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Abstract. This article analyses the behaviour of analytic cycles on deforma-

tions of strictly pseudoconvex surfaces. As a preliminary result we show that
a relatively compact strictly pseudoconvex surface is the union of two Stein

open subsets. The main result of the article is that there is a small deforma-
tion of a minimal relatively compact strictly pseudoconvex surface that has
no positive dimensional analytic cycles, hence is Stein. We also prove that a

strictly pseudoconvex surface contains a semiregular 1-dimensional cycle if it
contains one 1-dim cycle. In the last section the main result is applied to the

study of contact structures of three dimensional manifolds.

Introduction

In this article we are going to show that we can make a small deformation of
a relatively compact smooth strictly pseudoconvex surface, in such a way that our
surface becomes Stein. The article is divided into two parts. The first section,
called Static, characterizes the various objects we are going to use, and proves:

Theorem (1). A relatively compact strictly pseudoconvex smooth surface is
the union of two open Stein.

The second section, called Dynamic, describes the deformations of relatively
compact strictly pseudoconcex smooth surfaces and the effect of deformations on
compact analytic curves, and proves:

Theorem (2). There is a small deformation of a relatively compact strictly
pseudoconvex smooth minimal surface with no compact analytic curves.
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The end result is:

Theorem (2’). There is a small deformation of a relatively compact strictly
pseudoconvex smooth minimal surface that is a Stein surface.

To see why Theorem (2) implies Theorem(2’): notice that a Stein space is a
holomorphically convex space where all compact analytic subspaces are points. The
holomorphic convex property is preserved under small deformations of relatively
compact stricly pseudoconvex manifolds and Theorem (2) explains the nonexistence
of compact analytic subspaces that are positive dimensional, so we get our Stein
surface. We also apply Theorem (2’) to a problem proposed by Eliashberg in contact
structures of three dimensional compact manifolds, getting:

Theorem (5). Let M be a compact three dimensional manifold. Let S (S′) be
the set of isotopy classes of contact structures on M that come from seeing M as a
level set of a s.p.s.h. function on a smooth Stein surface (on a Stein surface with
isolated singularities not in M). The sets S and S′ are the same.

Notation

r.s.p.c. = relatively compact strictly pseudoconvex
(s)p.s.h. = (strictly) plurisubharmonic
e.c.f.k = exceptional curve of the first kind

THE STATIC PART

The following results characterize r.s.p.c. smooth surfaces and tells us what
is required from the deformation procedure to transform these surfaces into Stein
surfaces. For the next results and Theorem (E) see [GR].

Definition (A). A C2 function ϕ on a complex manifold U of dimension n
is called plurisubharmonic iff the hermitian form:

n∑
i,j=1

∂2ϕ

∂zi∂zj
dzidzj

is positive semidefinite. It will be called strictly plurisubharmonic if the form is
positive definite.
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Definition (B). A relatively compact strictly pseudoconvex domain D on a
complex manifold U , is a relative compact domain of U such that there is a neigh-
borhood W of ∂D and a s.p.s.h. function ϕ defined in W with:

D ∩W = {x ∈W,ϕ(x) < 0}

In particular, a r.s.p.c. surface is a r.s.p.c. domain of a smooth complex surface.

Definition (C). A complex space U is said to be holomorphically convex if
for every discrete infinite subset of U , there is a holomorphic function which is
unbounded in this subset.

Proposition (A). A complex space with countable topology U is said to be
Stein iff it is holomorphically convex and its compact analytic subspaces are points.

Theorem (A). Suppose D is a r.s.p.c. domain in a complex manifold U .
Then D is holomorphically convex.

With Proposition (A) and Theorem (A), we see that what separates a r.s.p.c.
surface from a smooth Stein surface is just the existence of analytic compact curves,
in fact we have:

Theorem (B). [G] If V is a r.s.p.c. surface, then V is a modification of a
Stein space at a finite number of points.

Theorem (B) implies that a r.s.p.c. surface V has a maximal compact analytic
subspace A, which is an exceptional set. In other words, A is the union of a finite
number of connected components, Aα:

Aα =
αi⋃
i=1

Aαi

where all Aαi are compact irreducible analytic curves and their intersection matrix
is negative definite.

To prove Theorem (1) it is necessary that a r.s.p.c. surface is a domain of an
algebraic surface. We will first give an important approximation of this result:

Theorem (C). [VVT] Any r.s.p.c. surface V , is embeddable, i.e. it can be
realized as a closed analytic subvariety of Cn ×Pm.

Remark: In the proof of this result Vo Van Tan says that H3(V,A,Z) is torsion
and then goes to prove that every line bundle L over A has a multiple L⊗n that is
the restriction of some line bundle of V . In fact, one has more as Proposition (1)
and Corollary (1) will show.

Proposition (1). Let V be a r.s.p.c. surface and A its exceptional set. Then:

H3(V,A,Z) = 0

Proof. Theorem (B) says that V is a modification of a Stein surface X at a
finite number of points, S = {p1, ..., pm}. One can prove that the morphism of the
pair, (V,A)→ (X,S) induces an isomorphism in the relative homology,

Hk(V,A,Z) ∼= Hk(X,S,Z)
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Since, S is 0-dimensional:

Hi(X,S,Z) ∼= Hi(X,Z), i = 2, 3, 4
but X is a Stein surface with isolated singularities therefore H3(V,A,Z) = 0 and
H2(V,A,Z) is free.

The result follows from the Universal Coefficient Theorem for cohomology:

0→ Ext(Hp−1(V,A,Z),Z)→ Hp(V,A,Z)→ Hom(Hp(V,A,Z),Z)→ 0

Corollary (1). Let V be a r.s.p.c. surface and A its exceptional set. Then:

Pic V � Pic A

Proof. Using the cohomological results on r.s.p.c surfaces, stated below in
Corollary (3), one has H2(V, I) = 0 and H2(V,O) = 0, where I is the ideal sheaf
of A. One also has by Proposition (1), H3(V,A,Z) = 0. Therefore we get the
following commutative diagram:

H1(V,OV ) - H1(V,O∗V ) - H2(V,Z) - 0

H1(A,OA)
?

- H1(A,O∗A)
?α

- H2(A,Z)
?

0
?

0
?

By diagram chasing, we can see that α is surjective.

Corollary (2). With the notation of Proposition (1), H3(V,Z) = 0.

Proof. The exact sequence for relative cohomology gives:

...→ H3(V,A,Z)→ H3(V,Z)→ H3(A,Z)→ ...

Since both extremes are zero, the result follows.

Remark: This result can be derived directly from Theorem (2’), because this
theorem says that there exists a C∞ trivial deformation of V , ω : V → Q with fibers
Vq = ω−1(q) that are Stein smooth surfaces. Hence, H3(V,Z) = H3(Vq,Z) = 0.

To get an algebraic embedding we need the theory of algebraic approximations,
which gives:

Theorem (D). [Le] Assume a reduced Stein X space has only isolated singu-
larities, and K ⊂ X is a compact subset. Then there is an affine variety V , and a
neighborhood of K in X that is biholomorphic to an open set in V .

This result implies the desired result for r.s.p.c surfaces since the resolution of
singularities is closed in the algebraic category.
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Now, we will prove Theorem (1):

Proof of Theorem (1). To see V as the union of two Stein we need the
following proposition:

Proposition(B). [B1] Let S be a projective surface and Ux be an arbitrary
small analytic neighborhood of x ∈ S. Then there are two curves X1 and X2 such
that

X1 ∩X2 ⊂ Ux
X1 ∈ |O(1)| and X2 ∈ |O(N)| for N � 0 (N depends on the point x and on the
radius of Ux).

From Theorem (D) follows that V is r.s.p.c. domain in a projective surface S.
Consider S of Proposition (B) to be the same. Pick a point x ∈ S and a analytic
neighborhood Ux such that Ux ∩ V = ∅, this is possibile because V is a r.s.p.c.
domain in S. Then by Proposition (B) we find X1 and X2, s.t.

X1 ∩X2 ∩ V = ∅ (∗)

The complements S \X1 and S \X2 are affine, hence Stein. Since the intersection
of a holomorphically convex with a Stein space is Stein, U1 = V ∩ (S \ X1) and
U2 = V ∩ (S \X2) are also Stein. By (*) U1 and U2 are our Stein cover of V .

To complement our knowledge of r.s.p.c. smooth surfaces, we describe its co-
homology of coherent sheaves.

Theorem (E). [GR] Let D be a r.s.p.c. domain in a complex manifold U and
F be a coherent sheaf defined in a neighborhood of D. Then

Hi(D,F) <∞

for i ≥ 1.

Theorem (1) and Theorem (E) give:

Corollary (3). Let V be a r.s.p.c. smooth surface in complex manifold U
and let F be a coherent sheaf as in Theorem (E). Then:

1. H1(V,F) <∞
2. H2(V,F) = 0 (just need F coherent on V )

proof. 1) is a direct consequence of Theorem (E),
2) Proposition (1) says V = U1 ∪ U2, where U1 and U2 are Stein, this implies

U1,2 = U1 ∩ U2 is also Stein. Since for all Stein complex spaces S, F coherent on
S, we have Hi(S,F) = 0, i ≥ 1. Using Mayer-Vietoris exact sequence:

...→ H1(U1,2,F)→ H2(V,F)→ H2(U1,F)⊕H2(U2,F)→ ...

we see that H2(V,F) vanishes, because both ends are zero.
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THE DYNAMIC PART

1. General Results on Deformations of r.s.p.c. Surfaces

First, we specify what we mean by a deformation of a r.s.p.c. surface.

Definition (1). A deformation of a r.s.p.c. surface V is the set of the fol-
lowing data:

1) A pointed complex manifold (Q, 0).
2) A complex manifold V.
3) Two holomorphic maps ω : V → Q and i0 : V → V satisfying:

i) The map i0 is an isomorphism of V onto ω−1(0).
ii) The map ω has maximal rank at any point of V.

The deformation theory of r.p.s.c. smooth surfaces is very simple, since these
surfaces are the union of two open Stein subsets (hence the cocycle condition for
H1 is trivially satisfied and H2 = 0). Laufer in [La1] shows that r.s.p.c surfaces
after the blow up of some points are the union of two Stein, and this is sufficient
to get:

Theorem (F). [La1] Let V be a r.s.p.c. surface. Then there exists a versal
deformation ω : V → Q of V = ω−1(0), where Q is a complex manifold and the
Kodaira-Spencer map ρ0 : T0,Q → H1(V,Θ) is an isomorphism.

We can make the versal deformation of V C∞ trivial. To see this, we notice
that we can find a r.s.p.c. neighborhood U of V , such that U ⊂ V ∪W ( notation
of Definition (B)).

Lemma (1). U and V have the same exceptional set and for any coherent sheaf,
F , the restriction map gives:

r : Hi(U,F) ∼−−−−→ Hi(V,F), i ≥ 1

Proof. Let ϕ be the s.p.s.h. function of Definition (B). Suppose C is an
exceptional curve of U that is not contained in V , then C∩{ϕ ≥ −ε} 6= ∅. C∩{ϕ ≥
−ε} is compact, hence ϕ attains a maximum in it, by [Gunning and Rossi, p. 272] ϕ
is constant in a neighborhood of a maximum, contradicting the s.p.s.h. condition.

Since both V and U are r.s.p.c. neighborhoods of the same exceptional set, by
[La3] the restriction map r : Hi(U,F)→ Hi(V,F) gives the desired isomorphism.

Proposition (2). For any r.s.p.c. surface V , there is a C∞ trivial deforma-
tion ω : V → Q, such that the Kodaira-Spencer map ρ0 : T0,Q → H1(V,Θ) is an
isomorphism.
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Proof. Let V and U be as before and ω : U → Q be a versal deformation of
U . By [Andreotti, A.; Vessentini, E.] there is a neighborhood ,V, of V in U , with
V ∩U = V , which is differentiably isomorphic to V ×Q, , we might have to shrink
Q, (this isomorphism I : V ×Q→ V is fiber preserving and is the identity on V ×0).
Our deformation will be exactly the restriction of ω to V, since if we denote the
Kodaira-Spencer map for the versal deformation of U by ρ′0, we have ρ0 = r ◦ ρ′0
and the result follows from Lemma (1) since r : H1(U,ΘU ) → H1(V,ΘV ) is an
isomorphism.

Using the result from [R] that for any relatively compact open subset U ′ ⊂ U
there is an open neighborhood U ′ ⊂ U of U ′ s.t. if we restrict ω to U ′, we get a
1-convex deformation ω|U ′ : U ′ → ω(U ′), we finish this section, noticing that this
result implies that our versal C∞ trivial deformation of V is inside a versal 1-convex
deformation of a r.s.p.c. surface having the same exceptional set in all fibers.

2. Curves under Deformations

2.1. Deformation Theory.

To see the effect of the variation of the complex structure of the surface V on
the existence of curves on V . Let us recall relevant general facts of deformation
theory.

Definition. A small variation of the complex structure of V is a section ϕ(q)
of A0,1(V )(ΘV ), that is a (0,1)-form with coefficients in the tangent bunle of V .

Let the base of the deformation ω : V → Q be a simply connected smooth mani-
fold. Then Kuranishi theory says that there exists a diffeomorphism between V ×Q
and V such that ϕ(q) =

∑∞
i ϕi is a convergent power series with its coefficients

in A0,1(V )(ΘV ), where ϕi =
∑
j1+...+jn=i ϕj1,...,jnq

j1
1 ...q

jn
n , ϕj1,...,jn ∈ A0,1(V )(ΘV )

and q1, ..., qn are local coordinates of Q at 0.

The small variation of the complex structure gives a new almost complex struc-
ture:

T 0,1
ϕ = {µ+ ϕ(µ), µ ∈ T 0,1}

where ϕ is seen as an element of Hom(T 0,1, T 1,0). In particular if:

ϕ =
∑
i,j

ϕj,idzj ⊗
∂

∂zi

then (T 0,1
ϕ )∨ is the span of {dzϕi = dzi +

∑
j ϕj,idzj}
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The new almost complex structure will be integrable if and only if:

(0) ∂ϕ− 1
2

[ϕ,ϕ] = 0

The connection of the previous description of a deformation and the Kodaira-
Spencer map, appears from examining the 1-st order term in the change of complex
structure, φ. The 1-st term has the special property that is a cocycle, this is a
consequence of (0) and ϕ(0) = 0. Let γ : (∆, 0)→ (Q, 0), ∆ is the one dimensional

unit disc, be such that dγ(
∂

∂t
) = v ∈ T0,Q, giving:

(1)
γ−1V - V

(∆, 0)
? γ- (Q, 0)

?ω

Then we know that the 1st-order change in the complex structure for the family
γ−1V over ∆ induced by γ is given by α.t ∈ A0,1(V )(ΘV ), with [α] ∈ H1(V,Θ)
(Dolbeaut’s isomorphism) such that [α] = ρ0(v).

We will use this in section 2.2

2.2. Integral Obstructions to Lift Algebraic Curves.

Let C be an irreducible and reduced curve in V . Then we have the following
exact sequences:

(2) 0→ ΘV ⊗O(−C)→ ΘV → ΘV |C → 0

(3) 0→ ΘC → ΘV |C → ΦC → Ext1OC (Ω1
C ,OC)→ 0

where ΦC = O(C)C is the generalized normal bundle. Inducing the map:

(4) σC : H1(V,ΘV )→ H1(C,ΦC)

There is also the duality for embedded compact curves,

H1(C,ΦC)×H0(C,ωV |C) −→ H1(C,ωC)
TrC' C

from which, we obtain:

(5)
σ′C : H1(V,ΘV ) - H0(C,ωV |C)∗

[α] - TrC{σC([α]×−)}
We need to generalize the trace map, to the case of a reduced curve C on V .

Let ν : C ′ → C be the normalization of C. From the exact sequence:
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0→ ν∗ωC′ → ωC → S → 0
we get the natural isomorphism, n : H1(C ′, ωC′) ∼= H1(C,ωC). So, we define:

TrC = TrC′ ◦ n−1

where TrC′ is defined using the Dolbeault’s isomorphism. We can represent the
elements in H1(C ′, ωC′) by φ ∈ A1,1(C ′) and TrC′([φ]) =

∫
C′
φ.

Proposition (3). [de O] Let C be a reduced compact analytic curve on a
surface V , possibly noncompact. Let ω : V → ∆ be a C∞ trivial deformation of
V = ω−1(0) over the 1-dimensional disc ∆ such that Kodaira-Spencer map satisfies:

ρ0(
∂

∂t
) = [α]. Then if µ ∈ H0(V, ωV/∆) the following holds:

σ′C([α])(µ0|C) =
d

dt
|t=0

∫
I(C×t)

µt

where µt = µ|Vt and I as in Proposition (2).

The previous proposition gives a method to annihilate curves on a surface, as
the next result shows:

Theorem (3). [de O] Let C be a reduced compact analytic curve on V and
ω : V → ∆ be a C∞ trivial deformation over the 1-dimensional disc ∆ such that

Kodaira-Spencer map satisfies: ρ0(
∂

∂t
) = [α]. Let µ ∈ H0(V, ωV/Q) and µt = µ|Vt .

If σ′C([α])(µ0|C) 6= 0 then for t 6= 0 sufficiently small no 2-cycle homologous to
C is an analytic cycle.

Proof. Proposition (3) implies that for t 6= 0:∫
I(C×t)

µt 6= 0

Since the integral of the (2,0)-form µt over an analytic cycle must vanish, no 2-cycle
homologous to C can be analytic in Vt.

Remark: Actually, this theorem is about turning algebraic homology classes in
H2(V,Z) into nonalgebraic classes.

3. Proof of Theorem (2)

In order to use the techniques of the previous section to carry over the program
of annihilating the algebraic curves on a r.s.p.c surface V in a deformation ω : V →
Q. We need first to prove the existence of an element of µ ∈ H0(V, ωV/Q) such
that µ|Vq0 is not trivial on some exceptional curve. Secondly we need to prove the
existence of a deformation of V inducing a functional on H0(V, ωV |C), as in section
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2.2, which is nontrivial on the form µ|Vq0 restricted to the curve, and thirdly to
describe topologically the exceptional set along the deformation.

3.1. Existence of Holomorphic Forms.

The following assertion says that if a r.s.p.c surface contains a 1-dimensional
analytic cycle then it contains a 1-dimensional semiregular cycle.

Proposition (4). Let V be a r.s.p.c. surface and A =
⋃r
i=1Ai its reduced

exceptional set and Ai its irreducible components. Then there exists an irreducible
component, w.l.o.g. A1, such that:

ν : H0(V, ωV )� H0(A1, ωV |A1)

Proof. The map ν comes from the long exact cohomology sequence associated
to:

0→ ωV ⊗O(−A1)→ ωV → ωV |A1 → 0
so its surjectivity can be assured by the vanishing of H1(V, ωV ⊗O(−A1)). To get
this, we will use, in the proof, the singular version, see [K], of the vanishing theorem
of [La3] for r.s.p.c. surfaces. This theorem says: if L is a line bundle on V and
satisfies the condition L.Ai ≥ KV .Ai for all curves Ai on V then H1(V,L) = 0.

The first step is to prove that there is an effective divisor, which is a sum of
Ai, Z1, such that:

H1(V, ωV ⊗O(−Z1)) = 0
The vanishing theorem implies this if Z1.Ai ≤ 0 for all Ai, since L = ωV ⊗O(−Z1).
Therefore a natural candidate for Z1 is the numerical fundamental cycle of the
resolution, and the first step is complete.

The next step and final step is to show that there is a decreasing sequence of
effective divisors Zj , with Zj+1 = Zj −Ak, such that:

0→ ωV ⊗O(−Zj)→ ωV ⊗O(−Zj+1)→ ωV ⊗O(−Zj+1)|Ak → 0

gives for the 1st cohomology piece of the long cohomology exact sequence:

H1(V, ωV ⊗O(−Zj))� H1(V, ωV ⊗O(−Zj+1))
To show this we only need to garantee that H1(Ak, ωV ⊗O(−Zj+1)) = 0, by duality
we know that:

H1(Ak, ωV ⊗O(−Zj+1)) ∼= H0(Ak, ω−1
V ⊗O(Zj+1)⊗ ωAk)

but recall that the dualizing sheaf for an embedded curve is ωV ⊗OAk(Ak), therefore
we only have to prove:

H0(Ak,OAk(Zj)) = 0
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This would be true if Ak.Zj < 0, but we know that the decreasing sequence, Zi,
can be constructed in such a way that the previous condition is satisfied, since the
intersection matrix is negative definite.

Now, the last Zj in this sequence is irreducible exceptional curve, w.l.o.g. A1,
and has the property:

0 = H1(V, ωV ⊗O(−Z1))� H1(V, ωV ⊗O(−A1))
and we are done.

The following theorem states that the holomorphic (2,0)-forms on the central
fiber of a 1-convex deformation of r.s.p.c. surfaces always extend to sections of
ωV/Q for some open neighborhood of the central fiber.

Theorem (4). Let ω : V → Q be a 1-convex deformation of a r.s.p.c. surface
V = ω−1(q0) with nonsigular base Q. Then all sections µ0 ∈ H0(V, ωV ) can be
extended to sections µ ∈ H0(ω−1(Q′), ωV/Q), where Q′ is a Stein neighborhood of
q0 in Q.

Proof. The following piece of the long exact sequence for the cohomology:

H0(V, ωV/Q)→ H0(V, ωV/Q|V )→ H1(V, ωV/Q ⊗O(−V ))
tells us that if:

(*) H1(V, ωV/Q ⊗O(−V )) = 0

the result follows, because ωV/Q|V ∼ ωV .
The 1-convex generalization of Grauert’s direct image theorem, see [S1], says:

H1(ω−1(Q′), ωV/Q ⊗O(−V )) = H0(Q′, ω∗1(ωV/Q ⊗O(−V )))
since Q′ is Stein and ωV/Q ⊗O(−V ) is a coherent sheaf.
To calculate ω∗1(ωV/Q ⊗ O(−V )) notice that ωV/Q ⊗ O(−V )|Vq ∼ ωVq , hence

by Kato’s vanishing theorem:

H1(Vq, ωV/Q ⊗O(−V )|Vq ) = 0
and using the 1-convex generalization of the Semicontinuity and Base Change the-
orem, see [S1]:

ω∗1(ωV/Q ⊗O(−V )) = 0
Therefore, we have (*).

The next lemma shows that all compact curves C on a minimal r.s.p.c. surface
V have a nontrivial section of ωV |C .

Lemma (2). Let V be a minimal r.s.p.c. surface, and Ai be as in Proposition
(4). Then H0(Ai, ωV |Ai) 6= 0.
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Proof. The degree of the canonical line bundle is given by:

degAi(ωV |Ai) = KV .Ai = 2pa(Ai)− 2−A2
i

Therefore degAi(ωV |Ai) ≥ pa(Ai) if pa(Ai) > 0 since A2
i < 0 ( Ai are exceptional)

and if Ai is a nonsingular rational curve with A2
i < −2. The only remaining case

is the (-2) nonsingular rational curves, for which degAi(ωV |Ai) = 0, hence ωV |Ai is
the trivial bundle and we are done.

The conclusion of this section is:

Corollary (4). Let V be a minimal r.s.p.c. surface and ω : V → Q be
the C∞ trivial deformation of Proposition (2) induced from a 1-convex versal de-
formation ω : U → Q. Then there exists a compact curve C on V and a µ ∈
H0(ω−1(Q′), ωV/Q), where Q′ is a Stein neighborhood of q0 in Q, such that µ|C 6= 0.

Proof. Proposition (4), Theorem (4) and Lemma (2) imply the existence of
µ ∈ H0(ω−1(Q′), ωU/Q) with µ|A1 6= 0, now restrict µ to ω−1(Q′) (recall that
V ⊂ U) and we are done.

3.2. Existence of Sufficient Deformations.

Corollary (4) shows that there exists an element µ ∈ H0(ω−1(Q′), ωV/Q) and
a curve C on V such that µ|C 6= 0. The next lemma shows, in particular, that
there exists a deformation of V inducing a linear functional on H0(C,ωV |C), as in
section 2.2, that acts nontrivially on µ|C .

Lemma (3). Let C be a reduced curve on a r.s.p.c. surface V . Then the map
induced from (2) and (9):

σC : H1(V,ΘV )→ H1(C,ΦC)

is surjective.

Proof. By the exact sequence (2), we have:

H1(V,ΘV )� H1(C,Θ|C)
because H2(V,F) = 0, for F coherent sheaf.

Since C is a local complete intersection, we have:

(6) 0→ I/I2 → Ω1
V |C → Ω1

C → 0

Applying homOC (−,OC) to the sequence, gives:
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(7) 0→ ΘC → Θ|C → Φ→ Ext1OC (Ω1
C ,OC)→ 0

Due to C being reduced, at nonsingular points Ω1
C is locally free. Therefore

Ext1OC (Ω1
C , OC) is a sheaf with support only at the singular points and:

H1(C, Ext1OC (Ω1
C ,OC)) = 0

Break (7) in two:

0→ ΘC → Θ|C → N → 0

0→ N → Φ→ Ext1OC (Ω1
C ,OC))→ 0

From the long exact sequence for cohomology of both sequences, we have:

H1(C,Θ|C)� H1(C,Φ)
and therefore the surjectivity of σ.

3.3 Topological Characterization of the Exceptional Set.

The results presented below describe the relationship between the homology
classes of the exceptional curves along a deformation.

Lemma (4). The homology classes [Aq,i] of the irreducible components of the
exceptional set Aq are linearly independent in H2(Vq,Q).

Proof. Suppose they were not linearly independent then w.l.o.g. we would
have:

p∑
i=1

ai[Aq,i] =
r∑

i=p+1

ai[Aq,i] ai > 0

Let π : Vq → V ′q be the blow down of the curve Aq,1+...+Aq,p and π∗ : H2(Vq,Q)→
H2(Vq,Q) be the induced map in homology.

Then π∗(
∑p
i=1 ai[Aq,i]) = 0 but π∗(

∑r
i=p+1 ai[Aq,i]) 6= 0 since it is the homol-

ogy class of a positive linear combination of subvarieties of a projective manifold
(V ′q is a domain in a projective surface) and these can not be trivial, contradiction.

Let V be a r.s.p.c. surface and ω : V → Q be a C∞ trivial deformation
of V = ω−1(q0). Since we are only interested in the exceptional curves in Vq
for q ∈ Q close to q0, we may assume that Q is such that the canonical map
iq∗ : H2(Vq,Z) → H2(V,Z) is an isomorphism for all q ∈ Q, where iq is the
inclusion iq : Vq ↪→ V.
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Proposition (5). Using the hypothesis describred above. Let Fq be the sub-
group of H2(V,Z) generated by the homology classes iq∗[Aq,i], where the Aq,i are the
irreducible components of the exceptional set Aq. Then Fq ⊂ Fq0 , for q sufficiently
close to q0.

Proof. To see this, we notice that since V is a r.s.p.c. surface there exists a
C∞ function φ such that {φ = 0} = Aq0 and φ is a s.p.s.h. function on φ > 0.

The function φ ”extends” to φ on V × Q ' V such that φ|{x∈V |φ(x)>ε}×q is
s.p.s.h., by shrinking Q we can make ε arbitrarily small. This implies that all Aq
are contained in a set B ⊂ V that is diffeomorphic to {x ∈ V |φ(x) < ε} × Q. If
we make ε sufficiently small B has a homological basis given by the irreducible
components of Aq0 , we are done.

3.4. The Proof.

Proof of Theorem (2). We assume that the exceptional set has only one
connected component, the general case follows from this one. To get Theorem (2)
we do sucessive small deformations each one reducing the number of irreducible
components of the exceptional set until there are none.

Let ω : V → Q be a versal C∞ trivial deformation as in Corollary (4) and Q is
such that the conditions described before Proposition (5) are satisfied.

Let Aq =
⋃r
i=1Aq,i be the reduced exceptional set of Vq = ω−1(q) and Aq,i its

irreducible components. We will call Aq0,1 the semiregular curve A1 of Vq0 described
in Proposition (4).

From Corollary (4) follows the existence of an element µ ∈ H0(V, ωV/Q) with
µ|Aq0,1 6= 0. Lemma (3) asserts that there exists an α ∈ H1(V,ΘV ) such that:

σ′Aq01
(α)(µ|Aq0,1) 6= 0

As in 2.1 pick an embedding γ : ∆ → Q such that the Kodaira-Spencer map

for the induced family satisfies: ρ0(
∂

∂t
) = α, (this is possible since Q is the base

of a versal deformation described in Theorem (F)). Let I : V × ∆ → V be a
diffeomorphism preserving the fibering. Then by Proposition (3) for t 6= 0:

(8)
∫
I(Aq0,1×t)

µt 6= 0

where µt = µ|Vt .
Proposition (5) and Lemma (4) states that:

Ft ⊂ F0

Hence, dimFt ≤ dimF0 = r. Suppose we have equality for t 6= 0 sufficiently small
then [I(Aq0,1 × t)] =

∑r
i=1 ai[At,i], ai ∈ Q, but since:∫

At,i

µt = 0

that would contradict (8). From this follows:
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(9) dimFt < dimF0

Pick Vt for any sufficiently small t 6= 0, by (9) and Lemma (4) the number of
irreducible components of its exceptional set is strictly less than for V , completing
the inductive step.

4. An Application to Contact Structures

First we recall what are contact structures on a three dimensional manifold
M , these are plane-fields on M that are completely nonintegrable. Therefore a
potential class of examples are the compact smooth level sets of s.p.s.h. functions
of a Stein surfaces X, where the plane-field is given by the J-invariant 2-planes in
TM , where J is the almost complex structure of X. This plane-field is not integrable
because no analytic curve can have an open subset of it contained in a level set of
a s.p.s.h function. We also recall:

Definition. Two contact structures on M are diffeomorphic if there is a dif-
feomorphism that sends one hyperplane-field to the other hyperplane-field. Two
contact structures on M are isotopic if they are connected by a one-parameter fam-
ily of diffeomorphic contact structures.

Second we will reply to a question formulated by Eliashberg to the first author.
Let M be a compact three dimensional manifold. Let S (S′) be the set of isotopy
classes of contact structures on M that come from seeing M as a level set of a s.p.s.h.
function on a smooth Stein surface (on a Stein surface with isolated singularities
not in M). The question was: are the sets S and S′ distinct? The answer is no, as
the following theorem shows:

Theorem (5). Let M be a compact three dimensional manifold. Let S (S′) be
the set of isotopy classes of contact structures on M that come from seeing M as a
level set of a s.p.s.h. function on a smooth Stein surface (on a Stein surface with
isolated singularities not in M). The sets S and S′ are the same.

Proof. The set S′ is the same as the set of isotopy classes of contact struc-
tures on M that come from the canonical contact structures of level sets of s.p.s.h
functions of r.s.p.c surfaces since the resolution of the singularities preserves M and
the complex structure near it (we suppose M not passing through the singularities
of the surface).

Theorem (2’) says that a small deformation of a r.s.p.c. surface is Stein. There-
fore we always have a one parameter family of contact structures connecting an
element of S′ to an element of S, since in the deformation the level set defining M
remains a level set of a s.p.s.h function. The result then follows from the theorem
of Gray, [Gr], which says that if two contact structures are connected by a one
parameter family of contact structures then they are isotopic.
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For this and some questions on CR-structures see [B1].
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