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Abstract. Let X be a projective manifold, ρ : X̃ → X its universal covering and ρ∗ :
V ect(X) → V ect(X̃) the pullback map for the isomorphism classes of vector bundles. This
article establishes a connection between the properties of the pullback map ρ∗ and the
properties of the function theory on X̃. We prove the following pivotal result: if a universal
cover of a projective variety has no nonconstant holomorphic functions then the pullback
map ρ∗ is almost an imbedding.

0. Introduction

It is still unknown whether the non-compact universal covers X̃, ρ : X̃ → X, of
projective varieties X must have nonconstant holomorphic functions. The existence of
holomorphic functions on X̃ can usually be translated into geometric properties of the
complex manifolds X and X̃. An example of this phenomenon is the Shafarevich con-
jecture: the universal cover X̃ of a projective variety X is holomorphically convex. The
Shafarevich conjecture asks for an abundance of holomorphic functions on X̃ which im-
ply precise geometric properties on X (see [Ko93], [Ca94] and [Ka95]). On this article
we give new approach to the problem of the existence of holomorphic functions on uni-
versal covers. More precisely, the article establishes the relation between the existence
of holomorphic functions on universal covers X̃, ρ : X̃ → X, and the identification on X̃
of the pullback of distinct isomorphism classes of vector bundles on X.

The known paths to the production of holomorphic functions on X̃ involve the con-
struction of closed holomorphic 1-forms or exhaustion functions with plurisubharmonic
properties on X̃. The construction of the desired closed (1,0)-forms or exhaustion func-
tions on X̃ involve the following methods: (a) properties of the fundamental group π1(X)
in combination with Hodge theory and non-abelian Hodge theory (see [Si88], [Ka95] and
[Ey04]) for the most recent results and references); (b) curvature properties of X (see for
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example [SiYa77] and [GrWu77]), (c) explicit descriptions of X (see for example [Gu87]
and [Na90]). None of these methods are at the moment sufficiently general to provide
a nonconstant holomorphic function for the universal cover of an arbitrary projective
variety.

Our approach to the existence of holomorphic functions on X̃ is different. We connect
the existence of nonconstant holomorphic functions on X̃ to properties of ρ∗ : V ect(X) →
V ect(X̃), the pullback map for vector bundles. An extreme example of this connection
is the case where ρ∗ identifies all isomorphism classes corresponding to deformation
equivalent bundles. Let X be a projective manifold such that the pullback map identifies
all isomorphism classes of holomorphic vector bundles on X that are isomorphic as
topological bundles. Then X̃ must be Stein, see observation 3.1.

In previous work [BoDeO04] and [DeO04], the authors investigated how the existence
of nontrivial cocycles α ∈ H1(X, V ) such that ρ∗α = 0 imply strong convexity properties
of the universal cover X̃. In that work the vector bundle V had to have strong negative
or semi-negative properties. In section 2, we modify our previous approach and are able
to obtain holomorphic functions under very weak negativity properties of V (see for
example proposition 2.7). This article is a consequence of the nice fact that the bundle
EndV is well suited to our new approach.

Our strategy is to identify the properties of the pullback map ρ∗ that are implied
by the absence of nonconstant holomorphic functions on X̃. We are able to obtain
holomorphic functions on X̃ from cocycles α ∈ H1(X, EndV ) such that ρ∗α = 0 if V
is absolutely stable (see section 1 and below). It is well known that the vector space
H1(X, EndV ) has a geometrical meaning, it is the tangent space at V to moduli space
of holomorphic vector bundles on X topologically equivalent to V . As a consequence,
it follows that if the fibers of the pullback map ρ∗ are not zero dimensional then X̃
must have nonconstant holomorphic functions. The main theorem of this article is the
application of our results to the case where X̃ has only constant holomorphic functions.

Theorem 3.10. Let X be a projective manifold whose universal cover has only constant
holomorphic functions. Then:

a) The pullback map ρ∗0 : Mod0(X) → V ect(X̃) is a local embedding (Mod0(X) is the
moduli space of absolutely stable bundles).

b) For any absolutely stable bundle E there are only finite number of bundles F with
ρ∗E = ρ∗F .

c) The absolute stable vector bundle E determines a finite unramified cover p : X ′ →
X of degree d ≤ rkE!. On X ′ there is a fixed collection of π1-simple vector bundles
{E′

i}i=1,...,m such that a vector bundle F on X satisfies ρ∗F ' ρ∗E if and only if:

p∗F = E′
1 ⊗O(τ1)⊕ ...⊕ E′

1 ⊗O(τm)

The bundles O(τi) are flat bundles associated with finite linear representations of π1(X ′)
of a fixed rank k with rkE|k.
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A vector bundle V is absolutely stable if for any coherent subsheaf F ⊂ V with
rkF < rk V a multiple of the line bundle (rk VdetF − rkFdet V)∗ can be represented
by a nonzero effective divisor. In particular, absolutely stable bundles are stable with
respect to all polarizations of X. For projective surfaces absolutely stable bundles are
exactly the bundles that are stable with respect to all elements in the closure of the
polarization cone.

The main theorem imposes strong geometric constraints on the pullback map ρ∗ if X̃
is not to have nonconstant holomorphic functions. In particular, it says that the pullback
map should be almost an embedding. The authors believe that this imposition on the
pullback map ρ∗ should not hold for any projective variety (see the remarks at the end
of section 3). If the authors are correct then theorem 3.10 can be instrumental in the
proof of the existence of nonconstant holomorphic functions on non-compact universal
covers of projective varieties.

The first author also wants to thank IHES, University of Bayreuth and University
of Miami for partial support. The second author also thanks the Centro de Analise,
Geometria e Sistemas dinamicos of the IST of Lisbon.

1. Stability background and absolute stability

There are several notions of stability for vector bundles on projective varieties. Each
stability condition is better suited to tackle a class of problems. We use the Mumford-
Takemoto H-stability, see below, but we are specially interested in a stronger stability
condition called absolute stability, see definition 1.1. The H-stability allows one to obtain
a good parameterizing scheme for vector bundles on a projective variety X. There is
an algebraic parameterization for H-stable bundles with given topological invariants.
This parameterization space has all the basic properties of a coarse moduli space (see
for example [HuLe97], [Ma77]). As it will be seen below, an absolutely stable bundle is
stable with respect to all polarizations. On the other hand, on a surface X a bundle
which is H-stable for all divisors H in the nef cone of X will be absolutely stable.

Let N1
R(X) be the finite dimensional R-vector space consisting of the set of numerical

equivalence classes of R-Cartier divisors on X. Let P (X) ⊂ N1
R(X) ↪→ H2(X,R) ∩

H1,1(X,C) be the polarization cone of X containing the ample classes. Denote its
closure in N1

R(X) by P (X) (P (X) = Nef(X) the convex cone of nef divisors).
Let E be a vector bundle on a projective variety X of dimension n and H be nef divisor.

E is said to be H − semistable if the inequality (rk EdetF − rkFdetE).Hn−1 ≤ 0 holds
for all coherent subsheaves F ⊂ E. Moreover, if for all coherent subsheaves F ⊂ E of
lower rank (rk EdetF − rk FdetE).Hn−1 < 0 holds then E is said to be H− stable. The
vector bundle E is H − unstable if it has an H-destabilizing subsheaf F , i.e there is a
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coherent subsheaf F with 0 < rkF < rk E such that (rk EdetF − rkFdetE).Hn−1 > 0
holds. The number µH(F) = (detF/rkF).Hn−1 is called the H−slope of F . H-stability
of E is equivalent to the fact that any coherent subsheaf of E with smaller rank has a
smaller H-slope than E.

We introduce the following notion of stability:

Definition 1.1. Let Neff (X) ⊂ N1
Q(X) be the Q-convex cone spanned by the classes of

effective Q-divisors. A vector bundle E is absolutely stable if for any coherent subsheaf
F ⊂ E with rkF < rk E the following holds: rk EdetF − rkFdet E ∈ −Neff (X)+ =
−Neff (X) \ 0.

The absolutely stable bundles are stable with respect to all polarizations. Later in
this article, we will use the following consequence of the definition: if X is regular, i.e.
Pic0(X) = 0, and E is absolutely stable then the line bundles rk EdetF − rkFdet E will
have a multiple with a nontrivial section.

The notion of H-stability for H is the same as for aH, a ∈ R+. So, we can talk of
stability with respect to elements on the projectivization P(Nef(X)) ⊂ P(N1

R(X)). The
base of the projectivization of the nef cone P(Nef(X)) is compact (Nef(X) is closed in
N1
R(X)). Hence the notion of a stable bundle with respect to the nef cone is well defined

(E is stable with respect to the nef cone if it is H-stable for all nef divisors H).

Lemma 1.2. Let E be a vector bundle over projective surface X which is stable with
respect to the nef cone. Then E is absolutely stable.

Proof. The Kleiman duality for surfaces states that

Neff (X) = {γ ∈ N1
R(X) | (δ.γ) ≥ 0,∀δ ∈ Nef(X)}

Since the cone P(Nef(X)) is compact, it follows that:

{γ ∈ N1
R(X) | (δ.γ) > 0, ∀δ ∈ Nef(X)} ⊂ IntNeff (X)

From the above, it follows immediately that if E is stable with respect to the nef cone
then (rkFdet E − rk EdetF) ∈ IntNeff (X) ⊂ Neff (X)+ for all coherent subsheaves
F ⊂ E with rkF < rk E. Thus E is absolutely stable.

For a general projective variety X the stability property is captured on surfaces which
are complete intersections in the initial variety.

The condition of absolute stability is the right condition for the formulation of the
results of the next sections. We will need to describe some properties of the bundle EndE
for an H-stable bundle E. We will also need results on the theory of stable bundles for
smooth projective curves and on how stability behaves under restriction maps. We start
with the basic result:
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Lemma 1.3. Let E be a vector bundle on X which is stable with respect to some H ∈
P (X) and End0(X) the sheaf of traceless endomorphisms of E. Then H0(X, End0E) =
0.

For a proof see, for example, chapter 1 of [HuLe97]).

If C is a smooth curve and E is a stable vector bundle over C then by a classical
result of Narasimhan-Seshadri End0E is obtained from a unitary representation τ of the
fundamental group π1(C) in PSU(n), n = rkE. The elements of PSU(n) act on the
matrices in EndCn by conjugation. Since the bundle E is stable the representation τ is
irreducible.

Lemma 1.4. If E is a stable vector bundle over a smooth projective curve C then the
bundle EndE is a direct sum of stable vector bundles of degree 0.

Proof. This fact is well known and the decomposition into a direct sum of stable bundles
corresponds to the decomposition of the unitary representation of π1(X) in PSU(n) ⊂
SU(n2 − 1) under the above imbedding. ¤

Let E be a vector bundle over a projective variety X. Let CE ⊂ N1
R(X) be the

cone generated by the classes detL, where the L’s are the rank 1 coherent subsheaves
of

⋃∞
n=0(EndE)⊗n. Let us recall the following result from [Bo94] which follows from

invariant theory (the notation Span+ used below means finite linear combinations with
coefficients ≥ 0):

Lemma 1.5. i) The cone CE = Span+{detL ∈ N1
R(X) | L ⊂ ⋃∞

n=0(EndE)⊗n and rkL =
1} is also generated by classes of the form detF − (rkF/rkE)detE, where F ⊂ E are
proper coherent subsheaves of E and a finite collection D1, ..., Dk ∈ −Neff (X).

ii) For any bundle E of rank k there is a natural reductive structure group GE ⊂ GL(k)
of E such that CE is generated by the line subbundles L corresponding to the characters
of parabolic subgroups in GE.

The group GE is defined modulo scalars by the set of subbundles L ∈ (EndE)⊗n for
all n with c1(L) = 0. If GE = GL(k), SL(k) then the line subbundles L are exactly the
line bundles detF − (rkFi/rkE)detE. However, if the group GE is smaller than above
then the line bundles generating CE correspond to determinants of special subsheaves of
E.

Corollary 1.6. i) Let E be an absolutely stable vector bundle on a smooth projective
variety X and A ⊂ EndE be a coherent subsheaf. Then detA ∈ −Neff (X).
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ii) If E is absolutely stable and E = E′⊗F then both E′, F are absolutely stable since
the corresponding parabolic group GE is contained in the group product GE′ × GF and
the cone CE is a sum CE′ + CF .

Proof. The divisor detA belongs to CE since detA ⊂ ⊗rk(EndE)(EndE). Hence it follows
from lemma 1.5 that detA = Σai(detFi−(rkFi/rkE)detE)+ΣbjDj where ai, bj ≥ 0 with
Fi coherent subsheaves of E and Dj ∈ −Neff (X). Thus i) follows from the condition of
absolute stability, i.e all elements detFi − detE(rkFi/rkE) belong to −Neff (X).

The item ii) is a consequence of the fact that the parabolic subgroups in GE′ × GF

are products of the parabolic subgroups in GE′ , GF . ¤

Many properties of H-stable bundles on arbitrary projective varieties can be derived
from their restrictions on smooth curves. This is manifested in the following two results
that will be important for us later on.

Lemma 1.7. Let X be a projective variety, H a polarization of X, E an H-stable vector
bundle and C a generic curve in kHn−1 for k À 0. Then:

1) The restriction of E to C is stable.
2) Any saturated coherent subsheaf F ⊂ EndE|C with µH(F) = 0 is a direct summand

of EndE|C .
3) The set of saturated subsheaves F of EndE with µH(F) = 0 coincide via the

restriction map with the similar set for EndE|C on C.
4) The bundle EndE is H-semistable and it is a direct sum of H-stable bundles Fi

with µH(Fi) = 0.

Proof. 1), 2) follows from general results, see for example [Bo78], [Bo94] and [HuLe97].
3) For any given coherent sheaf S on X there is an isomorphism H0(X,S) ' H0(C,S|C)

if k is sufficiently large. This isomorphism follows from the vanishing of the cohomol-
ogy of coherent sheaves on projective varieties after being tensored with a sufficient
large multiple of an ample line bundle. In particular, there are the restriction isomor-
phisms H0(X, End(EndE)) ' H0(C,End(EndE)|C). A saturated coherent subsheaf
FC ⊂ EndE|C with µH(FC) = 0 is a direct summand of EndE|C by 2). Hence FC

is associated with a projection of EndE|C , PC ∈ H0(C, End(EndE)|C). The above
isomorphism implies that PC = PX |C for a unique PX ∈ H0(X, End(EndE)) and
that P 2

X = PX since P 2
X |C = P 2

C = PC = PX |C . Therefore the saturated subsheaf
FC ⊂ EndE|C determines a unique direct summand FX of EndE. The sheaf of sections
of FX , FX , is saturated and satisfies FX |C = FC and µH(FX) = detFX .Hn−1/rkFX =
1
kdeg(detFC)/rkFC = 1

kµH(FC) = 0. On the other hand, any saturated subsheaf FX

of EndE with µH(FX) = 0 determines by restriction a saturated coherent subsheaf
FC = FX |C ⊂ EndE|C with µH(FC) = 0.

4) Since vector bundles F on X such that F |C is stable must be H-stable (C is a
curve in kHn−1), then 4) follows from lemma 1.4 and 3). ¤
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Corollary 1.8. Let E be an absolute stable vector bundle on a projective variety X.
Then EndE =

⊕l
i=1 Fi, where the Fi are absolute stable bundles with µH(Fi) = 0 for

any H in P (X).

Proof. The vector bundle E is H-stable for all polarizations H of X. Fix any polarization
H, part 4) of lemma 1.7 implies that EndE =

⊕l
i=1 Fi where all the Fi are H-stable

with µH(Fi) = 0. Our claim is that the Fi are absolute stable vector bundles.
Let F be a saturated coherent subsheaf of one of the direct summands Fi with rkF <

rkFi. We need to show that detF ∈ −Neff (X)+. Lemma 1.6 almost gives the result,
detF ∈ −Neff (X). To exclude detF being numerically equivalent to OX , we notice that
part 3) of lemma 1.7 implies that if µH(F) = 0 then F is a direct summand of EndE
and hence also of Fi. This is not possible since Fi is H-stable. ¤

2 Holomorphic functions via Pullback of extensions and flat bundles

This section presents two approaches that give holomorphic functions on the universal
covers of projective varieties. In section 2.1 we describe our new method to produce
holomorphic functions on an infinite unramified covering of a projective variety X, f :
X ′ → X. In section 2.2 we collect some results on the relation between flat bundles
on X and the existence of holomorphic functions on the universal cover X̃. This two
approaches are in some sense orthogonal to each other (see for example proposition 2.7).
This complementary relation between the two approaches is essential to our results of
section 3.

2.1 Pullback of extensions and holomorphic functions.

Let X be a complex manifold and X̃ its universal cover. In this article we explore
the existence of nonconstant holomorphic functions on X̃ coming from the existence of
nontrivial extensions of vector bundles on X which pullback to the trivial extension on
X̃. Let V a vector bundle of rank r on X. We will use the common abuse of notation
where V also denotes the sheaf of sections of V . An extension of OX by a vector bundle
V is an exact sequence:

0 → V → Vα → OX → 0 (2.1)

There is a 1-1 natural correspondence between cocycles α ∈ H1(X,V ) and isomorphism
classes of extensions of O by V . A cocycle α cohomologous to zero corresponds to the
trivial extension Vα = V ⊕O. It follows from the above that the existence of a nontrivial
extension of OX by a vector bundle V that becomes trivial when pulled back to X̃ is the
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same as the existence of a nontrivial cocycle α ∈ H1(X, V ) that becomes trivial when
pulled back to X̃. The following standard result (see lemma 4.1.14 of [La04]) shows that
this is only possible for infinite covers.

Lemma 2.1. Let f : Y → X a finite morphism between irreducible normal varieties
X and Y and V a vector bundle over X. If s ∈ H1(X, V ) is nontrivial then f∗s ∈
H1(Y, f∗V ) is also nontrivial.

Let p : X ′ → X be an infinite unramified Galois covering of a complex manifold X and
V a vector bundle over X. The following lemma shows how the existence of a nontrivial
cocycles α ∈ H1(X,V ) such that p∗α = 0 implies the existence of nonzero sections of
p∗V .

Lemma 2.2. Let p : X ′ → X be an infinite unramified Galois covering of a complex
manifold X and V a vector bundle over X. If the kernel p∗ : H1(X,V ) → H1(X ′, p∗V )
is nontrivial then the vector bundle p∗V on X ′ has nonzero sections.

Proof. Let G be the Galois group of the covering p : X ′ → X and α ∈ H1(X,V ) a
nontrivial cocycle such that p∗α = 0. This implies that there is a non-split extension of
the trivial bundle by V :

0 → V → Vα → OX → 0 (2.1)

that pullbacks to the trivial extension:

0 → p∗V → p∗Vα ' p∗V ⊕OX′ → OX′ → 0 (2.2)

Any splitting of the pullback extension (2.2) gives a nontrivial section s ∈ H0(X ′, p∗Vα).
The Galois group G acts on p∗Vα and hence we also obtain the sections γs ∈ H0(X ′, p∗Vα)
for γ ∈ G. The sections γs can not all be the same since that would imply that the split-
ting (2.2) would descend to a splitting of (2.1), which would give a contradiction. Hence
there will be nontrivial sections of p∗Vα of the form s′ = γs− γ′s. To finish the lemma
we note that s′ ∈ H0(X ′, p∗V ) since γs and γ′s have the same projection in O′X . ¤

Definition 2.3. A sheaf F on X is (generically) π1-globally generated if on the universal
cover ρ : X̃ → X the sheaf ρ∗F is (generically) globally generated.

Lemma 2.4. Let V be a vector bundle with a nontrivial cocycle α ∈ H1(X, V ) such that
ρ∗α = 0. Then there is an π1-globally generated coherent subsheaf F ⊂ V such that the
cocycle α comes from a cocycle β ∈ H1(X,F).

Proof. It follows from lemma 2.2 that the vector bundle ρ∗V has nontrivial sections. Let
F̃ be the subsheaf of ρ∗V that is generated by the global sections. Clearly, F̃ is π1(X)-
invariant. Let F be the subsheaf of V whose stalk at x ∈ X is generated by the germs of

8



the global sections of ρ∗V at one pre-image x̃ ∈ ρ−1(x). Any choice of pre-image would
give the same stalk. The sheaf F is coherent because of the strong noetherian property
of coherent sheaves on complex manifolds. The sheaf F is the quotient F̃/π1(X) hence
it is π1-globally generated.

Let i∗ : H1(X,F) → H1(X, V ) and q∗ : H1(X,V ) → H1(X,V/F) be the morphisms
from the cohomology long exact sequence associated with 0 → F → V → V/F → 0.
To show the existence of a cocycle β ∈ H1(X,F) with α = i∗β we need to verify that
q∗α = 0.

The extension 0 → V → Vα → OX → 0 associated with the cocycle α induces the
exact sequence:

0 → V/F → Vα/F → OX → 0 (2.3)

The triviality of q∗α holds if (2.3) splits. The exact sequence (2.3) is the quotient of the
the exact sequence:

0 → ρ∗V/ρ∗F → (ρ∗V )
ρ∗α

/ρ∗F → OX̃ → 0 (2.4)

via the action of Γ = π1(X) on (ρ∗V )
ρ∗α

that gives Vα . The extension of OX̃ by ρ∗V
associated with ρ∗α splits by the hypothesis, but this splitting is not π1(X)-invariant.
The splitting is given by a section s ∈ H0(X̃, ρ∗Vα), that is not preserved by the π1(X)-
action. On the other hand, this splitting induces a Γ-invariant splitting of (2.3) since
s− γs ∈ H0(X̃, ρ∗F) and ρ∗F/Γ = F . ¤

Let ρ∗ : V ect(X) → V ect(X̃) be the pullback map sending the set of isomorphism
classes of vector bundles on X into the set of isomorphism classes of vector bundles on X̃.
The flat vector bundle on X obtained from a linear representation τ of the fundamental
group of X or its sheaf of sections is denoted by O(τ). By construction ρ∗O(τ) is the
trivial bundle on the universal covering X̃ with the rank of τ .

The next lemma is a flexible tool to produce holomorphic functions on the universal
coverings that will be a key ingredient of our results.

Lemma 2.5. Let F be a generically π1-globally generated coherent torsion free sheaf on
a complex manifold X such that det(F)−k has a nontrivial section. Then one of the
following holds:

1) X̃ has a nonconstant holomorphic function.
2) F is the sheaf of sections of a flat bundle, F ∼= O(τ).

Proof. Let s1,...,sr be a collection of sections of ρ∗F generating ρ∗F generically, where
r is the rank of F . From the sections s1,...,sr one gets a nontrivial section of det(ρ∗F)
s = s1 ∧ ... ∧ sr ∈ H0(X̃, det(ρ∗F)), the pairing of sn with a nontrivial section t ∈
H0(X̃, det(ρ∗F)−n) gives a holomorphic function f on X̃. By hypothesis the function
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f is nonzero on a open set of X̃. There are two cases where the function f vanishes at
p ∈ X̃. Case: i) s1(p),...,sr(p) do not generate ρ∗Fp/mpρ

∗Fp; case ii): t(p) is zero.
Suppose statement 1) does not hold. Then f must be a nonzero constant func-

tion, which implies that s1(p),...,sr(p) are linear independent at all p ∈ X̃. Hence the
morphism (s1, ..., sr) : Or → ρ∗F induced by the sections is an isomorphism. The
nonexistence of holomorphic functions on X̃ implies that all sections of ρ∗F = Or

are constant. The linear action of π1(X) on H0(X̃,Or) = Cr gives a representation
τ : π1(X) → GL(r,C) and F is the sheaf of sections of the flat vector bundle X̃ ×τ Cr.

¤

Corollary 2.6. Let X be a projective variety such that H0(X̃,O) = C. If E is a vector
bundle such that detE ∈ −Neff (X) then E is not generically π1-global generated unless
detE has finite order in PicX and E is flat.

The next result is an application of lemma 2.5 for vector bundles.

Proposition 2.7. Let E be an absolutely stable vector bundle over a projective manifold
X with (detE)l = O for some l ∈ Z. If there is a nontrivial cocycle α ∈ H1(X, E) such
that ρ∗α = 0 then one of the following possibilities holds:

1) X̃ has nonconstant holomorphic functions.
2) E is a flat bundle, E ∼= O(τ).

Proof. Lemma 2.4 states that there is a nontrivial π1-globally generated coherent sub-
sheaf F of E such that α is contained in the image of H1(X,F) in H1(X,E). If
rkF < rkE then the absolute stability of E would imply that the line bundle detF ∈
−Neff (X)+. Hence F is not a flat vector bundle. It follows from lemma 2.5 that X̃
must have nonconstant holomorphic functions.

If rkF = rkE then E is generically π1-globally generated. If X̃ has no nonconstant
holomorphic functions, then lemma 2.5 gives that E is a flat vector bundle X̃ ×τ Cr, for
some representation τ : π1(X) → GL(r,C). ¤

2.2 Flat bundles and holomorphic functions.

It follows from ”classical” Hodge theory that if the fundamental group of a Kahler
manifold X has an infinite representation into C∗ = GL(1,C) then H0(X̃,O) 6= C.
This holds since the Hodge decomposition of H1(X,C) ( 6= 0 because of the condition on
π1(X)) implies that H0(X, Ω1

X) 6= 0. The nonconstant functions appear as the integrals
on X̃ of the pullback of the nontrivial holomorphic (1,0)-forms in H0(X, Ω1

X). To take
similar conclusions from an arbitrary infinite linear representation ρ : π1(X) → GL(n,C)
one needs to use the ”recent” non-abelian Hodge theory developed by Simpson [Si88].
This was done by Katzarkov, Pantev, Ramanchandran and Eyssidieux and the result is:
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Theorem 2.8. If a smooth Kahler manifold X has an infinite linear representation of
the fundamental group then its universal cover has nonconstant holomorphic functions
(see [Ey04] and [Ka97] for projective surfaces).

Remark: The previous theorem states that there are properties of the fundamental
group of a Kahler manifold X that guarantee the existence of nonconstant holomorphic
functions on the universal cover X̃. Can we have a similar result when the Kahler
condition is dropped? The answer is no (which motivates the search of alternative
approaches to the existence of holomorphic function on universal covers). The negative
answer follows from the results of Taubes on anti-self-dual structures on real 4-manifolds
[Ta92]. Taubes showed that every finitely presented group is the fundamental group of
a compact complex 3-fold X that has a a covering family of smooth P1’s with normal
bundle O(1)⊕O(1). This in turn implies that the universal cover X̃ has no non-constant
holomorphic functions. The universal cover X̃ also has a covering family of smooth P1’s
with normal bundle O(1) ⊕ O(1). Any one of these P1 has a 2-concave and hence
pseudoconcave neighborhood since their normal bundle is Griffiths-positive [Sc73]. The
conclusion follows since a complex manifold with a pseudoconcave open subset has only
constant holomorphic functions. Moreover the variety X̃ with X being a twistor space
for a sufficiently generic anti-self-dual metric on the underlying 4-dimensional variety has
no meromorpihic functions. Indeed the field of meromorphic functions on X̃ is always a
subfield of the field of meromorphic functions in the normal neighborhood of P1 and the
latter is always a subfield of C(x, y) and consists of constant functions only for a generic
neighborhood of P1 with normal bundle O(1)⊕O(1).

3. The pullback map for vector bundles and
holomorphic functions on universal covers

The presence of nonconstant holomorphic functions on the universal cover X̃ of a
Kahler manifold X is many times related with existence of nonisomorphic vector bundles
on X which become isomorphic after the pullback to X̃. For example, the theorem of
L.Katzarkov [Ka95] on the Shafarevich conjecture establishes the holomorphic convexity
of X̃ for a projective surface X if π1(X) admits almost faithful linear representations
(see also [Ey04]). In this case all the bundles on X corresponding to representations of
the same rank of the fundamental group are becoming equal on X̃. Let X be a projective
manifold, ρ : X̃ → X its universal covering and ρ∗ : V ect(X) → V ect(X̃) the pullback
map for isomorphism classes of holomorphic vector bundles. This section investigates the
relation between the properties of the pullback map ρ∗ and the existence of holomorphic
functions on X̃.

11



We start by considering the case of projective manifolds whose pullback map ρ∗ iden-
tifies the isomorphism classes that are isomorphic as topological vector bundles. If the
pullback satisfy this property, then there are plenty of distinct vector bundles on X
whose pullbacks are identified. In particular, any two bundles which can be connected
by an analytic deformation are bound to be identified on X̃. This very rich collection
of bundles that are identified via the pullback map imply the following result on the
algebra of global holomorphic functions on X̃ holds:

Observation 3.1. Let X be a projective manifold whose pullback map ρ∗ identifies
isomorphism classes of holomorphic vector bundles that are in the same topological iso-
morphism class. Then the universal cover X̃ is Stein.

Proof. Let X be a subvariety of Pn. Consider the the extension of Ω1
Pn |X coming from

the Euler exact sequence restricted to X:

0 → Ω1
Pn |X →

n+1⊕
OX(−1) → OX → 0 (3.1)

Associated with (3.1) we have the affine bundle p : A → X over X that consists of the
pre-image of the section 1 ∈ H0(X,OX) in the total space t(

⊕n+1OX(−1)). The affine
bundle A ⊂ t(

⊕n+1OX(−1)) is a Stein manifold since the vector bundle
⊕n+1OX(−1)

is negative and A does not intersect the zero section of
⊕n+1OX(−1).

Let p̃ : Ã → X̃ be affine bundle associated with the pullback of (3.1) to X̃ by ρ :
X̃ → X. The affine bundle Ã is an unramified covering of A an hence it is also a Stein
manifold. The result follows if it is shown that Ã is also a vector bundle since then X̃
embedds in Ã as the zero section and hence is also Stein.

It follows from (3.1) that topologically Ω1
Pn |X ⊕ O ' ⊕n+1OX(−1). Hence by the

hypothesis ρ∗(
⊕n+1OX(−1)) is isomorphic, as a holomorphic vector bundle, to the

pullback ρ∗(Ω1
Pn |X⊕OX). Hence Ã is biholomorphic to t(ρ∗(Ω1

Pn |X)) and the observation
is proved.

¤

This section is mainly concerned with the implications of the absence of nonconstant
holomorphic functions on X̃ on the pullback map ρ∗. The condition that X̃ has no non-
constant holomorphic functions lies on the opposite side of the conclusion of observation
3.1, stating that X̃ is Stein. We will show that this condition on X̃ has implications that
are quite opposite to the assumption of the observation 3.1. More precisely, the absence
of nonconstant holomorphic function on X̃ implies that the pullback map ρ∗ is almost
an imbedding.

The authors believe that the pullback map ρ∗ being almost an imbedding should
not hold for projective varieties with infinite π1(X); see the remarks at the end of this
section. If the authors were correct, this approach would be instrumental in showing that
there are always nonconstant holomorphic functions on noncompact universal covers X̃
of projective varieties.

12



3.1 Pullback map for line bundles.

We describe the implications of the absence of nonconstant holomorphic functions on
the universal cover X̃ on the pullback map for line bundles ρ∗ : Pic(X) → Pic(X̃).

Definition 3.2. The cone of Q-divisors on X generated by the divisors which become
effective on X̃ is denoted by Ñeff (X) ⊂ N1

Q(X) (Ñeff (X)+ = Ñeff (X) \ 0).

Suppose that X̃ has no non-constant holomorphic functions. Then the cone Ñeff (X),
which contains Neff (X), does not contain any elements from −Neff (X)+. Assume
−Neff (X)+ ∩ Ñeff (X) 6= ∅ then there is an divisor effective D of X such that both
line bundles ρ∗O(D) and ρ∗O(−D) have nontrivial sections. The pairing of these sec-
tions gives a non-constant holomorphic function. The previous discussion implies that if
H0(X̃,OX̃) = C then the image of ρ∗ : Pic(X) → Pic(X̃) is nontrivial and there are the
following possibilities:

P1. The cone Ñeff (X)+ is separated by a hyperplane H from −Neff (X)+.
P1’. The cone Ñeff (X) coincides with Neff (X). This is a special case of P1. In

particular, it holds if H0(X̃,O) = C and Pic(X) = Z.
P2. The closure of the cone Ñeff (X) in N1

R(X) intersects with the closure of−Neff (X)
outside of 0.

The following result describes the kernel of ρ∗ : Pic(X) → Pic(X̃) for Kahler manifolds
whose universal cover has no nonconstant holomorphic functions.

Proposition 3.3. Let X be a Kahler manifold such that H0(X̃,OX̃) = C. Then the
kernel of the pullback map ρ∗ : PicX → PicX̃ is finite and its elements correspond to
flat bundles associated with finite characters.

Proof. Let L be a line bundle in the kernel of ρ∗ and let i : ρ∗L → OX̃ be an isomorphism
with the trivial line bundle. The isomorphism i is not equivariant with respect to the
natural π1(X)-actions on OX̃ and on ρ∗L giving respectively OX and L on X. Hence
there is a γ ∈ π1(X) such that the map γiγ−1i−1 6= Id : OX̃ → OX̃ . If γiγ−1i−1 6= c(γ)Id
for some constant c(γ) then the map γiγ−1i−1 : OX̃ → OX̃ would be associated with a
nonconstant holomorphic function on X̃, which can not happen.

Therefore, we have an association of elements of π1(X) with nonzero constants, γ →
c(γ). This association defines a representation π1(X) → C∗ and this representation has
to be finite, since H0(X̃,O) = C implies that H1(X,C) must vanish. The line bundles on
the kernel of ρ∗ are uniquely determined by the representations described above. Thus,
Ker(ρ∗) is dual to π1(X)ab which is a finite group. ¤
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3.2 Pullback map for vector bundles.

The thesis of this paper is that the non-existence of holomorphic functions on X̃
implies that few bundles on X are identified by pulling back to X̃. It is clear that two
vector bundles F ⊗ O(τ) and F ⊗ O(τ ′) become isomorphic on X̃ for any bundle F if
the rank of the representations τ and τ ′ is the same. The main result of this section
states that if X̃ has no holomorphic functions and two bundles E and E′ on X have
isomorphic pullback on X̃ then essentially E = F ⊗O(τ) and E′ = F ⊗O(τ ′) for some
bundle F . Our results are mostly for the spaces of absolutely stable bundles but they
have a generalization for the spaces of H-stable bundles, if extra conditions on Ñeff (X)
are added.

In order to better understand the pullback map ρ∗ : Vect(X) → Vect(X̃) and, in
particular, to study its local properties, one should put a structure of an analytic scheme
into the sets Vect(X) and Vect(X̃). The scheme structure for Vect(X) for X projective
is well understood. Below, we recall the key facts that are relevant to our goals. The
analytic scheme structure theory for Vect(X̃) is less understood. We would like to note
that it is not our interest to develop such a theory in this paper. The only facts that
we use from Vect(X̃) are that distinct points correspond to non-isomorphic bundles
and that the formal tangent space at a vector bundle E on X̃ exists and it is equal to
H1(X̃, EndE).

In order to describe the local behavior of the pullback map, it necessary to recall
some facts from the theory of deformations of a given vector bundle E on X. The
deformation of a vector bundle E over an arbitrary variety splits into the deformation
of the projective bundle P(E) plus a deformation of the line bundle OP(E)(1) over P(E).
The deformations of P(E) in the case of a smooth X are parameterized by an analytic
subset BE ⊂ H1(X, EndE), 0 ∈ BE with the action of the group of relative analytic
automorphisms Aut(E) of the bundle P(E) on BE . The latter is induced from the natural
linear action Aut(E) on H1(X, EndE) (with adjoint fiberwise action of PGL(n) on the
fiber of the bundle EndE). Thus, non-isomorphic bundles (with respect to identical
automorphism on X) in the local neighborhood of E are parameterized by the orbits of
the group AutE with Lie algebra H0(X, End0(E) in H1(X,EndE).

The space H1(X,EndE) plays a role of the formal tangent space T0(BE) at the point
0 ∈ BE . Natural splitting EndE = End0E ⊕ O induces a splitting H1(X, EndE) =
H1(X, End0E)⊕H1(X,O). The local deformation scheme of E maps onto a local defor-
mation scheme of P(E) with a fiber which is locally isomorphic to H1(X,O). H1(X,O)
parameterizes the (non-obstructed) deformation scheme of line bundles OP(E)(1) in
Pic(P(E)) over the deformation scheme of P(E) which is generically obstructed.

Let p : E → ∆ be an analytic family, over the disc ∆, of vector bundles on X with
Et = p−1(t) as its members. The family Et gives a deformation of E = E0 and has
associated with it a 1st-order deformation cocycle s ∈ H1(X, EndE).

Lemma 3.4. Let p : E → ∆ be family of vector bundles on X that is nontrivial at
14



t = 0. If the pullback family p̃ : ρ∗E → ∆ is locally trivial then the kernel of ρ∗ :
H1(X, EndE) → H1(X̃, Endρ∗E) is nontrivial.

Proof. The 1st-order deformation cocycle s ∈ H1(X, EndE) associated with the family
Et is nontrivial since the family Et = p−1(t) is nontrivial at t = 0. The nontrivial cocycle
s is in the kernel of ρ∗ since ρ∗s is the 1st-order deformation cocycle associated with the
locally trivial family p̃ : ρ∗E → ∆ which is trivial. ¤

Lemma 3.5. Let p : X ′ → X be an unramified Galois covering of a smooth projective
manifold X and E a vector bundle on X. Then H0(X̃, End0p

∗E) 6= 0 if one of the
following holds:

1) The kernel of p∗ : H1(X,End0E) → H1(X ′, End0p
∗E) is nontrivial.

2) H0(X ′,OX′) = C and there is a vector bundle F such that p∗F = p∗E but F 6=
E ⊗O(χ) for any character χ : π1(X) → C∗.

Proof. Assume that 1) holds then H0(X̃, End0p
∗E) 6= 0 follows from lemma 2.2 (p must

be an infinite unramified covering of X by lemma 2.1).
If 2) holds then there is an isomorphism i : p∗E → p∗F and F 6' E ⊗ O(χ) for any

character χ : G → C∗. Let G be the Galois group of the covering. The isomorphism
i is not G-equivariant since otherwise it would descent to an isomorphism i′ : E →
F on X. Consider the two possible cases: i) there is a g ∈ G such that g−1i−1gi :
p∗E → p∗E is a non-scalar endomorphism. Then g−1i−1gi is a nontrivial element in
H0(X ′, End0p

∗E). ii) For all g ∈ G the endomorphism g−1i−1gi of p∗E is scalar. Since
X ′ has no nonconstant holomorphic functions, the following holds: g−1i−1gi = χ(g)Id,
χ(g) ∈ C∗. Therefore, the map χ : G → C∗ defines a character of G and F = E ⊗O(χ)
which can not happen, since it contradicts the assumption. ¤

Let ρ∗ : Mod0(X) → V ect(X̃) be the pullback map, where Mod0(X) is the moduli
space of absolutely stable vector bundles on X. We denote points in Mod0(X) by the
same letters as the corresponding vector bundles. We will say that ρ∗ is a formal local
embedding at E ∈ Mod0(X) if the tangent map ρ∗ : H1(X, EndE) → H1(X̃, EndE) is
injective.

We start by establishing the main result for absolute stable vector bundles E whose
pullback remains simple, i.e. H0(X̃, End0ρ

∗E) = 0.

Definition 3.6. A vector bundle E over a projective variety X is said to be π1-simple
if H0(X̃, End0ρ

∗E) = 0, where ρ : X̃ → X is the universal covering of X.

We show that for π1-simple vector bundles E there are no non-trivial families of vector
bundles Ft on X whose pullbacks ρ∗Ft are isomorphic to ρ∗E.

Theorem 3.7. Let X be a projective manifold such that its universal cover X̃ has no
nonconstant holomorphic functions. If E is an absolutely stable vector bundle on X
satisfying H0(X̃, End0ρ

∗E) = 0, then:
15



a) The pullback map ρ∗0 : Mod0(X) → V ect(X̃) is a formal local embedding at E.
b) For any absolutely stable bundle E there are only finite number of bundles F with

ρ∗E = ρ∗F and E = F ⊗O(χ) with χ a character of π1(X).

Proof. To prove part a) it is enough to show that the tangent map to ρ∗0 at E, ρ∗ :
H1(X, EndE) → H1(X̃, Endρ∗E) is injective. The condition H0(X̃,OX̃) = C im-
plies H1(X,OX) = 0 hence H1(X, EndE) = H1(X, End0E) The injectivity of ρ∗ :
H1(X, EndE) → H1(X̃, Endρ∗E) follows from H0(X̃, End0ρ

∗E) = 0 and lemma 3.5 1).
The item b) follows from 2) of lemma 3.5 and the finiteness of the character group of

π1(X). The finiteness of the character group follows from H0(X̃,OX̃) = C.
¤

To establish the thesis of this paper, we need to consider the technically more chal-
lenging case where E is an absolute stable which is not π1-simple. The next theorem
establishes that after a finite covering the vector bundle E has a direct sum decompo-
sition whose direct summands are a tensor product of a π1-simple vector bundle with a
flat bundle.

Theorem 3.8. Let X be a projective manifold such that its universal cover X̃ has no
nonconstant holomorphic functions. Let E be an absolute stable vector bundle on X
satisfying H0(X̃, End0ρ

∗E) 6= 0. Then there is a normal subgroup π1(X ′) ⊂ π1(X)
corresponding to a finite unramified covering p : X ′ → X satisfying:

i) p∗E ' E′
1 ⊗O(τ1)⊕ ...⊕ E′

m ⊗O(τm), τi : π1(X ′) → GL(k,C) with k ≥ 1.
ii) The vector bundles E′

i are π1-simple.
iii) The natural action of the finite group G = π1(X)/π1(X ′) on X ′ extends to the

action on p∗E which permutes subbundles E′
i⊗O(τi) and this action gives the imbedding

of G into Sm.
iv) Let G1 ⊂ G be subgroup which acts identically on E′

1⊗O(τ1) ⊂ p∗E then E′
1⊗O(τ1)

descends to the bundle E′
1⊗O(τ ′1) on X1 = X ′/G1 with p1 : X1 → X being a nonramified

covering of degree rkE/(rkE′
1 ⊗O(τ1)) and E = p∗E′

1 ⊗O(τ ′1)

Proof. We start the proof by claiming properties of the algebra A = H0(X̃, Endρ∗E),
that will be settled later. In the next paragraphs, these claims will be used to establish
the theorem. We claim that the algebra A ≡ H0(X̃, Endρ∗E) =

⊕m
i=1 Mk where Mk is

the algebra of k×k matrices for a k < r = rk E; the action of π1(X) on the algebra A has
no nontrivial π1(X)-invariant ideals (π1(X) acts transitively on the m direct summands
of A =

⊕m
i=1 Mk). We also claim that the action of the algebra A on ρ∗E is such that

each direct summand of A acts on each fiber (ρ∗E)x ' Cr, x ∈ X̃, as the same multiple
lMk of the standard representation of Mk, r = lmk.
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The π1(X)-action on A =
⊕m

i=1 Mk permutes the m simple direct summands, Mk,
and therefore gives a homomorphism σ : π1(X) → Sm. Let p : X ′ → X be the finite
unramified Galois covering of X associated with the kernel of σ. By construction the
direct summands of A are π1(X ′)-invariant. The claims describing the structure of A

and the action of A on ρ∗E imply ρ∗E = Ẽ1 ⊗ Ok ⊕ ... ⊕ Ẽm ⊗ Ok. Moreover, since
the direct summands of A are π1(X ′)-invariant the summands Ẽi = ρ′∗E′

i where E′
i are

vector bundles of rank l on X ′ and ρ′ : X̃ → X ′ is the universal cover of X ′.
On X ′ the bundle p∗E decomposes into p∗E = E′

1 ⊗ O(τ1) ⊕ ... ⊕ E′
m ⊗ O(τm)

(τi : π1(X ′) → GL(k,C)) giving i). The claim that there are no π1(X)-invariant ideals
of A implies that the group G = π1(X)/π1(X ′) acts on p∗E permuting transitively the
direct summands, thus proving iii). Part ii) follows from H0(X̃, End(ρ′∗E′

i⊗Ok)) = Mk.
If H0(X̃, End0ρ

′∗E′
i) 6= 0 then group of global sections H0(X̃, End(ρ′∗E′

i ⊗Ok)) would
be larger then Mk contradicting the claim about A.

Let G1 ⊂ G be the subgroup which stabilizes the direct summand E′
1⊗O(τ1) of p∗E.

Let p1 : X1 → X be the intermediate covering where X1 is the quotient X ′/G1. Then
the vector bundle E′

1⊗O(τ1) descends to X1. Moreover, the bundle p∗E descends to X1

and it decomposes into a direct sum E′
1 ⊗O(τ1)⊕ EN .

We want to show that p1∗(E′
1⊗O(τ1)) = E. Consider the direct images p1∗(E′

1⊗O(τ1))
and p1∗p∗1E on X. The bundle p1∗p∗1E has a natural decomposition into E ⊕ Ec. The
natural projection i∗1 : p∗1E → E′

1 ⊗ O(τ1), which is identity on E′
1 ⊗ O(τ1), induces

a map r : p1∗p∗1E → p1∗(E′
1 ⊗ O(τ1)). Also denote by r the restriction of r on the

direct summand E ⊂ p1∗p∗1E. We claim that r is an isomorphism. It follows from the
fiberwise description of r. Let Cmlk

x = Σm
i=1Clk

i,x be the direct sum decomposition of the
fiber of p∗E at x ∈ X ′ corresponding to the decomposition into the direct summands
E′

i ⊗ O(τi). Let gi ∈ G be the representatives of cosets G/G1. Then for a x′ ∈ X its
pre-image p−1

1 x′ ⊂ X1 is equal to
⋃

gix1 and the fiber of E′
1⊗O(τ1) over gix1 is naturally

isomorphic to Clk
i,x. The map r becomes the trace map for the action of G on p∗E which

implies that r is a fiberwise isomorphism. This proves iv).

Claim: A = H0(X̃, Endρ∗E) is a subalgebra of the matrix algebra Mr, r = rkE.

First, we prove that A is a finite dimensional algebra. Let A be the subsheaf of
Endρ∗E generated by the global sections of Endρ∗E. The sheaf Endρ∗E is a sheaf of
matrix algebras and A is a sheaf of subalgebras since we can add and multiply sections.
The sheaf A is invariant under the action of π1(X) and defines a coherent subsheaf A′ ⊂
EndE on X with A = ρ∗A′. The absolute stability of E implies that detA′ ∈ −Neff (X)
by i) of corollary 1.6. The lemma 2.5 implies that A′ is isomorphic to the sheaf of sections
of a flat vector bundle since (detA′)−k (detA′ ∈ −Neff (X)) has a nontrivial section for
some k and H0(X̃,OX̃) = C. Hence A = ρ∗A′ ' Oq

X̃
. It follows from H0(X̃,OX̃) = C,

that the algebra A is finite dimensional.
We want to show that the algebra A is isomorphic to A⊗k(x) ⊂ Endρ∗E⊗k(x) ∼= Mr

for all x in X̃, where k(x) is the residue field at x and r = rkE. Consider the exact
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sequence 0 → A⊗I(x) → A→ A⊗ k(x) → 0, I(x) the ideal sheaf of the point x. Since
A is generated by its global sections it follows that the morphism A = H0(X̃,A) →
H0(X,A⊗ k(x)) = A⊗ k(x) is a surjection. If the morphism is also an injection we get
the desired isomorphism A ∼= A⊗k(x). The injectivity follows from H0(X̃,A⊗I(x)) = 0,
which holds since any nontrivial section s of Endρ∗E is nowhere vanishing (see the end
of previous paragraph).

Claim: The algebra A is semisimple.
The semisimplicity of A is equivalent to the maximal nilpotent ideal Im of A being the

zero ideal. The algebra A comes with a natural π1(X)-action. The maximal nilpotent
ideal is a π1(X)-invariant ideal of A. Every nontrivial π1(X)-invariant ideal I of A
defines naturally a nontrivial subsheaf I ′ ⊂ A′ ⊂ EndE.

Suppose that the ideal Im is nontrivial. The nilpotent condition, Ik
m = 0 for some k,

implies that the subsheaf I ′mE ⊂ E satisfies rk(I ′mE) < rkE. Under these conditions we
have an the exact sequence:

0 → K → I ′m ⊗ E → I ′mE → 0

with K 6= 0. We will show that the subsheaf K is an H-destabilizing subsheaf of I ′m⊗E
for any polarization H of X. This gives a contradiction, since I ′m ⊗ E is H-semistable.
The sheaf I ′m ⊗E is the tensor product of the two H-semistable sheaves E and I ′m (I ′m
is a flat bundle) (the tensor product of two H-semistable sheaves is H-semistable).

We need to get the destabilizing inequality [rk(I ′m⊗E)detK−rkKdet(I ′m⊗E)].Hn−1 >
0. Using detK = rkI ′mdetE−detI ′E and rkEdetI ′mE−rkI ′mEdetE ∈ Neff (X)+ (E is an
absolute stable bundle), it follows that rk(I ′m⊗E)detK−rkKdet(I ′m⊗E) ∈ −Neff (X)+.
Hence we obtain the desired contradiction, which implies that the π1(X)-invariant ideal
Im must be the zero ideal and A is semisimple.

Claim: A has no proper π1(X)-invariant ideals.
We proved that A is semisimple and hence A = Σm

i=1Mri ⊂ Mr with r1 + ...+ rm ≤ r.
Recall that if I is an ideal of A = Σm

i=1Mri (A acts on Cr) such that ICr = Cr then
I = A. Let I be a π1(X)-invariant ideal of A and I the associated subsheaf of A. There
are two cases: i) rkIρ∗E = r and ii) rkIρ∗E < r.

If i) holds, then I⊗k(x) ⊂ A⊗k(x) ∼= Σm
i=1Mri is such that I⊗k(x)(ρ∗E)x = (ρ∗E)x.

Hence by what was recall above it follows I⊗k(x) = A⊗k(x) ∼= Σm
i=1Mri

or equivalently
I = A. If ii) holds then the subsheaf I ′E ⊂ E satisfies rkI ′E < rkE. The same argument
used in the claim above can be applied to show I = 0 settling the claim.

Claim: The algebra A is equal to mMk and the action of A on any fiber (ρ∗E)x induces
for each Mk a representation equal to a multiple of a standard rank k representation of
Mk.

We already showed that A = Σm
i=1Mri with r1 + ...+rm ≤ r. Since each Mri is simple

it follows that the action of π1(X) preserves the ideals of A corresponding to the sums of
18



the Mri
. Since any π1(X)-invariant ideal I of A is either trivial or the full A, it follows

that the π1(X)-action acts transitively on the blocks Mri . This in particular implies
that all the ri must be equal to the same k.

Finally, we show that the representation of each A = Mk in Mr is a multiple of the
standard representation. Any irreducible representation of Mk is the standard represen-
tation or the zero representation. The presence of a zero representation as an irreducible
component of the representation of Mk in Mr would imply that A′E 6= E which is not
possible from the discussion above.

¤

The following lemma follows from our results and theorem 2.8.

Lemma 3.9. Let X be a Kahler manifold such that X̃ has no nonconstant holomorphic
functions. Then for any linear representation τ of π1(X) the vanishings H1(X,C(τ)) =
H1(X,O(τ)) = 0 must hold.

Proof. The hypothesis H0(X̃,O) = C and theorem 2.8 imply that the representation τ
must be finite. Let f : X ′ → X of X be the finite covering corresponding to the kernel
G ⊂ π1(X) of the representation τ . The manifold X ′ is a compact Kahler manifold
with the same universal cover as X hence H1(X ′,Ck) = H1(X ′,Ok) = 0 hold since
H0(X̃,O) = C. The result follows from lemma 2.1 which states that the maps f∗ :
H1(X,C(τ)) → H1(X ′,Ck) and f∗ : H1(X,O(τ)) → H1(X ′,Ok) are embeddings. ¤

Theorem 3.10. Let X be a projective manifold whose universal cover has only constant
holomorphic functions. Then:

a) The pullback map ρ∗0 : Mod0(X) → V ect(X̃) is a local embedding.

b) For any absolutely stable bundle E there are only finite number of bundles F with
ρ∗E = ρ∗F .

c) The vector bundle E determines a finite unramified cover p : X ′ → X of degree
d ≤ rkE!. On X ′ there is a fixed collection of π1-simple vector bundles {E′

i}i=1,...,m such
that a vector bundle F on X satisfies ρ∗F ' ρ∗E if and only if:

p∗F = E′
1 ⊗O(τ1)⊕ ...⊕ E′

1 ⊗O(τm)

The bundles O(τi) are flat bundles associated with finite linear representations of π1(X ′)
of a fixed rank k with rkE|k.

Proof. In theorem 3.7 we dealt with the case of vector bundles E such that H0(X̃, End0ρ
∗E) =

0. We proceed to consider the case H0(X̃, End0ρ
∗E) 6= 0.

a) Let Mod0(X,V ) be the moduli space of absolutely stable bundles with the same
Chern classes as V . The formal tangent space of Mod0(X,V ) at V is given by H1(X, EndV ).
The vector bundle EndV is semistable with detEndV = O and is the direct sum
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EndE =
⊕l

i=1 Fi of absolutely stable bundles with µH(Fi) = 0 by corollary 1.8. In
fact, (detFi)l = OX for some l since Pic0(X) is torsion as H0(X̃,OX̃) = C.

The kernel of the tangent map ρ∗ : H1(X,EndV ) → H1(X̃, Endρ∗V ) is the direct
sum of the kernels of ρ∗i : H1(X, Fi) → H1(X̃, ρ∗Fi). Assume that one of the maps ρ∗i
is not injective. Proposition 2.7 implies that if kerρ∗i 6= 0 then Fi = O(τ). This leads
to a contradiction since the previous lemma 3.9 states that H1(X, Fi) = 0 for the flat
bundles Fi. This concludes the proof that ρ∗ is a local imbedding.

Part b) is a consequence of c), hence we first consider c). Theorem 3.8 states that ρ∗E
has the decomposition ρ∗E ∼= Ẽ1⊗Ok⊕ ...⊕ Ẽm⊗Ok with simple vector bundles Ẽi. If
ρ∗F ∼= ρ∗E then ρ∗F inherits also a decomposition ρ∗F ∼= F̃1⊗Ok ⊕ ...⊕ F̃m⊗Ok with
F̃i⊗Ok ∼= Ẽi⊗Ok. Since the Ẽi are simple vector bundles on X̃ it follows that F̃i

∼= Ẽi.
Also by theorem 3.8, we have a finite covering p : X ′ → X where p∗E decomposes into:

p∗E ' E′
1 ⊗O(τ ′1)⊕ ...⊕ E′

m ⊗O(τ ′m)

The vector bundles E′
i are π1-simple. Equally, it follows from theorem 3.8 that p∗F also

decomposes into:

p∗F ∼= F ′1 ⊗O(τ ′′1 )⊕ ...⊕ F ′m ⊗O(τ ′′m) (3.2)

with ρ′∗F ′i = F̃i. It follows from lemma 3.5 that E′
i ⊗ O(χ) ∼= F ′i for some character

χ : π1(X ′) → C∗, since ρ′∗E′
i = Ẽi

∼= F̃i = ρ′∗F ′i and the E′
i are π1-simple. Hence c)

follows from the decomposition (3.2).
To prove b) we first claim that there is a finite unramified Galois covering p̂ : X̂ → X

associated with E such that ρ∗F ∼= ρ∗E if and only if p̂∗F ∼= p̂∗E. Theorem 3.8 and
the proof of c) give that there is a covering p : X ′ → X such that if a bundle F on X
satisfies ρ∗F ∼= ρ∗E then:

p∗F ∼= E′
1 ⊗O(τ1)⊕ ...⊕ E′

m ⊗O(τm) (3.3)

where the O(τi) are all flat bundles of equal rank k. The variety M(π1(X ′), k) of the
representations of π1(X ′) into GL(k,C) is a finite set of points. This follows from
M(π1(X ′), k) being zero dimensional which holds since the tangent space at each repre-
sentation τ : π1(X ′) → GL(k,C) is H1(X ′, EndO(τ)) = 0 (lemma 3.9). The finiteness
of the set of representations implies the existence of a finite Galois cover p̂ : X̂ → X
where p̂∗F ∼= p̂∗E if ρ∗F ∼= ρ∗E. The result follows then by the lemma:

Lemma 3.11. Let f : Y → X be a finite unramified Galois covering of X and E an
absolutely stable bundle on X. If F is a vector bundle on X such that f∗F ∼= f∗E then
F belongs to a finite collection of isomorphism classes of vector bundles on X.

Proof. If f∗E is a simple vector bundle then the part 2) of lemma 3.5 gives the result.
More precisely, it shows that F ∼= E ⊗ O(χ) where χ : G → C∗ is a character of the
Galois group G of the cover f .
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If f∗E is not simple applying the argument in theorem 3.8 we get that f∗E ∼= E1 ⊗
Ok

Y ⊕ ... ⊕ EmOk
Y and H0(Y,Endf∗E) =

⊕m
i=1 M(k) for some k dividing rkE. The

vector bundles E and F are quotients of two different actions of the Galois group G on
f∗E. The action of G on F ∗E giving F is determined by the action giving E and a
representation τ : G → GL(mk,C). Our result follows since the number of isomorphism
classes of representations τ : G → GL(mk,C) is finite. ¤

¤
Remark: We have a similar result for H-stable bundles if Ñeff (X) satisfies P1 or P1′

on section 3.1.

What about the map of the space of all bundles (omitting the discussion of whether
it can be well defined)? Notice that for any given filtration of saturated subsheaves in
a vector bundle V there is a blow up X ′ of X such that the pullback of this filtration
becomes a filtration of vector bundles (see Moishezon [Mo69] lemma 3.5). In particular,
for any vector bundle V on X one can use the Harder-Narasimhan filtration. Since the
algebra of holomorphic functions on X̃ does not change after changing blowning up, any
conclusion about the function theory for X̃ ′ holds for X̃. It follows from the above that if
P1′ holds then the pullback map for all bundles is non-injective modulo representations
of π1(X) only if there are cocycles α ∈ H1(X, V ) such that ρ∗α = 0.

The results of this paper can potentially be used to show that the universal cover of
a projective variety has a nonconstant holomorphic function. This is explained below.

Proposition 3.12. Let X be a projective manifold of dimension n and X ′ be an infinite
unramified cover of X then Hn(X ′,F) = 0 for any coherent sheaf F on X ′.

Proof. The result follows from Cech cohomology and Leray coverings if any noncompact
cover of a n-dimensional projective variety is covered by n Stein open subsets. Pick n−1
generic hyperplane sections Hi and let C = H1∩ ...∩Hn−1. By Lefschetz theorem C is a
smooth curve such that π1(C) → π1(X) is a surjection. This implies that the pre-image
of C in X ′ is an irreducible noncompact curve C ′. Hence C ′ is Stein (Behnke-Stein
theorem). The infinite cover X ′ is covered by the pre-images Ui of X \Hi in X ′ and a
neighborhood of C ′. The pre-images Ui are Stein open subsets of X ′ since any unramified
cover of a Stein manifold is Stein. To conclude, C ′ has an open Stein neighborhood in
X ′ since C ′ is a Stein closed subvariety of X ′ (Siu [Si76]). ¤
Remark: The proposition 3.12 implies that for surfaces the structure of the space of the
moduli space of vector bundles on X̃ should be similar to the structure of the moduli
space of vector bundles on a curve. Namely the groups H2(X̃,F) vanish for any coherent
sheaf F . In particular, there are no algebraic obstructions in H2(X̃, EndE) to deform a
vector bundle E along a cocycle in H1(X̃, EndE) though there may be an analytic one
(problem of convergency). We expect that any bundle of rank ≥ 2 has a complete flag of
subbundles if there is a complete flag of topological subbundles. This would imply that
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the K-group K0(X̃) reduces to Pic(X)×Z. The above motivates the authors’ expectation
that many different bundles on X coincide after pulling back to X̃.

Remark: The last remark may also provides a clue to the proof of H0(X̃,O) 6= C
for the universal covers X̃ of projective surfaces X with infinite fundamental group.
Indeed let X be a projective surface and E a stable vector bundle on X with additional
property that the bracket [θ, θ] 6= 0 ∈ H2(X, EndE) for sufficiently generic cocylce
θ ∈ H1(X, EndE). This provides with an obstruction to the deformation of the bundle
E in direction θ. However on the universal covering X̃ the cocycle θ has a trivial bracket
since the groups H2(X,EndE) are zero. Thus ρ∗E should have a deformation along
ρ∗θ with the first germ π1(X)-invariant. If we would be able to extend it to a π1(X)-
equivariant deformation of ρ∗E, we would obtain a deformation of E along θ. This would
imply that cocycles with nontrivial brackets have the same image as cocycles with trivial
brackets. This allows to construct holomorphic functions on X̃ using our approach. We
plan to address this in the next publication.
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