
Fancy Algebra Fall 2016
Part I: Adjoint Functors Drew Armstrong

Contents

1 From Posets to Categories 2

2 Galois Connections 17

3 From Galois Connections to Adjunctions 23

4 The Definition of Adjoint Functors 28

5 From Vector Spaces to Categories 34

6 Uniqueness of Adjoints 36

7 RAPL 42

8 Three Fundamental Examples 51
8.1 Multiplication ⊣ Exponentiation . 51
8.2 Tensor ⊣ Hom . 53
8.3 Free ⊣ Forget . 58

Preface

Once upon a time, my opinion of category theory was the same as my opinion of Facebook:
if I ignore it for long enough, hopefully it will go away. It is now my educated opinion that
category theory will not go away, and in fact the language of category theory will continue to
spread until it becomes the default foundation of mathematics. During this transition period
there will be three kinds of mathematicians:

1. those young enough to be raised with the new language,

2. those willing to invest enough time and energy to learn the new language,

3. everyone else.

I see this transition as roughly analogous to the process that happened between 1830 and
1930, as Galois’ ideas were slowly absorbed into the foundations of mathematics. These notes
are written for people like myself who find category theory challenging, but who don’t want
to get left behind.

My ulterior motive is to gain a better understanding of representation theory by developing
its categorical foundations. To be specific, I am interested in

1

representations of associative algebras.

This is a beautiful subject but it contains many layers of algebraic structure that are often
difficult to keep track of. For example, the typical “modern algebraic” (circa 1930) definition
of a “representation of an associative algebra” involves at least three sets (R,A,M) carrying
at least five binary operations:

(R,+R, ⋅R) is a commutative ring,

(A,+A, ⋅A) is a possibly noncommutative ring,

(M,+M) is an abelian group,

and at least two homomorphisms (λ,ϕ), where:

λ ∶ R → Z(A) is a ring homomorphism sending R into the center of A,

ϕ ∶ A→ End(M) is a ring homomorphism sending A into the endomorphisms of M .

To make sense out of this subject we need a more sophisticated language than “modern
algebra” that will hide the right details at the right times. For this reason the language of
category theory has become an indispensible tool in representation theory. Unfortunately, this
language has not yet trickled down into introductory textbooks.

There is no best way to introduce category theory. However, any effective introduction will
find a balance between the following two contradictory goals:

• go slow enough to build intuition,

• get to nontrivial applications as soon as possible.

My personal preference is to begin by looking at posets and Galois connections between them.
Posets provide excellent motivation for the basic definitions of category theory and Galois
connections provide excellent intuition for the fundamental concept of

adjoint functors.

The basic theorems on adjoint functors (uniqueness of adjoints and the RAPL theorem) are
a bit tricky to prove, but the effort it worth it because they illustrate the main techniques of
the subject and they have many interesting applications. We will go as slow as necessary to
make all of this clear.

1 From Posets to Categories

Definition of Poset. A poset (partially ordered set) is a pair (P,≤), where:

• P is a set,

• ≤ is a binary relation on P satisfying the three axioms of partial order:

2

(i) Reflexive: ∀x ∈ P, x ≤ x

(ii) Antisymmetric: ∀x, y ∈ P, x ≤ y & y ≤ x Ô⇒ x = y

(iii) Transitive: ∀x, y, z ∈ P, x ≤ y & y ≤ z Ô⇒ x ≤ z.

///

[Remark: What does the symbol “x = y” in axiom (ii) mean? Well, we could let “=” be our
favorite equivalence relation on the set P (if we have one), or we could just define “=” by
means of axiom (ii). In practice it doesn’t really matter, so I will assume that the symbol “=”
is defined by (ii). One can then easily check that this “=” satisfies the three properties of an
equivalence relation.]

And what does this have to do with category theory? To make the transition I will switch to
a nonstandard notation:

“x ≤ y” ⇐⇒ “x→ y”

“x = y” ⇐⇒ “x↔ y”

The subject of general posets is way too broad, so let’s discuss some of the special properties
a poset might have.

Definition of Binary Meet/Join. Given x, y ∈ P ,

• we say that u ∈ P is a least upper bound of x, y ∈ P if we have x→ u & y → u, and for all
z ∈ P satisfying x→ z & y → z we must have u→ z.

It is more convenient to express this definition with a picture. We say that u ∈ P is a
least upper bound of x, y if for all z ∈ P the following picture holds:

u // z

x

OO ??

y

__ OO

[How to read the picture: When the four solid arrows exist, then the dotted arrow
necessarily exists. Later on we will want to say that there exists a unique such dotted
arrow, but right now there is no need to say this.]

• Dually, we say that ` ∈ P is a greatest lower bound of x, y if for all z ∈ P the following
picture holds:

x y

z

OO @@

// `

^^ OO

3

Now suppose that u1, u2 ∈ P are two least upper bounds for x, y. Applying the defininition in
both directions gives

u1 → u2 and u2 → u1,

and then from antisymmetry it follows that “u1 = u2”, which just means that u1 and u2 are
indistinguishable within the structure of P . For this reason we can speak of the least upper
bound (or “join”) of x, y. If it exists, we denote it by

x ∨ y.

Dually, if it exists, we denote the greatest lower bound (or “meet”) by

x ∧ y.

///

Jargon: The definitions of meet and join are called “universal properties”. Whenever an
object defined by a universal property exists, it is automatically unique in a certain canonical
sense. However, since the object might not exist, maybe it is better to refer to a universal
property as a “characterization,” or a “prescription,” rather than a “definition.”

We will see many universal properties in this class. Here’s another one right now.

Definition of Top/Bottom Elements. Let P be a poset. We say that t ∈ P is a top element
if for all z ∈ P the following picture holds:

z // t

Dually, we say that b ∈ P is a bottom element if for all z ∈ P the following picture holds:

b // z

///

Exercise: Show that top and bottom elements (if they exist) are unique.

We denote the top element (if it exists) by 1 and the bottom element (if it exists) by 0.

I was careful to phrase the definitions of 0 and 1 so they look like the definitions of ∨ and ∧.
Here is a more general construction encompassing them both.

Definition of Arbitrary Meet/Join. For any subset of elements of a poset S ⊆ P we say
that the element ⋁S ∈ P is its join if for all z ∈ P the following diagram is satisfied:

4

Dually, we say that ⋀S ∈ P is the meet of S if for all z ∈ P the following diagram is satisfied:

///

These diagrams are a bit more impressionistic but I suppose you can understand them now.
(If all solid arrows exist, then the dotted arrow exists.) If the objects ⋁S and ⋀S exist then
they are uniquely characterized by their universal properties, hence I didn’t cheat when I gave
them special names.

[Remark: The universal properties in these diagrams will be called the “limit” and “colimit”
properties when we move from posets to categories. Note that a limit/colimit diagram looks
like a “cone over S”. This is one example of the link between category theory and topology.]

Note that all of our definitions so far are included in this single (pair of) definition(s):

⋁{x, y} = x ∨ y & ⋀{x, y} = x ∧ y
⋁∅ = 0 & ⋀∅ = 1.

Exercise: Show that ⋁{x} = x and ⋀{x} = x.

Thus, 0 is an example of a join and 1 is an example of a meet. You have probably seen this
idea in the form of the following convention:

The sum of no numbers is 0; the product of no numbers is 1.

5

But maybe you didn’t realize that this convention can be formalized with the langauge of
universal properties.

Special Kinds of Posets:

Bounded. Let P be a poset. We say that P is bounded if it has a top and a bottom element.
I will draw bounded posets like this:

[Unbounded posets are much harder to draw.]

Lattice. If P is a poset in which the elements ⋁S and ⋀S exist for all finite subsets S ⊆ P
then we call P a lattice. Since the empty set is finite, every lattice is bounded.

Complete Lattice. If in addition the elements ⋀S and ⋁S exist for all infinite subsets
S ⊆ P then we call P a complete lattice.

///

You might think that the existence of meets and joins are independent, but this is not so.

Exercise: Show that if P contains all meets/joins, then it also contains all joins/meets,
respectively. Thus there is no reason to distinguish between “complete” and “cocomplete”
lattices. For general categories the two notions will be independent.

Examples of Lattices:

Boolean Lattice. Let U be any set and let 2U be the set of all subsets of U . This is a

6

(complete) lattice with the following structure:

“→ ” = “ ⊆ ”

0 = ∅
1 = U

∨ = ∪
∧ = ∩.

Any lattice of this form is called a Boolean lattice.

If U = {1,2,3} then we draw the “Hasse diagram” of the Boolean lattice 2U as follows:

{1,2,3}

{1,2}

::

{1,3}

OO

{2,3}

dd

{1}

OO ::

{2}

dd ::

{3}

dd OO

∅

ee OO 99

If the set U carries some algebraic structure then we may be interested in the subposet of 2U

consisting of subsets with special structure, e.g.,

• subgroups / normal subgroups

• subrings / ideals

• submodules

Each such subposet has a meet operation given by intersection. Each such subposet also has
a join operation, however this join is not just the union of subsets. (For example, the union
of subgroups is not a group; we must take the “group closure” of the union.) So, while each
such subposet is itself a lattice, we will not call it a sublattice of 2U .

From Analysis. The real interval [0,1] ⊆ R with the usual partial order “≤” is a complete
lattice with structure:

0 = 0

1 = 1

∨ = supremum

∧ = infimum.

The sublattice [0,1] ∩Q is not complete.

7

From Number Theory. The set N = {0,1,2, . . . ,} is a lattice under the divisibility relation:

“a→ b” ⇐⇒ “b∣a”

It has structure given by:

0 = 0

1 = 1

∨ = greatest common divisor

∧ = least common multiple.

This lattice is isomorphic to the lattice of subgroups of the abelian group (Z,+,0). To see
this, recall that every subgroup of Z has the form (n) ∶= nZ = {nk ∶ k ∈ Z} for some n ∈ N and
that

(a) ⊆ (b) ⇐⇒ b∣a.

///

Now I will let you in on the secret of today’s lecture. Everything I have told you so far is
a special case of category theory. Here is a dictionary between the poset-theoretic and the
category-theoretic terminology:

poset P = category P

elements of P = objects of P

1 = final object

0 = initial object

x ∧ y = categorical product

x ∨ y = categorical coproduct (or sum)

⋀S = categorical limit of the “diagram” S ⊆ P
⋁S = categorical colimit of the “diagram” S ⊆ P .

Thus, products and final objects are examples of “limits,” while coproducts and initial objects
are examples of “colimits.” This explains our previous use of the word “complete.”

Now it’s time to define the word “category.” Posets provide excellent intuition for categories,
but a general category differs from a poset in two important ways:

(1) Posets Are Small. A poset has a set of objects/elements, but a general category can
have “more” objects. For example, the category of all sets is very important, but you probably
know that there is no such thing as the “set of all sets.”

8

A category with a set of arrows (and hence also a set of objects) is called a “small category.”
Thus a poset is an example of a small category.

(2) Posets Are Thin. For elements x, y in a poset we used the nonstandard notation:

“x ≤ y” ⇐⇒ “x→ y”

Thus, an ordered pair of objects in a poset can have either zero or one arrow between them.

If C is a general category and x, y ∈ C are two objects, then there can exist a whole set of
arrows from x to y (and maybe even more). We let

HomC(x, y)

denote the collection of arrows from x to y. If there are many arrows then we will give them
Greek names, like α,β, γ, . . ., and to indicate these names we will use the notation

x
α // y or α ∶ x→ y.

The reflexive property of posets becomes the following rule:

• Every object x ∈ C has a special “identity arrow” idx ∈ HomC(x,x).

And the transitive property gets modified as follows:

• Given objects x, y, z ∈ C and arrows α ∈ HomC(x, y), β ∈ HomC(y, z), there exists a “com-
posite arrow” β ○ α ∈ HomC(x, z). Composition of arrows (when defined) is associative
and behaves correctly with the identity arrows.

///

Here is the official definition.

Definition of Category. A category C consists of the following data:

• A collection1 Obj(C) of objects. We will write “x ∈ C” to mean that “x ∈ Obj(C).”

• For each ordered pair x, y ∈ C there is a collection HomC(x, y) of arrows. We will write
“α ∶ x → y” to mean that “α ∈ HomC(x, y).” Each collection HomC(x,x) has a special
element called the identity arrow idx ∶ x → x. We let Arr(C) denote the collection of all
arrows in C.

• For each ordered triple of objects x, y, z ∈ C there is a function

○ ∶ HomC(x, y) ×HomC(y, z) → HomC(x, z),

which is called composition of arrows. If α ∶ x → y and β ∶ y → z then we denote the
composite arrow by β ○ α ∶ x→ z.

1This is a non-technical term. I pray that no one ever gives it a technical definition.

9

If each collection of arrows HomC(x, y) is a set then we say that the category C is locally small.
If in addition the collection Obj(C) is a set then we say that C is small.2

This data is required to satisfy two axioms, which we express in graphical form.

(i) Identitiy: For each arrow α ∶ x→ y the following diagram commutes:

xidx
%% α // y idyee

(ii) Associative: For all arrows α ∶ x → y, β ∶ y → z, γ ∶ z → w, the following diagram
commutes:

x

β○α

AA
α // y

γ○β

��β // z
γ // w

We say that C′ ⊆ C is a subcategory if Obj(C′) ⊆ Obj(C) and if for all x, y ∈ Obj(C′) we have
HomC′(x, y) ⊆ HomC(x, y). We say that the subcategory is full if each inclusion of hom sets is
an equality. ///

To understand the pictures in the definition we need an auxiliary definition. I will give two
versions of this definition; one to look at now and one to look at later.

Naive Definition of Diagram. Let C be a category. A diagram D ⊆ C is a collection of
objects in C with some arrows between them. Repetition of objects and arrows is allowed. ///

Fancy Definition of Diagram. Let I be any small category, which we think of as an
“index category.” Then any functor D ∶ I → C is called a diagram of shape I in C. (The word
“functor” will defined later.) ///

In either case, we say that the diagram D commutes if for all pairs of objects x, y in D, any
two directed paths in D from x to y yield the same arrow under composition.

Exercise: Prove that a poset is the same thing as a small category P in which, for all x, y ∈ P,
we have ∣HomP(x, y)∣ ∈ {0,1}.

Identity arrows generalize the reflexive property of posets, and composition of arrows gener-
alizes the transitive property of posets. But what happened to the antisymmetric property?
Well, it’s the same issue we had before: we should really define equivalence of objects in
terms of antisymmetry.

2Even if C is not locally small we will still refer to the collections HomC(x, y) as “hom sets.” Sorry.

10

Definition of Isomorphism. Let C be a category. We say that two objects x, y ∈ C are
isomorphic in C if there exist arrows α ∶ x → y and β ∶ y → x such that the following diagram
commutes:

xidx
%% α

((
y idyee

β

hh

In this case we write x ≅C y, or just x ≅ y if the category is understood. ///

If γ ∶ y → x is any other arrow satisfying the same diagram as β, then by the axioms of identity
and associativity we must have

γ = γ ○ idy = γ ○ (α ○ β) = (γ ○ α) ○ β = idx ○ β = β.

This allows us to refer to β as the inverse of the arrow α. We use the notations β = α−1 and
β−1 = α.

Exercise: Check that isomorphism is an equivalence relation on the collection of objects. This
generalizes the equivalence relation induced on a poset (P,≤) by the antisymmetry property.

[Remark: Two objects x, y may belong simultaneously to two different categories, say C and
D. In this case, the statement x ≅C y means that “x and y are equivalent from the C point
of view,” while x ≅D y means that “x and y are equivalent from the D point of view.” In the
philosophy of category theory there is no absolute point of view, thus there is no way to
say whether x and y are “really the same.”]

Examples of Categories:

Posets/Preorders. We have already seen that a poset P is just a small category satifying
∣HomP(x, y)∣ ∈ {0,1} for each ordered pair x, y ∈ P. More precisely, such a category is called a
preorder. If we throw away all but one object from each P-isomorphism class, then it becomes
a poset. The resulting poset is called the skeleton of the preorder.

Sets/Numbers. Let Set denote the collection of all sets, together with all functions between
them. This is called the category of sets. (Note that it is not small.) The collection of all
finite sets and injective functions is a (non-full) subcategory of Set. The skeleton of this
subcategory is the poset category (N,≤) of finite cardinal numbers:

0→ 1→ 2→ 3→ ⋯.

Monoids/Groupoids/Groups. A category with one object is called a monoid. A monoid
in which each arrow is invertible is called a group. A small category in which each arrow is
invertible is called a groupoid. Thus we can give the following fancy definition of groups:

11

a group is a groupoid with one object.

The skeleton of a groupoid is not very interesting.

Concrete Categories. Subcategories of Set are called concrete categories. Given a concrete
category C ⊆ Set we can think of its objects as special kinds of sets and its arrows as special
kinds of functions. Some famous examples of conrete categories are:

• Grp = groups & homomorphisms

• Ab = abelian groups & homomorphisms

• Rng = rings & homomorphisms

• CRng = commutative rings & homomorphisms

Note that Ab ⊆ Grp and CRng ⊆ Rng are both full subcategories. In general, the arrows of a
concrete category are called morphisms or homomorphisms. This explains our notation HomC
(but some people prefer MorC).

Homotopy. The most famous example of a non-concrete category is the fundamental
groupoid π1(X) of a topological space X. Here the objects are points and the arrows are
homotopy classes of continuous directed paths. The skeleton is the set π0(X) of path compo-
nents (really a discrete category, i.e., in which the only arrows are the identities). Categories
like this are the reason we prefer the name “arrow” instead of “morphism.” ///

Those are the basics. Now we should discuss the general categorical version of meet and join.
This definition is not obvious, but I will work hard to convince you that it is interesting and
useful.

Definition of Limit/Colimit. Let D ∶ I → C be a diagram in a category C (thus D is a
functor and I is a small “index” category). A cone under D consists of

• an object c ∈ C,

• a collection of arrows αi ∶ x→D(i), one for each index i ∈ I,

such that for each arrow δ ∶ i→ j in I we have αj =D(δ) ○ αi. I visualize this as follows:

12

The cone (c, (αi)i∈I) is called a limit of the diagram D if, for any cone (z, (βi)i∈I) under D,
the following picture holds:

[This picture means that there exists a unique arrow υ ∶ z → c such that, for each arrow
δ ∶ i→ j in I (including the identity arrows), the following diagram commutes:

D(i)
D(δ) // D(j)

c

αi

aa

αj

<<

z

βi

KK

βj

RR

υ

OO

When δ = idi this diagram just says that βi = αi ○ υ. We do not assume that D itself is
commutative. Thus the picture of the cones above is not fully commutative, but I still find it
quite helpful for intuition.]

Dually, a cone over D consists of an object c ∈ C and a set of arrows αi ∶ D(i) → c satisfying
αi = αj ○D(δ) for each arrow δ ∶ i → j in I. This cone is called a colimit of the diagram D if,
for any cone (z, (βi)i∈I) over D, the following picture holds:

13

///

Exercise: State the precise sense in which a limit or colimit (if it exists) is unique.

When the (unique) limit or colimit of the diagram D ∶ I → C exists, we denote it by

(limID, (ϕi)i∈I) or (colimID, (ϕi)i∈I),

respectively. Sometimes we omit the canonical arrows ϕi from the notation and refer to the
object limID ∈ C as “the limit of D.” However, we should not forget that the arrows are part
of the structure, i.e., the limit is really a cone. Maybe the following words will help you
remember this:

limit of D = highest cone under D

colimit of D = lowest cone over D

Special Kinds of Limits/Colimits:

Final/Initial Objects. Consider the empty diagram ∅ ⊆ C, which is indexed by the empty
category. The limit or colimit of this diagram (if it exists) is called the final object of C or the
initial object of C, respectively. Each comes equipped with the canonical empty set of arrows,
which we will never mention again.

If an object z ∈ C is both final and initial, we call it the zero object. In this case there is also a
unique zero arrow between any two objects, defined by the following commutative diagram:

x

zero

&&
∃!
// z ∃!

// y

Products/Coproducts. Let I be the category with Obj(I) = {1,2} and Arr(I) = {id1, id2}.
Then a diagram D(I) = D ⊆ C is really just a choice of two objects D(1),D(2) ∈ C, which
are allowed to be equal.

14

The limit of D is called the categorical product. It consists of an object D(1)∏D(2) ∈ C
and two arrows π1 ∶ D(1)∏D(2) → D(1) and π2 ∶ D(1)∏D(2) → D(2), called canonical
projections. It is defined by the following picture:

D(1) D(2)

D(1)∏D(2)

π1
ff

π2
88

z

VV HH

∃!

OO

Dually, the colimit of D is called the categorical coproduct (or categorical sum). It consists
of an object D(1)∐D(2) ∈ C and two arrows ι1 ∶ D(1) → D(1)∐D(2) and ι2 ∶ D(2) →
D(1)∐D(2), called canonical injections. It is defined by the following picture:

z

D(1)∐D(2)

∃!

OO

D(1)
ι1

88

77

D(2)
ι2

ff

gg

[How to read the pictures: For all objects z ∈ C and all solid arrows, there exists a unique
dotted arrow making the diagram commute.]

Kernels/Cokernels. See the Exercises.

///

Examples from our Favorite Categories:

Posets. Let P be a poset. We have already seen that the product/coproduct in P (if they
exist) are the meet/join, respectively, and that the final/initial objects in P (if they exist) are
the top/bottom elements, respectively. The only poset with a zero object is the one element
poset.

Sets. The empty set ∅ ∈ Set is an initial object and the one point set ∗ ∈ Set is a final object.
Note that two sets are isomorphic in Set precisely when there is a bijection between them, i.e.,
when they have the same cardinality. Since initial/final objects are unique up to isomorphism,
we can identify the initial object with the cardinal number 0 and the final object with the
cardinal number 1. There is no zero object in Set.

15

Products and coproducts exist in Set. The product of S,T ∈ Set consists of the Cartesian
product S × T together with the canonical projections πS ∶ S × T → S and πT ∶ S × T → T .
The coproduct of S,T ∈ Set consists of the disjoint union S∐T together with the canonical
injections ιS ∶ S → S∐T and ιT ∶ T → S∐T . After passing to the skeleton, the product and
coproduct of sets become the product and sum of cardinal numbers.

[Note: The “external disjoint union” S∐T is a formal concept. The familiar “internal disjoint
union” S ⊔ T is only defined when there exists a set U containing both S and T as subsets.
Then the union S∪T is the join operation in the Boolean lattice 2U ; we call the union “disjoint”
when S ∩ T = ∅.]

Groups. The trivial group 1 ∈ Grp is a zero object, and for any groups G,H ∈ Grp the zero
homomorphism 1 ∶ G → H sends all elements of G to the identity element 1H ∈ H. The
product of groups G,H ∈ Grp is their direct product G × H and the coproduct is their free
product G ∗H, along with the usual canonical morphisms.

Let Ab ⊆ Grp be the full subcategory of abelian groups. The zero object and product are
inherited from Grp, but we give them new names: we denote the zero object by 0 ∈ Ab and
for any A,B ∈ Ab we denote the zero arrow by 0 ∶ A → B. We denote the Cartesian product
by A ⊕B and we rename it the direct sum. The big difference between Grp and Ab appears
when we consider coproducts: it turns out that the product group A⊕B is also the coproduct
group. We emphasize this fact by calling A⊕B the biproduct in Ab. It comes equipped with
four canonical homomorphisms πA, πB, ιA, ιB satisfying the usual properties, as well as
the following commutative diagram:

A

0

��

ιA

##

idA // A

A⊕B

πB{{

πA

;;

B B
idB

oo
ιB

cc 0

OO

This diagram is the ultimate reason for matrix notation. The universal properties of product
and coproduct tell us that each endomorphism ϕ ∶ A⊕B → A⊕B is uniquely determined by
its four components ϕij ∶= πi ○ ϕ ○ ιj for i, j ∈ {A,B}, so we can represent it as a matrix:

(ϕAA ϕAB
ϕBA ϕBB

) .

Then the composition of endomorphisms becomes matrix multiplication.

Rings. We let Rng denote the category of rings with unity, together with their homomor-
phisms. The initial object is the ring of integers Z ∈ Rng and the final object is the zero
ring 0 ∈ Rng, i.e., the unique ring in which 0R = 1R. There is no zero object. The product

16

of two rings R,S ∈ Rng is the direct product R × S ∈ Rng with componentwise addition and
multiplication. The coproduct is something like a “free product” but it is difficult to describe.

Let CRng ⊆ Rng be the full subcategory of commutative rings. The initial/final objects and
product in CRng are inherited from Rng. The difference between Rng and CRng again appears
when considering coproducts. The coproduct of R,S ∈ CRng is denoted by R⊗ZS and is called
the tensor product over Z. We’ll come back to this later.

2 Galois Connections

Every good definition should be legitimized by a theorem, and the definition of limits has a
great theorem called RAPL (“right adjoints preserve limits”). To discuss the theorem I need
to define right/left adjoint functors, but before doing so I will motivate their definition by
considering the special case of adjoint functors between posets.

Definition of Galois Connection. Let (P,≤P) and (Q,≤Q) be posets, and consider two
set functions ∗ ∶ P ⇄ Q ∶ ∗. We will denote these by p↦ p∗ and q ↦ q∗ for all p ∈ P and q ∈ Q.
This pair of functions is called a Galois connection if, for all p ∈ P and q ∈ Q, we have

p ≤P q∗ ⇐⇒ q ≤Q p∗.

///

Basic Properties of Galois Connections. Let ∗ ∶ P ⇄ Q ∶ ∗ be a Galois connection. For
all elements x of P or Q we will use the notations x∗∗ ∶= (x∗)∗ and x∗∗∗ ∶= (x∗∗)∗.

(1) For all p ∈ P and q ∈ Q we have

p ≤P p∗∗ and q ≤Q q∗∗.

(2) For all elements p1, p2 ∈ P and q1, q2 ∈ Q we have

p1 ≤P p2 Ô⇒ p∗2 ≤Q p∗1 and q1 ≤Q q2 Ô⇒ q∗2 ≤P q∗1 .

(3) For all elements p ∈ P and q ∈ Q we have

p∗∗∗ = p∗ and q∗∗∗ = q∗.

///

Proof. Since the definition of a Galois connection is symmetric in P and Q, we will simplify
the proof by using the notation

x ≤ y∗ ⇐⇒ y ≤ x∗

17

for all elements x, y such that the inequalities make sense. To prove (1) note that for any
element x we have x∗ ≤ x∗ by the reflexivity of partial order. Then from the definition of
Galois connection we obtain

(x∗) ≤ (x)∗ Ô⇒ (x) ≤ (x∗)∗ Ô⇒ x ≤ x∗∗.

To prove (2) consider elements x, y such that x ≤ y. From (1) and the transitivity of partial
order we have

x ≤ y ≤ y∗∗ Ô⇒ x ≤ y∗∗.

Then from the definition of Galois connection we obtain

(x) ≤ (y∗)∗ Ô⇒ (y∗) ≤ (x)∗ Ô⇒ y∗ ≤ x∗.

To prove (3) consider any element x. On the one hand, part (1) tells us that

(x∗) ≤ (x∗)∗∗ Ô⇒ x∗ ≤ x∗∗∗.

On the other hand, part (1) tells us that x ≤ x∗∗ and then part (2) says that

(x) ≤ (x∗∗) Ô⇒ (x∗∗)∗ ≤ (x)∗ Ô⇒ x∗∗∗ ≤ x∗.

Finally, the antisymmetry of partial order says that x∗∗∗ = x∗, which we interpret as isomor-
phism of objects in the poset category. ◻

The following definition captures the essence of these three basic properties.

Definition of Closure in a Poset. Given a poset (P,≤), we say that a function cl ∶ P → P
is a closure operator if it satisfies the following three properties:

(i) Extensive: ∀p ∈ P, p ≤ cl(p)

(ii) Monotone: ∀p, q ∈ P, p ≤ qÔ⇒ cl(p) ≤ cl(q)

(iii) Idempotent: ∀p ∈ P, cl(cl(p)) = p.

///

[Remark: If P = 2U is a Boolean lattice, and if the closure cl ∶ 2U → 2U also preserves
finite unions, then we call it a Kuratowski closure. Kuratowski proved that such a closure is
equivalent to a topology on the set U .]

If ∗ ∶ P → Q ∶ ∗ is a Galois connection, then the basic properties above immediately imply
that the compositions ∗∗ ∶ P → P and ∗∗ ∶ Q → Q are closure operators.

Proof: Property (ii) follows from applying property (2) twice and property (iii) follows from
applying ∗ to property (3). ◻

18

Fundamental Theorem of Galois Connections. Any Galois connection ∗ ∶ P ⇄ Q ∶ ∗
determines two closure operators ∗∗ ∶ P → P and ∗∗ ∶ Q → Q. We will say that the element
p ∈ P (resp. q ∈ Q) is ∗∗-closed if p∗∗ = p (resp. q∗∗ = q). Then the Galois connection restricts
to an order-reversing bijection between the subposets of ∗∗-closed elements. ///

Proof: Let Q∗ ⊆ P and P∗ ⊆ Q denote the images of the functions ∗ ∶ Q → P and ∗ ∶ P → Q,
respectively. I claim that the restriction of the connection to these subsets defines an order-
reversing bijection:

∗ ∶ P //
oo Q ∶ ∗

⊆ ⊆

∗ ∶ Q∗ oo // P∗ ∶ ∗

Indeed, consider any p ∈ Q∗, so that p = q∗ for some q ∈ Q. Then by properties (1) and (3) of
Galois connections we have

(p)∗∗ = (q∗)∗∗ Ô⇒ p∗∗ = q∗∗∗ Ô⇒ p∗∗ = q∗ Ô⇒ p∗∗ = p.

Similarly, for all q ∈ P∗ we have q∗∗ = q. The bijections reverse order because of property (2).

Finally, note that Q∗ and P∗ are exactly the subsets of ∗∗-closed elements in P and Q,
respectively. Indeed, we have seen above that every element of Q∗ is ∗∗-closed. Conversely, if
p ∈ P is ∗∗-closed then we have

p = p∗∗ Ô⇒ p = (p∗)∗,

and it follows that p ∈ Q∗. Similarly, every element of P∗ is ∗∗-closed. ◻

Thus, a Galois connection is something like a “loose bijection.” It’s not necessarily a bijection
but it becomes one after we “tighten it up.” Sort of like tightening your shoelaces.

I’m not good at drawing unbounded posets, so let’s assume that our posets have top and
bottom elements: 1P ,0P ∈ P and 1Q,0Q ∈ Q. In this case, I visualize a Galois connection
∗ ∶ P ⇄ Q ∶ ∗ with in the following picture:

19

The shaded subposets here consist of the ∗∗-closed elements. They are supposed to look (anti-
) isomorphic. The unshaded parts of the posets get “tightened up” into the shaded subposets.
Note that the top elements are ∗∗-closed. Indeed, property (2) tells us that 1P ≤P 1∗∗P and then
from the universal property of the top element we have 1∗∗P = 1P . (In detail: Since p ≤P 1P for
all p ∈ P we must have 1∗∗P ≤P 1P , and then antisymmetry gives 1∗∗P = 1P .) Similarly, we have
1∗∗Q = 1Q.

But the bottom elements are not necessarily ∗∗-closed. Instead, we have the important
fact that 0∗P = 1Q and 0∗Q = 1P . To see this, recall from the definition of Galois connection
that for all q ∈ Q we have

0P ≤P q∗ ⇐⇒ q ≤Q 0∗P .
Since the left hand side is always true, so is the right hand side. But then from the universal
property of the top element in Q we conclude that 0∗P = 1Q. The following exercise generalizes
this phenomenon.

Exercise: Prove that a Galois connection sends joins to meets. That is, if ∗ ∶ P ⇄ Q ∶ ∗ is a
Galois connection, then for all subsets S ⊆ P and T ⊆ Q we have

(∨PS)∗ = ∧QS∗ and (∨QT)∗ = ∧PT ∗.

As a consequence of this, the arbitrary meet of ∗∗-closed elements (if it exists) is still ∗∗-
closed. We will see, however, that the join of ∗∗-closed elements is not necessarily ∗∗-closed.

20

(And hence not all Galois connections induce topologies.) ///

Galois connections between Boolean lattices have a particularly nice form, which is closely
related to the universal quantifier “∀”.

Galois Connections of Boolean Lattices. Let U,V be sets and let ∼⊆ U ×V be any subset
(called a relation) between U and V . As usual, we will write “u ∼ v” in place of the statement
“(u, v) ∈ ∼”, and we read this as “u is related to v.” Then for all S ∈ 2U and T ∈ 2V we define

S∼ ∶= {v ∈ V ∶ ∀s ∈ S, s ∼ v} ∈ 2V ,

T ∼ ∶= {u ∈ U ∶ ∀t ∈ T, u ∼ t} ∈ 2U .

I claim that the pair of functions S ↦ S∼ and T ↦ T ∼ is a Galois connection,

∼ ∶ 2U ⇄ 2V ∶ ∼ .

To see this, note that for all subsets S ∈ 2U and T ∈ 2V we have

S ⊆ T ∼ ⇐⇒ ∀s ∈ S, s ∈ T ∼

⇐⇒ ∀s ∈ S, ∀t ∈ T, s ∼ t
⇐⇒ ∀t ∈ T, ∀s ∈ S, s ∼ t
⇐⇒ ∀t ∈ T, t ∈ S∼

⇐⇒ T ⊆ S∼.

Moreover, one can prove that any Galois connection between 2U and 2V arises in this way
from a unique relation. ///

Exercise. Prove this.

The most famous Galois connections arise from simple relations between two sets.

Examples of Galois Connections:

Orthogonal Complement. Let V be a vector space over field K and let V ∗ be the dual
space, consisting of linear functions α ∶ V →K. We define the relation ⊥⊆ V ∗ × V by

α ⊥ v ⇐⇒ α(v) = 0.

The resulting ⊥⊥-closed subsets are precisely the linear subspaces on both sides. Thus the
Fundamental Theorem of Galois Connections gives us an order-reversing bijection between
the subspaces of V ∗ and the subspaces of V .

21

Convex Complement. Let V be a Euclidean space, i.e., a real vector space with an inner
product ⟨-, -⟩ ∶ V × V → R. We define the relation ∼⊆ V × V by

u ∼ v ⇐⇒ ⟨u, v⟩ ≤ 0.

For all S ⊆ V the operation S ↦ S∼∼ gives the cone genrated by S, thus the ∼∼-closed sets are
precisely the cones. Here is a picture:

Original Galois Connection. Let L be a field and let G be a finite group of automorphisms
of L, i.e., each g ∈ G is a function g ∶ L→ L preserving addition and multiplication. We define
a relation ∼⊆ G ×L by

g ∼ ` ⇐⇒ g(`) = `.

Define K ∶= L∼ to be the “subfield fixed by G.” The original Fundamental Theorem of Galois
Theory says that the ∼∼-closed subsets of G are precisely the subgroups and the ∼∼-closed
subsets of L are precisely the subfields containing K. [There’s a bit more to it, but those
are the basics.]

Hilbert’s Nullstellensatz. Let K be a field and consider the ring of polynomials K[x] ∶=
K[x1, . . . , xn] in n commuting variables. For each polynomial f(x) ∶= f(x1, . . . , xn) ∈ K[x]
and for each n-tuple of field elements α ∶= (α1, . . . , αn) ∈ Kn, we denote the evaluation by
f(α) ∶= f(α1, . . . , αn) ∈K. Now we define a relation ∼⊆K[x] ×Kn by

f(x) ∼ α ⇐⇒ f(α) = 0.

By definition, the closure operator ∼∼ on subsets of Kn is called the Zariski closure. It is not
difficult to prove that it satisfies the additional property of a Kuratowski closure (i.e., finite
unions of closed sets are closed) and hence it defines a topology on Kn, called the Zariski
topology. Hilbert’s Nullstellensatz says that if K is algebraically closed, then the ∼∼-closed
subsets of K[x] are precisely the radical ideals (i.e., ideals closed under taking arbitrary roots).
This is difficult to prove.

22

3 From Galois Connections to Adjunctions

To make the transition from Galois connections to adjoint functors we make a slight change
of notation. The change is only cosmetic but it is very important for our intuition.

Definition of Poset Adjunction. Let (P,≤P) and (Q,≤Q) be posets. A pair of functions
L ∶ P ⇄ Q ∶ R is called an adjunction if for all p ∈ P and q ∈ Q we have

p ≤P R(q) ⇐⇒ L(p) ≤Q q

In this case we write L ⊣ R and call this an adjoint pair of functions. The function L is the
left adjoint and R is the right adjoint. ///

The only difference between Galois connections and poset adjunctions is that we have re-
versed the partial order on Q. To be precise, we define the opposite poset Qop with the same
underlying set Q, such that for all q1, q2 ∈ Q we have

q1 ≤Qop q2 ⇐⇒ q2 ≤Q q1.

Then an adjunction P ⇄ Q is just the same thing as a Galois connection P ⇄ Qop.

However, this difference is important because it breaks the symmetry. It also prepares
us for the notation of an adjunction between categories, where it is more common to use an
“asymmetric pair of covariant functors” as opposed to a “symmetric pair of contravariant
functors.” But more on that later.

Now I will state the two most important properties of adjunctions and prove them for adjunc-
tions between posets. The statements and proofs of these theorems for general categories are
more involved, but will follow the same pattern.

Uniqueness of Adjoints for Posets. Let P and Q be posets and let L ∶ P ⇄ Q ∶ R be an
adjunction. Then each of the adjoint functions L ⊣ R uniquely determines the other. ///

Proof: To prove that R determines L, suppose that L′ ∶ P ⇄ Q ∶ R is another adjunction.
Then by definition of adjunction we have for all q ∈ Q that

L(p) ≤Q q ⇐⇒ p ≤P R(q) ⇐⇒ L′(p) ≤Q q.

In particular, setting q = L(p) gives

L(p) ≤Q L(p) Ô⇒ L′(p) ≤Q L(p)

and setting q = L′(p) gives

L′(p) ≤Q L′(p) Ô⇒ L(p) ≤Q L′(p).

23

Then by the antisymmetry of ≤Q we have L(p) = L′(p). Since this holds for all p ∈ P we
conclude that L = L′, as desired. ◻

[Remark: The general version uses something called “Yoneda’s Lemma” to conclude that L
and L′ are merely “isomorphic in some natural way.”]

RAPL Theorem for Posets. Let L ∶ P ⇄ Q ∶ R be an adjunction of posets. Then for all
subsets S ⊆ P and T ⊆ Q we have

L(∨PS) = ∨QL(S) and R(∧QT) = ∧PR(T).

In words, we say that

“left adjoints preserve join” and “right adjoints preserve meet.”

///

Proof: You already proved this for Galois connections in a previous exercise. We just have
to observe that sending Q to its opposite Qop switches the definitions of join and meet:

∨Qop = ∧Q and ∧Qop = ∨Q.

◻

[Remark: The general version states that “left adjoints preserve colimits” and “right adjoints
preserve limits,” hence the name RAPL.]

Exercise: I was a bit vague here about the existence of the relevant joins/meets. Show
that if the join ∨PS exists in P then the join ∨QL(S) exists in Q. Similarly, show that the
existence of ∧QT implies the existence of ∧PR(T). What about the other way around? ///

It seems worthwhile to emphasize the new terminology with a picture. Suppose that the posets
P and Q have top and bottom elements: 1P ,0P ∈ P and 1Q,0Q ∈ Q. Then a poset adjunction
L ∶ P ⇄ Q ∶ R looks like this:

24

In this case RL ∶ P → P is a closure operator as before, but now LR ∶ Q → Q is called
an interior operator. From the case of Galois connections we also know that LRL = L and
RLR = R. Since bottom elements are colmits and top elements are limits, the identities
L(0P) = 0Q and R(1Q) = 1P are special cases of the RAPL Theorem.

///

Just as with Galois connections, adjunctions between the Boolean lattices 2U and 2V are in
bijection with relations ∼⊆ U × V , but this time we will view the relation ∼ as a function
f∼ ∶ U → 2V that sends each u ∈ U to the set f∼(u) ∶= {v ∈ V ∶ u ∼ v}. We can also think of f∼

as a “multi-valued function” from U to V .

Adjunctions of Boolean Lattices. Let U,V be sets and consider an arbitrary function
f ∶ U → 2V . Then for all subsets S ∈ 2U and T ∈ 2V we define

Lf(S) ∶= ∪s∈S f(s) ∈ 2V ,

Rf(T) ∶= {u ∈ U ∶ f(u) ⊆ T} ∈ 2U .

I claim that the pair of functions Lf ∶ 2U ⇄ 2V ∶ Rf is an adjunction of Boolean lattices. To

25

see this, note that for all S ∈ 2U and T ∈ 2V we have

S ⊆ Rf(T) ⇐⇒ ∀s ∈ S, s ∈ Rf(T)
⇐⇒ ∀s ∈ S, f(s) ⊆ T
⇐⇒ ∪s∈S f(s) ⊆ T
⇐⇒ Lf(S) ⊆ T.

Moreover, one can prove that any adjunction between 2U and 2V arises in this way from a
unique function f ∶ U → 2V . ///

Exercise: Prove this.

The case of actual (i.e., single-valued) funtions is particularly interesting.

Example (Functions). Let f ∶ U → V be any function. We can extend this to a function
f ∶ U → 2V by defining f(u) ∶= {f(u)} for all u ∈ U . In this case we denote the corresponding
left and right adjoint functions by f∗ ∶= Lf ∶ 2U → 2V and f−1 ∶= Rf ∶ 2V → 2U , so that for all
S ∈ 2U and T ∈ 2V we have

f∗(S) = {f(s) ∶ s ∈ S},
f−1(T) = {u ∈ U ∶ f(s) ∈ T}.

The resulting adjunction f∗ ∶ 2U ⇄ 2V ∶ f−1 is called the image and preimage of the function.
It follows from RAPL that image preserves unions and preimage preserves intersections.

But now something surprising happens. We can restrict the preimage f−1 ∶ 2V → 2U to a
function f−1 ∶ V → 2U by defining f−1(v) ∶= f−1({v}) for each v ∈ V . Then since f−1 = Lf−1
we obtain another adjunction

f−1 ∶ 2V ⇄ 2U ∶ Rf−1 ,

where this time f−1 is the left adjoint. The new right adjoint is defined for each S ∈ 2U by

Rf−1(S) = {v ∈ V ∶ f−1(v) ⊆ S}.

There seems to be no standard notation for this function, but I’ve seen people call it f! ∶= Rf−1
(the “!” is pronounced “shriek”). In summary, each function f ∶ U → V determines a triple of
adjoints

f∗ ⊣ f−1 ⊣ f!

where f∗ preserves unions, f! preserves intersections, and f−1 preserves both unions and
intersections. Logicians will tell you that the functions f∗ and f! are closely related to the
existential (∃) and universal (∀) quantifiers, in the sense that for all S ∈ 2U we have

f∗(S) = {v ∈ V ∶ ∃u ∈ f−1(v), u ∈ S},
f!(S) = {v ∈ V ∶ ∀u ∈ f−1(v), u ∈ S}.

26

///

Exercise: Prove that in general the function f∗ ∶ 2U → 2V does not preserve intersections
and the function f! ∶ 2V → 2U does not preserve unions. Hence the string of adjunctions
f∗ ⊣ f−1 ⊣ f! can not be extended.

This fundamental example can be dressed up in many ways. Here’s one way.

Example (Group Homomorphisms). Given a group G we let (L (G),⊆) denote its poset
of subgroups. Since the intersection of subgroups is again a subgroup, we have ∧ = ∩. Then
since L (G) has arbitrary meets it also has arbitrary joins. In particular, the join of two
subgroups A,B ∈ L (G) is given by

A ∨B = ⋂{C ∈ L (G) ∶ A ⊆ C and B ⊆ C},

which is the smallest subgroup containing the union A∪B. Thus L (G) is a lattice, but
since A ∨B ≠ A ∪B (in general) it is not a sublattice of 2G.

Now let ϕ ∶ G→H be an arbitrary group homomorphism. One can check that the image and
preimage ϕ∗ ∶ 2G ⇄ 2H ∶ ϕ−1 send subgroups to subgroups, hence they restrict to an adjunction
between subgroup lattices:

ϕ∗ ∶ L (G) ⇄L (H) ∶ ϕ−1.

The function ϕ! ∶ 2G → 2H from the previous example does not send subgroups to subgroups,
and in general the function ϕ−1 ∶ L (H) → L (G) does not have a right adjoint. For all
subgroups A ∈ L (G) and B ∈ L (H) one can check that

ϕ−1ϕ∗(A) = A ∨ kerϕ and ϕ∗ϕ−1(B) = B ∧ imϕ.

Thus the ϕ−1ϕ∗-fixed subgroups of G are precisely those that contain the kernel and the
ϕ∗ϕ−1-fixed subgroups of H are precisely those contained in the image. Finally, the Fun-
damental Theorem gives us an order-preserving bijection as in the following picture:

27

All of Noether’s “Isomorphism Theorems” are built on top of this picture. ///

4 The Definition of Adjoint Functors

We have called L ∶ P ⇄ Q ∶ R an adjoint pair of functions, but of course they more than just
functions. If L ⊣ R is an adjunction, then property (2) of Galois connections says that for all
p1, p2 ∈ P and q1, q2 ∈ Q we have

p1 ≤P p2 Ô⇒ L(p1) ≤Q L(p2) and q1 ≤Q q2 Ô⇒ R(q1) ≤P R(q2).

That is, the functions L ∶ P → Q and R ∶ Q → P are actually homomorphisms of posets.

To define adjunctions in general, we must first define “homomorphisms of categories.” I already
implicity used this concept when we discussed “diagrams.”

Definition of Functor. Let C and D be categories. A functor F ∶ C → D consists a family of
functions:

• A function on objects F ∶ Obj(C) → Obj(D),

• For each pair of objects c1, c2 ∈ C a function on hom sets:

F ∶ HomC(c1, c2) → HomD(F (c1), F (c2)).

These functions must preserve the category structure:

28

(i) Identity: For all objects c ∈ C we have F (idc) = idF (c).

(ii) Composition: For all arrows α,β ∈ C such that β ○ α is defined, we have

F (β ○ α) = F (β) ○ F (α).

Functors compose in an associative way, and for each category C there is a distinguished
identity functor idC ∶ C → C. In other words, the collection of all categories with functors
between them forms a (very big) category, which we denote by Cat. ///

This definition is not surprising. It basically says that a functor F ∶ C → D sends commutative
diagrams in C to commutative diagrams in D. That is, for each diagram D ∶ I → C in C we
have a diagram F I(D) ∶ I → D in D (defined by F I(D) ∶= F ○D), which is commutative if
and only if D is.

Exercise: Let F ∶ C → D and suppose that α ∶ x↔ y ∶ β is an isomorphism in C. Apply F to
the commutative diagram

xidx
%% α

((
y idyee

β

hh

to prove that the objects F (x) and F (y) are isomorphic in D.

Now let’s try to guess the definition of an “adjunction of categories.” Let C and D be categories
and let L ∶ C ⇄ D ∶ R be any two functors. When C is a poset, recall that for all x, y ∈ C we
have ∣HomC(x, y)∣ ∈ {0,1} and we use the notations

“x ≤ y” ⇐⇒ ∣HomC(x, y)∣ = 1,

“x /≤ y” ⇐⇒ ∣HomC(x, y)∣ = 0.

Thus if C and D are posets, we can rephrase the definition of a poset adjunction L ∶ C ⇄ D ∶ R
by stating that for all objects c ∈ C and d ∈ D there exists a bijection of hom sets:

HomC(c,R(d)) ←→ HomD(L(d), c).

In this form the definition now applies to any pair of functors between categories.

However, if we want to preserve the important theorems (uniqueness of adjoints and RAPL)
then we need to impose some “naturality” condition on the family of bijections between hom
sets. This condition is automatic for posets, so we will have to look elsewhere for motivation.
First I’ll give an ugly definition that is completely explicit. Then we’ll search for a more
abstract definition that explains what’s really going on.

29

Explicit Definition of Adjoint Functors. Let C and D be categories. We say that a pair
of functors L ∶ C ⇄ D ∶ R is an adjunction if for all objects c ∈ C and d ∈ D there exists a
bijection of hom sets

HomC(c,R(d)) ←→ HomD(L(c), d).

Furthermore, we require that these bijections fit together in the following “natural” way. For
each arrow γ ∶ c2 → c1 in C (not a typo) and each arrow δ ∶ d1 → d2 in D we require that the
following cube of functions commutes:

HomC(c2,R(d2)) HomD(L(c2), d2)

HomC(c2,R(d1)) HomD(L(c2), d1)

HomC(c1,R(d2)) HomD(L(c1), d2)

HomC(c1,R(d1)) HomD(L(c1), d1)

R(δ)○(−) δ○(−)

(−)○γ

(−)○L(γ)

R(δ)○(−)

(−)○γ

(−)○L(γ)
δ○(−)

It is convenient to denote the horizontal bijections of the cube by ϕ ↦ ϕ in either direction
(so that ϕ = ϕ). Then the adjunction can be summarized with two equations:

ϕ ○L(γ) = ϕ ○ γ,

R(δ) ○ ψ = δ ○ ψ.

The first equation says that the front/back of the cube commutes, while the second equa-
tion says that the top/bottom of the cube commutes. (The sides of the cube automatically
commute.)

If the categories C,D are understood then we will denote the adjunction by L ⊣ R. We say
that L is the left adjoint and R is the right adjoint functor. ///

This is the definition we will use to verify whether a given pair of functors is an adjunction.
However, this definition seems unmotivated. Next we will develop a higher level of abstraction
to make the concept of “naturality” seem more natural. Maybe it will seem too abstract to
you at first, but I will work hard to convince you that this is the correct level of abstraction.

Definition of Natural Transformation. Let C and D be categories and consider two
parallel functors F1, F2 ∶ C → D. A natural transformation Φ ∶ F ⇒ G consists of a family of

30

arrows Φc ∶ F (c) → R(c), one for each object c ∈ C, such that for each arrow γ ∶ c1 → c2 in C
the following square commutes:

F1(c2)
Φc2 // F2(c2)

F1(c1)

F1(γ)

OO

Φc1

// F2(c1)

F2(γ)

OO
D

C

F1

<<

F2

bb

Φ +3

The picture on the right is called a “2-cell diagram.” It hints at the close relationship between
category theory and topology.

Let DC denote the collection of all functors from C to D and natural transformations between
them. One can check that this forms a category (called a functor category).3 Given F1, F2 ∈ DC
we say that F1 and F2 are naturally isomorphic if they are isomorphic in DC , i.e., if there exists
a pair of natural transformations Φ ∶ F1 ⇒ F2 and Ψ ∶ F2 ⇒ F1 such that Ψ ○ Φ = idF1 and
Ψ ○ Φ = idF2 are the identity natural transformations. In this case we will write F1 ≅ F2 and
we will say that Φ and Φ−1 ∶= Ψ are natural isomorphisms. ///

Exercise: Explicitly define the composition of natural transformations mentioned above, and
check that DC is a category. Prove that a natural isomorphism Φ ∶ F1

∼Ô⇒ F2 is the same
thing as a natural transformation Φ ∶ F1 ⇒ F2 in which each arrow Φc ∶ F1(c) → F2(c) is
invertible. That is, prove that there exists a natural transformation Φ−1 ∶ F2 ⇒ F1 satisfying
(Φ−1)c = (Φc)−1 for all c ∈ C.

[Remark: The concept of “natural transformation” was invented by Eilenberg and Mac Lane in
1945. They viewed this as the central concept of their theory, with “functors” and “categories”
playing only a secondary role.]

To develop some intuition for this definition, let I be a small category and let C be any
category. We have previously referred to functors D ∶ I → C as “diagrams of shape I in C.”
Now we can think of CI as a category of diagrams. Given two such diagrams D1,D2 ∈ CI , we
visualize a natural transformation Φ ∶D1 ⇒D2 as a “cylinder”:

3Warning: If C is not “small” then the “hom sets” in the category DC are too big to be sets, thus DC is not
“locally small.” But it’s still perfectly nice.

31

The diagrams D1 and D2 need not be commutative, but if they are then the whole cylinder
is commutative.

You probably recognize this picture because we already saw a version of it when we discussed
limits and colimits. To make this precise, we define for each object c ∈ C the constant diagram
cI ∶ I → C that sends each object of I to c and each arrow of I to idc.

Exercise: Let cI ∶ I → C be a constant diagram and let D ∶ I → C be any diagram. We
previously defined a “cone under D” as a pair (c, (ϕi)i∈I) such that for all δ ∶ i → j in I
we have ϕj = D(δ) ○ ϕi. Verify that this concept is equivalent to a natural transformation
ϕ ∶ cI ⇒D. Dually, a “cone over D” is the same as a natural transformation ϕ ∶D⇒ cI .

Thus we can rephrase the definition of limits/colimits as follows.

Fancy Definition of Limit/Colimit. Consider a diagram D ∶ I → C. The limit of D, if it
exists, consists of an object limID ∈ C and a canonical natural transformation Λ ∶ (limID)I ⇒
D such that for each object c ∈ C and natural transformation Φ ∶ cI ⇒ D there exists a
unique natural transformation υI ∶ cI ⇒ (limID)I making the following diagram in CI
commute:

D

cI

Φ

;C

∃!υI
+3 (limID)I

Λ

`h

The fancy definition of colimits is similar. ///

Exercise: Verify that this is equivalent to the original definition of limits/colimits.

Now we need just one more concept before I can state the fancy definition of adjoint functors.

32

Definition of Hom Functors. Let C be a category.4 For each object c ∈ C the mapping
d↦ HomC(c, d) defines a functor from C to the category of sets Set. We denote it by

Hc ∶= HomC(c,−) ∶ C → Set.

To define the action of Hc on arrows, consider any δ ∶ d1 → d2 in C. Then we must have a
function Hc(δ) ∶ Hc(d1) → Hc(d2), i.e., a function Hc(δ) ∶ HomC(c, d1) → HomC(c, d2). There
is only one way to define this:

Hc(δ)(ϕ) ∶= δ ○ ϕ.

Similarly, for each arrow δ ∶ c1 → c2 we can define a function Hc(δ) ∶ HomC(d2, c) → HomC(d1, c)
by Hc(δ)(ϕ) ∶= ϕ○δ. This again defines a functor into sets, but this time it is from the opposite
category Cop (which is defined by reversing all arrows in C):

Hc ∶= HomC(−, c) ∶ Cop → Set.

Finally, we can put these two functors together to obtain the hom bifunctor

HomC(−,−) ∶ Cop × C → Set,

which sends each pair of arrows (γ ∶ c2 → c1, δ ∶ d1 → d2) to the function

HomC(γ, δ) ∶ HomC(c1, d1) → HomC(c2, d2)

defined by ϕ↦ δ ○ϕ ○ γ. The product category Cop × C is defined in the most obvious way. ///

Exercise: I skipped over several details in this definition. Check that everything makes sense.
In particular, you should work out the definitions of “product categories” and “bifunctors.”
The only non-obvious part of the definition is the fact that a bifunctor F ∶ C × D → E should
satisfy a commutative square of the form

F (c2, d1)
F (c2,δ) // F (c2, d2)

F (c1, d1)

F (γ,d1)

OO

F (c1,δ)
// F (c1, d2)

F (γ,d2)

OO

for each pair of arrows γ ∶ c1 → c2 and δ ∶ d1 → d2. ///

Now we are ready.

4locally small, I guess

33

Fancy Definition of Adjoint Functors. Let C,D be categories5 and consider a pair of func-
tors L ∶ C ⇄ D ∶ R. By composing these with the hom bifunctors HomC(−,−) and HomD(−,−)
we obtain two parallel bifunctors:

HomC(−,R(−)) ∶ Cop ×D → Set and HomD(L(−),−) ∶ Cop ×D → Set.

We say that L ∶ C ⇄ D ∶ R is an adjunction if the two bifunctors are naturally isomorphic:

HomC(−,R(−)) ≅ HomD(L(−),−).

///

Exercise: Verify that the fancy definition is equivalent to the explicit definition.

I think you will agree that the definition looks good now. More importantly, this definition
will lead us to proofs for the uniqueness of adjoints and the RAPL theorem.

5 From Vector Spaces to Categories

We began by thinking of categories as “posets with extra arrows.” This analogy gives excellent
intuition for the general facts about adjoint functors. However, our intuition from posets is
insufficient to actually prove anything about adjoint functors.

To complete the proofs we will switch to a new analogy between categories and vector
spaces. Let V be a vector space over a field K and let V ∗ be the dual space consisting of
K-linear functions V →K. Now consider any K-bilinear function ⟨−,−⟩ ∶ V × V →K. We say
that the function ⟨−,−⟩ is non-degenerate in both coordinates if we have

⟨u1, v⟩ = ⟨u2, v⟩ for all v ∈ V Ô⇒ u1 = u2,

⟨u, v1⟩ = ⟨u, v2⟩ for all u ∈ V Ô⇒ v1 = v2.

We say that two K-linear operators L ∶ V ⇄ V ∶ R define an adjunction with respect to ⟨−,−⟩
if, for all vectors u, v ∈ V , we have

⟨u,R(v)⟩ = ⟨L(u), v⟩.

Uniqueness of Adjoint Operators. Let L ⊣ R be an adjoint pair of operators with respect
to a non-degenerate bilinear function ⟨−,−⟩ ∶ V × V → K. Then each of L and R determines
the other uniquely. ///

5locally small

34

Proof: To show that R determines L, suppose that L′ ⊣ R is another adjoint pair. Thus, for
all vectors u, v ∈ V we have

⟨L(u), v⟩ = ⟨u,R(v)⟩ = ⟨L′(u), v⟩.

Now consider any vector u ∈ V . The non-degeneracy of ⟨−,−⟩ tells us that

⟨L(u), v⟩ = ⟨L′(u), v⟩ for all v ∈ V Ô⇒ L(u) = L′(u),

and since this is true for all u ∈ V we conclude that L = L′. ◻

The next theorem tells us that under certain conditions adjoint operators are continuous.

RAPL for Operators. Suppose that the function ⟨−,−⟩ ∶ V × V →K is non-degenerate and
continuous (in some appropriate sense). Now let T ∶ V → V be any linear operator. If T has
a left or a right adjoint, then T is continuous (in some appropriate sense). ///

Proof: Suppose that T ∶ V → V has a left adjoint L ⊣ T , and suppose that the sequence of
vectors vi ∈ V has a limit limivi ∈ V . Furthermore, suppose that the limit limiT (vi) ∈ V exists.
Then for each u ∈ V , the continuity of ⟨−,−⟩ in the second coordinate tells us that

⟨u,T (limivi)⟩ = ⟨L(u), limivi⟩
= limi⟨L(u), vi⟩
= limi⟨u,T (vi)⟩
= ⟨u, limiT (vi)⟩.

Since this is true for all u ∈ V , non-degeneracy gives T (limivi) = limiT (vi). ◻

[Remark: Don’t take this too literally; it’s just for motivation. The theorem can be made
rigorous if we work with topological vector spaces. If (V, ∥ − ∥) is a normed (real or complex)
vector space, then an operator T ∶ V → V is bounded if and only if it is continuous. Fur-
thermore, if (V, ⟨−,−⟩) is a Hilbert space then an operator T ∶ V → V having an adjoint is
necessarily bounded, hence continuous. Many theorems of category have direct analogues in
functional analysis. After all, Grothendieck began as a functional analyst.]

We can summarize these two results as follows. Let ⟨−,−⟩ ∶ V × V → K be a K-bilinear
function. Then for each vector v ∈ V we have two elements of the dual space Hv,Hv ∈ V ∗

defined by

Hv ∶= ⟨v,−⟩ ∶ V →K,

Hv ∶= ⟨−, v⟩ ∶ V →K.

The mappings v ↦Hv and v ↦Hv thus define two K-linear functions from V to V ∗:

H(−) ∶ V → V ∗ and H(−) ∶ V → V ∗.

35

Furthermore, if the function is ⟨−,−⟩ is non-degenerate and continuous then the functions
H(−),H(−) ∶ V → V ∗ are both injective and continuous. Now here is a dictionary connecting
all of this back to categories:

vector space V over a field K = category C
the field K = the category Set

K-linear function = functor

the dual space V ∗ = the category SetC

bilinear pairing V × V →K = hom bifunctor Cop × C → Set

adjoint linear functions = adjoint functors

non-dengeneracy and continuity = ?

In the next two sections we will flesh out the details of this analogy in order to prove the
uniqueness of adjoints and the RAPL theorem for categories. There are quite a few details
involved, but it is fair to summarize the whole story by saying that the hom bifunctor

HomC(−,−) ∶ Cop × C → Set

behaves like a “non-degenerate and continuous bilinear function.”

We will work at a level of generality that is high enough to make the proofs conceptual (and
hence memorable), but low enough that a careful reader can actually follow the details and
make sure that everything works. Non-careful readers can just skim the proofs to get a sense
of their complexity. (I assure you that I’m not hiding any important details.)

6 Uniqueness of Adjoints

In this section we will prove that adjoint functors determine each other up to isomorphism.
The key tool is the concept of an “embedding of categories.” In particular, the hom bifunctor
Cop × C → Set induces two “Yoneda embeddings”

H(−) ∶ Cop → SetC and H(−) ∶ C → SetC
op

.

These are analogous to the two embeddings of a vector space V into its dual space that are
induced by a non-degenerate bilinear function ⟨−,−⟩ ∶ V × V →K.

Definition of Embedding of Categories. Recall that a functor F ∶ C → D consists of:

• An object function F ∶ Obj(C) → Obj(D),

36

• For each pair of objects c1, c2 ∈ C, a hom set function:

F ∶ HomC(c1, c2) → HomD(F (c1), F (c2)).

We say that F is a full functor when the hom set functions are surjective, and we say that
F is a faithful functor when the hom set functions are injective. If the hom set functions are
bijective then we say that F is a fully faithful functor, or an embedding of categories. ///

An embedding is in some sense the correct notion of an “injective functor.” If F ∶ C → D is
an embedding, then the object function F ∶ Obj(C) → Obj(D) is not necessarily injective,
but it is “injective up to isomorphism.” This agrees with the general philosophy of category
theory, i.e., that we should only care about objects up to isomorphism.

Embedding Lemma. Let F ∶ C → D be an embedding of categories. Then F is essentially
injective in the sense that for all objects c1, c2 ∈ C we have

c1 ≅ c2 in C ⇐⇒ F (c1) ≅ F (c2) in D.

Furthermore, F is essentially monic6 in the sense that for all functors G1,G2 ∶ B → C we have

G1 ≅ G2 in CB ⇐⇒ F ○G1 ≅ F ○G2 in DB.

///

Proof: Let F ∶ C → D be full and faithful, i.e., bijective on hom sets.

To prove that F is essentially injective, suppose that α ∶ c1 ↔ c2 ∶ β is an isomorphism in C
and apply F to obtain arrows F (α) ∶ F (c1) ⇄ F (c2) ∶ F (β) in D. Then by the functoriality
of F we have

F (α) ○ F (β) = F (α ○ β) = F (idc2) = idF (c2),

F (β) ○ F (α) = F (β ○ α) = F (idc1) = idF (c1),

which implies that F (α) ∶ F (c1) ↔ F (c2) ∶ F (β) is an isomorphism in D. Conversely, suppose
that α′ ∶ F (c1) ↔ F (c2) ∶ β′ is an isomorphism in D. By the fullness of F there exist arrows
α ∶ c1 ⇄ c2 ∶ β such that F (α) = α′ and F (β) = β′, and by the functoriality of F we have

F (α ○ β) = F (α) ○ F (β) = α′ ○ β′ = idF (c2) = F (idc2),
F (β ○ α) = F (β) ○ F (α) = β′ ○ α′ = idF (c1) = F (idc1).

Then by the faithfulness of F we have α ○ β = idc2 and β ○ α = idc1 , which implies that
α ∶ c1 ↔ c2 ∶ β is an isomorphism in C.

6The word “monic” will be explained in the next chapter.

37

To prove that F is essentially monic, let G1,G2 ∶ B → C be any functors and suppose that
we have a natural isomorphism Φ ∶ G1

∼Ô⇒ G2. This means that for each object b ∈ B we
have an isomorphism Φb ∶ G1(b)

∼Ð→ G2(b) in C and for each arrow β ∶ b1 → b2 in B we have a
commutative square:

G1(b2)
Φb2
∼ // G2(b2)

G1(b1)

G1(β)
OO

∼
Φb1

// G2(b1)

G2(β)
OO

Recall from the previous argument that any functor sends isomorphisms to isomorphisms,
thus by the functoriality of F we obtain another commutative square

F (G1(b2))
F (Φb2)

∼ // F (G2(b2))

F (G1(b1))

F (G1(β))
OO

∼
F (Φb1)

// F (G2(b1))

F (G2(β))
OO

in which the horizontal arrows are isomorphisms in D. In other words, the assignment F (Φ)b ∶=
F (Φb) defines a natural isomorphism F (Φ) ∶ F ○G1

∼Ô⇒ F ○G2.

Conversely, suppose that we have a natural isomorphism Φ′ ∶ F ○G1
∼Ô⇒ F ○G2, meaning that

for each object b ∈ B we have an isomorphism Φ′
b ∶ F (G1(b))

∼Ð→ F (G2(b)) in C, and for each
arrow β ∶ b1 → b2 in B we have a commutative square:

F (G1(b2))
Φ′
b2

∼ // F (G2(b2))

F (G1(b1))

F (G1(β))
OO

∼
Φ′
b1

// F (G2(b1))

F (G2(β))
OO

Since F is fully faithful, we know from the previous result that for each b ∈ B there exists an
isomorphism Φb ∶ G1(b)

∼Ð→ G2(b) in C with the property Φb = F (Φ′
b). Then by the functoriality

of F and the commutativity of the above square we have

F (Φb2 ○G1(β)) = F (Φb2) ○ F (G1(β))
= Φ′

b2 ○ F (G1(β))
= F (G2(β)) ○Φ′

b1

= F (G2(β)) ○ F (Φb1)
= F (G2(β) ○Φ′

b1),

and by the faithfulness of F it follows that Φb2 ○G1(β) = G2(β) = Φb1 . We conclude that

38

the following square commutes:

G1(b2)
Φb2
∼ // G2(b2)

G1(b1)

G1(β)
OO

∼
Φb1

// G2(b1)

G2(β)
OO

In other words, the arrows Φb assemble into a natural isomorphism Φ ∶ G1
∼Ô⇒ G2. ◻

So embeddings of categories are quite general and have nice properties. Now we will define
the specific embeddings that we need.

Lemma (The Yoneda Embeddings). Let C be a category and recall that for each object
c ∈ C we have two hom functors

Hc = HomC(c,−) ∶ C → Set and Hc ∶ HomC(−, c) ∶ Cop → Set.

I claim that the mappings c↦Hc and c↦Hc define two embeddings of categories:

H(−) ∶ Cop → SetC and H(−) ∶ C → SetC
op

.

///

We will prove that H(−) is an embedding. Then the fact that H(−) is an embedding follows
by substituting Cop in place of C.

Proof: The proof has three steps.

(1) H(−) is a Functor. For each arrow γ ∶ c1 → c2 in Cop (i.e., for each arrow γ ∶ c2 → c1

in C) we must define a natural transformation H(−)(γ) ∶ H(−)(c1) ⇒ H(−)(c2), i.e., a natural
transformation Hγ ∶ Hc1 ⇒ Hc2 . And this means that for each object d ∈ C we must define
an arrow (Hγ)d ∶ Hc1(d) → Hc2(d), i.e., a function (Hγ)d ∶ HomC(c1, d) → HomC(c2, d). Note
that the only possible choice is to send each arrow α ∶ c1 → d to the arrow α ○ γ ∶ c2 → d. In
other words, for all d ∈ C we define

(Hγ)d ∶= (−) ○ γ.

To check that this is indeed a natural transformation Hγ ∶ Hc1 ⇒ Hc2 , consider any arrow
δ ∶ d1 → d2 in C and observe that the following diagram commutes:

Hc1(d2)
(Hγ)d2 // Hc2(d2)

Hc1(d1)

Hc1(δ)
OO

(Hγ)d1
// Hc2(d1)

Hc2(δ)
OO

HomC(c1, d2)
(−)○γ // HomC(c2, d2)

HomC(c1, d1)

δ○(−)
OO

(−)○γ
// HomC(c2, d1)

δ○(−)
OO

39

Indeed, the commutativity of this square is just the associative axiom for composition. Thus we
have defined the action of H(−) on arrows in Cop. To see that this defines a functor Cop → SetC ,
we need to show that for any composible arrows γ1, γ2 ∈ Arr(C) we have Hγ1○γ2 = Hγ2 ○Hγ1 .
So consider any arrows γ1 ∶ c2 → c1 and γ2 ∶ c3 → c2. Then for all objects d ∈ C and for all
arrows δ ∶ c1 → d we have

[Hγ2 ○Hγ1]d(δ) = [(Hγ2)d ○ (Hγ1)d](δ)
= (Hγ2)d[(Hγ1)d(δ)]
= (Hγ2)d(δ ○ γ1)
= (δ ○ γ1) ○ γ2

= δ ○ (γ1 ○ γ2)
= (Hγ1○γ2)d(δ).

Since this holds for all δ ∈Hc1(d) we have [Hγ2 ○Hγ1]d = (Hγ1○γ2)d, and then since this holds
for all d ∈ C we conclude that Hγ1○γ2 =Hγ2 ○Hγ1 as desired.

(2) H(−) is Faithful. For each pair of objects c1, c2 ∈ C we want to show that the function

H(−) ∶ HomCop(c1, c2) → HomSetC(H
c1 ,Hc2)

defined in part (1) is injective. So consider any two arrows α,β ∶ c2 → c1 in C and suppose
that we have Hα =Hβ as natural transformations. In this case we want to show that α = β.

Recall that for all objects d ∈ C and all arrows δ ∈ Hc1(d) we have defined (Hα)d(δ) = δ ○ α.
Since Hα =Hβ, this means that

δ ○ α = (Hα)d(δ) = (Hβ)d(δ) = δ ○ β.

Now we just take d = c1 and δ = idc1 to obtain

α = (idc1 ○ α) = (idc1 ○ β) = β,

as desired.

(3) H(−) is Full. For each pair of objects c1, c2 ∈ C we want to show that the function

H(−) ∶ HomCop(c1, c2) → HomSetC(H
c1 ,Hc2)

is surjective. So consider any natural transformation Φ ∶ Hc1 ⇒ Hc2 . In this case we want to
find an arrow ϕ ∶ c2 → c1 with the property Hϕ = Φ. Where can we find such an arrow?

By definition of “natural transformation” we have a function Φd ∶ Hc1(d) → Hc2(d) for each
object d ∈ C, and for each arrow δ ∶ d1 → d2 we know that the following square commutes:

Hc1(d2)
Φd2 // Hc2(d2)

Hc1(d1)

Hc1(δ)
OO

Φd1

// Hc2(d1)

Hc2(δ)
OO

HomC(c1, d2)
Φd2 // HomC(c2, d2)

HomC(c1, d1)

δ○(−)
OO

Φd1

// HomC(c2, d1)

δ○(−)
OO

40

Note that the category C might have very few arrows. (Indeed, C might be a discrete category,
i.e., with only the identity arrows.) This suggests that our only possible choice is to
evaluate the function Φc1 ∶ Hc1(c1) → Hc2(c1) at the identity arrow to obtain an arrow
ϕ ∶= Φc1(idc1) ∈Hc2(c1). Now hopefully we have Hϕ = Φ (otherwise the theorem is not true).
To check this, consider any element d ∈ C and any arrow δ ∶ c1 → d. Substituting this δ into
the above diagram gives a commutative square:

Hc1(d) Φd // Hc2(d)

Hc1(c1)

Hc1(δ)
OO

Φc1

// Hc2(c1)

Hc2(δ)
OO

HomC(c1, d)
Φd // HomC(c2, d)

HomC(c1, c1)

δ○(−)
OO

Φc1

// HomC(c2, c1)

δ○(−)
OO

Then by following the arrow idc1 ∈ Hc1(c1) around the square in two different ways, and by
using the definition (Hϕ)d(δ) ∶= δ ○ ϕ from part (1), we obtain

Φd(δ ○ idc1) = δ ○Φc1(idc1)
Φd(δ) = δ ○ ϕ
Φd(δ) = (Hϕ)d(δ).

Since this holds for all arrows δ ∈ Hc1(d) we have Φd = (Hϕ)d, and then since this holds for
all objects d ∈ C we conclude that Φ =Hϕ as desired. ◻

Let’s pause to apply the Embedding Lemma to the Yoneda embedding H(−) ∶ Cop → SetC . The
fact that H(−) is “essentially injective” means that for all objects c1, c2 ∈ C we have

c1 ≅ c2, in C ⇐⇒ Hc1 ≅Hc2 in SetC .

[Note that c1 ≅ c2 in C if and only if c1 ≅ c2 in Cop.] This useful fact is the starting point
for many areas of modern mathematics. It tells us that if we know all the information about
arrows pointing to (or from) an object c ∈ C, then we know the object up to isomorphism. In
some sense this is a justification for the philosophy of category theory.

The Embedding Lemma also implies that the Yoneda embedding is “essentially monic,” i.e.,
“left-cancellable up to natural isomorphism.” We will use this fact to prove the uniqueness of
adjoints.

Theorem (Uniqueness of Adjoints). Let L ∶ C ⇄ D ∶ R be an adjunction of categories.
Then each of L and R determines the other up to natural isomorphism. ///

Proof: We will prove that R determines L. The other direction is similar.

So suppose that L′ ∶ C ⇄ D ∶ R is another adjunction. Then we have two bijections

HomD(L(c), d) ≅ HomC(c,R(d)) ≅ HomD(L′(c), d)

41

that are natural in (c, d) ∈ Cop ×D, and by composing them we obtain a bijection

HomD(L(c), d) ≅ HomD(L′(c), d)

that is natural in (c, d) ∈ Cop × D. [Exercise: Why does this work?] Naturality in d ∈ D
means that for each c ∈ Cop we have a natural isomorphism of functors HomD(L(c),−) ≅
HomD(L′(c),−) in the category SetD.

Now let us compose the functor L ∶ Cop → Dop (this is just a trick) with the Yoneda embedding
H(−) ∶ Dop → SetD to obtain a functor (H(−) ○ L) ∶ Cop → SetD. Observe that if we apply the
functor H(−) ○L to an object c ∈ Cop then we obtain the functor

(H(−) ○L)(c) = HomD(L(c),−) ∈ SetD.

Thus, naturality in c ∈ Cop means exactly that we have a natural isomorphism of functors
(H(−) ○ L) ≅ (H(−) ○ L′) in the category (SetD)Cop . Finally, since the “Yoneda embedding”
H(−) is an embedding of categories, the Embedding Lemma tells us that we can cancel H(−)

on the left to obtain a natural isomorphism:

(H(−) ○L) ≅ (H(−) ○L′) in (SetD)C
op

Ô⇒ L ≅ L′ in (Dop)C
op

.

In other words, we have L ≅ L′ in DC . ◻

This theorem allows us to work with adjoint functors as if they exist, even when we don’t
know how to define them. I call it the “I don’t care if the tensor product really exists” theorem.
(See the final section of this chapter.)

7 RAPL

To prove the RAPL theorem we must first translate the definition of limit/colimit into a
language that is compatible with the definition of adjoint functors.

Recall that a diagram is a functor D ∶ I → C from a small category I. If C is locally small
then we have a locally small category CI consisting of diagrams and natural transformations
between them. For each object c ∈ C we also have the constant diagram cI ∶ I → C that sends
each object i ∈ Obj(I) to cI(i) ∶= c and each arrow δ ∈ Arr(I) to cI(δ) ∶= idc.

It is a general phenomenon that many categorical properties of CI are inherited from C. The
next lemma collects a few of these properties that we will need later.

Diagram Lemma. Fix a small category I and locally small categories C,D. Then:

(i) For any category C, the mapping c ↦ cI defines a fully faithful functor (−)I ∶ C → CI
which we call the diagonal embedding.

42

(ii) For any functor F ∶ C → D the mapping F I(D) ∶= F ○D defines a functor F I ∶ CI → DI
with the property that F (−)I = F I((−)I).

(iii) Any adjunction L ∶ C ⇄ D ∶ R induces an adjunction LI ∶ CI ⇄ DI ∶ RI . That is, we
have a natural isomorphism of bifunctors

HomCI(−,RI(−)) ≅ HomDI(LI(−),−)

from (CI)op ×DI to Set.

(iv) In particular, naturality in DI tells us that for all objects ` ∈ C and all natural transfor-
mations Λ ∶ `I ⇒D we have a commutative square:

HomCI(R(`)I ,RI(D)) oo // HomDI(LR(`)I ,D)

HomCI(R(`)I ,R(`)I)

RI(Λ)○(−)
OO

oo // HomDI(LR(`)I , `I)

Λ○(−)
OO

///

Proving this is tedious but we will do it anyway. The proof becomes “obvious” if we are
allowed to hide it inside the concept of “2-categories” (in particular, using the fact that
(−)I ∶ Cat→ Cat is a “2-functor”) but it would ultimately take much longer to develop those
ideas.

Proof: (i): For any arrow α ∶ c1 → c2 in C we want to define a natural transformation of
diagrams αI ∶ cI1 ⇒ cI2 , and there is only one way to do this. Since (cI1)i = c1 and (cI2)i = c2 for
all i ∈ I, the arrow (αI)i ∶= (cI1)i → (cI2)i must be defined by (αI)i ∶= α. Then for any arrow
δ ∶ i→ j in I we have cI1 (δ) = idc1 and cI2 (δ) = idc2 , so that

(αI)i ○ (cI1)(δ) = (α ○ idc1) = (idc2 ○ α) = (cI2)i(δ) ○ (αI)i,

and hence we obtain a natural transformation αI ∶ cI1 ⇒ cI2 . The assignment α ↦ αI is
functorial since for all arrows α,β such that α ○ β exists and for all i ∈ I we have

(α ○ β)Ii = α ○ β = (αI)i ○ (βI)i = (αI ○ βI)i,

and hence (α ○ β)I = αI ○ βI . Finally, note that we have a bijection of hom sets

HomC(c1, c2) ↔ HomCI(cI1 , cI2)

given by α↔ αI , and hence the functor (−)I ∶ C → CI is fully faithful.

(ii): Let F ∶ C → D be any functor. Then for any diagram D ∶ I → C we obtain a diagram
F I(D) ∶ I → D by composition: F I(D) ∶= F ○D. I claim that this assignment is functorial
in D ∈ CI . To see this, consider any natural transformation Φ ∶ D1 ⇒ D2 in the category CI .

43

Then for any arrow δ ∶ i → j in I we can apply F to the naturality square for Φ to obtain
another commutative square:

D1(j)
Φj // D2(j)

D1(i)

D1(δ)
OO

Φi
// D2(i)

D2(δ)
OO

F (D1(j))
F (Φj)// F (D2(j))

F (D1(i))

F (D1(δ))
OO

F (Φi)
// F (D2(j))

F (D2(δ))
OO

If we define F I(Φ)i ∶= F (Φi) for all i ∈ I then this second commutative square says that
F I(Φ) ∶ F I(D1) ⇒ F I(D2) is a natural transformation in DI . If Φ and Ψ are two arrows
(natural transformations) in CI such that Φ○Ψ is defined, then for all i ∈ I we have F I(Φ○Ψ)i =
F ((Φ ○Ψ)i) = F (Φi ○Ψi) = F (Φi) ○ F (Ψi) = F I(Φ)i ○ F I(Ψ)i = (F I(Φ) ○ F I(Ψ))i and hence
F I(Φ○Ψ) = F I(Φ)○F I(Ψ). Thus we have defined a functor F I ∶ CI → DI . Finally, note that
for all i ∈ I, c ∈ C, and α ∈ Arr(C) we have

F I(cI)i = F ((cI)i) = F (c) = ((F (c))I)i
F I(αI)i = F ((αI)i) = F (α) = ((F (α))I)i

and hence we have an equality of functors F I((−)I) = F (−)I from C to DI .

(iii): Let L ∶ C ⇄ D ∶ R be any adjunction. We will denote each bijection HomC(−,R(−)) ↔
HomC(L(−),−) by ϕ↦ ϕ, so that ϕ = ϕ. Now we want to define a natural family of bijections

HomCI(−,RI(−)) ≅ HomDI(LI(−),−).

To do this, consider diagrams C ∈ CI , D ∈ DI , and a natural transformation Φ ∶ C ⇒ RI(D).
Then for each index i ∈ I we have an arrow Φi ∶ C(i) → R(D(i)), which determines an
arrow Φi ∶ L(C(i)) → D(i) by adjunction. I claim that the arrows Φi assemble into a natural
transformation Φ ∶ LI(C) ⇒ D. To see this, consider any arrow δ ∶ i ∈ j in I. Then from the
naturality of Φ and the adjunction L ⊣ R we have

D(δ) ○Φi = R(D(δ)) ○Φi naturality of L ⊣ R

= Φj ○C(δ) naturality of Φ

= Φj ○L(C(δ)), naturality of L ⊣ R

as desired. In a similar way one can check that for each natural transformation Ψ ∶ LI(C) ⇒D,
the arrows Ψi ∶ C(i) → R(D(i)) assemble into a natural transformation Ψ ∶ C ⇒ RI(D). Thus
we have established the desired bijection of hom sets HomCI(C,RI(D)) ↔ HomDI(LI(C),D).

To prove that this bijection is natural in (C,D) ∈ (CI)op × DI , consider any pair of natural
transformations Γ ∶ C2 ⇒ C1 in CI and ∆ ∶ D1 ⇒ D2 in DI . We need to show that a certain
cube of functions commutes. Well, I’m not going to draw that cube, and I’m not going to
prove that it’s fully commutative. Instead, I’ll just show that for a fixed diagram C ∈ CI the

44

following square commutes:

HomCI(C,RI(D2)) oo // HomDI(LI(C),D2)

HomCI(C,RI(D1))

RI(∆)○(−)
OO

oo // HomDI(LI(C),D1)

∆○(−)
OO

First, recall that the natural transformation RI(∆) ∶ RI(D1) ⇒ RI(D2) is defined pointwise
by RI(∆)i ∶= R(∆i) ∶ R(D1(i)) → R(D2(i)). Now consider any Φ ∶ C ⇒ RI(D1). The
naturality of the original adjunction tells us that R(∆i) ○Φi = ∆i ○Φi, and hence we have

(RI(∆) ○Φ)i = RI(∆)i ○Φi

= R(∆i) ○Φi

= ∆i ○Φi

= (∆ ○Φ)i

for all i ∈ I. By definition this means that RI(∆) ○Φ = ∆ ○Φ, and hence the desired square
commutes. It remains only to check that the cube is natural in (CI)op. This follows from a
similar pointwise computation.

(iv): Now fix an element ` ∈ C, a diagram D ∈ DI , and a natural transformation Λ ∶ `I ⇒ D.
By substituting C = R(`)I , D1 = `I , D2 = D, and ∆ = Λ into the above commutative square
and using part (ii), we obtain the commutative square from the statement of the lemma. In
particular, following the identity arrow idIR(`) around the square in two ways gives

RI(Λ) ○ idIR(`) = Λ ○ idIR(`).

Finally, one can check pointwise that idIR(`) = (idR(`))
I
, and hence we obtain the identity

RI(Λ) ○ idIR(`) = (idR(`))
I
.

This identity is not very interesting but we will need it later. ◻

Now we will reformulate the definition of limit/colimit in terms of adjoint functors. If all
limits/colimits of shape I exist in some category C then it turns out (surprisingly) that we
can think of limits/colimits as right/left adjoints to the diagonal embedding (−)I ∶ C → CI :

colimI ⊣ (−)I ⊣ limI .

In the following lemma we will prove something slightly more general. We will characterize a
specific limit/colimit of shape I, without assuming that all limits/colimits of shape I exist.

Lemma (Colimit ⊣ Diagonal ⊣ Limit). Fix a small category I and a diagram D ∶ I → C of
shape I. Then the limit of D, if it exists, consists of an object ` ∈ C and a natural isomorphism

Cone ∶ HomC(−, `) ≅ HomCI((−)I ,D) ∶ Uni

45

in the category SetC
op

. ///

This is intuitively plausible if we recall the definition of limits. Recall that a cone under D
consists of an object ` ∈ C and a natural transformation Λ ∶ `I ⇒ D. We say that the cone
(`,Λ) is the the limit of D if, for any other cone Φ ∶ cI ⇒ D, there exists a unique arrow
υ ∶ c→ ` making the following diagram in CI commute:

D

cI

Φ

:B

υI
+3 `I

Λ

\d

The map sending the cone Φ ∶ cI ⇒ D to the unique arrow υ ∶ c → ` is the desired function
HomCI(cI ,D) → HomC(c, `). Furthermore, it’s clear that this function is a bijection since we
can pull back any arrow α ∶ c → ` to the cone Λ ○ αI ∶ cI ⇒ D. The main difficulty is to show
that the data of naturality for these bijections is equivalent to the data of the canonical cone
Λ ∶ `I ⇒D.

Proof: First assume that the limit of D exists and is given by the cone (limID,Λ). In this
case we want to define a family of bijections

Unic ∶ HomCI(cI ,D) ∼Ð→ HomC(c, limID)

that is natural in c ∈ Cop. (Then the inverse Conec ∶= Uni−1
c is automatically natural, as you

proved in a previous exercise.) So consider any element Φ ∈ HomCI(cI ,D), i.e., any cone
Φ ∶ cI ⇒D. By the definition of limits we know that there exists a unique arrow υ ∶ c→ limID
making the following diagram commute:

D

cI

Φ

;C

υI
+3 (limID)I

Λ

`h

Therefore the assignment Unic(Φ) ∶= υ defines an injective function (recall that the functor
(−)I is faithful, so that υI1 = υI2 implies υ1 = υ2). To see that Unic is surjective, consider
any arrow α ∶ c → limID in C. We want to define a cone Φα ∶ cI ⇒ D with the property that
Unic(Φα) = α. By definition of Unic this means that we must have Φα ∶= Λ ○ αI — in other
words, we must have (Φα)i ∶= Λi ○ α for all indices i ∈ I. And note that this does define a
natural transformation Φα ∶ cI ⇒D since for all arrows δ ∶ i ∈ j in I we have

D(δ) ○ (Φα)i =D(δ) ○ (Λi ○ α)
= (D(δ) ○Λi) ○ α
= Λj ○ α naturality of Λ

= (Φα)j .

46

We conclude that Unic is a bijection. To see that Unic is natural in c ∈ Cop, consider any arrow
γ ∶ c1 → c2 in C (i.e., any arrow γ ∶ c2 → c1 in C). We want to show that the following diagram
commutes:

HomCI(cI2 ,D)
Unic2
∼ // HomC(c2, limID)

HomCI(cI1 ,D)

(−)○γI
OO

Unic1

∼ // HomC(c1, limID)

(−)○γ
OO

And to see this, consider any cone Φ ∶ cI1 ⇒D. By composing with the natural transformation
γI ∶ cI2 ⇒ cI1 we obtain the following commutative diagram in CI :

D

cI2

(Unic1(Φ))I○γI

2:

Φ○γI
2:

γI
+3 cI1

Φ

KS

(Unic1(Φ))I
+3 (limID)I

Λ

em

Since the diagonal embedding (−)I ∶ C → CI is a functor, the bottom arrow is given by

(Unic1(Φ))I ○ γI = (Unic1(Φ) ○ γ)I .

But by the definition of the function Unic2 this arrow also equals

(Unic2(Φ ○ γI))I .

Then since (−)I is a faithful functor we conclude that

Unic2(Φ ○ γI) = Unic1(Φ) ○ γ,

and hence the desired square commutes.

Conversely, consider an object ` ∈ C and suppose that we have a bijection

Conec ∶ HomC(c, `) ←→ HomCI(cI ,D) ∶ Unic

that is natural in c ∈ Cop. In other words, suppose that for each arrow γ ∶ c1 → c2 in Cop (i.e.,
for each arrow γ ∶ c2 → c1 in C) we have a commutative square:

HomC(c2, `)

Conec2 ++
HomCI(cI2 ,D)

Unic2

jj

HomC(c1, `)

(−)○γ

OO

Conec1 ++
HomCI(cI1 ,D)

Unic1

jj

(−)○γI

OO

47

We want to show that this determines a unique cone Λ ∶ `I ⇒D such that (`,Λ) is the limit of
D. The only possible choice is to define Λ ∶= Cone`(id`). Now given any cone Φ ∶ cI ⇒ D
we want to show that there exists a unique arrow υ ∶ c→ ` with the property Λ ○ υI = Φ.

So suppose that there exists some arrow υ ∶ c→ ` with the property Λ○υI = Φ. By substituting
γ ∶= υ into the above diagram we obtain a commutative square:

HomC(c, `)

Conec ++
HomCI(cI ,D)

Unic

jj

HomC(`, `)

(−)○υ

OO

Cone` ++
HomCI(`I ,D)

Uni`

jj

(−)○υI

OO

Then following the arrow id` ∈ HomC(`, `) around the square in two different ways gives

id` ○ υ = Unic(Cone`(id`) ○ υI)
υ = Unic(Λ ○ υI)
υ = Unic(Φ).

Thus there exists at most one such arrow υ. To show that there exists at least one such
arrow, we must check that the arrow Unic(Φ) actually does satisfy Λ○(Unic(Φ))I = Φ. Indeed,
by substituting υ ∶= Unic(Φ) into the above diagram we obtain a commutative square:

HomC(c, `)

Conec ++
HomCI(cI ,D)

Unic

jj

HomC(`, `)

(−)○Unic(Φ)

OO

Cone` ++
HomCI(`I ,D)

Uni`

jj

(−)○(Unic(Φ))I

OO

Then following the arrow id` ∈ HomC(`, `) around the square in two ways gives

Cone`(id`) ○ (Unic(Φ))I) = Conec(id` ○Unic(Φ))
Λ ○ (Unic(Φ))I = Conec(Unic(Φ))
Λ ○ (Unic(Φ))I = Φ,

as desired. ◻

48

[Remark: We have proved that the limit of a diagram D ∶ I → C, if it exists, consists of an
object limID ∈ C and a natural isomorphism

HomC(−, limID) ≅ HomCI((−)I ,D)

of functors Cop → Set. It turns out that if all limits of shpae I exist in C then there is a unique
way to extend this to a natural isomorphism

HomC(−, limI−) ≅ HomCI((−)I ,−)

of functors Cop×CI → Set, and hence that we have an adjunction (−)I ∶ C ⇄ CI ∶ limI . However,
we don’t need this result right now so we won’t prove it. Dually, the colimit of D, if it exists,
consists of an object colimID ∈ C and a natural isomorphism

HomC(colimID,−) ≅ HomCI(D, (−)I)

of functors C → Set. If all colimits of shape I exist in C then this extends uniquely to an
adjunction colimI ∶ CI ⇄ C ∶ (−)I . This explains the title of the previous lemma.]

Finally, here it is.

Theorem (RAPL). Let L ∶ C ⇄ D ∶ R be an adjunction and consider a diagram D ∶ I → D
of shape I in D. If the diagram D ∶ I → D has a limit cone Λ ∶ `I ⇒ D then the composite
diagram RI(D) ∶ I → C also has a limit cone, which is given by RI(Λ) ∶ R(`)I ⇒ RI(D).

I will present two proofs: first, a simplified proof that conforms to our intuition about adjoint
operators between vector spaces, then the full proof, which is a bit more complicated. The
result of the simplified proof is sufficient for most applications.

Simplified Proof: In this proof we will write limID ∶= ` ∈ D, and we will just assume that
the limit object limIR

I(D) ∈ C exists. Now we want to show that the following objects are
isomorphic in C: R(limID) ≅ limIR

I(D). (We will ignore the data of the limit cone.)

So assume that L ∶ C ⇄ D ∶ R is an adjunction. Then we have the following sequence of
bijections, each of which is natural in c ∈ Cop:

HomC(c,R(limID)) ∼Ð→ HomD(L(c), limID) L ⊣ R
∼Ð→ HomDI(L(c)I ,D) Diagonal ⊣ Limit

= HomDI(LI(cI),D) Diagram Lemma (ii)
∼Ð→ HomCI(cI ,RI(D)) Diagram Lemma (iii)
∼Ð→ HomC(c, limIRI(D)). Diagonal ⊣ Limit

By composing these we obtain a family of bijections

HomC(c,R(limID)) ∼Ð→ HomC(c, limIRI(D))

49

that is natural in c ∈ Cop. In other words, we obtain an isomorphism of hom functors
HR(limI(D)) ≅ HlimIRI(D) in the category SetC

op

. Then since the Yoneda embedding H(−) ∶
C → SetC

op

is essentially injective (from the Embedding Lemma), we obtain an isomorphism
of objects R(limID) ≅ limIR

I(D) in the category C. ◻

Full Proof: Now we will prove that the limit of the diagram RI(D) ∶ I → D actually
exists, and is given by the correct limit cone. Then the uniqueness of the limit object up to
isomorphism follows from the universal property of limit cones.

So Assume that Λ ∶ `I ⇒ D is the limit of the diagram D ∶ I → D and that L ∶ C ⇄ D ∶ R is
an adjunction. To show that the cone RI(Λ) ∶ R(`)I ⇒ RI(D) is the limit of the diagram
RI(D) ∶ I → C we must construct a family of bijections

Conec ∶ HomC(c,R(`)) ∼Ð→ HomCI(cI ,RI(D))

that is natural in c ∈ Cop, and then we must verify that ConeR(`)(idR(`)) = RI(Λ).

To construct the bijection Conec note that we have a sequence of bijections, each of which is
natural in c ∈ Cop:

HomC(c,R(`)) ∼Ð→ HomD(L(c), `) L ⊣ R
∼Ð→ HomDI(L(c)I ,D) Diagonal ⊣ Limit

= HomDI(LI(cI),D) Diagram Lemma (ii)
∼Ð→ HomCI(cI ,RI(D)). Diagram Lemma (iii)

Composing these gives the desired natural isomorphism:

Cone ∶ HomC(−,R(`)) ∼Ô⇒ HomCI((−)I ,RI(D)).

Then to compute ConeR(`)(idR(`)) we follow the arrow idR(`) ∈ HomC(R(`),R(`)) through the
sequence of bijections above to get

idR(`) ↦ idR(`) ∈ HomD(LR(`), `)

↦ Λ ○ (idR(`))
I ∈ HomDI(LR(`)I ,D)

= RI(Λ) ○ idIR(`) Diagram Lemma (iv)

= RI(Λ) definition of idR(`) :)

↦ RI(Λ), ∈ HomCI(R(`)I ,R(D))

as desired. ◻

[Remark: I get angry when books give a false sense of the difficulty of a result. Therefore, it
was my intention not to skip any details in this proof. Now we can see how long the proof
actually is.]

Let’s get to the applications.

50

8 Three Fundamental Examples

We saw earlier that adjoint functors between posets (i.e., Galois connections) are already quite
interesting. In this section I will investigate three fundamental adjunctions that don’t come
from posets. Hopefully these examples will demonstrate that the concept of adjoint functors
is one of the key ideas in mathematics.

8.1 Multiplication ⊣ Exponentiation

Why does multiplication of natural numbers distribute over addition? Here’s one possible
explanation:

But let me suggest an alternative. Given a set Z ∈ Set we can define two functors by “multi-
plication” (−) ×Z ∶ Set → Set and by “exponentiation” (−)Z ∶ Set → Set. The functor (−) ×Z
sends each X ∈ Set to the Cartesian product set X×Z and the functor (−)Z sends each X ∈ Set
to the power set XZ ∶= HomSet(Z,X). (Note that (−)Z is just a different name for the hom
functor HZ .) For each function f ∶ X1 → X2 we define a function f × Z ∶ X1 × Z → X2 × Z
by setting (f × Z)(x, z) ∶= (f(x), z) for all (x, z) ∈ X1 × Z, and we define fZ ∶ XZ

1 → XZ
2 by

setting fZ(g) ∶= f ○ g for all g ∈XZ
1 .

Exercise: Check that (f1 ○ f2) ×Z = (f1 ×Z) ○ (f2 ×Z) and (f1 ○ f2)Z = fZ1 ○ fZ2 .

Now I claim that for each set S ∈ Set we have an adjunction:

Set Set

(−)×Z

(−)Z

⊣

That is, I claim that we have a family of bijections

HomSet(X ×Z,Y) ←→ HomSet(X,HomSet(Z,Y))
HomSet(X ×Z,Y) ←→ HomSet(X,Y Z)

Y (X×Z) ←→ (Y Z)X

that is natural in (X,Y) ∈ Setop × Set. [Remark: Maybe this would look nicer written as
Y (X×Z) ↔ (Y X)Z but I prefer the convention of “moving Z across the comma.” This convention

51

also generalizes better.] Here’s the idea: Given a function f ∶X ×Z → Y and an element x ∈X
we define a function fx ∶ Z → Y by

fx(z) ∶= f(x, z).

Then the mapping x ↦ fx defines a function f (−) ∶ X → Y Z and the mapping f ↦ f (−)

defines a function HomSet(X × Z,Y) → HomSet(X,Y Z). This function is traditionally called
“currying,” after the American logician Haskell Curry:

CurryX,Y ∶ HomSet(X ×Z,Y) → HomSet(X,HomSet(Z,Y))
f ↦ f (−)

Proof: We want to show that Curry is a natural isomorphism. In other words, we want to
show that CurryX,Y is a family of bijections that is natural in (X,Y) ∈ Setop × Set.

First we will show that CurryX,Y is a bijection. To see that CurryX,Y is surjective, consider

any function F ∶X → Y Z so that for each x ∈X we have a function F (x) ∶ Z → Y . Now define
a function f ∶X ×Z → Y by setting

f(x, z) ∶= F (x)(z)

for all (x, z) ∈X ×Z. Then by definition we have fx = F (x) for all x ∈X, and hence f (−) = F .
To see that CurryX,Y is injective, consider any two functions f, g ∶X ×Z → Y and assume that

we have f (−) = g(−) as functions X → Y Z . By definition this means that for all x ∈X we have
fx = gx as functions Z → Y , which by definition this means that for all z ∈ Z we have

f(x, z) = fx(z) = gx(z) = g(x, z).

Since this holds for all (x, z) ∈X ×Z we have f = g, as desired.

Now we will show that CurryX,Y is natural in (X,Y) ∈ Setop × Set. So consider any pair of
functions γ ∶X2 →X1 and δ ∶ Y1 → Y2. We want to show that the following cube commutes:

Y
(X2×Z)

2 (Y Z
2)X2

Y
(X2×Z)

1 (Y Z
1)X2

Y
(X1×Z)

2 (Y Z
2)X1

Y
(X1×Z)

1 (Y Z
1)X1

δ○(−) δ○(−)

(−)○(γ×idZ)

(−)○γ

δ○(−)

(−)○(γ×idZ)

(−)○γ
δ○(−)

52

To show that the front/back of the cube commutes (i.e., that CurryX,Y is natural in X ∈ Setop),
consider any function f ∶ X1 × Z → Y1. Going around the bottom of the square gives the
function f (−) ○ γ ∶ X2 → Y Z

1 and going around the top of the square gives the function
(f ○ γ)(−) ∶ X2 → Y Z

1 . Are these the same function? To check, consider any elements x ∈ X2

and z ∈ Z. Then we have

[(f (−) ○ γ)(x)](z) = [f (−)(γ(x))](z) = fγ(x)(z) = f(γ(x), z)

and

[(f ○ (γ × idZ))(−)(x)](z) = [f(γ(−),−)(−)(x)](z) = [f(γ(x),−)](z) = f(γ(x), z),

which are equal as desired. To show that the top/bottom of the cube commutes (i.e., that
CurryX,Y is natural in Y ∈ Set), consider any function g ∶X1 ×Z → Y1. Going around the front

of the square gives the function δ ○ g(−) ∶ X1 → Y Z
2 and going around the back of the square

gives the function (δ ○ g)(−) ∶ X1 → Y Z
2 . Are these the same function? To check, consider any

elements x ∈X1 and z ∈ Z. Then we have

[(δ ○ g(−))(x)](z) = [δ ○ gx](z) = δ(gx(z)) = δ(g(x, z))

and
[(δ ○ g)(−)(x)](z) = [δ(g(−,−))(−)(x)](z) = [δ(g(x,−))](z) = δ(g(x, z)),

which are equal as desired. ◻

[Remark: I did my best with the notation here, but I realize that it’s still confusing.]

Now let’s apply the RAPL theorem to the Curry adjunction. Recall that the product and
coproduct in Set are the Cartesian product × and the disjoint union ∐, respectively. Consider
any three sets X,Y,Z ∈ Set with cardinalities x, y, z ∈ N. Then since the functor (−)×Z is left
adjoint and the functor (−)Z is right adjoint, we obtain two bijections:

(X∐Y) ×Z ↔ (X ×Z)∐(Y ×Z) and (X × Y)Z ↔ (XZ) × (Y Z).

Finally, applying cardinality to both bijections gives

(x + y)z = xz + yz and (xy)z = xzyz.

8.2 Tensor ⊣ Hom

You may think that was an unnecessarily complicated way to explain the properties of ad-
dition/multiplication/exponentiation for natural numbers. However, it’s very important to
understand arithmetic this way if we want to generalize it to other categories.

53

In some naive sense, the notions of addition/multiplication/exponentiation of natural numbers
should generalize to the notions of categorical coproduct / categorical product / hom sets,
respectively. But we quickly find that these notions don’t behave properly in most categories.
[Remark: They only behave properly in caterogies (called “toposes”) that are sufficiently like the
category of sets.]

For example, consider the category Ab of abelian groups. Here are three important facts about
this category:7

• The trivial group 0 ∈ Ab is both the initial and the final object, called the zero object.

• The product and coproduct of A,B ∈ Ab coincide, and this unique group is called the
direct sum A⊕B ∈ Ab.

• For any abelian groups A,B ∈ Ab, the hom set BA ∶= HomAb(A,B) naturally carries the
structure of an abelian group, defined by adding homomorphisms “pointwise.”

Thus we might hope that the Curry adjunction in Set lifts to an adjunction in Ab:

HomAb(A⊕C,B)
?
≅ HomAb(A,BC).

If this were true, then (−)⊕C would be a left adjoint functor and hence (by RAPL) it would
preserve colimits. Then since the initial object 0 ∈ Ab is an example of a colimit we would
have an isomorphism of groups:

0⊕C ≅ 0.

But this is certainly not true! It follows that the functor (−)⊕C has no right adjoint, and
hence the Curry adjunction fails in Ab. [Remark: Ab is not a topos.]

The problem here is that the product operation in Ab collapsed into the sum operation and
stopped behaving like “multiplication.” Similarly, the final object ∗ ∈ Set (which satisfies
∗ × S ↔ S for all S ∈ Set) collapsed into the initial object in Ab and stopped behaving like
“the number 1.” Where we had both “addition” and “multiplication” operations in Set, we
now have only “addition” in Ab.

This leads to an important question:

Does there exist a binary operation in Ab that behaves like multiplication?

One can prove that the hom functor (−)C ∶ Ab → Ab for any C ∈ Ab preserves limits (in fact,
the hom functors Hc ∶ C → Set preserve limits in any8 category C). In particular, one can
check using the universal property of A⊕B (thought of as the categorical product) that we
have an isomorphism:

(A⊕B)C ≅ AC ⊕BC .

Exercise: Check this.

7We will examine these facts in great detail in the next chapter.
8locally small

54

This suggests that the functor (−)C could possibly have a left adjoint. Let’s assume for the
sake of argument that such a left adjoint does exist, and let’s call it (−) ⊗ C. That is, let’s
assume that we have a family of bijections

HomAb(A⊗C,B) ↔ HomAb(A,BC)

that is natural in (A,B) ∈ Abop × Ab. Note that we have chosen the symbol “⊗” because
this functor necessarily behaves like multiplication. For example, since the coproduct
A ⊕ B and the initial object 0 ∈ Ab are examples of colimits, the RAPL theorem gives us
isomorphisms

(A⊕B) ⊗C ≅ (A⊗C) ⊕ (B ⊗C) and 0⊗C ≅ 0.

Furthermore, note that the abelian group (Z,+) has the special property that for each abelian
group B ∈ Ab there is a natural isomorphism BZ ≅ B, defined by sending a each homomorphism
ϕ ∶ Z→ B to the element ϕ(1Z) ∈ B.

Exercise: Check this.

Thus for each A ∈ Ab, if we compose the two natural bijections

HomAb(A⊗Z,B) ↔ HomAb(A,BZ) ↔ HomAb(A,B)

then we obtain a bijection HomAb(A ⊗ Z,B) ↔ HomAb(A,B) that is natural in B ∈ Ab. In
other words, we have a natural isomorphism of hom functors HA⊗Z ≅HA. Finally, by applying
the fact that the Yoneda embedding H(−) is essentially injective, we obtain an isomorphism
of groups:

A⊗Z ≅ A.

In summary, if we assume that each hom functor (−)C ∶ Ab → Set has a left adjoint (which is
a reasonable assumption, because hom functors preserve limits), then we obtain an operation
⊗ ∶ Obj(Ab) × Obj(Ab) → Obj(Ab) that behaves very much like “multiplication,” and which
has a “unit object” Z ∈ Ab. With a little more work we could also show that this operation is
associative, and hence that (Obj(Ab),⊗,Z) is a monoid.9

So, does the operation ⊗ really exist? There are two possible responses:

• Yes, it exists. I’ll sketch a proof below in Example (3) by constructing it out of things
you believe in.

• Who cares if it really exists? The uniqueness of adjoints tells us that the operation ⊗ is
uniquely determined by its universal property, and this is actually the best way to work
with it. What more do you want?

9Well, it would be if Obj(Ab) were a set.

55

Let me elaborate on this second response. We already know that the family of hom functors
(−)C = HomAb(C,−) ∶ Ab→ Ab assembles into the hom bifunctor:

HomAb(−,−) ∶ Abop ×Ab→ Ab.

If each functor (−)C has a (unique) left adjoint, called (−) ⊗ C, then I claim that these left
adjoints also assemble into a (unique) bifunctor:

(−) ⊗ (−) ∶ Ab ×Ab→ Ab.

In fact, I will prove something more general.

Theorem (Two Variable Adjunction). Consider any bifunctor10 R ∶ Dop × E → C and
suppose that for each object d ∈ D the induced functor R(d,−) ∶ E → C has a left adjoint
Ld ∶ C → E . That is, suppose that we have a family of bijections

Φc,d,e ∶ HomE(Ld(c), e)
∼Ð→ HomC(c,R(d, e))

that is natural in (c, e) ∈ Cop × E . In this case, I claim that there exists a unique bifunctor
L ∶ C ×D → E with the property L(c, d) = Ld(c) and such that the family of bijections Φc,d,e is
also natural in d ∈ Dop. In other words, we obtain a natural isomorphism

HomE(L(−,−),−) ≅ HomC(−,R(−,−))

of functors Cop ×Dop × E → Set. ///

Assuming this theorem, then our desired result follows by substituting

C = D = E = Ab, R(−,−) = HomAb(−,−), and LC(−) = (−) ⊗C for each C ∈ Ab.

Proof: We must construct a bifunctor L ∶ C ×D → E with the desired properties. So consider
any arrow δ ∶ d2 → d1 and then define the function Λδ ∶ HomE(Ld1(c), e) → HomE(Ld2(c), e) so
that the following square commutes:

HomE(Ld2(c), e) HomC(c,R(d2, e))
Φ−1
c,d2,eoo

HomE(Ld1(c), e)

Λδ

OO

Φc,d1,e
// HomC(c,R(d1, e))

R(δ,e)○(−)
OO

Our goal is to show that there exists a unique arrow Lδ(c) ∶ Ld2(c) → Ld1(c) with the
property Λδ(−) = (−) ○Lδ(c). If this is true, then by composing two such squares vertically
(coming, say, from two arrows δ, ε ∈ Arr(D)) then we obtain the equation

(−) ○Lδ○ε(c) = Λδ○ε = (−) ○ (Lδ(c) ○Lε(c)),
10of locally small categories

56

and from uniqueness it will follow that Lδ○ε(c) = Lδ(c) ○Lε(c). Hence L(c, d) ∶= Ld(c) will be
the desired (unique) bifunctor.

Now, if some arrow Lδ(c) ∶ Ld2(c) → Ld1(c) exists with the property Λδ(−) = (−)○Lδ(c) then
it must be defined by

Lδ(c) = idLd1(c) ○Lδ(c) = Λδ(idLd1(c)),

and it remains only to check that the equality Λδ(−) = (−) ○Λδ(idLd1(c)) is actually true. In

other words, for any fixed arrow ϕ ∶ Ld1(c) → e we must show that Λδ(ϕ) = ϕ ○Λδ(idLd1(c)).

We will prove this by drawing two commutative diagrams, both of which will use the
assumption that Φc,d,e is natural in e ∈ E . The first diagram is obtained by composing the
original commutative square with a naturality square for the arrow ϕ ∈ Arr(E):

HomE(Ld2(c), e)
Φc,d2,e // HomC(c,R(d2, e))

HomE(Ld1(c), e)

Λδ

OO

Φc,d1,e // HomC(c,R(d1, e))

R(δ,e)○(−)

OO

HomE(Ld1(c), Ld1(c))

ϕ○(−)

OO

Φc,d1,Ld1 (c) // HomC(c,R(d1, Ld1(c)))

R(d1,ϕ)○(−)

OO

Following idLd1(c) ∈ HomE(Ld1(c), Ld1(c)) from the bottom left to the top right gives

R(δ, e) ○R(d1, ϕ) ○Φc,d1,Ld1(c)(idLd1(c)) = Φc,d2,e(Λδ(ϕ ○ idLd1(c)))

= Φc,d2,e(Λδ(ϕ)).

The second diagram is obtained by substituting e = Ld1(c) into the original commutative
square and then by composing this with a different naturality square for ϕ ∈ Arr(E):

HomE(Ld2(c), e)
Φc,d2,e // HomC(c,R(d2, e)))

HomE(Ld2(c), Ld1(c))

ϕ○(−)

OO

Φc,d2,Ld1 (c) // HomC(c,R(d2, Ld1(c)))

R(d2,ϕ)○(−)

OO

HomE(Ld1(c), Ld1(c))

Λδ

OO

Φc,d1,Ld1 (c) // HomC(c,R(d1, Ld1(c)))

R(δ,Ld1(c))○(−)

OO

Following idLd1(c) ∈ HomE(Ld1(c), Ld1(c)) from the bottom left to the top right gives

R(d2, ϕ) ○R(δ,Ld1(c)) ○Φc,d1,Ld1(c)(idLd1(c)) = Φc,d2,e(ϕ ○Λδ(idLd1(c))).

57

Finally, recall that R ∶ Dop×E → C was assumed to be a “bifunctor.” By definition this implies
that R(δ, e) ○ R(d1, ϕ) = R(d2, ϕ) ○ R(δ,Ld1(c)). Then putting the two previous identities
together gives

Φc,d2,e(Λδ(ϕ)) = R(δ, e) ○R(d1, ϕ) ○Φc,d1,Ld1(c)(idLd1(c))

= R(d2, ϕ) ○R(δ,Ld1(c)) ○Φc,d1,Ld1(c)(idLd1(c))

= Φc,d2,e(ϕ ○Λδ(idLd1(c))),

and applying Φ−1
c,d2,e

to both sides gives Λδ(ϕ) = ϕ ○Λδ(idLd1(c)), as desired.

In fact, we could have drawn the two diagrams together as a cube (it would have looked
terrible), in which five of the six sides commute by assumption. The argument just presented
says that the sixth side of the cube necessarily commutes. ◻

[Remark: This also completes the proof from the previous section that if all limits of shape I exist
in a category C then we have an adjunction (−)I ∶ C ⇄ CI ∶ limI . I didn’t prove it at the time
because we didn’t need it. But now we get it for free.]

Thus the hom bifunctor HomAb(−,−) ∶ Abop × Ab → Ab (contravariant in the first coordinate)
uniquely determines the bifunctor (−) ⊗ (−) ∶ Ab × Ab → Ab (covariant in both coordinates);
that is, if such a functor really exists. It is amusing to note that a dual version of the same
argument shows that the hom bifunctor is uniquely determined by the tensor product. That
could be useful on some planet.

8.3 Free ⊣ Forget

People usually prove the existence of the tensor product by constructing it as a quotient of a
“free abelian group.” What does this mean?

I previously defined a “subcategory” C ⊆ D by saying that Obj(C) ⊆ Obj(D) is a subcollec-
tion, and for each pair of objects c1, c2 ∈ C we have a subcollection of arrows HomC(c1, c2) ⊆
HomD(c1, c2). But that’s not a very categorical definition. In fact, it seems that the notion of
“subcategory” is very difficult to define in categorical terms.11 So instead of subcategories
and full subcategories C ⊆ D we prefer to talk about faithful and fully faithful functors
U ∶ C → D, respectively.

Definition of Concrete Category. A concrete category is a pair (C, U) where C is a category
and U is a faithful functor to the category of sets: U ∶ C → Set. In this case, every object c ∈ C
has an underlying set U(c) ∈ Set and every arrow ϕ ∶ c1 → c2 in C has an underlying function
U(ϕ) ∶ U(c1) → U(c2). This explains our use of the letter “U”. ///

11Some people say the notion of subcategory is “evil.”

58

Any category of “sets with structure” is concrete. As an illustration let’s consider the concrete
category of abelian groups:

U ∶ Ab→ Set.

One can show that this functor preserves limits. For example, it sends the product group
A⊕B to the Cartesian product of sets U(A⊕B) = U(A) ×U(B) and it sends the zero group
0 ∈ Ab (thought of as the final object in Ab) to the one point set U(0) = ∗ ∈ Set, which is the
final object in Set.

Exercise: Show that U ∶ Ab→ Set does not preserve colimits.

This suggests that the functor U ∶ Ab → Set could possibly have a left adjoint. Let’s assume
for the sake of argument that such a left adjoint does exist, and let’s call it F ∶ Set→ Ab. That
is, let’s assume that we have a family of bijections

HomSet(S,U(A)) ↔ HomAb(F (S),A)

that is natural in (S,A) ∈ Setop ×Ab. What are the properties of this hypothetical functor?

First of all, let S be any set and consider the identity homomorphism idF (S) ∶ F (S) →
F (S). Applying the adjunction map HomAb(F (S), F (S)) → HomSet(S,U(F (S))) to this
homomorphism yields a function from S to the underlying set of the group F (S):

idF (S) ∶ S → U(F (S)).

Now consider any abelian group A ∈ Ab and suppose that we have a function from S into
the underlying set of A:

ϕ ∶ S → U(A).

In this case, I claim that there exists a unique group homomorphism υ ∶ F (S) → A
making the following diagram commute:

U(F (S))
U(υ) // U(A)

S
idF (S)

dd

ϕ

<<

Indeed, if some homomorphism υ exists with the property ϕ = U(υ) ○ idF (S), then from the
naturality of the adjunction we must have

υ = υ ○ idF (S)

= υ ○ idF (S)

= U(υ) ○ idF (S) naturality of F ⊣ U
= ϕ.

59

It remains only to show that the equation ϕ = U(ϕ) ○ idF (S) is actually true. This also
follows from the naturality of adjunction. Indeed, we have

ϕ = ϕ ○ idF (S)

= ϕ ○ idF (S)

= U(ϕ) ○ idF (S), naturality of F ⊣ U

and then applying the adjunction to both sides gives the result.

We can summarize the situation as follows:

F (S) is the free abelian group generated by the set S.

Let me try to make this clear. For each set S ∈ Set we have an abelian group F (S) “freely
generated by S” and a canonical function ηS ∶= idF (S) that “inserts the generators” into the
group, ηS ∶ S → U(F (S)). Furthermore, let A ∈ Ab be any abelian group and let ϕ ∶ S → U(A)
be any assignment of the generators to elements of A. The “freeness” of F (S) asserts that
the function ϕ extends uniquely to a homomorphism on the whole group ϕ ∶ F (S) → A.
Compare this to the situation in linear algebra, where a linear function is determined uniquely
by its values on a basis. Thus we can think of the image ηS(S) ⊆ U(F (S)) as a “basis” for
the group F (S).

Definition of Free Functor. Let (C, U) be any concrete category and suppose that the
faithful functor U ∶ C → Set has a left adjoint F ∶ Set → C. Then we call F a free functor and
for each set S ∈ Set we call F (S) ∈ C the free object generated by S. This explains our use of
the letter “F”. ///

The uniqueness of adjoints says that free abelian groups are determined up to isomorphism
by the “underlying set” functor U ∶ Ab → Set, and the RAPL theorem tells us things like
F (A∐B) ≅ F (A)⊕F (B) and F (∅) ≅ 0. As with the tensor product (−)⊗(−) ∶ Ab×Ab→ Ab,
our only question about the functor F ∶ Set→ Ab is whether it really exists.

The existence of F is easer to prove than the existence of ⊗. To gain a bit of intuition for
the proof, let me sketch the computation of F (S) for finite sets S. We begin by showing
that F (∗) ≅ Z. Recall that for any abelian group A ∈ Ab we have a bijection HomAb(Z,A) ↔
U(A) defined by sending each homomorphism ϕ ∶ Z → A to the element ϕ(1Z) ∈ U(A).
Furthermore, recall that the one point set ∗ is the final object in Set so we have a bijection
U(A) ↔ HomSet(∗, U(A)). Thus we have a chain of bijections

HomAb(Z,A) ↔ U(A) ↔ HomSet(∗, U(A)) ↔ HomAb(F (∗),A),

and by composing them we obtain a bijection HomAb(Z,A) ↔ HomAb(F (∗),A). If you’re
willing to believe that this bijection is natural in A ∈ Ab then by the essential injectivity of

60

the Yoneda embedding we obtain an isomorphism of groups: F (∗) ≅ Z. Now let S ∈ Set be
any finite set of cardinality s ∈ N and note that we have a bijection between S and the disjoint
union of s one point sets:

S ↔

s times
³¹¹·¹¹µ
∗∐∗∐⋯∐∗ .

Finally, the functor F sends this bijection to an isomorphism of groups:

F (S) ≅ F (∗∐∗∐⋯∐∗)
≅ F (∗) ⊕ F (∗) ⊕⋯⊕ F (∗) RAPL

≅ Z⊕Z⊕⋯⊕Z
=∶ Z⊕s.

The following theorem just makes this calculation rigorous and extends it to infinite sets.

Theorem (Free Abelian Groups Exist). For any set S, we can add two functions f1, f2 ∶
S → U(Z) by defining (f1 + f2)(s) ∶= f1(s) + f2(s) for all s ∈ S. Thus we obtain two abelian
groups:

ZS ∶= { functions f ∶ S → U(Z) }
Z⊕S ∶= { functions f ∶ S → U(Z) ∶ f(s) = 0Z for all but finitely many s ∈ S }.

When S is finite we have Z⊕S = ZS , but for infinite sets S we have Z⊕S ⊊ ZS . In general, I
claim that Z⊕S is the free abelian group generated by S. ///

Proof: We need to construct a functor F ∶ Set→ Ab that is left adjoint to the forgetful functor
U ∶ Ab→ Set, and that is defined on objects by F (S) ∶= Z⊕S .

To define F on arrows we need to look more closely at the structure of the group Z⊕S . First
note that for each element s ∈ S we have a “delta function” δs ∈ Z⊕S defined by

δs(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

1Z s = t
0Z s ≠ t

.

Then we can express any function of finite support f ∈ Z⊕S as a Z-linear combination of delta
functions: f = ∑s∈S f(s) ⋅ δs. (Even though S may be an infinite set, we can regard this as a
finite sum since all but finitely many of the summands f(s) ⋅ δs are the zero function.) Note
that this expression is unique since if ∑s∈S f(s) ⋅ δs = ∑s∈S cs ⋅ δs for some integers cs ∈ Z, then
by applying these functions to the element t ∈ S we obtain

ct = (∑
s∈S

cs ⋅ δs)(t) = (∑
s∈S

f(s) ⋅ δs)(t) = f(t).

61

In other words, the set of functions {δs}s∈S is a “Z-basis for the Z-module Z⊕S .” Now given
any function g ∶ S1 → S2 we define a mapping on basis elements by δs ↦ δg(s) and then we

extend this to a group homomorphism F (g) ∶ Z⊕S1 → Z⊕S2 by Z-linearity:

F (g)
⎛
⎝∑s∈S1

cs ⋅ δs
⎞
⎠
∶= ∑
s∈S1

cs ⋅ δg(s) ∈ Z⊕S2 .

One can check that F (g1 ○ g2) = F (g1) ○ F (g2), and hence we obtain a functor F ∶ Set→ Ab.

To show that F ⊣ U , we must construct a family of bijections

HomSet(S,U(A)) ↔ HomAb(Z⊕S ,A)

that is natural in (S,A) ∈ Setop ×Ab. This family of bijections can be summarized as follows:

any homomorphism Z⊕S → A is uniquely determined by its values on the basis δs.

To be precise, consider any group homomorphism ϕ ∶ Z⊕S → A. Then we will define the
function ϕ ∶ S → U(A) by setting ϕ(s) ∶= ϕ(δs) for all s ∈ S. To show that the mapping ϕ↦ ϕ
is injective, suppose that we have ϕ1 = ϕ2, so that ϕ1(δs) = ϕ2(δs) for all s ∈ S. Then for
any function of finite support f ∈ Z⊕S we have

ϕ1(f) = ϕ1 (∑
s∈S

f(s) ⋅ δs)

= ∑
s∈S

f(s) ⋅ ϕ1(δs)

= ∑
s∈S

f(s) ⋅ ϕ2(δs)

= ϕ2 (∑
s∈S

f(s) ⋅ δs)

= ϕ2(f),

and it follows that ϕ1 = ϕ2. To show that the mapping ϕ ↦ ϕ is surjective, consider any
function b ∶ S → U(A). Then we obtain a group homomorphism ϕb ∶ Z⊕S → A by defining
ϕb(δs) ∶= b(s) for each s ∈ S and extending by Z-linearity. That is, for all f ∈ Z⊕S we define

ϕb(f) = ϕb (∑
s∈S

f(s) ⋅ δs) ∶= ∑
s∈S

f(s) ⋅ b(s) ∈ A.

One can check that ϕb is indeed a homomorphism and that ϕb = b, as desired.

Finally, we will show that the family of bijections

HomSet(S,U(A)) ↔ HomAb(Z⊕S ,A)
ϕ ↤ ϕ

62

is natural in (S,A) ∈ Setop×Ab. First consider any arrow g ∶ S1 → S2 in Setop (i.e., any function
g ∶ S2 → S1). We want to show that the the following square commutes:

HomSet(S2, U(A)) oo // HomAb(Z⊕S2 ,A)

HomSet(S1, U(A))

(−)○g
OO

oo // HomAb(Z⊕S1 ,A)

(−)○F (g)
OO

So consider any group homomorphism ϕ ∶ Z⊕S1 → A. Note that for all s ∈ S2 the function
ϕ ○ g ∶ S2 → U(A) is defined by

(ϕ ○ g)(s) = ϕ(g(s)) = ϕ(δg(s)),

and the function ϕ ○ F (g) ∶ S2 → U(A) is defined by

ϕ ○ F (g)(s) = (ϕ ○ F (g))(δs) = ϕ(F (g)(δs)) = ϕ(δg(s)).

Hence we have ϕ ○ g = ϕ ○ F (g) as desired.

Then for any homomorphism α ∶ A1 → A2 we want to show that the following diagram
commutes:

HomSet(S,U(A2)) oo // HomAb(Z⊕S ,A2)

HomSet(S,U(A1))

U(α)○(−)
OO

oo // HomAb(Z⊕S ,A1)

α○(−)
OO

So consider any group homomorphism ϕ ∶ Z⊕S → A1. Note that for all s ∈ S the function
U(α) ○ ϕ ∶ S → U(A2) is defined by

(U(α) ○ ϕ)(s) = U(α)(ϕ(s)) = α(ϕ(δs))

and the function α ○ ϕ ∶ S → U(A2) is defined by

α ○ ϕ(s) = (α ○ ϕ)(δs) = α(ϕ(δs)).

Hence we have U(α) ○ ϕ = α ○ ϕ as desired. ◻

Finally, we can construct the tensor product of abelian groups.

Theorem (Tensor Products Exist). Consider two abelian groups A,B ∈ Ab. Now consider
the free abelian group F (S) ∈ Ab generated by the following set of abstract symbols:

S ∶= {“a⊗ b” ∶ a ∈ A, b ∈ B}.

Furthermore, let I ⊆ F (S) be the smallest subgroup of F (S) containing the elements:

• “a1 ⊗ b” + “a2 ⊗ b” − “(a1 + a2) ⊗ b” for all a1, a2 ∈ A and b ∈ B,

63

• “a⊗ b1” + “a⊗ b2” − “a⊗ (b1 + b2)” for all a ∈ A and b1, b2 ∈ B.

Then I claim that the quotient group F (S)/I ∈ Ab (which exists) satisfies the universal
property of the tensor product A⊗B. ///

This is not a real theorem so I’m not going to prove it. Instead I’ll just enunciate the universal
property that it is trying to model. Recall from the theorem on Two Variable Adjunctions
that the bifunctor (−) ⊗ (−) ∶ Ab × Ab → Ab, if it exists at all, is uniquely characterized by a
family of bijections

ΦA,B,C ∶ HomAb(A⊗B,C) ∼Ð→ HomAb(A,HomAb(B,C))

that is natural in (A,B,C) ∈ Abop × Abop × Ab. If we want, we can think of the elements
ϕ ∈ HomAb(A,HomAb(B,C)) as “bihomomorphisms” A × B → C. Indeed, for each element
a ∈ A we have a group homomorphism ϕ(a) ∶ B → C. Then by abuse of notation we can
define a function ϕ ∶ A × B → C by ϕ(a, b) ∶= ϕ(a)(b) for all (a, b) ∈ A × B. Observe from
the definition that each of the component functions ϕ(a)(−) ∶ B → C and ϕ(−)(b) ∶ A → C
is a group homomorphism, i.e., that ϕ is a bihomomorphism. This suggests that we should
introduce the following notation:

HomAb(A,B;C) ∶= HomAb(A,HomAb(B,C)).

The adjunction can now be summarized as follows:

homomorphisms from A⊗B are the same as bihomomorphisms from A ×B.

Now let us substitute C = A⊗B and consider the family of bijections

ΦA,B,A⊗B ∶ HomAb(A⊗B,A⊗B) ∼Ð→ HomAb(A,B;A⊗B),

which is natural in (A,B) ∈ Abop × Abop. By applying this to the identity arrow idA⊗B we
obtain a canonical bihomomorphism

ΦA,B,A⊗B(idA⊗B) ∶ A ×B → A⊗B.

This notation is getting out of hand, so let’s simplify things by writing

τ ∶= ΦA,B,A⊗B(idA⊗B).

Then for each pair of elements (a, b) ∈ A ×B we will write “a⊗ b” ∶= τ(a, b) ∈ A⊗B.

Finally, consider any group homomorphism ϕ ∶ A ⊗ B → C. By the naturality of the
hom-tensor adjunction this ϕ induces a commutative square:

ϕ ∈ HomAb(A⊗B,C) oo // HomAb(A,B;C) ∋ ϕ ○ τ

idA⊗B ∈ HomAb(A⊗B,A⊗B)

ϕ○(−)
OO

oo // HomAb(A,B;A⊗B)

ϕ○(−)
OO

∋ τ

64

Now let’s follow the canonical bihomomorphism τ ∈ HomAb(A,B;A ⊗ B) from the bottom
right to the top left in two different ways. Going around the bottom/left of the square just
gives ϕ. Then going around the right/top of the square tells us that ϕ is uniquely determined
by the bihomomorphism ϕ ○ τ ∶ A×B → C. In other words, the homomorphism ϕ ∶ A⊗B → C
is uniquely determined by the elements ϕ(τ(a, b)) = ϕ(“a⊗ b”) ∈ C.

This suggests that A⊗B can be constructed as an abelian group generated by the abstract
symbols “a ⊗ b” and subject to some relations turning the insertion of generators function
(a, b) ↦ “a ⊗ b” into a bihomomorphism. The theorem just makes this idea explicit. Many
books will give this construction as the definition of the tensor product, which I think is
completely backwards.

Acknowledgements

These notes were prepared to accompany a short course that I taught in Fall 2016 at the Uni-
versität des Saarlandes. I thank all of the students who participated in the course, and I also
thank Roland Speicher and the Freie Wahrscheinlichkeitstheorie Gruppe for their hospitality.

I learned most of this stuff on the internet, so I want to thank all of the mathematicians who
take the time to write quality exposition and post it in Googleable places. Furthermore, I
want to thank everyone who answers my questions on MathOverflow and StackExchange.

On the topic of fancy algebra in particular, I have benefited greatly from the nLab and from
the writing of: Paolo Aluffi, John Baez, George Bergman, Emily Riehl, Qiaochu Yuan.

65

	From Posets to Categories
	Galois Connections
	From Galois Connections to Adjunctions
	The Definition of Adjoint Functors
	From Vector Spaces to Categories
	Uniqueness of Adjoints
	RAPL
	Three Fundamental Examples
	Multiplication Exponentiation
	Tensor Hom
	Free Forget

