
Math 762 Spring 2016
Homework 3 Drew Armstrong

Problem 1. Yoneda’s Lemma. We have seen that the bifunctor HomC(−,−) : C × C → Set
is analogous to a bilinear form on a K-vector space 〈−,−〉 : V × V → K. Recall that a bilinear
form 〈−,−〉 is called non-degerenate if for all vectors x, y ∈ V we have

〈x, z〉 = 〈y, z〉 for all z ∈ V =⇒ x = y.

The Yoneda Lemma tells us that the Hom bifunctor is “non-degenerate” in a similar way.

(a) For each object X ∈ C verify that hX := HomC(X,−) defines a functor C → Set.
(b) Given two objects X,Y ∈ C state what it means to have hX ≈ hY as functors.
(c) Given two objects X,Y ∈ C and an isomorphism of functors hX ≈ hY , prove that we have

an isomorphism of objects X ≈ Y . [Hint: Let Φ : hX
∼−→ hY be a natural isomorphism.

Now consider the morphisms ΦX(idX) : Y → X and (ΦY )−1(idY ) : X → Y .]

Proof. (a): To verify that hX := HomC(X,−) is a functor C → Set we must first say how it acts
on morphisms in C. There is only one obvious way to do this: given any morphism α : Y → Z
in C we will define the function

hX(α) : hX(Y )→ hX(Z)

by sending each morphism ϕ : X → Y to the morphism α ◦ϕ : X → Y . Note that for all objects
Y ∈ C and morphisms ϕ ∈ hX(Y ) we have hX(idY )(ϕ) = idY ◦ ϕ = ϕ and hence

hX(idY ) = idhX(Y ).

Then note that for all morphisms α1 : Y1 → Y2 and α2 : Y2 → Y3 in C and ϕ ∈ hX(Y1) we have
hX(α2)

(
hX(α1)(ϕ)

)
= α2 ◦ (α1 ◦ ϕ) = (α2 ◦ α1) ◦ ϕ = hX(α2 ◦ α1) and hence

hX(α2 ◦ α1) = hX(α2) ◦ hX(α1).

(b): Given two objects X,Y ∈ C we say that Φ : hX → hY is a natural transformation if for
each object Z ∈ C there is a morphism ΦZ : hX(Z)→ hY (Z) and for each morphism α : Z1 → Z2

there is a commutative diagram:

(1)

hX(Z1)
ΦZ1 //

hX(α)
��

hY (Z1)

hY (α)
��

hX(Z2)
ΦZ2

// hY (Z2)

If each morphism ΦZ is an isomorphism then we will say that Φ : hX → hY is a natural
isomorphism and we will write hX ≈ hY .

(c): Now consider two objects X,Y ∈ C and assume that we have a natural isomorphism of

functors Φ : hX
∼−→ hY . In this case we want to construct an isomorphism of objects X ≈ Y . In

particular, we need to find some morphisms X → Y and Y → X.
The only morphisms in C that are guaranteed to exist are the identity morphisms (indeed, C

might be a discrete category), so we start with these. We can apply ΦX : hX(X) → hY (X) to
the identity idX ∈ hX(X) to get a morphism ϕ := ΦX(idX) ∈ hY (X) and since ΦY is invertible
we can apply (ΦY )−1 : hY (Y ) → hX(Y ) to the identity idY ∈ hY (Y ) to get a morphism
ψ := (ΦY )−1(idY ) ∈ hX(Y ). Now I claim that ϕ ◦ ψ = idX and ψ ◦ ϕ = idY , which will give us
the desired isomorphism X ≈ Y .



The only option we have now is to substitute the morphisms ϕ : Y → X and ψ : X → Y into
the commutative square (1) and see what happens. First we substitute ϕ : Y → X to get

hX(Y )
ΦY //

hX(ϕ)
��

hY (Y )

hY (ϕ)
��

hX(X)
ΦX

// hY (X)

and follow ψ ∈ hX(Y ) from the top left corner to the bottom right corner to get

ΦX(hX(ϕ)(ψ)) = hY (ϕ)(ΦY (ψ))

ΦX(ϕ ◦ ψ) = ϕ ◦ ΦY (ψ)

ΦX(ϕ ◦ ψ) = ΦX(idX) ◦ ΦY ((ΦY )−1(idY ))

ΦX(ϕ ◦ ψ) = ΦX(idX) ◦ idY

ΦX(ϕ ◦ ψ) = ΦX(idX)

(ΦX)−1(ΦX(ϕ ◦ ψ)) = (ΦX)−1(ΦX(idX))

ϕ ◦ ψ = idX .

Then we substitute ψ : X → Y to get

hX(X)
ΦX //

hX(ψ)
��

hY (X)

hY (ψ)
��

hX(Y )
ΦY

// hY (Y )

and follow ϕ ∈ hY (X) from the top right corner to the bottom left corner to get

(ΦY )−1(hY (ψ)(ϕ)) = hX(ψ)((ΦX)−1(ϕ))

(ΦY )−1(ψ ◦ ϕ) = ψ ◦ (ΦX)−1(ϕ)

(ΦY )−1(ψ ◦ ϕ) = (ΦY )−1(idY ) ◦ (ΦX)−1(ΦX(idX))

(ΦY )−1(ψ ◦ ϕ) = (ΦY )−1(idY ) ◦ idX

(ΦY )−1(ψ ◦ ϕ) = (ΦY )−1(idY )

ΦY ((ΦY )−1(ψ ◦ ϕ)) = ΦY ((ΦY )−1(idY ))

ψ ◦ ϕ = idY .

�

[Remark: The notation in this proof is a nightmare. If you make the notation too simple you’ll get
confused; and if you make the notation too complicated you’ll get confused. The philosophy behind
Yoneda’s Lemma is that we can replace the object X ∈ C by the functor hX : C → Set without
losing any information. Why would we want to do that? See Problem 2(c).]

Problem 2. The Tower Law. Let R be a ring and let A,B be any sets. In this problem we
will investigate the isomorphism of R-modules

(R⊕A)⊕B ≈ R⊕(A×B).



(a) For all sets C ∈ Set prove that there is a bijection

HomSet(A×B,C)↔ HomSet(B,HomSet(A,C)).

(b) Given an R-module M we will define the R-module M⊕A as a coproduct as in HW1.1(b).
Prove that for all R-modules N there is a bijection

HomR(M⊕A, N)↔ HomSet(A,HomR(M,N)).

(c) Use parts (a) and (b) together with Yoneda’s Lemma to prove the isomorphism of R-

modules (R⊕A)⊕B ≈ R⊕(A×B). [Hint: You can assume without proof that the bijections
from (a) and (b) are “natural” in their arguments.]

(d) Given a field extension K ⊆ L prove that we can view L as a K-vector space. We will
denote the dimension of this K-vector space by [L : K]. Now consider a chain of field
extensions K1 ⊆ K2 ⊆ K3. Use the isomorphism from part (c) to prove that

[K3 : K1] = [K3 : K2] · [K2 : K1].

[Hint: Don’t get your hands dirty.]

Proof. (a): Previously we defined the Cartesian product A × B in terms of the existence of
certain functions C → A×B, but now I’m asking you to consider functions A×B → C. That’s
kind of strange.

Given a function f : A×B → C written as (a, b) 7→ f(a, b) we can define a function Φf : B →
HomSet(A,C) by Φf (b) := f(−, b). I claim that this defines a bijection

Φ : HomSet(A×B,C) ↪→→ HomSet(B,HomSet(A,C)).

Indeed, to see that Φ is injective suppose that we have Φf = Φg. Then for all b ∈ B we must
have f(−, b) = Φf (b) = Φg(b) = g(−, b), which means that for all a ∈ A we have f(a, b) = g(a, b).
Since this is true for all a and b we conclude that f = g. To see that Φ is surjective, consider
any F ∈ HomSet(B,HomSet(A,C)). Then we note that F = Φf where f : A × B → C is the
function defined by f(a, b) := Fb(a).

(b): Given an R-module M and a set A we will define the R-module M⊕A as the coproduct
of the indexed family {Ma}a∈A, where M = Ma for each a ∈ A. In other words, we assume that
M⊕A satisfies the following properties:

• There exists a morphism ia : M →M⊕A for each a ∈ A.
• Given another R-module N and a family of morphisms ϕa : M → N , there exists a

unique morphism ϕ : M⊕A → N such that ϕ ◦ ia = ϕa for each a ∈ A.

We can summarize this with the following diagram:

M
ia

//

ϕa

%%
M⊕A ϕ

// N

Now look carefully at this diagram. For each R-module homomorphism ϕ : M⊕A → N we
certainly have a collection of morphisms {ϕa}a∈A defined by ϕa := ϕ◦ ia. And, conversely, given
any collection of morphisms ϕa : M → N we obtain a unique morphism ϕ : M⊕A → N satisfying
ϕa = ia ◦ ϕ for each a ∈ A. In other words, we have a bijection:

HomR(M⊕A, N) // HomSet(A,HomR(M,N))oo

ϕ {ϕa}a∈A



(c): Let N be any R-module. Assuming that the bijections from parts (a) and (b) are
“natural”, we obtain a chain of natural isomorphisms:

HomR((R⊕A)⊕B, N) ∼= HomSet(B,HomR(R⊕A, N))

∼= HomSet(B,HomSet(A,HomR(R,N)))

∼= HomSet(A×B,HomR(R,N))

∼= HomR(R⊕(A×B), N).

In other words we have an isomorphism of functors hX ≈ hY where X = (R⊕A)⊕B and Y =

R⊕(A×B). It follows Yoneda’s Lemma that we have an isomorphism of R-modules X ≈ Y .
(d): Finally, let K ⊆ L be an extension of fields. If we let ι : K → L be the inclusion

homomorphism then we can view L as a K-algebra. Then recall from HW2.5(b) that the
definition λa(b) := ι(a)b = ab gives us a ring homomorphism λ : K → EndAb(L). In other words,
L is a K-vector space. We will denote its dimension by [L : K].

Now consider a chain of field extensions K1 ⊆ K2 ⊆ K3 so that K2 is a K1-vector space and
K3 is a K2-vector space. Since all vector spaces are free there exist sets A and B such that
K2 ≈ K⊕A1 and K3 ≈ K⊕B2 . But then from part (c) we have

K3 ≈ K⊕B2 ≈ ((K1)⊕A)⊕B ≈ K⊕(A×B)
1

and it follows that

[K3 : K1] = [K
⊕(A×B)
1 : K1]

= |A×B|
= |A| · |B|

= [K⊕A2 : K2] · [K⊕B1 : K1]

= [K3 : K2] · [K2 : K1].

�

[Remark: For all rings R and sets A,B we saw in class that there is an isomorphism of R-modules:

R⊕(AtB) ≈ R⊕A ⊕R⊕B.

The slogan is that “dimension adds over direct sums”. The proof of this isomorphism goes by the
following yoga: since the “free” functor Set → R-Mod defined by A 7→ R⊕A is left adjoint (to the
“forgetful” functor R-Mod → Set), it commutes with coproducts. This result makes one wonder
about the module R⊕(A×B). For dimension reasons we know that this module is not isomorphic to
R⊕A ⊕ R⊕B. In other words, the free functor does not commute with products, so it is not right
adjoint to anything. But surely there is something interesting to say about the module R⊕(A×B).
I thank Derek Elkins from StackExchange for telling me the interesting thing that became part (c).]

Problems 3–5 use the following definitions. Recall that a commutative R-algebra is a homo-
morphism i : R → S of commutative rings and an R-algebra morphism from i1 : R → S1 to
i2 : R → S2 is a ring homomorphism ϕ : S1 → S2 satisfying ϕ ◦ i1 = i2. If i : R → S is
an R-algebra, recall that for each element a ∈ S there exists a unique R-algebra morphism
ϕa : R[x] → S satisfying ϕa(r) = i(r) for all r ∈ R and ϕa(x) = a. [In other words, R[x] is the
free commutative R-algebra generated by one element.] We will say that

• a ∈ S is transcendental over R if ϕa is injective,
• a ∈ S is algebraic over R if ϕa is not injective,



and we will sometimes denote the image by R[a] := imϕa. More generally, given an n-tuple of el-
ements A = {a1, a2, . . . , an} ⊆ S there exists a unique R-algebra morphism ϕA : R[x1, . . . , xn]→
S such that ϕA(r) = i(r) for all r ∈ R and ϕA(xi) = ai for all ai ∈ A. [In other words,
R[x1, . . . , xn] is the free commutative R-algebra generated by n elements.] We will say that

• A ⊆ S is an R-algebraically independent set if ϕA is injective,
• A ⊆ S is an R-algebraic generating set if ϕA is surjective.

We will denote the image by imϕA = R[A] or imϕA = R[a1, . . . , an], depending on context.

Problem 3. Algebraic Closure is Sometimes a Ring. Given an extension of commutative
rings R ⊆ S we will write AlgR(S) ⊆ S for the set of elements of S that are algebraic over R. If
AlgR(S) = S we will say that S is algebraic over R. In this case we will also say that R ⊆ S is
an algebraic extension.

(a) Let K ⊆ L be an extension of fields. If [L : K] <∞, prove that L is algebraic over K.
(b) If K ⊆ L is an extension of fields, prove that AlgK(L) is a subfield of L. [Hint: Given

a, b ∈ AlgK(L), you want to show that a−b and a/b are both in AlgK(L). Let K(a, b) ⊆ L
be the intersection of all subfields of L that contain K∪{a, b}. Use Problem 2(d) to show
that [K(a, b) : K] <∞. Then use part (a).]

(c) Now let R ⊆ S be an extension of integral domains. Prove that AlgR(S) is a subring
of S. [Hint: Let K ⊆ L be the corresponding fields of fractions. Prove that AlgR(S) =
S ∩AlgK(L) and then use part (b).]

Proof. (a): Let K ⊆ L be an extension of fields and assume that L is finite dimensional as a
K-vector space. Now consider any element a ∈ L. If a were not algebraic over K then the set
{1, a, a2, . . .} would be an infinite K-linearly independent set. Contradiction.

(b): Consider a field extension K ⊆ L and let AlgK(L) ⊆ L denote the set of elements that
are algebraic over K. We want to show that AlgK(L) is a field. That is, given any two elements
a and b in AlgK(L) we want to show that a − b and a/b are also in AlgK(L). So consider
the subfield K(a, b) ⊆ L, which is defined as the intersection of all subfields of L containing
K ∪ {a, b}. Similarly we can define the subfield K(a) ⊆ K(a, b). Since a is algebraic over K
we know from Problem 4(a) that [K(a) : K] < ∞ (the dimension is the degree of the minimal
polynomial ma(x) ∈ K[x]), and since b is algebraic over K(a) (indeed, it’s already algebraic over
K) we know that [K(a, b) : K(a)] = [K(a)(b) : K(a)] < ∞. Then using the Tower Law from
Problem 2(d) gives

[K(a, b) : K] = [K(a, b) : K(a)] · [K(a) : K] <∞
and it follows from part (a) that K(a, b) is algebraic over K. Finally, since a − b and a/b are
both in K(a, b) we conclude that they are both algebraic over K. [P.S.: Sorry that this proof
used a result from Problem 4(a). I probably should have put all the field theory prerequisites into
a separate problem, but that would have pushed the length of the homework assignment over two
pages!]

(c): Now let R ⊆ S be an extension of integral domains and let K ⊆ L be the corresponding
fields of fractions:

K // AlgK(L) // L

R

OO

// AlgR(S)

?

OO

// S

OO

To prove that AlgR(S) is a subring of S we will show that AlgR(S) = S ∩AlgK(L). Then since
S and AlgK(L) are both subrings of L (indeed we know from part (b) that AlgK(L) ⊆ L is a
subfield) it will follow that AlgR(S) is a subring of L, hence also of S.



So consider any element s ∈ AlgR(S). Since s is algebraic over R and since R ⊆ K we
conclude that s is algebraic over K, hence s ∈ S ∩ AlgK(L). Conversely, consider any element
s ∈ S ∩AlgK(L). Since s is algebraic over K there exist fractions ai/bi ∈ K with ai ∈ R not all
zero such that

(2)
∑
i

ai
bi
si = 0.

Since R is a domain and since bi 6= 0 for all i, the element b :=
∏
i bi is nonzero. Multiplying

both sides of (2) by b gives ∑
i

(aib̂i)s
i = 0,

where b̂i = b/bi ∈ R. But we assumed that there exists j such that aj 6= 0. Since b̂j 6= 0 and

since R is a domain it follows that aj b̂j 6= 0, and we conclude that s ∈ AlgR(S) as desired. �

Problem 4. Algebraic Over Algebraic is Sometimes Algebraic.

(a) Let K ⊆ L be an extension of fields and consider an element a ∈ AlgK(L). Prove that
K[a] is a field and that [K[a] : K] < ∞. [Hint: Since K[x] is a PID, the kernel of the
evaluation map ϕa : K[x] → S is generated by a single polynomial ma(x) ∈ K[x] called
the minimal polynomial of a over K. Show that ma(x) is irreducible, hence (ma(x)) ⊆ K[x]
is a maximal ideal, hence K[a] ≈ K[x]/(ma(x)) is a field. Then show that [K[a] : K] =
degma(x).]

(b) Let K ⊆ L be an algebraic extension of fields such that L is finitely generated as a
K-algebra. In this case prove that L is finite dimensional as a K-vector space. [Hint:
Suppose that L = K[a1, . . . , an] as a K-algebra and define Li := K[a1, . . . , ai]. Prove
using part (a) and induction that Li+1 is a field and that [Li+1 : Li] < ∞. Then use
Problem 2(d).]

(c) Let R and S be integral domains. Prove that R ⊆ S is an algebraic extension if and only
if Frac(R) ⊆ Frac(S) is an algebraic extension. [Hint: One direction uses Problem 3(b).]

(d) Now let R1 ⊆ R2 ⊆ R3 be integral domains such R1 ⊆ R2 and R2 ⊆ R3 are algebraic
extensions. In this case prove that R1 ⊆ R3 is also algebraic. [Hint: Let K1 ⊆ K2 ⊆
K3 be the corresponding fields of fractions. By part (c) we know that K1 ⊆ K2 and
K2 ⊆ K3 are algebraic. Now consider an arbitrary element α ∈ K3. We know that
β0 + β1α+ · · ·+ βnα

n = 0 for some elements βi ∈ K2, and hence α is algebraic over the
subring K1[β0, . . . , βn]. Now use 4(b), 4(a), 2(d) and 3(a).]

Proof. (a): Let K ⊆ L be a field extension and consider an element a ∈ AlgK(L). Recall that
we denote the image of the evaluation homomorphism ϕa : K[x]→ L by K[a]. At first we only
know that K[a] is a subring of L, but I claim that it is in fact a subfield. To prove this, consider
the kernel kerϕa ⊆ K[x], which is nonzero by the assumption that a is algebraic. Since K[x]
is a PID [recall that Euclidean ⇒ PID] we must have kerϕa = (ma(x)) for some polynomial
ma(x) ∈ K[x], and since a ∈ AlgK(L) we know that ma(x) 6= 0. This polynomial is unique up
to multiplication by units in K[x] and the units of K[x] are just the nonzero constants. Thus we
can assume that ma(x) has leading coefficient 1 and we can call it “the” minimal polynomial of
a over K (although this won’t be necessary). Now assume for contradiction that ma(x) is not
irreducible. That is, assume that we have ma(x) = f(x)g(x) where neither of f(x) or g(x) is
a unit. Then substituting a (i.e., applying ϕa) gives

0 = ma(a) = f(a)g(a)



and since K is a domain we conclude that f(a) = 0 or g(a) = 0. Without loss, suppose that
f(a) = 0. This means that f(x) ∈ kerϕa = (ma(x)) and hence f(x) = ma(x)q(x) for some
q(x) ∈ K[x]. But then since ma(x) 6= 0 and since K[x] is a domain we have

ma(x) = f(x)g(x)

ma(x) = ma(x)q(x)g(x)

ma(x)(1− q(x)g(x)) = 0

1− q(x)g(x) = 0

1 = q(x)g(x),

which contradicts the fact that g(x) is not a unit. Now sincema(x) is irreducible we know that the
ideal (ma(x)) ⊆ K[x] is maximal. (Indeed, any (necessarily principal) ideal between (ma(x))
and K[x] would give rise to a proper divisor of ma(x).) Then from the Lattice Isomorphism
Theorem we see that the ring K[x]/(ma(x)) has no nontrivial ideals, hence its a field, hence it
follows from the 1st Isomorphism Theorem that K[a] = imϕa ≈ K[a]/ kerϕa = K[x]/(ma(x))
is also a field. If we denote by K(a) the intersection of all subfields of L containing K ∪ {a}
then since K[a] contains K ∪ {a} we must have K(a) ⊆ K[a]. Conversely, since K(a) contains
K ∪{a} it must contain all sums and products from this set, i.e., it must contain the whole ring
K[a]. We conclude that K[a] = K(a) (i.e. the smallest subring of L containing K ∪ {a} is also
the smallest subfield containing K ∪ {a}). Finally, suppose that degma(x) = n. In this case we
will show that (the cosets generated by) 1, x, . . . , xn−1 are a basis for the field K[x]/(ma(x)) as
a K-vector space. Indeed, let f(x)+(ma(x)) be any nonzero element of K[x]/(ma(x)). Then we
can divide f(x) by ma(x) to obtain f(x) = q(x)ma(x) + r(x) and since f(x) is not in (ma(x))
we must have deg r(x) < n. But this implies that f(x) + (ma(x)) = r(x) + (ma(x)) is in the
span of the cosets of 1, x, . . . , xn−1. Furthermore this set is K-linearly independent since a
nontrivial K-linear relation would imply that g(x) + (ma(x)) = 0+ (ma(x)) for some polynomial
0 6= g(x) ∈ K[x] with deg g(x) < n. But this is impossible since g(x) ∈ (ma(x)) implies that
ma(x) divides g(x) and hence n = degma(x) ≤ deg g(x). We conclude that 1, x, . . . , xn−1 is a
basis for K(a) ≈ K[x]/(ma(x)) as a K-vector space and hence [K(a) : K] = n. [That does it I
think. Part 4(a) summarizes a large chunk of MTH 562 for the benefit of students who didn’t take
MTH 562 (or didn’t take it with me). Yes, maybe it would have been appropriate to put this in a
separate problem along with parts 3(a) and 3(b).]

(b): Let K ⊆ L be an algebraic field extension such that L is finitely generated as a K-algebra.
This means that there exist elements A = {a1, . . . , an} ⊆ L such that L = K[A] = K[a1, . . . , an].
We can interpret this as the image of the evaluation homomorphism ϕA : K[x1, . . . , xn]→ L or
we can define it inductively by setting Li := K[a1, . . . , ai] and Li+1 := Li[ai+1] where Li[ai+1] is
the image of the evaluation homomorphism ϕai+1 : Li → L. We will also set L0 := K.

Now we will prove by induction that Li is a field and that [Li : K] < ∞. Indeed, we know
that L0 = K is a field and that [L0 : K] = [K : K] = 1 <∞. Now assume for induction that Li
is a field and [Li : K] <∞. Then since ai+1 ∈ AlgK(L) ⊆ AlgLi

(L) we have from part (a) that
Li+1 = Li[ai+1] is a field with [Li+1 : Li] <∞ and it follows from Problem 2(d) that

[Li+1 : K] = [Li+1 : Li] · [Li : K] <∞.

By induction we conclude that [L : K] = [Ln : K] <∞ as desired.
(c): Now let R ⊆ S be an extension of integral domains. In this case I claim that R ⊆ S is

algebraic if and only if Frac(R) ⊆ Frac(S) is algebraic. To save notation let’s define K := Frac(R)
and L := Frac(S). Now recall from the proof of Problem 3(c) that

(3) AlgR(S) = S ∩AlgK(L).



First suppose that L is algebraic over K so that AlgK(L) = L. Then equation (3) tells us that
AlgR(S) = S ∩ L = S, and hence S is algebraic over R. Conversely, suppose that S is algebraic
over R so that AlgR(S) = S and consider any fraction s1/s2 ∈ L. Since S = AlgR(S) ⊆ AlgK(L)
[this was the easy direction of equation (3)] we can think of s1 and s2 as elements of AlgK(L).
But we know from Problem 3(b) that AlgK(L) is a field, which implies that s1/s2 ∈ AlgK(L)
and hence AlgK(L) = L as desired.

(d): Finally let R1 ⊆ R2 ⊆ R3 be integral domains such that R1 ⊆ R2 and R2 ⊆ R3 are
algebraic extensions. In this case we will prove that R1 ⊆ R3 is algebraic. [In the original version
of the HW I told you to assume that R1 ⊆ R2 and R2 ⊆ R3 are finitely generated as algebras.
Thanks to David Udumyan for showing me that this is not necessary.]

First let K1 ⊆ K2 ⊆ K3 be the corresponding fields of fractions. From part (c) we know that
K1 ⊆ K2 and K2 ⊆ K3 are algebraic field extensions. If we can show that K1 ⊆ K3 is algebraic
then it will again follow from part (c) that R1 ⊆ R3 is algebraic. So consider any element a ∈ K3.
Since K3 = AlgK2

(K3) we can write

(4) 0 = b0 + b1a+ · · ·+ bna
n

for some elements b0, b1, . . . , bn ∈ K2. But then since K2 = AlgK1
(K2) we have from the proof

of part (b) that K1[b1, . . . , bn] is a field and that [K1[b1, . . . , bn] : K1] <∞. Similarly, since a is
algebraic over K1[b1, . . . , bn] by equation (4), we have that K1[b1, . . . , bn][a] is a field and that
[K1[b1, . . . , bn][a] : K1[b1, . . . , bn]] <∞. Now the Tower Law [Problem 2(d)] tells us that

[K1[b1, . . . , bn][a] : K1] = [K1[b1, . . . , bn][a] : K1[b1, . . . , bn]] · [K1[b1, . . . , bn] : K1] <∞

and then part (a) implies that K[b1, . . . , bn][a] is algebraic over K1. In particular, a ∈ K3 is
algebraic over K1. Since a was an arbitrary element of K3 this proves the result. �

Problem 5. Transcendence Degree Sometimes Exists. In this problem we will prove a
version of “Steinitz Exchange” for algebras. Let R ⊆ S be an extension of commutative rings.
Given a subset A ⊆ S of size n, let ϕA : R[x1, . . . , xn] → S be the evaluation homomorphism
with image R[A] ⊆ S. We will say that

• A ⊆ S is R-algebraically independent if ϕA is injective,
• A ⊆ S is R-almost generating if R[A] ⊆ S is algebraic.

If A ⊆ S is R-algebraically independent and R-almost generating we will call it a transcendence
basis for the algebra R ⊆ S. Our goal is to prove that (for certain kinds of algebras) all
transcendence bases have the same size.

(a) Let R ⊆ S be an extension of integral domains. Let A = {a1, . . . , am} ⊆ S be R-
algebraically independent and let B = {b1, . . . , bn} ⊆ S be R-almost generating. Show
that we can reorder the elements of B so that the set {a1, b2, . . . , bn} is R-almost gener-
ating. [Hint: Since a1 is algebraic over R[b1, . . . , bn] there exists a nontrivial polynomial
relation f(a1, b1, . . . , bn) = 0. Since A is algebraically independent, at least one of the
bi must appear in this relation; without loss we can assume that b1 appears. Now use
Problem 3(c) and Problem 4(d).]

(b) If m > n, use induction on part (a) to obtain a contradiction.

Proof. Let R ⊆ S be an extension of integral domains. Let A = {a1, . . . , am} ⊆ S be an R-
algebraically independent set and let B = {b1, . . . , bn} ⊆ S be an R-almost generating set. We
wish to prove that m ≤ n. Since parts (a) and (b) are essentially the same thing, I’ll do them
at the same time. [I was trying to be pedagogical in the way I wrote them problem. Maybe it was
unnecessary.]



Assume for contradiction that m > n. In this case we will prove that {a1, . . . , an} is an R-
almost generating set. Then the fact that an+1 ∈ S is algebraic over the subring R[a1, . . . , an]
provides the desired contradiction.

So fix some 0 ≤ k < n and assume for induction that the set

{a1, . . . , ak, bk+1, . . . , bn}
is R-almost generating. (Certainly this true when k = 0.) By definition of “almost generating”
this implies that there exists a nonzero polynomial f(x0, . . . , xn) ∈ R[x0, . . . , xn] such that

(5) f(a1, . . . , ak, ak+1, bk+1, . . . , bn) = 0.

At least one of the variables xk+1, . . . , xn must occur in the polynomial f since otherwise we
obtain a nontrivial polynomial relation f(a1, . . . , ak+1) = 0, contradicting the fact that A is
R-algebraically independent. Without loss of generality, assume that the variable xk+1 occurs.
Then the relation (5) then tells us that the element bk+1 ∈ S is algebraic over the subring
R[a1, . . . , ak+1, bk+2, . . . , bn] and Problem 3(c) tells us that the whole ring

R[a1, . . . , ak+1, bk+1, . . . , bn] = R[a1, . . . , ak+1, bk+2, . . . , bn][bk+1]

is algebraic overR[a1, . . . , ak+1, bk+2, . . . , bn]. Since S is algebraic overR[a1, . . . , ak+1, bk+1, . . . , bn]
(indeed, the ak+1 is not even necessary) we conclude from Problem 4(d) that S is algebraic over
R[a1, . . . , ak+1, bk+2, . . . , bn] and hence

{a1, . . . , ak+1, bk+2, . . . , bn}
is an R-almost generating set for S. By induction it now follows that {a1, . . . , an} is an R-almost
generating set for S, which gives the desired contradiction.

Epilogue: Let R ⊆ S be an extension of integral domains and let A,B ⊆ S be two R-
transcendence bases. Applying our result in one direction gives |A| ≤ |B| and applying it in
the other direction gives |B| ≤ |A|. We conclude that all R-transcendence bases have the same
cardinality. [The proof probably extends to transcendence bases of transfinite cardinality, but
I don’t care. To learn more about the general concept of “Steinitz exchange” see the paper of
Saunders Mac Lane: “A lattice formulation for transcendence degrees and p-bases” (1938).] �

[Remark: In summary, we have the following important structure theorem for algebras. Let R ⊆ S
be an extension of integral domains. We can express this as a series of three extensions

R ⊆ R[A] ⊆ R[A]⊕B ⊆ S,
where A is a transcendence basis for S as an R-algebra and B is a basis for S as an R[A]-module.
The results of HW2 and HW3 tell us that the cardinalities of A and B are well-defined. Furthermore,
we know that the quotient S/R[A]⊕B is a torsion R[A]-module. If this torsion module is in fact the
zero module (i.e., if R[A]⊕B = S) then we might use the words “Cohen-Macaulay” to describe the
algebra R ⊆ S.

It’s possible to remove the hypothesis that S is an integral domain (it’s not possible to remove this
hypothesis on R) but to do so we have to replace the notion of ”algebraic extension” by the notion
of ”integral extension”. The general result in this direction is the “Noether Normalization Lemma”;
it is approximately twice as difficult as the results we proved on HW2 and HW3.]

[Meta-Remark: Why do we care? Well, if we want to use algebras and modules as a foundation for
mathematics then we need to know this kind of stuff. But why do we want to use algebras and
modules as a foundation for mathematics? Well, do you have a better idea?]


