4.8, 4.9, 4.11, 4.12; 6.1

Tonal Consonance and Critical Bandwidth

R. Promr axp W. J. M. Leverr

[nstitute for Perception R1'O-T'NO, Soesterberg, Netherlands

Iirstly, theories are reviewed on the explanation of tonal consonance as the singular nature of tone intervals
with frequency ratios corresponding with small integer numbers. An evaluation of these explanations in the
light of some experimental studies supports the hypothesis, as promoted by von Helmholtz, that the dif-
ference between consonant and dissonant intervals is related to beats of adjacent partials. This relation
was studied more fully by experiments in which subjects had to judge simple-tone intervals as a function of
test frequency and interval width. The results may be considered as a modification of von Helmholtz's
conception and indicate that, as a function of frequency, the transition range between consonant and dis-
sonant intervals is related to critical bandwidth. Simple-tone intervals are evaluated as consonant for
frequency difierences exceeding this bandwith, whereas the most dissonant intervals correspond with fre-
quency differences of about a quarter of this bandwidth. On the base ol these results, some properties of
consonant intervals consisting of complex tones are explained. To answer the question whether critical
bandwidth also plays a role in music, the chords of two compositions (parts of a trio sonata of J. S. Bach
and of a string quartet of \. Dvofik) were analyzed by computing interval distributions as a function of
ircquency and number of harmonics taken into account. The results strongly suggest that, indeed, critical
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bandwidth plays an important réle in music: for a number of harmonics representative for musical instru-

’

ments, the “density’
bandwidth does.

INTRODUCTION

HM'S acoustical law, as formulated by von
Helmholtz,! states that the human ear is able to
analyze a complex of tones into its sinusoidal compon-
ents. In a previous paper,” one of the authors reported
experiments on the number of distinguishable partials
of multitone signals and showed that partials can be
“heard out’ only if their frequency separation exceeds

critical bandwidth.

The fact that there are certain limitations to the
validity: of Ohm’s law was not overlooked by von
Helmbholtz. In his opinion, however, the exceptions did
manifest themselves mainly in the appearance of beats
in the case of small frequency differences between two
simultaneous tones.* On this basis, by taking into
account also beats between adjacent harmonics, von
Helmholtz was able to explain why the phenomenon of
musical consonance is related to simple frequency ratios
of the tones involved.* Though this conception became

PH. von Helmholtz, Die Lelire won der Tonempfindungen als
physiologische Grundlage fiir die Theorie der Musik (Verlag
I". Vieweg & Sohn, Braunschweig, 1863), Chap. 2.

2R. Plomp, “The Far as a I'requency Analyzer,”" J. Acoust.
Soc. Am. 36, 1628-1636 (1964).

s Ref. 1, Chap. 8.

* Ref. 1, Chap. 10.

of simultancous partials alters as a function of frequency in the same way as critical

well-known, it was criticized severely, in particular by
psychologists and musicologists.

In this paper, the relation between beats and conson-
ance is studied again.” To avoid misunderstandings, it
may be useful to emphasize in advance that our sole
concern is the question of why consonance is related to
simple frequency ratio. Though the concept of conson-
ance 1s rather vague and may be different for musicians
and laymen, this relationship is always involved. In our
opinion, consonance refers to the peculiar sensortal
experience associated to isolated tone pairs with simple
frequency ratios. We use the term tonal consonance
to indicate this characteristic experience. As we shall
see, experimental results concerning
support von Helmholtz’s conception, but they also
necessitate o number of qualifications in which the
concept of critical bandwidth will appear to play an
tnportant rdle.

0o

tonal consonance”

» A preliminary report of it was read at the I'ourth International
Congress on Acoustics, Copenhagen, 1962: R. Plomp and W. J. M.
Levelt, “Musical Consonance and Critical Bandwidth,” Paper
P351in Proceedings of the Fourth International Congress on Acoustics,
1902, Copenhagen (Organization Committee of the 4th ICA and
Harlang & Toksvig, Copenhagen, 1963).

548



TO-NAL CONSOVNANCI'Z AND CRITICAL BANDWIDTH

I. HISTORICAL REVIEW
A. Explanations of Consonance
Traditionally, Pythagoras is considered to be the
discoverer of the fuct thut tones produced by a string
vibrating in two parts with length ratios of 1:1, 1:2,
2:3, and 3:4, respectively, give much better harmonies

than all other ratios. These tone intervals were called’

consonances, and on their singular character the har-
mony of Western music hus been developed, especially
after, in the Middle Ages, other intervals with ratios
of 4:5, 3:3, 5:6, and 3:8 were accepted as imperfect
CONSOTILNCES.

The question why consonance s related to simple
integer ratios of string lengths has occupied many
scholars through the ages. Tn particular, between about
1860 und 1920 numcrous studies were devoted to it.
Essentially all explinations proposed” wre based on one
or more of the following duta.

1. Frequency Ratio

One of the first and most important discoveries in
acoustics during the rise of modern science in the 16th
and 17th centuries was the dependence of pitch on
frequency.” The latter implied that consonant intervals
are characterized by simple {requency rutios, which
sugeested an attractive hypothesis concerning the origin
of consonance. So Galilel staled: “Agreeable con-
soninces are pairs of tones which strike the ear with o
certain regularity; this regularity consists in the fact
that the pulses delivered by the two tones, in the sume
interval of time, shall be commensurable in number, so
as not to keep the ear drum in perpetual torment,
bending in two different directions in order to yield
to the ever-discordant impulses.””® Other scientists as
Leibniz and Euler refined this explanation, exchang-
ing the eardrum for the unconsciously counting soul
that would prefer intervals the more us the vibrations
of the constituting tones concur more frequently.
Substantially the same idea was promoted and worked
out by Lipps” and Polak,™ whereas the recent “common
long pattern theory” of Boomsliter and Crecl' ulso
must be considered us belonging to this group.

¢ In this survey, only explanations related to hearing theory
are included.

7 A thoroughgoing study of this discovery is given by C. Trues-
dell, The Rational Mechanics of Flexible or Elastic Bodies, 1638
1788, Leonhardi Tuleri Opera Omnia Ser. IN, 11, Pt. 2 (Verlag
O. Iiissli, Ziirich, 1960), Pt. 1.

8§ Galilea Galilei, Discorsi e dimostrasioni malematiche inlerno é
due nuove scienze allenenl! alla mecanica ed 4 movimenlti locali
(Flsevier, Leiden, 1638). The quotation is from the English
translation, Dialogues concerning Two New Scicnces, transl. by
H. Crew and A. de¢ Salvio (McGraw-Hill Book Co., Inc.,, New
York, 1963), p. 100.

9 Th. Lipps, Psychologische Studien (Verlag G. Weiss, Heidel-
berg, 1885), pp. 92-161.

WA, J. Poluk, Uber Zeiteinheil in Besug enf Kousonans, Hlar-
monie und Tonalitél (Verlag Breitkopl & Hirtel, Leipzig, 1900).
0 P, Boomsliter and W, Creel, “The Tong Pattern Hypothesis
in Hurmony and Iearing,” J. Music Theory 5, No. 2, 2-30 (1961).

2. Relationship of Harmenics

The discovery (17th century) that the tones of
musical instruments are composed of partials® gave rise
to an alternative explanation of consonance. At first,
the mere presence of hurmonics with {requency rutios
1:2, 2:3, ete., in cvery (complex) tone was considered
as a sullicient proof of the consonance of these ratios
(Rameau). In the 19th century, more-thoroughly
formulated implications of the existence of harmonics
were presented. Both von Helmholiz? and Wund(®
based the development of melody und harmony on the
coinciding harmonics for consonant intervals. The
opinion that consonance itself originates in these coin-
cidences was defended more recently by Ogden and
Husmann,®® though from different points of view.
Montani'® has tried to give this explanation a phy- -
sivlogical base.

3. Deals between ITurmonics

The existence of harmonics led also to a quite different
hypothesis, in which the phenomenon of consonance was
related to beats and roughness;, appearing for small
frequency dilferences of simultancous tones. Though
nearlv always von Helmholtz is mentioned as the
originator of this conception, there are much older
statements of o quite similir nature (Sorge'). von
Helmboltz? stuted that for smaull frequency differences
the beats between two simple tones can be heard in-
dividually, but for larger distances this becomes impossi-
ble, due to their rapid succession, and the sound obtuins
a rough and unpleasant character. He ascertained that
this roughness has a muximum for a frequency difference
of 3040 ¢ps, independent of frequency, but admitted
also that for o constant difference the roughness in-
creases with frequency. Tor larger frequency differences,
roughness decreases and the sound becomes consonant
and agrecable, independent of frequency ratio. For
complex tones, as produced by musical instruments,
also beats between harmenics of the lower tone and
harmonics of the higher one must be taken into account.
In this way, von Helmholtz explained! that the smaller
that the numbers are in which the frequency ratio can
be expressed, the more consonant the interval is. The
octave, with a frequency ratio of 1:2, is the most con-
sonant interval because all partials of the higher tonc
coincide with partials of the lower one and no beats are
introduced. The next most consonant interval is the

2 Ref. 1, Chaps. 14, 15.

B W. Wundt, Grindziige der physiologischen Psychologie (Verlag
W. Engelmann, Leipzig, 1880), 2nd cd., Vol. 1, pp. 402-408;
Vol. 2, pp. 35-4&.

HR. M. Ogden, “A Contribution to the Theory of Tonal Con-
sonance,”’ Psychol. Bull. 6, 297303 (1909).

15 H. Husmann, Ve Wesen der Kenrsonanz (Miller-Thicrgarten-
Verlag, Heidelberg, 1953).

18 A Montani, “Outline ol a Physiological Theory of Musicul
Consonance,”” Riv. Musicale Itul. 49, 168-176 (1947).

17.G. A. Sorge, 1'orgemacth der musicalischen Com position (Verlag
des Autoris, Lobenstein, 1745-1747), pp. 333, 334.
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fifth (2:3), for in this case half of the partials coincides,
whereas the other ones lie just half-way between partials
of the lower tone. He considered it an affirmation of his
theory that, in musical practice, thirds and sixths are
avoided in the low-frequency range where partials are
nearer to each other than at higher frequencies.

4. Difference Tones

Though von Helmholtz had not denied that also
beats between difference tones may contribute to dis-
sonance, this aspect was much more emphasized by
Prever,' and in particular by Krueger."*" On the basis
of detailed experiments on difference tones® Krueger
concluded that the significance of these tones was
strongly underestimated by von Helmholtz. As the
total number of difference tones increases with com-
plexity of frequency ratio, these tones could explain
the order of consonant intervals, not only for complex
but also for simple primary tones. More recently,
Sandig® compared the character of intervals with both
tones presented to the same ear and intervals with one
tone presented to the left and the other one to the right
ear, respectively, regarding the more neutral character
of intervals in the last case as an affirmation of Krueger’s
theory.

5. Fusion

A quite different point of view was developed by
Stumpf.? In his opinion, neither harmonics nor differ-
ence tones are essential to discriminate between
consonant and dissonant intervals, wherecas he re-
jected the frequency-ratio theory as mere specula-
tion. Stumpf called attention to the fact, investigated
by him before® and confirmed by many others after
him, that the degree of fusion (“Verschmelzung”) of
intervals depends on simple frequency ratio in the same
order as consonance does. By fusion, he meant the
tendency of two simultaneous tones to be perceived as a
unity. Stumpi understood the close connection to con-
sonance as a causal relation, fusion being the basis of
consonance. However, many years later, he admitted
that this conclusion was not justified and that the rela-
tion cannot be considered as a satisfactory explanation
of the consonance phenomenon.®

AV, Prever, Akustische Unlersuchungen (Verlag G. Tischer,
Jena, 1879), pp. 44-01.

W7 Krueger, “Differenztone und Konsonanz,”
Psychol. 1, 205-275 (1903); 2, 1-80 (1904).

2 7, Krueger, “Die Theorie der Konzonanz,” Psychol. Studicn
1, 305-387 (1906); 2, 205-255 (1907); 4, 201-282 (1909); 5,
204-411 (1910).

# A\ summary of the results of these experiments can be found
in R. Plomp, “Detectability Threshold for Combination Tones,”
J. Acoust. Soc. Am. 37, 1110-1123 (19065).

2 H. Sandig, “Beobachtungen an Zweiklingen in getrennt-
ohriger und beidohriger Darbietung. Ein Beitrag zur Theorie
der Konsonanz,”” Neue Psychol. Studien 14, 25-131 (1939).

% C. Stumpf, “Konsonanz und Dissonanz,” Beitr, Akust.
Musikwiss. 1, 1-108 (1898).

2 C. Stumpi, Tonpsyelologie (Verlag S. Hirzel, Leipzig, 1890),
Vol. 2, pp. 127-218.

% C. Stumpf, Die Sprachlaute (Verlag J. Springer, Berlin,
1926), p. 281.
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B. Evaluation of These Explanations

The existence of these divergent theories suggests
that consonance is a complex phenomenon and that
conclusive experiments on the value of the explanations
mentioned are difficult to find. In contrast with the
time before about 1920, modern books on hearing pay
only little or no attention to consonance.*® Is this lack
of interest justified and must we admit that those in-
vestigators are right who considered consonance as
determined mainly or exclusively by cultural?’?s or
even genetic®® factors?

[n answering this question, we have to realize that
our consonance perception is indeed profoundly in-
fluenced by the development of Western music and
musical training. This is illustrated in two ways.

1. The primary reason why von Helmholtz's ex-
planation of consonance by beats was rejected by many
investigators was that in their opinion the degree of
consonance or dissonance of an interval is not altered
by removing the harmonics of the component tones. A
study of the observations on which this opinion was
based shows that, without exception, musically trained
subjects were used to judge the intervals. This was not
considered as a difficulty but, on the contrary, as an
essential condition to obtain relevant responses. Stumpt
himself, perhaps the most important critic of the beat
theory, may be presented as a good illustration. His
large interest in the psychology of tone was due to the
fact that originally he intended to become u musician.®
For him, judgment of a particular tone interval was
identical to finding out its musical name, and this
knowledge determined entirely the consonance value
that he attached to the interval. For this reason, he
considered intervals like 8:15 and 7:10 as dissonants,
also in cases without audible harmonics and difference
tones. Apparently, this approach was so self-evident to
him (and many others) that he did not realize that his
results had nothing to do with the origin of consonance
and dissonance but must be considered only as a demon-
stration of the success of his musical education and
training. The large influence of training was demon-
strated by an investigation by Moran and Pratt’ in

* This may be illustrated by S. S. Stevens and H. Davis,
Hearing (John Wiley & Sons, Inc., New York, 1938). Though
IZ. G. Boring in his “Perspective” at the beginning of the book
refers to the work of H. von Helmholtz and closes with the words,
“Certainly we are ready now for a new Lelire von den Tonem pfin-
dungen to orient us among the complexities of the new physiologi-
cal acoustics which is now so successfully answering questions
which Helmholtz posed,” this book spends only one paragraph to
the phenomenon of consonance, merely mentioning von Helm-
holtz's expanation without comments.

*T N. Cazden, “Musical Consonance and Dissonance: A Cultural
Criterion,” J. Aesthet. 4, 3-11 (1943).

*R. W. Lundin, “Toward a Cultural Theory of Consonance,”
J. Psychol. 23, 4549 (1947).

#H. T. Moore, “The Genetic Aspects of Consonance and
Dissonance,” Psychol. Monogr. 17, No. 2, 1-68 (1914).

O C. Stumpl, Tonpsychologie (Verlag S. Hirzel, Leipzig, 1883),
Vol. 1, Preface.

B H. Moran and C. C. Pratt, “Variability of Judgments on
Musical Intervals,” J. Exptl. Psychol. 9, 492-500 (1920).
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which 3 observers, who were able to recognize any given
musical interval, had to adjust the frequency of one of
the tones of each of a series of intervals to the correct
value for that interval. The results, obtained for simple
tones, indicated that for cach of the subjects the average
settings were more in agreement with the interval widths
after the equally tempered scale, as used in music, than
after the natural scale, given by simple frequency
ratios. These results show that we have to make a clear
distinction between interval recognition and conson-
ance judgment. The ability to recognize frequently used
intervals does not explain why the singular nature of the
impressions produced by particular intervals is related
to simple frequency ratios of the component tones.

2. The influence of music on the judgment of intervals
can be shown in another way also. Originally, only 1:1,
1:2, 2:3, and 3:4 were considered as consonant and
agreeable intervals. Nowadays, the situation is much
more complex. Asking a jury of musicians and psy-
chologists to ascertain the rank order of consonance of
all intervals within the octave, Malmberg® obtained the
order 1:2, 2:3, 3:5, 3:4 and 4:5, 5:8, 5:6, 5:7, 5:9,
§:9, 8:15, and 15:16. Guernsey™ has confirmed the
well-known fact that musicians make a clear distine-
tion between pleasantness and consonance. In this
study, it was found that for a group of musicians the
ranking of intervals for consonance was about the same
as that obtained by Malmberg, but the ordering in terms
of pleasantness was quite different: sixths (3:5, 5:8),
thirds (4:3, 5:0), fourth (3:4), and minor seventh (5:9)
did share the highest rank. For naive subjects; however,
consonance and pleasantness are much more similar
concepts, as was demonstrated by the authors™ in an
experiment in which 10 subjects had to judge a large
number of intervals on 10 different semantic scales. A
high correlation between consonance and pleasantness
scores was found. In fact “‘consonance” appeared to be
used as an evaluation category. For these subjects, too,
the sixths, thirds, and fourth were the most pleasant
intervals, but their evaluation of the octave and (fth
was much higher than for musicians, as was also the
cuse in Guernsey’s experiments.® I'rom these results,
we may conclude that the original concept of consonance
has been split up in two opinions: one held by musicians,
the other by naive subjects. This development must be
seen as a consequence of the fact that, in the course of
history, preference did shift from intervals given by 1:2,
2:3, and 3:4 to more-complex frequency ratios. For
laymen, the meaning of the term consonance followed
this shift. Musicians, however, did maintain the tradi-
tional rank order of intervals in terms of consonance,

2. FF. Malmberg, “The Perception of Consonance and Dis-
sonance,” Psychol. Monogr. 25, No. 2, 93-133 (1917-1918).

# M. Guernsey, “The Role of Consonance and Dissonance in
Music,” Am, J. Psychol. 40, 173-204 (1928).

#J.P. van de Geer, W. J. M. Levelt, and R. Plomp, “The
Connotation of Musical Consonance,” Acta Psychol. 20, 308-319
(1962).
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characterized by smoothness and uniformity, independ-
ent from evaluation.

After these two digressions on the relation of con-
sonance to music the question can be asked as to how
to evaluate the various consonance explanations men-
tioned in Sec. I-A. In our attempt to answer this ques-
tion, we are interested in perception of consonance not
so much as a product of musical education and training
but as a bases of it. In our opinion, there exists a typical
sensorial phenomenon that is related to simple integer
frequency ratios and that is of a general nature, holding
also for subjects without any experience in musical
harmony. This particular sensorial phenomenon, which
we call “tonal consonance,” may be considered to be
basic to the relation between the concept of conson-
ance, as held by musicians and laymen, and simple
frequency ratios.

With these restrictions in mind, the results of only
a few experiments are relevant to decide upon the
merits of the five different tvpes of consonance ex-
planation. The most pertinent study is that by Guthrie
and Morrill* on the judgment of intervals composed
of two simple tones. In this experiment, about 380
subjects were presented with 44 different intervals,
with frequency ratios from 1:1 to bevond 2:3) and the
subjects were asked 1o judge the interval as consonant
or dissonant, and as pleasant or unpleasant, respectively.
In Iig. 1, the average results are reproduced. The fact
that the two curves are quite similar is in agreement
with the conclusion, mentioned above, that for the
naive subject the notions consonance and pleasantness
are nearly identical.

In this connection, another mvestigation, in which
only pleasantness was examined, is also relevant. In
that study, carried out by Kaestner,*® pairs of intervals
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1116. 1. Percentage of subjects who judged simple-tone intervals
as consonant (solid curve) and pleasant (dashed curve), re-
spectively, plotted as a function of frequency difference between
the tones. IFor all intervals the frequency of the lower tone was
395 cps. [After Guthrie and Morrill.%]

3 5, R. Guthrie and H. Morrill, “The T usion of Non-Musical
Intervals,” Am. J. Psychol. 40, 624-625 (1928).

3 G. Kaestner, “Untersuchungen iiber den Gefiihlseindruck
unanalysierter Zweikliinge,” Psychol. Studien 4, 473-304 (1909).
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I"16. 2. Percentage of cases in which a tone interval was judged
as more pleasant than the other ones, plotted as a function of
frequency difference between the tones. The solid curve represents
the data {or simple, the dashed curve for complex tones. IMor all
intervals, the frequency of the lower tone was 320 cps. [Aiter
Kaestner. "]

were presented successively to observers who were
asked to indicate which one was more pleasant. These
experiments were performed for intervals composed of
either simple or complex tones. In both cases, about 30
intervals within the octave were involved and all pairs
of intervals were judged. In Fig. 2, the mean values of
the most important results are presented. The simple-
tone curve agrees with the curves of Fig. 1, whercas the
other curve, bused on complex tones, shows marked
peaks for simple frequency ratios.

These experiments are very useful to evaluate the
different explanations of consonance. As we see, for
intervals composed of simple tones, simple frequency
ratios did not result in singular points of the curves.
On the contrary, the curves suggest that frequency
distance rather than frequency ratio is the decisive
parameter. For inereasing frequency  difference, the
curves show a marked minimum, followed by a broad
maximum.

The only explanation supported by the results of
these two experiments is the theory promoted by von
Helmholtz, after which the dissonance of an interval
is primarily due to rapid beats between the component
tones. In both investications, the minimum of the
curves corresponds very well with a frequency differ-
ence of 30-40 cps, in accordance with von Helmholtz’s
statement of maximum dissonance. The fact that the
curve of Fig. 2 based on complex tones shows marked
peaks for the intervals corresponding with simple fre-
quency ratios is in agreement with this explanation.

On the other hand, the experiments do not support
the other explanations mentioned in Sec. I-A. Against
these views, the following objections can be raised :

1. The hypothesis that, anywise, frequency ratio is
perceived is contradictory to the finding that the simple-
tone curves of Figs. 1 and 2 do not have peaks for simple
ratios. All evidence in this direction must be due to
interval recognition as a result of musical training, the
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importance of which is demonstrated by the experi-
ments of Moran and Pratt, mentioned above.

Insofar as consonance explanations based on re-
lationships of harmonics imply that the presence of
harmonics in every complex tone results in a
tioning” for simple frequency ratios, the objections of
(1) again do apply. In another view on the influence
of harmonics, consonance is considered to be related to
the number of coinciding harmonics during actual
sounding of two complex tones simultancously. How-
ever, it is not clear how this coincidence may be relevant
to consonance other than by the absence of beats or
difference tones, because every common partial may be
regarded as belonging to only one of the complex tones.

The influence of difference tones on consonance
perception also is not very probable in view of the data
reproduced n Figs. 1 and 2. Moreover, experiments of
one of the authors on the audibility of combination
tones?’ showed that the nonlinear distortion of the
hearing organ is so small that it cannot be regarded as
a constitutive base for consonance.

The fact that the rank order of consonant intervals
is correlated with their degree of fusion cannot be
considered as a satisfactory explanation, as Stumpf*
himself admitted. This does not mean that the relation
has no relevance. However, in this paper it is left out
of consideration.

I'rom this survey, we may conclude that it is of inter-
est to investigate more thoroughly the hypothesis that
tonal consonance, the peculiar character of intervals
composed of complex tones with simple frequency
ratios, is due to the absence of rapid beats between
harmonics of the component tones.

“condi-

II. EXPERIMENTS

tone
tone of

In the investigation by Guthrie and Morrill,
intervals were involved only with a lower
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I'16. 3. Consonance rating scores of simple-tone intervals with a
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scores (11 subjects).
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395 cps. Kaestner used 256 and 320 cps for this fre-
quency. So these studies do not give information on
the degree to which evaluation of intervals, composed of
simple tones, depends on frequency. For a better in-
sight in the relation between consonance and beats, the
answer to this question is of great interest, and for this
reason the authors planned the following experiments.

A. Method and Procedure

In the experiments, observers had to judge tone
intervals as a function of two parameters: situation of
the interval in the frequency range and frequency
difference between the component tones. As a measure
of the first parameter, the geometric mean of the fre-
quencies of the two tones was taken. In order to separ-
ate the influence of the parameters as much as possible,
this mean frequency has advantages to frequency of the
lower tone of the intervals which was used in earlier
studies. For the same reason, different groups of ob-
servers were used for each of the mean frequencies
involved.

The subjects judged each tone interval on a 7-point
scale, *“consonant-dissonant,” 1 corresponding with
most dissonant, 7 with most consonant. Some subjects
asked for the meaning of consonant. In that case, the
experimenter circumscribed the term by beawdiful and
cuphonious. This procedure is justihied because, as was
ascertained earlier ™ consonant, beauliful, and euphonious
are highly correlated for naive subjects. In fact, they
represent one dimension in semantic space : evaluation.

The experimental setup was very simple. The tones
were produced by 2 sine-wave oscillators and repro-
duced by a loudspeuaker in front of the observer. The
sound pressure near the subject’s car was kept at o
constant level of about 65 dB re 2.107* dyn/cm®. The
subjects were tested individually in a soundproof room
with sound-absorbing walls. The experimenter was
seated in another room and presented each interval
during about 4 sec. After each exposure, he had to
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Fic. 4. As Fig. 3, but with mean frequency 250 cps (10 subjects).
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readjust the frequency of the oscillators, resulting in a
pause of 10-20 sec between exposures. An electronic
counter was used to adjust frequencies very accurately.

The experiments were carried out for 5 values of the
mean frequeney of the intervals: 125, 250, 500, 1000,
and 2000 cps. Each subject was used only in one test
session, in which he had to judge 12-14 different
interval-width  values around one of these mean
frequencies. To avoid the influence of interval recogni-
tion, the widths of these intervals were chosen on base
of frequency difference, not on frequency ratio.

The following procedure was used. First, the subject
read written instructions concerning the purpose of the
test and the way in which he had to record his responses
on a sheet with horizontal lines, each provided with 7
short vertical dashes. After that, a preliminary series
of 10 different intervals, chosen at random out of the
interval widths used in the experiment, was presented
in order to make the subject familiar to the differences
between the stimuli and to warrant an adequate use
of the 7-point scale. Then, 3 series of 12-14 intervals
were presented (12 for 125 eps, 14 for the other mean
frequencies). Each of these series contained the same
interval widths but in a different (random) order. Al-
ways the first interval of a series was different from the
last one of the preceding series.

The test subjects were young male adults of about 20
vears of age and with secondary-school training. For
the mean frequencies 125, 250, 500, 1000, and 2000 cps,
the number of subjects was 19, 22, 18, 11, and I8,
respectively.

B. Results

To exclude data of subjects who were not able to
give consistent responses, for cach of them test-retest
reliability was determined by calculating the correla-
tion coefficient between the scores of the first and the
last of the 5 series of interval widths presented to the
subjects. Only the data of those subjects were main-
tained who had a correlation coefficient above 0.3.
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I'16. 6. As I'ig. 3, but with mean frequency 1000 cps (10 subjects).

Their average scores of the 5 series were used for further
calculations. In this way, the number of accepted
subjects was reduced to 11, 10, 11, 10, and 8, respec-
tively, for the mean frequencies 125-2000 cps.

In Figs. 3-7, the experimental results for the dif-
ferent mean frequencies are reproduced as a function
of interval width. In each of these graphs, the solid line
connects points representing the median; the other
lines correspond with the lower and upper quartiles
of the scores.

C. Discussion

The curves of Figs. 3-7 have the same general course
as of Figs. 1 and 2 (solid line). For small frequency
differences, they show a minimum, followed, for larger
differences, by a more or less broad maximum. To
characterize the curves, two points can be uged: the
minimum and the frequency difference for which the
maximum is reached. We pay some attention to each
of them.

In Fig. §, the interval widths corresponding with the
minima of the curves of Iigs. 3-7 are plotted as a
function of mean frequency. Also, for the curves of
Guthrie and Morrill and of Kaestner, the minima are
marked.

The only other data found in literature with which
our results can be compared are from Cross and Good-
win,*” who published some data concerning the “point
at which the harshness of the dissonance produced by
the tomes of two resonators reaches a maximum.”
These points, investigated for only one subject, are
reproduced in Fig. 8.

In comparing and evaluating these data, we have to
realize that the minima in the consonance curves are
rather broad, so that the points are not very precise.
Nevertheless, it will be clear that the experimental

¥ Ch. R. Cross and H. M. Goodwin, “Some Considerations

regarding Helmholtz’s Theory of Consonance,” Proc. Am. Acad.
Arts Sci. New Ser. 19, 1-12 (1893).

AND

LEVELT

results do not confirm von Helmholtz’s opinion that the
frequency difference for maximum roughness is in-
dependent of frequency. Though the value of 30-40
cps, given by him, agrees with the data points in the
frequency range between 500 and 1000 cps, the general
trend of the data indicates that, for increasing {fre-
quency, also the interval width for maximum rough-
ness or dissonance increases. The solid curve corres-
ponds with 259, of the critical bandwidth, adopted from
a paper of Zwicker, Ilottorp, and Stevens.®s This curve
1s based on the results of several investigations on
masking, loudness, and the ear’s sensitivity: to phase
differences. The graph suggests that, instead of von
Helmholtz’s hypothesis of a constant frequency dif-
ference, a frequency difference proportional to critical
bandwidth gives a better fit to the data.

Similar things can be said about the minimum fre-
quency difference of intervals that are judged as con-
sonant. In Iig. 9, the vertical dashes represent the
interval widths for which the curves of I'igs. 1-7 reach
their maximum. As, for some curves, this value cannot
be determined exactly, dashes instead of points are
plotted. In the same graph, relevant data of some other
studies are reproduced. The open points correspond
with the limit of audible beats as determined by Cross
and Goodwin®; the crosses correspond with the smallest
consonant intervals after an investigation by Mayer.®
A clear relationship exists between these data, justify-
ing the conclusion that consonance is closely related to
the absence of (rapid) beats, as in von Helmholtz’s
theory. But, again, this consonance maximum is not
independent of the mean frequency of the interval. The
curve of the critical bandwidth gives a better fit,
especially for the authors’ own data.

In conclusion, von Helmholtz’s theory, stating that
the degree of dissonance is determined by the roughness

o

o

~

w

consonance scale valug ———»

5 10’ 2
frequency difference in cps ——

I16. 7. As Iig. 3, but with mean frequency 2000 cps (8 subjects).

s Zwﬁku, G. Tlottorp, and S. S. Stevens, “Critical Band
Width in Loudness Summation,” J. Acoust. Soc. Am. 29, 548-557
(1957).

A M. Mayer, “Researches in Acoustics. No. IX,”’ Phil.
Mag. Sth Ser. 37, 259-288 (1894).
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of rapid beats, may- be maintained. However, a modifica-
tion has to be made in the sense that minimal and
maximal roughness of intervals are not independent of
the mean frequency of the interval. A better hypothesis
secms to be that they are related to critical bandwidth,
with the rule of thumb that maximal tonal dissonance
is produced by intervals subtending 25%, of the critical
bandwidth, and that maximal tonal consonance is
reached for interval widths of 1009, of the critical
bandwidth. In all experiments in which critical bands
have been investigated, the width of this band repre-
sents the frequency-dilference limit over which simple
tones cooperate. So it is not surprising that roughness
appears only for tones at a frequency distance not
exceeding critical bandwidth.

IIl. CONSONANCE FOR COMPLEX-
TONE INTERVALS

In this section, the data of the preceding experiments
are used to explain not only why, for complex-tones,
consonance is related to simple frequency ratio, but
also 1o illustrate some other well-known propertics of
consonant intervals. ’ )

As Figs. 3-7 show, the curves, plotted on a logarith-
mic frequency scale, have approximately identical
shapes. This means that they all can be substituted by
the same curve in which consonance score is represented
as a function of the interval width with critical band-
width as a unit. This standard curve is reproduced in
Tig. 10. It has been derived by plotting in one graph the
data points for each of the mean frecuencies as o func-
tion of critical bandwidih and drawing the curve that
best fits all the data. For small frequency differences,
the curve 1s extended on base of the curves of Figs. 1
and 2. By alinear transformation, the evaluation scule
is substituted by a “consonance” scale, 1 corresponding
with maximum and 0 with minimum appreciation.

The curve of Fig. 10 can be used to get some impres-
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Tic. 8. Frequency difference of two simple tones for maximum
dissonance as a lunction of the meuan frequency of the tones. The
solid curve corresponds with 0.25 critical bandwidth as given by
Zwicker, Flottorp, and Stevens.3s
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Frc, 9. Frequency difierence of smallest consonant interval of
two simple tones as a function of the mean frequency of the tones.
The sohid curve represents the critical bandwidth.

.

sion of how, for complex tones, consonance varies as a
function of the frequency difference betwecn the funda-
mentals. Tn this case, consonance depends not only on
the distance between the fundumental tones, but also
between the harmonics.

We assumie that the total dissonance of such an
interval is equal to the sum of the dissonances of each
pair of adjucent partials, using the right-hand scale
of I'ig. 10 to compute the total dissonance. This assump-
tion implies that these dissonance values may be added.
Though these presuppositions arce rather speculative,
they are not unreasonable as a first approximation, and
may be justificd for Hlustrating how, for complex-tone
intervals, consonance depends on frequency and fre-

“quency ratio.

In this way, the curves of Iigs. 11 and 12 were com-
puted for eomplex tones consisting of 6 harmonics.
Figure 11 illustrates in what way consonance varies as a
function of interval width, whereas Fig. 12 shows how
the consonance of some intervals, given by simple
freruency ratios, depends on frequency.

The curves of Tigs. 11 and 12 may be considered as
an illustration of the following properties of tone
intervals. ' ‘ :

1. With simple frequency ratios of the component
tones, singular points of the curve of Fig. 11 corres-
pond. As we restricted the number of harmonics to 6,
only peaks for frequency ratios containing the numbers
1-6 could appear. If also the 7th and 8th hurmonics
were included, the curve would have shown extra peaks
for 4:7,5:7, 6:7, 3:8, and 7:8. In this way, it may be
clear that, for complex tones, as produced by musical
instruments, consonance is related to simple frequency
ratios. . .

2. More-simple frequency ratios are represented by
sharper peaks. This means that octave and fifth are
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10 g This conclusion raises the interesting question
whether in music, too, we may find properties related
08 A 0.2 to critical bandwidth. Some preliminary investigations,
/ in which chords of musical compositions were analyzed,’
go.s 0o were very promising, and for that reason a more

< @ detailed study was made.
¢ 06§ The basic idea underlying these analyses was the
Y4 "2 following. During the process of composing, the com-
poser at every moment makes a selection of tones from
02 08 the total set of tones “available” to him. One of the
\ criteria for selection is that the composer wants to
o L 10 create o sequence of chords, in accordance with his

0 0.2 0.4 06 08 1.0
x critical bandwidth ——

I'16. 10, Standard curve representing consonance of two simple
tones as a function of frecquency difference with critical bandwidth
as a unit. The curve is based on the data points of IFigs. 1-7.
The consonance and dissonance scales are arbitrary.

much more sensitive to a deviation of their right fre-
quency ratio than the other consonant intervals are.
This explains why, 1 the equally tempered scale (verti-
cal Hines of Fig. 11), the impure thirds are much better
tolerable than impure octaves and (fths would have
been.

3. The rank order of consonant intervals as given by
Malmberg® (sce Sce. I-B) agrees rather well with the
relative heights of the peaks of Ilig. 11 and the curves
of Fig. 12. Furthermore, Fig. 12 suggests that there
are only minor differences between the degree of con-
sonance of the fourth and the thirds.

4. As Fig. 12 shows, the degree of consonance is
nearly independent of frequency over a large range.
However, below o critical frequency; the intervals
become more and more dissonant, due to the bend in
the eritical-bandwidth curve at about 300 cps. The
critical frequency is lower for more consonant intervals.
This behavior reflects the musical practice to avoid
thirds at low frequencies and 1o use mostly octaves or
wider intervals.

5. Apart from the range below 100 cps, the disson-
ance value is 0 for the octave (Fig. 12). This means
that, for up to 6 harmonics, all frequency differences
between adjacent harmonics exceed  critical band-
width. [t appears that this does not apply for tones
with higher partials. This fact explains why complex
tones with strong higher harmonics sound much sharper
than tones consisting of only 6 harmonics. It is interest-
img that this fact was already emphasized by von
Helmholtz.%

IV. STATISTICAL ANALYSIS OF CHORDS IN MUSIC
The preceding section showed that several properties
of tone intervals can be explained by interference of
partials. This interference occurs, as the experiments
indicated, for frequency differences smaller than critical
bandwidth. Apparently, this bandwidth plays an im-
portant réle in the sensation of simultaneous tones.

0 Ref. 1, Chap. 5.

musical intentions, that at the same time realizes a
succession that varies in consonance and dissonance.
Leaving the time dimension out of consideration, o
“vertical” dimension remains: the composition of the
chord out of simultaneously present tones. We may get
some Insight into this vertical dimension by investigat-
ing the density distribution of simultancous tones,
partials included, as a function of frequency. This is a
statistical approach; it will not give information about
occurrance of specific chords but only about the fre-
quency of occurring of different tone mtervals.

An illustration may serve to explain how the analysis
was done. Suppose that we are interested in the density
distribution of intervals with ¢?=3523.3 c¢ps as the lower
tone. Iirst, we restrict ourselves to the case that funda-
mental tones only are taken into account. In this case,
we take out of a musical composition all chords that
contain ¢ and a higher tone simultaneously. We then de-
termine the fraction of time, relative to the total duration
of these chords, during which the nearest higher tone is
separated from ¢* by a distance of 1 semitone (c*%
or d*), 2 semitones (%), ete. In Fig. 13, an example of
such a density distribution is given (solid line). The
cumulative distribution, derived from the density
distribution by taking the fraction of time the interval

~
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Fic. 11, Hustration of the way in which consonance of an
interval with a lower complex tone of 250 c¢ps and a variable
higher one depends on the frequency of this tone. Both complex
tones consist of 6 harmonics. The vertical lines represent interval
width after the equally tempered scale,
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Tasre I. FFundamental tones containing ¢ as the 1st, 2nd,
3rd, -, 10th harmonic, respectively. In the last column, the
“deviations of the frequency of these harmonics from the frequency
of ¢ are indicated (equally tempered scale).

IF'undamental Trequency No. of  Frequency of  Deviation
tone (cps) harmonic  harmonic from c*
(cps) (cps)
c* 523.252 1 523.25 0
ct 261.620 2 523.25 0
f 174.614 3 523.84 +0.59
€ 130.813 4 523.25 0
G# 103.826 5 519.13 —4.12
I 87.307 6 523.84 +0.59
D 73.416 7 513.01 —9.34
C 05.400 8 523.25 0
Ar# 58.270 9 524.43 +1.18
G # 51913 10 51913 —4.12

does not exceed 1 semitone, 2 semitones, etc., is also
given (dots and dashes).

The procedure can be repeated by including 2nd
harmonics, 2nd and 3rd harmonics, ete. In general, in
the case of # harmonics, we take chords that include ¢*
either as a fundamental tone or as one of the first n
harmonics of a lower tone. The density distribution is
then calculated for distances between ¢ and the nearest
higher tone, which may also be either a fundamental
tone or one of the first 7 harmonics of a lower tone. In
Fig. 13, distributions for 7= 06 are plotted. It is found,
as was to he expected, that the 309 point of the cumula-
tive distribution for n=06 gives a smaller interval value
than the corresponding point in the cumulative dis-
tribution for n=1.

Table I gives values of frequencies of tones that
contain ¢ as their nth harmonic, with n=1, 2, -- - 10.
The Table also gives frequencies of the harmonics of
these tones on the basis of the equally tempered scale.
Asis well-known, these frequencies do deviate somewhat
from the frequency of ¢ in some cases. These deviations
are left out of consideration here.

To facilitate compution of interval distributions for
different values of the basic frequency and different
numbers of harmonics, special equipment has been
developed. It consists of (1) an apparatus to trans-
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116, 12, TlHustration of the way in which consonance of some
intervals with simple frequency ratios depends on the frequency
of the lower tone, Both complex tones consist of 6 harmonics.
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Ie. 13, Example of interval distributions at ¢*=323.3 cps
for n=1 (solid curve) and n=06 (dashed curve). The other curves
represent the cumulative distributions for =1 (dots and dashes)
and n=06 (dots). The interval distributions were computed from
the last movement of J. S. Bach’s T'rio Sonata for Organ No. 3 in ¢
minor.

mute the notes and duration of chords, “played”
successively on a keyboard, in punch code, using an 8-bit
tape, and (2) an apparatus to read out the tape and to
compute the interval distribution with both basic
frequency and n adjustable.

In this way, 2 musical compositions were analyzed,
the last movement of J. S. Bach’s Trio Sonata for Organ
No. 3in ¢ minor, and the 3rd movement (Romanze) of
A. Dvoridk’s String Quartel Op. 51 in Eb major. In both
cases, interval distributions were computed for C=65.4
cps, G=98.0 cps, c=130.8 cps, g=190 cps, ¢'=1201.6
cps, ¢'=2392 cps, etc., and taking into account i har-
monics with n=1,2 3, - -+, 10. For cach of these distri-
butions the interval width was calculated (first in
semitones and from these values in cvcles/second)
which is not exceeded during 239, 509, and 759 of
time, respectively.

In Figs. 14 and 15, the results are reproduced as a
function of frequency, with 1 as a parameter (solid
lines). As the data for n=10 were quite similar to the
data for n=09, the former case has been left out. The
dashed lines represent the critical bandwidth after
Zwicker, Flottorp and Stevens,® plotted as a function of
the lower cutoff frequency, and a quarter of this band-
width, corresponding with maximum dissonance (Fig.
10). For each frequency, the total duration of time of all
chords on which the concerning interval distribution was
based is indicated, using the duration of the shortest
note occurring in the composition as a time unit.

To grasp the significance of the curves, it may be
helpful to trace their shift as a function of the number
of harmonics. This is done on the basis of the graphs of
Tig. 14. Tor the case that only the fundamental tone
was taken into account, most of the intervals exceed
the critical bandwidth, in particular for the lower
frequencies [ Fig. 14(a)]. It will be clear that, as a func-
tion of frequency, all intervals with the same frequeney
ratio between the component tones correspond with a
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116, 14, Results of a statistical analysis of the chords of the last movement of J. S. Bach’s T'rio Sonata for Organ No. 3 in ¢ minor with »

(= number of harmonics taken into account) as a parameter. The

solid curves represent the interval width in cps between adjacent

partials, plotted as a function of frequency, which is not exceeded in 2397, 507, and 750 of time, respectively, computed from curves
as represented in Ilig. 13. The dotted curves correspond with critical bandwidth and a quarter of this bandwidth.

straight line with a positive slope of 45°. As for octave
intervals, the frequency difference is equal to the fre-
quency of the lower tone; we see that for the lower
frequencies nearly all intervals of Fig. 14(a) exceed
the octave. This implies that, including also the 2nd
harmonic, these intervals reduce to octaves, resulting
in a line with a slope of 45° through the point A /=100
cps for =100 cps [Fig. 14(b)]. Above c=130.8 cps,
however, most intervals are smaller than the octave.
Because n=2 means that all fundamental tones are
accompanied by their octaves, the curves of Fig. 14(Dh)
extend to a corresponding higher frequency. The in-
clusion of the 3rd harmonic manifests itself in the
following ways: (1) the points corresponding with the

lower frequencies do not shift because the frequencies of
the new tones all are above that range; (2) in the middle
range, the “density” of tones increases, resulting in a
shift of the curves to smaller frequency differences; (3)
the curves are extended to a 509 higher frequency,
compared with the curves for n=2; (4) as most of the
intervals for the highest frequencies will be fifths, cor-
responding with the frequency distance between the 2nd
and 3rd harmonics of the highest fundamental tones of
the composition, this interval will determine the course
of the curves at the higher frequencies.

Every time when a further harmonic is added, a
repetition of this process occurs, with the result that
for increasing 2 (1) the frequency limit below which
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I'16. 15. Results of a statistical analysis of the chords of the 3rd movement (Romanze) of Dvordk’s String Quartet Op. 51 in Iib major,

The curves have the same meaning as in Iig. 14

no new tones are added shifts to higher frequencies; as
we saw for 7= 2, this limit is about ¢=130.8 cps, whereas
for #=9 this limit is about ¢*=3523.5 cps; (2) in the
frequency range above this limit, the curves will shift
to smaller frequency differences; (3) a further extension
of the curves to higher frequencies will take place; (4)
for the highest frequencies, the course of the curves
will mainly be determined by the interval (n—1) .
The curves of Iig. 15 show the same trends as a
function of the number of harmonics. However, in
this case, the interval widths between the fundamental
tones are much smaller than in the former case. Only
for C1=063.4 cps do the intervals exceed the octave, as o
comparison of the graphs (a) and (b) shows. As a con-
sequence of this fact, also for #>1 the curves of Fig. 15

correspond with smaller intervals than the curves of
Iig. 14

After these more general remarks, we may compare
the position of the curves with the critical-bandwidth
curves. As we see, for increasing n, the shape of the
interval curves agrees more and more with the dashed
curves. In both Figures, the agreement is greatest for
about 8 harmonics.

These results strongly suggest that critical bandwidth
plays an important réle in music. The significance of
this fact can be interpreted in the following way. As
we saw in Sec. 1, simple-tone intervals with a frequency
difference exceeding critical bandwidth are judged as
consonant and do not differentiate in this respect. On
the other hand, for smaller frequency differences, con-
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sonance evaluation strongly depends on interval width,
with o minimum for about a quarter of critical hand-
width. So it is not swrprising that just this range is
used for “modulation” between more-consonant and
more-dissonant chords. However, it is surprising indeed
that, for & number of hirmonics representative of
musical instruments, this is achieved in about the sume
measure over a wide frequency range.

We have to realize that this equadly deep “pencetra-
tion” in the borderland between pronounced consonant
and dissonant simple-tone intervals, represented by the
upper and lower dashed curves in the graphs, respec-
tively, is a result of many factors. As the most impor-
tant ones we may consider:

1.—the fact that in the tone scale as developed in
Western music, a lot of intervals agree with simple
frequency ratios, so that harmonics of the different
component tones of a chord may coincide; otherwise,
the shape of the solid curves of Figs. 14 and 15 would
have been more flat, due to more dissonant chords.

2.—the fact that the frequencies of the purtials of
the tones are multiples of the frequency of the funda-
mental tone. A deviation from this rule would have the
sume effect as mentioned under (1). This may be re-
garded as one of the reasons (there are morce!l) why
instruments with inharmonic partials are not used to
produce musical chords.

3.—the way in which, as o function of frequency, the
composcr selects his intervals. We saw above that in
Bach’s composition the frequency ratio between
fundamental tones is larger at lower than at higher
frequencies. As o comparison with Fig. 12 shows, in
this way very dissonant chords are avoided. Though
to a smaller degree, this is also the case in DvoFak’s
string quartet [intervals with the same frequency ratio
between the component tones correspond with a
straight line with o slope of 43° in Fig. 15()].

4 —the number of notes in a chord. It is clear that,
generally, for increasing number the mean distance
between adjacent partials will decrease. The fact that
the solid curves of Iig. 15 correspond with smaller
frequency dilferences than the curves of Fig. 14 may
be mainly due to this fuctor and the 3rd one.

S.—~the frequency limits between which the funda-
mental tones are chosen and their distribution within
this range. So « multiplication of ull frequencies by a
certain factor shifts all curves both horizontally und
verticully to the sume degree. As we see, this would

mfluence their relation to the dushed curves much more
for lower than for higher frequencies.

G.--the number of harmonics produced by the instru-
ments on which the composition is performed. Only the
influence of this factor hus been studied here, showing
that the frequency range over which a typical harmonic
modifies the interval distributions shifts to higher fre-
quencies for increasing 2. This implies that the number
of harmonics is not very criticul. Most musical instru-
ments produce strong harmonics up to a number that
may vary from about 6 to 10, though in the last case the
tone has o sharp quality and is more suited for solo
parts.

The mere enumeration of these factors does not give
us much information about their relative importance.
So it Wwould be of interest to know more ubout the degree
to which each factor determines the position of the
horizontul and the sloping parts of the curves. Moreover,
we should like to have more insight in the way in which
their position depends on musical style and on the
instruments for which the composition is writicn.
Further investigations are in preparation to answer
these questions. '

V. CONCLUSIONS

Both the expermmental results on the evaluation of
simple-tone intervals and on the statistical analysis of
chords in musical compositions support the explanation,
promoted by von Helmholtz, that the singularity of
mtervals with frecquency ratios determined by small
integer numbers is due to interference of adjacent par-
tials (inding expression in a roughness sensation. The
investigations indicate that, as a function of frequency,
the transition range between consonant and dissonant
simple-tone intervals is related to critical bandwidth.
These intervals wre evaluated as consonant for fre-
quency differences exceeding critical bandwidth, whereas
the most dissonant intervals correspond with frequency
dilferences of about a quarter of this bandwidth.
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