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Abstract: A closed symmetric differential of the 1st kind is a differential that locally is
the product of closed holomorphic 1-forms. We show that closed symmetric 2-differentials
of the 1st kind on a projective manifold X come from maps of X to cyclic or dihedral
quotients of Abelian varieties and that their presence implies that the fundamental group
of X (case of rank 2) or of the complement X \ E of a divisor E with negative prop-
erties (case of rank 1) contains subgroup of finite index with infinite abelianization.
Other results include the identification of the differential operator characterizing closed
symmetric 2-differentials on surfaces (which provides in this case a connection to flat
Riemannian metrics) and showing that if a closed symmetric 2-differential w on X is the
product of two closed meromorphic 1-differentials defining distinct foliations, then either
X has fibration over a curve of genus ≥ 1 or w is of the first kind.

0. Introduction

Our purpose is continue the study of the properties of symmetric tensors on algebraic
manifolds, with a special emphasis on the case of algebraic surfaces. The class which we
are interested in is composed of what we call closed symmetric differentials, which can
be considered as a natural generalization of closed holomorphic 1-forms. The presence of
holomorphic 1-forms imposes topological restrictions on the manifold, our ultimate goal
is to establish a similar but weaker connection between the existence closed symmetric
differentials and the topology of the manifold.
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A closed symmetric differential is a symmetric differential which can be decomposed
as a product of closed holomorphic 1-forms on a neighborhood of some point of the
manifold. If differential has local decompositions of these type near every point of the
manifold, then the closed differential is said to be of the 1st kind. A feature of closed
symmetric differentials is that they are connected to (possibly degenerate) webs on the
complex manifold while non closed symmetric differentials do not have necessarily this
connection if the manifold has dimension greater than 2. Closed symmetric differentials
are not necessarily of the 1st kind for degrees greater than 1. In section 2.1 we provide
examples for each of the 3 causes of this failure. One of the causes of this failure has
a striking manifestation, some closed symmetric differentials (holomorphic) only allow
decompositions into products of closed 1-forms if some of the 1-forms have essential
singularities.

In this article we study the case of degree 2 which is the first interesting case to con-
sider and has some special features such as: 1) the local decompositions of a differential
as a product of closed holomorphic 1-forms have rigidity properties for all degrees but
for degree 2 this rigidity has the maximum strength, i.e. the 1-forms in the decomposi-
tion are unique up to a multiplicative constant; 2) symmetric 2-differentials on complex
manifolds are analogous to Riemannian metrics in differential geometry. Using feature 2)
we identify in theorem 2.1 the differential operator that characterizes closed symmetric
2-differentials on surfaces. This differential operator is just the natural translation of
the Gaussian curvature operator to our case. We observe that a closed symmetric 2-
differential on a surface is the direct analogue of the notion of a flat Riemannian metric
on a real surface.

The rigidity of the local decompositions of a closed symmetric 2-differential as product
of closed holomorphic 1-forms gives for differentials of 1st kind w on a projective manifold
X a dual pair (Cw,C∗w) of local systems of rank 1 on X or on an unramified double cover
of X (depending on whether w is split or non split). Moreover, 2-differential w of the 1st
kind can be decomposed as w = φ1φ2 the product of twisted closed 1-forms φi ( φ1 twisted
by Cw and φ2 twisted by C∗w). The work Beauville, Green-Lazarsfeld and Simpson on
the cohomology loci (see references) will be an important tool used to establish that the
local systems Cw are be torsion, which is one of the key ingredients in the proof of the
result describing the geometric origins and features of symmetric 2-differentials of the
1st kind:

Theorem 3.2. Let X be a smooth projective manifold with w ∈ H0(X,S2Ω1
X) a non-

trivial rank 2 closed differential of the 1st kind. Then:

i) X has a holomorphic map to a cyclic or dihedral quotient of an abelian variety
from which the symmetric differential w is induced from. More precisely, there is a
commutative diagram
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X ′
aX′−−−−→ Alb(X ′)

f

y q

y
X

a−−−−→ Alb(X ′)/G

and f∗w = a∗X′ω with ω ∈ H0(Alb(X ′), S2Ω1
Alb(X′))

G where f : X ′ → X is an unramified

G-Galois covering and aX′ : X ′ → Alb(X ′) the Albanese map. The group G is Zm if w
is split and D2m if w is non split.

ii) π1(X) is infinite, more precisely ∃Γ C π1(X) such that π1(X)/Γ is finite cyclic or
dihedral and its abelianization, Γ/[Γ,Γ], is an infinite group.

In the section 2.3 we prove that if a closed 2-differential is of the 1st kind outside of
codimension 2, then it is of the 1st kind everywhere. We also show that the locus where
a closed 2-differential fails to be of the 1st kind is contained in the divisorial part of the
degeneracy locus, i.e. the locus of all points where the 2-differential fails to define two
distinct hyperplanes on the tangent space.

In our last result, theorem 3.3, we describe the geometry of closed symmetric 2-
differentials that are the product of two closed meromorphic 1-forms. There some points
of interest in this result, one of them is that non-holomorphic 1-forms can occur as
factors, the other is that this occurrence which a priori could invalidate any non triviality
results on the fundamental group (closed meromorphic 1-differentials can exist in simply
connected manifolds) in fact implies the geometric/topological properties 2) and 3) below
which imply a large fundamental group.

Theorem 3.3. Let X be a smooth projective manifold and w ∈ H0(X,S2Ω1
X) be a closed

differential of rank 2 with a decomposition:

w = φ1φ2 with φi ∈ H0(X,Ω1
X,cl(∗)) (3.7)

where Ω1
X,cl(∗) is the sheaf of closed meromorphic 1-forms. Then the Albanese dimension

of X ≥ 2 and either:

1) w = φ1φ2 with φi ∈ H0(X,Ω1
X), or

2) X has a map to a curve of genus ≥ 1, f : X → C and w = (f∗ϕ + u)f∗µ, where
u ∈ H0(X,Ω1

X), ϕ ∈ H0(C,Ω1
C(∗)) and µ ∈ H0(C,Ω1

C).

1. Preliminaries

3



A symmetric differential of degree m, w ∈ H0(X,SmΩ1
X), defines at each point x ∈ X

an homogeneous polynomial of degree m on the tangent space TxX. If X is a surface,
then w defines at each tangent space, TxX, m, not necessarily distinct, lines through the
origin. Around a general point on X, one obtains k ≤ m integrable distributions of lines
giving a k-web, i.e. a collection of k foliations. On higher dimensions this is no longer
necessarily the case, since the pointwise splitting of w(x) into linear factors might not
hold and even if such splitting occurs the distributions of hyperplanes in TxX defined
by w might not be integrable.

Let X be a complex manifold of dimension n. The Pn−1-bundle P(Ω1
X) over X,

π : P(Ω1
X) → X, and its tautological line bundles OP(Ω1

X)(m) are intimately con-
nected to the theory of symmetric differentials. There is in particular a natural bi-
jection between H0(X,SmΩ1

X) and H0(P(Ω1
X),OP(Ω1

X)(m)). To a symmetric differential

w ∈ H0(X,SmΩ1
X) on X one can associate an hypersurface:

Zw ⊂ P(Ω1
X) (1.1)

such that Zw ∩ π−1(x) is an hypersurface of degree m (Z can also be viewed as the zero
locus of the section of OP(Ω1

X)(m) corresponding to w).

The hypersurface Zw can be reducible and non reduced. The irreducible components
of Zw are called horizontal if they dominate X via the map π and a vertical otherwise.
Hence:

Zw = Zw,h + Zw,v (1.2)

with Zw,h and Zw,v the union of respectively the horizontal and the vertical irreducible
components.

Definition 1.1. A symmetric differential w ∈ H0(X,SmΩ1
X) on a smooth complex

manifold X is said to be:
a) split if either one of the following equivalent statements holds:

i) w = φ1...φm with φi meromorphic 1-differentials.

ii) Zw,h is the union of m irreducible components.

b) split at x if there is a neighborhood of x on which w splits (or equivalently w(x) ∈
SmΩ1

X,x is a product of linear forms).

Gauss lemma implies that if w is split at x, then there is a neighborhood Ux of x where w
is the product of holomorphic 1-forms. A split symmetric differential is therefore locally
the product of holomorphic 1-forms but the converse does not necessarily hold (e.g. Zw
is an unramified cover of X, with degree > 1). If w splits, then w = µ1 ⊗ ... ⊗ µm
with µi ∈ H0(X,Ω1

X ⊗ Li) where the Li line bundles on X with
∏
Li = O(−D) with

π∗D = Zw,v.
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The following fact will be used later, if the symmetric w ∈ H0(X,S2Ω1
X) is split at a

general point but it is not split, then there is a generically 2-1 ramified map sw : X ′ → X
for which s∗ww is split and X ′ is smooth.

Definition 1.2. A symmetric differential w ∈ H0(X,SmΩ1
X) on a smooth complex

manifold X that splits at the general point is said to:

i) have rank k, rank(w) = k, if at a general point there are k distinct foliations
defined by w (the foliations are defined by the 1-forms φi in a local decomposition w|Ux

=
φ1...φm).

ii) have rank k at x, rankx(w) = k, if w(x) defines k distinct hyperplanes in P (Ω1
X,x).

iii) be degenerate at x if rankx(w) < m or w(x) = 0. The locus consisting of the
union of all points where w is degenerate is called the degeneracy locus of w, Dw.

The degeneracy locus Dw of a symmetric differential w ∈ H0(X,SmΩ1
X) on a sur-

face is the discriminant divisor of w which is defined locally where w|U = am(dz1)m +
am−1(dz1)m−1dz2 + ... + a0(dz2)m by the discriminant of w|U seen as a polynomial in
O(U)[dz1, dz2]. As a set Dw is the the union of the points x ∈ X such that Zw ∩ π−1(x)
has multiple points.

2. Closed 2-differentials and differentials of the 1st kind

2.1 General concepts.

Definition 2.1. A symmetric differential w ∈ H0(X,SmΩ1
X) on a smooth complex

manifold is said to have:

1) a holomorphic (meromorphic) exact decomposition if:

w = df1...dfm fi ∈ O(X) (fi ∈M(X))

2) a holomorphic (meromorphic) exact decomposition at x ∈ X if there is a neighbor-
hood Ux of x where w|Ux

has a holomorphic (meromorphic) exact decomposition.

3) a split closed decomposition if w|U = φ1...φm with φi closed holomorphic 1-differentials
on a Zariski open U (the φi are not necessarily meromorphic on X).
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Definition 2.2. A symmetric differential w ∈ H0(X,SmΩ1
X) on a smooth complex

manifold X is said to be:

i) closed if w has a holomorphic exact decomposition at a general point of X.

ii) closed of the 1st kind if w has a holomorphic exact decomposition at all points of
X.

If w is a symmetric differential on a surface X, then there are always holomorphic
functions fi and f on a neighborhood of any general point of X, such that w = fdf1...dfm
holds. The condition of w being closed asks for the existence of functions fi such that
f can be made constant. For degree 2 this condition can be seen as a flatness curvature
type condition on w (see the next section).

For degree m = 1 the classes of closed and closed of the 1st kind differentials coincide.
A symmetric differential of degree 1, i.e. a holomorphic 1-form, which is closed in the
sense of definition 2.2 is also closed in the usual sense due to the principle of analytic
continuation. Poincare’s lemma implies that a closed 1-form must be locally exact, i.e.
of the 1st kind in the sense of definition 2.2. For degrees m ≥ 2 the two classes no longer
coincide. There are 3 consecutive levels of possible the failure of a closed symmetric
differential w to be of the 1st kind at x ∈ X, which will be illustrated by examples
below.

The first level of failure of a closed symmetric differential w to be of the 1st kind at
x ∈ X is the failing of w to split at x (1st kind must be split at every point by definition).

Example: (non-split at points) Let z1 be a holomorphic coordinate of Cn and f ∈ O(Cn),
set w = z1(dz1)2 − (df)2 . The differential is non split at all points in {z1 = 0} but it
is closed since any point y ∈ X \ {z1 = 0} has a neighborhood Uy where

√
z1 exists and

hence w has a holomorphic exact decomposition w|Uy = d( 2
3z

3
2
1 + f)d( 2

3z
3
2
1 − f).

If the differential is locally split at x, then the 2nd layer of failure is due to monodromy
around the locus where it fails to be of the 1st kind (which will be better understood in
section 2.3).

Example (monodromy): Let z ∈ O(U), u ∈ O∗(U) with dz ∧ du 6≡ 0 and U be ball
containing 0 ∈ Cn, set w := u−αdzd(zu) = dzα+1d(zu)−α+1 with α 6∈ Z. The 2-
differential w is split but it does not have a split closed decomposition at points in
{z = 0}. The reason for this is that there is a non trivial monodromy (in fact infinite
monodromy if α 6∈ Q) of the split closed decompositions of w about {z = 0}.

If the differential is both locally split at x and no monodromy occurs, then w has a
split closed decomposition at x and the 3rd level of failure is due to the singularities of
the the 1-differentials on the decomposition.
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Example: (singularities) This example shows that even essential singularities can occur,

w = e
z2

1+z1z2 dz1d[z1(1 + z1z2)]. The 1-differentials in the split closed decomposition are
unique up to constants, as it will shown in section 2.3, and the constants will cancel each
other so in fact the decomposition is unique and has the form

w = e
z2

1+z1z2 dz1d[z1(1 + z1z2)] = e−
1
z1 dz1e

1
z1(1+z1z2) d[z1(1 + z1z2)]

with essential singularities occurring on the closed 1-forms at {z1 = 0}.

Next are some cases and examples of globally defined closed symmetric differentials.

Example: the basic example of global closed symmetric differentials of the 1st kind
are the global symmetric differentials of degree 1 on compact Kahler manifolds (the
condition of compactness is essential). In the compact surface case one does not need
the Kahler condition, the differential is closed by a direct application of the Stoke’s
theorem. For higher order closed symmetric differentials of the 1st kind, we have the
elements w ∈ SmH0(X,Ω1

X) which are the products w = µ1...µm with µi ∈ H0(X,Ω1
X).

On abelian varieties every symmetric differential is a linear combination over C of
closed symmetric differentials. On the case of curves the space of symmetric differentials
of degree m is equal to H0(C, (Ω1

C)⊗m) = H0(C,mKC) and they are all closed.
One of its main themes of this article is the decomposition of a closed symmetric

differential as a product of closed 1-differentials with torsion coefficients, i.e. sections
of Ω1

C ⊗ Oχi with Oχi a flat line bundle. We proceed to consider the special case of
symmetric differentials on curves. Any symmetric differential w ∈ H0(C, (Ω1

C)⊗m) is
defined modulo an invertible constant by the zero divisor of w, (w)0. Hence if there is
a splitting of (w)0 into collections of (2g− 2)-points, then the splitting provides modulo
constants an unique decomposition of w as a product of twisted 1-differentials, w =∏m
i=1 φi, where φi ∈ H0(C,Ω1

C⊗Oχi) and
⊗m

i=1Oχi = O. Thus we have a finite number
of representations of w as a product of 1-differentials with torsion coefficients, namely
there are exactly ((2g − 2)m)!/((2g − 2)!)m such representations (modulo constants) if
we add multiplicities. However, if we want to represent w as a product of untwisted
1-differentials, i.e holomorphic 1-forms, then such representation does not exists for a
generic symmetric differential w.

Example (Bo-De11): All symmetric differentials w of rank 1 on a projective manifold
are closed.

Example: let g : Y → X be an unramified covering of X of degree m. Then the norm for
the map g of an holomorphic 1-form µ ∈ H0(Y,Ω1

Y ), ng(µ) ∈ H0(X,SmΩ1
X) is locally

exact. Locally ng(µ) is defined ng(µ)|U = df1...dfm where dfi = µ|Ui , g
−1(U) =

∏m
i=1 Ui

(U sufficiently small and the Ui are biholomorphic to U , so the fi can also be view on
U).
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Example: Let X be a projective manifold and f : X → C be a fibration onto a smooth
curve of genus ≥ 1, f : X → C, consider the w ∈ H0(X,S2Ω1

X) of the form w =
(f∗ϕ + u)f∗µ, where u ∈ H0(X,Ω1

X), ϕ ∈ H0(C,Ω1
C(∗)) and µ ∈ H0(C,Ω1

C) (Ω1
C(∗) is

the sheaf of meromorphic 1-differentials). All closed symmetric 2-differentials that are
the product of two closed meromorphic 1-forms are of the above form, some of these are
not of the 1st kind (see section 3.3 for all the details).

2.2 Differential operator for closed 2-differentials on surfaces.

Poincare lemma states that locally exact symmetric differentials w of degree 1 are the
solutions of the first order differential equation dw = 0, where d is the exterior derivative.
For higher degrees, we saw in the last section, the illustrative examples of how a sym-
metric differential that has almost everywhere a local holomorphic exact decomposition
can fail to have it at points where the differential is degenerate, i.e. in the discrimi-
nant locus Dw. The reasons for this failure, e.g. monodromy about the the divisor Dw

(giving a local cohomological obstruction to the existence of a holomorphic exact de-
composition), can not be detected via a differential operator. A differential operator can
only be expected to detect the existence of local holomorphic decompositions where the
symmetric differential is non degenerate, which by the way is enough to guarantee that
the symmetric differential is closed. The result of this section states that the property of
a symmetric 2-differential being closed is indeed determined by a differential operator.
We expect the same to happen for higher degrees (see the end of the section).

A symmetric 2-differential w ∈ H0(X,S2Ω1
X) is locally given by:

w(z)|U = a11(z)dz2
1 + a12(z)dz1dz2 + a22(z)dz2

2 (2.1)

with aij(z) ∈ O(U), can formally be considered as a (degenerate) ”complex metric” on
X. This perspective illustrates once more the distinction between rank 1 and rank 2.
Only the case of rank 2 benefits from this perspective, since rank 1 would correspond to
an everywhere degenerate metric. The reasoning that follows connecting the property of
being closed to flatness concerns rank 2 alone. The case of rank 1 is distinct and related
to the case of 1-forms, we have that locally near a general point w|U = f(z)(dz1)2 and w
is closed if and only if df ∧ dz1 = 0. Moreover, global arguments give that all symmetric
differentials of rank 1 defined on a compact Kahler manifold are closed, see [BodeO11].

The Gaussian curvature R operator on 2-dimensional real manifolds acts on sections
of S2(TR

xM)∗ representing metrics and sends them to functions. We call RC the natural
”complexification” of this operator (replace the ∂

∂xi
by ∂

∂zi
) which gives a map:
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RC : H0(X,S2Ω1
X)→M(X)

Associated with the symmetric differential of rank 2 w one has det(w) the section of
2KX , given locally by det(w)(z) = a11(z)a22(z)− 1

4a12(z)2.

Theorem 2.1. Let X be a smooth complex surface and w ∈ H0(X,S2Ω1
X) a symmetric

differential of rank 2. Set P2w = det(w)2RC. Then the nonlinear differential operator

P2 : H0(X,S2Ω1
X)→ H0(X, 4KX) (2.2)

is such that w is closed if and only if P2w = 0. Moreover, P2w = 0 implies is of the 1st
kind on X \Dw.

Proof. The complexified Gaussian curvature RC operator applied to the symmetric 2-
differential w which is locally expressed in the form (2.1) gives according to the Brioschi
formula:

RCw|U =
1

det(w|U )2
[

∣∣∣∣∣∣∣
− 1

2 (∂
2a11
∂z22

+ ∂2a22
∂z21
− ∂2a12

∂z1∂z2
) 1

2
∂a11
∂z1

1
2 (∂a12∂z1

− ∂a11
∂z2

)
1
2 (∂a12∂z2

− ∂a22
∂z1

) a11
1
2a12

1
2
∂a22
∂z2

1
2a12 a22

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0 1
2
∂a11
∂z2

1
2
∂a22
∂z1

1
2
∂a11
∂z2

a11
1
2a12

1
2
∂a22
∂z1

1
2a12 a22

∣∣∣∣∣∣∣]
Globally one obtains a meromorphic function RCw whose poles come from the zeros of
det(w)2 and (2.2) follows.

Every point outside of the discriminant locus of w, x ∈ X \Dw, has an open neighbor-
hood Ux with w|Ux = µ1µ2 with µi nowhere vanishing holomorphic 1-forms on Ux. The
existence of local non vanishing holomorphic integrating factors for nowhere vanishing
holomorphic 1-forms implies that after possibly shrinking once more Ux one has:

w|Ux
= f(u)du1du2 (2.3)

with f ∈ O(Ux) and (u1, u2) a holomorphic coordinate chart of Ux.

The ”Gaussian curvature” for ”complex metric” in the form (2.3) is given by:

RCw|Ux = − 2

f

∂2logf

∂u1∂u2
(2.4)

(f is non vanishing).

The condition RCw|Ux
= 0 (i.e. ∂2logf

∂u1∂u2
= 0) is equivalent to f(u) = f1(u1)f(u2) on

some ball Bx centered at x. Hence w has a holomorphic exact decomposition on Bx

w(u) = dF1(u1)dF2(u2)
9



where the Fi are the primitives of the fi. Hence the condition that P2w = 0 is equivalent
to the existence of a locally exact decomposition of w at every point in X \Dw, which
implies the theorem.

Question. Is there a differential operator Pm, m > 2, generalizing P2 and characterizing
closed symmetric m-differential on surface X?

The following is a sketch of an approach to show that such operators or better said
a family of such differential operators do exist. Let w be a symmetric m-differential on
a surface X. Locally on an sufficiently small open neighborhood Ux of a generic point
x ∈ X the symmetric tensor w is given by the product

w|Ux
= µm1

1 ...µmk

k

with µi ∈ H0(Ux,Ω
1
X) and µi ∧ µj nowhere vanishing for i 6= j. In this case w defines a

nonsingular k-web Ww, i.e. a family of k distinct foliations Fi on X which are pairwise
transversal and smooth on Ux. Let {zi}i=1,...,k with zi ∈ O(Ux) be a set of local functions
such that: 1) dzi are nowhere vanishing and 2) whose level sets are the leaves of the
foliations Fi on Ux. For such a collection {zi}i=1,...,k one gets the decomposition w|Ux

=

f
∏k
i=1 dz

mi
i with f ∈ O(Ux).

Let us consider the germ a nonsingular m-web W at a point x ∈ X defined by the
symmetric differential dz1...dzm with {zi}i=1,...,m a collection as above. Any germ wx of
a symmetric differential w at x with Wwx

=W can be written in the form

wx = f
m∏
i=1

dzi (2.5)

with f ∈ Ox. The jet of n-th order of a symmetric m-differential definingW is determined
by (n + 2)(n + 1)/2 coefficients (from the Taylor series of f), giving the dimension of
Jn(W, x), the space of n-th order jets of symmetric m-differentials defining the m-web
germ W. We denote by Jn(W, x)cl ⊂ Jn(W, x) the space of n-th order jets of closed
m-differentials defining the m-web W. The symmetric differential wx is closed if and
only if the function f is of the form f =

∏m
i=1 fi(zi). The n-th order jets of each function

fi (determined by n + 1 coefficients) are involved in the n-th order jet of the product
function f and the constant term of the product f imposes only one condition of the n-th
order jets of the fi. Consequently, Jn(W, x)cl is a subvariety of Jn(W, x) of dimension
at most mn+ 1 and hence it is a proper subvariety once n > 2m− 3.

Let Jn(m,x) (Jn(m,x)cl) be the set of n-th order jets of symmetric (closed) m-
differentials at x. From the previous discussion it follows that once n > 2m−3 the closure
J̄n(m,x)cl of set Jn(m,x)cl is a proper affine subvariety of Jn(m,x). On Jn(m,x) we
have the natural action of JnAut(B2) which is the group of n-th order jets of holomorphic
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automorphisms of the ball the 2-ball (B2). The group JnAut(B2) is an algebraic group
which is finite-dimensional nilpotent extension of GL(2). The subvariety J̄n(m,x)cl is
naturally invariant under the above action of JnAut(B2).

Let F be a regular function on Jn(m,x) which vanishes on J̄n(m,x)cl and satisfies
F (gwx) = χN (g)F (wx) ∀wx ∈ Jn(m,x) and ∀g ∈ JnAut(B2) with χ : JnAut(B2) →
GL(2) → C∗ natural projection and N ∈ N+ (the function F with the latter property
will be called a semi-invariant function relative to the group action). Standard invariant
theory gives that there is a finite set of semi-invariant regular functions F generating the
ideal of semi-invariant functions vanishing on J̄n(m,x)cl. Thus the function F defines a
nonlinear map of vector bundles over X:

F ′ : Jn(m,x)→ NKX

with F ′ mapping the (nonlinear) sub-fibration J̄n(m,x)cl into zero section of NKX . The
map F ′ on the n-th order jets of symmetric m-differential induces a differential operator
of order n

DF : H0(X,SmΩ1
X)→ H0(X,NKX)

which is trivial on the closed symmetric m-differentials which define nonsingular m-
webs. Our previous discussion stating that if n > 2m − 3, then J̄n(m,x)cl ( Jn(m,x)
implies that the n-th order differential operators just described will vanish on the closed
symmetric m-differentials but will be nontrivial on generic symmetric m-differentials.
Note that for the case of m = 2 this approach gives that we need to go to jets of order 2
to obtain a differential operator which vanishes on closed but not on generic symmetric
differentials (this matches result in theorem 2.1). The construction just described raises
up many interesting questions. The most fundamental questions are clearly how to find
such semi-invariant functions F and operators DF naturally for arbitary m and what
are the properties of such operators.

2.3 1st kind, local systems and global decompositions.

In this section we describe the analytical and topological objects (respectively twisted
holomorphic closed 1-forms and local systems) that can be associated to a closed sym-
metric 2-differential of the 1st kind and establish two basic facts about the locus where
a closed symmetric 2-differential fails to be of the 1st kind. In the next section we will
determine the properties and geometric consequences of these objects. We remind the
reader that the case of interest concerns 2-differentials of rank 2, the case of rank 1 will
be mentioned just in passing (for full details see [BoDeO11]).
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The local holomorphic exact decompositions of a closed symmetric differential w which
are the form

w|U = (df1)m1 ...(dfk)mk (2.6)

with dfi ∧ dfj 6≡ 0, have rigidity properties. The strength of the rigidity is dependent
on a notion coming from the theory of webs, the abelian rank of the k-web associated
to the differential w on U (for the notion of abelian rank see for example [ChGr78]). In
the case of interest, i.e. differentials of degree 2, then the decomposition (2.6) has the
strongest form of rigidity, i.e. the fi are unique up to a multiplicative constant and an
additive constant (in the case of rank 2 this is a manifestation of the triviality of the
abelian rank of the 2-web and will be directly explained below).

Remark 2.2. i) A rank 2 symmetric 2-differential of the 1st kind is always locally of
the form (2.6) (by definition).

ii) The case of a rank 1 symmetric 2-differential of the 1st kind is distinct, there
might be points where w can not be locally written in the form (2.6). The example to
have in mind is w = z1(dz1)2, which can not be put in the form (2.6) on any open set
intersecting {z1 = 0} (due to the absence of a well defined square root). In general, let
(w)0 =

∑
i liDi, be the irreducible decomposition of (w)0. The local decomposition of

type (2.6) exist in a neighborhood of every point outside of the divisor:

Ew =
∑

j∈{i|m-li}

Dj

The presence of Ew has an impact on the topological properties that can be derived
from the presence of a rank 1 symmetric differential (see section 3.1 and [BoDeO11] for
full details).

Lemma 2.3. Let X be a smooth complex manifold and w a symmetric 2-differential
having a closed decomposition, i.e. w|U = φ1φ2, with φi ∈ H0(U,Ω1

cl
) for some Zariski

open set U ⊂ X.

i) If w is of rank 2, then the closed decomposition of w is unique, up to factor
multiplication by constants. More precisely, if V ⊂ X is open and connected and
φ1φ2 = w|V = ψ1ψ2 are two closed decompositions of w|V , then:

ψi = ciφi c2 = c−1
1 ∈ C∗

ii) If w is of rank 1, then the closed decompositions of w are not unique. However,
any two decompositions of the form w = (φ)2 = (ψ)2 with φ, ψ ∈ H0(V,Ω1

cl
), V ⊂ X

open, are also unique, up to factor multiplication by constants (ψ = ±φ).

Proof. The case of rank 1 is clear. Consider the case where w is of rank 2. Let x ∈ X and
Ux be an open neighborhood of x where φi|Ux = dfi and ψi|Ux = dgi with fi, gi ∈ O(Ux).

12



The differential w being of rank 2 implies that we could have chosen x ∈ X such that
df1(x)∧df2(x) 6= 0, i.e. f1 and f2 can be viewed as local holomorphic coordinates around
x.

After reordering, one can make dfi ∧ dgi ≡ 0 for i = 1, 2. The relation dfi ∧ dgi ≡ 0
implies that near x the gi is a function of fi, gi = gi(fi). Hence dg1dg2 = df1df2

implies that g′1(f1)g′2(f2) = 1 must hold, which can only happen if g′1(f1) and g′2(f2) are
nontrivial constant functions (since df1(x)∧df2(x) 6= 0). So ψi = ciφi on a neighborhood
of x and hence on the whole V via the principle of analytic continuation.

Remark/Notation 2.4. A symmetric 2-differential of the 1st kind and rank 2 on a
complex manifold X is either split or there is an associated unramified double cover of
X

sw : X ′ → X (2.7)

such that s∗ww splits.

The ordering at each point of X of the two foliations associated to w might not be
possible to be made consistent on the whole X. In fact, any from any choice of local
orderings of the two foliations we get a representation of ρ : π1(X) → S2, the regular
cover associated with this representation is the desired cover sw.

The next proposition derives from a split 2-differential of the 1st kind w a dual pair
of local systems and a decomposition of w as a product of twisted closed holomorphic 1-
forms. This decomposition will be used in section 3 to derive the geometric/topological
properties of X. If the w is non split, then the remark above tell us that the pair
(X ′, s∗ww) has this decomposition from which we derive again the geometric/topological
properties of X.

Proposition 2.5. Let X be a smooth complex manifold and w ∈ H0(X,S2Ω1
X) be split

and closed of the 1st kind.

i) (rank 1) w has a decomposition on X \Ew, w|Ew = φ2 with φ ∈ H0(X \Ew,Ω1
cl
⊗C

Cw), where Cw is a local system of rank 1 associated to a 1-cocycle with values in Z2.

ii) (rank 2) w has a decomposition:

w = φ1φ2 (2.8)

with (φ1, φ2) ∈ H0(X,Ω1
cl
⊗C (Cw ⊕ C∗w)) where Cw is a local system of rank 1 whose

isomorphism class is uniquely determined (up to its dual) by w.

Proof. Case of rank 1, see [BoDeO11]. Case of rank 2. Let U = {Ui}i∈I be a covering of
X by holomorphic balls such that their intersection are contractible. This covering can
be chosen such that w|Ui = df1idf2i with f1i, f2i ∈ O(Ui) (1st kind) and df1i ∧ df1j ≡ 0
on Ui ∩ Uj (split). Applying Lemma 2.3, it follows that:
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dfαi = cα,ijdfαj with c2,ij = c−1
1,ij (2.9)

with cα,ij ∈ C∗ giving for each α = 1, 2 one 1-cocycle {ck,ij} ∈ Z1(U ,C∗). It follows
from (2.9) that:

(φ1, φ2) := ({df1i}i∈I , {df2i}i∈I) ∈ H0(X,Ω1
cl
⊗ (Cw ⊕ C∗w))

where Cw is the local system of rank 1 determined by the 1-cocycle {c1,ij}.
The pair of local systems (Cw,C∗w) is uniquely determined up to isomorphism (and

order, of course) by the 2-differential of the 1st kind w. Let V = {Vk} be another cover
of X for which the w|Vk

are holomorphically exact decomposable with w|Vk
= dg1kdg2k

and let W = {Wr} a Leray cover relative to locally constant sheaves of X such that
each Wr is such that Wr ⊂ Ui(r) and Wr ⊂ Vk(r). The induced decompositions w|Wr

=
df1i(r)|Wr

df2i(r)|Wr
and w|Wr

= dg1k(r)|Wr
dg2k(r)|Wr

following the argument above can
be used to derive two pairs of 1-cocycles with values in C∗ relative to the coverW. Since
by lemma 2.3 the following dfαi(r)|Wr = cα,rdgαk(r)|Wr holds for α = 1, 2, it follows
that the 1-cocycles are cohomologous and hence the pairs of associated local systems are
isomorphic.

Example: The presence of twisting, i.e. the nontriviality of the local system associated to
a closed symmetric differential, occurs. Let C1 and C2 be two curves with an involution
without fixed points. The surface Y = C1 × C2/Z2 where Z2 acts diagonally is such
that q(C1 × C2) − q(Y ) ≥ g(C1)/2 − 1 where g(C1) ≥ g(C2). So if g(C1) ≥ 6 there are
anti-invariant holomorphic 1-forms on C1 × C2 that are not proportional. If two such
forms define the same foliation, then they would define a fibration and would come from
a curve.

The next lemma shows that the locus where a closed differential fails to be of the 1st
kind has no isolated points and hence is of pure codimension 1.

Lemma 2.6. Let X be a complex manifold and w ∈ H0(X,S2Ω1
X) be closed of the 1st

kind outside of codimension 2. Then w is closed of the 1st kind on X.

Proof. Let Z ⊂ X be the locus of codimension at least 2 consisting of all the points of
X where w might fail to have holomorphic exact decomposition at. Pick any x ∈ Z and
Bx ⊂ X a ball centered at x. Let U = {Ui} be an open covering of Bx \ Z on which:

w|Ui = df1idf2i (2.10)

with f1i, f2i ∈ O(Ui). Since π1(Bx \ Z) = 0 we can order for each i the functions fki
such that on the intersections Uij dfki ∧ dfkj = 0. By lemma 2.3 the equalities

dfki = ck,ijdfkj
14



hold on Uij giving rise to two 1-cocycles (for k=1 and 2):

{ck,ij} ∈ Z1(U ,C∗)

These cocycles must be coboundaries since Bx \ Z is simply connected. Hence for each
k there is a 0-cochain {ck,i} with values in C∗ such that d(ck,ifk,i) = d(ck,jfk,j) on

Uij . One can make c2,i = c−1
1,i and hence w|Ui

= d(c1,if1i)d(c2,if2i). The collections

{d(ck,ifki)} glue to give two closed 1-forms on Bx \ Z:

µ1, µ2 ∈ H0(Bx \ Z,Ω1
cl

)

with w|Bx\Z = µ1µ2. Again since π1(Bx \ Z) = 0 it follows that the forms µi are
actually exact, i.e µi = dfi with f1, f2 ∈ O(Bx \ Z). Hartog’s extension theorem gives
the holomorphic extensions f̄1, f̄2 ∈ O(Bx) of respectively f1 and f2 and hence w has
the holomorphic exact decomposition w|Bx

= df̄1df̄2 on Bx proving the lemma.

Proposition 2.7. Let X be a smooth complex manifold and w ∈ H0(X,S2Ω1
X) a closed

differential of rank 2. Then the locus where w fails to be of the 1st kind is contained in
the union of the codimension 1 irreducible components of the degeneracy locus Dw.

Proof. The result follows from lemma 2.6 if one shows that the locus where w fails to be
of the 1st kind lies in Dw. Since X \ Dw is connected and the locus where w is of the
1st kind is open and nonempty, it is enough prove the claim that the set where w is of
the 1st kind is also closed in X \Dw.

So we proceed to prove the claim, that is: if x ∈ X \ Dw is such that all balls Bx
centered at x have a point y ∈ Bx where w has a holomorphic exact decomposition at,
then w also has a holomorphic exact decomposition at x. Since x ∈ X \Dw then w is
split at x and one has a ball Bx centered at x where

w|Bx
= µ1µ2

with µi ∈ H0(Bx,Ω
1
X). Using the hypothesis of the claim there is a point y ∈ Bx at

which w has a holomorphic exact decomposition at,

w|Uy
= dh1dh2 (2.11)

with hi ∈ O(Uy). It follows from (2.11) that the µi are completely integrable on the
whole Bx. Since µi(x) 6= 0 and the µi are completely integrable one can shrink Bx so
that the µi have first integrals ui ∈ O(Bx), i.e. µi = fidui with fi, ui ∈ O(Bx). Since
µ1 ∧µ2 is nowhere vanishing on Bx, again by shrinking Bx we can assume u1 and u2 are
two coordinates of a holomorphic chart (u1, .., un) for Bx. So one has

w|Bx
= h(u)du1du2
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(with h(u) = f1f2 ∈ O(Bx)). In the ball Bx there is a point y where w has a holomorphic
exact decomposition at, still describe this decomposition by (2.1). From dh1dh2 =
hdu1du2 on Uy it follows that hi = hi(ui) and h(u) = h′1(u1)h′2(u2) on Uy. This in turn
implies that h(u) = h(u1, u2) on the whole Bx and h(u1, u2) = h′1(u1)h′2(u2) on Uy. The
latter condition, as discussed in the proof of theorem 2.1, implies that that h satisfies the

differential equation ∂2logh
∂u1∂u2

= 0 on Uy and consequently on Bx. Hence the function h
satisfies the just mentioned differential equation on a neighborhood of x and it depends
only on z1 and z2, this implies h = h1(u1)h2(u2) on a neighborhood of x and w therefore
has a holomorphic exact decomposition at x.

3. Global geometric properties

In the first part of this section we determine the topological restrictions and geometric
features that are implied by closed symmetric 2-differentials of the 1st kind. Here we
are mainly interested in the properties of the fundamental group and the existence of
varieties (and maps into them) from which the differentials would be induced. The case
of 2-differentials of rank 1 follows from a previous work by the authors [BoDeO11], hence
the focus lies in the rank 2 case. In the last subsection, we describe the geometry of a
very natural of class of closed 2-differentials (not necessarily of the 1st kind), the class
consisting of products of two closed meromorphic 1-forms.

3.1 1st kind of rank 1.

In [BoDeO11] the authors studied symmetric differentials of rank 1 of all degrees on
projective manifolds. We present here, for the sake of completeness, the statement of the
result concerning the case of interest, i.e. degree 2, with a small modification concerning
the condition of being of 1st kind plus a few remarks. The main result of that paper
gives for the case of interest:

Theorem 3.1. [BoDeO11] Let X be a smooth projective manifold and w ∈ H0(X,S2Ω1
X)

a nontrivial differential of rank 1. Then:

i) w is closed on X and closed of the 1st kind outside of codimension 2.

ii)There is a cover of X which is generically 2 to 1 g : X ′ → X such that g∗w = µ⊗2

with µ ∈ H0(X ′,Ω1
X′).

iii) There is a holomorphic map from X to a Z2-quotient of an abelian variety with iso-
lated singularities aw : X → Aw/Z2, such that w = aw

∗(u) and u ∈ H0(Aw/Z2, S
m
orbΩ1

Aw/Z2
).
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iv) There is a 2-negative divisor E ⊂ (w)0 ⊂ X such that π1(X \E) is infinite. More
precisely, π1(X \ E) has a normal subgroup Γ of finite index for which π1(X \ E)/Γ is
cyclic and its abelianization, Γ/[Γ,Γ], is an infinite group.

Remarks: 1) A divisor D is said to be 2-negative if for all smooth surfaces S ⊂ X, the
divisor D ∩ S of S is negative.

2) item iii) states that geometrically a symmetric 2-differential of rank 1 (of 1st kind
or not) comes from an orbifold symmetric differential on a Z2-quotient of an abelian
variety. If w = µ⊗2 with µ ∈ H0(X,Ω1

X), then aX is the natural aw, where aX is the
Albanese morphism.

3) The divisor E lies inside the ramification divisor of the covering map g in ii) (which
in turn lies inside the union of the irreducible components of (w)0 with odd multiplicity).

4) For the case of closed 2-differentials of the 1st kind of rank 2 we will see below
that one obtains topological conditions for the whole complex manifold X, while in this
case (of rank 1) the conditions are for the complement X \ E. The reason for this
distinction is the fact that for 2-differentials of the first kind of rank 1 the rigidity of the
holomorphic exact decompositions at the points in E is weakened (outside of E one can
write w = (df)2 and such decomposition is unique at to multiplication by ±1 but for
example w = z3(dz)2 has no natural exact decomposition that is unique).

5) There are projective manifolds with a closed symmetric 2-differential of the 1st
kind and rank 1 which are simply connected (see [BoDeO11]).

3.2 1st kind of rank 2.

In order to extract the geometrical/topological properties associated to closed sym-
metric 2-differentials of the 1st kind we are going to take full advantage of their global
decomposition of as products of twisted closed 1-differentials. As seen in proposition 2.5,
if w is split w = φ1φ2, with (φ1, φ2) ∈ H0(X,Ω1

cl
⊗C (Cw ⊕C∗w)) where (Cw ⊕C∗w) is the

dual pair of local systems associated to w via the closed decomposition.
There are 2 elements in the above decomposition with a geometric meaning. One

is the dual pair of local systems (Cw,C∗w) giving us a pair of dual characters of the
fundamental group. The other are the twisted closed 1-differentials φi which topologically
define elements of 1st cohomology group of X with coefficients in the local system Cw
or C∗w and geometrically define special type of foliations, e.g. if Cw ⊗ O is non-torsion
the foliations are algebraic (it follows from the work Beauville, Green-Lazarsfeld and
Simpson on the cohomology loci (see references)) and if torsion the foliations share the
same properties as foliations defined by global holomorphic 1-forms. A key ingredient
of next result is that if X is projective, then the isomorphism class of the local system
Cw must be torsion. Hence in the projective case, if w is split , then up to finite
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cyclic unramified covers, rank 2 differentials of the 1st kind are just products of closed
1-differentials.

Theorem 3.2. Let X be a smooth projective manifold with w ∈ H0(X,S2Ω1
X) a non-

trivial rank 2 closed differential of the 1st kind. Then:
i) X has a holomorphic map to a cyclic or dihedral quotient of an abelian variety

from which the symmetric differential w is induced from. More precisely, there is a
commutative diagram

X ′
aX′−−−−→ Alb(X ′)

f

y q

y
X

a−−−−→ Alb(X ′)/G

and f∗w = a∗X′ω with ω ∈ H0(Alb(X ′), S2Ω1
Alb(X′))

G where f : X ′ → X is an unramified

G-Galois covering and aX′ : X ′ → Alb(X ′) the Albanese map. The group G is Zm if w
is split and D2m if w is non split.

ii) π1(X) is infinite, more precisely ∃Γ C π1(X) such that π1(X)/Γ is finite cyclic or
dihedral and its abelianization, Γ/[Γ,Γ], is an infinite group.

Proof. We start by considering the case when w is split. A split closed 2-differential of
the first kind and rank 2 has as stated in proposition 2.5 the decomposition:

w = φ1φ2 (3.1)

with (φ1, φ2) ∈ H0(X,Ω1
cl
⊗C (Cw ⊕ C∗w)) where Cw is a local system of rank 1 whose

isomorphism class is uniquely determined up to its dual by w. We will first show how
the theorem follows if the isomorphism class of local system Cw is torsion and then prove
that the class of Cw is indeed torsion.

Assume: the isomorphism class of Cw is torsion.

Associated to the local system Cw (whose isomorphism class is torsion) we have a
finite character ρw : π1(x) → C∗, with image a cyclic group Zm. The unramified cyclic
Galois cover

f : X ′ → X

associated to the character ρw is such that f∗Cw is isomorphic to the trivial local system
C on X ′.

First we show how to use the pullback of the decomposition (3.1) to X ′ to obtain the
decomposition

f∗w = µ1µ2
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with µi ∈ H0(X ′,Ω1
X′) (despite the f∗φi not being the 1-forms µi). Let U = {Ui}i∈I be a

Leray open covering of X ′ relative to locally constant sheaves. On the contractible open
sets Ui one has f∗φk|Ui

= dgk,i with gk,i ∈ O(Ui) for k = 1, 2. As in the proposition 2.5,

on the intersections Ui ∩Uj , dgk,i = bk,ijdgk,j , with b1,ij = b−1
2,ij and {b1,ij} the 1-cocycle

relative to U giving the local system f∗Cw. Since the local system f∗Cw is isomorphic
to the trivial local system C on X ′ there are 0-cochains relative to U with values in C∗,
{bk,i}i∈I (b1,i = b−1

2,i ), whose coboundaries are the 1-cocycles {bk,ij} for k = 1, 2. To

obtain the 1-forms µk giving f∗w = µ1µ2 one untwists the collections {dgk,i}i∈I using
the 0-cochains {bk,i}i∈I

µk = {bk,idgk,i}i∈I

The Zm action on the Galois covering space X ′ of X induces due to the universal
properties of the Albanese variety of X ′ an action on Alb(X ′) and the Albanese morphism
aX′ : X ′ → Alb(X ′) descends to the morphism a : X → Alb(X ′)/Zm asked in part i)
of the theorem. It follows from f∗w = µ1µ2 with µk ∈ H0(X ′,Ω1

X′) that f∗w = a∗X′ω
with ω ∈ H0(A,S2Ω1

X)Zm . Finally the topological consequence, part ii), is a direct
consequence of i).

Claim: the isomorphism class of Cw is torsion.

Case: isomorphism class of Cw is non torsion but Lw = Cw ⊗O is torsion.

Since X is a compact kahler manifold there is an unique isomorphism class of unitary
local systems giving any fixed flat line bundle. Let Cu be a unitary local system such that
Lw ' Cu ⊗ O. From Lw being torsion plus the uniqueness of the isomorphism class of
unitary local systems giving the trivial line bundle it follows that the isomorphism class of
Cu is also torsion. Therefore, as above, there is a finite unramified covering f : X ′ → X
such that f∗Cu ' C and hence f∗Lw ' O. Note that f∗Cw is not isomorphic to the
trivial local system.

Consider the pullback, f∗w = f∗φ1f
∗φ2, of the decomposition (3.1) to X ′. Let

U = {Ui}i∈I be a Leray open covering of X ′ relative to locally constant sheaves where
{f∗φk|Ui

}i∈I = {dgk,i}i∈I with gk,i ∈ O(Ui) and k = 1, 2. Hence

f∗w|Ui = dg1,idg2,i (3.2)

On the intersections Ui ∩ Uj , dgk,i = bk,ijdgk,j , with {b1,ij} the 1-cocycle relative to U
giving the local system f∗Cw and b1,ij = b−1

2,ij .

The first paragraph of this case tells us that while the cohomology class [{b1,ij}] ∈
H1(X ′,O∗) is trivial, the cohomology class [{b1,ij}] ∈ H1(X ′,C∗) is nontrivial. Let
{hi}i∈I be the 0-cochain with values in O∗ whose coboundary is {b1,ij} then set
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µ1 = {hidg1,i}i∈I and µ2 = {h−1
i dg2,i}i∈I

By construction both collections {hidg1,i}i∈I and {h−1
i dg2,i}i∈I match on the intersec-

tions making µk ∈ H0(X ′,Ω1
X′) of k = 1, 2. Since X ′ is compact kahler dµk = 0 and

hence

{hidg1,i}i∈I = {dĝ1,i}i∈I and {h−1
i dg2,i}i∈I = {dĝ2,i}i∈I (3.3)

for some ĝ1,i, ĝ2,i ∈ O(Ui). Therefore we get for each Ui

f∗w|Ui = dĝ1,idĝ2,i (3.4)

and end up with two holomorphic exact decompositions of w|Ui
, (3.2) and (3.4). Since w

is of rank 2, it follows from lemma 2.3 that the hi are actually constant. Hence {hi}i∈I
is 0-cochain with values in C∗ but this leads to [{b1,ij}] ∈ H1(X,C∗) being trivial, a
contradiction.

Case: Lw (and Cw) is non-torsion.

In this case we will use the geometric properties of twisted holomorphic differentials
which were studied in [GrLa87], [Be92], [Si93] and [Ar] to understand the cohomology
locus S1

m(X) = {L ∈ Picτ (X)|dimH1(X,L) ≥ m}, where Picτ (X) is the variety of line
bundles with trivial Chern class.

Consider an irreducible component Z of S1
m(X) containing Lw withm = dimH0(X,Lw)

and let α ∈ H1(X,Lw) be the image of φ2 from (3.1) via the complex anti-linear isomor-
phism

H0(X,Ω1
X ⊗ L∗w)→ H1(X,Lw) (3.5)

provided by conjugation. The work of Simpson [Si93] states that since the line bundle
Lw is non-torsion, the variety Z must positive dimensional. By the construction hypoth-
esis of Z one has that dimH1(X,L) ≥ dimH1(X,Lw) (in fact equality holds due to
Grauert’s semi-continuity theorem) for L in Z hence the class α is preserved under small
deformations of Lw along Z. Using the work of [GrLa87] on the deformation theory
of line bundles in S1

m(X), the class α being preserved by small deformations along Z
implies that

φ2 ∧ u1 = 0 (3.6)

where u1 ∈ H0(X,Ω1
X) is the conjugate of v1 ∈ TL∗wPic

τ (X) = H1(X,O) giving a 1st
order deformation of Lw in Z preserving α.

Beauville [Be92] obtained a Castelnuovo-De Franchis type theorem for twisted forms
from the condition φ2 ∧ u1 = 0. The Beauville-Castelnuovo-De Franchis theorem states
that there is a connected fibration f1 : X → C1, C1 a smooth curve, such that:
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1) u1 ∈ f∗1H0(C1,Ω
1
C1

)

2) Lw, L
∗
w ∈ Picτ (X, f1)

where Picτ (X, f1) is the subvariety of Picτ (X) consisting of line bundles whose restric-
tions on the smooth fibers of fk are trivial. The conditions (3.6) and 1) imply that the
fibers f1 are the leaves of the foliation defined by φ2.

Now repeat the previous argument replacing the line bundle Lw by the line bundle
L∗w and obtain a map f2 : X → C2, where C2 is a smooth curve, such that the fibers of
f2 are the leaves of the foliation defined by φ1 and Lw, L

∗
w ∈ Picτ (X, f2).

In conclusion, we have that the non-torsion line bundle Lw is trivial along the smooth
fibers of both fibrations f1 : X → C1 and f2 : X → C2. This can only happen if the
fibrations share all fibers and hence the foliations φ1 and φ2 have the same leaves, which
can not happen since w has rank 2.

If the symmetric differential w is non split, then consider the unramified double cover

sw : X ′′ → X

described in the remark 2.4 which was built such that (sw)∗w is split. Apply the previous
results for the pair (X ′′, (sw)∗w) to obtain an unramified Zm covering f : X ′ → X ′′ such
that (sw ◦f ′)w = µ1µ2 with the µi ∈ H0(X ′,Ω1

X′). The covering f := (sw ◦f ′) : X ′ → X
is an unramified Galois cover of X with Galois group D2m and the result follows as above.

3.3 Products of closed meromorphic 1-differentials.

In this section we describe the geometry associated to closed holomorphic symmetric
2-differentials w of rank 2 which are the product of two closed meromorphic 1-forms,
w = φ1φ2. We show that w might not be of the 1st kind, but in this case there must
exist a fibration over a curve of genus ≥ 1 and the Albanese dimension of X will (still)
be greater or equal to 2.

Theorem 3.3. Let X be a smooth projective manifold and w ∈ H0(X,S2Ω1
X) be a closed

differential of rank 2 with a decomposition:

w = φ1φ2 with φi ∈ H0(X,Ω1
X,cl(∗)) (3.7)

where Ω1
X,cl(∗) is the sheaf of closed meromorphic 1-forms. Then the Albanese dimension

of X ≥ 2 and either:

1) w = φ1φ2 with φi ∈ H0(X,Ω1
X), or

2) X has a map to a curve of genus ≥ 1, f : X → C and w = (f∗ϕ + u)f∗µ, where
u ∈ H0(X,Ω1

X), ϕ ∈ H0(C,Ω1
C(∗)) and µ ∈ H0(C,Ω1

C).
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Proof. If the differentials φi have no poles, then 1) holds and the Albanese dimension is
≥ 2 since φ1∧φ2 6≡ 0. In the case the φi have poles, we can assume that (φi)0∩(φi)∞ = ∅
for i = 1, 2, where (φi)0 is the divisorial component of the zero locus of φi. This follows
from the next lemma and the that fact that if 2) holds for a pair X ′ and σ∗w, where
σ : X ′ → X is a modification of X, then it also holds for the pair X and w.

Lemma 3.4. Let X be a smooth projective manifold and φ ∈ H0(X,Φ1
X(∗)) be a closed

meromorphic 1-differential on X. Then there is a modification of X σ : X ′ → X such
that:

(σ∗φ)0 ∩ (σ∗φ)∞ = ∅

and both divisors are normal crossings divisors.

Proof. There is a map σ : X ′ → X consisting of a finite sequence of blow ups such that
the union of the divisor of poles and zeros of σ∗φ is a divisor with normal crossings.
Locally near any x ∈ (σ∗φ)0 ∩ (σ∗φ)∞ the closed differential σ∗φ is of the form

σ∗φ|Ux
= c

dz1

z1
+ df

where (z1, ..., zn) is a local chart near x such that (σ∗φ)0 = {z2 = 0}, c ∈ C and
f ∈ M(Ux). First observation is that c = 0 (no logarithmic pole), since σ∗1φ|{z2=0} = 0
implies the residue of σ∗φ along {z1 = 0} is 0. So x ∈ (df)0 ∩ (df)∞ must be a point of
indeterminancy of f . After a finite number of further blowing ups one can resolve the
indeterminancies of f and the result follows (note that this lemma is not true without
the assumption that φ is closed).

Assume from now on that the differential φ1 has poles. Denote by

P ⊂ (φ1)∞

the support (a reduced divisor) of a connected component of (φ1)∞. Since w = φ1φ2 is
holomorphic, then

P ⊂ Z ⊂ (φ2)0

where Z is the support of the connected component of (φ2)0 containing P .

The following shows how the presence of P (and then Z) implies the existence of a
fibration with P = Z as a set theoretic fiber and φ2 is induced from the base of the
fibration.

Since Z is a closed analytic subvariety, Z has a neighborhood U such that Z is a
deformation retract of U (moreover, due to (φ2)0 ∩ (φ2)∞ = ∅, U can be chosen so that
(φ2)∞ ∩ U = ∅). This implies that the periods of φ2 on U are just the periods of φ2

on Z and hence they all vanish and we can integrate φ2 to get a holomorphic function
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f̂ =
∫
φ2 on U . By construction Z is contained in a level of f̂ , since Z ⊂ (φ2)0. In fact,

we have more:

Claim: Z is a connected component of a level set of f̂ .

We reduce the problem to dimension 2. Let S be a general 2-dimensional complete
intersection of X, P ′ = P ∩ S and Z ′ = Z ∩ S. Suppose that the claim does not hold,

then Z ′ is not a connected component of a level set of f̂ |S∩U . A slight modification of
the Zariski’s lemma (lemma 8.2 of [BHPV03]) gives that Z ′ is a negative divisor. This
leads to a contradiction since we have P ′ ⊂ Z ′ and

Subclaim: P ′ is not a negative divisor.

Assume P ′ is negative. Let P ′ =
∑m
r=1 P

′
r be the irreducible decomposition of P ′ and

U ′ ⊂ S a sufficiently small open neighborhood of P ′ such that (φ1|S)∞ ∩ U ′ = P ′. Set
iS : S ↪→ X to be the inclusion map and

φS,1 := i∗Sφ1

Note that P ′ is the support of one of its connected components of (φS,1)∞ .
First we show that the differential φS,1 is of the 2nd kind, i.e. it does not have

residues, on U ′. The residues of φS,1 occur at the divisors D for which the complex
number c = 1

2πi

∫
γ
φS,1, where γ is a simple loop around D, is nontrivial (c is then called

the residue of φS,1 at D). The residues of φS,1 on U ′ can only occur at the irreducible
components P ′r of P ′. Since the simple loops γr around the P ′r are torsion in H1(U ′\P ′,Z)
([Mu61]) this implies that φS,1 has no residues on U ′ (cr = 1

2πi

∫
γr
φS,1 = 0).

The differential φS,1 being of the 2nd kind on U ′ implies that there is a Leray open
covering U = {Ui} relative to locally constant sheaves of U ′ such that:

φS,1|Ui
= dgi (3.8)

with gi ∈M(Ui) and that

(φS,1)∞ ∩ U ′ =
m∑
r=1

nrP
′
r (3.9)

and nr ≥ 2 for all r. Set P ′′ =
∑m
r=1(nr − 1)Pr. It follows from (3.8) and (3.9) that

(gi)∞ = P ′′|Ui
. If {hi = 0}, hi ∈ O(Ui), are the equations defining the divisor P ′′, then

gi =
vi
hi

with vi ∈ O(Ui) such that vi|Pr 6≡ 0. It follows from (3.8) that on Ui∩Uj the equalitygi =
gj + dij holds with dij ∈ C and therefore also:

vi =
hi
hj
vj + dijhi (3.10)
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According to (3.10) the collection {vi} gives a section:

t := {vi} ∈ H0(P ′′,OP ′′(P ′′))

which does not vanish identically on any irreducible component P ′r of P ′′. Hence P ′r.P
′′ ≥

0 for all r and then by linearity one has (P ′′)2 ≥ 0 which contradicts the assumption
that P ′ is negative and ends the proof of the claim.

Assume Z is a connected component of the level set f̂−1(0). Using the compactness

of Z we can shrink U so that Z = f̂−1(0) as a set. The open mapping theorem plus Z
being compact imply that there is an open disc 0 ∈ ∆ ⊂ C such that

f̂ |f̂−1(∆) : f̂−1(∆)→ ∆ (3.11)

is a proper fibration onto ∆ with Suppf̂−1(0) = Z.

The local fibration f̂ |f̂−1(∆) : f̂−1(∆)→ ∆ implies the existence of a global connected

fibration f : X → C where C is a smooth curve and P = Z occur (set theorectically) as
a fiber and φ2 = f∗µ with µ ∈ H0(C,Ω1

C(∗)).
The fact that the local fibration (3.11) implies the existence of a global fibration is a

well known result. For completeness we mention a result of this type (stronger than we
need) that asserts that if X has 3 connected effective divisors that are pairwise disjoint
and belong to the same rational cohomology class in H2(X,Q), then X has a unique
connected fibration onto a smooth curve with the divisors as fibers, see [To00].

The conclusion that φ2 = f∗µ for some µ ∈ H0(C,Ω1
C(∗)) is a consequence of

φ2 ∧ f∗η = 0 (3.12)

where η is any meromorphic 1-form on C. The vanishing of φ2 ∧ f∗η holds since by
construction the fibers of f are leaves of the foliation defined φ2. It follows from (3.12)
that φ2 = gf∗η for some g ∈ M(X), but since both φ2 and f∗η are closed, one has
dg ∧ f∗η = 0, hence g is constant along the fibers of f and comes from ĝ ∈M(C) giving
φ2 = f∗µ with µ = ĝη.

The fibration f : X → C has also the crucial property that the polar divisors of
both differentials φ1 and φ2 occur as fibers. More precisely, one has that the connected
components of (φ1)∞ and (φ2)∞ occur as full fibers of f . This follows from the connected
components of (φ1)∞ and (φ2)∞ not being exceptional and the fact that, other than P ,
they can not intersect the fiber of f , P = Z.

The next step is to show that φ2 is actually holomorphic. Suppose (φ2)∞ 6= ∅,
then the argument that gave the existence of the connected fibration f : X → C from
(φ1)∞ 6= ∅ gives that there is a connected fibration f ′ : X → C ′ such that φ1 = f∗µ′

with µ′ ∈ H0(C,Ω1
C(∗)). According to the previous paragraph both connected fibrations

f : X → C and f : X ′ → C ′ share the fiber P = Z. This implies that the fibrations
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must coincide (see next paragraph). However the fibrations can not coincide since this
would imply that symmetric differential w would not be of rank 2.

Each fibration gives a holomorphic function on a neighborhood U of P . If the fibrations
were distinct, then only finitely many level sets of the two functions would be common
to both functions (the level sets of a function are fibers of the corresponding fibration).
Hence the function coming from one fibration would provide a non constant holomorphic
function on some fiber of the other fibration, which can not happen. This forces the
connected fibrations f and f ′ to coincide.

In the final step to prove 2) we obtain the description of the differential φ1. The
differential φ1 induces on the general fiber F of f a holomorphic 1-form i∗φ1 ∈ H0(F,Ω1

F ),
where i : F ↪→ X is the inclusion map. The differential i∗φ1 is holomorphic since all
connected components of (φ1)∞ must be, as shown as above, fibers of f . The global
invariant cycle theorem by Deligne [De71] states that if i∗φ1 remains invariant under the
monodromy action of π1(C \ S), S the critical values of f , then there is a

u ∈ H0(X,Ω1
X) such that i∗u = i∗φ1 (3.13)

.
The invariance of i∗φ1 under the monodromy action is guaranteed by φ1 being a closed
holomorphic 1-form on f−1(C \S). The pullback of difference φ1−u to the general fiber
of f vanishes and hence φ1−u = f∗ϕ with ϕ meromorphic differential on C, completing
the proof of 2). The Albanese dimension in the case 2) is also ≥ 2, the two holomorphic
1-forms f∗µ and u must satisfy f∗µ ∧ u 6= 0 since w has rank 2.
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