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1. The Frobenius Coin Problem



1. The Frobenius Coin Problem

Frobenius Coin Problem (late 1800s). Given two natural numbers
a, b ∈ N, describe the monoid

aN + bN := {ax + by : x , y ∈ N}.

We can assume that gcd(a, b) = 1 since if a = da′ and b = db′ then

aN + bN = d(a′N + b′N).

Sylvester’s Theorem (1882). Let gcd(a, b) = 1. The set

N− (aN + bN)

of “non-representable numbers” has size (a− 1)(b − 1)/2. The largest
element of the set is ab − a− b, called the Frobenius number.



1. The Frobenius Coin Problem

I will present a beautiful geometric proof.

For example, suppose that (a, b) = (3, 5).



1. The Frobenius Coin Problem

Label each point (x , y) ∈ Z2 by the integer ax + by ∈ Z.



1. The Frobenius Coin Problem

Label each point (x , y) ∈ Z2 by the integer ax + by ∈ Z.



1. The Frobenius Coin Problem

We observe that every integer label occurs because

aZ + bZ = gcd(a, b)Z = Z.



1. The Frobenius Coin Problem

In fact, Z appears without redundancy in any vertical strip of width b.
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1. The Frobenius Coin Problem

. . . or in any horizontal strip of height a, etc.
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. . . or in any horizontal strip of height a, etc.
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. . . or in any horizontal strip of height a, etc.



1. The Frobenius Coin Problem

Positive labels N occur above a line of slope −a/b.



1. The Frobenius Coin Problem

Labels from the monoid aN + bN occur in this quadrant.



1. The Frobenius Coin Problem

. . . or in this quadrant, etc.



1. The Frobenius Coin Problem

Therefore the labels N− (aN + bN) occur in this triangle.



1. The Frobenius Coin Problem

The largest label in the triangle is the Frobenius number

ab − a− b.



1. The Frobenius Coin Problem

But why does the triangle have size (a− 1)(b − 1)/2 ?



1. The Frobenius Coin Problem

Because it is one half of an (a− 1)× (b − 1) rectangle!



1. The Frobenius Coin Problem

Indeed, for all 0 ≤ n ≤ ab with a - n and b - n we have

n 6∈ (aN + bN) ⇐⇒ ab − n ∈ (aN + bN)
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1. The Frobenius Coin Problem

Indeed, for all 0 ≤ n ≤ ab with a - n and b - n we have

n 6∈ (aN + bN) ⇐⇒ ab − n ∈ (aN + bN)



1. The Frobenius Coin Problem

This completes the proof of Sylvester’s Theorem



2. Rational Dyck Paths



2. Rational Dyck Paths

Grossman’s Problem (1950). Given two natural numbers a, b ∈ N
count the lattice paths from (0, 0) to (b,−a) staying above the line
ax + by = 0. The general problem reduces to the coprime case
(gcd(a, b) = 1) via inclusion-exclusion.

Bizley’s Theorem (1954). Let gcd(a, b) = 1. Then the number of such
“rational Dyck paths” is given by the “rational Catalan number”

Cat(a, b) :=
1

a + b

(
a + b

a, b

)
=

(a + b − 1)!

a! b!
.

Why do we call it that?



2. Rational Dyck Paths

Observe that the “rational Catalan numbers”

Cat(a, b) :=
1

a + b

(
a + b

a, b

)
=

(a + b − 1)!

a! b!

generalize the traditional Catalan numbers

Cat(n, 1n + 1) =
1

2n + 1

(
2n + 1

n

)
=

1

n

(
2n

n − 1

)
and the even-more-traditional Fuss-Catalan numbers

Cat(n, kn + 1) =
1

(k + 1)n + 1

(
(k + 1)n + 1

n

)
=

1

n

(
(k + 1)n

n − 1

)
.

[We call b = 1 (mod a) the “Fuss level of generality.”]



2. Rational Dyck Paths

I will present Bizley’s proof of the theorem.

For example, suppose that (a, b) = (3, 5).



2. Rational Dyck Paths

There are a total of
(
a+b
a,b

)
lattice paths from (0, 0) to (b,−a).



2. Rational Dyck Paths

Some of them are above the diagonal.



2. Rational Dyck Paths

. . . and some of them are not.



2. Rational Dyck Paths

If we double a given path . . .



2. Rational Dyck Paths

. . . then we can rotate it to create more paths.
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. . . then we can rotate it to create more paths.



2. Rational Dyck Paths

. . . then we can rotate it to create more paths.



2. Rational Dyck Paths

Since gcd(a, b) = 1, there are a + b distinct rotations of each path.



2. Rational Dyck Paths

. . . and exactly one of them is above the diagonal.



2. Rational Dyck Paths

Thus we obtain a bijection

(Dyck paths) ←→ (rotation classes of paths)

and it follows that

#(Dyck paths) =

(
a + b

a, b

)
/(a + b).

This completes the proof of Bizley’s Theorem.



3. Core Partitions



3. Core Partitions

I presume everyone here knows the definition of integer partitions.

I will define them anyway.

Definition. An integer partition is an infinite binary string that begins
with 0 s and ends with 1 s.

Example.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·

Let’s see a picture?



3. Core Partitions

We view 0 s as up steps and 1 s as right steps.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

Observe that there is a hidden shape in the corner.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·
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Each cell is an inversion of the binary string.
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Each cell is an inversion of the binary string.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

Observe that the length of the inversion is the hook length of the cell.
6︷ ︸︸ ︷

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

. . . and we can think of it as a “rimhook” if we want.
6︷ ︸︸ ︷

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

Question: What happens if we remove an inversion of length n?
6︷ ︸︸ ︷
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Answer: The corresponding rimhook of length n gets stripped away.

· · · 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 · · ·



3. Core Partitions

We make the following definition.

Definition. Fix a positive integer n ∈ N and let λ be any integer
partition. By successively removing inversions of length n, we obtain an
integer partition λ̃ with no inversions of length n.

We call this λ̃ an n-core partition.

Question. Is the resulting partition λ̃ well-defined?

Theorem (Nakayama, 1941). Yes.

We call this λ̃ the n-core of λ.



3. Core Partitions

I will present a proof by James and Kerber (1981).

For example, suppose that n = 5.



3. Core Partitions

The Idea: Wrap the infinite binary string around an n-cylinder.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

We place the first 1 in the zeroth position.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

Everything below ground level is 0.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

We think of the 0 s as “beads on an abacus.”

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

The 1 s are “empty spaces.”

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

Removing a length n inversion means “sliding a bead down.”

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·
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Removing a length n inversion means “sliding a bead down.”
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3. Core Partitions

Continue sliding beads until there are no more length n inversions.

· · · 0 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 1 · · ·



3. Core Partitions

Continue sliding beads until there are no more length n inversions.

· · · 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 · · ·



3. Core Partitions

Gravity tells us that the n-core is unique.

· · · 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 · · ·



3. Core Partitions

This completes James and Kerber’s proof.



3. Core Partitions

Now let’s see how it looks in terms of rimhooks.



3. Core Partitions

Go back to the original partition.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

Here is the corresponding diagram with hook lengths shown.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

Observe that positive beads = hook lengths in the first column.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·



3. Core Partitions

We can remove the n-rimhooks in this order.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·
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We can remove the n-rimhooks in this order.

· · · 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 · · ·



3. Core Partitions

. . . or we can remove them in this order.

· · · 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 · · ·
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. . . or we can remove them in this order.
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. . . or we can remove them in this order.
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3. Core Partitions

. . . or we can remove them in this order.

· · · 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 · · ·



3. Core Partitions

They look different but the resulting n core is the same.

· · · 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 · · ·
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4. The Double Abacus

Now it’s time to put everything together.

Problem/Definition. Fix two positive integers a, b ∈ N and let λ be an
integer partition. We say that λ is an (a, b)-core if it is simultaneously
a-core and b-core. What can be said about such partitions?

Theorem (Anderson, 2002). If gcd(a, b) = 1 then the number of
(a, b)-cores is finite. Furthermore, they are counted by the rational
Catalan number:

#(a, b)-cores =
1

a + b

(
a + b

a, b

)
.



4. The Double Abacus

I will present Anderson’s proof.

For example, suppose that (a, b) = (3, 5).



4. The Double Abacus

Consider again the standard vertical b-abacus.



4. The Double Abacus

The criterion for detecting b-cores (i.e., gravity) is unaffected by
permuting the runners.
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The criterion for detecting b-cores (i.e., gravity) is unaffected by
permuting the runners.
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. . . or by shifting them up and down.
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. . . or by shifting them up and down.



4. The Double Abacus

. . . or by shifting them up and down.



4. The Double Abacus

If we do it correctly then we obtain a horizontal a-abacus.



4. The Double Abacus

The correct labeling comes from the Frobenius Coin Problem.
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4. The Double Abacus

The correct labeling comes from the Frobenius Coin Problem.



4. The Double Abacus

Finite subsets of N− {0} correspond to integer partitions.
[Recall: These are the hook lengths in the first column of a shape.]



4. The Double Abacus

Example: The set {1, 2, 3, 6, 8, 13} is 5-core but not 3-core.



4. The Double Abacus

In General:

I b-cores are down-aligned and avoid the vertical 0-runner.

I a-cores are left-aligned and avoid the horizontal 0-runner.
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Hence (a, b)-cores correspond to down/left-aligned subsets of the triangle

N− (aN + bN).



4. The Double Abacus

Hence (a, b)-cores correspond to down/left-aligned subsets of the triangle

N− (aN + bN).



4. The Double Abacus

Finally, we observe that down/left-aligned subsets of the triangle
correspond to Dyck paths in an a× b rectangle.



4. The Double Abacus

This completes the proof of Anderson’s theorem.



4. The Double Abacus

The length of a partition is the number of cells in its first column. As
corollaries of Sylvester’s Theorem we obtain the following:

I The maximum length of an (a, b)-core is (a− 1)(b − 1)/2.

I The largest hook that can occur in an (a, b)-core is ab − a− b.

The size of a partition is the number of cells in the full diagram. By
summing over the elements of the set N− (aN + bN), Olsson and
Stanton proved the following.

Theorem (Olsson and Stanton, 2005). Let gcd(a, b) = 1. The largest
size of an (a, b)-core is

(a2 − 1)(b2 − 1)

24
.



4. The Double Abacus

Going further, I conjectured and then Paul Johnson proved the following.

Theorem (Johnson, 2015). Let gcd(a, b) = 1. The average size of an
(a, b)-core is

(a + b + 1)(a− 1)(b − 1)

24
.

Proof. Use Ehrhart theory to show that the average size is a degree 2
polynomial in a and b. Then use interpolation.

But why this degree 2 polynomial and not another? Thiel and Williams
(2015) showed that the number 24 comes from the “strange formula” of
Freudenthal and de Vries:

1

24
· dim(Lie group) = ‖half the sum of positive roots‖2 .
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5. q-Catalan Numbers

So far, so good. Now comes the hard part.
Recall that the classical q-Catalan numbers are defined as follows.

Definition. Let q be a formal parameter. For all n ∈ N we define

Catq(n) :=
1

[2n + 1]q

[
2n + 1

n, n + 1

]
q

=
[2n]q!

[n]q! [n + 1]q!
.

A priori, we only have Catq(n) ∈ Z[[q]]. However, it follows from a more
general result of Major Percy MacMahon that Catq(n) ∈ N[q].

Theorem (MacMahon, 1915). Let Dn,n+1 be the set of classical Dyck
paths. There is a statistic maj : Dn,n+1 → N (called major index) with

Catq(n) =
∑

π∈Dn,n+1

qmaj(π) ∈ N[q].



5. q-Catalan Numbers

To see what this means, let (a, b) = (n, n + 1) for some n ∈ N.



5. q-Catalan Numbers

Observe that every Dyck path begins with a right step.



5. q-Catalan Numbers

Observe that every Dyck path begins with a right step.



5. q-Catalan Numbers

. . . so we might as well consider paths in the n × n square.



5. q-Catalan Numbers

To compute maj: Number the steps of the path,



5. q-Catalan Numbers

. . . highlight the valleys,



5. q-Catalan Numbers

. . . and add the numbers of the valleys. Here: maj = 2 + 5 = 7.



5. q-Catalan Numbers

For example, when n = 3 we observe that

Catq(3) =
[6]q!

[3]q! [4]q!
= q0 + q2 + q3 + q4 + q6 =

∑
qmaj.



5. q-Catalan Numbers

By analogy with the classical case we define the

rational q-Catalan numbers.

Definition. Let q be a formal parameter. For any gcd(a, b) = 1 we define

Catq(a, b) :=
1

[a + b]q

[
a + b

a, b

]
q

=
[a + b − 1]q!

[a]q! [b]q!
.

Stanton’s Problem. Let Da,b be the set of rational Dyck paths. Find a
combinatorial statistic stat : Da,b → N such that

Catq(a, b) =
∑
π∈Da,b

qstat(π).

This problem is surprisingly difficult!



5. q-Catalan Numbers

Recall that we have a bijection Da,b ↔ Ca,b between (a, b)-Dyck paths
and (a, b)-core partitions. I will present a statistic

stat : Ca,b → N

that conjecturally satisfies

Catq(a, b) =
∑
π∈Ca,b

qstat(π).

Let `(π) denote the length of the partition π (i.e., the number of cells in
the first column) and recall from Sylvester’s Theorem that

max {`(π) : π ∈ Ca,b} =
(a− 1)(b − 1)

2
.



5. q-Catalan Numbers

Next I will define a mysterious statistic called skew length:

s` : Ca,b → N



5. q-Catalan Numbers

For example, let (a, b) = (5, 7) and consider the Double Abacus.



5. q-Catalan Numbers

Recall that (a, b)-cores correspond to down/left-aligned sets of beads
inside the triangle

N− (aN + bN).



5. q-Catalan Numbers

. . . which correspond to (a, b)-Dyck paths.



5. q-Catalan Numbers

Recall that beads = hook lengths in the first column of a partition.



5. q-Catalan Numbers

Observe that this partition has no 5-hooks or 7-hooks.

In fact, all hooks lengths come from the triangle N− (aN + bN).



5. q-Catalan Numbers

Observe that the area of the Dyck path is the length of the partition:

area(π) = `(π) = 6.



5. q-Catalan Numbers

Now for the skew length. The official definition:

s`(π) := #(a-rows) ∩ (b-boundary).



5. q-Catalan Numbers

Let me explain.

I The a-rows correspond to rightmost beads under the path.

I The b-boundary is the cells with hook length < b.



5. q-Catalan Numbers

Let me explain.

I The a-rows correspond to rightmost beads under the path.

I The b-boundary is the cells with hook length < b.



5. q-Catalan Numbers

The skew length is the number of cells in the intersection of the a-rows
and the b-boundary. In this case,

s`(π) = 9.



5. q-Catalan Numbers

You might wonder if the definition of s` is symmetric in a and b:

#(a-rows) ∩ (b-boundary) = #(b-rows) ∩ (a-boundary) ?

Xin (2015) and Ceballos-Denton-Hanusa (2015) proved that this is true.



5. q-Catalan Numbers

Let’s check:

I The b-rows correspond to uppermost beads under the path.

I The a-boundary is the cells with hook length < a.



5. q-Catalan Numbers

Let’s check:

I The b-rows correspond to uppermost beads under the path.

I The a-boundary is the cells with hook length < a.



5. q-Catalan Numbers

Intersecting the b-rows and a-boundary gives s`(π) = 9 as before.



5. q-Catalan Numbers

The following conjecture is the reason for defining skew length.

Conjecture 1. The sum of length and skew length is a “q-Catalan
statistic.” That is, we have∑

π∈Ca,b

q`(π)+s`(π) = Catq(a, b) =
[a + b − 1]q!

[a]q! [b]q!
.

And the following conjecture is the reason for calling it “skew length.”
[Maybe you prefer the name “co-skew length.”]

Conjecture 2. For all π ∈ Ca,b let s`′(π) := (a− 1)(b − 1)/2− s`(π).
We conjecture that ` and s`′ have a symmetric joint distribution:∑

π∈Ca,b

q`(π)ts`
′(π) =

∑
π∈Ca,b

t`(π)qs`
′(π)



5. q-Catalan Numbers

The second conjecture above suggests that we should make the following
definition.

Definition. For all gcd(a, b) = 1 we define the “rational q, t-Catalan
number”

Catq,t(a, b) :=
∑
π∈Ca,b

q`(π)ts`
′(π) ∈ N[q, t].

Equivalent versions of this definition were given independently by
Loehr-Warrington (2014) and Gorsky-Mazin (2013). We remark that the
case (a, b) = (n, n + 1) coincides with the “classical q, t-Catalan
numbers” of Garsia and Haiman (1996):

Catq,t(n, n + 1) = classical q, t-Catalan numbers



5. q-Catalan Numbers

Example. Our previous example π ∈ C5,7 with `(π) = 6 and
s`′(π) = 12− s`(π) = 12− 9 = 3 contributes to the red entry.

Catq,t(5, 7) =



1
1 1 1 1

1 2 2 1 1
2 3 2 1 1

3 3 2 1 1
2 3 2 1 1

1 3 2 1 1
2 2 1 1

1 2 1 1
1 1 1
1 1
1

1





6. What Does It Mean?



May The Force Be With You


