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Perron—Frobenius Theory:

A New Proof of the Basics
G. W. Stewart

ABSTRACT

This note presents a new proof of basic Perron-Frobenius theory of
irreducible nonnegative matrices.

The purpose of this note is to provide new proofs of the basic facts about non-
negative irreducible matrices. The facts themselves are well known. If A is an
irreducible nonnegative matrix then the spectral radius of A, written p(A), is a
simple eigenvalue of A corresponding to an positive eigenvector z. Moreover, p(A)
is a strictly increasing function of the elements of A. Perron [5] established these
facts for positive matrices, and Frobenius [1] for nonnegative irreducible matrices.
Frobenius went on to describe the structure of matrices for which there are other
eigenvalues of magnitude p(A), but that will not concern us here.

The proof given here uses a variant of the inverse power method to establish
the existence of the Perron root p(A) and the Perron vector x. To establish the
simplicity and monotonicity of p(A), it uses well known relations between right
and left eigenvectors. We will take two facts as given.

Recall that a matrix A is reducible if there is a permutation matrix P such

that
An Am)

PTAP =
( 0 A22

where A is square. The first fact is that if A is an irreducible, nonnegative matrix
of order n, then (I + A)"~' is positive.

The second fact concerns left and right eigenvectors. Let A be an eigenvalue
of A and = a corresponding eigenvector. Then A is multiple if and only if there
is a left eigenvector corresponding to A that is orthogonal to x. This fact can be
easily established from a Schur decompostion of A (e.g., see [4, §7.1.2]).

To establish the existence of a Perron vector we will use a variant of the
inverse power method. Recall that the inverse power method approximates an
eigenvector corresponding to an eigenvalue A by choosing a scalar 7 near A and
computing x, = (I —7A) " u for some u. If A is simple and w is not inappropriately
chosen, x,/||z,|| will approximate a normalized eigenvector corresponding to A.
The approximate becomes more accurate as 7 approaches .
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By replacing A with A/p(A), we may assume that p(A) = 1. For 0 < 7 < 1,
let
z,=(I—-7A) 'e=e+7de+ 1A%+ -+,

where e is the vector consisting entirely of ones. It is clear from the Neuman series
on the right (which converges since p(7A) < 1) that « > 0.
We will now show that the the vectors z, become unbounded as 7 — 1. Since

p(A¥) = 1, we have ||A*||; > 1, where || - ||; is the usual column-sum norm. Tt
follows that some element of A* is not less than 1/n. Since the 1-norm of z, is
just the sum of all the elements of I, 7A, 7242, ..., it follows that
1/n
ool > 2
-7

Hence for any sequence 7; — 1, we have

|xr |1 — oo.
The vectors x;/||z,||1 lie on a closed and bounded set. Hence we can choose a
T
sequence 7; — 1 such that ”l’# — 2 > 0. Then

il

Ozlimizlim%:(]—A)x.

i—c0 Hxﬂ 1 T Hxﬂ 1

Thus = > 0 is an eigenvector of A corresponding to 1 = p(A).
We will now show that any such x is positive. Since Az =z, (I + A)" 'z =
271z, Since (I + A)"~! is positive,

0<(I+ A)”_lx =92 1.

To prove the simplicity and monotonicity of the Perron root, we will use a result
of independent interest. Let A be irreducible and nonnegative, and let w > 0 be
nonzero. If there are scalars p and v such that

pw < Aw < vw,

then
p<p(A) <w.

If the inequality pw < Aw s strict in at least one component, then

1< p(A). (1)
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Likewise, if the inequality Aw < vw is strict in at least one component, then

p(A) <. (2)

We will establish the upper bounds in v, the lower bounds being treated simi-
larly. Note that along with A the matrix A7 is irreducible and nonnegative. Hence
there is a positive vector yT such that yTA = p(A)yT. Multiply the inequality
Aw < vw by yT to get

p( Ay w =y Aw < vyTw.

The upper bound now follows on observing that yTw > 0. The strict inequality
follows from the fact that if Aw < vw is strict in any component then yT Aw <
vyTw.

To establish the simplicity of the Perron root, let x be the Perron vector of
A. Tf p(A) is not simple, there is a left eigenvector zT corresponding to p(A) such
that z is orthogonal to 2. Since z is positive, 2T must have both positive and
negative components. Let 27 be the vector obtained by setting all the negative
components to zero. Since 2zTA = p(A)zT, it follows that 2T A > p(A)2T. Now
equality cannot hold in this relation, for otherwise 27
and hence positive. Thus we have strict inequality in at least one component, and
by (1) we have p(A) > p(A)—a contradiction.

Finally, we turn to the monotonicity of the spectral radius. Let B > A with
strict inequality in at least one component. Then B is nonnegative and irreducible.
Let = be the Perron vector of A. Then

would be a Perron vector

Bx > Ax = p(A)z,

with strict inequality in at least one component. Hence by (1), p(B) > p(A).

There are three comments to be made about this proof. First, since p(A) is a
simple eigenvalue, it is easy to show that the vectors z, generated by the inverse
power method converge to = as 7 approaches one. Thus the existence proof is
constructive.

Second, let A be a simple eigenvalue with right eigenvector = and left eigen-
vector y, normalized so that yTx# = 1. Then it is well known that the matrix of
derivatives of X with respect to the elements of its matrix is zyT. In our case,
A = p(A), and 2 and y are positive. Hence the matrix of derivatives is also posi-
tive. This provides another proof that the spectral radius of A increases with its
elements, but one that predicts the rate of increase.
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Finally the prominent role played by left eigenvectors in this development
suggests that there is a duality at work here, a duality which would probably
appear in sharper focus in the theory of matrices that are nonnegative with respect
to a cone.
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