Noncrossing Parking Functions

Drew Armstrong (with B. Rhoades and V. Reiner)

University of Miami
www.math.miami.edu/~armstrong

“Non-crossing partitions in representation theory”
Bielefeld, June 2014
Plan

1. Parking Functions
2. Noncrossing Partitions
3. Noncrossing Parking Functions
1. Parking Functions
2. Noncrossing Partitions
3. Noncrossing Parking Functions
Plan

1. Parking Functions
2. Noncrossing Partitions
3. Noncrossing Parking Functions
What is a Parking Function?
What is a Parking Function?

Definition

A **parking function** is a vector \(\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{N}^n \) whose increasing rearrangement \(b_1 \leq b_2 \leq \cdots \leq b_n \) satisfies:

\[
\forall i, \ b_i \leq i
\]

Imagine a one-way street with \(n \) parking spaces.

- There are \(n \) cars.
- Car \(i \) wants to park in space \(a_i \).
- If space \(a_i \) is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- “\(\vec{a} \) is a parking function” \(\equiv \) “everyone is able to park”.
What is a Parking Function?

Definition

A parking function is a vector \(\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{N}^n \) whose **increasing rearrangement** \(b_1 \leq b_2 \leq \cdots \leq b_n \) satisfies:

\[
\forall i, \quad b_i \leq i
\]

Imagine a one-way street with \(n \) parking spaces.

- There are \(n \) cars.
- Car \(i \) wants to park in space \(a_i \).
- If space \(a_i \) is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- “\(\vec{a} \) is a parking function” \(\equiv \) “everyone is able to park”.
What is a Parking Function?

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, \ b_i \leq i$$

Imagine a one-way street with n parking spaces.

- There are n cars.
- Car i wants to park in space a_i.
- If space a_i is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- “\vec{a} is a parking function” \equiv “everyone is able to park”.
What is a Parking Function?

Definition

A parking function is a vector \(\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{N}^n \) whose increasing rearrangement \(b_1 \leq b_2 \leq \cdots \leq b_n \) satisfies:

\[\forall i, \ b_i \leq i \]

Imagine a one-way street with \(n \) parking spaces.

- There are \(n \) cars.
- Car \(i \) wants to park in space \(a_i \).
- If space \(a_i \) is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- “\(\vec{a} \) is a parking function” \(\equiv \) “everyone is able to park”.
What is a Parking Function?

Definition

A parking function is a vector \(\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{N}^n \) whose increasing rearrangement \(b_1 \leq b_2 \leq \cdots \leq b_n \) satisfies:

\[
\forall i, \quad b_i \leq i
\]

Imagine a one-way street with \(n \) parking spaces.

- There are \(n \) cars.
- Car \(i \) wants to park in space \(a_i \).
- If space \(a_i \) is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- “\(\vec{a} \) is a parking function” \(\equiv \) “everyone is able to park”.
What is a Parking Function?

Definition

A parking function is a vector \(\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{N}^n \) whose increasing rearrangement \(b_1 \leq b_2 \leq \cdots \leq b_n \) satisfies:

\[
\forall i, \ b_i \leq i
\]

Imagine a one-way street with \(n \) parking spaces.

- There are \(n \) cars.
- Car \(i \) wants to park in space \(a_i \).
- If space \(a_i \) is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- “\(\vec{a} \) is a parking function” \(\equiv \) “everyone is able to park”.
What is a Parking Function?

Definition

A parking function is a vector \(\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{N}^n \) whose **increasing rearrangement** \(b_1 \leq b_2 \leq \cdots \leq b_n \) satisfies:

\[
\forall i, \quad b_i \leq i
\]

Imagine a one-way street with \(n \) parking spaces.

- There are \(n \) cars.
- Car \(i \) wants to park in space \(a_i \).
- If space \(a_i \) is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- “\(\vec{a} \) is a parking function” \(\equiv \) “everyone is able to park”.

What is a Parking Function?

Example \((n = 3)\)

Note that \(#PF_3 = 16\) and \(\mathbb{S}_3\) acts on \(PF_3\) with 5 orbits.

In General We Have

\[
#PF_n = (n + 1)^{n-1} \quad \# \text{ orbits } = \frac{1}{n+1} \binom{2n}{n}
\]

“Cayley” \quad “Catalan”
What is a Parking Function?

Example \((n = 3)\)

<table>
<thead>
<tr>
<th></th>
<th>111</th>
<th>112</th>
<th>113</th>
<th>122</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>121</td>
<td>211</td>
<td>131</td>
<td>221</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>211</td>
<td>311</td>
<td>221</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that \(#PF_3 = 16\) and \(S_3\) acts on \(PF_3\) with 5 orbits.

In General We Have

\[
#PF_n = (n + 1)^{n-1} \quad \# \text{ orbits} = \frac{1}{n+1} \binom{2n}{n}
\]

“Cayley” \quad “Catalan”
What is a Parking Function?

Example \((n = 3)\)

\[
\begin{array}{cccc}
111 \\
112 & 121 & 211 \\
113 & 131 & 311 \\
122 & 212 & 221 \\
123 & 132 & 213 & 231 & 312 & 321
\end{array}
\]

Note that \(\#\text{PF}_3 = 16\) and \(\mathcal{S}_3\) acts on \(\text{PF}_3\) with 5 orbits.

In General We Have

\[
\#\text{PF}_n = (n + 1)^{n-1} \quad \# \text{orbits} = \frac{1}{n+1} \binom{2n}{n}
\]

“Cayley” \quad “Catalan”
What is a Parking Function?

Example \((n = 3)\)

<table>
<thead>
<tr>
<th>111</th>
<th>112</th>
<th>121</th>
<th>211</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>122</td>
<td>212</td>
<td>221</td>
</tr>
<tr>
<td>123</td>
<td>132</td>
<td>213</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>312</td>
<td>321</td>
</tr>
</tbody>
</table>

Note that \(#PF_3 = 16\) and \(S_3\) acts on \(PF_3\) with 5 orbits.

In General We Have

\[
#PF_n = (n + 1)^{n-1} \quad \# \text{orbits} = \frac{1}{n+1} \binom{2n}{n}
\]

“Cayley” “Catalan”
What is a Parking Function?

Example \((n = 3)\)

<table>
<thead>
<tr>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
</tr>
<tr>
<td>113</td>
</tr>
<tr>
<td>122</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>211</td>
</tr>
<tr>
<td>121</td>
</tr>
<tr>
<td>311</td>
</tr>
<tr>
<td>212</td>
</tr>
<tr>
<td>221</td>
</tr>
<tr>
<td>231</td>
</tr>
<tr>
<td>312</td>
</tr>
<tr>
<td>321</td>
</tr>
</tbody>
</table>

Note that \(#\text{PF}_3 = 16\) and \(\mathfrak{S}_3\) acts on \(\text{PF}_3\) with 5 orbits.

In General We Have

\[
\#\text{PF}_n = (n + 1)^{n-1} \quad \text{# orbits} = \frac{1}{n+1} \binom{2n}{n}
\]

“Cayley” \quad “Catalan”
Structure of Parking Functions

Idea (Pollack, ∼ 1974)

Now imagine a circular street with $n + 1$ parking spaces.

- Choice functions $= (\mathbb{Z}/(n + 1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space $n + 1$ remains empty.
- One parking function per rotation class.

Conclusion:

- $\text{PF}_n = \text{choice functions } / \text{ rotation}$
- $\text{PF}_n \approx \mathcal{C}_n (\mathbb{Z}/(n + 1)\mathbb{Z})^n/(1, 1, \ldots, 1)$
- $\#\text{PF}_n = \frac{(n+1)^n}{n+1} = (n + 1)^{n-1}$
Structure of Parking Functions

Idea (Pollack, ∼ 1974)

Now imagine a circular street with \(n + 1 \) parking spaces.

- Choice functions = \(\mathbb{Z}/(n + 1)\mathbb{Z})^n \).
- Everyone can park. One empty spot remains.
- Choice is a parking function \(\iff \) space \(n + 1 \) remains empty.
- One parking function per rotation class.

Conclusion:

- \(\text{PF}_n = \text{choice functions} \div \text{rotation} \)
- \(\text{PF}_n \approx \mathbb{S}_n (\mathbb{Z}/(n + 1)\mathbb{Z})^n / (1, 1, \ldots, 1) \)
- \(\#\text{PF}_n = \frac{(n+1)^n}{n+1} = (n + 1)^{n-1} \)
Structure of Parking Functions

Idea (Pollack, ∼ 1974)

Now imagine a circular street with \(n + 1 \) parking spaces.

- Choice functions \(= (\mathbb{Z}/(n+1)\mathbb{Z})^n \).
- Everyone can park. One empty spot remains.
- Choice is a parking function \(\iff \) space \(n + 1 \) remains empty.
- One parking function per rotation class.

Conclusion:

- \(\text{PF}_n = \text{choice functions} / \text{rotation} \)
- \(\text{PF}_n \approx \mathbb{S}_n (\mathbb{Z}/(n+1)\mathbb{Z})^n/(1,1,\ldots,1) \)
- \(\#\text{PF}_n = \frac{(n+1)^n}{n+1} = (n+1)^n - 1 \)
Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with \(n + 1 \) parking spaces.

- Choice functions \(= (\mathbb{Z}/(n + 1)\mathbb{Z})^n \).
- Everyone can park. One empty spot remains.
- Choice is a parking function \(\iff \) space \(n + 1 \) remains empty.
- One parking function per rotation class.

Conclusion:

- \(\text{PF}_n = \text{choice functions} / \text{rotation} \)
- \(\text{PF}_n \approx \mathbb{S}_n (\mathbb{Z}/(n + 1)\mathbb{Z})^n / (1, 1, \ldots, 1) \)
- \(\#\text{PF}_n = \frac{(n+1)^n}{n+1} = (n + 1)^{n-1} \)
Structure of Parking Functions

Idea (Pollack, ~1974)

Now imagine a circular street with $n + 1$ parking spaces.

- Choice functions $= (\mathbb{Z}/(n + 1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space $n + 1$ remains empty.
- One parking function per rotation class.

Conclusion:

- $PF_n = \text{choice functions} / \text{rotation}$
- $PF_n \approx_{\mathfrak{S}_n} (\mathbb{Z}/(n + 1)\mathbb{Z})^n / (1, 1, \ldots, 1)$
- $\#PF_n = \frac{(n+1)^n}{n+1} = (n + 1)^{n-1}$
Structure of Parking Functions

Idea (Pollack, ∼ 1974)

Now imagine a circular street with \(n + 1 \) parking spaces.

- Choice functions = \((\mathbb{Z}/(n + 1)\mathbb{Z})^n\).
- Everyone can park. One empty spot remains.
- Choice is a parking function \(\iff\) space \(n + 1 \) remains empty.
- One parking function per rotation class.

Conclusion:

- \(\text{PF}_n = \text{choice functions} / \text{rotation} \)
- \(\text{PF}_n \cong \mathcal{C}_n \left(\mathbb{Z}/(n + 1)\mathbb{Z} \right)^n/(1,1,\ldots,1) \)
- \(\#\text{PF}_n = \frac{(n+1)^n}{n+1} = (n + 1)^{n-1} \)
Structure of Parking Functions

Idea (Pollack, ∼ 1974)

Now imagine a circular street with $n + 1$ parking spaces.

- Choice functions $= (\mathbb{Z}/(n + 1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space $n + 1$ remains empty.
- One parking function per rotation class.

Conclusion:

- $\text{PF}_n = \text{choice functions} / \text{rotation}$
- $\text{PF}_n \cong \mathfrak{S}_n (\mathbb{Z}/(n + 1)\mathbb{Z})^n/(1, 1, \ldots, 1)$
- $\# \text{PF}_n = \frac{(n+1)^n}{n+1} = (n + 1)^{n-1}$
Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with \(n + 1 \) parking spaces.

- Choice functions = \((\mathbb{Z}/(n + 1)\mathbb{Z})^n\).
- Everyone can park. One empty spot remains.
- Choice is a parking function \(\iff\) space \(n + 1 \) remains empty.
- One parking function per rotation class.

Conclusion:

- \(\text{PF}_n = \text{choice functions} / \text{rotation}\)
- \(\text{PF}_n \approx \sigma_n (\mathbb{Z}/(n + 1)\mathbb{Z})^n / (1, 1, \ldots, 1)\)
- \(#\text{PF}_n = \frac{(n+1)^n}{n+1} = (n + 1)^{n-1}\)
Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n + 1$ parking spaces.

- Choice functions $= \left(\mathbb{Z}/(n + 1)\mathbb{Z}\right)^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space $n + 1$ remains empty.
- One parking function per rotation class.

Conclusion:

- $PF_n = \text{choice functions} / \text{rotation}$
- $PF_n \approx \mathfrak{S}_n \left(\mathbb{Z}/(n + 1)\mathbb{Z}\right)^n / (1, 1, \ldots, 1)$
- $\#PF_n = \frac{(n+1)^n}{n+1} = (n + 1)^{n-1}$
Why do We Care?

Culture

The symmetric group \mathfrak{S}_n acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$\mathfrak{S}_n \curvearrowright \mathbb{Q}[x, y] := \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_n-action as parking functions:

$$\omega \cdot \text{PF}_n \approx_{\mathfrak{S}_n} \mathbb{Q}[x, y]/\mathbb{Q}[x, y]^{\mathfrak{S}_n}$$

The proof was hard. It comes down to this theorem:

The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen-Macaulay and Gorenstein.
Culture

The symmetric group \mathcal{S}_n acts **diagonally** on the algebra of polynomials in two commuting sets of variables:

$$\mathcal{S}_n \acts Q[x, y] := Q[x_1, \ldots, x_n, y_1, \ldots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of **diagonal coinvariants** carries the same \mathcal{S}_n-action as parking functions:

$$\omega \cdot PF_n \approx_{\mathcal{S}_n} Q[x, y]/Q[x, y]^{\mathcal{S}_n}$$

The proof was **hard**. It comes down to this theorem:

The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen-Macaulay and Gorenstein.
Culture

The symmetric group \mathfrak{S}_n acts **diagonally** on the algebra of polynomials in two commuting sets of variables:

$$\mathfrak{S}_n \acts \mathbb{Q}[x, y] := \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_n-action as parking functions:

$$\omega \cdot \mathrm{PF}_n \cong_{\mathfrak{S}_n} \mathbb{Q}[x, y]/\mathbb{Q}[x, y]^{\mathfrak{S}_n}$$

The proof was **hard**. It comes down to this theorem:

The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen-Macaulay and Gorenstein.
Why do We Care?

Culture

The symmetric group \mathfrak{S}_n acts \textit{diagonally} on the algebra of polynomials in two commuting sets of variables:

$$\mathfrak{S}_n \curvearrowright \mathbb{Q}[x, y] := \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of \textit{diagonal coinvariants} carries the same \mathfrak{S}_n-action as parking functions:

$$\omega \cdot \text{PF}_n \approx_{\mathfrak{S}_n} \mathbb{Q}[x, y]/\mathbb{Q}[x, y]^{\mathfrak{S}_n}$$

The proof was \textit{hard}. It comes down to this theorem:

\textit{The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen-Macaulay and Gorenstein.}
Haiman, *Conjectures on the quotient ring. . .*, Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is, $W \acts \mathbb{R}^r$ by reflections and stabilizes a “root lattice” $Q \leq \mathbb{R}^r$. We define the W-parking functions as

$$\text{PF}_W := Q/(h+1)Q.$$

This generalizes Pollack because we have

$$(\mathbb{Z}/(n+1)\mathbb{Z})^n/(1,1,\ldots,1) = Q/(n+1)Q.$$

Recall that $W = S_n$ has Coxeter number $h = n$, and root lattice

$$Q = \mathbb{Z}^n/(1,1,\ldots,1) = \{(r_1,\ldots,r_n) \in \mathbb{Z}^n : \sum_i r_i = 0\}.$$
Let W be a Weyl group with rank r and Coxeter number h. That is, $W \acts \mathbb{R}^r$ by reflections and stabilizes a “root lattice” $Q \leq \mathbb{R}^r$. We define the W-parking functions as

$$\text{PF}_W := Q/(h + 1)Q$$

This generalizes Pollack because we have

$$(\mathbb{Z}/(n+1)\mathbb{Z})^n/(1,1,\ldots,1) = Q/(n+1)Q.$$

Recall that $W = S_n$ has Coxeter number $h = n$, and root lattice

$$Q = \mathbb{Z}^n/(1,1,\ldots,1) = \{(r_1,\ldots,r_n) \in \mathbb{Z}^n : \sum_i r_i = 0\}.$$
Haiman, *Conjectures on the quotient ring*... Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is, $W \cong \mathbb{R}^r$ by reflections and stabilizes a “root lattice” $Q \leq \mathbb{R}^r$. We define the W-parking functions as

\[\text{PF}_W := Q / (h + 1)Q \]

This generalizes Pollack because we have

\[\left(\mathbb{Z} / (n + 1)\mathbb{Z} \right)^n / (1, 1, \ldots, 1) = Q / (n + 1)Q. \]

Recall that $W = \mathfrak{S}_n$ has Coxeter number $h = n$, and root lattice

\[Q = \mathbb{Z}^n / (1, 1, \ldots, 1) = \{ (r_1, \ldots, r_n) \in \mathbb{Z}^n : \sum_i r_i = 0 \}. \]
The W-parking space has dimension generalizing the Cayley numbers

$$\dim \text{PF}_W = (h + 1)^r \left(= (n + 1)^{n-1} \right)$$

More generally: Given $w \in W$, the character of PF_W is

$$\chi(w) = \# \{ \vec{a} \in \text{PF}_W : w(\vec{a}) = w \}$$

$$= (h + 1)^{r - \text{rank}(1 - w)} \left(= (n + 1)^{\# \text{cycles}(w) - 1} \right)$$

and the number of W-orbits generalizes the Catalan numbers

$$\# \text{orbits} = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) \left(= \frac{1}{n + 1} \binom{2n}{n} \right)$$
The W-parking space has dimension generalizing the Cayley numbers

$$\dim \text{PF}_W = (h + 1)^r \left(= (n + 1)^{n-1}\right)$$

More generally: Given $w \in W$, the character of PF_W is

$$\chi(w) = \#\{\vec{a} \in \text{PF}_W : w(\vec{a}) = w\}$$

$$= (h + 1)^{r - \text{rank}(1 - w)} \left(= (n + 1)^{\#\text{cycles}(w) - 1}\right)$$

and the number of W-orbits generalizes the Catalan numbers

$$\#\text{orbits} = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) \left(= \frac{1}{n + 1} \binom{2n}{n}\right)$$
Haiman, *Conjectures on the quotient ring...*, Section 7

The W-parking space has dimension generalizing the Cayley numbers

$$\dim PF_W = (h + 1)^r \left(= (n + 1)^{n-1} \right)$$

More generally: Given $w \in W$, the character of PF_W is

$$\chi(w) = \#\{\vec{a} \in PF_W : w(\vec{a}) = w\}$$

$$= (h + 1)^{r - \text{rank}(1-w)} \left(= (n + 1)^{\#\text{cycles}(w)-1} \right)$$

and the number of W-orbits generalizes the Catalan numbers

$$\#\text{orbits} = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) \left(= \frac{1}{n+1} \binom{2n}{n} \right)$$
Haiman, *Conjectures on the quotient ring...*, Section 7

The W-parking space has **dimension** generalizing the Cayley numbers

$$\dim \text{PF}_W = (h+1)^r \left(= (n+1)^{n-1} \right)$$

More generally: Given $w \in W$, the **character** of PF_W is

$$\chi(w) = \# \{ \vec{a} \in \text{PF}_W : w(\vec{a}) = w \}$$

$$= (h+1)^{r - \text{rank}(1-w)} \left(= (n+1)^{\#\text{cycles}(w) - 1} \right)$$

and the **number of W-orbits** generalizes the Catalan numbers

$$\#\text{orbits} = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) \left(= \frac{1}{n+1} \binom{2n}{n} \right)$$
Parking Functions \Leftrightarrow Shi Arrangement
Another Language

The W-parking space is the same as the Shi arrangement of hyperplanes. Given positive root $\alpha \in \Phi^+ \subseteq Q$ and integer $k \in \mathbb{Z}$ consider the hyperplane $H_{\alpha,k} := \{x : (\alpha, x) = k\}$. Then we define

$$\text{Shi}_W := \{H_{\alpha,\pm 1} : \alpha \in \Phi^+\}.$$

Cellini-Papi and Shi give an explicit bijection:

$$\text{elements of } Q/(h+1)Q \longleftrightarrow \text{chambers of Shi}_W.$$
Parking Functions ⇔ Shi Arrangement

Another Language

The W-parking space is the same as the Shi arrangement of hyperplanes. Given positive root $\alpha \in \Phi^+ \subseteq Q$ and integer $k \in \mathbb{Z}$ consider the hyperplane $H_{\alpha,k} := \{x : (\alpha, x) = k\}$. Then we define

$$\text{Shi}_W := \{H_{\alpha,\pm 1} : \alpha \in \Phi^+\}.$$

Cellini-Papi and Shi give an explicit bijection:

$$\text{elements of } Q/(h + 1)Q \leftrightarrow \text{chambers of } \text{Shi}_W$$
Parking Functions ⇔ Shi Arrangement

Example ($W = S_3$)

There are $16 = (3 + 1)^{3-1}$ chambers and $5 = \frac{1}{4} \binom{6}{3}$ orbits.
Parking Functions \Leftrightarrow Shi Arrangement

Example ($W = \mathfrak{S}_3$)

There are $16 = (3 + 1)^{3-1}$ chambers and $5 = \frac{1}{4} \binom{6}{3}$ orbits.
“Ceiling Diagrams”

I like to think of Shi chambers as elements of the set

\[\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap \text{inv}(w) = \emptyset \} \].

The Shi chamber with “ceiling diagram” \((w, A)\)

- is in the cone determined by \(w\)
- and has ceilings given by \(A\).

I.O.U.

How to describe the \(W\)-action on ceiling diagrams?
Parking Functions ⇔ Shi Arrangement

“Ceiling Diagrams”

I like to think of Shi chambers as elements of the set

\[\{ (w, A) : w \in \mathcal{W}, \text{ antichain } A \subseteq \Phi^+, A \cap \text{inv}(w) = \emptyset \} . \]

The Shi chamber with “ceiling diagram” \((w, A)\)

- is in the cone determined by \(w\)
- and has ceilings given by \(A\).

I.O.U.

How to describe the \(\mathcal{W}\)-action on ceiling diagrams?
“Ceiling Diagrams”

I like to think of Shi chambers as elements of the set

$$\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap \text{inv}(w) = \emptyset\}.$$

The Shi chamber with “ceiling diagram” \((w, A)\)

- is in the cone determined by \(w\)
- and has ceilings given by \(A\).

I.O.U.

How to describe the \(W\)-action on ceiling diagrams?
“Ceiling Diagrams”

I like to think of Shi chambers as elements of the set

\[\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap \text{inv}(w) = \emptyset\} . \]

The Shi chamber with “ceiling diagram” \((w, A)\)

- is in the cone determined by \(w\)
- and has ceilings given by \(A\).

I.O.U.

How to describe the \(W\)-action on ceiling diagrams?
"Ceiling Diagrams"

I like to think of Shi chambers as elements of the set

\[\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap \text{inv}(w) = \emptyset \} \].

The Shi chamber with “ceiling diagram” \((w, A)\)

- is in the cone determined by \(w\)
- and has ceilings given by \(A\).

I.O.U.

How to describe the \(W\)-action on ceiling diagrams?
What is a Noncrossing Partition?
What is a Noncrossing Partition?

Definition by Example

We encode this partition by the permutation $(1367)(45)(89) \in S_9$.
What is a Noncrossing Partition?

Definition by Example

We encode this partition by the permutation \((1367)(45)(89) \in \mathcal{S}_9\).
What is a Noncrossing Partition?

Theorem (Biane, and probably others)

Let \(T \subseteq \mathcal{S}_n \) be the generating set of all transpositions and consider the Cayley metric \(d_T : \mathcal{S}_n \times \mathcal{S}_n \to \mathbb{N} \) defined by

\[
d_T(\pi, \mu) := \min\{ k : \pi^{-1}\mu \text{ is a product of } k \text{ transpositions} \}.\]

Let \(c = (123 \cdots n) \) be the standard \(n \)-cycle. Then the permutation \(\pi \in \mathcal{S}_n \) corresponds to a noncrossing partition if and only if

\[
d_T(1, \pi) + d_T(\pi, c) = d_T(1, c).
\]

“\(\pi \) is on a geodesic between 1 and \(c \)”
What is a Noncrossing Partition?

Theorem (Biane, and probably others)

Let $T \subseteq \mathfrak{S}_n$ be the generating set of all transpositions and consider the Cayley metric $d_T : \mathfrak{S}_n \times \mathfrak{S}_n \to \mathbb{N}$ defined by

$$d_T(\pi, \mu) := \min\{k : \pi^{-1}\mu \text{ is a product of } k \text{ transpositions}\}.$$

Let $c = (123 \cdots n)$ be the standard n-cycle. Then the permutation $\pi \in \mathfrak{S}_n$ corresponds to a noncrossing partition if and only if

$$d_T(1, \pi) + d_T(\pi, c) = d_T(1, c).$$

"π is on a geodesic between 1 and c"
What is Noncrossing Partition?

Definition (Brady-Watt, Bessis)

Let W be any finite Coxeter group with reflections $T \subseteq W$. Let $c \in W$ be any Coxeter element. We say $w \in W$ is a "noncrossing partition" if

$$d_T(1, w) + d_T(w, c) = d_T(1, c)$$

"w is on a geodesic between 1 and c"
The Mystery of NC and NN

Let W be a Weyl group (crystallographic finite Coxeter group). Let $NC(W)$ be the set of noncrossing partitions and let $NN(W)$ be the set of antichains in Φ^+ (called “nonnesting partitions”). Then we have

$$\#NC(W) = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) = \#NN(W)$$

▶ The right equality has at least two uniform proofs.
▶ The left equality is only known case-by-case.
▶ What is going on here?
Mystery

Let W be a Weyl group (crystallographic finite Coxeter group). Let $NC(W)$ be the set of noncrossing partitions and let $NN(W)$ be the set of antichains in Φ^+ (called “nonnesting partitions”). Then we have

$$\#NC(W) = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) = \#NN(W)$$

- The right equality has at least two uniform proofs.
- The left equality is only known case-by-case.
- What is going on here?
The Mystery of NC and NN

Let W be a Weyl group (crystallographic finite Coxeter group). Let $NC(W)$ be the set of noncrossing partitions and let $NN(W)$ be the set of antichains in Φ^+ (called “nonnesting partitions”). Then we have

$$\#NC(W) = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) = \#NN(W)$$

- The right equality has at least two uniform proofs.
- The left equality is only known case-by-case.
- What is going on here?
The Mystery of NC and NN

Let \mathcal{W} be a Weyl group (crystallographic finite Coxeter group). Let $NC(\mathcal{W})$ be the set of noncrossing partitions and let $NN(\mathcal{W})$ be the set of antichains in Φ^+ (called “nonnesting partitions”). Then we have

$$\#NC(\mathcal{W}) = \frac{1}{|\mathcal{W}|} \prod_{i=1}^{r} (h + d_i) = \#NN(\mathcal{W})$$

- The right equality has at least two uniform proofs.
- The left equality is only known case-by-case.
- What is going on here?
Idea and an Anecdote

Idea: Since the parking functions can be thought of as

\[\{(w, A) : w \in W, A \in NN(W), A \cap \text{inv}(w) = \emptyset\} \]

maybe we should also consider the set

\[\{(w, \sigma) : w \in W, \sigma \in NC(W), \sigma \cap \text{inv}(w) = \emptyset\} \]

where “\(\sigma \cap \text{inv}(w)\)” means something sensible.

Anecdote: Where did the idea come from?
Idea and an Anecdote

Idea: Since the parking functions can be though of as

\[\{(w, A) : w \in W, A \in \text{NN}(W), A \cap \text{inv}(w) = \emptyset\} \]

maybe we should also consider the set

\[\{(w, \sigma) : w \in W, \sigma \in \text{NC}(W), \sigma \cap \text{inv}(w) = \emptyset\} \]

where “\(\sigma \cap \text{inv}(w)\)” means something sensible.

Anecdote: Where did the idea come from?
The Mystery of NC and NN

Idea and an Anecdote

Idea: Since the parking functions can be though of as

\[(w, A) : w \in W, A \in \text{NN}(W), A \cap \text{inv}(w) = \emptyset]\]

maybe we should also consider the set

\[(w, \sigma) : w \in W, \sigma \in \text{NC}(W), \sigma \cap \text{inv}(w) = \emptyset]\]

where “\(\sigma \cap \text{inv}(w)\)” means something sensible.

Anecdote: Where did the idea come from?
Pause
Now we define the W-action on Shi chambers

Definition of F-parking functions

Recall the definition of the lattice of flats for W

$$\mathcal{L}(W) := \{ \cap_{\alpha \in J} H_{\alpha,0} : J \subseteq \Phi^+ \},$$

and for any flat $X \in \mathcal{L}(W)$ recall the definition of the parabolic subgroup

$$W_X := \{ w \in W : w(x) = x \text{ for all } x \in X \}.$$
Now we define the W-action on Shi chambers

Definition of F-parking functions

Recall the definition of the **lattice of flats** for W

$$\mathcal{L}(W) := \{ \cap_{\alpha \in J} H_{\alpha,0} : J \subseteq \Phi^+ \},$$

and for any flat $X \in \mathcal{L}(W)$ recall the definition of the **parabolic subgroup**

$$W_X := \{ w \in W : w(x) = x \text{ for all } x \in X \}.$$
Now we define the W-action on Shi chambers

Definition of \mathcal{F}-parking functions

For any set of flats $\mathcal{F} \subseteq \mathcal{L}(W)$ we define the \mathcal{F}-parking functions

$$
\text{PF}_{\mathcal{F}} := \{ [w, X] : w \in W, X \in \mathcal{F}, w(X) \in \mathcal{F} \} / \sim
$$

where

$$[w, X] \sim [w', X'] \iff X = X' \text{ and } wW_X = w'W_{X'}$$

This set carries a natural W-action. For all $u \in W$ we define

$$u \cdot [w, X] := [wu^{-1}, u(X)]$$
Now we define the \mathcal{W}-action on Shi chambers

Definition of \mathcal{F}-parking functions

For any set of flats $\mathcal{F} \subseteq \mathcal{L}(\mathcal{W})$ we define the \mathcal{F}-parking functions

$$\text{PF}_\mathcal{F} := \{[w, X] : w \in \mathcal{W}, X \in \mathcal{F}, w(X) \in \mathcal{F}\}/\sim$$

where $[w, X] \sim [w', X'] \iff X = X' \text{ and } w w_X = w' w_{X'}$.

This set carries a natural \mathcal{W}-action. For all $u \in \mathcal{W}$ we define

$$u \cdot [w, X] := [wu^{-1}, u(X)]$$
Now we define the W-action on Shi chambers

The Prototypical Example of \mathcal{F}-Parking Functions

If we consider the set of nonnesting flats

$$\mathcal{F} = \mathcal{NN} := \{ \cap_{\alpha \in A} H_{\alpha,0} : \text{antichain } A \subseteq \Phi^+ \}$$

then $\text{PF}_{\mathcal{NN}}$ is just the set of ceiling diagrams of Shi chambers with the natural action corresponding to $W \curvearrowright Q/(h + 1)Q$.
Now we define the W-action on Shi chambers

But There is Another Example
Noncrossing Parking Functions

But There is Another Example
Noncrossing Parking Functions

But There is Another Example

Given any \(w \in W \) there is a corresponding flat

\[
\ker(1 - w) = \{ x : w(x) = x \} \in \mathcal{L}(W).
\]

If we consider the set of noncrossing flats

\[
\mathcal{F} = \mathcal{N}^\mathcal{C} := \{ \ker(1 - w) : w \in \text{NC}(W) \}
\]

then \(\text{PF}_{\mathcal{N}^\mathcal{C}} \) is something new and possibly interesting. We call \(\text{PF}_{\mathcal{N}^\mathcal{C}} \) the set of noncrossing parking functions.
But There is Another Example

Given any \(w \in W \) there is a corresponding flat

\[
\ker(1 - w) = \{ x : w(x) = x \} \in \mathcal{L}(W).
\]

If we consider the set of noncrossing flats

\[
\mathcal{F} = \mathcal{NC} := \{ \ker(1 - w) : w \in \text{NC}(W) \}
\]

then \(\text{PF}_{\mathcal{NC}} \) is something new and possibly interesting. We call \(\text{PF}_{\mathcal{NC}} \) the set of noncrossing parking functions.
Type A NC parking functions are just NC partitions with labeled blocks.
Theorem

If W is a Weyl group then we have an isomorphism of W-actions:

$$\text{PF}_{NC} \cong_W \text{PF}_{NN}$$

This is just a fancy restatement of a theorem of Athanasiadis, Chapoton, and Reiner. Unfortunately the proof is case-by-case using a computer.
However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

1. PF_{NN} is defined only for Weyl groups but PF_{NC} is defined also for noncrystallographic Coxeter groups.

2. PF_{NC} carries an extra cyclic action. Let $C = \langle c \rangle \leq W$ where $c \in W$ is a Coxeter element. Then the group $W \times C$ acts on PF_{NC} by

$$(u, c^d) \cdot [w, X] := [c^d w u^{-1}, u(X)].$$
However

The noncrossing parking functions have **two advantages** over the nonnesting parking functions.

1. \(\text{PF}_{NN} \) is defined only for Weyl groups but \(\text{PF}_{NC} \) is defined also for noncrystallographic Coxeter groups.

2. \(\text{PF}_{NC} \) carries an extra cyclic action. Let \(C = \langle c \rangle \leq W \) where \(c \in W \) is a Coxeter element. Then the group \(W \times C \) acts on \(\text{PF}_{NC} \) by

\[
(u, c^d) \cdot [w, X] := [c^d w u^{-1}, u(X)].
\]
However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

1. $\text{PF}_{\mathcal{N}\mathcal{N}}$ is defined only for Weyl groups but $\text{PF}_{\mathcal{N}\mathcal{C}}$ is defined also for noncrystallographic Coxeter groups.

2. $\text{PF}_{\mathcal{N}\mathcal{C}}$ carries an extra cyclic action. Let $C = \langle c \rangle \leq W$ where $c \in W$ is a Coxeter element. Then the group $W \times C$ acts on $\text{PF}_{\mathcal{N}\mathcal{C}}$ by

$$(u, c^d) \cdot [w, X] := [c^d w u^{-1}, u(X)].$$
Cyclic Sieving “Theorem”

Let $h := |\langle c \rangle|$ be the Coxeter number and let $\zeta := e^{2\pi i / h}$. Then for all $u \in W$ and $c^d \in C$ we have

$$\chi(u, c^d) = \# \{[w, X] \in \text{PF}_{NC} : (u, c^d) \cdot [w, X] = [w, X]\}$$

$$= \lim_{q \to \zeta^d} \frac{\det(1 - q^{h+1}u)}{\det(1 - qu)}$$

$$= (h + 1)^{\text{mult}_u(\zeta^d)},$$

where $\text{mult}_u(\zeta^d)$ is the multiplicity of the eigenvalue ζ^d in $u \in W$.

Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)
Cyclic Sieving “Theorem”

Let $h := |\langle c \rangle|$ be the Coxeter number and let $\zeta := e^{2\pi i / h}$. Then for all $u \in W$ and $c^d \in C$ we have

$$\chi(u, c^d) = \# \{ [w, X] \in \text{PF}_{NC} : (u, c^d) \cdot [w, X] = [w, X] \}$$

$$= \lim_{q \to \zeta^d} \frac{\det(1 - q^{h+1}u)}{\det(1 - qu)}$$

$$= (h + 1)^{\text{mult}_u(\zeta^d)},$$

where $\text{mult}_u(\zeta^d)$ is the multiplicity of the eigenvalue ζ^d in $u \in W$.

Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)
Noncrossing Parking Functions

Cyclic Sieving “Theorem”

Let \(h := |\langle c \rangle| \) be the Coxeter number and let \(\zeta := e^{2\pi i / h} \). Then for all \(u \in W \) and \(c^d \in C \) we have

\[
\chi(u, c^d) = \# \{ [w, X] \in \text{PF}_{NC} : (u, c^d) \cdot [w, X] = [w, X] \}
\]

\[
= \lim_{q \to \zeta^d} \frac{\det(1 - q^{h+1}u)}{\det(1 - qu)}
\]

\[
= (h + 1)^{\text{mult}_u(\zeta^d)},
\]

where \(\text{mult}_u(\zeta^d) \) is the multiplicity of the eigenvalue \(\zeta^d \) in \(u \in W \).

Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)
For more on noncrossing parking functions see my paper with Brendon Rhoades and Vic Reiner:

Vielen Dank!

Bielefeld wirklich gibt es!

picture by +Drew Armstrong and +David Roberts