Math 661 Fall 2013
Homework 2 Solutions Drew Armstrong

1. Consider the lattice of subgroups Z(G) of a group G. For each H € Z(G) and g € G let
gHg ' :={ghg™':h e H}.
(a) Show that gHg~! is a subgroup of G.
(b) Show that the map G x .Z(G) — £(G) defined by (g, H) — gHg~ ' is a group action.
(c) The stabilizer of H € .Z(G) under this action is called the normalizer of H:
Ng(H):={g€G:gHg ' = H}.
Show that Ng(H) is the largest subgroup of G in which H is normal.

Proof. For part (a) we will show that for all a,b € gHg~! we have ab~! € gHg~!. So suppose

that a,b € gHg™ !, say a = gh1g~! and b = ghag~!. Note that b~ = gh;lg_l. Then we have
ab = (gh1g™")(ghag™") = g(hahy ')y~ € gHg ™",

as desired.

For part (b), let (g,e) : Z(G) — £(G) denote the map H +— gHg~'. We must show that
for all g,h € G we have (g,®) o (h,e) = (gh,e). [In other words, the map g — (g, ®) is a group
homomorphism G — Aut(.Z(G)).] Indeed, for all H € .Z(G) and for all g,h € G we have

(g, (h,H)) = (g,hHh™') = g(hHh™")g~" = (gh)H (gh)~" = (gh, H).

For part (c), first note that H is indeed a normal a subgroup of Ng(H). Now suppose we
have H << K < G for some K. We want to show that K < Ng(H). Indeed, suppose g € K.
Then since H <1 K we have gHg~! = H, which implies that g € Ng(H). O

2. Let H < G be a subgroup.

(a) For each a € Ng(H), define a function 6, : H — G by 0,(h) := aha™!. Show that 6,
is actually in Aut(H), the group of automorphisms (i.e. self-isomorphisms) of H.

(b) Show that the map 6 : Ng(H) — Aut(H) is a group homomorphism.

(c) Show that the kernel of 6 is the centralizer of H

Co(H):={g€G:ghg ' =hforall he H}.

(d) Conclude that Cg(H) is normal in Ng(H) and that Ng(H)/Cg(H) is isomorphic to
a subgroup of Aut(H).

Proof. Let a € Ng(H). For part (a) we wish to show that the map 6, : H — G defined by
0.(h) := aha™! is actually in Aut(H). Well, since a € Ng(a) we know that aHa ! = H,
hence for every h € H we have aha™' € aHa™' = H. So the map 6, sends H to itself. The
map is a homomorphism because for all hi, hys € H we have

0a(h1)04(ho) = (ahia ) (ahea ™) = a(hihe)a™ = 0,(hihy).

Finally, the map is invertible because 6,1 = 6,-1. We conclude that 6, € Aut(H).
By part (a) we have a function 6 : Ng(H) — Aut(H) given by a +— 6,. For part (b) we will
show that 6 is a homomorphism. Indeed, consider a,b € Ng(H). Then for all h € H we have

Ba 0 Oy(h) = 0, (bhb™Y) = a(bhb™1)a™t = (ab)h(ab) ™t = O,4(h),



which implies that 6, o 8, = 0, as functions. Indeed, note that 6, : H — H is the identity
map if and only if aha™! = h for all h € H, i.e., if and only if a € Cq(H).
For part (d) we apply the Fundamental Homomorphism Theorem to 6 : Ng(H) — Aut(H)

to conclude that Ne(H) Ne(H)
G G .
= ~ < Aut(H).
Coll) ~ ke g = mf=Aut(H)

O

[Some Words (to ignore if you want): If T' < G is a maximal abelian subgroup of a compact Lie
group G, then Ng(T)/Cq(T) is called the Weyl group of G. It is important.]

3. Given two groups H, K and a group homomorphism 6 : H — Aut(K), we define the
semidirect product of H and K with respect to 6 as follows: The underlying set is the Cartesian
product H x K and the group operation is

(h1,k1) @ (ho, ko) := (hiha, 6; ) (k1 )k2).

(a) Show that this is indeed a group. We call it H xg K.
(b) Identify H and K with subgroups of H xy K via that maps h — (h,1x) for h € H
and k +— (1, k) for k € K. Show that

HNK=1 K<HwxyK, and HK —=HxyK.
(c) Furthermore, show that for all h € H and k € K we have 6 (k) = hkh™!.

Proof. For part (a), we must show that the operation is associative, with an identity element
and inverses. First note that (1,1) is an identity element because

(1,1) @ (h,k) = (1h, 07 (1)k) = (1h,1k) = (h, k).
Next observe that (h,k)~! = (h™1,0,(k1)) because
(kK)o (B0, 0n(k71)) = (Bh™, 0,2 (K)OR(K™))
= (1,04 (k)0 (k™))
= (1,0 (kk™))
= (1,04(1))
=(1,1).

Finally, observe that the operation is associative. Given hy, hs, hs € H and ki, ko, ks € K we
have

[(h1, k1) @ (ho, k2)] @ (h3, hs) = (hiha, 6;  (k1)k2) e (hs3, ks)
= ((hho)hs, 0, (0, (k1)ka)ks)
= ((h1ha)hs, 0; ! 0 0, } (k1)6; ! (k2)ks)
and
(h1, k1) ® [(ho, ko) ® (h3, k3)] = (h1, k1) @ (hohs, 0;, ! (k2)ks)
= (h1(h2h3), 0, . (k1)0; ! (k2)k3).

Since (hihg)hs = hi(hghs) and 0,;31 o 0}:21 = (Opy 0 Opy)~t = 9}:21}13, the two expressions are
equal.

For part (b) we will identify H and K with a subgroups of H xy K via the maps h <> (h, 1)
and k <> (1, k). Under these identifications we will show that the external semidirect product



agrees with the corresponding internal semidirect product, i.e. H xg9 K = H x K. There are
three steps. First note that H xg9 K = HK because for all h € H and k € K we have

(h,k) = (h,1) e (1,k).

Next, note that H N K = 1 because the only element simultaneously of the form (h,1) and
(1, k) is the identity element (1,1). Finally, we will show that K is normal in H xy K. Indeed,
for all (1,a) € K and (h,k) € H xg K we have

(h,k)e(1,a) e (h, k)™t = (h,k)e(1,a)e (A1, 0,(k71))
= (h1,0, " (k)a) o (b1, 0, (k1))
= (h,ka) o (K1, 0, (k1))
= (hh™", 0, (ka)On (k1))

= (1,0 (ka)Ou(k™"))

= (1,0, (kak™)) € K.

For part (c), we will verify that conjugation action of H on K agrees with the homomorphism
0 : H — Aut(K) that we used to externally define the semidirect product. Indeed, for all
h € H and k € K we have

“hkh™'" = (h,1) @ (1,k) ® (h, 1)}
= (h,1) e (1,k) e (h1,1)
= (h1,07 (D)k) o (A1, 1)
= (h,k) e (h™,1)
= (hh™,0,1 (k)1)
= (1,0n(k)) = “On(k)".

O

[Here we took two groups H, K that were not necessarily related and we created a group G such
that H and K embed in G with the property that G = H x K. In order to do this, we needed
a homomorphism 6 : H — Aut(K). Without the homomorphism 6 we could never get started.
Semidirect products are the most basic way to create group extensions.]

4. Let G be a group. If G acts on a set X via a: G — Aut(X), we say that the pair (X, «a)
is a G-set. Given two G-sets (X, ) and (Y, ), we say that a function ¢ : X — Y is a G-set
homomorphism if for all g € G the following diagram commutes:

X

Y
ag /Bg

X

Y

That is, for all € X and g € G we have ¢(84(x)) = ag(¢(x)). We say that two G-sets are
isomorphic if there exists a bijective G-set homomorphism between them.

(a) If ¢ : X = Y is a G-set homomorphism, show that for all z € X we have
Stab(z) < Stab(p(z)).



(b) If ¢ : X — Y is a G-set isomorphism, show that for all z € X we have
Stab(z) = Stab(¢(z)).

(¢) Given a subgroup H < G we put a G-set structure on G/H by left-multiplication.
Show that this G-set is transitive. Moreover, show that any transitive G-set is
isomorphic to G/H for some H < G.

Proof. For part (a), consider g € Stab(x). Then we have

p(x) = plag(x)) = By(p(2)),

hence g € Stab(¢(x)). For part (b), consider the inverse G-set homomorphism ¢! : Y — X.
Applying part (a) to p(z) € Y gives Stab(p(x)) < Stab(o !(p(z))) = Stab(z). Hence
Stab(z) = Stab(p(z)).

For part (c), consider H < G and for each g € G define the map oy : G/H — G/H by
C +— gC. Tt is easy to check that o : G — Aut(G/H) is a homomorphism. This action is
transitive because for all g1 H and goH in G/H we have a929;1(ng) = goH. Now let X be

any transitive G-set and let H = Stab(z) for some x € X. Recall that we have a bijection
v: X —-G/H

defined by ¢(g(z)) := gH. (We just replace the symbol = by the symbol H.) Finally, observe
that ¢ is in fact a G-set isomorphism. Indeed, for all g; € G and g2(z) € X we have

91(¢(g2(7))) = g1(92H) = (9192)H = »((g192)(z)) = »(g1(g2()))-
0

5. Given a G-set X, let Autg(X) denote the group of G-set automorphisms of X. In this
problem you will show that for all transitive G-sets X we have Autq(X) ~ Ng(H)/H, where
H is the stabilizer of a point and Ng(H) is the normalizer of H in G. By Problem 4(c) we
can replace X with G/H.

(a) Given n € Ng(H), show that right multiplication by n~! defines a G-set automor-
phism G/H — G/H. Call this automorphism 6,,.

(b) Show that 6 : Ng(H) — Autg(G/H) is a homomorphism with kernel H.

(c) Show that the homomorphism 6 from part (b) is surjective. [Hint: Let ¢ : G/H — G/H
be any G-set automorphism and suppose ¢(H) = n~tH. Use Problem 4(b) to conclude
that n € Ng(H). Finally, show that for all g € G we have p(gH) = gHn 1]

(d) If G acts freely and transitively on X, conclude that Autg(X) =~ G.

Proof. For part (a), let n € Ng(H). First note that the rule 6,(C) := Cn~! actually defines
a function G/H — G/H. Indeed, given gH € G/H we have gHn~! = gn='H € G/H. Note
that 6, is a bijection because its has an inverse; namely, 6, ! = ,,-1. Finally, to see that 6, is
a G-set map, observe that for all C' € G/H and for all g € G we have

9(0a(C)) = g(Cn™") = (9C)n™" = 0 (90).
For part (b), observe that for all C € G/H and for all m,n € Ng(H) we have
0 (C) = C(mn) ™ = C(n"'m™) = (Cn~ Hm ™! = 6,, 0 6,(C),

hence 6 is a homomorphism. Note that we have 6,, = id if and only if gH = gHn™! for all
g € G, which happens if and only if n € H. Hence ker§ = H.



For part (c), let ¢ : G/H — G/H be any G-set isomorphism and suppose that p(H) =
n~1H for some n € G. By Problem 4(b) we know that
H = Stab(H) = Stab(o(H)) = Stab(n ' H) = n~'Stab(H)n = n"'Hn,
hence n € Ng(H). Finally, for all g € G we have by assumption that ¢(gH) = g(¢(H)), hence

p(gH) = g(p(H)) = g(n™"H) = gHn™".
We conclude that the homomorphism 6 : Ng(H) — Autq(G/H) is surjective, and the Funda-
mental Homomorphism Theorem says that
Ng(H) _ Ng(H)
ker 6 H

For part (d), suppose that G acts freely and transitively on X. In this case the stabilizer is
trivial (i.e. H = 1), so we have

Autq(G/H) =im6 ~

Ng(1)
1

Autg(X) =~ = % ~G.

O
[Thinking Problem: | originally made a mistake by thinking that Aut(X) should be isomorphic to

Aut(G)xG. Can anyone figure out what | meant to say? That is, if G acts freely and transitively on
a set X, is there some appropriate notion of “automorphism” such that “Aut” (X) ~ Aut(G) x G7]



