Math 661 Fall 2013
Final Exam Drew Armstrong

1. Let G be a group and consider the group homomorphism ¢ : G — Aut(G) which sends
g € G to the map x + grg~! in Aut(G). The orbits Orb(x) := {gzg~' : g € G} are called
conjgacy classes and the stabilizers C(z) := {g € G : grg~! = z} are called centralizers.

(a)

For all x € G prove that the map grg~! — gC(x) is well-defined and is a bijection of
sets Orb(z) — G/C(x).

Proof. Fix x € G. Then for all g, h € G we have
grg ' =haeh™ <= hlgzgth =2
= (hlg)a(hlg) =
— h7lg e COx)
< gC(x) = hC(x).

The right arrows prove that the map is well-defined and the left arrows prove that the
map is injective. The map is obviously surjective. O

Define the center by Z(G) := {g € G : gx = zg for all x € G}. If G is finite, prove
that there exist group elements x; € G such that

G =12(G)] +Z\GI/|C(%)I-

[Hint: Note that C(z) = G if and only if z € Z(G).]

Proof. Let G be a finite group. By part (a) and Lagrange’s Theorem we know that
|Orb(x)| = |G|/|C(x)| for all x € G. If we let x1,x9,x3,... be representatives of the
conjugacy classes then we can write G as a disjoint union:

G = LliOrb(x,-)
G| =) |Orb(y)]

|G| ZZ\G!/IC(%)I-

Finally, note that |G|/|C(z)| = 1 if and only if z € Z(G). Using this we can take the
singleton conjugacy classes out of the sum to get

Gl=(1+1+ - +1) +Z GI/IC ()]

G| =12(G)] + Z |GI/|C ()],

where the sum on the right is now over the nontrivial conjugacy classes. O
Now let p be prime and let |G| = p?. Use part (b) to prove that p divides |Z(G)|.

Proof. Let p be prime and assume that |G| = p?. Consider the Class Equation from
(b). If |G|/|C(z;)| # 1 then Lagrange says that |G|/|C(z;)| = p or p?. In either case, p
divides |G|/|C(z;)| and hence p divides the sum on the right side. Since p also divides
|G| we conclude that p divides |Z(G)|. O



(d)

Use part (c) to prove that G is abelian. [Hint: Prove that G/Z(G) is cyclic.]

Proof. Since p divides |Z(G)| we have |G|/|Z(G)| =1 or p. In either case we see that
G/Z(G) is cyclic, say G/Z(G) = (xZ(G)). We claim that this implies that G is abelian.
Indeed, consider any g,h € G. Since g and h are contained in some cosets of Z(G) and
every coset looks like (2Z(GQ))F = .CEkZ(G) for some k € Z we conclude that g = z*2
and h = 'z’ for some k,¢ € Z and z, 2’ € Z(G). Finally we have

gh = 2¥ 222 = aFalzz = 2P 2 = 2R 2 = 2fab 2 = 2 2b 2 = hy.

We conclude that G is abelian. O

Finally, if G is not cyclic, use part (d) to prove that G ~ Z/pZ x Z/pZ. [Hint: Choose
1 # x € G. Since (x) # G there exists y € G — (x). Prove that G = (z) x (y) by
showing (z) N (y) = 1, and (z)(y) = G]

Proof. Again suppose that |G| = p? and assume that G is not cyclic. Then there exists
1 # x € G such that (z) # G. Choosing y € G — (z) gives us two cyclic subgroups
(x) and (y). Note that [(x)| = |(y)| = p by Lagrange because neither is trivial or
equal to the full group. Hence (z) =~ (y) ~ Z/pZ. We claim that G = (x) x (y).
Indeed, by Lagrange the intersection has size 1 or p. If |(z) N (y)| = p then we have
() = (z) N (y) = (y), contradiction. Finally, note that G = (x)(y). This follows,
for example, because (z)(y) properly contains (x). Since |(z)(y)| divides p? and is
strictly greater than p we have |(z)(y)| = p?. O

2. Consider the general linear group G = GL(n, K) over a field K. Let P be the subset

{35

where Ais r x r and B is (n —r) X (n —r).

(a)

Prove that P is a subgroup of G. [Hint: Find the inverse of an element of P.]

Proof. Consider the general element of P. Since it is invertible the left r columns
must be independent, hence A € GL(r, K). Similarly, the bottom n — r rows must be
independent, hence B € GL(n — r, K). [Remark: You didn't need to check this.] To
show that P is a subgroup of G we first note that it is closed under multiplication:

AlC A|C"\ ([ AA | AC'+CB

0|B 0[B") \ 0| BB
Then solving the previous equation for AA’ = I, BB’ = I and AC' + CB’ = 0 shows
us that A’ = A~!, B = B~! and AC' = —CB' = ' = A~'CB~!. Hence P is closed

under inversion:
AlC\T' (AT —AloB!
0| B o 0 ‘ BT ’
Let L be the subset
AlO
(318}

Prove that L is a subgroup of P isomorphic to GL(r, K) x GL(n —r, K).




Proof. We can identify GL(r, K) and GL(n — k, K) with the subgroups

{4 on {9}

We clearly have G, N G,,_, = 1. Next note that L = G,.G,,_, because

(o) = (o77) (o7)

and finally note that G,.G,_, = G,.G,,—, because

(o17) () = (1) = (o) (1)

We conclude that L = G, X Gy O

Prove that the map ¢ : P — L defined by

AlC . Al O
0|B 0B
is a group homomorphism. Let U <1 P denote the kernel of .

Proof. The map is a homomorphism because

(Cor) (o)) =+ (075%™ )

- (5t
~(ora) (o)
= ((of5)) (o)

(]
Prove that U is isomorphic to the additive group Mat, ,,—,(K) of r x (n —r) matrices.

Proof. Note that the kernel of ¢ : P — L has the form

ko =0 ={(15) }-

The map sending such a matrix to C is clearly a bijection between U and the set
Mat,. ,—r(K) of k x (n — r) matrices. In fact this map is an isomorphism between U
and Mat, ,_1(K) as an additive group because

(o) (o) = (o777

Prove that P = L x U. [Hint: Show that LNU =1 and LU = P.]

(or5) = (517

Proof. Note that we have



ifand only if A=1, B=1, and C =0. Hence L N U = 1. Next note that

(o) (o) - (51w)

hence LU = P. Since U is normal (it is a kernel) we conclude that P = LxU. [Remark:
Note that P is not a direct product because

(517) (1) (31 = (G5 ) v

O

Prove that the action of L on U by conjugation is isomorphic to the action of GL(r, K)x
GL(n —r,K) on Mat,,(K) by (A, B)-C := ACB™!.

Proof. Since P = L x U we know that L acts on U by conjugation. Explicitly, we have
Alo I|cC A7t 0o\ _ (I|ACB™!
0B 0[1 0 |B 1) \o0o] 1I

If we identify L with GL(r, K) x GL(n — r, K) and we identify U with Mat, ,,—(K)
then this is just our favorite action (A, B) - C = ACB™!. O

3. Let G be a group, let K be a field, and let KG be the group algebra. That is, KG
is the vector space of formal K-linear combinations of group elements with an associative
multiplication defined by the group operation.

(a)

State the definition of a KG-module. State the definition of a K G-submodule.

Proof. The group algebra K G is in particular a ring, so we define a KG-module as an
additive abelian group V together with a map KG x V — V satisfying:

o lu = u,

o r(u+v)=ru+rv,

o (r+s)u=ru+ su,

o r(su) = (rs)u,
for all r,s € KG and u,v € V. Note that 1 € KG is the element 1x15. We say that
U CV is a KG-submodule if:

e U is an additive subgroup of V, and

eryclUforallre KGand ueU.

O

Let U and V be KG-modules and let ¢ : U — V be a function of sets. What does it
mean to say that ¢ is a morphism of KG-modules?

Proof. Let U and V be KG-modules and let ¢ : U — V be a function. We say that ¢
is a morphism of K G-modules if:
e ¢ :U — V is a homomorphism of abelian groups, and
e for all r € KG and u € U we have ¢(ru) = r¢(u). That is, the following diagram
commutes.



(c)

O

We say that a K G-module is irreducible if it has no nontrivial K G-submodules. If
U and V are irreducible K G-modules, prove that any nonzero morphism ¢ : U — V
must be an isomorphism.

Proof. Let U and V be irreducible KG-modules and let ¢ : U — V be a nonzero
morphism. Then kerp C U is a KG-submodule of U. (Proof: For all »r € KG and
u € ker p we have p(ru) = rp(u) = r0 = 0, hence ru € ker .) Since U is irreducible
and we assumed that ker ¢ # U this implies ker ¢ = 0, hence ¢ is injective. Similarly,
the image im¢ C V is a KG-submodule of V. (Proof: For all r € KG and v € im ¢
there exists u € U such that rv = rp(u) = ¢(ru). Since ru € U we conclude that
rv € imp.) Then since V is irreducible and we assumed that im ¢ # 0 we conclude
that im ¢ = V', hence ¢ is surjective. U

If K = C (or any algebraically closed field) prove that the isomorphism from part (c)
is a scalar multiple of the identity. [Hint: If we choose bases for U and V' then ¢ is an
invertible matrix. Since C is algebraically closed, ¢ has an eigenvalue A € C* ]

Proof. Let U and V' be isomorphic irreducible CG-modules and let ¢ : U — V be an
isomorphism. If we choose bases for U and V then ¢ becomes a square matrix and
then since C is algebraphically closed ¢ has an eigenvalue A € C* (which must be
nonzero because ¢ is invertible). Now consider the map (¢ — AI) : U — V, where I
is the identity matrix. This is still a morphism of CG-modules because for all » € CG
and u € U we have

(o — AD)(ru) = p(ru) — M (ru) = re(u) — rAI(u) = r(e — AI)(u).

Since ¢ — AI is not injective (A is an eigenvalue) and hence is not bijective, part (c)
implies that ¢ — AI =0, or p = Al (]

If G is abelian, use part (d) to prove that any irreducible CG-module is 1-dimensional.
[Hint: If V' is any CG-module, show that for all g € G the map g : V' — V is a nonzero
morphism of CG-modules.]

Proof. Let G be abelian and let V' be an irreducible CG-module. For all g € G consider
the invertible C-linear map g : V' — V. Forallr =, o ayh € KG and for allv € V



we have

g(rv) =g ((Z ahh)v>
h

=9 (Z ah(hv)>
= Zoilhg(hv)

= Zhjah(gh)v

= Zh:ah(hg)v

= iahh(gv)

= (hzh: anh)(gv)

= r(gv).
Thus g : V' — V is an isomorphism of CG-modules. Since g is nonzero (it is invertible)
part (d) implies that g = AI for some A € C*. We have shown that every element of G
acts like a scalar on V. It follows that every vector subspace of V' is a CG-submodule.
Since V is irreducible this implies that V' has no nontrivial subspaces. Hence V is
1-dimensional. [l guess you could also allow that V' = 0. Is zero irreducible? Probably
not, for the same reason that 1 is not prime.] O

Tell me all the irreducible representations of the Klein Vierergruppe Z/27 x 7Z./27.

Proof. Let G = {1,a,b,ab} be the Klein Vierergruppe, where a?> = b?> = 1 and ab = ba,
and let ¢ : G — GL(V) be an irreducible CG-module. Since G is abelian we know
from part (e) that V is 1-dimensional and hence we have ¢ : G — C*. Note that
the representation is determined by the numbers ¢(a), p(b) € C* because p(ab) =
¢(a)p(b). Note also that we have

pla)? = p(a®) = (1) =1
and hence ¢(a) = £1. Similarly we have ¢(b) = £1. This gives us a total of four
possibilities. These are listed in the following (“character”) table:

‘ 1 a b ab
w11 1 1 1
pa |1 —1 1 -1
w3 |1 1 -1 -1
pg |1 -1 —1 1



