure 5.1 below). Let C2 be a 1× 3× 3 pile of
cubes. Glue C1 and C2 together along the 2-dimensional annulus consisting
of the external squares of a 3× 3 face of C2.

Figure 5.1: Gluing the two 3-balls above along the green 2-dimensional region
yields an LC, non-constructible 3-manifold with boundary, called fake cube.

C1 and C2 are both shellable. Thus C1∪C2 is a cubical 3-manifold with
boundary that is LC (by Lemma 5.1.1) but not 2-connected (because it
retracts to a 2-sphere). Therefore, it cannot be constructible.

This argument can be generalized to produce many examples of com-
plexes that are LC but not (d− 1)-connected, and hence not constructible.
However, none of these examples will be a sphere (or a ball). We will obtain
examples of nonconstructible LC spheres (resp. balls) from Theorem 5.3.7
(resp. from Theorem 6.2.4).

From an algebraic point of view, the fake cube of Figure 5.1 is Buchs-
baum, but not Cohen–Macaulay (see e.g. [25, p. 194] [24, p. 1855] for the
definitions). By the work of Hibi and Björner [25, Lemma 1, p. 194] [74,
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p. 98], the union of two Buchsbaum (resp. Cohen-Macaulay) d-complexes
whose intersection is a Buchsbaum (resp. Cohen-Macaulay) (d−1)-complex
yields a Buchsbaum (resp. Cohen-Macaulay) d-complex. As a matter of
fact, the green annulus in Figure 5.1 is strongly connected and Buchsbaum,
but not Cohen–Macaulay.

On the contrary, a pinched annulus is neither Buchsbaum nor Cohen–
Macaulay. Based on this, we can produce examples of LC complexes that
are neither Buchsbaum nor Cohen–Macaulay. Let us start with two simpli-
cial (shellable) 3-balls on 7 vertices consisting of 7 tetrahedra, as indicated
in Figure 5.2. Let us glue them together in the strongly connected green
subcomplex in their boundary (which uses 5 vertices and 4 triangles, and
is homeomorphic to a pinched annulus).

Figure 5.2: Gluing the mirroring balls along the green 2-dimensional region
yields an LC 3-complex, in which the link at the top vertex is neither LC nor
simply connected.

The resulting simplicial complex C, on 9 vertices and 14 tetrahedra, is
LC by Lemma 5.1.1, but the link of the top vertex is a 2-complex that
retracts to a 1-sphere. In particular, the link of the top vertex is strongly
connected (compare Proposition 1.7.3) but not LC. Therefore, the LC class
is not closed under taking links.

Here is an example of pseudomanifold that is not LC. Let C1 and C2

be the two simplicial 3-balls on 7 vertices consisting of 7 tetrahedra, as
indicated in Figure 5.3.

Figure 5.3: Gluing the mirroring balls along the green subcomplex yields a
3-pseudomanifold that cannot be LC, for topological reasons. (It is “weakly LC”
in the sense of Mogami [106].)
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Again, let us glue them together in the green subcomplex of their bound-
ary (which uses 5 vertices and 4 triangles) to obtain a simplicial complex
C on 9 vertices and 14 tetrahedra.

The main difference with Figure 5.2 is that this time the green subcom-
plex is pure and connected, but not strongly connected. A priori this is not
enough to conclude that C is not LC. However, the boundary of C consists
of two 2-spheres that intersect in two distinct points. Via Theorem 1.6.6,
this implies that C cannot be LC.

Nonetheless, C is “weakly LC” in the sense of Mogami (see Section
2.6.4), in virtue of the following analogue of Lemma 5.1.1:

Lemma 5.1.4. Let C be a d-pseudomanifold. If C can be split in the form
C = C1∪C2, where C1 and C2 are weakly-LC d-pseudomanifolds and C1∩C2

is a connected (d− 1)-pseudomanifold, then C is weakly-LC.

Proof. Recall that weakly-LC CW complexes are obtained from a tree of
d-polytopes by local gluings and/or by Mogami moves (cf. Section 2.6.4).
Pick a (d− 1)-dimensional face σ in C1 ∩C2. Let T be the tree of simplices
obtained merging T1 and T2 across σ. Since C1 ∩C2 is connected, its facets
(possibly of smaller dimension than d − 1) can be labeled 0, . . . , s so that
the facet labeled by 0 is σ and each facet labeled by k ≥ 1 has a vertex in
common with some facet labeled j, with j < k. One then concludes as in
Lemma 5.1.1.

In 1970, Lickorish [92] proved that some (simplicial) 3-balls do not con-
tain any 2-disc properly embedded as subcomplex. (Clearly such 3-balls
are not constructible.) His argument proceeded as follows: given a 3-ball
K with an embedded disk that divides K into two 3-balls K1 and K2, if
each Ki collapses to ∂Ki− σ for each facet σ of ∂Ki, then also K collapses
to ∂K −σ for each facet σ of ∂K. Hence, if K is the “smallest” example of
a (simplicial) 3-ball that does not collapse onto its boundary minus a facet,
then K cannot have any disc embedded as subcomplex. (“Smallest” means
here “with the smallest number of facets”.)

Via Corollary 6.2.6, we will characterize LC 3-balls as the balls B that
collapse onto ∂B − σ, for some boundary facet σ. Thus, a posteriori, Lick-
orish’s argument can be read as follows:

by gluing together two LC 3-balls K1 and K2 alongside a 2-ball
in their boundary, one obtains a 3-ball that is still LC.

This is a special case of our Lemma 5.1.1. (Actually, gluing together an LC
3-ball and a collapsible 3-ball alongside a 2-ball one also gets an LC 3-ball.)
In particular, a smallest example C of a non-LC 3-ball cannot contain a
2-disc properly embedded as subcomplex.
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Analogously, a smallest example B of a non-constructible 3-ball cannot
contain a 2-disc properly embedded as subcomplex. After Lemma 5.1.1, one
can extend Lickorish’s argument as follows: Let us call pseudomanifold with
LC topology a pseudomanifold whose underlying space is a 3-sphere with a
finite number of cacti of 3-balls removed. Let P be the smallest example of
pseudomanifold with LC topology that is not LC. This P cannot contain
a 2-disc properly embedded a subcomplex; moreover, for any 2-sphere S
properly embedded as subcomplex, the intersection S ∩ ∂P must contain
at least two points. (In fact, suppose S ∩ ∂P is empty or consisting of one
vertex; then S divides P into one 3-ball and one 3-pseudomanifold with
LC topology, and both have to be LC by the minimality of P . By Lemma
5.1.1, this would imply that P is LC too, a contradiction.)

5.2 Characterization of LC manifolds

Take a d-manifold M , a facet ∆ of M , and a rooted spanning tree T of the
dual graph of M , with root ∆. Recall that KT is the subcomplex of the
faces of M that are not intersected by T . Cutting M open along KT we
obtain a tree of facets TN , whose dual graph is precisely T .

Now, TN can be assembled one polytope at the time, according to a
natural labeling of T ; we have seen in Section 3.1 that natural labelings of
T correspond to collapses M −∆ ↘ KT (the i-th facet to be collapsed is
the node of T labelled i+ 1; see Proposition 3.1.4).

Since any possible local construction for M needs to start at some tree
of polytopes (or equivalently at some spanning tree T ), we have a bijection
among the following sets:

1. the set of all facet-killing sequences of M −∆;
2. the set of all natural labelings of spanning trees of M , rooted at ∆;
3. the set of the first parts (T1, . . . , TN) of local constructions for M ,

with T1 = ∆.

To understand also the second part of a local construction combinato-
rially, we introduce a variant of the “facet-killing sequence” notion.

Definition 5.2.1. A pure facet-massacre of a pure d-dimensional complex
P is a sequence P0, P1, . . . , Pt−1, Pt of (pure) complexes such that t = fd(P ),
P0 = P , and Pi+1 is obtained by Pi removing:

(a) a free (d− 1)-face σ of Pi, together with the unique facet Σ containing
σ, and

(b) all inclusion-maximal faces of dimension smaller than d that are left
after the removal of type (a) or, recursively, after removals of type (b).
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5.2. Characterization of LC manifolds

Figure 5.4: Cutting a dice open along the 1-complex KT (in red) yields the
tree of squares T . The reverse procedure – folding up the dice by local gluings,
starting from the tree of squares T – can be viewed as a facet-massacre of KT .

In other words, the (b) steps remove lower-dimensional facets until we get
a pure complex. Since t = fd(P ), Pt has no facets of dimension d left, nor
inclusion-maximal faces of smaller dimension; hence Pt is empty. The other
Pi’s are pure complexes of dimension d. Notice that the step Pi −→ Pi+1

is not a collapse, and does not preserve the homotopy type in general. Of
course Pi −→ Pi+1 can be “factorized” in an elementary collapse followed
by a removal of a finite number of k-faces, with k < d. However, this
factorization is not unique, as the next example shows.

Example 5.2.2. Let P be the full square {1, 2, 3, 4}. P admits four different
facet-killing collapses (each edge can be chosen as free face), but it admits
only one pure facet-massacre, namely P0 = P, P1 = ∅.

Lemma 5.2.3. Let P be a pure d-dimensional polytopal complex. Every
facet-killing sequence of P naturally induces a unique pure facet-massacre
of P . All pure facet-massacres of P are induced by some (possibly more
than one) facet-killing sequence.

Proof. The map consists in taking a facet-killing sequence C0, . . ., Ct, and
then in “cleaning up” the Ci by recursively killing the inclusion-maximal
faces of dimension smaller than d. As the previous example shows, this
map is not injective. It is surjective essentially because the removed lower-
dimensional faces are of dimension “too small to be relevant”. In fact, their
dimension is at most d − 1, hence their presence can interfere only with
the freeness of faces of dimension at most d− 2; so the list of all removals
of the form ((d − 1)-face, d-face) in a facet-massacre yields a facet-killing
sequence.

Theorem 5.2.4. Let M be a d-manifold; fix a spanning tree T of the dual
graph of M . The second part of a local construction for M along T corre-
sponds bijectively to a facet-massacre of KT .
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5. Locally constructible manifolds

Proof. Fix M and T ; TN and KT are determined by this. Let us start with a
local construction (T1, . . . , TN−1, )TN , . . . , Tk for M along T . Topologically,
M = TN/∼, where ∼ is the equivalence relation determined by the gluing
(two distinct points of TN are equivalent if and only if they will be identified
in the gluing). Moreover, KT = ∂TN/∼, by the definition of KT .

Define P0 := KT = ∂TN/∼, and Pj := ∂TN+j/∼. We leave it to the
reader to verify that k −N and fd(K

T ) are the same integer; in particular
PD = ∂Tk/∼ = ∂M/∼ = ∅.

In the first LC step, TN → TN+1, we remove from the boundary a
free ridge r, together with the unique pair σ′, σ′′ of facets of ∂TN sharing
r. At the same time, r and the newly formed face σ are sunk into the
interior. This step ∂TN −→ ∂TN+1 naturally induces an analogous step
∂TN+j/∼ −→ ∂TN+j+1/∼, namely, the removal of r and of the (unique!)
(d− 1)-face σ containing it.

In the j-th LC step, ∂TN+j −→ ∂TN+j+1, we remove from the boundary
a ridge r together with a pair σ′, σ′′ of facets sharing r; moreover, we sink
into the interior a lower-dimensional face F if and only if we have just sunk
into the interior all faces containing F . The induced step from ∂TN+j/∼ to
∂TN+j+1/∼ is precisely a “facet-massacre” step.

For the converse, we start with a “facet-massacre” P0, . . . , PD of KT ,
and we have P0 = KT = ∂TN/∼. The unique (d−1)-face σj killed in passing
from Pj to Pj+1 corresponds to a unique pair of (adjacent!) (d−1)-faces σ′j,
σ′′j in ∂TN+j. Gluing them together is the LC move that transforms TN+j

into TN+j+1.

Remark 5.2.5. We recall that:

– the first part of a local construction of a manifold M along a tree T
corresponds to a facet-killing collapse of M −∆ (that ends up in KT );

– the second part of a local construction along a tree T corresponds to a
pure facet-massacre of KT ;

– a single facet-massacre of KT corresponds to (possibly) many facet-
killing sequences of KT ;

– by Proposition 3.1.4, there exists a facet-killing sequence of KT if and
only if KT collapses onto some (d− 2)-dimensional complex C.

Summing up, the following are equivalent:

1. M is locally constructible along T ;
2. KT collapses onto some (d− 2)-dimensional complex C;
3. KT has a facet-killing sequence.

What if we do not fix the tree T?
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Theorem 5.2.6. Let M be a d-manifold (d ≥ 3). The following are equi-
valent:

1. M is LC;
2. for some spanning tree T of the dual graph of M , KT is collapsible onto

some (d− 2)-dimensional complex C;
3. there exists a (d− 2)-dimensional complex C such that for every facet ∆

of M , M −∆↘ C;
4. for some facet ∆ of M , M −∆ is collapsible onto a (d− 2)-dimensional

complex C;
5. cdepth(M) ≥ 2.

Proof. M is LC if and only if M can be locally constructed along some tree
T : So the equivalence of (1) and (2) is a straightforward consequence of
Remark 5.2.5. On the other hand, the equivalence of (2) and (3) follows
from the fact that M −∆ ↘ KT , where KT is independent of the choice
of ∆. Obviously (3) implies (4), and (5) is equivalent to (4) by definition.

To show that (4) implies (2), we take a collapse of M − ∆ onto some
(d − 2)-complex C. By Proposition 3.1.4, if T is the tree along which the
collapse acts, one has that M − ∆ collapses onto KT and KT collapses
onto C.

Corollary 5.2.7. The product of LC manifolds (of dimension at least two)
is an LC manifold.

Proof. By Corollary 3.3.5, if cdepth(M1) ≥ 2 and cdepth(M2) ≥ 2 then
cdepth(M1 ×M2) ≥ 2. The conclusion follows by Theorem 5.2.6.

By Lemma 1.6.3, every LC (pseudo)manifold is simply connected. However,
the next example shows that the higher homotopy groups of an LC manifold
might be non-trivial.

Example 5.2.8. Let C be the boundary of the 3-cube; the product C ×C is
a cubical 4-manifold homeomorphic to S2 × S2. Now π2(S2 × S2) 6= 0, so
C×C is not homeomorphic to a 4-sphere. However, π1(S2×S2) = 0 and by
Corollary 3.3.4 C ×C minus a facet collapses onto a 2-complex: Therefore,
C × C is an LC (simply connected) 4-manifold.

Example 5.2.9. Kühnel’s 8-vertex triangulation of the complex projective
plane is LC; see the footnote on page 89.
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5.3 Applications to d-spheres

Apparently in passing from manifolds to spheres Theorem 5.2.6 tells us
nothing new: The LC spheres are the spheres that after the removal of
a facet collapse onto some (d − 2)-dimensional subcomplex. Indeed there
is a hidden bonus information: This subcomplex is certainly contractible,
because a sphere minus a facet is contractible and the homotopy type is
preserved under collapses. This information becomes relevant in case the
subcomplex has dimension one: in fact, all contractible 1-complexes are
collapsible.

Corollary 5.3.1. Let S be a 3-sphere. Then the following are equivalent:

1. S is LC;
2. KT is collapsible, for some spanning tree T of the dual graph of S;
3. S −∆ is collapsible for every facet ∆ of S;
4. S −∆ is collapsible for some facet ∆ of S.

Proof. This follows from Theorem 5.2.6, together with the fact that the
complex onto which S − ∆ collapses is contractible and 1-dimensional:
Therefore, it is collapsible.

Finally, the efforts we made in Section 3.2 and the characterization above
enable us to answer Durhuus–Jonsson’s conjecture for all dimensions.

Theorem 5.3.2. For every d ≥ 3, not all d-spheres are LC.

Proof. It follows from Corollary 4.3.9, together with Theorem 5.2.6.

We even have a constructive explanation:

Theorem 5.3.3. The k-th suspension of a 3-sphere with an m-gonal knot
cannot be LC, if the knot is at least m · 2k-complicated.

Example 5.3.4. Analogously to the “Furch–Bing ball”, we drill a hole into
a finely triangulated 3-ball along a triple pike dive of three consecutive
trefoils; we stop drilling one step before destroying the property of having
a ball. (See Figure 5.5). We then add a cone over the boundary. The
resulting sphere has a triangular knot which is a connected sum of three
trefoil knots. By Goodrick [60], the triple trefoil is 3-complicated, so S
cannot be LC.

Remark 5.3.5. The idea for the knotted 3-sphere above goes back to Lick-
orish’s 1991 paper [93, p. 530]. In the same paper he announced (without
proof given) that “with a little ingenuity” one could get a sphere S with
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Figure 5.5: A 3-ball B with a knotted spanning edge where the knot is the
triple trefoil. (It is produced out of a nicely triangulated 3-ball by drilling a
tubular hole downwards, along a triple-trefoil knot, yet stopping one edge before
hitting the bottom.) By coning off the boundary of B, we obtain a 3-sphere that
contains a knot and is not LC.

a 2-complicated triangular knot (the double trefoil), such that S − ∆ is
collapsible. (We will prove Lickorish’s claim in Proposition 5.3.10.) Such
a 3-sphere is LC by Corollary 5.3.1; on the other hand, if v is any vertex
of the triangular knot, S can be viewed as the cone (with apex v) over the
3-ball A := delSv, which contains a double-trefoil-knotted spanning edge.
This yields an example of a 3-ball A which is not collapsible (by Theorem
4.3.5), such that SA minus a facet is collapsible. (Compare with Proposition
3.4.2.)

Example 5.3.6. The 4-sphere with a knotted surface described in Corollary
4.3.8, which is obtained spinning a 6-ple trefoil knot (see Proposition 4.1.1),
cannot be LC.

The next result shows that being constructible is strictly stronger than being
locally constructible. In fact, locally constructible spheres may contain
knots in their 1-skeleton.
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5. Locally constructible manifolds

Theorem 5.3.7. For every d ≥ 3, not all LC d-spheres are constructible.

Proof. First we show that it suffices to prove the claim for d = 3. In fact,
if S is an LC d-sphere, v ∗ S is an LC (d + 1)-ball by Proposition 1.7.2.
The suspension (v ∗ S) ∪ (w ∗ S) is then LC by Lemma 5.1.1, since the
intersection (v ∗S)∩ (w ∗S) coincides with S, which is strongly connected.
On the other hand, the suspension of a non-constructible sphere is a non-
constructible sphere [69, Corollary 2]. (This is an easy consequence of the
fact that in a constructible complex, all vertex links are constructible.)
Thus, the d-th suspension of a non-constructible LC 3-sphere is a non-
constructible LC (d+ 3)-sphere.

Let us now show that non-constructible LC 3-spheres exist. Hachimori
[69] [66, p. 54] showed that a knotted 3-sphere cannot be constructible.
However, by Proposition 3.4.2 and Corollary 5.3.1, coning off the boundary
of a collapsible 3-ball yields an LC 3-sphere. Thus coning off the boundary
of a collapsible 3-ball with a knotted spanning edge (see Theorem 4.3.1)
yields a knotted 3-sphere that is LC.

Lemma 5.3.8. For every positive integer m, there exists a simplicial LC
3-sphere with an m-complicated (m+ 2)-gonal knot.

Proof. Straightforward from Corollary 4.3.3, part (2), and from Corol-
lary 5.3.1.

Based on Lickorish’s claim (see Remark 5.3.5), which we prove in Propo-
sition 5.3.10, we show now that the bound of Lemma 5.3.8 can be beaten:
A 3-sphere with an (m+1)-complicated (m+2)-gonal knot can still be LC.

Lemma 5.3.9. Let Q be a simplicial 3-polytope, let A be a 1-sphere disjoint
from Q and let v, x be two new vertices. The pyramid P = |v ∗x∗A| admits
a triangulation that

(1) contains a copy Q′ of Q embedded as subcomplex, so that the intersection
of Q′ with ∂P consists of the two vertices v and x;

(2) collapses onto Q′ ∪ (x ∗ A);
(3) coincides with the triangulation v ∗ x ∗ A on the boundary of P .

Proof. Inscribe the polytope Q ⊂ R3 in some pyramid P , so that Q touches
P at the apex v and at the midpoint x of the basis of P . We can assume
that x coincides with the origin, that the polygonal basis |x ∗ A| of P lies
on the plane z = 0, that such basis contains two “antipodal” vertices p1

and p2 (see Figure 5.6) and that p1 is not in the affine hull of any facet of
P (cf. [153, p. 240]).
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Figure 5.6: Given a polytope Q (pink) in R3, call v its top vertex (blue) and x
its bottom vertex (green). Take a 1-sphere A ⊂ R3 so that x is coplanar with A
and two vertices p1 and p2 (red) of A are “antipodal” with respect to x. If A is
chosen ‘large enough”’ then the pyramid |v ∗ x ∗ A| (which is the convex hull of
v ∪A) contains Q and admits a triangulation that collapses onto Q ∪ (x ∗A).

Let Q1 (resp. Q2) be the subcomplex of ∂Q given by the facets that
are visible (resp. not visible) from p1. Clearly Q1 and Q2 are 2-balls that
intersect in a 1-sphere. The triangulation of P we seek is obtained by
completing the triangulation

(p1 ∗Q1) ∪ (p1 ∗Q2)

via further cones, using the vertices of A as apices.

Proposition 5.3.10 (announced by Lickorish [93, p. 530]). Let B be
a simplicial 3-ball with an L-knotted spanning edge. There exists a simplicial
3-sphere SB,B that

(1) contains the 3-edge knot 2L in its 1-skeleton, where 2L denotes the
connected sum of L with itself;

(2) after the removal of a facet collapses onto two copies of B, glued together
in a single vertex of ∂B.

In particular, if B is collapsible, then SB,B is LC.

Proof. Choose a vertex x in the boundary of B. Let A := link ∂B x and let
P be the pyramid |v ∗ x ∗A|. We claim that there is a new triangulation P̃
of P such that

(1) P̃ contains a copy B′ of B, so that the two copies of x are identified
and the L-knotted spanning edge of B′ goes from x to v;

(2) P̃ collapses onto B′ ∪ (x ∗ A);
(3) P̃ coincides with v ∗ x ∗ A on ∂P .
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5. Locally constructible manifolds

In fact, even if the copy B′ of our knotted ball B is not a convex polytope,
its boundary ∂B′ is combinatorially equivalent to the boundary of some
simplicial polytope Q. Note that Q contains the endpoints x′, y′ of the
spanning edge of B′, but it need not contain an edge that connects x′ to
y′. Let us apply Lemma 5.3.9, making sure that the points x′ resp. y′ of Q
coincide with the vertices x resp. v of P . We then re-triangulate the interior
of Q, replacing its triangulation with the original triangulation of B′.

The claim is thus proven. Since the 3-sphere SB can be decomposed as

SB = v ∗ x ∗ A ∪ v ∗ del ∂B x ∪ B,

the union
P̃ ∪ v ∗ del ∂B x ∪ B

yields another triangulated 3-sphere, which we will call SB,B. Inside SB,B
the knotted spanning edges of B and B′ are concatenated, so that the knot
L is “doubled”.

Now, if τ is a triangle of ∂B, it is easy to see that the 2-ball ∂B − τ
collapses onto the closed star of x in ∂B. This means that v ∗ ∂B − v ∗ τ
collapses onto v ∗ x ∗ A. By attaching B and observing that this does not
interfere with the collapse, we obtain

SB − v ∗ τ ↘ v ∗ x ∗ A ∪ B.

The collapse above does not depend on how the interior of v ∗ x ∗ A is
triangulated. Therefore, by replacing v ∗ x ∗ A with P̃ , we obtain

SB,B − v ∗ τ ↘ P̃ ∪B.

But by construction P̃ ↘ B′ ∪x (x ∗A) (where “∪x” means “union along
x”) and x ∗ A ⊂ B. Therefore, P̃ ∪ B ↘ B′ ∪x B, which implies

SB,B − v ∗ τ ↘ B′ ∪x B.

When B is collapsible, B′ ∪x B is also collapsible; SB,B is then LC by
Corollary 5.3.1.

Proposition 5.3.11. For every positive integer m, there exists a simplicial
LC 3-sphere SBm,B with an (m + 1)-complicated (m + 2)-gonal knot in its
1-skeleton.

Proof. Let Bm be the collapsible 3-ball with an L-knotted spanning arc
of m edges (where L stands for the m-ple trefoil) that we constructed in
Corollary 4.3.3, part (1). Let x be one of the two endpoints of such knotted
spanning arc.

Analogously to the proof of 5.3.10,
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– we cone off the boundary of Bm,
– we re-triangulate the cone over the star of x by inserting a copy B′ of

a collapsible 3-ball with a trefoil-knotted spanning edge, and
– we call SBm,B the obtained simplicial 3-sphere.

This SBm,B contains an (m+ 1)-ple trefoil knot realized with m+ 2 edges.
Since

SBm,B − v ∗ τ ↘ B′ ∪x Bm

for some boundary triangle τ (not containing x) of Bm, we conclude by
Corollary 5.3.1.

Therefore,

– Theorem 4.4.3 by Hachimori–Ziegler,
– Proposition 4.4.4 by Ehrenborg–Hachimori–Shimokawa,
– Remark 5.3.5/Prop.- 5.3.10 by Lickorish,
– our Lemma 5.3.8, Proposition 5.3.11 and Theorem 5.3.3,

all blend into the following new hierarchy:

Theorem 5.3.12. A simplicial 3-sphere that contains a non-trivial knot
consisting of

3 edges, 1-complicated is not constructible, but can be LC.
3 edges, 2-complicated is not constructible, but can be LC.

3 edges, 3-complicated or more is not LC.
4 edges, 1-complicated is not vertex dec., but can be shellable.

4 edges, 2- or 3-complicated is not constructible, but can be LC.
4 edges, 4-complicated or more is not LC.

5 edges, 1-complicated is not vertex dec., but can be shellable.
5 edges, 2-, 3- or 4-complicated is not constructible, but can be LC.
5 edges, 5-complicated or more is not LC.

6 edges, 1-complicated can be vertex decomposable.
6 edges, 2-complicated is not vertex dec., but can be LC.

6 edges, 3-, 4- or 5-complicated is not constructible, but can be LC.
6 edges, 6-complicated or more is not LC.

...
...

m edges, k-complicated, k ≥ bm
3
c is not vertex decomposable.

m edges, k-complicated, k ≥ bm
2
c is not constructible.

m edges, k-complicated, k ≤ m− 1 can be LC.
m edges, k-complicated, k ≥ m is not LC.
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Furthermore, every 3-sphere becomes LC after becoming sufficiently many
barycentric subdivisions; however, there is no fixed number r of subdivisions
that is sufficient to make all 3-spheres LC. (Compare Section 4.5.)

For the sake of completeness, we also give a “bridge index” version of The-
orem 5.3.12. Recall that any knot group with bridge index b has a pre-
sentation with b− 1 generators, but it is an open question whether such a
presentation is minimal with respect to the number of generators.

Theorem 5.3.13. A simplicial 3-sphere with a non-trivial knot L with
3 edges, b(L) = 2 is not constructible, but can be LC.
3 edges, b(L) = 3 is not constructible, but can be LC.
3 edges, b(L) ≥ 4 can be non-LC.

...
...

m edges, b(L) > m
3

is not vertex decomposable.
m edges, b(L) > m

2
is not constructible.

m edges, b(L) ≤ m can be LC.
m edges, b(L) > m can be non-LC.

5.4 Computer-generated examples

We have seen in Section 1.2 that while 3-spheres are algorithmically rec-
ognizable, PL d-spheres are not recognizable for any d ≥ 5. Nevertheless,
most of the classes of manifolds we have encountered so far are algorithmi-
cally recognizable. For example, if we want to decide whether a complex
has collapse depth c or not, we can try all possible sequences of elementary
collapses and record the dimension of the complexes in which we get stuck.

When it comes to find efficient algorithms, on the other hand, the situ-
ation is not so rosy: There is currently (see e.g. [109]) no efficient algorithm
to decide whether a given simplicial d-complex is shellable (resp. collapsi-
ble) or not, unless d ≤ 2 [46]. For each d, both problems are in NP, because
if somebody gave us a shelling (resp. a collapsing sequence) we would be
able to double-check its correctness in polynomial time.

So, deciding local constructibility of a d-manifold is difficult for d > 2.
(When d = 2 the problem boils down to a computation of the Euler charac-
teristic, since all LC 2-manifolds are 2-spheres and the other way around.)
The best method seems to use our Theorem 5.2.6: choose a spanning tree T
(easy), compute KT (easy) and then check the collapsibility of KT (which
is (d− 1)-dimensional). However, while a positive answer leads to the con-
clusion, a negative answer requires “backtracking”, i.e. another try with a
different spanning tree.
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An algorithm to decide local constructibility of 3-balls without interior
vertices will be described in Remark 6.3.5: It is essentially due to Hachimori,
even if the original (incorrect) version of the algorithm was designed to test
constructibility of 3-balls without interior vertices.

In 1993, Eğecioğlu and Gonzalez [54] studied the following related prob-
lem:

Definition 5.4.1 (Erasure). For a polytopal d-complex C, the erasure
er(C) is the minimal number of d-faces whose removal makes C collapsible
onto a lower dimensional complex.

Collapsibility problem

instance: A pair (C, k) where C is a simplicial 2-complex,
and k is a nonnegative integer.

question: Is er(C) ≤ k?

By reducing it to the vertex cover problem, Eğecioğlu and Gonzalez
[54] proved that the collapsibility problem is NP-complete. Furthermore,
they showed that the collapsibility problem is MAX-SNP-hard, i.e. “a NP-
hard problem for which any polynomial approximation algorithm can lead
to a result arbitrarily far from the optimum” [91, p. 226]. This is not a
contradiction with what we said above (“shellability and collapsibility of
2-complexes are not difficult to decide”), because we were reasoning with
respect to the number N of facets, and not with respect to this integer k.

Following Eğecioğlu and Gonzalez, some approximation results have
been obtained by Lewiner–Lopes–Tavares [91] and by Joswig–Pfetsch [79]
in the extended framework of discrete Morse theory. Recently Engström
[53] obtained interesting results using Fourier transforms. From his data
[53, Table 4, p. 51] one can derive for example that the erasure of the Dunce
Hat is one.

In general, if ϕ is a discrete Morse function on a d-complex C and ck(ϕ)
is the number of k-dimensional critical cells of C, then the erasure of C is
bounded above by cd(ϕ).

In Subsections 5.4.1 and 5.4.2, we will show how greedy-collapsing algo-
rithms may sometimes succeed in determining the local constructibility of
balls or spheres. Both subsections 5.4.1 and 5.4.2 are joint work with Frank
H. Lutz.
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5.4.1 LC knotted spheres and balls

The PL simplicial knotted 3-sphere S3
13,56 described by Lutz [101] has only

13 vertices and 56 tetrahedra. Using a greedy-collapsing algorithm, we
show here that the removal of a facet makes S3

13,56 collapsible. For the
sake of brevity, we will only write a facet-killing sequence of S3

13,56. The
collapsibility of the resulting complex is then easy to verify, because such
complex is 2-dimensional.

Consider the following connected subgraph T1 of the dual graph of S3
13,56:

3, 6, 11, 13 1, 7, 11, 13 2, 5, 7, 13
| | |

3, 6, 7, 12 1, 7, 9, 13 5, 7, 9, 13
| | |

1, 2, 9, 12 1, 2, 6, 12 — 1, 6, 7, 12 — 1, 6, 7, 9 — 5, 6, 7, 9
� | |

1, 9, 10, 13 — 1, 9, 10, 12 — 1, 7, 10, 12 2, 4, 5, 7 — 4, 5, 6, 7
| | � |

1, 10, 11, 13 2, 3, 7, 10 — 3, 7, 10, 12 3, 4, 6, 7 4, 5, 6, 10
� | | |

2, 7, 8, 10 2, 3, 4, 7 3, 9, 10, 12 1, 5, 8, 10 2, 4, 5, 10
| | � |

2, 3, 4, 10 3, 9, 10, 13 2, 5, 8, 13 — 2, 5, 8, 10

T1 consists of 30 nodes and 29 edges. Consider now the connected
subgraph T2 of the dual graph of S3

13,56 formed by the following 26 nodes
and 25 edges:

6, 10, 11, 13 —– 3, 6, 10, 13 —– 3, 4, 6, 10 2, 8, 12, 13
| |

5, 6, 10, 11 1, 2, 6, 9 2, 7, 11, 13 2, 6, 12, 13
| | | �

5, 6, 9, 11 —– 2, 6, 9, 11 —– 2, 6, 11, 13 3, 8, 12, 13
| |

2, 7, 8, 11 —– 2, 8, 9, 11 —– 2, 8, 9, 12 —– 3, 8, 9, 12
| |

1, 7, 8, 11 3, 8, 9, 11 —– 1, 3, 8, 11 —– 1, 3, 5, 8
| | | |

1, 7, 8, 10 3, 5, 9, 11 1, 3, 5, 11 3, 5, 8, 13
| |

1, 5, 10, 11 3, 5, 9, 13
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We can merge T1 and T2 together by adding an edge between the blue-
coloured nodes, i.e. between {5, 6, 7, 9} and {5, 6, 9, 11}. The result is a
spanning tree T of the dual graph of S3

13,56. The corresponding 2-complex
KT is given by the following 54 triangles:

{1, 2, 12} {1, 3, 5} {1, 5, 8} {1, 5, 10} {1, 7, 10} {1, 7, 11}
{1, 8, 10} {1, 8, 11} {1, 9, 13} {1, 10, 11} {1, 11, 13} {2, 3, 10}
{2, 4, 5} {2, 4, 7} {2, 4, 10} {2, 5, 13} {2, 5, 7} {2, 6, 12}
{2, 7, 8} {2, 7, 11} {2, 7, 13} {2, 8, 10} {2, 8, 12} {2, 8, 13}
{2, 9, 12} {3, 4, 6} {3, 4, 7} {3, 4, 10} {3, 5, 9} {3, 5, 11}
{3, 6, 7} {3, 6, 13} {3, 7, 12} {3, 8, 9} {3, 8, 13} {3, 9, 12}
{3, 9, 13} {3, 10, 13} {3, 12, 13} {4, 6, 10} {5, 6, 10} {5, 8, 13}
{5, 9, 11} {5, 9, 13} {5, 10, 11} {6, 11, 13} {6, 12, 13} {7, 8, 10}
{7, 9, 13} {7, 11, 13} {8, 12, 13} {9, 10, 12} {9, 10, 13} {10, 11, 13}.

With the help of the computer, we checked that KT collapses onto the
2-ball given by the triangles {1, 2, 6}, {1, 2, 9} and {1, 6, 9}. In particular,
KT is collapsible. Therefore, S3

13,56 can be locally constructed along T .
Being knotted, S3

13,56 cannot be constructible (cf. Theorem 4.4.3); more-
over, the removal of a single facet from S3

13,56 yields a non-constructible
3-ball. Is there a facet ∆ such that S3

13,56 − ∆ is LC? We will answer the
question positively in Theorem 6.2.4.

5.4.2 Some spheres are LC, but not extensively LC

If we want to locally construct a 3-sphere, the choice of the spanning tree
of the dual graph does matter. In fact, it may occur that a 3-sphere is
locally constructible along some dual spanning tree, but not along every
dual spanning tree.

Recall that the Dunce Hat is the complex D on the vertices 1, . . . , 8
given by the following facets:

{1, 2, 4} {1, 2, 5} {1, 2, 8} {1, 3, 6} {1, 3, 7} {1, 3, 8} {1, 4, 5}
{1, 6, 7} {2, 3, 5} {2, 3, 6} {2, 3, 7} {2, 4, 6} {2, 7, 8} {3, 5, 8}
{4, 5, 7} {4, 6, 7} {5, 7, 8}.

The Dunce Hat can be realized as subcomplex of a 3-sphere. In fact, let SD
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be the simplicial 3-sphere on 12 vertices given by the following 40 facets:

{0, 1, 2, 3 } {0, 1, 2, 5 } {0, 1, 3, 8 } {0, 1, 8, 11} {0, 2, 3, 5 }
{0, 3, 5, 8 } {0, 5, 8, 11} {0, 1, 5, 11} {1, 2, 4, 5 } {1, 2, 4, 11}
{1, 2, 8, 10} {1, 2, 8, 11} {1, 3, 6, 7 } {1, 3, 6, 9 } {1, 3, 7, 10}
{1, 3, 8, 9 } {1, 4, 5, 11} {1, 6, 7, 9 } {1, 7, 9, 10} {1, 8, 9, 10}
{2, 3, 5, 9 } {2, 3, 6, 9 } {2, 3, 6, 11} {2, 3, 7, 10} {2, 3, 7, 11}
{1, 2, 3, 10} {2, 4, 5, 9 } {2, 4, 6, 9 } {2, 4, 6, 11} {2, 7, 8, 10}
{2, 7, 8, 11} {3, 5, 8, 9 } {3, 6, 7, 11} {4, 5, 7, 9 } {4, 5, 7, 11}
{4, 6, 7, 9 } {4, 6, 7, 11} {5, 7, 8, 9 } {5, 7, 8, 11} {7, 8, 9, 10}.

It is then easy to check that D ↪→ SD.

Proposition 5.4.2. There exists a spanning tree T of the dual graph of SD,
such that KT collapses onto the Dunce Hat.

Proof. Let T be the tree that goes across the following 39 triangles of SD:

{2, 4, 5} {2, 5, 9} {2, 3, 9} {2, 6, 9} {4, 6, 9} {4, 7, 9}
{5, 7, 9} {5, 8, 9} {3, 8, 9} {1, 3, 9} {1, 6, 9} {1, 8, 9}
{8, 9, 10} {7, 8, 10} {2, 7, 10} {3, 7, 10} {1, 7, 10} {2, 8, 10}
{1, 2, 10} {1, 2, 3} {3, 6, 7} {3, 7, 11} {2, 3, 11} {2, 6, 11}
{4, 6, 11} {4, 7, 11} {5, 7, 11} {7, 8, 11} {2, 8, 11} {1, 2, 11}
{1, 4, 11} {1, 5, 11} {0, 1, 5} {0, 2, 5} {0, 3, 5} {0, 5, 8}
{0, 8, 11} {0, 3, 8} {0, 1, 3}.

None of the 17 faces of the Dunce Hat appears in such list. Since the facets
of KT are the 41 triangles of SD that are not hit by T , the Dunce Hat is a
full-dimensional subcomplex of KT . Being KT 2-dimensional, this suffices
to conclude that KT is not collapsible. (In fact, KT collapses onto D).

Proposition 5.4.3. There exists a spanning tree T ′ of the dual graph of
SD such that KT ′ is collapsible.

Proof. Let T ′ be the tree that goes across the following 39 triangles of SD:

{6, 7, 9} {4, 6, 9} {2, 4, 9} {2, 4, 5} {1, 2, 4} {1, 6, 7}
{4, 6, 7} {4, 7, 11} {3, 6, 7} {1, 3, 6} {2, 5, 9} {1, 3, 7}
{2, 3, 9} {2, 3, 6} {4, 5, 11} {4, 7, 9} {3, 7, 10} {1, 7, 9}
{3, 7, 11} {7, 9, 10} {2, 3, 10} {2, 7, 10} {1, 9, 10} {3, 5, 9}
{2, 4, 6} {2, 8, 10} {5, 8, 9} {1, 5, 11} {1, 2, 5} {2, 3, 5}
{3, 5, 8} {1, 3, 9} {0, 3, 8} {0, 1, 2} {2, 7, 11} {7, 8, 11}
{5, 8, 11} {0, 1, 8} {1, 8, 11}.

The reader can check that KT ′ is collapsible.
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By Corollary 5.3.1, SD is locally constructible along T ′, but it is not
locally constructible along T .

Corollary 5.4.4. Given an LC sphere S, not every sequence of local gluings
may be completed to a local construction of S. Therefore, while locally
constructing an LC sphere, we may get stuck.

5.5 Extension to k-LC manifolds

Recall that a k-LC d-manifolds is obtained from a tree of d-polytopes by
gluing together 2k boundary facets pairwise, and then by matching the
remaining boundary facets according to local gluings. Some of the results
we saw in Section 5.2 generalize to the class of k-LC d-manifolds. This
yields useful applications, like an exponential upper bound for simplicial
2-manifolds with bounded genus.

Let us start with a straightforward extension of Theorem 5.2.6, which
relates the k-LC notion with the “erasure” notion by Eğecioğlu–Gonzalez
(cf. Def. 5.4.1):

Theorem 5.5.1. Let k, d ∈ N, with d ≥ 2, and let M be a d-manifold. The
following are equivalent:

(1) M is k-LC;
(2) er(KT ) ≤ k, for some spanning tree T of the dual graph of M ;
(3) there is a spanning tree T of the dual graph of M and there are k (d−1)-

dimensional faces σ1, . . . , σk such that KT −σ1−σ2− . . .−σk collapses
onto a (d− 2)-complex.

After Theorem 5.5.1, the k-LC notion can be explained by means of a
game. Suppose we are given a d-manifold M with one d-cell removed, while
our goal is to remove all the (d− 1)-cells from it. The rules of the game are
the following:

– removing a (d− 1)-cell via an elementary collapse costs us nothing;
– otherwise, removing a (d− 1)-cell costs one dollar.

Different strategies may result in different costs. LC d-manifolds are char-
acterized by the fact that we can win the game for free by playing optimally.
A d-manifold is k-LC if and only if we can win the game with a budget of
k dollars.

Theorem 5.5.2. An orientable surface M is (2g)-LC if and only if its genus
is at most g. In particular, the smallest integer k for which an orientable
surface is k-LC is always even.
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Proof. Fix an orientable surface Mg of genus g > 0 and a spanning tree T of
its dual graph. Choose a facet σ of Mg: The 2-manifold with boundary Mg−
σ collapses along T onto the 1-complex KT , which in turn collapses onto
some leafless connected graph GT . (Note that GT depends on the spanning
tree chosen, but not on the facet σ chosen.) Since collapses preserve the
homotopy type, GT is homotopy equivalent to Mg − σ, which retracts to a
wedge of 2g 1-spheres. In particular:

– the removal of 2g edges makes GT contractible; therefore, KT minus
the same 2g edges is collapsible. By Theorem 5.5.1, Mg is (2g)-LC;

– the removal of fewer edges does not make GT contractible, thus Mg is
not (2g − 1)-LC.

Corollary 5.5.3. Simplicial orientable 2-manifolds with bounded genus are
exponentially many, both with respect to the number of facets N and to the
number of vertices n.

Proof. By Theorem 5.5.2, all orientable 2-manifolds with genus bounded
by k

2
are k-LC. By Theorem 2.6.5, simplicial 2-manifolds with bounded

genus are exponentially many with respect to N . To prove an exponential
bound with respect to n, it suffices to focus on manifolds of fixed genus,
since a finite sum of exponential bounds yields an exponential bound. If
M has genus g, using the Euler equation we may write n = N

2
− 2g + 2,

which depends on N linearly: Therefore, what is exponential in N is also
exponential in n.

The next result generalizes Theorem 3.5.1:

Theorem 5.5.4. Let k, d ∈ N, with d ≥ 2. Let K be a simplicial k-LC d-
manifold. For each (d−2)-dimensional subcomplex L of K, the fundamental
group of |K| − |L| has a presentation with exactly fd−2(L) + k generators.

Proof. Analogous to the proof of Theorem 3.5.1: We repeat it for the sake
of completeness. Choose a tetrahedron of K and call it A0. By Theorem
5.5.1, there is a dual spanning tree T of K such that the (d − 1)-complex
KT , after the removal of k faces, collapses onto a (d − 2)-complex. Thus
we can write down:

– a list of N−1 pairs ((d−1)-face, d-face) that form the collapse of K−A0

onto KT ;
– a list of k faces σ1, . . . , σk, of dimension d− 1;
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– a list of P pairs2 of the type ((d− 2)-face, (d− 1)-face), which form the
collapse of KT minus k faces onto a (d− 2)-complex;

– a list of all the remaining faces, ordered by decreasing dimension.

Let us put together all the faces that appear above, maintaining their order,
to form a single list of simplices

A1, A2, . . . , A2N−1, A2N−2,

A2N−1, . . . , A2N+k−2,

A2N+k−1, A2N+k, . . . , A2M+k−1, A2M+k,

A2M+k+1, . . . , AF−1,

where F =
∑d

j=0 fj(K) counts the number of nonempty simplices of K.
In such a list A1 is a free face of A2; A3 is a free face of A4 with respect to

the complex K−A1−A2; and so on. In general, for each i in {1, . . . , 2M+k},
Ai is not a face of Aj for any j > i + 1. Note that Ai may or may not be
a face of Ai+1, depending on the value of i: for example A1 is a face of A2,
but A2 is not a face of A3.

Whenever Ai is a face of Ai+1, we will consider the two faces as an
“indivisible pair”. For example, (A1, A2) form an indivisible pair and so do
(A2N−3, A2N−2); on the contrary, A2N−1 is “all by himself”. (The indivisible
pairs are exactly the pairs of faces that were collapsed together.)

The idea is now to consider the subcomplex of sd(K) consisting of all
simplices of sd(K) that have no face in L; such a complex is a deformation
retract of |K| − |L|. We can build this complex step by step as follows:

– we start with the point Â0;
– we attach one at a time (or two at a time, in case they form an indivisible

pair) the ordered dual cells Âi, provided Ai is not in L.

How does each attachment affect the homotopy type? There are five cases
to consider:

(I) Ai is a (d − 1)-cell and forms an indivisible pair with Ai+1. This
means that Ai+1 is a d-cell; thus neither Ai, nor Ai+1 may belong
to L, which is (d− 2)-dimensional. By Newman’s theorem (Lemma
3.2.3), A∗i is a 1-cell that contains in its boundary the 0-cell A∗i+1.
Thus our attachment consists in attaching an edge along one of its
vertices; this does not change the homotopy type of the complex.

2This integer P can be computed explicitly. The total number of (d − 1)-faces of
K −A0 is (d+1)N

2 . Out of these faces, N − 1 resp. k have been removed in the first resp.
second phase. The remaining dN−N+2−2k

2 faces of dimension d − 1 are removed in the
third phase: Hence P = dN−N+2−2k

2 .
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(II) Ai is a (d− 2)-cell not in L and forms an indivisible pair with Ai+1.
This means that Ai+1 is a (d− 1)-cell, thus it cannot belong to L.
This time we are attaching a 2-cell A∗i together with a 1-cell A∗i+1 in
its boundary. Such an attachment does not change the homotopy
type.

(III) Ai is a (d − 2)-cell that does belong to L and forms an indivisible
pair with Ai+1. The situation is similar to the previous one, but
this time we are attaching only the 1-cell A∗i+1. Such an attachment
does change the homotopy type: it creates a loop.

(IV) Ai is a (d− 1)-cell and does not form an indivisible pair with Ai+1,
nor with Ai−1. Since Ai is all by himself, we are attaching a single
1-cell A∗i to the complex, creating a loop.

(V) Ai is a k-cell, with k ≤ d− 2, and does not form an indivisible pair
with Ai+1. Thus we are attaching to the CW complex a single cell
A∗i , of dimension at least two.

Only in the last three cases the homotopy type changes at all; yet since we
are interested in the number of generators in a presentation for the first
homotopy group of the complex (and not in the number of relators), we
may focus only on the number of loops in the model, so that case (V) may
be neglected. Now, case (III) occurs exactly fd−2(L) times, while case (IV)
occurs exactly k times. Therefore, the fundamental group of the subcomplex
of all simplices of sd(K) that have no face in L has a presentation with
k + fd−2(L) generators; but such a subcomplex is a deformation retract of
|K| − |L|, so we are done.

Corollary 5.5.5. Fix an integer d ≥ 3. Let S be a 3-sphere with an m-gonal
knot in its 1-skeleton, so that the knot is at least (m · 2d−3 +k)-complicated.
Then the (d− 3)-rd suspension of S is a PL d-sphere that is not k-LC.

Corollary 5.5.6. A 3-sphere with a (k+m)-complicated m-gonal knot can-
not be k-LC.
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Chapter 6

Locally constructible manifolds with
boundary

In this Chapter, in order to reach the hierarchy for d-balls collected in
Theorem 6.0.1, we give a combinatorial characterization of LC d-manifolds
with boundary (Theorem 6.1.9); it is a bit more complicated, but otherwise
analogous to the characterization given in Theorem 5.0.1.

Theorem 6.0.1. For simplicial d-balls, we have the following hierarchy:

{vertex dec.} ( {shellable} ( {constructible} ( {LC} (
( {collapsible onto a (d− 2)-complex} ( {all d-balls}.

Proof. The first two inclusions are known. We have already seen that all
constructible complexes are LC (Lemma 5.1.1). Every LC d-ball is collapsi-
ble onto a (d− 2)-complex by Corollary 6.2.1.

Let us see next that all inclusions are strict for d = 3: For the first inclu-
sion this follows from Lockeberg’s example of a 4-polytope whose bound-
ary is not vertex decomposable. For the second inclusion, take Ziegler’s
non-shellable ball from [154], which is constructible by construction. A
non-constructible 3-ball that is LC will be provided by Theorem 6.2.4. A
collapsible 3-ball that is not LC will be given in Theorem 6.3.6. Finally,
Bing [21] and Goodrick [60] showed that some 3-balls are not collapsible.

To show that the inclusions are strict for all d ≥ 3, we argue as follows.
For the first four inclusions we get this from the case d = 3, since

– cones are always collapsible (cf. Proposition 3.4.1);
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6. Locally constructible manifolds with boundary

– the cone v ∗B is vertex decomposable resp. shellable resp. constructible
if and only if B is (cf. Lemma 1.7.1);

– the cone v ∗B is LC if and only if B is (cf. Proposition 1.7.2).

For the last inclusion and d ≥ 3, we look at the d-balls obtained by removing
a facet from a non-LC d-sphere. These exist by Corollary 4.3.9; they do
not collapse onto a (d− 2)-complex by Theorem 5.3.2.

When d = 3, “collapsible onto a (d − 2)-complex” is the same as “col-
lapsible”: in fact, if a 3-ball collapses onto a 1-complex C, this C has to
be contractible, yet all contractible 1-complexes are collapsible. Thus for
d = 3 the hierarchy above yields the following result (valid also in the
non-simplicial case):

Corollary 6.0.2. For 3-balls,

{shellable} ( {constructible} ( {LC} ( {collapsible} ( {all 3-balls}.

6.1 Characterization of local constructibility

The arguments of Section 3.1 can be extended to manifolds with boundary;
the idea is to consider collapses that preserve the boundary faces. We start
with a relative version of facet-killing sequences and facet-massacres.

Definition 6.1.1. Let P a pure d-complex. Let Q be a proper subcom-
plex of P , either pure d-dimensional or empty. A facet-killing sequence of
(P,Q) is a sequence P0, P1, . . . , Pt−1, Pt of simplicial complexes such that
t = fd(P ) − fd(Q), P0 = P , and Pi+1 is obtained from Pi by removing a
pair (σ,Σ) such that σ is a free (d− 1)-face of Σ that does not lie in Q.

It is easy to see that Pt has the same (d− 1)-faces as Q. The version of
facet killing sequence given in Definition 3.1.2 is a special case of this one,
namely the case when Q is empty.

Definition 6.1.2. Let P a pure d-dimensional complex. Let Q be either
the empty complex, or a pure d-dimensional proper subcomplex of P . A
pure facet-massacre of (P,Q) is a sequence P0, P1, . . . , Pt−1, Pt of (pure)
complexes such that t = fd(P )− fd(Q), P0 = P , and Pi+1 is obtained from
Pi by removing:

(a) a pair (σ,Σ) such that σ is a free (d − 1)-face of Σ, with σ not in Q,
and

(b) all inclusion-maximal faces of dimension smaller than d that are left
after the removal of type (a) or, recursively, after removals of type (b).
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Necessarily Pt = Q (and whenQ = ∅ we recover the notion of facet-massacre
of P that we introduced in Definition 5.2.1). It is easy to see that a step
Pi −→ Pi+1 can be factorized (not in a unique way) into an elementary
collapse followed by the removal of some k-faces (k < d) which makes Pi+1

a pure complex. Thus, a single pure facet-massacre of (P,Q) corresponds
to many facet-killing sequences of (P,Q).

We will study the pair (P,Q) = (KT , ∂M), where M is a d-manifold
with boundary, T is a spanning tree of its dual graph, and KT is defined as
follows:

Definition 6.1.3. Given a d-manifold M and a spanning tree T of its dual
graph, we denote by KT the pure (d − 1)-dimensional subcomplex of M
formed by all (d− 1)-faces of M that are not intersected by T .

Note that KT contains ∂M as subcomplex, because any spanning tree of
the dual graph of a manifold with boundary does not intersect the boundary
faces. Let b be the number of (d − 1)-faces in the boundary ∂M , and let
N be as usual the number of facets of M .

Lemma 6.1.4. Under the previous notations, M −∆ ↘ KT for any facet
∆ of M . Moreover:

– if M is simplicial, KT has D + b
2

facets, where D := d−1
2
N + 1;

– if M is cubical, KT has E + b
2

facets, where E := (d− 1)N + 1.

Proof. M−∆ collapses onto KT along the tree T . Since T hits exactly N−1
interior (d− 1)-faces of M , the number of facets of KT is by definition

fd−1(KT ) = fd−1(M)− (N − 1),

with the convention that fd(K) counts the number of d-faces of a complex
K. The integer fd−1(M) can be determined double-counting the facet/ridge
adjacencies of M : every interior ridge of M lies in exactly two facets, while
each of the b boundary ridges lies in exactly one facet. Since all the N facets
of M contain the same number A of ridges (A = d+1 in the simplicial case,
A = 2d in the cubical case), it follows that

AN = 2 (fd−1(M)− b) + 1 · b,

whence we get fd−1(M) = AN+b
2

and finally

fd−1(KT ) =
AN + b

2
− (N − 1) =

(A− 2)N

2
+ 1 +

b

2
.
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We introduce another convenient piece of terminology.

Definition 6.1.5 (seepage). Let M be a d-manifold. A seepage is a (d−1)-
dimensional subcomplex C of M whose (d − 1)-faces are exactly given by
the list of the boundary facets of M .

A seepage is not necessarily pure; actually there is only one pure seepage,
namely ∂M itself. Since KT contains ∂M , a collapse of KT onto a seepage
must remove all the (d− 1)-faces of KT that are not in ∂M : This is what
we called a facet-killing sequence of (KT , ∂M).

Proposition 6.1.6. Let M be a d-manifold with boundary, and ∆ a d-
simplex of M . Let C be a seepage of ∂M . Then,

M −∆ ↘ C ⇐⇒ ∃ T s.t. KT ↘ C.

Proof. Analogous to the proof of Proposition 3.1.4. The crucial assumption
is that no face of ∂M is removed in the collapse (since all of the boundary
faces are still present in the final complex C).

If we fix a spanning tree T of the dual graph of M , we have then a 1-1
correspondence between the following sets:

1. the set of collapses M −∆ ↘ KT ;
2. the set of natural labelings of T , where ∆ is labelled by 1;
3. the set of the first parts (T1, . . . , TN) of local constructions for M ,

with T1 = ∆.

Theorem 6.1.7. Let M be a d-manifold with boundary; fix a facet ∆ and a
spanning tree T of the dual graph of M , rooted at ∆. The second part of a
local construction for M along T corresponds bijectively to a facet-massacre
of (KT , ∂M).

Proof. Let us start with a local construction [T1, . . . , TN−1, ]TN , . . . , Tk for
M along T . Topologically, M = TN/∼, where ∼ is the equivalence relation
determined by the gluing, and KT = ∂TN/∼.

The complex KT is pure (d − 1)-dimensional, and contains the bound-
ary ∂M . All the (d − 1)-faces in KT − ∂M represent gluings. The local
construction T1, . . . , TN−1, TN , . . . , Tk produces M from TN in k −N steps,
each removing a pair of facets from the boundary. It is easy to see that
k −N equals the number of facets of KT .

Define P0 := KT = ∂TN/ ∼, and Pj := ∂TN+j/ ∼ (j = 1, . . . , k−N). In
the first LC step, TN → TN+1, we remove from the boundary a free ridge r,
together with the unique pair σ′, σ′′ of facets of ∂TN sharing r. At the same
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time, r and the newly formed face σ are sunk into the interior; so obviously
neither σ nor r will appear in ∂M . This step ∂TN −→ ∂TN+1 naturally
induces an analogous step ∂TN+j/ ∼−→ ∂TN+j+1/ ∼, namely, the removal
of r and of the unique (d− 1)−face σ containing it, with r not in ∂M .

Thus from each local construction we obtain a pure facet-massacre of
(KT , ∂M). Conversely, let us start with a “facet-massacre” P0, . . ., Pk−N
of KT , which is (d− 1)-dimensional; again P0 = KT = ∂TN/ ∼; the unique
(d − 1)-face σj killed in passing from Pj to Pj+1 corresponds to a unique
pair of (d − 1) (adjacent!) faces σ′j, σ

′′
j in ∂TN+j; gluing them together is

the LC move that transforms TN+j into TN+j+1.

Summing up, for fixed T and ∆:

• the first part of a local construction along T corresponds to a collapse
of M −∆ onto KT ;
• the second part of a local construction along T can be viewed as a

pure facet massacre of (KT , ∂M);
• a single facet massacre of (KT , ∂M) corresponds to many facet-killing

sequences of (KT , ∂M);
• a facet-killing sequence of (KT , ∂M) is a collapse of KT onto some

seepage.

Thus, M can be locally constructed along a tree T if and only ifKT collapses
onto some seepage. What if we do not fix the tree T or the facet ∆?

Lemma 6.1.8. Let M be a d-manifold with non-empty boundary; let σ
be a (d − 1)-face in the boundary ∂M , and let Σ be the unique facet of M
containing σ. Let C be a subcomplex of M . If C contains ∂M , the following
are equivalent:

(1) M − Σ↘ C;
(2) M − Σ− σ ↘ C − σ;
(3) M ↘ C − σ;

Proof. (1) and (2) are clearly equivalent. In the collapse M ↘ C − σ, the
boundary face σ must have been removed together with Σ; we can assume
that this elementary collapse was the first to be performed. Thus (3) implies
(2). The implication (2) ⇒ (3) is obvious.

Theorem 6.1.9. Let M be a d-manifold with boundary. The following are
equivalent:

1. M is LC;
2. KT collapses onto some seepage C, for some spanning tree T of the

dual graph of M ;
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3. there exists a seepage C such that for every facet ∆ of M one has
M −∆ ↘ C;

4. M −∆ ↘ C, for some facet ∆ of M , and for some seepage C;
5. there exists a seepage C such that for every facet σ of ∂M one has

M ↘ C − σ;
6. M ↘ C − σ, for some facet σ of ∂M , and for some seepage C.

Proof. The equivalences 1⇔ 2⇔ 3⇔ 4 are established analogously to the
proof of Theorem 5.2.6. Lemma 6.1.8 implies that 3⇒ 5⇒ 6⇒ 4.

Remark 6.1.10. In order to extend the previous results to the case where M
is a pseudomanifold (or a “strongly connected simplicial complex in which
every ridge lies in two facets”), one needs to take care of the following
example: Let M be a pinched annulus obtained by identifying two “distant”
vertices in a tree of triangles TN . The 2-complex M is not simply connected
and thus not LC; however, M minus a facet collapses onto the boundary
∂M (which coincides with KT , where T is the dual graph of TN).

In general, let M ′ be a d-pseudomanifold obtained from M by identifying
two k-dimensional boundary faces, k < d. If M minus a facet collapses onto
the boundary ∂M , then M ′ minus a facet also collapses onto the boundary
∂M ′: The collapsing sequence is the same.

6.2 Application to d-balls

Theorem 6.1.9 has many interesting consequences when applied to d-balls.
The first advantage in considering balls instead of generic manifolds with
boundary is that the boundary of a d-ball is a (d − 1)-manifold, while the
boundary of an arbitrary d-manifold might be disconnected. In particular,
the boundary of a d-ball has collapse depth greater or equal than one.

Corollary 6.2.1. Every LC d-ball collapses onto a (d− 2)-complex.

Proof. By Theorem 6.1.9, the ball B collapses onto the union of the bound-
ary of B minus a facet with some (d− 2)-complex. The boundary of B is a
(d−1)-sphere; thus the boundary of B minus a facet is a (d−1)-ball that can
be collapsed down to dimension d− 2, and the additional (d− 2)-complex
will not interfere.

Remark 6.2.2. By Proposition 3.4.4 and Theorem 5.2.6, if a d-manifold with
boundary B collapses onto some (d− 2)-complex and in addition ∂B is an
LC (d− 1)-manifold, then B ∪ v ∗ ∂B is an LC d-manifold.
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Removing any facet ∆ from a 3-sphere S we obtain a 3-ball S−∆. The
combinatorial topology of d-balls and of d-spheres are intimately related:

– A d-sphere S is shellable if and only if S−∆ is shellable for some facet
∆ of S. (To see this, take as ∆ the last facet in the shelling order.) It
is an open question whether this is equivalent to “S−∆ is shellable for
all facets ∆” [69, p. 166].

– Hachimori and Ziegler [69, Theorem 4] showed that a 3-sphere S is
constructible if and only if S − ∆ is constructible for some facet ∆ of
S, if and only if S − ∆ is constructible for all facets ∆ of S. Their
argument is specific for dimension three: For d-spheres we only know
that the constructibility of S−∆ for some ∆ implies S is constructible.

– We have shown in Corollary 5.3.1 that a d-sphere S is LC if and only
if S −∆ is collapsible onto a (d− 2)-complex for some facet ∆ of S, if
and only if S −∆ is collapsible onto a (d− 2)-complex for all facets ∆
of S, if and only if there is a dual spanning tree T of S such that KT

collapse onto a (d− 2)-complex.
– A d-sphere S is LC if S −∆ is LC for some ∆, by Corollary 6.2.1 and

Theorem 5.2.6 (or by Lemma 5.1.1.)

The next result yields a partial converse of the last fact above.

Lemma 6.2.3. Let ∆ be a facet of a d-sphere S; let δ be a facet of ∂∆.
Then S −∆ is an LC d-ball if and only if there is a dual spanning tree T
of S such that KT collapses onto the union of (∂∆− δ) with some (d− 2)-
complex.

Proof. Straightforward from Theorem 6.1.9.

When any of the two equivalent conditions of Lemma 6.2.3 is met, ∆ is a
leaf of the tree T , because all the boundary facets of ∆ except δ belong to
KT . For d = 3, Lemma 6.2.3 boils down to “S −∆ is LC if and only KT

collapses onto the 2-ball (∂∆− δ), for some T”.

Theorem 6.2.4. For every d ≥ 3, not all (simplicial) constructible d-balls
are LC.

Proof. If B is a non-constructible LC d-ball, v ∗ B is a non-constructible
LC (d+ 1)-ball; thus, it suffices to prove the claim for d = 3.

Let S3
13,56 be Lutz’s simplicial 3-sphere [101] described in Section 5.4.1.

Since it contains a 3-edge knot, S3
13,56 cannot be constructible. However,

there exists a spanning tree T of S3
13,56 such that KT is collapsible; moreover,

the facet ∆ := {1, 2, 6, 9} is a leaf of such tree and KT collapses onto
∆− {2, 6, 9} (cf. Section 5.4.1). Thus by Lemma 6.2.3 the 3-ball B13,55 :=
S3

13,56 −∆ is LC. Being knotted, B13,55 cannot be constructible.
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Remark 6.2.5. The LC non-constructible 3-ball B13,55 contains plenty of
interior points: Compare Proposition 6.3.2.

Applying Theorem 6.1.9 to 3-balls, we are able to answer the question
of Hachimori (see e.g. [66, pp. 54, 66]) of whether all constructible 3-balls
are collapsible.

Corollary 6.2.6. Let B be a 3-ball. The following are equivalent:

1. B is LC;
2. KT ↘ ∂B, for some spanning tree T of the dual graph of B;
3. B −∆ ↘ ∂B, for every facet ∆ of B;
4. B −∆ ↘ ∂B, for some facet ∆ of B;
5. B ↘ ∂B − σ, for every facet σ of ∂B;
6. B ↘ ∂B − σ, for some facet σ of ∂B.

Proof. When B has dimension 3, any seepage C of ∂B is a 2-complex
containing ∂B, plus some edges and vertices. Now, B − ∆ is homotopy
equivalent to a S2, and collapses onto C; thus C is also homotopy equivalent
to S2. Therefore, C can only be ∂B with some trees attached (see Figure
6.1), whence we conclude that C ↘ ∂B.

Figure 6.1: A seepage of a 3-ball.

Corollary 6.2.7. All LC 3-balls are collapsible.
In particular, all constructible 3-balls are collapsible.

Proof. By Corollary 6.2.6, an LC 3-ball collapses to some 2-ball ∂B − σ;
but all 2-balls are collapsible.

For example, the four 3-balls described by Ziegler, Lutz, Grünbaum and
Rudin (see Section 1.3) are all collapsible. When d ≥ 4, we do not know
whether constructible d-balls are all collapsible or not. All shellable d-balls
are collapsible by [48, Lemma 17, p. 1116]. Also, all constructible d-balls
are collapsible onto a (d− 2)-complex by Corollary 6.2.1.

Note that the locally constructible 3-balls with N facets are precisely the
3-balls that admit a “special collapse”, namely such that after the first ele-
mentary collapse, in the next N−1 collapses, no triangle of ∂B is collapsed
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6.3. 3-Balls without interior vertices

away. Such a collapse acts along a dual (directed) tree of the ball, whereas
a generic collapse acts along an acyclic graph that might be disconnected.

One could argue that maybe “special collapses” are not that special:
Perhaps every collapsible 3-ball has a collapse that removes only one bound-
ary triangle in its top-dimensional phase? This is not so: We will produce
a counterexample in the next section (Theorem 6.3.6).

6.3 3-Balls without interior vertices

Here we show that a 3-ball with all vertices on the boundary cannot contain
any knotted spanning edge if it is LC, but might contain some if it is
collapsible. We use this fact to establish our hierarchy for d-balls (Theorem
6.0.1).

Let us fix some notation first. Consider a local gluing Ti ; Ti+1 in the
local construction of some 3-complex P . Let σ be the interior k-gon of Ti+1

(and also of P ) obtained from the identification of adjacent k-gons σ′, σ′′

in the boundary of Ti. In other words, σ is the image of σ′ ∪ σ′′ under
the identification Ti � Ti+1. Let K be the image of σ′ ∩ σ′′ under this
identification map. K is a 1-dimensional subcomplex of σ.

We claim that there are only three possible cases: either

(A) K consists of a single edge, or
(B) K contains (at least) two adjacent edges, or
(C) K is disconnected.

In fact, K must contain at least one edge e. If K coincides with e we
are in case (A); if K contains e plus some isolated vertices, we are in case
(C); if K contains several edges, and no two of these edges are adjacent,
we are again in case (C); otherwise, we are in case (B). So the claim is
proven. (Note that (A), (B) and (C) do not form a partition of all possible
situations: Cases (B) and (C) may overlap.)

Correspondingly, the local gluing modifies the topology as follows:

– in case (A), Ti+1 has the same topology of Ti and every vertex on the
boundary of Ti lies also on the boundary of Ti+1;

– in case (B), at least one boundary vertex of Ti (namely, the vertex of σ
in between two adjacent edges of K) is sunk into the interior of Ti+1;

– in case (C), Ti+1 does not have the same topology of Ti, because the
boundary ∂Ti is pinched in some point(s) and/or disconnected.

Now, let B be an LC 3-ball without interior vertices. Gluings of type
(B) cannot occur in the local construction of B, because they would create
interior vertices. Gluings of type (C) have to be followed by gluings of type
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(B) to restore the ball topology; thus they cannot occur, either. This proves
the following lemma:

Lemma 6.3.1. Let B be an LC 3-pseudomanifold. The following are equiv-
alent:

(1) in some local construction for B all of the local gluings are of type (A);
(2) in every local construction for B all of the local gluings are of type (A);
(3) B is a 3-ball without interior vertices.

Note that there are LC 3-manifolds without interior vertices that are
not 3-balls, like the fake cube, which is a 3 × 3 × 3 pile of cubes with the
central cube missing, cf. Figure 5.1. In the local construction of the fake
cube most of the gluings are of type (A), but there is exactly one local
gluing of type (C).

We will use Lemma 6.3.1 to obtain examples of non-LC 3-balls. We
already know that non-collapsible balls are not LC, by Corollary 6.2.7: So
a 3-ball with a knotted spanning edge cannot be LC if the knot is the sum
of two or more trefoil knots. (See Section 4.3.2). What about balls with a
spanning edge realizing a single trefoil knot?

Proposition 6.3.2. An LC 3-ball without interior vertices does not contain
any knotted spanning edge.

Proof. By Lemma 6.3.1, an LC 3-ball B without interior vertices is obtained
from a tree of polytopes via local gluings of type (A). A tree of polytopes
has no interior edge. Each type (A) step preserves the existing spanning
edges (because it does not sink any vertex into the interior) and creates one
more spanning edge e, clearly unknotted (because the other k − 1 edges of
the sunk k-gon form a boundary path that “closes up” the edge e onto a
1-sphere bounding a disc inside B). It is easy to verify that the subsequent
local gluings of type (A) leave such edge e spanning and unknotted.

The presence of knots or knotted spanning edges is not the only ob-
struction to local constructibility:

Example 6.3.3. Bing’s thickened house with two rooms [21, pp. 108-109]
is a cubical 3-ball B with all vertices on the boundary, so that each cube
“touches air in two components”. In particular, every interior square of B
has at most two edges on the boundary ∂B. Were B LC, every step in its
local construction would be of type (A) (by Lemma 6.3.1); in particular, the
last square to be sunk into the interior of B would have exactly three edges
on the boundary of B, a contradiction. Thus Bing’s thickened house with
two rooms cannot be LC, even if it does not contain a knotted spanning
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edge. The same results hold also for the triangulated version [21, p. 111] [64]
of the same 3-ball. Bing’s question [21, p. 111] whether such triangulation
is collapsible or not remains open, even if, in virtue of Corollary 6.2.7, by
showing that it cannot be LC we made a step in the direction of non-
collapsibility.

Example 6.3.4. Furch’s 3-ball [57, p. 73] [21, p. 110] can be realized without
interior vertices (see e.g. Hachimori [64]). Since it contains a knotted
spanning edge, by Proposition 6.3.2 Furch’s ball is not LC. Bing’s question
[21, p. 111] whether Furch’s ball is collapsible or not remains open.

Remark 6.3.5. In [65, Lemma 2], Hachimori claimed that any simplicial 3-
ball C obtained from a simplicial constructible 3-ball C ′ via a type (A) step
is constructible. This would imply that all LC simplicial 3-balls without
interior vertices are constructible, which is stronger than Proposition 6.3.2
since constructible 3-balls do not contain any knotted spanning edge.

Unfortunately, Hachimori’s proof [65, p. 227] is not satisfactory: If C ′ =
C ′1 ∪ C ′2 is a constructible decomposition of C ′, and Ci is the subcomplex
of C with the same facets of C ′i, C = C1 ∪ C2 need not be a constructible
decomposition for C. (For example, if the two glued triangles both lie on
∂C ′1, and if the two vertices that the triangles do not have in common lie
in C ′1 ∩C ′2, then C1 ∩C2 is not a 2-ball and one of the Ci’s is not a 3-ball.)

At present we do not know whether Hachimori’s claim is true or not:
Does C ′ admit a different constructible decomposition that survives the
local gluing of type (A)? On this depends the correctness of the algorithm
[65, p. 227][66, p. 101] to test constructibility of 3-balls without interior
vertices by cutting them open along interior k-gons with exactly k − 1
boundary edges.

However, we point out that Hachimori’s algorithm can be validly used to
decide the local constructibility of 3-balls without interior vertices: In fact,
by Lemma 6.3.1, the algorithm proceeds by reversing the LC-construction
of the ball.

We can now move on to complete the proof of our Theorem 6.0.1. Inspired
by Proposition 6.3.2, we show that a collapsible 3-ball without interior ver-
tices may contain a knotted spanning edge. Our construction is a tricky
version of Lickorish–Martin’s [96].

Theorem 6.3.6. Not all collapsible 3-balls are LC.

Proof. Start with a large m × m × 1 pile of cubes, triangulated in the
standard way, and take away two distant cubes, leaving only their bottom
squares X and Y . The 3-complex C obtained can be collapsed vertically
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onto its square basis; in particular, it is collapsible and it has no interior
vertices.

Let C ′ be a 3-ball with two tubular holes drilled away, but where (1)
each hole has been corked at a bottom with a 2-disk, and (2) the tubes
are disjoint but intertwined, so that a closed path that passes through both
holes and between these traverses the top resp. bottom face of C ′ yields a
trefoil knot (see Figure 6.2).

Figure 6.2: C and C ′ are obtained from a 3-ball drilling away two tubular holes,
and then “corking” the holes on the bottom with 2-dimensional membranes.

C and C ′ are homeomorphic. Any homeomorphism induces on C ′ a
collapsible triangulation with no interior vertices. X and Y correspond
via the homeomorphism to the corking membranes of C ′, which we will
call correspondingly X ′ and Y ′. To get from C ′ to a ball with a knotted
spanning edge we will carry out two more steps:

(i) create a single edge [x′, y′] that goes from X ′ to Y ′;
(ii) thicken the “bottom” of C ′ a bit, so that C ′ becomes a 3-ball and

[x′, y′] becomes an interior edge (even if its extremes are still on the
boundary).

We perform both steps by adding cones over 2-disks to the complex. Such
steps preserve collapsibility, but in general they produce interior vertices;
thus we choose “specific” disks with few interior vertices.

(i) Provided m is large enough, one finds a “nice” strip F1, F2, . . . , Fk of
triangles on the bottom of C ′, such that F1 ∪ F2 ∪ · · · ∪ Fk is a disk
without interior vertices, F1 has a single vertex x′ in the boundary
of X ′, while Fk has a single vertex y′ in the boundary of Y ′, and the
whole strip intersects X ′ ∪ Y ′ only in x′ and y′. Then we add a cone
to C ′, setting

C1 := C ′ ∪ (y′ ∗ (F1 ∪ F2 ∪ · · · ∪ Fk−1)) .
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(An explicit construction of this type is carried out in Hachimori–
Ziegler [69, pp. 164-165].) Thus one obtains a collapsible 3-complex
C1 with no interior vertex, and with a direct edge from X ′ to Y ′.

(ii) Let R be a 2-ball inside the boundary of C1 that contains in its interior
the 2-complex X ′ ∪ Y ′ ∪ [x′, y′], and such that every interior vertex of
R lies either in X ′ or in Y ′. Take a new point z′ and define C2 :=
C1 ∪ (z′ ∗R).

As z′∗R collapses onto R, C2 is a collapsible 3-ball with a knotted spanning
edge [x′, y′]. By Proposition 6.3.2, C2 is not LC.

Corollary 6.3.7. There exists a collapsible 3-ball B such that, for any
boundary facet σ, the ball B does not collapse onto ∂B − σ.

Corollary 6.3.8. For each positive integer m, there exists a collapsible non-
LC 3-ball Bm with an L-knotted spanning arc of m edges, the knot being the
m-ple trefoil.

Proof. It suffices to “sum” m copies of the 3-ball described in Theorem 6.3.6
according to Theorem 4.3.2: by Remark 4.3.4, the result is a collapsible 3-
ball Bm without interior vertices. Since it contains a knot, Bm is not LC
by Proposition 6.3.2.

Theorem 6.3.6 can be extended to higher dimensions by taking cones:

Corollary 6.3.9. For every d ≥ 3, not all collapsible d-balls are LC.

Proof. All cones are collapsible by Proposition 3.4.1. If B is a non-LC
d-ball, then v ∗B is a non-LC (d+ 1)-ball by Proposition 1.7.2.

Furthermore, Chillingworth’s theorem (“every geometric triangulation
of a convex 3-dimensional polytope is collapsible”) can be strengthened as
follows.

Theorem 6.3.10 (Chillingworth [40]). Every 3-ball embeddable as a
convex subset of the Euclidean 3-space R3 is LC.

Proof. The argument of Chillingworth for collapsibility runs showing that
B ↘ ∂B − σ, where σ is any triangle in the boundary of B. A glance at
Theorem 6.2.6 ends the proof.

Thus any subdivided 3-simplex is LC. If Hachimori’s claim is true (see
Remark 6.3.5), then any subdivided 3-simplex with all vertices on the
boundary is also constructible. (So far we can only exclude the presence
of knotted spanning edges in it: See Lemma 6.3.1.) However, a subdivided
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3-simplex might be non-shellable even if it has all vertices on the boundary
(Rudin’s ball is an example).

Recently Crowley [44] has shown via discrete Morse theory that every
non-positively curved complex is collapsible. Her results represent a “metric
analogous” of Chillingworth’s theorem; it would be interesting to know
whether non-positively curved complexes need to be LC or not.

6.4 A hierarchy for knotted balls

We conclude the study of manifolds with boundary claiming an analogue
for 3-balls of Theorem 5.3.12. We start off by saying that any 3-ball with a
non-trivial knot cannot be rectilinearly embedded in R3.

Theorem 6.4.1. A simplicial 3-ball with a non-trivial knot consisting of

3 edges, 1-complicated is not constructible, but can be LC.
3 edges, 2-complicated is not constructible, but can be collapsible.

3 edges, 3-complicated or more is not LC and also not collapsible.
4 edges, 1-complicated is not vertex dec., but can be shellable.

4 edges, 2- or 3-complicated is not constructible, but can be collapsible.
4 edges, 4-complicated or more is not LC and also not collapsible.

5 edges, 1-complicated is not vertex dec., but can be shellable.
5 edges, 2-, 3- or 4-complicated is not constructible, but can be collapsible.
5 edges, 5-complicated or more is not LC and also not collapsible.

6 edges, 1-complicated can be vertex dec.
6 edges, 2-complicated is not vertex dec., but can be collapsible.

6 edges, 3-, 4- or 5-complicated is not constructible, but can be collapsible.
6 edges, 6-complicated or more is not LC and also not collapsible.

...
...

m edges, k-complicated, with k ≥ bm
3
c is not vertex decomposable.

m edges, k-complicated, with k ≥ bm
2
c is not constructible.

m edges, k-complicated, with k ≤ m− 1 can be collapsible.
m edges, k-complicated, with k ≥ m cannot be collapsible.

Proof. Each line follows from the corresponding line of Theorem 5.3.12.
Since a 3-sphere S with a 1-complicated (or 2-complicated) knotted

triangle can be LC by Theorem 5.3.12, it follows that for any facet ∆ of S
the 3-ball S−∆ is collapsible. (If ∆ is chosen carefully, one might be able to
conclude that S−∆ is LC: Compare Theorem 6.2.4.) Yet S−∆ contains the
same knot of S. Furthermore, if B is a knotted collapsible 3-ball, then SB
is a knotted LC 3-sphere; yet a 3-sphere with an m-complicated knotted
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m-gon cannot be LC; therefore, a 3-ball with an m-complicated knotted
m-gon cannot be collapsible.

The remaining items are shown in analogous way, either applying Corol-
lary 5.3.1 or using the fact that coning off the boundary of a ball preserves
constructibility and vertex decomposability.
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no. 3 in Clay Mathematics Monographs, Amer. Math. Soc., Provi-
dence, 2007. (23, 67)

[108] , Completion of the proof of the Geometrization conjecture.
http://arxiv.org/abs/0809.4040v1, preprint, 2008. (23, 67)

[109] S. Moriyama and M. Hachimori, h-assignments of simpli-
cial complexes and reverse search, Discr. Appl. Math., 154 (2006),
pp. 594–597. (104)

137

http://www.eg-models.de
http://www.eg-models.de
http://www.eg-models.de
http://arxiv.org/abs/0809.4040v1


Bibliography

[110] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley,
Menlo Park, CA, 1984. (65, 66, 73)

[111] A. Nabutovski and R. B. Av, Noncomputability arising in Dy-
namical Triangulation model of four-dimensional Quantum Gravity,
Communications in Mathematical Physics, 157 (1993), pp. 93–98.
(24)

[112] M. Newman, On the foundations of Combinatorial Analysis situs,
Proc. Koninkl. Nederl. Akad. Wet., 29 (1926), pp. 610–641. (12)

[113] , A property of 2-dimensional elements, Proc. Koninkl. Nederl.
Akad. Wet., 29 (1926), pp. 1401–1405. (15, 30)

[114] A. Olteanu, Constructible ideals, Communications in Algebra, 37
(2009), pp. 1656–1669. (27)

[115] U. Pachner, Konstruktionsmethoden und das kombinatorische
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