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0. Introduction

In this article we prove vanishing and nonvanishing results about the space of twisted
symmetric differentials of subvarieties X ⊂ PN , H0(X,SmΩ1

X⊗OX(k)) with k ≤ m (via
a geometric approach). Emphasis is given to the case of k = m which is special and
whose nonvanishing results on the dimensional range dim X > 2/3(N − 1) are related to
the space of quadrics containing X and lead to interesting geometrical objects associated
to X, as for example the variety of all tangent trisecant lines of X. The same techniques
give results on the symmetric differentials of subvarieties of abelian varieties. The paper
ends with an application concerning the jumping of the twisted symmetric plurigenera,
Qα,m(Xt) = dim H0(X,Sm(Ω1

Xt
⊗ αKXt)) along smooth families of projective varieties

Xt. In particular, we show that even for α arbitrarily large the invariance of the twisted
symmetric plurigenera, Qα,m(Xt) does not hold.

P. Bruckman showed in [Br71] that there are no symmetric differentials on smooth
hypersurfaces in PN , N ≥ 3, via an explicit constructive approach. Later, F. Sakai with a
cohomological approach using a vanishing theorem of Kobayashi and Ochai showed that
a complete intersection Y ⊂ PN with dimension n > N/2 has no symmetric differentials
[Sa78]. In the early nineties M. Schneider [Sc92] using a similar approach, but with
more general vanishing theorems of le Potier, showed that any submanifold X ⊂ PN of
dimension n > N/2 has no symmetric differentials of order m even if twisted by OX(k),
H0(X, SmΩ1

X ⊗OX(k)) = 0, where k < m.

This paper, using a predominantly geometric approach, goes further along in in the
study of the vanishing and nonvanishing of the space of twisted symmetric differentials
(some parts of this approach can be traced back to an announcement in the ICM of
1978 by the first author, [Bo78]). Our method involves the structure and properties
of the tangent map for X. The tangent map is given by f : P(Ω̃1

X(1)) → PN , where
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f(P(Ω̃1
X(1))x) = TxX and TxX is the embedded projective tangent space to X at x

in PN . As the first application of our approach, we show that if the tangent map for
X has a positive dimensional general fiber, then X has no symmetric differentials of
order m even if twisted by OX(m) ⊗ L, where L is any negative line bundle on X, i.e.
H0(X, Sm[Ω1

X(1)]⊗ L) = 0 (this includes Schneider’s result).
The main application of our method is to describe the spaces of sections of the symmet-

ric powers of the sheaf of twisted differentials Sm[Ω1
X(1)], i.e. H0(X, SmΩ1

X ⊗OX(m)).
In other words, we are tackling the problem described in the previous paragraph for
L = OX or equivalently the case k = m not reached by Schneider’s results and meth-
ods. The loss of the negativity of L makes the study of the existence of twisted sym-
metric differentials more delicate. In the case k < m, in ”low” codimensions one has
H0(X, SmΩ1

X ⊗ OX(k)) = 0 which follows just from the positivity of the dimension of
the general fiber of the tangent map associated to X ⊂ PN (e.g dim X > N/2). On
the other hand the case k = m one has nonvanishing H0(X, SmΩ1

X ⊗ OX(m)) and our
method needs that the tangent map to be surjective and connected (the connectivity of
the fibers is the delicate point). A key result of this paper is theorem 1.3 showing that
the connectedness of the fibers of the tangent map is guaranteed if dimX > 2/3(N − 1).

The space of twisted symmetric differentials, H0(X,Sm[Ω1
X(1)]), is connected to clas-

sical algebraic geometric objects associated to X as the trisecant variety of X and the
space of quadrics containing X. We show that the elements of P(H0(X, Sm[Ω1

X(1)]))
are in a 1-1 relation with the hypersurfaces H ⊂ PN satisfying X ⊂ H and H ∩ TxX is
a cone with vertex x. This in particular imply that the hypersurfaces must contain the
subvariety CXX of the trisecant variety of X consisting of the closure of the union of
all tangent trisecant lines of X which intersect X in at least two distinct points. The
variety CXX plays a key role as can be seen below.

We show that if X ⊂ PN has codimension 1 or 2 and dimension n ≥ 3 then CXX is
the intersection of the quadrics containing X and coincides with Trisec(X). The space
of twisted symmetric differentials when n > 2/3(N − 1) satisfies H0(X,Sm[Ω1

X(1)]) 6= 0
if and only if Trisec(X) 6= PN (X is contained in a quadric). It follows from the proof
that the space of twisted symmetric differentials on X are related to the space of quadrics
containing X. As an application of the circle ideas behind the proof of CXX = Trisec(X)
we give an alternative proof of the Zak’s theorem stating that Tan(X) = Sec(X) if
Sec(X) does not have the expected dimension.

Associated with X one also has higher level tangent trisecant varieties Ck
XX, see

section 1.2 for details, which play an important role in higher codimensions. We show
that if X ⊂ PN has dimension n > 2/3(N − 1), then H0(X, Sm[Ω1

X(1)]) 6= 0 if and only
if all Ck

XX varieties associated X are not PN (this holds in particular if X is contained
in a quadric).

At the end of this article we discuss the invariance of the dimension of the space of
twisted symmetric differentials in smooth families of projective varieties. In particular,
we answer the following question of M. Paun: is dim H0(Xt, S

mΩ1
Xt
⊗ KXt) locally

invariant in smooth families? This invariance would be the natural extension of the
result of Y-T. Siu on the invariance of plurigenera [Si98] to other tensors. We show that
the invariance does not hold. The answer follows from the results on nonexistence twisted
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symmetric differentials on smooth hypersurfaces described above plus our previous result
[BoDeO06] giving families of smooth hypersurfaces of degree d ≥ 6 in P3 specializing to
smooth surfaces with many symmetric differentials (these surfaces are resolution of nodal
hypersurfaces surface with sufficiently many nodes). We also give a construction of a
family of surfaces with KXt big such that for all α dim H0(Xt, S

m(Ω1
Xt
⊗ αKXt)) is

not constant in the family if m sufficiently large. The best one can hope for is that
the ampleness of KXt

might be sufficient to guarantee the invariance of the twisted
symmetric plurigenera, Qα,m(Xt).

1. Symmetric differentials on subvarieties
of PN and of Abelian varieties

1.1 Preliminaries.

Let E be a vector bundle on X and P(E) be the projective bundle of hyperplanes of
E. Recall the connection between SmE and OP(E)(m) which plays a fundamental role in
the study of symmetric powers of a vector bundle. If π : P(E) → X is usual projection
map then the following holds: π∗OP(E)(m) ∼= SmE and

H0(X,SmE) ∼= H0(P(E),OP(E)(m)) (1.1.1)

The following case persistently appears in our arguments. Let E be a vector bundle
on X which is a quotient of

⊕N+1
L where L is a line bundle on X:

q :
N+1⊕

L → E → 0 (1.1.2)

Let P(E) and P(
⊕N+1

L) be the projective bundles of hyperplanes of E and
⊕N+1

L
respectively. The surjection q induces an inclusion and the isomorphism:

iq : P(E) ↪→ P(
N+1⊕

L)

i∗qOP(LN+1 L)(1) ∼= OP(E)(1)

Recall that there is a natural isomorphism φ : P(
⊕N+1

L) → P(
⊕N+1OX) for which

φ∗OP(LN+1O)(1) ∼= OP(LN+1 L)(1)⊗ π∗L−1. The projective bundle P(
⊕N+1OX) is the

product X×PN , if p2 denotes the projection onto the second factor, thenOP(LN+1O)(1) ∼=
p∗2OPN (1). Concluding, the surjection q in (2) naturally induces a map fq = p2 ◦ φ ◦ iq
and the isomorphism:
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fq : P(E) → PN

f∗qOPN (1) ∼= OP(E)(1)⊗ π∗L−1 (1.1.3)

Hence

H0(X,SmE) ∼= H0(P(E), f∗qOPN (m)⊗ π∗L⊗m) (1.1.4)

It follows from (1.1.4) that the properties of the map fq : P(E) → PN have an impact
on the existence of sections of the symmetric powers of E. The next result gives an
example of this phenomenon and will play a role in our study of existence of symmetric
differentials.

Lemma 1.1. Let E be a vector bundle on a smooth projective variety X. If E is the
quotient of a trivial vector bundle:

q :
N+1⊕

OX → E → 0

and the induced map fq : P(E) → PN is surjective with connected fibers, then q induces
the isomorphism:

H0(X,SmE) = H0(X, Sm(
N+1⊕

OX))

(H0(X,SmE) = Sm[Cs0 ⊕ ...⊕ CsN ] where si = q(ei),
⊕N+1OX =

⊕N
i=0OXei).

Proof. The isomorphism f∗qOPN (m) ∼= OP(E)(m), (1.1.3), and H0(X, SmE) ∼= H0(P(E),OP(E)(m))
give that:

H0(X, SmE) ∼= H0(P(E), f∗qOPN (m))

The next step is to relate H0(P(E), f∗qOPN (m)) with H0(PN ,OPN (m)). If fq is surjec-
tive then f∗q : H0(PN ,OPN (m)) → H0(P(E), f∗qOPN (m)) is injective. If the map fq also
has connected fibers, then all sections in H0(P(E), f∗qOPN (m)) descend to be sections in
H0(PN ,OPN (m)), and the following holds:

H0(P(E), f∗qOPN (m)) ∼= H0(PN ,OPN (m))

The result then follows from the brake down of the map fq, fq = p2 ◦ iq, plus
H0(PN ,OPN (m)) ∼= H0(P(

⊕N+1OX), p∗2OPN (m)) ∼= H0(P(
⊕N+1OX),OP(LN+1OX)(m))

and H0(P(
⊕N+1OX),OP(LN+1OX)(m)) ∼= H0(X, Sm(

⊕N+1OX)). ¤
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1.2 Symmetric differentials on subvarieties of PN and abelian varieties.

The following is short collection of facts about the sheaf of differentials that will help
the reader understand our approach. The Euler sequence of PN is:

0 → Ω1
PN →

N+1⊕
O(−1) → O → 0 (1.2.1)

The Euler sequence expresses the relation, induced by the natural projection p : CN+1 \
{0} → PN , between the differentials of CN+1 and PN . A necessary condition for a differ-
ential ω of CN+1 to come from a differential of PN is that the coefficients h0(z),...,hN (z)
of ω = h0(z)dz0 + ... + hN (z)dzN must be homogeneous of degree -1. But the last
condition is not sufficient, the differentials ω on CN+1 must be such that at any point
z ∈ CN+1 their contraction with the vector z0∂/∂z0 + ... + zN∂/∂zN , i.e with the di-
rection of the line from z to the origin, must be zero. To see this algebraically, the
sheaf

⊕N+1O(−1) in (1.2.1) is
⊕N+1O(−1) = O(−1)dz0 + ... +O(−1)dzN . The map

q :
⊕N+1O(−1) → O → 0 is defined sending dzi to zi. So locally, let us say on

Ui = {zi 6= 0}, Ω1
Ui

the kernel of the map q is spanned by the sections induced by the
differentials 1

zi
dzj − zj

z2
i
dzi on p−1(Ui).

The sheaf of differentials Ω1
X is determined by (1.2.1) restricted to X:

0 → Ω1
PN |X →

N+1⊕
OX(−1) → OX → 0 (1.2.2)

and the conormal bundle exact sequence:

0 → N∗ → Ω1
PN |X → Ω1

X → 0 (1.2.3)

The extension defined by (1.2.2) (which corresponds to a cocycle α ∈ H1(X, Ω1
PN |X))

induces via the surjection in (1.2.3) the extension:

0 → Ω1
X → Ω̃1

X → OX → 0 (1.2.4)

The geometric description of the sheaf Ω̃1
X is that it is the sheaf on X associated to the

sheaf of 1-forms on the affine cone X̂ ⊂ CN+1. The above exact sequences after twisted
by OX(1) fit in the commutative diagram:

0 −−−−→ Ω1
PN |X(1) −−−−→ ⊕N+1 OX −−−−→ OX(1) −−−−→ 0

y q

y '
y

0 −−−−→ Ω1
X(1) −−−−→ Ω̃1

X(1) −−−−→ OX(1) −−−−→ 0
y

y
0 0

(1.2.5)
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The middle vertical surjection of diagram (1.2.5) can be represented more explicitly
by:

q :
N⊕

i=0

OXdzi → Ω̃1
X(1) (1.2.6)

The induced map f : P(Ω̃1
X(1)) → PN is such that for each x ∈ X:

f(P(Ω̃1
X(1))x) = TxX (1.2.7)

where TxX is the embedded projective tangent space to X at x inside PN . For the
obvious reasons f will be called the tangent map for X. The tangent map f induces a
map from X to G(n,N) which is exactly the Gauss map for X, γX : X → G(n,N).

Theorem A. Let X be a smooth projective subvariety of PN . If the general fiber of the
tangent map for X, f : P(Ω̃1

X(1)) → PN , is positive dimensional, then ∀m ≥ 0:

H0(X,Sm[Ω1
X(1)]⊗ L) = 0

if L is a negative line bundle on X.

Proof. It is sufficient to show that H0(X, Sm[Ω̃1
X(1)]⊗L) = 0, since there is the inclusion

Sm[Ω1
X(1)] ↪→ Sm[Ω̃1

X(1)], induced from (1.2.5).

The projective bundle P(Ω̃1
X(1)) comes with two maps. The tangent map for X,

f : P(Ω̃1
X(1)) → PN , and the projection onto X, π : P(Ω̃1

X(1)) → X. One also has
the natural isomorphisms OP(gΩ1

X(1))
(m) = f∗OPN (m) and π∗(OP(gΩ1

X(1))
(m) ⊗ π∗L) ∼=

Sm[Ω̃1
X(1)]⊗ L. These isomorphisms give:

H0(X, Sm[Ω̃1
X(1)]⊗ L) ∼= H0(P(Ω̃1

X(1)), f∗OPN (m)⊗ π∗L)

The vanishing of the last group follows from the negativity of the line bundle f∗OPN (m)⊗
π∗L along each fiber of the map f . More precisely, f∗OPN (m) is trivial on the fibers
and π∗L is negative on the fibers since L is negative on X the map π is injective on each
fiber of f .

We need the fibers of the map f to be positive dimensional. Since is only in this
case that the negativity of the line bundle f∗OPN (m) ⊗ π∗L, l < 0, makes sense. This
negativity implies that all sections of H0(P(Ω̃1

X(1)), f∗OPN (m) ⊗ π∗L) vanish along all
fibers of f and hence vanish on all P(Ω̃1

X(1)), which completes the proof. ¤

As an important case of theorem A one has another proof to the result first proved
by Schneider [Sc92].

6



Corollary 1.2. Let X be a smooth projective subvariety of PN whose dimension n >
N/2. Then:

H0(X, SmΩ1
X ⊗O(k)) = 0

if k < m.

Proof. The dimensional hypothesis n > N/2 guarantee that all fibers of the tangent
map f for X are positive dimensional. The condition k < m gives that SmΩ1

X ⊗O(k) =
Sm[Ω1

X(1)] ⊗ OX(l), with l < 0. The theorem then follows from theorem A for the
negative line bundle L = OX(l), l < 0. ¤

What happens in the key case k = m? The results just mentioned use the neg-
ativity f∗OPN (m) ⊗ π∗L, along the fibers of the map f , which no longer holds if
k = m. Indeed, one has H0(X,SmΩ̃1

X ⊗ OX(m)) = H0(P(Ω̃1
X(1)), f∗OPN (m)) which

is no longer trivial. The analysis of the nonexistence of twisted symmetric differen-
tials ω ∈ H0(X, Sm[Ω1

X(1)]) on X is more delicate. One has to describe the sections
H0(X, SmΩ̃1

X ⊗ OX(m)) and characterize which ones are in H0(X, SmΩ1
X ⊗ OX(m)).

The answers will depend on geometric properties involving the variety of tangent lines
to the subvariety X.

To describe the twisted symmetric extended differentials in H0(X, Sm[Ω̃1
X(1)]) one

needs to use the properties of the tangent map for X ⊂ PN . The lemma 1.1 gives a good
description of H0(X, Sm[Ω̃1

X(1)]) if the tangent map f is a connected surjection. The
next lemma shows that this is the case when dim X > 2/3(N − 1).

This paragraph about the tautological P1-bundle over the grassmanian is used in the
lemma below. Let q : I → G(1,Pn) be the tautological P1-bundle over the grassmanian
and p : I → Pn the natural map. For any point x ∈ Pn there is a Pn−1 ⊂ G(1,Pn) con-
sisting of all lines passing through x. The restriction (or the pullback) of the tautological
P1-bundle to Pn−1 is q : P(O(1)⊕O) → Pn−1.

Theorem 1.3. Let X be a n-dimensional submanifold of PN with n > 2/3(N − 1) then
the natural map f : P(Ω̃1

X(1)) → PN associated with the Gauss map is a surjective and
connected morphism.

Proof. The description of the map f in (1.2.7) implies that:

f(P(Ω̃1
X(1))) = Tan(X)

where Tan(X) is the tangent variety of X, in other words Tan(X) =
⋃

x∈X TxX ⊂ PN .
Denote by Sec(X) ⊂ PN the secant variety of X. Zak’s results [Za81] about tangencies
state that one of the following must hold: i) dim Tan(X) = 2n and dim Sec(X) = 2n+1;
ii) Tan(X) = Sec(X). It follows immediately that if dimX ≥ N/2 then Tan(X) =
Sec(X).
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It is also a result of Zak, coming from applying the results on tangencies plus the
Terracini’s lemma on the tangent spaces of secant varieties, that Sec(X) 6= PN can hold
only if n ≤ 2/3(N − 2). Hence surjectivity of f is guaranteed if n > 2/3(N − 2), which
is the case.

It remains to show the connectedness of the fibers. Denote the fibers of f by Yx =
f−1(x) for x ∈ PN and π : P(Ω̃1

X(1)) → X be the projection map. The injectivity of f
restricted to the fibers of π implies that Yx is connected if and only if π(Yx) is connected.
The subvariety Rx = π(Yx) is the locus of X consisting of all the points in X having a
tangent line passing through x. The Stein factorization implies that f is connected if its
general fiber is connected, i.e. if for the general x ∈ PN the locus Rx is connected.

In the following arguments we always assume that x ∈ PN is general. The first
observation to make is that Rx ⊂ Zx, where Zx is the double locus of the projection
px : X → PN−1 (i.e. the locus of points in X belonging to lines passing through x and
meeting X at least twice). By dimensional arguments one has that Rx is a Weyl divisor
of Zx. A key element in our argument is the result of [RaLo03] stating that the double
locus Zx is irreducible if n > 2/3(N − 1).

Let S ⊂ PN−1 be the image of Zx by the projection px. The irreducible variety S
can be seen as a subvariety of the PN−1 ⊂ G(1,PN ) of lines passing through x. We can
pullback the tautological P1-bundle on G(1,PN ) to S and obtain qS : P(O(1)|S⊕O) → S.
The natural map p : I → PN , see the paragraph before the lemma, induces a map
p : P(O(1)|S ⊕O) → PN , whose image is the cone with vertex x and base S. The map p
is a biregular morphism of the complement of p−1(x) onto the cone without the vertex.

The P1-bundle qS : P(O(1)|S ⊕ O) → S comes with two natural sections (one for
each surjection onto the line bundles O and O(1)). Geometrically these two sections
come from the pre-image of x and the pre-image of S via the map p. The subvariety
M = p−1(Zx) is biregular to Zx and is a divisor in the total space of the line bundle
OS(1), P(OS(1) ⊕ O) \ P(O). The points in p−1(Rx) are the points y ∈ M for which
the fibers of qS meet M at y with multiplicity ≥ 2. The generality of x implies by the
classical trisecant lemma that the general fiber of qS meets M only twice counting with
multiplicity. This makes the projection qS |M : M → S a generically 2 to 1 map.

Consider the pullback L = qS |∗MOS(1) which is an ample line bundle on M . The line
bundle L comes naturally with a nontrivial section denote the corresponding divisor of
the total space of L, Tot(L), by D1. Denote the natural map between the total spaces
of L and OS(1) by g : Tot(L) → Tot(OS(1)). The divisorial component of g−1(M) is
decomposed in two irreducible components D1 and D2. Let h : Tot(L) → M be the
natural projection, then h(D1 ∩D2) ⊂ Rx. If D2 is also a section of L, then h(D1 ∩D2)
is connected since it is the zero locus (s)0 of a section s of the ample line bundle L. The
result would follow since any other possible component of Rx has to meet (s)0. If D2 is
not a section the result still follows from the same argument after base change (pulling
back L to D2 using h).

¤
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In conjunction with lemma 1.1 one obtains the following description of the space of
twisted extended symmetric differentials on X:

Corollary 1.4. Let X be a n-dimensional submanifold of PN with n > 2/3(N−1) then:

H0(X, Sm[Ω̃1
X(1)]) = Sm[Cdz0 ⊕ ...⊕ CdzN ].

The characterization of the subset H0(X,Sm[Ω1
X(1)]) ⊂ H0(X, Sm[Ω̃1

X(1)]), within the
dimensional range dim X > 2/3(N − 1), is given by the following proposition:

Proposition 1.5. Let X be a n-dimensional submanifold of PN with n > 2/3(N − 1)
then:

H0(X, Sm[Ω1
X(1)]) = {Ω ∈ Sm[Cdz0⊕...⊕CdzN ]| Z(Ω)∩TxX is a cone with vertex at x, ∀x ∈ X}

Proof. The inclusion H0(X, Sm[Ω1
X(1)]) ⊂ H0(X,Sm[Ω̃1

X(1)]) and corollary 1.4 imply
that all the sections of H0(X, Sm[Ω1

X(1)]) are induced from the symmetric m-differentials
Sm[Cdz0 + ... + CdzN ] on CN+1.

Let X̂ ⊂ CN+1 be the affine cone over X ⊂ PN , TX̂ the sheaf on X associated
with the tangent bundle of X̂ and TxX ⊂ PN the embedded tangent space to X at x.
Consider the rational map p : P(Ω̃1

X(1)) 99K P(Ω1
X(1)), which is fiberwise geometrically

described by the projections from the point x ∈ TxX px : TxX = Pl(TX̂)x 99K Pl(TX)x,
(Pl(E) is the projective bundle of lines in the vector bundle E, Pl(E) = P(E∗)). The
map p gives an explicit inclusion H0(X, Sm[Ω1

X(1)]) = p∗H0(P(Ω1
X(1)),OP(Ω1

X(1))(m)) ⊂
H0(P(Ω̃1

X(1)),OP(gΩ1
X(1))

(m)) = Sm[Cdz0 + ... + CdzN ].

Recall that if 0 → V → Ṽ → C→ 0 is a sequence of vector spaces, then one gets a pro-
jection from [V ] ∈ P(Ṽ ), p : P(Ṽ ) 99K P(V ). The sections in H0(P(Ṽ ),OP(eV )(m)) which
are in p∗H0(P(V ),OP(V )(m)) are the ones corresponding to homogeneous polynomials
whose zero locus is a cone with vertex at [V ].

An element Ω ∈ Sm[Cdz0⊕...⊕CdzN ] corresponds in a natural way to an homogeneous
polynomial in PN which we still denote by Ω. From the last two paragraphs it follows
that Ω induces an element in ω ∈ H0(X, Sm[Ω1

X(1)]) if and only if ∀x ∈ X the zero locus
Z(Ω) ∩ TxX is a cone with vertex x. ¤

We proceed to extract from proposition 1.5 the geometric conditions required for the
existence of twisted symmetric differentials on smooth subvarieties X ⊂ PN . First, we
need to introduce some objects and notation.

Let X be an irreducible subvariety and Y be any subvariety of PN . Consider the
incidence relation:
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CXY := {(x, z) ∈ Xsm × PN | z ∈ xy, y 6= x and y ∈ Y ∩ TxX} ⊂ X × PN

where Xsm denotes the smooth locus of X. The variety CXY comes with two projections.
Denote by CXY := p2(CXY ). Equivalently, ∀x ∈ Xsm denote by CxY ⊂ TxX the cone
with vertex at x consisting of the closure of the union of all chords joining x to y 6= x
with y ∈ Y ∩ TxX, where TxX is the projective embedded tangent space to X at x.
Then CXY =

⋃
x∈Xsm

CxY ⊂ PN .

Definition 1.6. Let X be an irreducible subvariety of PN . The union of all tangent trise-
cant lines to X is called the tangent trisecant variety of X and denoted by Trisect(X).
The subvariety CXX ⊂ PN , described above, lies inside Trisect(X) and is called the
tangent 2-trisecant variety of X.

We can rewrite proposition 1.5 in a form that will be useful later:

Proposition 1.5’. Let X be a n-dimensional submanifold of PN with n > 2/3(N − 1)
then:

P(H0(X,Sm[Ω1
X(1)])) = {H ⊂ PN | dimHred = N − 1, CXHred = Hred}

Proof. Let H be an hypersurface in PN (possibly non-reduced). Proposition 1.5 states
that H = Z(ω) with ω ∈ H0(X, Sm[Ω1

X(1)]) ⊂ Sm[Cdz0 ⊕ ... ⊕ CdzN ] if and only if
CxHred = TxX∩Hred ∀x ∈ X (where H = Z(ω) follows the notation of proposition 1.5).
Since Tan(X) = PN , CxHred = TxX ∩Hred ∀x ∈ X is the same as CXHred = Hred.

¤

For hypersurfaces H, including singular, one has the following useful result.

Proposition 1.7. Let Y ⊂ PN , N > 2, be a nondegenerate irreducible and reduced
hypersurface. Then CY Y is either PN or Y and in this last case Y is a quadric.

Proof. Let Y be a quadric and x ∈ Y a smooth point. The lines l ⊂ CxY passing through
x must touch Y at least 3 times (counting with multiplicity) hence l ⊂ Y . This implies
that CxY ⊂ Y , for all x ∈ Y , therefore CY Y = Y .

Let Y be of degree greater than 2. The result follows from the trivial case of curves
in P2. For a general 2-plane L in PN the intersection Y ∩ L = D is an irreducible and
reduced curve of the same degree as Y . The irreducible and reduced curve D = Y ∩L of
degree ≥ 3 in L = P2 satisfies CDD = L (clear but read the remark below). The result
follows since the following inclusion holds C(Y ∩L)(Y ∩ L) ⊂ (CY Y ) ∩ L and hence CY Y
contains the general 2-plane.

¤
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Remark. Let x ∈ Y be a general point of an hypersurface in PN and CN ⊂ PN be an
affine chart containing x, where w.l.o.g. x = 0. Let the hypersurface Y ∩ CN be given
by f = 0. The quadratic part f2 of the Taylor expansion of f at x can not be trivial on
TxY , otherwise there would be an open subset of Y on which the second fundamental
form of Y is trivial which would force Y to be an hyperplane. Denote by Qx the quadric
defined by f2|TxH . In the case Y ⊂ P2 of degree d ≥ 3, then Qx not being trivial implies
that tangent line l = TxY is such that (l ∩H)x = 2 and thus l must meet Y away from
x. Hence CY Y = Tan(Y ).

Combining the last two results one obtains a description of the space of twisted sym-
metric differentials on smooth hypersurfaces in PN .

Theorem B. Let X be a smooth projective hypersurface in PN . Then:

H0(X, Sm[Ω1
X(1)]) = 0

if and only if the CXX = PN , i.e. X is a not quadric.

Proof. By the proposition 1.5’ H0(X, Sm[Ω1
X(1)]) 6= 0 iff there is an hypersurface H such

that CXH = H. One notes that if CXH = H then X ⊂ H and hence CXX ⊂ CXH.
The proposition 1.7 states that there are two possibilities for CXX either CXX = PN (X
is not a quadric) and hence there are no hypersurfaces H with CXH = H; or CXX = X
and hence all the multiples H of X are hypersurfaces with CXHred = Hred (Hred = X
and X is a quadric). ¤

Remark. It follows from the arguments given above that for a smooth quadric Q ∈ PN ,
H0(Q,Sm[Ω1

Q(1)]) = C if m is even and H0(Q,Sm[Ω1
Q(1)]) = 0 if m is odd. There

is another way to obtain this result for the smooth quadric X ⊂ P3. The surface X
is P1 × P1, Ω1

X = OP1×P1(−2, 0) ⊕ OP1×P1(0,−2) and OX(1) = OP1×P1(1, 1). Hence
Sm[Ω1

X(1)] = OP1×P1(−m,m) ⊕ OP1×P1(−m + 2,m − 2) ⊕ ... ⊕ OP1×P1(m,−m) which
gives H0(X,S2[Ω1

X(1)]) = C if m is even and = 0 if m is odd.

We proceed to analyse what happens in the higher codimensions. In the codimension
1 case the knowledge about CXX is sufficient to obtain the complete answer, as appears
in theorem B. But in higher codimension, one should also consider iterations of the
construction CXY . Define C2

XY = CX(CXY ) (note C2
XY 6= C(C

X
Y )(CXY )) and proceed

inductively to obtain Ck
XY .

Theorem C. Let X be a non degenerated smooth projective subvariety of PN of dimen-
sion n > 2/3(N − 1). If Ck

XX = PN for some k, Then:

H0(X, Sm[Ω1
X(1)]) = 0

11



Proof. It follows from the proposition 1.5 that in the dimensional range n > 2/3(N − 1)
the differentials ω ∈ H0(X,Sm[Ω1

X(1)]) are induced from symmetric m-differentials Ω ∈
Sm[Cdz0 + ...+CdzN ] on CN+1. Moreover, Proposition 1.5 also says that the zero locus
Z(Ω) must be such that Z(Ω) ∩ TxX is a cone with vertex x, ∀x ∈ X. In the proof of
theorem B, it was shown that this implies that CXX ⊂ Z(Ω).

Following the same reasoning, since Z(Ω)∩ TxX is a cone with vertex x and CXX ⊂
Z(Ω) then C2

XX ⊂ Z(Ω). Repeating the argument one gets Cl
XX ⊂ Z(Ω) for all l ≥ 1.

If Ck
XX = PN for some k, then clearly every symmetric differential Ω ∈ Sm[Cdz0 + ... +

CdzN ] inducing ω ∈ H0(X,Sm[Ω1
X(1)]) must be trivial. ¤

Theorem B and C reveal the importance of the characterization of the subvarieties
X ⊂ PN with dim X > 2/3(N − 1) with Ck

XX 6= PN for any k. They must be special
and, as in the hypersurface case, subjectable to a description. The quadrics containing
X play a key role in this description. First, we observe:

Proposition 1.8. Let X be a subvariety of PN such that X ⊂ Q1∩ ...∩Ql, where Q1,...,
Ql are quadrics. Then Ck

XX ⊂ Q1 ∩ ... ∩Ql for all k ≥ 1.

Proof. There is the inclusion of the t-trisecant varieties CXX ⊂ CQiQi for all quadrics Qi

i = 1, ..., l. The equality CQi
Qi = Qi proved in proposition 1.7 gives CXX ⊂ Q1∩...∩Ql.

In an equal fashion one sees that C2
XX = CX(CXX) ⊂ CQiQi for all i = 1, ..., l.

Induction then gives the result. ¤

Remark. One should investigate the generality of the assertion that Ck
XX for k suffi-

ciently large is the intersection of all quadrics containing X .

We show below that the assertion in the remark is true for the case where X is of
codimension 2, Xn ⊂ Pn+2 (if X is not contained in any quadric then the intersection
of all quadrics containing X should be considered to be the full P(n+2)). The answer
follows from establishing that CXX is the usual trisecant variety of X, Tr(X), if n ≥ 3
and the use of the known results on trisecant varieties of varieties of codimension 2 of
Ziv Ran [Ra83], n ≥ 4, and Kwak [Kw02] for the threefold case.

Let X ⊂ PN be a subvariety and l ⊂ PN a line meeting X at k points, xi i = 1, ..., k,
the line l is said to is of type (n1, ..., nk) if ni = lengthxi(X ∩ l). A line l is a trisecant
line if

∑
ni ≥ 3 and a tangent trisecant line if additionally one of the ni ≥ 2.

Lemma 1.9. Let X be a subvariety of PN and L ⊂ PN × T be a family of lines in PN

over an irreducible projective curve T such that all lines pass through a fixed z /∈ X and
whose union is not a line. If the general line meets X at least twice, then one of the
lines must meet X with multiplicity at least 2 at some point.

Proof. Let H be an hyperplane not containing z and f : T → H be the map which
sends t to Lt ∩H. Denote by C the image of map f . Let C(z, C) the cone over C with
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vertex z. Let D be the curve which consists of the divisorial part of X ∩ C(z, C). The
possibly nonreduced curve D is such that any line lc joining z to c ∈ C meets D at least
twice (counting with multiplicity). We can assume that the lines lc meet X with at most
multiplicity one at any x ∈ X, otherwise the result would immediately follow. Hence the
the curve D ⊂ C(z, C) is reduced and clearly does not pass through z.

Resolve the cone C(z, C) by normalizing C, C̄, and blowing up the singularity at the
vertex. The resulting surface Y is a ruled surface over C̄, which comes with two maps
σ : Y → C(z, C) and f : Y → C̄. Let D̄ be the pre-image of D by σ. If D̄ meets
any of the fibers of f : Y → C̄ with multiplicity ≥ 2 then we are done. Hence D̄ is
smooth moreover it must be a multi-section. This is impossible since by base change we
would obtain a ruled surface which would have at least two disjoint positive sections not
intersecting (the unique negative section lies over the the pre-image of p). ¤

We proceed by giving an alternative proof of Zak’s theorem on the equality of the
secant and tangent variety for smooth subvarieties X whose secant variety does not have
the expected dimension.

Corollary 1.10. (Zak’s Theorem) Let X be a smooth subvariety of PN . If dim Sec(X) <
2n + 1 then Tan(X) = Sec(X).

Proof. Assume Sec(X) 6= X since if the equality holds then clearly Tan(X) = Sec(X).
Let z be a point of Sec(X) \ X. Since Sec(X) has less than the expected dimension
there is a positive dimensional family π : L → T of secant lines passing through z.
Apply lemma 1.10 to a 1-dimensional subfamily of π : L → T and obtain that one of
this lines Lt0 must meet X with multiplicity at least 2 at some point x ∈ X hence Lt0

is tangent to X at x and z ∈ Tan(X). ¤

The lemma 1.9 gives an important case when the trisecant variety is equal to the
tangent trisecant variety.

Corollary 1.11. Let X be a smooth subvariety of PN . If the family of trisecant lines
of X through a general point of Trisec(X) is at least 1-dimensional, then Trisect(X) =
Trisec(X).

Proof. The same argument after replacing Sec(X) by Trisec(X) and Tan(X) by Trisect(X).
¤

In order to establish that CXX = Trisec(X) if X has codimension 2 and dimen-
sion n ≥ 3 we need to make a few observations about the subvariety Trisectt(X) ⊂
Trisect(X) which is the closure of the union of all tangent trisecant lines that meet X at
only one point. This subvariety does not need to be contained in CXX in general (but
it will be in the case at study) and one has that Trisec(X) = CXX ∪ Trisectt(X).

There is a stratification of X in 3 strata according to the dimension of the linear
family of quadrics |II|x in Pl(TxX) with associated with the 2nd fundamental form of X
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at x. Let x ∈ X if dim|II|x = 2, dim|II|x = 1 and dim|II|x = 0 then x is called general,
special and very special respectively. The lines that touch X at x with multiplicity at
least 3 are the lines l whose corresponding points in [l] ∈ Pl(TxX) belong to the base
locus of the family of quadrics |II|x.

If x is very general then the union of all the lines that touch X at x with multiplicity
at least 3, Trisecx(X), forms a cone of codimension 2 with vertex at x which is an
intersection of two quadrics in TxX (coming from two generating quadrics in |II|x). In
this case Trisecx(X) = TCx(X ∩ TxX) and hence Trisecx(X) ⊂ CxX since TCx(X ∩
TxX) ⊂ CxX.

If x is special then Trisecx(X) is a quadric in TxX, the dimension of the strata of
special points is at most 1 dimensional by Zak’s theorem on tangencies [Za83]. If x is
very special then Trisecx(X) = TxX and the dimension of the strata of very special
points is at most 0-dimensional again by Zak’s theorem on tangencies.

Proposition 1.12. Let X be a smooth subvariety of codimension 2 in Pn+2. If n ≥ 3
then:

1) CXX = Trisec(X).

2) CXX = Pn+2 or CXX is the intersection of the quadrics containing X.

Proof. First we establish that under the dimensional and codimensional hypothesis of
the theorem one has Trisect(X) = Trisec(X). Recall that the trisecant variety of a
subvariety of codimension 2 with dimension n ≥ 2 is irreducible, so it is enough to show
that through the general point of Trisec(X) passes a tangent trisecant line. Let z be
a general point of the trisecant variety Trisec(X). Let l be a trisecant line passing
through z, assume it is not tangent to X since otherwise there is nothing to prove.
Consider the projection pz : X → Pn+1 from the point z to an hyperplane Pn+1 ⊂ Pn+2.
Denote 3 of the points in l ∩ X by x1, x2 and x3 and p = pz(xi) = l ∩ Pn+1. The
hypersurface pz(X) ⊂ Pn+1 has at p a decomposition into local irreducible components
pz(X) ∩ Up = H1 ∪ ... ∪ Hk, where Up is a sufficiently small neighborhood of p. The
points xi i = 1, ..., 3 have neighborhoods Ui such that pz : Ui → pz(Ui) is finite and
pz(Ui) contains one of Hj . Consider the case where the local irreducible components
Hj contained by pz(Ui) are all distinct, w.l.o.g. denote them by H1, H2 and H3 (the
other cases will follow by the same argument and are more favorable to our purposes).
In this case H1 ∩ H2 ∩ H3 will be of dimension n − 2. It follows that there is at least
a 1-dimensional family of trisecant lines passing though z and hence z ∈ Trisect(X) by
corollary 1.11.

The irreducibility of trisecant variety gives that CXX = Trisec(X) if dim Trisec(X) =
dim CXX. This follows from the equalities Trisec(X) = Trisect(X) = CXX∪Trisectt(X)
plus the fact the components of Trisectt(X) not contained in CXX must come from the
special and very special strata and therefore are of dimension at most n ≤ dim CXX (it
follows from the remarks about Trisectt(X) done above).

The part 2) follows from known facts about the trisecant varieties of smooth varieties
X of codimension 2 in projective space PN . Ziv Ran [Ra83] showed that if n ≥ 4 and
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Tr(X) 6= Pn+2 then X must be contained in a quadric (this result is not explicitly stated
but clearly follows from the article). Later Kwak [Ka02] showed that the same holds for
n = 3. Ran also showed that if the degree of X is less or equal to its dimension then X,
d ≤ n, then X is a complete intersection.

We assume X is nondegenerate in PN (the degenerate case follows the from hy-
persurface case). It follows from the last paragraph that if dim Tr(X) = n + 1 then
CXX = Tr(X) is the quadric containing X. The case dim Tr(X) = n or equivalently
Tr(X) = X is settled by slicing and the case n = 3. What is known for the case n = 3,
see for example remark 3.6 of [Ka02], is that if X and Tr(X) = X then X is a complete
intersection of two quadrics or the Segree variety P1 × P2 ⊂ P5 which is the intersection
of 3 quadrics. If n ≥ 4 consider a general 5-plane L ⊂ PN , then X ∩ L is a smooth
3-fold in L = P5 for which Tr(X ∩ L) = X ∩ L, since Tr(X ∩ L) ⊂ Tr(X) ∩ L and
X ∩ L ⊂ Tr(X ∩ L). Then X ∩ L is one of the two cases described above. Both cases
have degree equal to 4 hence the degree X is also 4. It follows from the result of Ran at
the end of the previous paragraph that X is a complete intersection of two quadrics. ¤

Theorem D. Let X be a smooth subvariety of codimension 2 in Pn+2. If n ≥ 3 then:

H0(X, Sm[Ω1
X(1)]) = 0

if and only if X is not contained in a quadric.

Proof. If X is not contained in a quadric, then CXX = Pn+2 by proposition 1.12. The
vanishing H0(X, Sm[Ω1

X(1)]) = 0 follows theorem C.
To analyse the case where X is contained in a quadric Q recall that proposition 1.5

states that H0(X, Sm[Ω1
X(1)]) = {Ω ∈ Sm[Cdz0⊕...⊕CdzN ]| Z(Ω|)∩TxX) is a cone with

vertex at x, ∀x ∈ X}. Consider the symmetric differential ΩQ ∈ S2[Cdz0 ⊕ ...⊕CdzN ]
associated with the quadric Q. For all x ∈ X Z(ΩQ) ∩ TxX) = Q ∩ TxX is a cone with
vertex x since TxX ∈ TxQ. Hence ΩQ defines an element of H0(X, Sm[Ω1

X(1)]) and this
element is nontrivial since Tan(X) = Pn+2. ¤

The algebra
⊕∞

m=0 H0(X,Sm[Ω1
X(1)]) contains the the subalgebra C[Q1, ..., Ql] gen-

erated by quadrics Q1, ..., Ql such that CXX = Q1∩ ...∩Ql. These two algebras coincide
in the case CXX = Q and are expected to coincide in the general case.

We do a short presentation without proofs of the results which are the analogue to
theorem A and part of theorem C for subvarieties of abelian varieties. Again we are
having in mind subvarieties with ”low” codimension. Recently, Debarre [De06] using
the same perspective tackled the problem of which subvarieties have an ample cotangent
bundle, which are in the other end in terms of codimension.
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Let X be a smooth subvariety of an abelian variety An. The surjection on the conormal
exact sequence:

0 → N∗
X/An → Ω1

An |X → Ω1
X → 0

induces the inclusion j : P(Ω1
X) → P(Ω1

An |X ) of projectivized cotangent bundles. The
projectivized cotangent bundle of An is trivial, i.e. P(Ω1

An) ' An × Pn−1. Let p2 :
P(Ω1

An) → Pn−1 denote the projection onto the second factor. Then OP(Ω1
An )(m) '

p∗2OPn−1(m). The composed map f = p2 ◦ j:

f : P(Ω1
X) → Pn−1

is called the tangent map for X in An.

Theorem F. Let X be a smooth subvariety of an abelian variety An. If the tangent
map f : P(Ω1

X) → Pn−1 is both surjective and connected then ∀m ≥ 0:

H0(X, SmΩ1
X) = H0(An, SmΩ1

An)

.

Corollary 1.13. Let X be a smooth hypersurface of an abelian variety An with n > 2
which does not contain any translate of an abelian subvariety of An. Then ∀m ≥ 0:

H0(X, SmΩ1
X) = H0(An, SmΩ1

An)

As in the case of subvarieties of PN we obtain a vanishing theorem.

Theorem G. Let X be a smooth subvariety of an abelian variety An. If the general
fiber of the tangent map f : P(Ω1

X) → Pn−1 is positive dimensional then ∀m ≥ 0:

H0(X,SmΩ1
X ⊗ L) = 0

if L is a negative line bundle on X.

1.3 The non-invariance of the twisted symmetric plurigenera.

The symmetric m-plurigenera dim H0(X, SmΩ1
X) if m ≥ 4 is not preserved under

deformation [Bo2-78], [BoDeO06]. This contrasts with the case m = 1 where the
symmetric 1-genus is just the irregularity of X and by Hodge theory the topologi-
cal invariant 1/2b1(X) (hence it can not jump under deformations). It also contrasts
with the amazing result of Siu about the invariance of all the plurigenera Pm(X) =
dim H0(X, (

∧n Ω1
X)⊗m), [Si98].

The result of Siu motivated the following question posed by Paun: are the dimensions
of H0(Xt, S

mΩ1
Xt
⊗KXt) constant for a family of smooth projective varieties? We answer

this question negatively.
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Theorem I. Let Yt be a family of smooth projective varieties. The invariance of the
dimension of H0(Yt, S

mΩ1
Yt
⊗KYt

) does not necessarily hold along the family.

Proof. Let Xt be a family over ∆ of smooth hypersurfaces of degree d of P3 specializing
to a nodal hypersurface X0 with l > 8

3 (d2 − 5
2d) nodes. This is possible as long d ≥ 6

[Mi83]. Denote by Yt the family which is the simultaneous resolution of the family Xt,
t ∈ ∆. The general member of Yt is a smooth hypersurface of P3 of degree d and Y0

is the minimal resolution of X0. We proved in [BoDeO06] that if d ≥ 6 Y0 has plenty
of symmetric differentials, more precisely H0(Y0, S

mΩ1
Y0

) ↑ m3. This result plus the
effectivity of the canonical divisor KY0 , in particular, implies that:

H0(Y0, S
mΩ1

Y0
⊗KY0) 6= 0, m À 0 (2.1.7)

Theorem B gives that H0(Yt, S
mΩ1

Yt
⊗ OYt(m)) = 0. The canonical divisor of the

hypersurface Yt is KYt
= OYt

(d− 4), which implies that :

H0(Yt, S
mΩ1

Yt
⊗KYt) = 0, m ≥ d− 4 (2.1.8)

The result follows from (1.2.7) and (1.2.8). ¤

Paun’s question and our answer motivates naturally the following question: Can one
find for each n a b(n) such that for α > b(n) h0(Xt, S

m(Ω1
Xt
⊗αKXt)) is invariant along

all families of smooth projective varieties Xt of dimension n with big KXt?
The answer again is no. An example illustrating our negative answer is a family of

surfaces of general type Xt whose general member has ample cotangent bundle and the
special member has (-2)-curves. If m À 0 then for the general member Xgen the dimen-
sion h0(Xgen, Sm(Ω1

Xgen
⊗αKXgen)) = χ(Xgen, Sm(Ω1

Xgen
⊗αKXgen)) by the ampleness

of Ω1
Xgen

. To understand what happens at the special member X0 one needs to consider
the cohomological long exact sequence associated with:

0 → Sm(Ω1
X0
⊗ αKX0)⊗O(−E) → Sm(Ω1

X0
⊗ αKX0) → Sm(Ω1

X0
⊗ αKX0)|E → 0

where E is one of the (-2)-curves in X0 (note that the last term in the sequence can be
simplified since KX0 |E = O). The special member X0 has h2(X0, S

m(Ω1
X0
⊗ αKX0) ⊗

O(−E)) = h2(X0, S
m(Ω1

X0
⊗ αKX0)) = 0 by the usual arguments about surfaces for

general type (see for example [BoDeo06]). On the other hand h1(X0, S
m(Ω1

X0
⊗αKX0)) 6=

0 due to the presence of the (-2)-curve E since h1(E, Sm(Ω1
X0
|E)) 6= 0. Therefore the

invariance of Euler characteristic along the family implies a jump on h0(Xt, S
m(Ω1

Xt
⊗

αKXt)). In order to obtain invariance of h0(Xt, S
m(Ω1

Xt
⊗ αKXt)) one needs to impose

extra conditions on the family Xt (it is plausible that ampleness of the canonical class
will be the right condition).
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