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Abstract. A smooth subvariety X ⊂ PN has for each α ∈ Q an associated
algebra Q(X,α) =

⊕
mα∈ZH

0(X,Sm[Ω1
X(α)]). The algebra Q(X, 0) is the

the intrinsic algebra of symmetric differentials and Q(X, 1) is called the alge-
bra of twisted symmetric differentials. In this paper we show that when X

is a complete intersection of dimension dim X ≥ max{2/3(N − 1), 3}, then

the algebra of twisted symmetric differentials is the quadric algebra of X, i.e.
Q(X, 1) ' Sym(H0(PN , IX(2))). We establish an identification of the twisted

symmetric m-differentials on X with the tangentially homogeneous polynomi-

als relative to X of degree m. We also obtain the same isomorphism if X is
codimension two and dimX ≥ 3. The lack of the hypothesis of X being a

complete intersection is counter-balanced by properties of the vanishing locus

of tangentially homogeneous polynomials and algebraic geometric properties
of the tangent-secant variety of X. Symmetric differentials and Quadrics and

Trisecant variety and Low codimension 14M07 and 14N99 and 14M10

1. Introduction

A smooth subvarietyX ⊂ PN has for each α ∈ Q an associated algebraQ(X,α) =⊕
mα∈ZH

0(X,Sm[Ω1
X(α)]). The case α = 0 corresponds to the intrinsic algebra of

symmetric differentials on X and plays a significant role in classification problems
and questions concerning the existence of subvarieties in X that are not of general
type, [1], [6], [2], [5], [4]. The special algebra corresponding to α = 1 is called the al-
gebra of twisted symmetric differentials. The algebra Q(X, 1) is an extrinsic algebra
that encodes clear geometric properties about the embedding which in turn gives
information on X and Q(X, 0). In this paper we study the geometry encoded by the
algebra of twisted symmetric differentials when X ⊂ PN is of low codimension with
an emphasis on its connection to the quadric algebra of X, QA(X) ⊂ C[X0, ..., XN ],
which is generated by the quadratic polynomials vanishing on X.

Our motivation for studying the algebra Q(X, 1) comes from a few different
directions. The algebraQ(X, 1) can be viewed as an extremal/boundary case among
all the algebras Q(X,α), α ∈ Q, due to a vanishing result of M. Schneider [15]
stating that Q(X,α) = 0 for all X ⊂ PN with dimX > N/2 if and only if α < 1.
Also, Q(X, 1) plays a role in the study of varieties with ample cotangent bundle
as seen in the work of O. Debarre [6] and it was used by Bogomolov and the first
author [3] to show that the dimension h0(Xt, S

mΩ1
Xt
⊗ KXt

) is not necessarily
invariant in families even if KXt is big for all t (answering a question of M. Paun).

The extremal/boundary behavior of the algebra Q(X, 1) among the algebras
Q(X,α), indicates that interesting geometry should be involved in determining
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Q(X, 1). Using the Euler and co-normal sequences for PN , X and the affine cone

X̃ ⊂ CN+1 over X, see theorem 2.1, we show how the tangent map t : TX → PN
plays a role in determining Q(X, 1) (TX is the projective bundle of embedded

tangent spaces of X in PN ). The projective bundle TX is realized by P(Ω̃X(1)),

where Ω̃X(1) is the sheaf of twisted extended differentials on X, i.e the extension
of the sheaf of twisted differentials Ω1

X(1) induced by the Euler sequence.

In the dimensional range dimX > max{1, 2/3(N − 1)} the tangent map is both

surjective and connected [3]. A consequence of this is that sections of Sm[Ω̃X(1)]
naturally come from homogeneous polynomials of degree m in the homogeneous
coordinate ring of PN . The following theorem provides an explicit identification
of the algebra of twisted symmetric differentials Q(X, 1) with a sub-algebra of

C[X0, ..., XN ] '
⊕∞

m=0H
0(X,Sm[Ω̃X(1)]).

LetX(n) ⊂ PN be a non-degenerate smooth subvariety with n > max{1, 2/3(N−
1)}. Then there is a graded isomorphism of algebras induced by the tangent map:

Q(X, 1) ' C[X0, ..., XN ]hTX

where C[X0, ..., XN ]hTX ⊂ C[X0, ..., XN ] is the subalgebra generated by the polyno-
mials that are tangentially homogeneous relative to X.

A geometric way to characterize the homogeneous polynomials that are tangen-
tially homogeneous relative to X is to say that they define at all embedded tangent
spaces TxX a cone with vertex x. The complete characterization of tangentially
homogeneous polynomials relative to X ⊂ PN is attained for smooth complete
intersections whose tangent variety Tan(X) = PN .

Let X(n) ⊂ PN be a non-degenerate smooth complete intersection in the dimen-
sional range n > max{1, 2/3(N − 1)}. Then there is a graded isomorphism:

Q(X, 1) ' Sym(H0(PN , IX(2)) =: QA(X)

In proving theorem 3.1 we used the seminal work of Griffiths and Harris [8], see
also [12], on the role of algebraic differential geometry in algebraic geometry. Also
useful to us was the work of Russo and Ionescu on the Hartshorne conjecture for
varieties defined by quadrics, [10]. More precisely, we used the relations between
the properties of the second fundamental form and properties of the tangent map,
the dual variety and the Gauss map (the latter two playing a role in later sections).

A non-constant polynomial H that is tangentially homogeneous with respect to
X must vanish on X and hence can be written as H =

∑
Gi1...ikF

i1
1 ...F

ik
k where

Gi1...ik /∈ I(X) where the Fi belong to a set {F1, ..., Fm} of generators of I(X). Let
fi,x be a dehomogenization of Fi (adapted to TxX). Algebraic differential geometry

can be used to show that if Tan(X) = PN , then the quadratic terms f
(2)
i,x of the

Taylor expansions at x of the fi,x along TxX are algebraically independent. This
result plus the property that H is tangentially homogeneous relative to X implies
that the only Fi involved in H are quadratic and the Gi1...ik ∈ C.

The above work motivates:
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Conjecture 1.1. Let X(n) ⊂ PN be a non-degenerate smooth subvariety with n >
max{1, 2/3(N − 1)}. Then there is a graded isomorphism:

Q(X, 1) ' QA(X)

The Hartshorne conjecture states that in the low codimensional range n > 2/3N
a smooth subvariety X(n) ⊂ PN must be a complete intersection, [9] (see also
[10]). The conjecture 1.1 would be a corollary of theorem 3.1 (for n > 2/3N) if
Hartshorne’s conjecture were to be settled, but the conjecture is still open even for
codimension two. Nevertheless, the conjecture 1.1 can be proven for codimension
two.

Let X(n) ⊂ PN be a non-degenerate smooth subvariety with codim(X) = 2 and
n ≥ 3. Then conjecture 1.1 holds.

To prove the above theorem without the assumption of X being a complete
intersection we needed results on the trisecant varieties associated to X, which are
also of independent interest.

The theorem naturally breaks into three cases determined by the quadratic index
of X, i.e. iQ(X) = h0(X, IX(2)). The case iQ(X) ≥ 2 can be handled since by
results of Ziv Ran on Hartshorne’s conjecture [13]X is either a complete intersection
or the Segre cubic scroll Σ1,2 ⊂ P5 (see also [11]). Hence this case follows from
theorem 3.1 and the case X = Σ1,2 which is more delicate and dealt with explicitly.

Less is known on the Hartshorne conjecture for the other two cases where
iQ(X) = 0 and iQ(X) = 1. These cases can be handled by using the observa-
tion that a non-constant tangentially homogeneous polynomial relative to X must
vanish on the tangent-secant lines to X, i.e. the trisecant lines that are tangent and
meet X in at least two distinct points. The tangent-secant variety of X, Sts3 (X),
is the closure of the union of all tangent-secant lines of X.

In proposition 4.2 it is shown that under the hypothesis of theorem 5.1, Sts3 (X)
is set theoretically the quadratic envelope QE(X) of X, i.e. the subvariety defined
by the quadratic polynomials vanishing on X. In [11], Kwak shows that QE(X) =
S3(X), where S3(X) is the trisecant variety. Our contribution is to show that
Sts3 (X) = S3(X). In proposition 4.1 it is shown that St3(X) = S3(X), where St3(X)
is the union of all tangent trisecant lines of X. The next step is to use the second
fundamental form to control the dimension of the subvariety Sns3 (X) ⊂ St3(X),
which is the closure of the union of all trisecant lines of X that meet X only at one
point. The end result is that non-constant tangentially homogeneous polynomials
on X must vanish on the quadratic envelope of X. This and basic results on
tangentially homogeneous polynomials finish the cases of quadratic index 0 and 1.
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Notations:

Let p
[ ]

: CN+1 \ {(0, ..., 0)} → PN be the natural projection. If V ⊂ PN is a

subset, then V̂ denotes the cone in CN+1 lying over V , i.e. V̂ = p−1
[ ]

(V ).

Let X ⊂ PN be a smooth projective subvariety and x ∈ X, TxX denotes the
affine tangent space to X at x and TxX ⊂ PN denotes the embedded projective
tangent space to X at x.

Some of our results stem from local properties which hold at the general point
x of the subvariety X ⊂ PN being considered. These local properties are better
expressed using particular local affine coordinates.

Let x ∈ PN , X ⊂ PN a subvariety and {P1, ..., Pk} a finite collection of homoge-
neous polynomials in C[X0, ..., XN ]. We call a system of homogeneous coordinates
(X0, ..., XN ) of PN :

(1) adapted to x, if x = [1 : 0 : ... : 0].

(2) adapted to (X,x), if x = [1 : 0 : ... : 0] and TxX = V (Xk+1, Xk+2, ...XN )
for some k.

(3) adapted to (X,x, {Pi}), if it is adapted to (X,x) and X0 does not divide
any of the Pi(X0, ..., Xk, 0, ..., 0).

If (X0, ..., XN ) is adapted to x, then the affine neighborhood U0 = {X0 6= 0} of
x is identified with CN and has affine coordinates xi = Xi/X0, i = 1, ..., N (x =
(0, ..., 0)). The affine tangent space TxX will be often viewed as a linear subspace
of U0 and if (X0, ..., XN ) is adapted to (X,x), then TxX = V (xk+1, ..., xN ). Note
that TxX ∩ U0 = TxX.

Let H be a homogeneous polynomial of degree d, H ∈ C[X0, ..., XN ]
(d)

. We call
h = H/Xd

0 a dehomogenization of H adapted to (X,x), if X0 is the first coordinate
of a system adapted to (X,x,H). Note h ∈ C[x1, ..., xN ] with deg(h) =degH.

A dehomogenization of H adapted TxX is the restriction:

(1.1) hx = h|TxX

where h is a dehomogenization of H adapted (X,x,H). Note that hx ∈ C[x1, ..., xk]
and if non-trivial, then deghx = d with k as in 2). Also let:

(1.2) hx = h(0)
x + ...+ h(d)

x

be the expansion of hx by degrees, with h
(j)
x the homogeneous part of degree j.
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2. Symmetric twisted differentials and tangentially homogeneous
polynomials

Bogomolov and the first author in [3] gave a geometric characterization of sym-
metric twisted differentials. In this section we give an algebraic characterization
of symmetric twisted differentials, introducing the notion of tangentially homoge-
neous polynomials. This new approach is well suited to be used in conjunction with
the results on projective differential geometry by Griffiths and Harris [8] concerning
the relation between the properties of the tangent map and the second fundamental
form, see next section. The main consequence of this interaction is the confirmation
of conjecture 1.1 in the case of complete intersections.

Definition 2.1. Let L ⊂ PN be a linear subspace of dimension n and x ∈ L. A
homogeneous polynomial H ∈ C[X0, ..., XN ] is said to be homogeneous on L relative
to x if there are homogeneous coordinates X ′0,...,X ′N on PN , such that:

(1) L = V (X ′n+1, ..., X
′
N )

(2) x = [1 : 0 : ... : 0]

(3) H|L ∈ C[X ′1, ..., X
′
n]

Geometrically H being homogeneous on L relative to x says that V (H|L) as a
subvariety of L is the cone with vertex x over Y ⊂ V (X ′0, X

′
n+1, ..., X

′
n+1), with

Y = V (H|L) where here H|L is viewed as polynomial in X ′1,...,X ′n as opposed to a
polynomial in X ′0,...,X ′n.

Definition 2.2. A homogeneous polynomial of degree d, H ∈ C[X0, ..., XN ](d), is
said to be tangentially homogeneous relative to X ⊂ PN if one of the two following
equivalent statements holds:

(1) ∀x ∈ X, H is homogeneous on TxX relative to x

(2) ∀x ∈ X the dehomogenizations of H adapted to TxX, hx, if non-trivial are

homogeneous of degree d, i.e. hx = h
(d)
x in the notation of (1.2).

The vector space of all tangentially homogeneous polynomials relative to X of degree

d is denoted by C[X0, ..., XN ]
(d)
TX .

It is immediate from the definition that the product of two tangentially homo-
geneous polynomials relative to X is again tangentially homogeneous relative to
X.

Definition 2.3. The graded subalgebra of C[X0, ..., XN ] whose graded pieces consist

for each degree m ∈ N0 of C[X0, ..., XN ]
(m)
TX is denoted by

C[X0, ..., XN ]hTX =
⊕
m∈N0

C[X0, ..., XN ]
(m)
TX

and is called the algebra generated by the tangentially homogeneous polynomials
relative to X.
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Example 2.1. The constant polynomials are clearly tangentially homogeneous rel-
ative to any X ⊂ PN .

Remark 2.1. The tangentially homogeneous polynomials relative to X of positive
degree must vanish on X.

Example 2.2. Any homogeneous polynomial F in the ideal of the tangent variety
of X, F ∈ I(Tan(X)) is trivially tangentially homogeneous relative to X.

Example 2.3. A linear polynomial L is tangentially homogeneous relative to X if
and only if X ⊂ V (L).

Example 2.4. The key example of tangentially homogeneous polynomials relative

to X are the quadratic polynomials Q ∈ I(X). This holds, since ∀x ∈ X q
(0)
x = 0

(Q vanishes on X) and q
(1)
x = 0 (TxX ⊂ TxV (Q)) making qx = q

(2)
x homogeneous

of degree two.

Proposition 2.1. Let X ⊂ PN be a smooth subvariety and F ∈ C[X0, ..., XN ](m).

Then F ∈ C[X0, ..., XN ]
(m)
TX if and only if for the general x ∈ X F is homogeneous

on TxX relative to x.

Proof. The result follows since the locus

LhTX(F ) := {x ∈ X| F is homogeneous on TxX relative to x}
is an analytic subvariety of X and hence closed.

�

The following proposition will be useful in a later sections.

Proposition 2.2. Let X ⊂ PN be a smooth subvariety whose tangent variety
Tan(X)=PN . If F,G ∈ C[X0, ..., XN ] are nontrivial, homogeneous and FG ∈
C[X0, ..., XN ]

h

TX
, then both F and G are in C[X0, ..., XN ]

h

TX
.

Proof. Suppose F is not tangentially homogeneous relative to X, then by propo-
sition 2.1 fx is not homogeneous at the general point x ∈ X. The condition that
Tan(X) = PN implies that G does not vanish on TxX. The result follows from
(fg)x = fxgx and the product of two nontrivial polynomials being homogeneous
implies that both factors are homogeneous. �

Remark 2.2. If X is such that the tangent map τ is not surjective, then the algebra

C[X0, ..., XN ]
h

TX
is not finitely generated. The simplest example to illustrate this is

to consider a line l ∈ P2, say l = {X0 = 0}. The algebra C[X0, X1, X2]
h

Tl
= C+(X0)

which is not a finitely generated algebra. However, the conjecture 1.1 along with
Theorem 3.1 for complete intersections state that this algebra is finitely generated
when n > 2/3(N − 1) and X is nondegenerate. We will also show that the finite

generation of C[X0, ..., XN ]
h

TX
holds for arbitrary non-degenerate X of codimension

two if dimX ≥ 3.
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Theorem 2.1. Let X(n) ⊂ PN be a nondegenerate smooth subvariety with n >
max{1, 2/3(N −1)}. Then there is a graded isomorphism of algebras induced by the
tangent map:

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ' C[X0, ..., XN ]hTX

Proof. Recall that for a smooth projective subvariety X ⊂ PN of dimension n we
have the Gauss map γX : X → G(n+ 1, N + 1). We define:

(2.1) Ω̃1
X = γ∗XS∨ ⊗OX(−1)

where S∨ is the dual of the universal subbundle on G(n + 1, N + 1). We will

consider Ω̃1
X(1), the extended cotangent bundle over X, which fits in the following

commutative diagram:

0 0y y
N∗X/PN (1)

id−−−−→ N∗X/PN (1)y y
0 −−−−→ Ω1

PN |X (1) −−−−→
⊕N+1

i=1 OX −−−−→ OX(1) −−−−→ 0y q

y id

y
0 −−−−→ Ω1

X(1) −−−−→ Ω̃1
X(1) −−−−→ OX(1) −−−−→ 0y y

0 0

The surjection q :
⊕N+1

i=1 OX → Ω̃1
X(1) → 0 induces an inclusion of the corre-

sponding projective bundles of hyperplanes:

fq : P(Ω̃1
X(1)) ↪→ X × PN

A key geometric observation is that the inclusion fq identifies the projective

bundle P(Ω̃1
X(1)) with a projective subbundle of X × PN whose fiber over x ∈ X

is sent via the second projection to the embedded tangent space TxX to X at x.
This projective subbundle is usually denoted by TX and the the second projection
restricted to TX is called the tangent map of X, τ : TX → PN , see [8]. Note that
using the identification given by fq one can see the tangent map also as:

P(Ω̃1
X(1)) PN

X

τ

p i

The yoga of projective bundles gives that τ induces an isomorphismOP(Ω̃1
X(1))(m) ∼=

τ∗OPN (m). The dimensional hypothesis n > max{1, 2/3(N − 1)} is there to guar-
antee that the tangent map is both surjective and connected, where connectedness
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is the more delicate condition, see [3] for the proof. These two properties of the
tangent map τ imply that the pullback τ∗ gives natural isomorphisms:

H0(X,Sm(Ω̃1
X(1))) ∼= H0(P(Ω̃1

X(1)),OP(Ω̃1
X(1))(m)) ∼= H0(PN ,OPN (m))

The above isomorphisms state that all twisted symmetric extended differentials of

degree m, i.e. sections of Sm[Ω̃1
X(1)] over X, come in a natural geometric way from

homogeneous polynomials of degree m in C[X0, ..., XN ].

The next step is to identify which homogeneous polynomials correspond to
twisted symmetric differentials. We will see that these polynomials are exactly
the tangentially homogeneous polynomials relative to X.

The exact sequence 0 → Ω1
X(1) → Ω̃1

X(1) → OX(1) → 0 gives two maps of
projective bundles. One map is the inclusion:

s : P(OX(1))→ P(Ω̃1
X(1))

Using the natural identification ofX with P(OX(1)), s is the section of p : P(Ω̃1
X(1))→

X that satisfies τ(s(x)) = i(x). The other map is the dominant rational map:

(2.2) π : P(Ω̃1
X(1)) 99K P(Ω1

X(1))

which fiberwise, πx := π|p−1(x), is the projection with center s(x) ∈ p−1(x). The
indeterminacy locus of π is s(X). These two maps fit into the commutative diagram

P(Ω1
X(1)) P(Ω̃1

X(1)) PN

X

p′

π τ

ps
i

The dominant map (2.2) induces an inclusion:

π∗ : H0(P(Ω1
X(1)),OP(Ω1

X(1))(m)) ↪→ H0(P(Ω̃1
X(1)),OP(Ω̃1

X(1))(m))

which is just the natural inclusion of the space twisted symmetric m-differentials
in the space of twisted extended symmetric m-differentials. A twisted extended
symmetric m-differential w̃ on X corresponds to a twisted symmetric m-differential
w on X if and only if w̃ is in the image of π∗.

A twisted extended symmetric m-differential w̃ is in the image of π∗ if and

only if its restriction to each fiber of P(Ω̃1
X(1)), w̃|TxX , is in the image of π∗x. The

identifications described above give πx geometrically as the projection on TxX with
center x:

πx : TxX 99K Pl(TxX)

where Pl(TxX) = P(Ω1
x,X) is the projective space of lines through x. The image of

the natural map

π∗x : H0(Pl(TxX),O(m))→ H0(TxX,O(m))
8



consists of the homogeneous polynomials on TxX which are also homogenous
relative to x (as in definition 2.2). Hence the twisted extended symmetric m-

differential w̃H ∈ H0(X,SmΩ̃1
X(1)) associated with a degree m homogeneous poly-

nomial H ∈ C[X0, ..., XN ] corresponds to a twisted symmetric m-differential wH ∈
H0(X,SmΩ1

X(1)) if and only if ∀x ∈ X, H is homogeneous on TxX relative to x.

In other words, H ∈ C[X0, ..., XN ]
(m)
TX .

�

In the proof above, the condition on the dimension of X is only used to guarantee
that the tangent map is both connected and surjective.

Corollary 2.1. (from the proof) Let X ⊂ PN be a smooth subvariety for which the
tangent map is both surjective and connected. Then

∞⊕
m=0

H0(X,Sm[ΩX(1)]) ' C[X0, ..., XN ]hTX

3. Complete intersections

The goal of this section is to prove the conjecture 1.1 when X is a complete
intersection. It will be shown that for a complete intersection X with the tangent
variety Tan(X) = PN any tangentially homogeneous polynomial relative to X
must be in the algebra generated by the quadratic polynomials vanishing on X. A
key ingredient in the argument is the relationship that exists between the equality
Tan(X) = PN and the algebraic independence of the quadratic forms on TxX
coming from the projective second fundamental IIX,x at a general point x ∈ X.

Theorem 3.1. Let X(n) ⊂ PN be a non-degenerate smooth complete intersection
with n > max{2/3(N − 1), 1}. Then:

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ' Sym(H0(PN , IX(2)))

.

Proof. It was shown in theorem 2.1 that the algebra of symmetric twisted differ-
entials on X and the algebra generated by tangentially homogeneous polynomials
relative to X are isomorphic via:

∞⊕
m=0

H0(X,Sm[Ω1
X(1)])

τ∗←− C[X0, ..., XN ]
h

TX

We need to show that the algebra C[X0, ..., XN ]
h

TX
is generated by any basis of

H0(PN , IX(2)).
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Let c = codim(X) and X of multi-degree (d1, ..., dc), d1 ≥ d2 ≥ ... ≥ dc with
I(X) = (F1, ..., Fc) with degFi = di. Note that, if k = min{i|di = 2}, then
{Fk, ..., Fc} form a basis for H0(PN , IX(2)).

LetH ∈ C[X0, ..., XN ]
h

TX
have degree d. The goal is to show thatH ∈ C[Fk, ..., Fc],

k = min{i|di = 2}. As observed earlier the tangentially homogeneous polynomial
relative to X, H, must vanish on X, i.e. H ∈ I(X). This allows us the following
representation of H in terms of the defining equations of X:

(3.1) H =
∑

(i1,...,ic)∈I

Gi1...icF
i1
1 ...F

ic
c

where I ⊂ Zc≥0 is some finite index set, Gi1...ic /∈ I(X) and deg(Gi1...ic) =

d− (i1d1 + · · ·+ icdc).

Let {f1,x, ..., fc,x} be the dehomogenezation of {F1, ..., Fc} adapted to TxX with
respect to a fixed homogeneous system (X0, ..., XN ) adapted to (X,x, F1, ..., Fc).
As it was described in Example 2.4., the dehomogenizations along TxX for the
quadratic polynomials Fi satisfy:

(3.2) fi,x = f
(2)
i,x , i ∈ {k, ..., c}

The same arguments give for any the dehomogenizations along TxX of F ∈ I(X):

(3.3) f (0)
x = 0 f (1)

x = 0

Define:

ld(H) := 2 min{i1 + · · ·+ ic|Gi1...ic 6≡ 0}

This is the lowest possible degree that can appear in the Taylor expansion hx for
any x. Now, consider the term of hx of this minimal degree ld(H),

(3.4) h(ld(H))
x =

∑
i1+...+ic=ld(H)/2

g
(0)
i1...ic,x

(f
(2)
1,x)i1 ...(f (2)

c,x )ic

The next step consists of showing that this term must be non-zero if x is a general
point in X.

In fact, we do more, we show that the collection {f (2)
1,x , ..., f

(2)
c,x} ⊂ S2[(TxX)∗] =

H0(Pl(TxX),O(2)) is algebraically independent if x is general. The lemma below
achieving this goal is a consequence of the work of Griffiths and Harris ( [8] chapter
5) relating the geometry encoded in the second fundamental form of X and in the
tangent map t : TX → PN .
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Lemma 3.1. Let X(n) ⊂ PN be a non-degenerate complete intersection, X =
V (F1, ..., Fc), with n > 2/3(N − 2). If x ∈ X is a general point, then the collection
:

{f1,x
(2), ..., f (2)

c,x} ⊂ S2[(TxX)∗] = H0(Pl(TxX),O(2))

is algebraically independent. The f
(2)
i,x are the quadratic terms of dehomogenizations

adapted to TxX of the Fi.

Proof. The proof involves properties of the second fundamental form of X. To
understand how the second fundamental form comes into play and how to use it,
we need to recall its definition and some of its distinct interpretations, see also [8]
and [?] section 7.4.3.

IfX(n) ⊂ PN is a subvariety, consider the Gauss map γX : Xsm → G(n+1, N+1),

Xsm is the smooth part of X and γX(x) = T̂xX ⊂ CN+1 the affine cone over TxX.
The differential:

(3.5) (dγX)∗(x) : TxX → TT̂xX
G(n+ 1, N + 1)

can be considered to be one of the versions of the second fundamental form of X
at x.

Using the identification TT̂xX
G(n + 1, N + 1) = Hom(T̂xX,CN+1/T̂xX) we

can rewrite 3.5 as (dγX)∗(x) : TxX → Hom(T̂xX/x̂,CN+1/T̂xX). Moreover, the

natural identifications T̂xX/x̂ = TxX and CN+1/T̂xX = NxX, where NxX is the
normal space to X at x, allow us to view 3.5 as dγX(x) : TxX → Hom(TxX,NxX)
or equivalently

(3.6) (dγX)∗(x) : TxX ⊗ TxX → NxX

A basic property of the bilinear form (dγX)∗(x) in 3.6 is that it is symmetric hence
can be viewed as an element in Hom(S2(TxX), NxX) or finally after dualizing one
obtains the second fundamental form in the form that we work with:

(3.7) IIX,x : NxX
∗ → S2[(TxX)∗]

After performing the previous yoga of identifications, we need to make concrete
what the second fundamental form gives. Again here there are several choices on
how to express the concrete meaning of IIX,x.

Even though the second fundamental form is local, we will describe it using some
globally defined objects since it suits our purposes directly. Pick H ∈ I(X) and let
hx be a dehomogenization of H at x. The gradient of h at x, gradx(hx) ∈ (TxPN )∗,
satisfies TxX ⊂ Ker(gradx(hx)) ⊂ TxPN , hence gradx(hx) ∈ NxX∗ is well defined.
The symmetric bilinear form on TxX associated to H via the second fundamental
form is:

11



IIX,x(gradx(hx)) = h(2)
x

note that h
(2)
x is the restriction of the Hessian of hx at x to TxX and that this

equality is only meaningful up to a multiplicative constant (which depends on the
chosen dehomogenization). A word of caution, if H 6∈ I(X) is such that TxX ⊂
Ker(gradx(hx))), then gradx(hx)) ∈ NxX∗ but IIX,x(gradx(hx))) 6= h

(2)
x in general

(equality holds if and only if V (H) osculates to order ≥ 2 at x in X).

The lemma follows from the results in [8] section 5 (a) describing how the second
fundamental form provides information on the fibers of the tangent map τ : TX →
PN . In our case, the non-degeneracy of X and dimensional condition n > 2/3(N−2)
forces the tangent map to be surjective, hence the dimension of the general fiber of
τ is n− c.

Let z ∈ TX be a general point with p(z) = x a general point of X and t(z) =
y ∈ TxX ⊂ PN . Consider the differential map:

(dτ)∗(z) : Tz(TX)→ TyPN

The key point is that (dp)∗(z) induces an isomorphism ( [8] (5.5)):

ker(dτ)∗(z) ' ker[(dγX)∗(x)(vxy ,−)]

where vxy ∈ TxX is a vector in the direction of the line xy and (dγX)∗(x) viewed as
in (3.6). The subspace ker[(dγX)∗(x)(vxy ,−)] ⊂ TxX corresponds to all u ∈ TxX
such that if one moves in X along the direction u the tangent spaces to X “preserve”
v
xy

to first order.

The next step is to understand ker[(dγX)∗(x)(v
xy
,−)] via (3.7). The image of

IIX,x is spanned by the set {f (2)
1,x , ..., f

(2)
c,x} ⊂ H0(Pl(TxX),O(2)). This linear system

defines a rational map

iix,X : Pl(TxX) 99K Pc−1

which satisfies dim ker[(dγX)∗(x)(v
xy
,−)] = dim ker d(iix,X)∗([vxy

]) for [v
xy

] not
in indeterminancy locus of iix,X ( [8] (5.6)).

Finally, assume {f (2)
1,x , ..., f

(2)
c,x} were algebraically dependent, then dim iiX,x(Pl(TxX)) <

c− 1. Hence for general z ∈ TX (and x and y as before):

dim ker(dτ)∗(z) = dim ker[(dγX)∗(x)(v
xy
,−)] = dim ker(iiX,x)∗([vxy

]) > n− c

contradicting the surjectivity of the tangent map τ .
�

Returning to the proof of the theorem, the above lemma gives that any H ∈ I(X)
is such that for a general point x ∈ X the term of Taylor expansion of hx of degree
ld(H), see (3.4), is non-vanishing.
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The polynomial H being a nontrivial tangentially homogeneous relative to X and
Tan(X) = PN gives that (the general dehomogenization relative to TxX) hx is
homogeneous of degree d for general x ∈ X and hence the following must hold:

d = ld(H)

The definition of ld(H) tell us that the polynomialsGi1...ic in (3.1) are non-vanishing
only if 2(i1 + ... + ic) ≥ d. Combining with d ≥ d1i1 + ... + dcic, d1, ..., dk−1 > 2
and dk, ..., dc = 2, one obtains that:

Gi1...ic 6= 0 only if i1 = ... = ik−1 = 0

and

degGi1...ic = 0

In other words,

H =
∑

ik+...+ic=d/2

cik...icF
ik
k ...F

ic
c ∈ C[Fk, ..., Fc]

as desired. �

The proof of theorem 3.1 also gives,

Corollary 3.1. Let X(n) ⊂ PN be a smooth complete intersection with Tan(X) =
PN . Then:

C[X0, ..., XN ]
h

TX
= C[Q0, ..., Qr]

where {Q0, ..., Qr} is any basis of H0(PN , IX(2)).

In section 5 we provide an example where the conjecture holds despite X not
being a complete intersection (it will be in the range 2/3(N−1) < dimX ≤ 2/3N).

4. Tangent-secant varieties, trisecant varieties and the quadratic
envelope

There are three auxiliary varieties associated to a subvariety X ⊂ PN : the trise-
cant variety S3(X), the tangent-secant variety Sts3 (X) and the quadratic envelope
QE(X), that play a role in the study of tangential homogeneous polynomials. This
section describes some of the interplay between these three varieties with special
emphasis on the codimension two case. We show that Sts3 (X) = QE(X) which
provide us with a path to prove the conjecture 1.1 in codimension two, by allowing
us to deal with the cases that are not known to be complete intersections.
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A tangentially homogeneous polynomial H relative to X must vanish on any line
that is trisecant of the type tangent-secant, i.e. a line that is tangent and meets X
at least in two distinct points. The variety which is the closure of the union of all
tangent-secant lines is called the tangent-secant variety of X, Sts3 (X). Hence any
tangentially homogeneous polynomial H ∈ C[X0, ..., XN ]hTX must satisfy:

Sts3 (X) ⊂ V (H)

The tangent-secant variety lies inside the trisecant variety, Sts3 (X) ⊂ S3(X).
Bezout’s theorem implies another natural inclusion, that of the trisecant variety X
inside the quadratic envelope of X, QE(X) (the variety defined by the quadratic
polynomials vanishing on X),

S3(X) ⊂ QE(X)

First we show that the trisecant-tangent variety, St3(X) (union of all trisecant
lines to X that are also tangent) coincides with the trisecant variety when the
codimension is low.

Proposition 4.1. Let X(n) ⊂ PN be a smooth subvariety with n > max{2/3(N −
1), 1}. Then

St3(X) = S3(X)

Proof. The inclusion X ⊂ St3(X) follows from dim(TxX ∩ X) ≥ 1 since then any
line joining x to a distinct y ∈ TxX ∩ X is a trisecant line which is tangent.
The inequality dim(TxX ∩ X) ≥ 1 holds if n ≥ 1/2(N + 1) which is satisfied if
n > max{2/3(N − 1), 1}. It remains to show that z ∈ S3(X) \X must be also in
St3(X).

Let z ∈ S3(X) \X and l a trisecant line to X passing through z. If l is tangent
to X, then z ∈ St3(X); otherwise l meets X at 3 distinct points. Consider the
subvariety of trisecant lines to X passing through z,

Σ3(X, z) = {l ∈ G(1, N)|length(X ∩ l) ≥ 3} ⊂ G(1, N)

Claim: If there is a l ∈ Σ3(X, z) not tangent to X, then Σ3(X, z) has irreducible
components that are positive dimensional.

The proposition follows from the claim since lemma 1.9 of [3] guarantees that
one the trisecant lines in Σ3(X, z) must be tangent. The mentioned lemma states
that if a projective family of lines in PN is such that all its lines meet X at least
twice and pass through a fixed point not in X (here z) and the family does not
consists of a single line, then there must be a tangent line in the family.

(proof of claim): Let H ⊂ PN \ {z} be an hyperplane. Consider the projection
14



pz : PN 99K H

with center z into H. The projection pz|X is a finite map with pz(X) ⊂ H irre-
ducible of dimension n.

Let y = l ∩ H ∈ pz(X) and x1, x2, x3 be distinct points in l ∩ X. There are
analytical neighborhoods Uy ⊂ H and Ui ⊂ X of respectively y and the xi, i =
1, 2, 3 such that Zi := pz(Ui) are irreducible n-dimensional subvarieties of Uy, [?]
section E-7. Using the intersection dimension inequality, [?] section G-10, we obtain
that if W is a germ based at y of any irreducible component of Z1 ∩Z2 ∩Z3, then:

(4.1) dimW ≥ 3n− 2(N − 1)

The lines through z and y′ ∈ Z1 ∩ Z2 ∩ Z3 ⊂ H intersect X at least 3 times.
Note that Σ3(X, z) can be viewed as a subvariety of H, since the variety of lines in
PN through z is canonically identified with H. This identification allows us to see
Z1 ∩Z2 ∩Z3 ⊂ Σ3(X, z). It follows from the dimensional condition n > 2/3(N − 1)
and 4.1 that at least one irreducible component of Σ3(X, z) has dimension ≥ 1 and
the claim follows

�

The rest of this section pertains to the codimension two case, the goal is show
that if X(n) ⊂ Pn+2 is smooth and n ≥ 3, then

Sts3 (X) = S3(X) = QE(X)

This allows us in the next section to prove the conjecture 1.1. for codimension two.

Due to the work of Severi, Segre, Ran and Kwak, see [13] and [11], it is known
that in codimension two, S3(X) = QE(X) if dimX ≥ 3. This is a consequence of
the classification of varieties with many lines plus the work of Ran and Kwak where
it is shown that if X(n) ⊂ Pn+2 for n ≥ 3 is not contained in a quadric, then its
trisecant variety is the full Pn+2 (Ran showed the case n > 3 and Kwak the case
n = 3), see 3.6 of [11]. Note that S3(X) = QE(X) in codimension two implies in
particular that S3(X) is irreducible which is important in what follows.

Proposition 4.1 then gives that

St3(X) = QE(X)

For our purposes, we need to show that Sts3 (X) = QE(X). To achieve this we
consider another auxiliary variety, Sns3 (X), the “non-secant” trisecant variety of X.
Sns3 (X) is the closure of the union of all “non-secant” trisecant lines to X (lines
that meet X only at a single point), which is interesting in its own right.
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Let |IIX,x| be the linear system of quadrics on Pl(TxX) = P(Ω1
X,x) associated

with the second fundamental form. A subvariety X(n) ⊂ Pn+2 has a stratification
X = Xg ∪Xs ∪Xvs where:

Xg := {x ∈ X|dim |IIX,x| = 1}

Xs := {x ∈ X|dim |IIX,x| = 0}

Xvs := {x ∈ X||IIX,x| = ∅}

The points in Xg, Xs and in Xvs will be called somewhat general points, special
points and very special points, respectively. The strata Xvs is a subvariety of X
and so is Xs ∪Xvs.

The next lemma describes, for x ∈ X general, the tangent cone Cx(TxX ∩X),
when X is a smooth threefold in P5 that is not a P1 × P2 ⊂ P5 Segre embedded,
i.e a Segre cubic scroll. The information on the tangent cone Cx(TxX ∩X) is used
to control the size of the “non-secant” trisecant variety of X, a necessary result to
show that the tangent secant variety of X is the quadratic envelope.

Lemma 4.1. Let X(3) ⊂ P5 be a smooth subvariety and x ∈ X a general point.
Then one of the following holds:

i) The tangent cone Cx(TxX ∩X) is the union of 4 lines.

ii) X is a Segre cubic scroll.

Proof. At the general point x ∈ X the second fundamental form gives a pencil of
conics, |IIX,x|, in Pl(TxX) = P2. As seen before, these conics are described by the
degree 2 terms of the dehomogenizations adapted to TxX of the elements in I(X).

Let f
(2)
1,x and f

(2)
2,x be the degree 2 terms of the dehomogenizations adapted to TxX

of 2 polynomials F1 and F2 locally defining X at x.

The tangent cone Cx(TxX ∩X) ⊂ TxX is defined (as a subvariety of TxX) by
the ideal Iinx (TxX ∩X) generated by initial terms of the Taylor expansions at x of
the defining equations of TxX ∩X.

The dichotomy in the lemma sprouts from the existence or nonexistence of a

common linear factor in the quadratic terms f
(2)
1,x and f

(2)
2,x described above. If there

is no common linear factor, then:

Iinx (TxX ∩X) =< f
(2)
1,x , f

(2)
2,x >

and hence the base locus of |IIX,x| consists of 4 points and Cx(TxX ∩ X) is the
union of 4 lines.

If there is a common linear factor in the quadratic terms f
(2)
1,x and f

(2)
2,x (which

corresponds to a line as a fixed component of |IIX,x|), then all conics in |IIX,x| are
singular. This implies (see for example [7] 2.5.3) that the dual defect δ∗(X) = 1
and hence the dual variety X∗ of X is of the same dimension as X. The smooth
subvarieties X(n) ⊂ PN with dimX = dimX∗ and N ≥ 3/2n are classified (see for
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example [14] 4.4.9). If X is a threefold in P5 with dimX = dimX∗, then X is the
Segre cubic scroll.

�

Proposition 4.2. Let X(n) ⊂ Pn+2 be a smooth non-degenerate subvariety with
dimension n ≥ 3. Then

Sts3 (X) = QE(X)

Proof. We prove the case n = 3 and then show how to derive the result from this
case.

If X(3) ⊂ P5 is non-degenerate and smooth, then Sts3 (X) = QE(X).

Proof. ( of claim) The proof will be partitioned according to value of the quadratic
index of X in P5, iq(X) := h0(P5, IX(2)).

Case: iq(X) ≥ 2.

In this case the quadratic envelope QE(X) = X, since iq(X) ≥ 2 implies that X
must be a complete intersection of quadrics or the Segre variety (also an intersection
of quadrics), see for example 3.6 of [11] . The equality Sts3 (X) = X follows from
X∩TxX being positive dimensional, which implies that through every x ∈ X passes
a tangent secant line.

Case: iq(X) = 1.

Here QE(X) = Q, Q the unique irreducible quadric containing X (if Q was
reducible, then X would be degenerate). The result follows by dimension consider-
ations. It is enough to show that some component (and hence unique) of Sts3 (X) has
dimension greater than dimX. To obtain this it is enough to show that TxX ∩X
is not a cone with vertex x for general x ∈ X.

According to lemma 4.1 either the the projective tangent cone to TxX ∩ X at
x, Cx(TxX ∩X), is the union of 4 lines or X is a Segre cubic scroll. The last case
is not possible since iq(X) = 1 and not 3.

Suppose at x ∈ X general TxX ∩ X is a cone with vertex at x, then since
Cx(TxX ∩X) is the union of 4 lines it follows TxX ∩X is the same union of 4 lines.
This implies X has degree 4 and hence iq(X) 6= 1, a contradiction.

Case: iq(X) = 0.

Need to show that Sts3 (X) = P5 or equivalently that Sns3 (X) 6= P5. A tangent
trisecant line l that is non-secant (in the sense that it does not meet X at two
distinct points) must be such that [l] ∈ P(Ω1

X,x) belongs to the base locus B(|IIX,x|)
(such are the lines that meet X at x with multiplicity greater than 2).
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The contributions to Sns3 (X) by each point in x ∈ X are necessarily contained
in subvarieties whose dimension have bounds depending on which strata Xg, Xs or
Xvs x lies in.

A somewhat general point x ∈ Xg according to lemma 4.1 is such that through
x there are at most only 4 lines that are non-secant trisecant lines (since X can not
be the Segre cubic scroll).

A special point x ∈ Xs is such that the nonsecant trisecant lines passing through
x must be contained in a quadric with vextex x in TxX, the quadric whose base is
the conic in Pl(TxX) determined by |IIX,x|.

A very special point x ∈ Xvs is characterized by the property that all lines
through x can be non-secant trisecant, hence the closure of the contribution to
Sns3 (X) by x could be the full TxX.

The desired conclusion, Sns3 (X) 6= P5, follows from the bounds on dimension of
each strata. The strata Xg is a quasi-projective variety of dimension three. The
contribution to Sns3 (X) by each point is at most 1-dimensional, hence the closure
of the contribution from Xg to Sns3 (X) is at most 4-dimensional.

The quasi-projective variety Xs is at most two dimensional. Each x ∈ Xs con-
tributes at most with a 2-dimensional subvariety of Sns3 (X), making the contribu-
tion to Sns3 (X) coming from Xs at most 4-dimensional.

The subvariety Xvs is a finite collection of points. This follows from Zak’s result
on tangencies, see [16], which implies that the fibers of the Gauss map are 0-
dimensional. Using the fact that the 2nd fundamental form is the differential of the
Gauss map, it follows that the connected components of Xvs must be contained in
the fibers of the Gauss map. As a consequence, the contribution to Sns3 (X) coming
from Xvs is at most a finite union of 3-planes in P5.

Combining the contributions to Sns3 (X) coming from the three strata, one has
that dimSns3 (X) < 5 and the claim is settled. �

To terminate the proof of the proposition consider L ⊂ P(n+2) a general 5-plane.
The claim gives that Sts3 (X ∩ L) = QE(X ∩ L). Since QE(X ∩ L) = QE(X) ∩ L
holds, this implies that Sts3 (X) contains QE(X) ∩ L for the general 5-plane and
hence Sts3 (X) = QE(X).

�

5. Codimension two
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Our approach to conjecture 1.1 for X ⊂ PN of codimension two is to stratify the
problem according to the quadratic index iq(X) = h0(PN , IX(2)). The cases where
iq(X) < 2 where little is known about Hartshorne’s conjecture can be handled due
to:

Theorem 5.1. Let X(n) ⊂ Pn+2 be a non-degenerate smooth subvariety. Then the
tangent map induces the graded isomorphism:

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ' C[Q0, ..., Qr]

where {Q0, ..., Qr} is any basis of H0(PN , IX(2)).

Proof. The proof is done by considering the three possibilities for the quadratic
index iq(X).

Case iq(X) = 0

The results mentioned earlier by Ran [13] and Kwak [11] give S3(X) = Pn+2

and hence by proposition 4.2 Sts3 (X) = Pn+2. This implies that the tangentially
homogeneous polynomials relative toX of positive degree must be trivial. Therefore

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ' C[X0, ..., XN ]hTX = C

as desired.

Case iq(X) = 1

In this case S3(X) = V (Q) with Q irreducible (X non-degenerate) spanning
H0(PN , IX(2)) (see [11]). Same argument gives Sts3 (X) = V (Q) which implies that
Q divides all tangentially homogeneous polynomials relative to X, H, of positive
degree. This is not enough, what is needed is that H ∈ C[Q]. If H is irreducible,
then H = cQ,with c ∈ C∗. If H is reducible, then use proposition 2.2 which
holds since the conditions: cod(X) = 2 and n ≥ 3 give that the tangent variety
Tan(X) = Pn+2. Hence irreducible factors of H must also be tangentially homoge-
neous polynomials relative to X and we obtain the graded isomorphism:

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ' C[X0, ..., XN ]hTX = C[Q]

as desired.

Case iq(X) ≥ 2

The condition iq(X) ≥ 2 forces degree of X to be at most four. In this case the
Hartshorne conjecture is established and the result follows from the theorem 3.1,
except for Σ1,2 ⊂ P5, the Segre cubic scroll, which is not a complete intersection
and is dealt with in an explicit fashion below.
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i) dimX ≥ 4

Ziv Ran’s result on the Harthshorne’s conjecture for codimension 2 [13], states
that if degree X≤ dimX, then X is a complete intersection. Hence X = V (Q0, Q1)
with {Q0, Q1} a basis for H0(PN , IX(2)) and theorem 3.1 implies the graded iso-
morphism:

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ' C[X0, ..., XN ]hTX = C[Q0, Q1]

as desired.

ii) dimX = 3

In this case either X is a complete intersection or X is projectively equivalent
to the Segre cubic scroll, Σ1,2 (see 3.6 of [11]). In the first case, the result holds as
above. The remaining case of X = Σ1,2 is dealt with following a distinct approach.

Let Σ1,2 be the Segre cubic scroll, i.e. the image of the Segre embedding σ :
P1×P2 ↪→ P5. The scroll Σ1,2 is not a complete intersection, the ideal I(Σ1,2) is gen-
erated by 3 quadratic polynomials {Q0, Q1, Q2} forming a basis forH0(P2, IΣ1,2

(2)).

The approach we follow is not to directly show that C[X0, ..., X5]hTΣ1,2
= C[Q0, Q1, Q2]

and then apply theorem 2.1. Instead we directly calculate the dimensions
h0(Σ1,2, S

m[Ω1
Σ1,2

(1)]) and check that

h0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) = dimC[Q0, Q1, Q2](m)

which guarantees the desired isomorphism of algebras:

∞⊕
m=0

H0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) ' C[Q0, Q1, Q2]

Let pi : P1 × P2 → Pi be the natural projections. Using the biholomorphism
σ : P1 × P2 → Σ1,2 and σ∗OΣ1,2

(1) ' OP1×P2(1, 1), we have that:

σ∗(Ω1
Σ1,2

(1)) ' OP1×P2(−1, 1)⊕ p∗2(Ω1
P2)⊗OP1×P2(1, 1)

and hence:

(5.1) H0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) '

m⊕
i=0

H0(P1×P2,OP1×P2(−m+2i,m)⊗p∗2(Si[Ω1
P2 ]))

The summands of the right side of (5.1) do vanish if:

i) i < m/2, since on the fibers of p2, p−1
2 (t) = P1, the bundle:

OP1×P2(−m+ 2i,m)⊗ p∗2(Si[Ω1
P2 ])|P1 ' O(−m+ 2i)⊕ ...⊕O(−m+ 2i)

has no nontrivial sections on P1.

ii) i > m/2, since on the fibers of p1, p−1
1 (t) = P2, the bundle:
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OP1×P2(−m+ 2i,m)⊗ p∗2(Si[Ω1
P2 ])|P2 ' (SiΩ1

P2)(m)

The claimed vanishing follows from:

(5.2) H0(X, (SiΩ1
Pn)(m)) = 0

if m < 2i (ours is the case n = 2).
To see this, a symmetric differential w ∈ H0(X, (SiΩ1

Pn)(m)) defines at x ∈ Pn
where w(x) 6= 0 an hypersurface:

Zw(x) ⊂ TxPn

consisting of all tangent vectors in the zero locus of w(x), where w(x) is viewed as
an homogeneous polynomial of degree i on TxPn (with values in OPn(m)|x ' C).

If there is a nontrivial differential w, then at a general point x ∈ Pn there is a
line l ⊂ Pn through x (il : P1 ↪→ X with il(P1) = l) such that Txl 6⊂ Zw(x). This
implies

0 6= (dil)
∗w ∈ H0(P1, (SiΩ1

P1)(m))

contradicting H0(P1, (SiΩ1
P1)(m)) ' H0(P1,O(−2i+m)) = 0 when m < 2i.

At this point we can conclude that:

(1) H0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) = 0, m = odd

(2) H0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) ' H0(P2, S

m
2 [Ω1

P2(2)]), m = even.

The above gives that h0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) = dimC[Q0, Q1, Q2]m(= 0) if m is

odd. Hence what remains is to show the same equality for m even, to this end,
it is enough to show that h0(P2, S

m
2 [Ω1

P2(2)]) ≤
(m

2 +2
2

)
= dimC[Q0, Q1, Q2]m (the

last equality holds since Q0, Q1 and Q2 are algebraically independent). Note that
h0(Σ1,2, S

m[Ω1
Σ1,2

(1)]) ≥ dimC[Q0, Q1, Q2]m follows from theorem 2.1.

The inequality h0(P2, S
m
2 [Ω1

P2(2)]) ≤
(m

2 +2
2

)
holds due to Ω1

P2(2)|P1 ' O(1)⊕O,
the restriction exact sequence:

0→ S
m
2 [Ω1

P2(2)]⊗O(−1)→ S
m
2 [Ω1

P2(2)]→ S
m
2 [Ω1

P2(2)]|P1 → 0

and (5.2). To see this, observe that S
m
2 [Ω1

P2(2)]|P1 = OP1(m2 )⊕OP1(m2 −1)⊕ ...⊕O
and hence

h0(P1, S
m
2 [Ω1

P2(2)]|P1) =

(m
2 + 2

2

)
h0(P2, S

m
2 [Ω1

P2(2)]) ≤
(m

2 +2
2

)
holds since by (5.2), h0(P2, S

m
2 [Ω1

P2(2)])⊗O(−1)) = 0.
�
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