
Math 661 Fall 2013
Final Exam Drew Armstrong

1. Let G be a group and consider the group homomorphism ϕ : G → Aut(G) which sends
g ∈ G to the map x 7→ gxg−1 in Aut(G). The orbits Orb(x) := {gxg−1 : g ∈ G} are called
conjgacy classes and the stabilizers C(x) := {g ∈ G : gxg−1 = x} are called centralizers.

(a) For all x ∈ G prove that the map gxg−1 7→ gC(x) is well-defined and is a bijection of
sets Orb(x)→ G/C(x).

Proof. Fix x ∈ G. Then for all g, h ∈ G we have

gxg−1 = hxh−1 ⇐⇒ h−1gxg−1h = x

⇐⇒ (h−1g)x(h−1g)−1 = x

⇐⇒ h−1g ∈ C(x)

⇐⇒ gC(x) = hC(x).

The right arrows prove that the map is well-defined and the left arrows prove that the
map is injective. The map is obviously surjective. �

(b) Define the center by Z(G) := {g ∈ G : gx = xg for all x ∈ G}. If G is finite, prove
that there exist group elements xi ∈ G such that

|G| = |Z(G)|+
∑
i

|G|/|C(xi)|.

[Hint: Note that C(x) = G if and only if x ∈ Z(G).]

Proof. Let G be a finite group. By part (a) and Lagrange’s Theorem we know that
|Orb(x)| = |G|/|C(x)| for all x ∈ G. If we let x1, x2, x3, . . . be representatives of the
conjugacy classes then we can write G as a disjoint union:

G = tiOrb(xi)

|G| =
∑
i

|Orb(xi)|

|G| =
∑
i

|G|/|C(xi)|.

Finally, note that |G|/|C(x)| = 1 if and only if x ∈ Z(G). Using this we can take the
singleton conjugacy classes out of the sum to get

|G| = (1 + 1 + · · ·+ 1) +
∑
i

|G|/|C(xi)|

|G| = |Z(G)|+
∑
i

|G|/|C(xi)|,

where the sum on the right is now over the nontrivial conjugacy classes. �

(c) Now let p be prime and let |G| = p2. Use part (b) to prove that p divides |Z(G)|.

Proof. Let p be prime and assume that |G| = p2. Consider the Class Equation from
(b). If |G|/|C(xi)| 6= 1 then Lagrange says that |G|/|C(xi)| = p or p2. In either case, p
divides |G|/|C(xi)| and hence p divides the sum on the right side. Since p also divides
|G| we conclude that p divides |Z(G)|. �



(d) Use part (c) to prove that G is abelian. [Hint: Prove that G/Z(G) is cyclic.]

Proof. Since p divides |Z(G)| we have |G|/|Z(G)| = 1 or p. In either case we see that
G/Z(G) is cyclic, say G/Z(G) = 〈xZ(G)〉. We claim that this implies that G is abelian.
Indeed, consider any g, h ∈ G. Since g and h are contained in some cosets of Z(G) and
every coset looks like (xZ(G))k = xkZ(G) for some k ∈ Z we conclude that g = xkz
and h = x`z′ for some k, ` ∈ Z and z, z′ ∈ Z(G). Finally we have

gh = xkzx`z′ = xkx`zz′ = xk+`z′z = x`+kz′z = x`xkzz′ = x`z′xkz = hg.

We conclude that G is abelian. �

(e) Finally, if G is not cyclic, use part (d) to prove that G ≈ Z/pZ×Z/pZ. [Hint: Choose
1 6= x ∈ G. Since 〈x〉 6= G there exists y ∈ G − 〈x〉. Prove that G = 〈x〉 × 〈y〉 by
showing 〈x〉 ∩ 〈y〉 = 1, and 〈x〉〈y〉 = G.]

Proof. Again suppose that |G| = p2 and assume that G is not cyclic. Then there exists
1 6= x ∈ G such that 〈x〉 6= G. Choosing y ∈ G − 〈x〉 gives us two cyclic subgroups
〈x〉 and 〈y〉. Note that |〈x〉| = |〈y〉| = p by Lagrange because neither is trivial or
equal to the full group. Hence 〈x〉 ≈ 〈y〉 ≈ Z/pZ. We claim that G = 〈x〉 × 〈y〉.
Indeed, by Lagrange the intersection has size 1 or p. If |〈x〉 ∩ 〈y〉| = p then we have
〈x〉 = 〈x〉 ∩ 〈y〉 = 〈y〉, contradiction. Finally, note that G = 〈x〉〈y〉. This follows,
for example, because 〈x〉〈y〉 properly contains 〈x〉. Since |〈x〉〈y〉| divides p2 and is
strictly greater than p we have |〈x〉〈y〉| = p2. �

2. Consider the general linear group G = GL(n,K) over a field K. Let P be the subset

P :=

{(
A C
0 B

)}
⊆ G

where A is r × r and B is (n− r)× (n− r).

(a) Prove that P is a subgroup of G. [Hint: Find the inverse of an element of P .]

Proof. Consider the general element of P . Since it is invertible the left r columns
must be independent, hence A ∈ GL(r,K). Similarly, the bottom n− r rows must be
independent, hence B ∈ GL(n − r,K). [Remark: You didn’t need to check this.] To
show that P is a subgroup of G we first note that it is closed under multiplication:(

A C
0 B

)(
A′ C ′

0 B′

)
=

(
AA′ AC ′ + CB′

0 BB′

)
Then solving the previous equation for AA′ = I, BB′ = I and AC ′ + CB′ = 0 shows
us that A′ = A−1, B′ = B−1, and AC ′ = −CB′ ⇒ C ′ = A−1CB−1. Hence P is closed
under inversion: (

A C
0 B

)−1
=

(
A−1 −A−1CB−1

0 B−1

)
.

�

(b) Let L be the subset

L :=

{(
A 0
0 B

)}
⊆ P.

Prove that L is a subgroup of P isomorphic to GL(r,K)×GL(n− r,K).



Proof. We can identify GL(r,K) and GL(n− k,K) with the subgroups

Gr :=

{(
A 0
0 I

)}
and Gn−r :=

{(
I 0
0 B

)}
.

We clearly have Gr ∩Gn−r = 1. Next note that L = GrGn−r because(
A 0
0 B

)
=

(
A 0
0 I

)(
I 0
0 B

)
and finally note that GrGn−r = GrGn−r because(

A 0
0 I

)(
I 0
0 B

)
=

(
A 0
0 B

)
=

(
I 0
0 B

)(
A 0
0 I

)
.

We conclude that L = Gr ×Gn−r. �

(c) Prove that the map ϕ : P → L defined by(
A C
0 B

)
7→
(
A 0
0 B

)
is a group homomorphism. Let U C P denote the kernel of ϕ.

Proof. The map is a homomorphism because

ϕ

((
A C
0 B

)(
A′ C ′

0 B′

))
= ϕ

((
AA′ AC ′ + CB′

0 BB′

))
=

(
AA′ 0

0 BB′

)
=

(
A 0
0 B

)(
A′ 0
0 B′

)
= ϕ

((
A C
0 B

))
ϕ

((
A′ C ′

0 B′

))
�

(d) Prove that U is isomorphic to the additive group Matr,n−r(K) of r× (n−r) matrices.

Proof. Note that the kernel of ϕ : P → L has the form

kerϕ =: U =

{(
I C
0 I

)}
.

The map sending such a matrix to C is clearly a bijection between U and the set
Matr,n−r(K) of k × (n − r) matrices. In fact this map is an isomorphism between U
and Matr,n−k(K) as an additive group because(

I C
0 I

)(
I C ′

0 I

)
=

(
I C + C ′

0 I

)
.

�

(e) Prove that P = Ln U . [Hint: Show that L ∩ U = 1 and LU = P .]

Proof. Note that we have (
A 0
0 B

)
=

(
I C
0 I

)



if and only if A = I, B = I, and C = 0. Hence L ∩ U = 1. Next note that(
A 0
0 B

)(
I A−1C
0 I

)
=

(
A C
0 B

)
,

hence LU = P . Since U is normal (it is a kernel) we conclude that P = LnU . [Remark:
Note that P is not a direct product because(

I C
0 I

)(
A 0
0 B

)(
I −C
0 I

)
=

(
A −AC + CB
0 B

)
6∈ L.]

�

(f) Prove that the action of L on U by conjugation is isomorphic to the action ofGL(r,K)×
GL(n− r,K) on Matr,n−r(K) by (A,B) · C := ACB−1.

Proof. Since P = LnU we know that L acts on U by conjugation. Explicitly, we have(
A 0
0 B

)(
I C
0 I

)(
A−1 0

0 B−1

)
=

(
I ACB−1

0 I

)
If we identify L with GL(r,K) × GL(n − r,K) and we identify U with Matr,n−r(K)
then this is just our favorite action (A,B) · C = ACB−1. �

3. Let G be a group, let K be a field, and let KG be the group algebra. That is, KG
is the vector space of formal K-linear combinations of group elements with an associative
multiplication defined by the group operation.

(a) State the definition of a KG-module. State the definition of a KG-submodule.

Proof. The group algebra KG is in particular a ring, so we define a KG-module as an
additive abelian group V together with a map KG× V → V satisfying:
• 1u = u,
• r(u+ v) = ru+ rv,
• (r + s)u = ru+ su,
• r(su) = (rs)u,

for all r, s ∈ KG and u, v ∈ V . Note that 1 ∈ KG is the element 1K1G. We say that
U ⊆ V is a KG-submodule if:
• U is an additive subgroup of V , and
• ru ∈ U for all r ∈ KG and u ∈ U .

�

(b) Let U and V be KG-modules and let ϕ : U → V be a function of sets. What does it
mean to say that ϕ is a morphism of KG-modules?

Proof. Let U and V be KG-modules and let ϕ : U → V be a function. We say that ϕ
is a morphism of KG-modules if:
• ϕ : U → V is a homomorphism of abelian groups, and
• for all r ∈ KG and u ∈ U we have ϕ(ru) = rϕ(u). That is, the following diagram

commutes.



U V

U V

ϕ

ϕ

r r

�

(c) We say that a KG-module is irreducible if it has no nontrivial KG-submodules. If
U and V are irreducible KG-modules, prove that any nonzero morphism ϕ : U → V
must be an isomorphism.

Proof. Let U and V be irreducible KG-modules and let ϕ : U → V be a nonzero
morphism. Then kerϕ ⊆ U is a KG-submodule of U . (Proof: For all r ∈ KG and
u ∈ kerϕ we have ϕ(ru) = rϕ(u) = r0 = 0, hence ru ∈ kerϕ.) Since U is irreducible
and we assumed that kerϕ 6= U this implies kerϕ = 0, hence ϕ is injective. Similarly,
the image imϕ ⊆ V is a KG-submodule of V . (Proof: For all r ∈ KG and v ∈ imϕ
there exists u ∈ U such that rv = rϕ(u) = ϕ(ru). Since ru ∈ U we conclude that
rv ∈ imϕ.) Then since V is irreducible and we assumed that imϕ 6= 0 we conclude
that imϕ = V , hence ϕ is surjective. �

(d) If K = C (or any algebraically closed field) prove that the isomorphism from part (c)
is a scalar multiple of the identity. [Hint: If we choose bases for U and V then ϕ is an
invertible matrix. Since C is algebraically closed, ϕ has an eigenvalue λ ∈ C×.]

Proof. Let U and V be isomorphic irreducible CG-modules and let ϕ : U → V be an
isomorphism. If we choose bases for U and V then ϕ becomes a square matrix and
then since C is algebraphically closed ϕ has an eigenvalue λ ∈ C× (which must be
nonzero because ϕ is invertible). Now consider the map (ϕ − λI) : U → V , where I
is the identity matrix. This is still a morphism of CG-modules because for all r ∈ CG
and u ∈ U we have

(ϕ− λI)(ru) = ϕ(ru)− λI(ru) = rϕ(u)− rλI(u) = r(ϕ− λI)(u).

Since ϕ − λI is not injective (λ is an eigenvalue) and hence is not bijective, part (c)
implies that ϕ− λI = 0, or ϕ = λI. �

(e) If G is abelian, use part (d) to prove that any irreducible CG-module is 1-dimensional.
[Hint: If V is any CG-module, show that for all g ∈ G the map g : V → V is a nonzero
morphism of CG-modules.]

Proof. Let G be abelian and let V be an irreducible CG-module. For all g ∈ G consider
the invertible C-linear map g : V → V . For all r =

∑
h∈G αhh ∈ KG and for all v ∈ V



we have

g(rv) = g

(
(
∑
h

αhh)v

)

= g

(∑
h

αh(hv)

)
=
∑
h

αhg(hv)

=
∑
h

αh(gh)v

=
∑
h

αh(hg)v

=
∑
h

αhh(gv)

= (
∑
h

αhh)(gv)

= r(gv).

Thus g : V → V is an isomorphism of CG-modules. Since g is nonzero (it is invertible)
part (d) implies that g = λI for some λ ∈ C×. We have shown that every element of G
acts like a scalar on V . It follows that every vector subspace of V is a CG-submodule.
Since V is irreducible this implies that V has no nontrivial subspaces. Hence V is
1-dimensional. [I guess you could also allow that V = 0. Is zero irreducible? Probably
not, for the same reason that 1 is not prime.] �

(f) Tell me all the irreducible representations of the Klein Vierergruppe Z/2Z× Z/2Z.

Proof. Let G = {1, a, b, ab} be the Klein Vierergruppe, where a2 = b2 = 1 and ab = ba,
and let ϕ : G → GL(V ) be an irreducible CG-module. Since G is abelian we know
from part (e) that V is 1-dimensional and hence we have ϕ : G → C×. Note that
the representation is determined by the numbers ϕ(a), ϕ(b) ∈ C× because ϕ(ab) =
ϕ(a)ϕ(b). Note also that we have

ϕ(a)2 = ϕ(a2) = ϕ(1) = 1

and hence ϕ(a) = ±1. Similarly we have ϕ(b) = ±1. This gives us a total of four
possibilities. These are listed in the following (“character”) table:

1 a b ab
ϕ1 1 1 1 1
ϕ2 1 −1 1 −1
ϕ3 1 1 −1 −1
ϕ4 1 −1 −1 1

�


