MIDTERM 2 MATH 210 (FALL 2013)

Name:

Problem 1: Find the inverse of
$$A = \begin{bmatrix} 1 & -1 & -2 \\ 2 & -3 & -5 \\ -1 & 3 & 5 \end{bmatrix}$$
 and use it to solve $A\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.

Problem 2:	Problem 2:	a) Let $A =$	$\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \end{array} $	$2 \\ -3 \\ 1$	1 1 1].
			1	1	0	-1	1	
			0	1	-1	-3	1	

a) Find bases for the column space, row space and nullspace of A. b) Write all the possible bases for the column space of A using only columns of A.

Problem 3: Find a basis for each of the following 3 subspaces:

- a) The subspace of vectors (b_1, b_2, b_3, b_4) in \mathbb{R}^4 satisfying $b_1 = b_2$ and $b_4 = 2b_2$.
- b) The subspace consisting of all vectors **b** for which the system $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ **x** = **b** is solvable.

c) The subspace of all symmetric 2×2 matrices (it is a subspace of the vector space of all 2×2 matrices).

Problem 4: a) Using the cofactor formula find the determinant of

$$A = \begin{bmatrix} 2 & 0 & 4 & -1 \\ 1 & -2 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 4 & -2 & 0 \end{bmatrix}$$

b) What would be the determinant of the matrix B which is equal to A except in the 3rd column, the 3rd column of B is equal to the the sum of all the columns of A?

Problem 5: Let $A = \begin{bmatrix} 2 & 3 \\ \frac{-1}{2} & \frac{-1}{2} \end{bmatrix}$.

- a) Find the eigenvalues of A.
- b) Find the eigenspaces of A.

b) Find
$$\lim_{k\to\infty} A^k \begin{bmatrix} -1\\ 1 \end{bmatrix}$$
.