Math 762 Spring 2016
Homework 3 Drew Armstrong

Problem 1. Yoneda’s Lemma. We have seen that the bifunctor Home(—,—) : C x C — Set is
analogous to a bilinear form on a K-vector space (—, —) : V' xV — K. Recall that a bilinear form (—, —)
is called non-degerenate if for all vectors x,y € V we have

(x,2) =(y,2z) forallze V = z=y.

The Yoneda Lemma tells us that the Hom bifunctor is “non-degenerate” in a similar way.
(a) For each object X € C verify that h* := Home(X, —) defines a functor C — Set.
(b) Given two objects X,Y € C state what it means to have hX ~ hY as functors.
(c) Given two objects X,Y € C and an isomorphism of functors hX ~ hY, prove that we have an

isomorphism of objects X ~ Y. [Hint: Let ® : hX = hY be a natural isomorphism. Now consider
the morphisms ®x (idy) : Y — X and (®y) (idy) : X — Y]

Problem 2. The Tower Law. Let R be a ring and let A, B be any sets. In this problem we will
investigate the isomorphism of R-modules

(R®4)®B  RE(AXB),

(a) For all sets C' € Set prove that there is a bijection
Homset(A X B, C) < Homset(B, Homset(A, O))

(b) Given an R-module M we will define the R-module M®4 as a coproduct as in HW1.1(b). Prove
that for all R-modules N there is a bijection

Homp(M®4, N) <> Homse (A, Homp (M, N)).

(c) Use parts (a) and (b) together with Yoneda’s Lemma to prove the isomorphism of R-modules
(R®4)®B ~ RO(AXB) [Hint: You can assume without proof that the bijections from (a) and (b)
are “natural” in their arguments.]

(d) Given a field extension K C L prove that we can view L as a K-vector space. We will denote
the dimension of this K-vector space by [L : K|. Now consider a chain of field extensions
K, C K9 C K3. Use the isomorphism from part (c) to prove that

[K3: K1) = [K3: Ko - [Ky: Ki].
[Hint: Don’t get your hands dirty.]

Problems 3-5 use the following definitions. Recall that a commutative R-algebra is a homomorphism
i : R — S of commutative rings and an R-algebra morphism from iy : R — 57 to io : R — Sy is a ring
homomorphism ¢ : S; — Sy satisfying ¢ 041 = i3. If i : R — S is an R-algebra, recall that for each
element a € S there exists a unique R-algebra morphism ¢, : R[z] — S satisfying ¢, (r) = i(r) for all
r € R and ¢,(x) = a. [In other words, R[z]| is the free commutative R-algebra generated by one element.]
We will say that

e o € S is transcendental over R if ¢, is injective,

e a € S is algebraic over R if ¢, is not injective,
and we will sometimes denote the image by R[a] := im ¢,. More generally, given an n-tuple of elements
A ={ai,az,...,a,} C S there exists a unique R-algebra morphism ¢4 : R[x1,...,2z,] — S such that
wa(r) = i(r) for all » € R and pa(x;) = a; for all a; € A. [In other words, R[z1,...,x,] is the free
commutative R-algebra generated by n elements.] We will say that

e A C §Sis an R-algebraically independent set if 4 is injective,



e A C S is an R-algebraic generating set if ¢4 is surjective.
We will denote the image by R[A] :=imp4 or Rlai,...,a,] :=imp4, depending on context.

Problem 3. Algebraic Closure is Sometimes a Ring. Given an extension of commutative rings
R C S we will write Algp(S) C S for the set of elements of S that are algebraic over R. If Algr(S) =S
we will say that S is algebraic over R. In this case we will also say that R C S is an algebraic extension.

(a) Let K C L be an extension of fields. If [L : K] < oo, prove that L is algebraic over K.

(b) If K C L is an extension of fields, prove that Alg, (L) is a subfield of L. [Hint: Given a,b €
Algy (L), you want to show that a — b and a/b are both in Algy(L). Let K(a,b) C L be
the intersection of all subfields of L that contain K U {a,b}. Use Problem 2(d) to show that
[K(a,b) : K] < co. Then use part (a).]

(c) Now let R C S be an extension of integral domains. Prove that Algp(S) is a subring of S. [Hint:
Let K C L be the corresponding fields of fractions. Prove that Algr(S) =S N Algg (L) and then
use part (b).]

Problem 4. Algebraic Over Algebraic is Sometimes Algebraic.

(a) Let K C L be an extension of fields and consider an element a € Alg (L). Prove that K|a] is
a field and that [K[a] : K] < co. [Hint: Since K|[z] is a PID, the kernel of the evaluation map
va : K[z] — S is generated by a single polynomial m,(x) € K|z| called the minimal polynomial
of a over K. Show that mg(z) is irreducible, hence (mq(x)) C Klz| is a maximal ideal, hence
Kla] = K[z]/(my(z)) is a field. Then show that [K[a] : K| = deg mq(z).]

(b) Let K C L be an algebraic extension of fields such that L is finitely generated as a K-algebra.
In this case prove that L is finite dimensional as a K-vector space. [Hint: Suppose that L =
Klay,...,ay] as a K-algebra and define L; := K]ay,...,a;]. Prove using part (a) and induction
that L;1; is a field and that [L;1+1 : L;] < co. Then use Problem 2(d).]

(c) Let R and S be integral domains. Prove that R C S is an algebraic extension if and only if
Frac(R) C Frac(S) is an algebraic extension. [Hint: One direction uses Problem 3(b).]

(d) Now let R; C Ry C Rj3 be integral domains such Ry C Ry and Re C Rj3 are algebraic extensions.
In this case prove that R; C Rj is also algebraic. [Hint: Let K1 C Ko C K3 be the corresponding
fields of fractions. By part (c) we know that K1 C Ky and K9 C K3 are algebraic. Now consider
an arbitrary element o € K3. We know that 8y + Sia+- - -+ Br,a™ = 0 for some elements 5; € Ko,
and hence « is algebraic over the subring Ki[fo, ..., Sn]. Now use 4(b), 4(a), 2(d) and 3(a).]

Problem 5. Transcendence Degree Sometimes Exists. In this problem we will prove a version
of “Steinitz Exchange” for algebras. Let R C S be an extension of commutative rings. Given a subset
A C S of size n, let 4 : Rlx1,...,2,] — S be the evaluation homomorphism with image R[A] C S. We
will say that

e A C S is R-algebraically independent if ¢4 is injective,

e A C S is R-almost generating if R[A] C S is algebraic.
If A C S is R-algebraically independent and R-almost generating we will call it a transcendence basis for
the algebra R C S. Our goal is to prove that (for certain kinds of algebras) all transcendence bases have
the same size.

(a) Let R C S be an extension of integral domains. Let A = {ay,...,an} C S be R-algebraically
independent and let B = {b1,...,b,} C S be R-almost generating. Show that we can reorder the
elements of B so that the set {aj,bo,...,b,} is R-almost generating. [Hint: Since a; is algebraic
over R[by,...,b,] there exists a nontrivial polynomial relation f(ai,b1,...,b,) = 0. Since A is
algebraically independent, at least one of the b; must appear in this relation; without loss we can
assume that b; appears. Now use Problem 3(c) and Problem 4(d).]

(b) If m > n, use induction on part (a) to obtain a contradiction.



