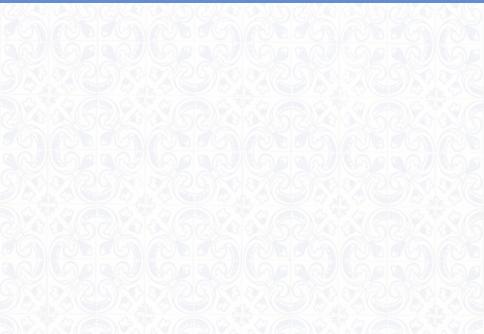
Cyclic Sieving of Multisets with Bounded Multiplicity and the Frobenius Coin Problem

Séminaire Lotharingien de Combinatoire 93, Pocinho

Drew Armstrong March 25, 2025

University of Miami
www.math.miami.edu/~armstrong



Two interpretations of binomial coefficients:

$$E(n;t) = \prod_{i=1}^{n} (1+t) = \sum_{k \ge 0} {n \choose k} t^{k},$$

$$H(n;t) = \prod_{i=1}^{n} (1+t+t^{2}+\cdots) = \sum_{k \ge 0} {n+k-1 \choose k} t^{k}.$$

Two interpretations of binomial coefficients:

$$E(n;t) = \prod_{i=1}^{n} (1+t) = \sum_{k \ge 0} {n \choose k} t^{k},$$

$$H(n;t) = \prod_{i=1}^{n} (1+t+t^{2}+\cdots) = \sum_{k \ge 0} {n+k-1 \choose k} t^{k}.$$

We consider the following interpolation:

$$H^{(b)}(n;t) = \prod_{i=1}^{n} (1+t+\cdots+t^{b-1}) = \sum_{k\geq 0} {n \choose k}^{(b)} t^{k}.$$

Two interpretations of binomial coefficients:

$$E(n;t) = \prod_{i=1}^{n} (1+t) = \sum_{k \ge 0} {n \choose k} t^{k},$$

$$H(n;t) = \prod_{i=1}^{n} (1+t+t^{2}+\cdots) = \sum_{k > 0} {n+k-1 \choose k} t^{k}.$$

We consider the following interpolation:

$$H^{(b)}(n;t) = \prod_{i=1}^{n} (1+t+\cdots+t^{b-1}) = \sum_{k\geq 0} {n \choose k}^{(b)} t^{k}.$$

Note that $\binom{n}{k}^{(2)} = \binom{n}{k}$ and $\binom{n}{k}^{(b)} = \binom{n+k-1}{k}$ when b > k. We will write

$$\binom{n}{k}^{(\infty)} = \binom{n+k-1}{k}.$$

Example: n = 3 and b = 4. The generating function is

$$H^{(4)}(3;t) = (1+t+t^2+t^3)^3$$

= 1+3t+6t^2+10t^3+12t^4+12t^5+10t^6+6t^7+3t^8+t^9.

Example: n = 3 and b = 4. The generating function is

$$H^{(4)}(3;t) = (1+t+t^2+t^3)^3$$

= 1+3t+6t^2+10t^3+12t^4+12t^5+10t^6+6t^7+3t^8+t^9.

The coefficients are

k	0	1	2	3	4	5	6	7	8	9
$\binom{3}{k}^{\binom{4}{1}}$	1	3	6	10	12	12	10	6	3	1

Example: n = 3 and b = 4. The generating function is

$$H^{(4)}(3;t) = (1+t+t^2+t^3)^3$$

= 1+3t+6t^2+10t^3+12t^4+12t^5+10t^6+6t^7+3t^8+t^9.

The coefficients are

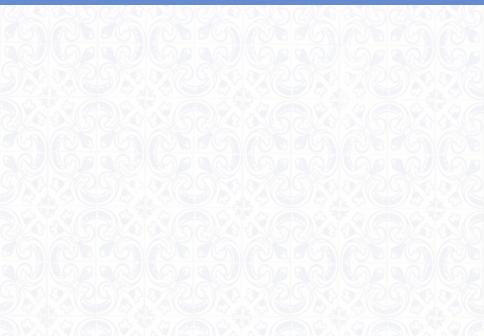
In general we have $\binom{n}{k}^{(b)} = 0$ for k > (b-1)n and

$$\binom{n}{0}^{(b)} + \binom{n}{1}^{(b)} + \cdots + \binom{n}{(b-1)n}^{(b)} = b^n.$$

Remark: $\binom{n}{k}^{(b)}/b^n$ is the probability of getting a sum of k in n rolls of a fair b-sided die with sides labeled $\{0, 1, \dots, b-1\}$.

Remarks:

- The numbers $\binom{n}{k}^{(b)}$ occur often but they don't have a standard name.
- We roughly follow Euler's (1778) notation: $\left(\frac{n}{k}\right)^b$.
- Belbachir and Igueroufa (2020) compiled a historical bibliography.



Recall the generating functions for *elementary* and *complete* symmetric polynomials:

$$E(z_1,\ldots,z_n;t) = \prod_{i=1}^n (1+z_it) = \sum_{k\geq 0} e_k(z_1,\ldots,z_n)t^k,$$

$$H(z_1,\ldots,z_n;t) = \prod_{i=1}^n (1+z_it+(z_it)^2+\cdots) = \sum_{k\geq 0} h_k(z_1,\ldots,z_n)t^k.$$

Recall the generating functions for *elementary* and *complete* symmetric polynomials:

$$E(z_1, \ldots, z_n; t) = \prod_{i=1}^n (1 + z_i t) = \sum_{k \ge 0} e_k(z_1, \ldots, z_n) t^k,$$

$$H(z_1, \ldots, z_n; t) = \prod_{i=1}^n (1 + z_i t + (z_i t)^2 + \cdots) = \sum_{k \ge 0} h_k(z_1, \ldots, z_n) t^k.$$

We consider the following interpolation:

$$H^{(b)}(z_1,\ldots,z_n;t)=\prod_{i=1}^n(1+z_it+\cdots(z_it)^{b-1})=\sum_{k\geq 0}h_k^{(b)}(z_1,\ldots,z_n)t^k.$$

Note that $h_k^{(2)} = e_k$ and $h_k^{(b)} = h_k$ when b > k. We will write $h_k^{(\infty)} = h_k$.

We can view $h_k^{(b)}(z_1, \ldots, z_n)$ as a generating function for lattice points in a diagonal slice of the integer box $\{0, 1, \ldots, b-1\}^n$:

$$X := \{(x_1, \ldots, x_n) \in \{0, 1 \ldots, b-1\}^n : x_1 + x_2 + \cdots + x_n = k\}.$$

We can view $h_k^{(b)}(z_1, \ldots, z_n)$ as a generating function for lattice points in a diagonal slice of the integer box $\{0, 1, \ldots, b-1\}^n$:

$$X := \{(x_1, \ldots, x_n) \in \{0, 1, \ldots, b-1\}^n : x_1 + x_2 + \cdots + x_n = k\}.$$

Then we have

$$h_k^{(b)}(z_1,\ldots,z_n) = \sum_{\mathbf{x} \in X} \mathbf{z}^{\mathbf{x}} = \sum_{\mathbf{x} \in X} z_1^{x_1} z_2^{x_2} \cdots z_n^{x_n}.$$

We can view $h_k^{(b)}(z_1, \ldots, z_n)$ as a generating function for lattice points in a diagonal slice of the integer box $\{0, 1, \ldots, b-1\}^n$:

$$X := \{(x_1, \ldots, x_n) \in \{0, 1, \ldots, b-1\}^n : x_1 + x_2 + \cdots + x_n = k\}.$$

Then we have

$$h_k^{(b)}(z_1,\ldots,z_n) = \sum_{\boldsymbol{x} \in X} \boldsymbol{z}^{\boldsymbol{x}} = \sum_{\boldsymbol{x} \in X} z_1^{x_1} z_2^{x_2} \cdots z_n^{x_n}.$$

We can also view these lattice points as k-multisubsets of $\{1, 2, ..., n\}$ with multiplicities bounded above by b:

$$(x_1, x_2, \dots, x_n) \longleftrightarrow \{\underbrace{1, \dots, 1}_{x_1 \text{ times}}, \underbrace{2, \dots, 2}_{x_2 \text{ times}}, \dots, \underbrace{n, \dots, n}_{x_n \text{ times}}\}.$$

b = 2: k-subsets of $\{1, \ldots, n\}$,

 $b = \infty$: k-multisubsets of $\{1, \ldots, n\}$.

Example: n = 3 and k = 3 for various values of b:

$$\begin{split} h_3^{(2)}(z_1,z_2,z_3) &= z_1 z_2 z_3, \\ h_3^{(3)}(z_1,z_2,z_3) &= z_1 z_2 z_3 + z_1^2 z_2 + \dots + z_2 z_3^2, \\ h_3^{(4)}(z_1,z_2,z_3) &= z_1 z_2 z_3 + z_1^2 z_2 + \dots + z_2 z_3^2 + z_1^3 + z_2^3 + z_2^3, \\ h_3^{(5)}(z_1,z_2,z_3) &= z_1 z_2 z_3 + z_1^2 z_2 + \dots + z_2 z_3^2 + z_1^3 + z_2^3 + z_2^3, \\ &\vdots \end{split}$$

A natural q-analogue of $\binom{n}{k}^{(b)}$ is given by the principal specialization of $h_k^{(b)}$:

$$\begin{bmatrix} n \\ k \end{bmatrix}_q^{(b)} := h_k^{(b)}(\mathbf{1}, \mathbf{q}, \dots, \mathbf{q}^{n-1}) = \sum_{\mathbf{x} \in X} q^{0x_1 + 1x_2 + 3x_2 + \dots + (n-1)x_n}.$$

A natural q-analogue of $\binom{n}{k}^{(b)}$ is given by the principal specialization of $h_k^{(b)}$:

$$\begin{bmatrix} n \\ k \end{bmatrix}_q^{(b)} := h_k^{(b)}(1, q, \dots, q^{n-1}) = \sum_{\mathbf{x} \in X} q^{0x_1 + 1x_2 + 3x_2 + \dots + (n-1)x_n}.$$

This generalizes the standard q-binomial coefficients in the following sense:

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q}^{(2)} = q^{k(k-1)/2} \begin{bmatrix} n \\ k \end{bmatrix}_{q},$$
$$\begin{bmatrix} n \\ k \end{bmatrix}_{q}^{(\infty)} = \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_{q}.$$

Opinion: This is the reason why sometimes we multiply $\binom{n}{k}_q$ by $q^{k(k-1)/2}$ and sometimes we don't.

Example: n = 3 and k = 3 for various values of b:

0	1	2	3	4	5	6
375	7/0	3/10	030	0	900	570
		120	30	021		43 (3)
	210		111		012	
300	AB	201	19/R	102	016	003

$$\begin{bmatrix} 3 \\ 3 \end{bmatrix}_{q}^{(2)} = q^{3},
\begin{bmatrix} 3 \\ 3 \end{bmatrix}_{q}^{(3)} = q^{3} + q^{1} + 2q^{2} + 2q^{4} + q^{5},
\begin{bmatrix} 3 \\ 3 \end{bmatrix}_{q}^{(\infty)} = q^{3} + q^{1} + 2q^{2} + 2q^{4} + q^{5} + 1 + q^{3} + q^{6}.$$

Remarks:

- Like the numbers $\binom{n}{k}^{(b)}$, the polynomials $h_k^{(b)}(z_1,\ldots,z_n)$ don't have a standard name or notation.
- Doty and Walker (1992) used $h'_k(n)$ and called them modular complete symmetric polynomials.
- Fu and Mei (2020) used $h_k^{[b-1]}$ and called them $truncated\ complete$.
- Grinberg (2022) used G(b, k) and called them *Petrie symmetric functions*. He now regrets this name (personal communication).
- Since the definition is simple I believe that the name should be simple. In the paper I called them b-bounded symmetric polynomials.

Remarks:

 Doty and Walker (1992) mention the following generalization of Newton's identities, which they attribute to Macdonald:*

$$h_k^{(b)}(z_1,\ldots,z_n) = \det egin{pmatrix}
ho_1^{(b)} &
ho_2^{(b)} & \cdots & \cdots &
ho_k^{(b)} \ -1 &
ho_1^{(b)} &
ho_2^{(b)} & & dots \ & -2 &
ho_1^{(b)} &
ho_2^{(b)} & dots \ & & \ddots & \ddots &
ho_2^{(b)} \ & & & -(k-1) &
ho_1^{(b)} \end{pmatrix}$$

where

$$ho_m^{(b)} = egin{cases} (1-b)(z_1^m + \cdots + z_n^m) & b | m, \ z_1^m + \cdots + z_n^m & b
mid m. \end{cases}$$

^{*} They did not express it as a determinant.

Remarks:

• This has an interesting consequence when $z_1 = \cdots = z_n = 1$:

$$\binom{n}{k}^{(b)} = \sum_{\lambda \vdash k} \frac{1}{z_{\lambda}} (1 - b)^{l_b(\lambda)} n^{l(\lambda)},$$

where the sum is over $(\lambda_1 \ge \lambda_2 \ge \cdots \ge 0)$ with $\sum_i \lambda_i = k$, and

$$l(\lambda) = \#\{i : \lambda_i \neq 0\},\$$

 $l_b(\lambda) = \#\{i : b|\lambda_i\},\$
 $m_j = \#\{j : m_j = i\},\$
 $z_\lambda = \prod_{i \geq 1} i^{m_i} m_i!.$

Remarks:

• In a recent paper (Lattice points and q-Catalan, 2024) I proved that

$$\frac{1}{[n+1]_q} \sum_{k=\ell}^m q^k \begin{bmatrix} n \\ k \end{bmatrix}_q^{(n+1)} \in \mathbb{Z}[q]$$

whenever $\gcd(n+1,\ell-1)=\gcd(n+1,m)=1$, and I conjectured that the coefficients are positive. I called these *q-Catalan germs*.

Remarks:

• In a recent paper (Lattice points and q-Catalan, 2024) I proved that

$$\frac{1}{[n+1]_q} \sum_{k=\ell}^m q^k \begin{bmatrix} n \\ k \end{bmatrix}_q^{(n+1)} \in \mathbb{Z}[q]$$

whenever $gcd(n+1, \ell-1) = gcd(n+1, m) = 1$, and I conjectured that the coefficients are positive. I called these *q-Catalan germs*.

• I don't know how this generalizes to $b \neq n + 1$.

Our main theorem will compute

$$\begin{bmatrix} n \\ k \end{bmatrix}_q^{(b)}$$
 when $q \to \text{roots of unity.}$

Before stating the theorem, it is worthwhile to mention a very general phenomenon, which follows from some basic Galois theory. This phenomenon is surely well known but I have not seen it written down.

Our main theorem will compute

$$\begin{bmatrix} n \\ k \end{bmatrix}_q^{(b)}$$
 when $q o$ roots of unity.

Before stating the theorem, it is worthwhile to mention a very general phenomenon, which follows from some basic Galois theory. This phenomenon is surely well known but I have not seen it written down.

Observation

Let $f(z_1, ..., z_n) \in \mathbb{Z}[z_1, ..., z_n]$ be symmetric polynomial in n variables and let ω be a primitive dth root of unity for some d.

- (a) If d|n then $f(1, \omega, \dots, \omega^{n-1}) = f(\omega, \dots, \omega^n)$ is an integer.*
- (b) If d|(n-1) then $f(1, \omega, \dots, \omega^{n-1})$ is an integer.
- (c) If d|(n+1) then $f(\omega, \ldots, \omega^n)$ is an integer.

^{*} If deg(f) = k and $d \nmid k$ then this integer is zero.

Proof Sketch: (1) Let ω be a primitive dth root of unity and consider the field extension $\mathbb{Q}(\omega)/\mathbb{Q}$. The Galois group is

$$\operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q}) = \{\varphi_r : \gcd(r,d) = 1\},\$$

where $\varphi_r : \mathbb{Q}(\omega) \to \mathbb{Q}(\omega)$ is defined by $\varphi_r(\omega) := \omega^r$. If $\alpha \in \mathbb{Z}[\omega]$ satisfies $\varphi_r(\alpha) = \alpha$ for all $\gcd(r, d) = 1$ then Galois theory tells us that $\alpha \in \mathbb{Z}$.

(2) Consider the sequence $\omega := (\omega, \dots, \omega^{d-1})$. If gcd(r, d) = 1 then φ_r permutes the sequence ω , hence it permutes sequences of the following four types:

$$(1, \omega, \dots, \omega, 1),$$

 $(\omega, 1, \dots, \omega, 1),$
 $(1, \omega, 1, \omega, \dots, \omega, 1),$
 $(\omega, 1, \omega, 1, \dots, 1, \omega).$

Corollary

Let ω be a primitive dth root of unity.

(a) If d n then*

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = h_k^{(b)}(1, \omega, \dots, \omega^{n-1}) = h_k^{(b)}(\omega, \dots, \omega^n) \in \mathbb{Z}.$$

(b) If d|(n-1) then

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = h_k^{(b)}(1, \omega, \dots, \omega^{n-1}) \in \mathbb{Z}.$$

(c) If d|(n+1) then

$$\omega^k \begin{bmatrix} n \\ k \end{bmatrix}_{(a)}^{(b)} = h_k^{(b)}(\omega, \ldots, \omega^n) \in \mathbb{Z}.$$

Our main theorem will compute these integers.

^{*} If $d \nmid k$ then this integer is zero.

Main Theorem (in three parts)

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

Main Theorem (in three parts)

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(a) If
$$\frac{d|n}{d}$$
 then $\sum_{k} {n \brack k}_{(d)}^{(b)} t^{k} = (1 + t^{d} + \dots + (t^{d})^{b-1})^{n/d}$, i.e.,

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \binom{n/d}{k/d}^{(b)} \ge 0.$$

Main Theorem (in three parts)

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(a) If
$$d|n$$
 then $\sum_{k} {n \brack k}_{\omega}^{(b)} t^{k} = (1 + t^{d} + \dots + (t^{d})^{b-1})^{n/d}$, i.e.,
$${n \brack k}_{\omega}^{(b)} = {n/d \choose k/d}^{(b)} \ge 0.$$

(b) If d|(n-1) then

$$\sum_{k} {n \brack k}_{\omega}^{(b)} t^{k} = (1+t+\cdots+t^{b-1})(1+t^{d}+\cdots+(t^{d})^{b-1})^{(n-1)/d}, \text{ i.e.,}$$

$${n \brack k}_{\omega}^{(b)} = \sum_{\ell} {\binom{(n-1)/d}{(k-\ell)/d}}^{(b)} \ge 0.$$

Main Theorem (in three parts)

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(c) If d|(n+1) then

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

These coefficients are sometimes negative and are more difficult to describe. We will give an explicit formula below in terms of the Frobenius Coin Problem.

Main Theorem (in three parts)

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(c) If d|(n+1) then

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

These coefficients are sometimes negative and are more difficult to describe. We will give an explicit formula below in terms of the Frobenius Coin Problem.

Remark: My paper also gives explicit generating functions for (a),(b),(c) when $gcd(b,d) \neq 1$, which are more complicated.

Parts (a) and (b) have a nice combinatorial interpretation, in terms of cyclic sieving (Reiner-Stanton-White, 2004). Again, consider the set of points in a diagonal slice of the integer box $\{0, 1, \dots, b-1\}^n$:

$$X = \{(x_1, \ldots, x_n) \in \{0, 1, \ldots, b-1\}^n : x_1 + x_2 + \cdots + x_n = k\}.$$

This set is closed under permutations. Consider the following two permutations:

$$\rho \cdot (\mathbf{x}_1, \dots, \mathbf{x}_n) := (\mathbf{x}_2, \dots, \mathbf{x}_n, \mathbf{x}_1),$$

$$\tau \cdot (\mathbf{x}_1, \dots, \mathbf{x}_n) := (\mathbf{x}_2, \dots, \mathbf{x}_{n-1}, \mathbf{x}_1, \mathbf{x}_n).$$

Note that $\langle \rho \rangle \cong \mathbb{Z}/n\mathbb{Z}$ and $\langle \tau \rangle \cong \mathbb{Z}/(n-1)\mathbb{Z}$. Recall that we can identify X with k-subsets and k-multisubsets of $\{1,\ldots,n\}$ when b=2 and $b=\infty$.

Corollary of Main Theorem

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

Corollary of Main Theorem

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(a) If $\frac{d}{n}$ then we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \rho^{n/d}(\mathbf{x}) = \mathbf{x}\}.$$

Corollary of Main Theorem

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(a) If $d \mid n$ then we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \rho^{n/d}(\mathbf{x}) = \mathbf{x}\}.$$

(b) If d | (n-1) then we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \tau^{(n-1)/d}(\mathbf{x}) = \mathbf{x}\}.$$

Corollary of Main Theorem

Let ω be a primitive dth root of unity with gcd(b, d) = 1.

(a) If d n then we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \rho^{n/d}(\mathbf{x}) = \mathbf{x}\}.$$

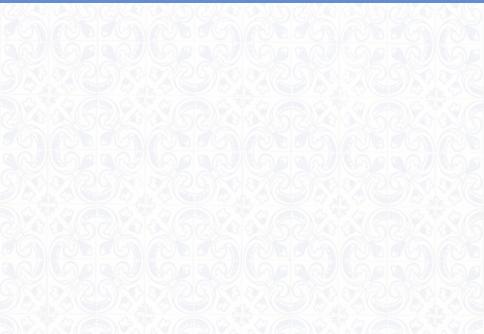
(b) If d | (n-1) then we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = \#\{\mathbf{x} \in X : \tau^{(n-1)/d}(\mathbf{x}) = \mathbf{x}\}.$$

I find the condition gcd(b, d) = 1 surprising!

Remarks:

- This result generalizes the prototypical examples of cyclic sieving (Theorem 1.1 in RSW) for k-subsets (when b=2) and k-multisubsets (when $b=\infty$).
- I find it surprising that it was not already known to the experts.
- Our Main Theorem (a),(b) generalizes Prop 4.2 in RSW, which appears there as a random collection of identities.
- Main Theorem (c) has no analogue in RSW.
- It may be interesting to look at the integers $f(\omega, ..., \omega^n) \in \mathbb{Z}$ when d|(n+1) for other classes of symmetric polynomials.



Let ω be a primitive dth root of unity with d|(n+1) and gcd(b,d)=1. Recall that

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

The integers $\omega^k \left[\begin{smallmatrix} n \\ k \end{smallmatrix} \right]_\omega^{(b)}$ are not directly related to cyclic sieving.

Let ω be a primitive dth root of unity with d|(n+1) and gcd(b,d)=1. Recall that

$$\sum_{k} \omega^{k} \binom{n}{k}_{\omega}^{(b)} t^{k} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

The integers $\omega^k \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)}$ are not directly related to cyclic sieving.

Using the notation $[n]_t = 1 + t + \cdots + t^{n-1}$ we can write this as

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(0)} t^{k} = \frac{[b]_{t^{d}}}{[b]_{t}} [b]_{t^{d}}^{(n+1)/d-1}.$$

Let ω be a primitive dth root of unity with d|(n+1) and gcd(b,d)=1. Recall that

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{(1 + t^{d} + \dots + (t^{d})^{b-1})^{(n+1)/d}}{1 + t + \dots + t^{b-1}} \in \mathbb{Z}[t].$$

The integers $\omega^k \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)}$ are not directly related to cyclic sieving.

Using the notation $[n]_t = 1 + t + \cdots + t^{n-1}$ we can write this as

$$\sum_{k} \omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} t^{k} = \frac{[b]_{t^{d}}}{[b]_{t}} [b]_{t^{d}}^{(n+1)/d-1}.$$

We want to study the coefficients of the polynomial

$$\frac{[b]_{t^d}}{[b]_t} \in \mathbb{Z}[t].$$

It turns out these coefficients are related to the Frobenius Coin Problem.

Given integers $\gcd(b,d) = 1$, consider the function $\nu_{b,d} : \mathbb{N} \to \mathbb{N}$,

$$\nu_{b,d}(n) := \#\{(k,\ell) \in \mathbb{N}^2 : bk + d\ell = n\}.$$

Given integers gcd(b, d) = 1, consider the function $\nu_{b,d} : \mathbb{N} \to \mathbb{N}$,

$$\nu_{b,d}(n) := \#\{(k,\ell) \in \mathbb{N}^2 : bk + d\ell = n\}.$$

The set of non-representable numbers is finite, called the Sylvester set:

$$S_{b,d} = \{n \in \mathbb{N} : \nu_{b,d}(n) = 0\}.$$

For example, $S_{3,5} = \{1, 2, 4, 7\}$. Sylvester (1882) proved that

$$\#S_{b,d} = (b-1)(d-1)/2$$
 and $\max(S_{b,d}) = bd - b - d$.

Given integers $\gcd(b,d)=1$, consider the function $\nu_{b,d}:\mathbb{N}\to\mathbb{N}$,

$$u_{b,d}(n) := \#\{(k,\ell) \in \mathbb{N}^2 : bk + d\ell = n\}.$$

The set of non-representable numbers is finite, called the Sylvester set:

$$S_{b,d} = \{n \in \mathbb{N} : \nu_{b,d}(n) = 0\}.$$

For example, $S_{3,5} = \{1, 2, 4, 7\}$. Sylvester (1882) proved that

$$\#S_{b,d} = (b-1)(d-1)/2$$
 and $\max(S_{b,d}) = bd - b - d$.

Let us define the Sylvester polynomial

$$S_{b,d}(t) := \sum_{s \in S_{b,d}} t^s.$$

For example, $S_{3,5}(t) = t + t^2 + t^4 + t^7$.

Brown and Shiue (1993) attribute the following result to Ozluk.

Theorem (Ozluk)

If gcd(b, d) = 1 then we have $[b]_{t^d}/[b]_t = 1 + (t-1)S_{b,d}(t)$, i.e.,

$$S_{b,d}(t) = \frac{t^{bd}-1}{(1-t^b)(1-t^d)} + \frac{1}{1-t}.$$

Brown and Shiue (1993) attribute the following result to Ozluk.

Theorem (Ozluk)

If gcd(b, d) = 1 then we have $[b]_{t^d}/[b]_t = 1 + (t - 1)S_{b,d}(t)$, i.e.,

$$S_{b,d}(t) = rac{t^{bd}-1}{(1-t^b)(1-t^d)} + rac{1}{1-t}.$$

Corollary

If ω is a primitive dth root of unity with d|(n+1), it follows that

$$\omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} = {\binom{(n+1)/d-1}{k/d}}^{(b)} + \sum_{s \in S_{b,d}} {\binom{(n+1)/d-1}{(k-1-s)/d}}^{(b)} - \sum_{s \in S_{b,d}} {\binom{(n+1)/d-1}{(k-s)/d}}^{(b)}.$$

It is not clear from this formula when $\omega^k \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)}$ is positive or negative.

Here is a cute formula, which allows us to be much more precise.

Theorem

Let gcd(b, d) = 1. For any $r \in \mathbb{N}$, let $0 \le \beta_r < b$ and $0 \le \delta_r < d$ satisfy

$$\beta_r \equiv rd^{-1} \mod b$$
 and $\delta_r \equiv rb^{-1} \mod d$.

Then

$$\frac{[b]_{t^d}}{[b]_t} = \frac{[d]_{t^b}}{[d]_t} = [\beta_1]_{t^d} [\delta_1]_{t^b} - t[b - \beta_1]_{t^d} [d - \delta_1]_{t^b}.$$

Here is a cute formula, which allows us to be much more precise.

Theorem

Let $\gcd(b,d) = 1$. For any $r \in \mathbb{N}$, let $0 \le \beta_r < b$ and $0 \le \delta_r < d$ satisfy

$$\beta_r \equiv rd^{-1} \mod b$$
 and $\delta_r \equiv rb^{-1} \mod d$.

Then

$$\frac{[b]_{t^d}}{[b]_t} = \frac{[d]_{t^b}}{[d]_t} = [\beta_1]_{t^d} [\delta_1]_{t^b} - t[b - \beta_1]_{t^d} [d - \delta_1]_{t^b}.$$

Corollary

Let gcd(b, d) = 1. If ω is a primitive dth root of unity and d|(n+1) then

$$\omega^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{\omega}^{(b)} \text{ is } \begin{cases} \geq 0 & \text{when } \delta_{k} < \delta_{1}, \\ \leq 0 & \text{when } \delta_{k} \geq \delta_{1}. \end{cases}$$

I really like this theorem because it has a geometric interpretation.

I really like this theorem because it has a geometric interpretation.

```
14
   19
      24
   12
      17
         15 20 25 30 35 .
       3
          8 13 18 23
                      28
              6 11 16 21
          1
                    9 14 19
                              24
                     2
                          12
                              17
                           5
                        0
                              10
```

Example: Let (b, d) = (7, 5). Draw an infinite array starting at 0, adding 5 for each right step and subtracting 7 for each down step.

I really like this theorem because it has a geometric interpretation.

```
      14
      19
      24
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...<
```

Example: Let (b, d) = (7, 5). Draw an infinite array starting at 0, adding 5 for each right step and subtracting 7 for each down step.

The Sylvester set forms a triangle:

$$S_{7,5} = \{1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23\}.$$

I really like this theorem because it has a geometric interpretation.

```
      14
      19
      24
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...<
```

In this case we have $(\beta_1, \delta_1) = (3, 3)$, which tells us that the label 1 occurs in position $(\beta_1, \delta_1 - d) = (3, -2)$.

I really like this theorem because it has a geometric interpretation.

The cute formula describes two rectangles with bottom corners at 0 and 1.

$$[b]_{t^d}/[b]_t = [\beta_1]_{t^d}[\delta_1]_{t^b} - t[b - \beta_1]_{t^d}[d - \delta_1]_{t^b}$$

I really like this theorem because it has a geometric interpretation.

```
      14
      19
      24
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...<
```

The cute formula describes two rectangles with bottom corners at 0 and 1:

$$\begin{aligned} [7]_{t^{5}}/[7]_{t} &= [3]_{t^{5}}[3]_{t^{7}} - t[4]_{t^{5}}[2]_{t^{7}} \\ &= 1 + t^{5} + t^{7} + t^{10} + t^{12} + t^{14} + t^{17} + t^{19} + t^{24} \\ &- (t + t^{6} + t^{8} + t^{11} + t^{13} + t^{16} + t^{18} + t^{23}). \end{aligned}$$

I really like this theorem because it has a geometric interpretation.

```
      14
      19
      24
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...<
```

The cute formula describes two rectangles with bottom corners at 0 and 1:

$$[7]_{t^5}/[7]_t = [3]_{t^5}[3]_{t^7} - t[4]_{t^5}[2]_{t^7}$$

$$= 1 + t^5 + t^7 + t^{10} + t^{12} + t^{14} + t^{17} + t^{19} + t^{24}$$

$$- (t + t^6 + t^8 + t^{11} + t^{13} + t^{16} + t^{18} + t^{23}).$$

And this leads to a precise description of $\omega^k {n\brack k}_\omega^{(7)}$ when $\omega^5=1$.

Obrigado!

Thanks to DeepSeek for suggesting the azulejos background image.