
Math 762 Spring 2016
Homework 3 Drew Armstrong

Problem 1. Yoneda’s Lemma. We have seen that the bifunctor HomC(−,−) : C × C → Set is
analogous to a bilinear form on a K-vector space 〈−,−〉 : V ×V → K. Recall that a bilinear form 〈−,−〉
is called non-degerenate if for all vectors x, y ∈ V we have

〈x, z〉 = 〈y, z〉 for all z ∈ V =⇒ x = y.

The Yoneda Lemma tells us that the Hom bifunctor is “non-degenerate” in a similar way.

(a) For each object X ∈ C verify that hX := HomC(X,−) defines a functor C → Set.
(b) Given two objects X,Y ∈ C state what it means to have hX ≈ hY as functors.
(c) Given two objects X,Y ∈ C and an isomorphism of functors hX ≈ hY , prove that we have an

isomorphism of objects X ≈ Y . [Hint: Let Φ : hX
∼−→ hY be a natural isomorphism. Now consider

the morphisms ΦX(idX) : Y → X and (ΦY )−1(idY ) : X → Y .]

Problem 2. The Tower Law. Let R be a ring and let A,B be any sets. In this problem we will
investigate the isomorphism of R-modules

(R⊕A)⊕B ≈ R⊕(A×B).

(a) For all sets C ∈ Set prove that there is a bijection

HomSet(A×B,C)↔ HomSet(B,HomSet(A,C)).

(b) Given an R-module M we will define the R-module M⊕A as a coproduct as in HW1.1(b). Prove
that for all R-modules N there is a bijection

HomR(M⊕A, N)↔ HomSet(A,HomR(M,N)).

(c) Use parts (a) and (b) together with Yoneda’s Lemma to prove the isomorphism of R-modules

(R⊕A)⊕B ≈ R⊕(A×B). [Hint: You can assume without proof that the bijections from (a) and (b)
are “natural” in their arguments.]

(d) Given a field extension K ⊆ L prove that we can view L as a K-vector space. We will denote
the dimension of this K-vector space by [L : K]. Now consider a chain of field extensions
K1 ⊆ K2 ⊆ K3. Use the isomorphism from part (c) to prove that

[K3 : K1] = [K3 : K2] · [K2 : K1].

[Hint: Don’t get your hands dirty.]

Problems 3–5 use the following definitions. Recall that a commutative R-algebra is a homomorphism
i : R → S of commutative rings and an R-algebra morphism from i1 : R → S1 to i2 : R → S2 is a ring
homomorphism ϕ : S1 → S2 satisfying ϕ ◦ i1 = i2. If i : R → S is an R-algebra, recall that for each
element a ∈ S there exists a unique R-algebra morphism ϕa : R[x] → S satisfying ϕa(r) = i(r) for all
r ∈ R and ϕa(x) = a. [In other words, R[x] is the free commutative R-algebra generated by one element.]
We will say that

• a ∈ S is transcendental over R if ϕa is injective,
• a ∈ S is algebraic over R if ϕa is not injective,

and we will sometimes denote the image by R[a] := imϕa. More generally, given an n-tuple of elements
A = {a1, a2, . . . , an} ⊆ S there exists a unique R-algebra morphism ϕA : R[x1, . . . , xn] → S such that
ϕA(r) = i(r) for all r ∈ R and ϕA(xi) = ai for all ai ∈ A. [In other words, R[x1, . . . , xn] is the free
commutative R-algebra generated by n elements.] We will say that

• A ⊆ S is an R-algebraically independent set if ϕA is injective,



• A ⊆ S is an R-algebraic generating set if ϕA is surjective.

We will denote the image by R[A] := imϕA or R[a1, . . . , an] := imϕA, depending on context.

Problem 3. Algebraic Closure is Sometimes a Ring. Given an extension of commutative rings
R ⊆ S we will write AlgR(S) ⊆ S for the set of elements of S that are algebraic over R. If AlgR(S) = S
we will say that S is algebraic over R. In this case we will also say that R ⊆ S is an algebraic extension.

(a) Let K ⊆ L be an extension of fields. If [L : K] <∞, prove that L is algebraic over K.
(b) If K ⊆ L is an extension of fields, prove that AlgK(L) is a subfield of L. [Hint: Given a, b ∈

AlgK(L), you want to show that a − b and a/b are both in AlgK(L). Let K(a, b) ⊆ L be
the intersection of all subfields of L that contain K ∪ {a, b}. Use Problem 2(d) to show that
[K(a, b) : K] <∞. Then use part (a).]

(c) Now let R ⊆ S be an extension of integral domains. Prove that AlgR(S) is a subring of S. [Hint:
Let K ⊆ L be the corresponding fields of fractions. Prove that AlgR(S) = S ∩AlgK(L) and then
use part (b).]

Problem 4. Algebraic Over Algebraic is Sometimes Algebraic.

(a) Let K ⊆ L be an extension of fields and consider an element a ∈ AlgK(L). Prove that K[a] is
a field and that [K[a] : K] < ∞. [Hint: Since K[x] is a PID, the kernel of the evaluation map
ϕa : K[x] → S is generated by a single polynomial ma(x) ∈ K[x] called the minimal polynomial
of a over K. Show that ma(x) is irreducible, hence (ma(x)) ⊆ K[x] is a maximal ideal, hence
K[a] ≈ K[x]/(ma(x)) is a field. Then show that [K[a] : K] = degma(x).]

(b) Let K ⊆ L be an algebraic extension of fields such that L is finitely generated as a K-algebra.
In this case prove that L is finite dimensional as a K-vector space. [Hint: Suppose that L =
K[a1, . . . , an] as a K-algebra and define Li := K[a1, . . . , ai]. Prove using part (a) and induction
that Li+1 is a field and that [Li+1 : Li] <∞. Then use Problem 2(d).]

(c) Let R and S be integral domains. Prove that R ⊆ S is an algebraic extension if and only if
Frac(R) ⊆ Frac(S) is an algebraic extension. [Hint: One direction uses Problem 3(b).]

(d) Now let R1 ⊆ R2 ⊆ R3 be integral domains such R1 ⊆ R2 and R2 ⊆ R3 are algebraic extensions.
In this case prove that R1 ⊆ R3 is also algebraic. [Hint: Let K1 ⊆ K2 ⊆ K3 be the corresponding
fields of fractions. By part (c) we know that K1 ⊆ K2 and K2 ⊆ K3 are algebraic. Now consider
an arbitrary element α ∈ K3. We know that β0 +β1α+ · · ·+βnα

n = 0 for some elements βi ∈ K2,
and hence α is algebraic over the subring K1[β0, . . . , βn]. Now use 4(b), 4(a), 2(d) and 3(a).]

Problem 5. Transcendence Degree Sometimes Exists. In this problem we will prove a version
of “Steinitz Exchange” for algebras. Let R ⊆ S be an extension of commutative rings. Given a subset
A ⊆ S of size n, let ϕA : R[x1, . . . , xn]→ S be the evaluation homomorphism with image R[A] ⊆ S. We
will say that

• A ⊆ S is R-algebraically independent if ϕA is injective,
• A ⊆ S is R-almost generating if R[A] ⊆ S is algebraic.

If A ⊆ S is R-algebraically independent and R-almost generating we will call it a transcendence basis for
the algebra R ⊆ S. Our goal is to prove that (for certain kinds of algebras) all transcendence bases have
the same size.

(a) Let R ⊆ S be an extension of integral domains. Let A = {a1, . . . , am} ⊆ S be R-algebraically
independent and let B = {b1, . . . , bn} ⊆ S be R-almost generating. Show that we can reorder the
elements of B so that the set {a1, b2, . . . , bn} is R-almost generating. [Hint: Since a1 is algebraic
over R[b1, . . . , bn] there exists a nontrivial polynomial relation f(a1, b1, . . . , bn) = 0. Since A is
algebraically independent, at least one of the bi must appear in this relation; without loss we can
assume that b1 appears. Now use Problem 3(c) and Problem 4(d).]

(b) If m > n, use induction on part (a) to obtain a contradiction.


