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Preface

This textbook intended for a two-semester sequence in abstract algebra. The first
semester covers group theory and the second semester covers field theory. The book is
suitable for undergraduate students with some prior experience of integers, polynomials,
vectors and matrices. It would be helpful to have some experience with abstract vector
spaces, but we do not assume this. Necessary results of linear algebra will be developed
in the Exercises.

Complex numbers are a trickier issue. In my experience, American students are not
exposed early enough to complex numbers. In more elementary courses I am happy
to remediate this. However, the pace of this course won’t allow it. If students are not
familiar with Euler’s formula

eiθ = cos θ + i sin θ

then they will have to learn it on the fly.

The distinguishing feature of this textbook is that we take history seriously. This
shows up in two ways. First, we use the historical development of Galois theory as a
framework to organize the choice of topics. Second, we attempt to track down original
sources for all of the main ideas. The dates of the title refer to Galois’ Memoir on the
conditions for solvability of equations by radicals (1830) and van der Waerden’s textbook
on Modern algebra (1930). However, we will also reach as far back as Lagrange’s
Reflections on the algebraic resolution of equations (1770) and as far forward as Artin’s
Notre Dame lectures on Galois theory (1942). It just so happens that almost all of
the concepts that we regard as “undergraduate abstract algebra” developed during this
time period.

Though our choice of topics is based on the development of algebra before 1930, we
freely employ more recent notation in the proofs and in the logical arrangement of the
results:

• We use standard set-theoretic terminology. For example, we use Bourbaki’s no-
tation for injective, surjective and bijective functions.

• We use arrows to denote functions. According to Mac Lane (1971, pg 29), the
arrow notation was developed around 1940 in the papers of Hurewicz.

• We use modern notations for linear algebra. The history of linear algebra notation
is difficult to track down, but the most significant source is surely Hermann Weyl’s
work on quantum mechanics.
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• We use posets and lattices to organize collections of subgroups, etc. These con-
cepts were introduced by Dedekind in the 1800s, but were only standardized in
the 1940s by Birkhoff and Ore.

• In particular, we use Ore’s (1944) concept of abstract Galois connections to orga-
nize the various “correspondence theorems” for subgroups, etc. This is the most
peculiar feature of our book, since the concept is not completely standard. Apart
from making some proofs more elegant, we find this to be good preparation for
the modern version of Galois’ theorem, which is due to Artin (1942).

• We make sparing use of commutative diagrams to explain the “universal prop-
erties” of polynomials and fields of fractions. This is mainly to clear up the
ontological status of splitting fields.



First Semester:
Group Theory





Week 1:

This first section is mainly for motivation. The ideas discussed here are quite tricky
and we will not completely understand them until the end of the second semester. We
will begin the logical development of the subject in Week 2.

1.1 What is Algebra?

The subject of algebra has changed over time. Here is a historical sketch:

Prior to 1830 the word “algebra” meant the study of equations. After 1930 the word
“algebra” refers to the study of “abstract structure” in mathematics. In this course I
will tell the story of the transition between these two eras.

To begin, here is a quick review of “pre-modern algebra”.

Example. Let a, b, c be any numbers. Find all numbers x such that

ax2 + bx+ c = 0.

I assume that you learned about quadratic equations in high school. If a = 0 then
there is nothing interesting to do, so let us assume that a 6= 0 and divide both sides by
a to get

x2 + b

a
x+ c

a
= 0

x2 + b

a
x = − c

a
.

Now there is a famous trick called “completing the square”. If we add the quantity
(b/2a)2 to both sides then it turns out that the left side factors:

x2 + b

a
x = − c

a

x2 + b

a
x+

(
b

2a

)2
= − c

a
+
(
b

2a

)2
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(
x+ b

2a

)(
x+ b

2a

)
= − c

a
+ b2

4a2(
x+ b

2a

)2
= b2 − 4ac

4a2 .

Finally, we take “the” square root of both sides and then solve for x:(
x+ b

2a

)2
= b2 − 4ac

4a2

x+ b

2a
=
√
b2 − 4ac

2a

x = − b

2a
+
√
b2 − 4ac

2a

= −b+
√
b2 − 4ac

2a
.

Wait, I lied. There is no such thing as “the” square root of a number. Actually every
number (except 0) has two different square roots. So the “quadratic formula”

x = −b+
√
b2 − 4ac

2a
is not really a formula at all, but more of a “recipe” that tells us how to compute the
two roots of the equation. First, let

√
b2 − 4ac denote one of the two square roots of

the number b2− 4ac. (I don’t care which one; you can choose your favorite.) Then the
other square root is just the negative: −

√
b2 − 4ac. Thus we obtain (in general) two

different solutions to the quadratic equation:

x = −b+
√
b2 − 4ac

2a
or x = −b−

√
b2 − 4ac

2a
. ///

This algorithm was known to several ancient civilizations. It came to modern Eu-
rope via al-Khwarizmi’s (∼820) Compendious Book on Calculation by Completion and
Balancing. The terms “completion” [Arabic: al-jabr] and “balancing” [Arabic: al-
muqabala] in the title refer to the operations of adding or subtracting the same quan-
tity from each side of an equation. The historical significance of this work is illustrated
by the fact that our word “algorithm” is a corruption of al-Khwarizmi’s name, and our
word “algebra” comes from the word “al-jabr” in the title of the work.

Al-Khwarizmi expressed the problem of quadratic equations in terms of geometry, and
the solution is achieved by literally completing a square. Actually, since negative num-
bers have no geometric meaning, al-Khwarizmi treats three separate cases and only
the easiest case can be solved by completing a square. The modern symbolic formula
has only one case because we accept negative numbers and square roots of negative
numbers.

Now we come to a result that was not known to ancient civilizations. During the
Italian Renaissance of the 1500s, a group of mathematicians discovered similar (but
more complicated) formulas for the cubic and quartic equations.
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Example: Cardano’s Formula. Let a, b, c, d be any numbers with a 6= 0. Our goal
is to find all numbers x such that

ax3 + bx2 + cx+ d = 0.

First we divide both sides by a and then we substitute x 7→ b/(3a) to obtain the
so-called “depressed form” of the equation:

x3 + 3px+ 2q = 0,

where1

p = 3ac− b2

9a2 and q = 27a2d− 9abc+ 2b3

54a3 .

Finally, “Cardano’s Formula” tells us that

x = 3

√
−q +

√
q2 + p3 + 3

√
−q −

√
q2 + p3.

Unfortunately, as with the quadratic formula, this is not really a “formula” because
every nonzero complex number actually has three cube roots. This means that there
might be nine different ways to choose the cube roots, while the original equation has
only three solutions. Below we will discuss Lagrange’s solution to this puzzle. ///

The difficulty of interpreting Cardano’s formula was the historical motivation for com-
plex numbers. To see why, let us consider the equation x3−15x−4 = 0. This equation
has a real root x = 4, but Cardano’s formula tells us that

x = 3
√

2 +
√
−121 + 3

√
2−
√
−121.

The only way to get from this expression to x = 4 is to accept the fact that 2 +
√
−1

is a cube root of 2 +
√
−121 and 2 −

√
−1 is a cube root of 2 −

√
−121. [Exercise:

Verify this by cubing the expressions 2 ±
√
−1.] That is, the only way to get to the

real solution x = 4 is by going through the so-called “imaginary numbers”. In modern
notation we write

C = {a+ ib : a, b ∈ R},

where i =
√
−1 is one of the two square roots of −1. (I don’t care which one; pick your

favorite.)

The general cubic formula was first published by Gerolamo Cardano in the Ars Magna
(1545), although he did not discover the formula himself.2 This work also includes a
general solution to the quartic equation which was discovered by Cardano’s student
Lodovico Ferrari. After this intense burst of activity, progress stalled on the following
question.

1These complicated expressions are one of the reasons why the cubic equation is not studied in high
school.

2The full story is very colorful and has ween well told elsewhere.
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Question: Does there exist a Quintic Formula? Given any numbers a, b, c, d, e, f
we consider the equation

ax5 + bx4 + cx3 + dx2 + ex+ f = 0.

Is it possible to write down a recipe for the roots x in terms of the coefficients
a, b, c, d, e, f and the “algebraic” operations:

+,−,×,÷,√, 3
√
, 4
√
, 5
√ ?

In other words: Is the general quintic equation “solvable by radicals” ?

The next breakthrough occurred in the early 1700s when Abraham de Moivre discovered
a special class of solvable quintics.

Example: De Moivre’s Quintic Equation. I assume that you are familiar with de
Moivre’s formula:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

This can be proved for integer exponents by induction. Furthermore, Euler (1748)
showed that this identity extends to real exponents by applying the power series ex-
pansions of the exponential and trigonometric functions:

eit := 1 + (it) + 1
2!

(it)2 + 1
3!

(it)3 + · · ·

=
(

1− 1
2!
t2 + 1

4!
t4 − · · ·

)
+ i

(
t− 1

3!
t3 + 1

5!
t5 − · · ·

)
= cos t+ i sin t.

Today we rightly view this as the fundamental theorem of trigonometry, but de Moivre
(1707) originally viewed it as merely as a clever trick used to obtain radical solutions
for a certain family of polynomials. I will show you how this works in the case of quintic
equations. On the one hand, we can expand the binomial (cos θ+ i sin θ)5 and compare
real parts to obtain

cos(5θ) = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

= cos5 θ − 10 cos3 θ(1− cos2 θ) + 5 cos θ(1− cos2 θ)2

= 16 cos5 θ − 20 cos3 θ + 5 cos θ,

and hence

2 cos(5θ) = 32 cos5 θ − 40 cos3 θ + 10 cos θ
= (2 cos θ)5 − 5(2 cos θ)3 + 5(2 cos θ).

On the other hand, if we temporarily ignore the subtleties involving roots of complex
numbers, then we can write

cos θ + i sin θ = 5
√

cos(5θ) + i sin(5θ)
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= 5

√
cos(5θ) + i

√
1− cos2(5θ)

= 5

√
cos(5θ) +

√
cos2(5θ)− 1,

and hence

2 cos θ = (cos θ + i sin θ) + (cos θ − i sin θ)
= (cos θ + i sin θ) + 1/(cos θ + i sin θ)

= 5

√
cos(5θ) +

√
cos2(5θ)− 1 + 1/ 5

√
cos(5θ) +

√
cos2(5θ)− 1.

Finally, by setting x = 2 cos θ and a = cos(5θ), we observe that the equation

x5 − 5x3 + 5x− 2a = 0

has a root of the form

x = 5
√
a+

√
a2 − 1 + 1

5
√
a+
√
a2 − 1

.

However, as with Cardano’s formula, it is tricky to interpret this formula. You will
investigate the details in Exercise 1.C. ///

Despite progress with various special polynomials, by the late 1700s it began to seem
that a general polynomial of degree greater than four is not solvable by radicals. In
(1770) Joseph-Louis Lagrange summarized the state of knowledge on this problem.
Lagrange’s work was deep and technical, and he despaired that the subject had perhaps
become too difficult to merit further investigation:

I begin to notice how my inner resistance increases little by little, and I
cannot say whether I will still be doing geometry ten years from now. It
also seems to me that the mine has maybe already become too deep and
unless one finds new veins it might have to be abandoned.

Physics and chemistry now offer a much more glowing richness and much
easier exploitation. Also, the general taste has turned entirely in this direc-
tion, and it is not impossible that the place of Geometry in the Academies
will someday become what the role of the Chairs of Arabic at the universities
is now.3

Nevertheless, mathematicians persisted in the same vein for a few more decades. The
next breakthrough was made by the young Carl Friedrich Gauss in his first major
work, the Disquisitiones Arithmeticae (1798), written when he was just 21. In the final
Chapter 7 of this work he sketched out a complete solution to the so-called “cyclotomic
equations”.

3From a 1781 letter of Lagrange to d’Alembert, quoted in Mathematical Expeditions (1999) by
Laubenbacher and Pengelley. The word “geometer” was the generic 18th century term for a mathe-
matician.
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Gauss’ Cyclotomy Theorem. Recall that the equation xn − 1 = 0 has n distinct
complex roots, given explicitly by

1 = ω0, ω, ω2, . . . , ωn−1,

where ω = e2πi/n = cos(2π/n) + i sin(2π/n).4 Thus, from the factorization

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1),

we conclude that the cyclotomic equation

xn−1 + xn−2 + · · ·+ x+ 1 = 0.

has n − 1 distinct complex roots. Namely: ω, ω2, . . . , ωn−1. Gauss gave an explicit
algorithm (though not an explicit formula) to express each of these roots in terms of
rational numbers Q, field operations +,−,×,÷ and radicals √, 3

√
, . . . , n−1

√ of order
less than n.5 However, he only provided a complete proof in the case that n is prime,
and it seems that he lost interest in the subject after this. For more information see
Olaf Neumann (2010). We will discuss the details of Gauss’ theorem at the end of next
semester. ///

In the other direction, some mathematicians made progress in showing that the general
quintic is not solvable by radicals. Paolo Ruffini claimed to have a proof of this result
in 1799 but it was flawed. Finally, in (1826) the young Norwegian mathematician Niels
Henrik Abel built on Gauss’ work to provide the first rigorous proof of the following
theorem.

The Abel-Ruffini Theorem. If n ≥ 5 then it is impossible in general to write
down the roots of an n-th degree polynomial equation in terms of the coefficients and
the algebraic operations

+,−,×,÷,√, 3
√
, 4
√
, 5
√
, . . . .

In other words, there exist polynomial equations of all degrees ≥ 5 that are not solvable
by radicals. ///

I should clarify an important point here. The Fundamental Theorem of Algebra guar-
antees that any polynomial of degree n with complex coefficients possesses a full set of
complex roots. That is, given any complex numbers a0, . . . , an ∈ C, there exist some
complex numbers r1, . . . , rn ∈ C (possibly not distinct), such that

a0 + a1x+ · · ·+ anx
n = (x− r1)(x− r2) · · · (x− rn).

4Indeed, it follows easily from de Moivre’s formula that every power of ω is a root of the equation
xn − 1 = 0. We will give a rigorous proof next semester that a polynomial of degree n can have no
more than n distinct complex roots.

5It was traditional to insist on radicals of order no greater than the degree of the equation, since
otherwise we have the completely trivial expression n

√
1 that includes all of the roots.
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This fact was generally believed throughout the 1700s but it is quite difficult to prove.
The first satisfactory proofs only appeared in the early 1800s. (We will see my favorite
proof, due to Laplace, in Week ?) Thus the existence of roots is not in question.
It is the nature of the roots that is important. Abel and Ruffini proved that the
roots (which always exist) can not in general be expressed algebraically in terms of the
coefficients.

As with the work of Lagrange and Gauss, Abel’s work was deep and technical. Further-
more, it did not provide a complete understanding of the problem because it did not
explain the distinction between solvable and unsolvable polynomials. Abel intended to
investigate this issue further:

I am working at this time on the theory of equations, my favorite topic, and
it seems to me that I have finally found the means of solving the general
problem, which is to determine the form of all the algebraic equa-
tions which can be solved algebraically.6

But then Abel died of tuberculosis in 1829, at the age of 26. Meanwhile, a young
Frenchman named Évariste Galois was working in obscurity on the same problem.7
Galois had some brilliant and visionary ideas but he also had a volatile personality. He
died in a duel in 1832, at the age of 20, before he could gain any recognition for his
ideas.

This brings us to the end of the pre-modern era. The two greatest algebraists of the age
(Abel and Galois) were dead—one of whose work was well known and one of whose work
was still unknown. However, Galois’ work was not lost forever. Under the instigation of
Galois’ family and friends, the eminent mathematician Joseph Liouville undertook the
task of editing and publishing Galois’ work in (1846). Due to political controversies8

Liouville felt the need to defend this decision:

. . . yielding to pleas of some friends of Évariste, I have devoted myself, so
to speak, under the gaze of his brother, to a careful study of all the printed
or handwritten papers which he has left behind. As for us, who have neither
known nor even seen this ill-fated young man, we limit ourselves to our
role as geometer; the observations we can allow ourselves, publishing these
works under the instigation of his family, concerns only the mathematics.9

The publication of Galois’ work set off a chain reaction that within 100 years would
completely redefine the word “algebra”. The transformation began in France with the
work of Augustin-Louis Cauchy and Camille Jordan. But then the center of activity
shifted to Germany, where Richard Dedekind and Leopold Kronecker were the main

6From a letter of Abel to Berndt Holmboe, October 1826. Quoted in Kiernan, The Development of
Galois Theory from Lagrange to Artin (1971, page 71).

7It is worth mentioning that Galois was not aware of Abel’s work. Instead, he was inspired by the
earlier work of Lagrange and Gauss.

8These controversies included Galois’ actions after the revolution of 1830 and antagonistic letters
toward prominent mathematicians. The short life of Galois was extremely colorful. As an entry point
I recommend the online article Radical Solutions (2020) by Marisa Brook and J. A. Macfarlane.

9Liouville (1846, page 382), quoted in Lützen (1990, page 561).
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innovators. Finally, the new style of algebra came to maturity in the 1920s in the
work of Emil Artin and Emmy Noether, which was immortalized in the epoch-making
textbook Moderne Algebra (1930) by Bartel van der Waerden. This new “modern”
version of algebra is the subject of our course. The subject is quite deep and it will
take two full semesters to tell the whole story.

1.2 Lagrange’s Solution of the Quadratic

The essence of Galois’ work is that it shifts the focus of algebra from “numbers” and
“polynomial equations” to “symmetries” and “relationships among symmetries”. I will
begin to motivate this by showing you Lagrange’s (1770) approach to the quadratic
and cubic equations.

Lagrange’s Solution of the Quadratic. Instead of writing

ax2 + bx+ c = 0,

we will assume that a 6= 0 and divide both sides by a to get

x2 + b

a
x+ c

a
= 0.

To clean this up a bit, we will also rename the coefficients as e1 := −b/a and e2 := c/a,
so that

x2 − e1x+ e2 = 0.

Now we are looking for two numbers r1 and r2 (the “roots” of the equation) such that

x2 − e1x+ e2 = (x− r1)(x− r2).

Our goal is to solve for the unknown roots r1, r2 in terms of the given coefficients e1, e2.
First we expand the right hand side

x2 − e1x+ e2 = (x− r1)(x− r2)
x2 − e1x+ e2 = x2 − (r1 + r2)x+ r1r2.

And then we compare coefficients to obtain a system of two polynomial equations in
two unknowns: {

e1 = r1 + r2,

e2 = r1r2.

In this way, we can think of e1(r1, r2) = r1 + r2 and e2(r1, r2) = r1r2 as “functions” of
the unknown roots r1, r2. Furthermore, let me observe that each of these functions is
“symmetric” under “permutation” of the roots:

e1(r1, r2) = r1 + r2 = r2 + r1 = e1(r2, r1)
e2(r1, r2) = r1r2 = r2r1 = e2(r2, r1).
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Naively, we would hope to “invert the system”, to obtain an equivalent system of
equations of the form {

r1 = some function of e1, e2,

r2 = some other function of e1, e2.

But this is impossible. Indeed, since each of e1(r1, r2) and e2(r1, r2) is symmetric un-
der permuting r1 ↔ r2, then any function of e1(r1, r2) and e2(r1, r2) is also symmetric.
To be specific, consider any function f of e1 and e2, so that f is also a function of r1
and r2. Then we have

f(r1, r2) = f(e1(r1, r2), e2(r1, r2)) = f(e1(r2, r1), e2(r2, r1)) = f(r2, r1).

On the other hand, the simple functions f(r1, r2) = r1 and g(r1, r2) = r2 are certainly
not symmetric:

f(r1, r2) = r1 6= r2 = f(r2, r1)
g(r1, r2) = r2 6= r1 = g(r2, r1).

Thus, Lagrange’s problem is to somehow “break the symmetry” of the symmetric func-
tions e1(r1, r2) = r1 + r2 and e2(r1, r2) = r1r2 to obtain the non-symmetric functions
f(r1, r2) = r1 and g(r1, r2) = r2. To do this, Lagrange first made a change of variables.
He defined two new functions10 s1(r1, r2) and s2(r1, r2) as follows:{

s1 = r1 + r2,

s2 = r1 − r2.

Note that this (linear) system is easily invertible:{
r1 = (s1 + s2)/2,
r2 = (s1 − s2)/2.

We will be done if we can solve for s1 and s2 in terms of e1 and e2:{
s1 = some function of e1, e2 ?
s2 = some other function of e1, e2 ?

The first one is easy:
s1 = r1 + r2 = e1.

But solving for s2 in terms of e1 and e2 is still impossible because the function s2 is
still not symmetric:

s2(r1, r2) = r1 − r2 6= r2 − r1 = s2(r2, r1).

[Jargon: We say that s2(r1, r2) = r1 − r2 is an alternating function of r1, r2 because
s2(r1, r2) = −s2(r2, r1).]

So here is the central issue:
10These functions are called “Lagrange resolvents”. We will return to this story in Week 23 below.
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How can we convert the alternating function s2(r1, r2) = r1 − r2 into a
symmetric function of r1 and r2?

This is easy—we just square it:

s2
2(r1, r2) := [s2(r1, r2)]2 = (r1 − r2)2 = r2

1 − 2r1r2 + r2
2.

Since s2
2 is a symmetric function, a general theorem11 guarantees that we can express

s2
2 as a polynomial in the “elementary” symmetric functions e1 and e2. (This is why I

use the letter “e” for the coefficients.) Later we will discuss a general algorithm, but
for now trial-and-error works fine:

e2
1 = (r1 + r2)2

e2
1 = r2

1 + 2r1r2 + r2
2

e2
1 − 4e2 = (r2

1 + 2r1r2 + r2
2)− 4r1r2

e2
1 − 4e2 = r2

1 − 2r1r2 + r2
2

e2
1 − 4e2 = s2

2.

Finally, let s2 =
√
e2

1 − 4e2 denote one of the two square roots of e2
1 − 4e2, it doesn’t

matter which. (This is precisely where we “break the symmetry”.) Then the final
answer is r1 = (s1 + s2)/2 = (e1 +

√
e2

1 − 4e2)/2

r2 = (s1 − s2)/2 = (e1 −
√
e2

1 − 4e2)/2.

Do you recognize this as the quadratic formula? ///

1.3 Lagrange’s Solution of the Cubic

Now we extend Lagrange’s method to solve cubic equations. For any three given
coefficients e1, e2, e3, we want to find three roots r1, r2, r3 such that

x3 − e1x
2 + e2x− e3 = (x− r1)(x− r2)(x− r3).

By expanding the right hand side and equating coefficients, this is equivalent to the
following system of three (non-linear) equations in three unknowns:

e1 = r1 + r2 + r3,

e2 = r1r2 + r1r3 + r2r3,

e3 = r1r2r3.

Please observe that each of the functions e1, e2, e3 is symmetric under any permutation
of the inputs r1, r2, r3. For example,

e2(r3, r1, r2) = r3r1 + r3r2 + r1r2 = r1r2 + r1r3 + r2r3 = e2(r1, r2, r3).

11See Exercise 18.D below. Jean-Pierre Tignol (2001) attributes this general theorem to Edward
Waring (1770), but notes that it was considered common knowledge at the time. Indeed, Lagrange
himself (1770, article 98, page 372) called the result “self-evident”.
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Our job is to “break the symmetry” in a controlled way. Lagrange’s first step is to
define three new functions s1, s2, s3 by a system of linear equations

s1 = r1 + r2 + r3,

s2 = r1 + ωr2 + ω2r3,

s3 = r1 + ω2r2 + ωr3,

where ω = e2πi/3. This system is invertible:12
r1 = (s1 + s2 + s3)/3,
r2 = (s1 + ω2s2 + ωs3)/3,
r3 = (s1 + ωs2 + ω2s3)/3.

Therefore our new problem is to solve for s1, s2, s3 in terms of e1, e2, e3. The first one
is easy:

s1 = r1 + r2 + r3 = e1.

But the next two are impossible because s2 and s3 are not symmetric functions. So
here is the question:

How can we convert the non-symmetric functions s2 and s3 into symmetric
functions of the roots, and hence express them in terms of the elementary
symmetric functions e1, e2, e3?

We should expect this to be tricky. Indeed, the Abel-Ruffini theorem says that the
analogous problem in degrees 5 and above is not solvable. After a bit of trial-and-error
you might find that s2s3 is a symmetric function and after a lot of trial-and-error you
might find that s3

2 + s3
3 is a symmetric function. Thus each of these can be expressed

as a polynomial in e1, e2, e3. There is an algorithm to do this (see See Exercise 18.D),
but for now I will just tell you the answers:{

s2s3 = e2
1 − 3e2

s3
2 + s3

3 = 2e3
1 − 9e1e2 + 27e3.

The last step is to “solve” for s2 and s3 individually. To make the notation cleaner let
us define

A := s3
2 + s3

3 = 2e3
1 − 9e1e2 + 27e3 and B := s2s3 = e2

1 − 3e2.

Then we observe that

(y − s3
2)(y − s3

3) = y2 − (s3
2 + s3

3)y + s3
2s

3
3 = y2 −Ay +B3.

Thus s3
2 and s3

3 are the two roots of a quadratic equation with coefficients A,B, and
we can apply the quadratic formula. Let the symbol

√
A2 − 4B3 denote a specific (and

arbitrary) square root of A2 − 4B3. Now let us “break the symmetry” by defining

s3
2 = 1

2

(
A+

√
A2 − 4B3

)
and s3

3 = 1
2

(
A−

√
A2 − 4B3

)
12Today this is called “discrete Fourier transform”. It generalizes to any dimension.
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Finally, we “break the symmetry” one more time by choosing a specific cube root for
each of s3

2 and s3
3:13

s2 = 3

√
1
2

(
A+

√
A2 − 4B3

)
and s3 = 3

√
1
2

(
A−

√
A2 − 4B3

)
.

And now we’re done. Do you recognize this as Cardano’s Formula? Instead of writing
out the complete formulas for r1, r2, r3 in terms of e1, e2, e3, I’ll have you work out an
example in Exercise 1.A. ///

The general quartic equation is also solvable in this manner but the details are too
complicated to discuss here.14 At this point you might agree with Lagrange that “the
mine has already become too deep and might have to be abandoned”. In fact, we will
abandon this line of thought. Starting next week we will begin to develop a completely
new language that will eventually allow us to see the general outlines of the theory of
equations without having to deal with the messy details. The need to suppress detail
in order to focus on higher-level structure was clearly recognized by Galois. He wrote
the following while he while he was in prison in December 1832, just six months before
his death:15

Since the beginning of the century, computational procedures have become
so complicated that any progress by those means has become impossible,
without the elegance which modern mathematicians have brought to bear on
their research, and by means of which the spirit comprehends quickly and
in one step a great many computations.

This philosophy applied to the theory of equations became known as “Galois theory”.
Eventually the same philosophy was applied to other areas of mathematics and the
resulting subject was called “modern algebra”. Today we just call it “algebra”.

Exercises

1.A A Cubic Equation

Consider the equation x3 − 6x− 6 = 0.

(a) Apply Cardano’s formula to find one root of the equation.

(b) Apply Lagrange’s method to find all three roots.

1.B Interpreting Cardano’s Formula

For any complex numbers A,B ∈ C we will prove that there exist some complex
numbers u, v ∈ C such that

u3 + v3 = A and uv = B.

13The choice is not completely arbitrary, since s2 and s3 must also satisfy s2s3 = B. You will prove
in Exercise 1.B that this is always possible over the complex numbers.

14We will give a high-level treatment of the general quartic in Week 23.
15Quoted from Kiernan (1971, page 92). See also Neumann (2011, page 251).
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Furthermore, if A2 − 4B3 6= 0 then there are exactly three such pairs (u, v).

(a) Given an integer n ≥ 1, show that every nonzero complex number α ∈ C has at
least one complex nth root. [Hint: If α 6= 0 then we can write α = reiθ for some
real numbers r > 0 and 0 ≤ θ < 2π. Then by the Intermediate Value Theorem
there exists a real number r′ > 0 such that (r′)n = r. Consider the number
α′ = r′eiθ/n.]

(b) If (α′)n = α 6= 0 for some u, α ∈ C and n ≥ 1, show that α has exactly n complex
nth roots given by16

α′, ωα′, ω2α′, . . . , ωn−1α′, where ω = e2πi/n.

(c) From (a) we know that there exists δ ∈ C such that δ2 = A2 − 4B3. Show that
α, β = (A± δ)/2 satisfy α+ β = A and αβ = B3.

(d) Continuing from (c), we want to find u, v ∈ C such that u3 = α, v3 = β and
uv = B. From (a) we know that there exist some α′, β′ ∈ C satisfying (α′)3 = α
and (β′)3 = β, hence (α′β′)3 = B3. If ω = e2πi/3 then from (b) we must have

u ∈ {α′, ωα′, ω2α′},
v ∈ {β′, ωβ′, ω2β′},
B ∈ {α′β′, ωα′β′, ω2α′β′}.

For each possible value of B, show that there exists at least one choice of (u, v)
such that uv = B. Furthermore, if A2 − 4B3 6= 0 show that there are exactly
three such pairs (u, v).

1.C Interpreting de Moivre’s Quintic

For a given complex number a ∈ C, let δ ∈ C be any square root of a2 − 1 and let
u ∈ C be any fifth root of a+ δ, which exist by Exercise 1.B(a).

(a) Observe that a+ δ 6= 0 and hence u 6= 0. Check that x = u+ 1/u is a root of de
Moivre’s quintic equation:

x5 − 5x3 + 5x− 2a = 0.

(b) Since a+δ 6= 0 we know from Exercise 1.B(b) that a+δ has five distinct complex
fifth roots u1, u2, u3, u4, u5 ∈ C. Now define

rk = uk + 1
uk
∈ C for k ∈ {1, 2, 3, 4, 5}.

16For now you can assume that a polynomial of degree n has no more than n distinct roots. We
will prove this rigorously in Week 16. The proof is not difficult but it would distract us from the topic
at hand.
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If |a + δ| 6= 1,17 prove that the roots r1, r2, r3, r4, r5 ∈ C are distinct, hence
they give the complete solution of de Moivre’s quintic.18 [Hint: Observe that
|uk|5 = |a+ δ| for any k. If uk 6= u`, show that rk = r` implies uku` = 1, and use
this to get a contradiction.]

(c) Use (b) to find all five roots of the equation x5 − 5x3 + 5x− 4 = 0.

17One can show that this condition is equivalent to a 6= ±1.
18Remark: Even when the list r1, r2, r3, r4, r5 ∈ C contains repetition, we still have

x5 − 5x3 + 5x − 2a = (x − r1)(x − r2)(x − r3)(x − r4)(x − r5),

but it is very annoying to check this directly. This is precisely the kind of calculation that Galois theory
will allow us to circumvent.



Week 2

2.1 Permutations

Last week we saw Lagrange’s approach to the solution of equations, and I mentioned
that Galois “changed the rules of the game”. Specifically, he shifted the focus from
“symmetric functions” to the concept of “symmetry for its own sake”. What does this
mean?

Permutations.19 A permutation is an invertible function from a finite set to itself.
Since all sets of the same size are basically the same we will usually consider the set
{1, 2, . . . , n}. Let Sn denote the set of all permutations

f : {1, 2, . . . , n} → {1, 2, . . . , n}.

For example, here is a typical element of S6:

It is cumbersome to draw the full diagram every time, so we define the following two
notations.

Word Notation. Given f : {1, 2, . . . , n} → {1, 2, . . . , n} we prefer to write fi instead
of f(i). Then to specify the function f it is enough to give the list of values f1, f2, . . . , fn.
To save as much space as possible we will even omit the commas and write20

f = f1f2 · · · fn.

19Though the concept had appeared in Lagrange’s work (1770), the first mathematician to consider
permutations for their own sake was Augustin-Louis Cauchy, Mémoire sur le nombre des valeurs (1815).
The French word for permutation is substitution because these were thought of as substitutions of the
inputs in a multi-variable function Cn → C. See Exercise 10.A for more details.

20However, this notation becomes impractical when n ≥ 10.
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For example, the permutation above is

f = 615432.

[Exercise: Explain why #Sn = n!.]

Cycle Notation. Word notation is the most efficient way to express permutations,
but cycle notation is the most meaningful way. To compute the cycle notation we write
down just one copy of the symbols and then we draw the arrows. Here is our example:

Note that the symbols break up into “oriented cycles”. To express these cycles concisely
we just put them inside parentheses, like so:

f = (162)(35)(4).

The only drawback of this notation is that it is not unique. For example, we can record
a cycle starting from any point:

(162) = (621) = (216).

And the ordering among the cycles is irrelevant:

f = (162)(35)(4) = (4)(162)(35) = (53)(4)(621).

Another quirk is that we typically omit the “singleton cycles” from the notation. In
our example this means omitting the (4):

f = (162)(35).

We will see that the most important kinds of permutations are the transpositions, which
switch one pair of symbols i↔ j and send every other symbol to itself. Transpositions
are particularly simple when expressed in cycle notation:

(ij) ∈ Sn.

[Exercise: Explain why the set Sn contains n(n− 1)/2 transpositions.]

2.2 Definition of Groups

The following theorem is Galois’ big contribution to mathematics. I will state the result
in modern language, with some details temporarily suppressed.

Galois’ Solvability Theorem. Consider a positive integer n ≥ 1 and let Sn be the
set of all permutations of {1, 2, . . . , n}. Let id : {1, 2, . . . , n} → {1, 2, . . . , n} be the
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“identity permutation” that sends each element to itself. Then the general n-th degree
equation is solvable by radicals if and only if there exists a chain of subsets

Sn = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr = {id }

in which each pair Gi−1 ⊇ Gi satisfies some technical conditions. ///

The details are quite complicated. For now I can give a brief description of how this
relates to Lagrange’s method. The set G0 = Sn tells us that each coefficient of a
polynomial is symmetric under every permutation of the roots. The set Gr = {id }
tells us that each individual root of a polynomial is symmetric under no permutations
of the roots. Each step Gi−1 ⊇ Gi correspond to “breaking the symmetry” by choosing
an arbitrary root of some function. The advantage of Galois’ reformulation is that it
will allow us (in Week 10) to give a short proof of unsolvability for n ≥ 5, that does
not even mention “equations” or “roots”. However, the full proof of Galois’ theorem
will have to wait until the end of the course.

Our first job is to describe the technical conditions satisfied by Gi−1 ⊇ Gi.

Composition of Permutations. Let X,Y, Z be sets and let f : X → Y and g : Y →
Z be functions. Since the target set of f equals the domain set of g, we may compose
them to obtain a function from X to Z:

X

g ◦ f

;;

f
%%
Y

g
%%
Z

The function g ◦ f is called “g composed with f” or “g follows f”. The reason we write
g on the left is because we write functions to the left of their arguments:

(g ◦ f)(x) := g(f(x)) for all x ∈ X.

Now suppose that X = Y = Z = {1, 2, . . . , n} and suppose that each of f and g
is invertible. In other words, suppose that f, g ∈ Sn. I claim that the composition
g ◦ f : {1, 2, . . . , n} → {1, 2, . . . , n} is also invertible.

Proof. The inverse permutations satisfy f ◦ f−1 = f−1 ◦ f = id and g ◦ g−1 =
g−1 ◦ g = id , where id is the identity permutation. Then since functional composition
is “associative” we have

(g ◦ f) ◦ (f−1 ◦ g−1) = g ◦ (f ◦ f−1) ◦ g−1 = g ◦ id ◦ g−1 = g ◦ g−1 = id
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and

(f−1 ◦ g−1) ◦ (g ◦ f) = f−1 ◦ (g−1 ◦ g) ◦ f = f−1 ◦ id ◦ f = f−1 ◦ f = id .

In other words, (g ◦ f)−1 = f−1 ◦ g−1. □

Example. Consider the permutations f = 3412 and g = 4231 in word notation;
or, equivalently, f = (13)(24) and g = (14)(2)(3) = (14) in cycle notation. We will
compute f ◦ g and g ◦ f .

Here is a picture showing that g ◦ f = 3142 = (1342):

And here is a picture showing that f ◦ g = 2413 = (1243):

We note from this example that f ◦ g 6= g ◦ f . In other words, the composition of
permutations is not always “commutative”.

[Exercise: But sometimes it is. Check that the transpositions (12) ∈ S4 and (34) ∈ S4
commute with each other. More generally, any two “disjoint” cycles commute.] ///

Thus the set Sn is equipped with the binary operation ◦ : Sn × Sn → Sn, which is
associative but not necessarily commutative. Furthermore, every element f ∈ Sn has
a compositional inverse f−1 ∈ Sn (indeed, permutations are invertible by definition),
and there exists a special element id ∈ Sn satisfying f ◦ id = id ◦ f = f for all f ∈ Sn.
Galois used the word “group” to encapsulate these three properties. Here is the modern
axiomatic formulation.

Definition of Groups and Subgroups.21 Let G be a set equipped with an abstract
binary operation ∗ : G×G→ G, which we will write as (a, b) 7→ a ∗ b. We say that the
pair (G, ∗) is a group if the following three22 axioms hold:

21The axiomatic definition of groups was first stated by the English mathematician Arthur Cayley,
On the theory of groups (1854), but this work was not very influential. The group axioms were later
studied by several American mathematicians, including E.V. Huntington, Simplified definition of a
group (1902). The use of axioms for the development of group theory did not become standard until
the work of German mathematicians in the early twentieth century.

22Some authors think that axiom (G0) is unnecessary because it follows from general logical princi-
ples. I’m not so sure about that.
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(G0) Substitution. For all a, b, c ∈ G we have that

a = b implies a ∗ c = b ∗ c and c ∗ a = c ∗ b.

(G1) The operation ∗ is associative. In other words, we have

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

(G2) There exists a two-sided identity element ε ∈ G satisfying

a ∗ ε = ε ∗ a = a for all a ∈ G.

(G3) For each a ∈ G there exists a two-sided inverse a−1 ∈ G satisfying

a ∗ a−1 = a−1 ∗ a = ε.

Note that we do not require the operation ∗ to be commutative. If it is commutative
(i.e., if a ∗ b = b ∗ a for all a, b ∈ G), then we say that the group is abelian (after Niels
Henrik Abel).23

Now let H ⊆ G be any subset. We say that H is a subgroup of (G, ∗) if the following
properties hold:

• For all a, b ∈ H we have a ∗ b ∈ H.

• The identity ε is in H.

• For all a ∈ H, the inverse a−1 is in H.

In other words: A subgroup is a subset that is also a group with respect to the same
operation ∗ and identity ε. ///

Remarks:

• In Exercise 2.A below you will prove that a subset H ⊆ G is a subgroup if and
only if for all a, b ∈ H we have a∗ b−1 ∈ H. This is called the “one-step subgroup
test”.

• In Exercise 2.C you will show that the identity element ε is unique. In other
words, if there exist two elements ε, ε′ satisfying axiom (G2) then we must have
ε = ε′. This is why we are allowed to talk about “the” identity element of the
group.

• You will also show that any two inverses for a ∈ G must be equal, therefore we
are allowed to talk about “the” inverse of the element a ∈ G, and refer to it with
the special notation a−1. Later in Exercise 3.C you will generalize this notation
to define an for all n ∈ Z.

23Many students are bemused that such a basic property (i.e., commutativity) has such a pretentious
name. Apparently the notation goes back to an 1856 paper of Leopold Kronecker. See A history of
abstract algebra (2018, page 140) by Jeremy Gray.
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What led Galois to the definition of “groups”? Recall from Lagrange’s method that
certain functions f : Cn → C are “invariant” or “symmetric” under certain permuta-
tions of their inputs. To be precise, let f(x1, . . . , xn) be any function with n inputs and
let π : {1, . . . , n} → {1, . . . , n} be any permutation. Then we can define a new function
fπ : Cn → C by permuting the inputs:

fπ(x1, . . . , xn) := f(xπ(1), . . . , xπ(n)).

Galois made the following observation:

Let f : Cn → C be any function with n inputs and let H ⊆ Sn be the
subset of permutations that leave f invariant:

H = {π ∈ Sn : fπ = f}.

Then H is a subgroup of Sn.24

Here is Galois’ theorem with the technical conditions filled in.

Galois’ Solvability Theorem (Precise Version). To each polynomial equation
f(x) = 0 of degree n, there corresponds a certain group of permutations G ⊆ Sn,
called the Galois group of the equation. The equation is solvable by radicals if and
only if there exists a chain of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr = {id },

satisfying the condition that for each pair Gi−1 ⊇ Gi the quotient group Gi−1/Gi
exists and is abelian.25 ///

There are still some undefined terms in this theorem. We will study quotient groups in
Weeks 6 and 7, and I will give the official definition of the Galois group of an equation
in Week 14. For now let me just tell you that a typical equation of degree n has Galois
group equal to the full set of permutations. Assuming this, I will present a short proof
in Week 10 that the general equation of degree n ≥ 5 is not solvable by radicals.

The proof of Galois’ theorem itself will take much longer. Galois’ own treatment was
overly concise and the first mathematicians to read it (Cauchy, Fourier and Poisson)
did not fully comprehend it. Due to Galois’ age they might not even have consid-
ered it worth their time. It was 15 years after Galois’ death when Joseph Liouville
finally worked through the details and showed that Galois’ ideas were both correct and
significant. As Joseph Bertrand later recalled:26

When Liouville published the Memoir, which Poisson had found obscure,
fifteen years after the death of Galois, he announced a commentary which
he has never given. I have heard him declare that the proof was very easy to
understand. When he saw that I made a gesture of astonishment he added,

24See Exercise 10.A for more details.
25Recall that “abelian” is just a fancy word for “commutative”.
26From Bertrand’s 1902 eulogy of Galois, quoted in Lützen (1990, page 130).



2.3 Basic Examples of Groups 23

“It is sufficient to devote a month or two to it, without thinking of anything
else”. These words explain and justify the embarrassment to which Poisson
dutifully admitted and which was no doubt met by Fourier and Cauchy as
well.

The fact that Liouville’s commentary never appeared suggests that even he had diffi-
culty Galois’ ideas. Inspired by the publication of Galois’ work, the French mathemati-
cians Cauchy and Jordan vastly extended the theory of permutations. This led to the
modern subject of “group theory”, which is our main topic for this semester.

The French school persisted in using the mathematical language of Lagrange, hence
they did not clarify the philosophical shift inherent in Galois’ ideas. The person most
responsible for our modern language is the German mathematician Richard Dedekind.
To the abstract concept of a “group”, he added several more, including the abstract
concept of a “field”.. The subject of “field theory” will be a main topic for next semester.
However, I will give a short introduction in the next section so that we can discuss some
interesting examples of groups.

2.3 Basic Examples of Groups

The group concept was invented by Galois to study polynomial equations. In retro-
spect, however, the reason that group theory became so fundamental is the fact that
it synthesizes several topics that previously were independent. In my view there are
three basic examples:27

• Abelian groups come from number theory.

• Groups of permutations come from Galois theory.

• Groups of matrices come from geometry and physics.

In order to gain a good understanding we must discuss all three types of examples.
This can be difficult in a first course due to the students’ limited background. In this
section I will briefly describe the important ideas without giving all of the details.

Groups of Permutations. These were introduced in the previous section. For every
integer n ≥ 1, the structure (Sn, ◦, id ) is a group, called the symmetric group on n
letters. In Week 8 we will prove “Cayley’s Theorem”, which says that any finite group
can be viewed as a subgroup of Sn for some n, though this is not always a useful point
of view. In Exercise 2.B you will investigate an important subgroup An ⊆ Sn called
the alternating subgroup.

Abelian groups. This type of group emerged from number theory, i.e., the study of
numbers. The most basic kind of “numbers” are the integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

27In nineteenth century language, permutations are called substitutions and matrices are called trans-
formations.
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These form an abelian group under addition, where 0 is the identity element. We will
denote this structure by Z+ = (Z,+, 0). The set of natural numbers N = {0, 1, 2, . . .}
is also closed under addition and contains the additive identity 0. However, the set
N does not contain “additive inverses” (e.g., −1 6∈ N) so the structure (N,+, 0) is not
a group. A structure that satisfies axioms (G1) and (G2) but not (G3) is called a
monoid.28 Thus (N,+, 0) is a monoid.

The integers are contained a in a chain of larger number systems (the rational numbers,
real numbers and complex numbers), each of which is an abelian group under addition:

0 ∈ Z ⊆ Q ⊆ R ⊆ C.

Numbers can also be multiplied, but this does not immediately give a group structure.
The most glaring problem is the fact that 0 does not have a multiplicative inverse.
After deleting 0 from the sets Q,R,C we obtain three abelian groups:

Q× = (Q− {0},×, 1), R× = (R− {0},×, 1), C× = (C− {0},×, 1).

It is harder to squeeze a multiplicative group from the integers. For example, the
equation 2x = 1 has no integer solution, so the integer 2 has no multiplicative inverse
in Z. In fact, the only integers with multiplicative inverses are ±1. These form a finite
group with two elements:

× 1 −1

1 1 −1
−1 −1 1

The concept of a “number system” was later axiomatized via the concept of a “ring”.29

Though we will not systematically study this concept until next semester, it is good to
see the definition now.

Definition of Rings. Let R be a set equipped with two binary operations +,× :
R × R → R and two special elements 0, 1 ∈ R. We call this structure a ring if the
following axioms hold:

(R1) (R,+, 0) is an abelian group.

(R2) (R,×, 1) is a monoid.

(R3) For all a, b, c ∈ R we have a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

If ab = ba for all a, b ∈ R then we say that the ring R is commutative.30

Note that the monoid (R,×, 1) is never a group because 0a = 0 for all a ∈ R. In
particular, the equation 0x = 1 has no solution, hence 0 does not have a multiplicative
inverse. We can create a group by throwing away all of the non-invertible elements:

R× := {a ∈ R : the multiplicative inverse a−1 exists}.

28There are many different ways to weaken the group concept, with names such as “semigroups” and
“quasigroups”. In this class we will only discuss monoids.

29The word ring (or Zahlring) comes from David Hilbert’s Zahlbericht (1897). The word “Zahlbericht”
means “number report” and “Zahlring” means “number ring”. Nobody knows why he chose the word
“ring”.

30For some obscure reason, the prefix “abelian” only applies to groups.
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The structure (R×,×, 1) is called the group of units of the ring R. A commutative ring
R satisfying R× = R−{0} is called a field. Thus the rings Q,R,C are fields, while the
ring Z is not a field.

Groups of Matrices. Commutative rings are used to model numbers; noncom-
mutative rings are used to model matrices. For any ring R (commutative or non-
commutative) we can define a ring of matrices:

Matn(R) = {n× n matrices with entries from R}.

Addition of matrices is defined componentwise, using the addition operation from R.
The multiplication operation in Matn(R) is matrix multiplication, defined using the
addition and multiplication operations from R. There are two ways to define matrix
multiplication. First, the bad way. Consider two matrices A,B ∈ Matn(R) with entries
aij ∈ R and bij ∈ R, respectively. If cij ∈ R is the ij entry of the matrix AB, then we
have

cij =
n∑
k=1

aikbkj .

This definition is not very illuminating. For example, it is not at all clear from this
definition that matrix multiplication is associative. Here is a better way to define
matrix multiplication:

• Let A be an n×n matrix with jth column vector aj ∈ Rn. Then for any column
x ∈ Rn we define the column Ax ∈ Rn as a linear combination of the columns of
A:

Ax =
∑
j

xjaj .

More visually, we have
a11 · · · a1n
... . . . ...
an1 · · · ann



x1
...
xn

 = x1


a11
...
an1

+ · · ·+ xn


an1

...
ann



=


x1a11 + · · ·+ xna1n

...
x1an1 + · · ·+ xnann

 .
One can check that the function Rn → Rn defined by x 7→ Ax “preserves linear
combinations”. That is, for any vectors v1, . . . ,vr ∈ Rn and scalars c1, . . . , ck ∈ R
we have

A(c1v1 + · · ·+ crvr) = c1Av1 + · · ·+ crAvr.

Functions satisfying this property are called linear.

• Conversely, for any linear function f : Rn → Rn we define the n × n matrix
[f ] ∈ Matn(R) whose jth column is given by f applied to the jth standard basis



26 2.3 Basic Examples of Groups

vector:

[f ] :=

f


1
0
...
0

 f


0
1
...
0

 · · · f


0
...
0
1


 .

Using this definition one can check that

[f ]x = f(x) for all column vectors x ∈ Rn.

This establishes a one-to-one correspondence between n× n matrices and linear
functions Rn → Rn.

• Finally, for any matrices A,B ∈ Matn(R) we have linear functions A,B : Rn →
Rn. We let AB denote the matrix corresponding to the composite function A◦B :
Rn → Rn (which is also linear). That is, we define the matrix AB so that

A(Bx) = (AB)x for all column vectors x ∈ Rn.

One can check that this is equivalent to the previous definition.

The first definition is of course necessary for computations. But the second definition
is more meaningful. For example, it explains why matrix multiplication is associative
— because it is just the composition of linear functions.

In summary, the operations of addition and matrix multiplication, together with the
n× n zero matrix and identity matrix

O =


0 · · · 0
... . . . ...
0 · · · 0

 and I =


1 0

1
. . .

0 1

 ,
make the set Matn(R) into a ring. In this class we will only consider matrices
over commutative rings R such as Z,Q,R,C. The group of units of Matn(R) is
called the general linear group:

GLn(R) := Matn(R)×

= {A ∈ Matn(R) : the inverse matrix A−1 exists}.

We care about matrix groups because they are used to describe symmetry in geometry
and physics. On the homework you will investigate certain subgroups of GLn(R). You
may use the following facts from linear algebra:

• We say that a square matrix A is invertible if there exists a (necessarily unique)
matrix B satisfying AB = I and BA = I. Actually, it is sufficient to check that
AB = I, since it turns out that

AB = I =⇒ BA = I.

The proof of this fact is shockingly difficult and it depends on the theory of
dimension for vector spaces. We will develop the proof in a sequence of future
exercises.
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• There exists a special function det : Matn(R)→ R called the determinant. It sat-
isfies the following properties: det(O) = 0, det(I) = 1, det(AB) = det(A) det(B)
and

A−1 ∈ Matn(R) exists ⇐⇒ det(A) ∈ R×.

If R is a field then this reduces to the statement

A−1 ∈ Matn(R) exists ⇐⇒ det(A) 6= 0.

The theory of determinants is quite intricate, and is beyond the scope of this
text.

• Given a matrix A, the transpose matrix AT is defined by reversing the rows and
columns. Transposition interacts with multiplication and determinants via the
formulas (AB)T = BTAT and det(AT ) = det(A). If A−1 exists, then we also
have (AT )−1 = (A−1)T .

Exercises

2.A One Step Subgroup Test

Let (G, ∗, ε) be a group and let H ⊆ G be a subset. Prove that H is a subgroup if and
only if for all a, b ∈ G we have

a, b ∈ H =⇒ a ∗ b−1 ∈ H.

2.B Working With Permutations

Let S3 be the set of all permutations of the set {1, 2, 3}, i.e., the set of invertible
functions

f : {1, 2, 3} → {1, 2, 3}.

(a) List all 6 elements of the set. [I recommend using cycle notation.]

(b) We can think of (S3, ◦, id ) as a group, where ◦ is functional composition and id
is the identity function. Write out the full 6× 6 group table.

(c) Let Sn be the group of permutations of {1, 2, . . . , n}. An element of Sn is called a
transposition if it switches two elements of the set and sends every other element
to itself. We denote the transposition that switches i ↔ j by (i, j) ∈ Sn. Prove
that every element of Sn can be expressed as a composition of transpositions.

(d) Let An ⊆ Sn be the subset of permutations that can be expressed as a composition
of an even number of transpositions. Prove that An ⊆ Sn is a subgroup.

(e) List all elements of the subgroup A3 ⊆ S3 and draw its group table.

[Remark: The subgroup An ⊆ Sn is called the alternating subgroup of Sn. In general
we have #An = n!/2. Can you prove this? It’s possible to give a bijective proof right
now but I prefer to wait until we can give a very slick proof. See Exercise 7.A.]



28 Exercises for Week 2

2.C Working With Axioms

Let G be a set with a binary operation (a, b) 7→ a ∗ b. Consider the following four
possible axioms:

(G1) For all a, b, c ∈ G we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(G2) There exists some ε ∈ G such that a ∗ ε = ε ∗ a = a for all a ∈ G.

(G3) For each a ∈ G there exists some b ∈ G such that a ∗ b = b ∗ a = ε.

(G4) For each a ∈ G there exists some c ∈ G such that a ∗ c = ε.

The element ε in (G2) is called a two-sided identity. The element b in (G3) is called a
two-sided inverse for a and the element c in (G3) is called a right inverse for a.

(a) If (G1),(G2) hold, prove that the two-sided identity element is unique.

(b) If (G1),(G2),(G3) hold, prove that the two-sided inverse is unique.

(c) Assuming that (G1),(G2) hold, prove that (G3)⇔(G4). [Hint: One direction is
obvious. The hard part is to prove that the existence of right inverses implies the
existence of two-sided inverses.]

2.D Matrix Groups

Let R be a commutative ring. Prove that each of the following sets of matrices is a
subgroup of GLn(R):

SLn(R) = {A ∈ Matn(R) : detA = 1},
On(R) = {A ∈ Matn(R) : ATA = I},

SOn(R) = {A ∈ Matn(R) : ATA = I and detA = 1}.



Week 3

3.1 Intersection and Join of Subgroups

We have seen the definition of abstract groups and we have played with the main
examples. It is surprising that three basic group axioms lead to an extraordinarily rich
theory. The topic of “cyclic groups” will be our first glimpse of this theory. Before
diving in, we discuss some generalities on subgroups.

Intersection of Subgroups is a Subgroup. Let (G, ∗, ε) be a group and let Hi ⊆ G
be any family of subgroups (possibly infinite or even uncountable). Then the intersec-
tion ∩iHi ⊆ G is also a subgroup.

Proof. We will use the one step subgroup test (Exercise 2.A). Consider any elements
a, b in the intersection. By definition this means that we have a, b ∈ Hi for each index
i. But then since Hi is a subgroup we must have a ∗ b−1 ∈ Hi. Finally, since a ∗ b−1 is
contained inside each subgroup Hi it follows that a∗b−1 is contained in the intersection.

□

However, the union of subgroups is not necessarily a subgroup. For example, consider
the additive group (Rn,+,0) of vectors in n-dimensional Cartesian space and let u,v ∈
Rn be any two non-zero vectors satisfying u 6= v. Then each of the “lines”

Ru := {αu : α ∈ R} and Rv := {αv : α ∈ R}

is a subgroup of Rn, but the union Ru∪Rv is not a subgroup because, for example, it
does not contain the point u + v:

In linear algebra we fix this problem by defining the “linear span” of the vectors:

Ru ∪ Rv ⊊ Ru + Rv := {αu + βv : α, β ∈ R},
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and we call this the “plane” generated by u and v. This is a special case of a very
general construction.

Subgroup Generated by a Subset. Let (G, ∗, ε) be a group and let S ⊆ G be any
subset. Let X = {H : S ⊆ H} be the set of all subgroups of G that contain the set S
and consider the intersection

〈S〉 :=
⋂
H∈X

H.

From the previous result we know that 〈S〉 ⊆ G is a subgroup. I claim that it is the
smallest subgroup of G that contains the set S. We call it the subgroup of G generated
by S.

Proof. By definition, 〈S〉 is a subgroup of G that contains S. Let K ⊆ G be any other
subgroup that contains S. In this case we must show that 〈S〉 ⊆ K. (This is what we
mean by the “smallest subgroup of G containing S”.) To show this, we observe that
K ∈ X by definition, and hence31

〈S〉 =
⋂
H∈X

H = K ∩
⋂
H∈X
H 6=K

H ⊆ K,

as desired. □

Let’s examine the previous example in light of this definition. Since the union of two
subgroup is not necessarily a subgroup, we define the following operation.

The Join of Two Subgroups. Let G be any group and let H,K ⊆ G be any two
subgroups. We define their join as the smallest subgroup containing their union:32

H ∨K := 〈H ∪K〉. ///

This definition merely establishes existence of the join; it is useless for computations.
In special cases we can be much more explicit. In the group (Rn,+,0), I claim that
the join Ru ∨ Rv is equal to the plane spanned by u and v:

Ru ∨ Rv = Ru + Rv.

Proof. Since Ru and Rv are subsets of Ru∪Rv, which is a subset of Ru∨Rv, we see
that Ru and Rv are subsets of Ru ∨ Rv. This means that the vectors αu and βv are
contained in Ru ∨Rv for all α, β ∈ R. Since Ru ∨Rv is a subgroup of Rn this implies
that αu + βv ∈ Ru ∨ Ru, hence

Ru + Rv = {αu + βv : α, β ∈ R} ⊆ Ru ∨ Rv.

31Recall that A ∩ B ⊆ A for any sets A and B.
32You may have see the symbol “∨” used for “logical conjunction”. In Week 5 we will discuss the

notion of a “lattice”, which unifies the two concepts.
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Conversely, one can check that the plane Ru +Rv is a subgroup of Rn. Indeed, for any
α1u + β1v and α2u + β2v in Ru + Rv we have33

(α1u + β1v)− (α2u + β2v) = (α1 − α2)u + (β1 − β2)v ∈ Ru + Rv.

Then since the plane contains the set Ru∪Rv, it must contains the subgroup generated
by this set:

Ru ∨ Rv = 〈Ru ∪ Rv〉 ⊆ Ru + Rv. □

The key to this proof was the fact that Ru + Rv ⊆ Rn is a subgroup. In Exercise
3.B you will show that a similar construction works for all abelian groups, but fails for
non-abelian groups.

3.2 Cyclic Groups

Now we examine the simplest possible case of a subgroup generated by a subset.

Definition of Cyclic Groups. Let g ∈ G be an element of a group (G, ∗, ε) and
consider the subset {g} ⊆ G containing just this element. We use the following notation
for the subgroup generated by this subset:

〈g〉 := 〈{g}〉 ⊆ G.

We call this the cyclic subgroup generated by g. If there exists an element g ∈ G such
that 〈g〉 = G then we say that G is a cyclic group. ///

Again, this abstract definition is useless for computations. To describe cyclic groups
explicitly, we introduce the exponential notation.

Exponential Notation for Groups. Let g ∈ G be an element of a group (G, ∗, ε).
There is a unique way to define a group element gn for each integer n ∈ Z so that34

• g0 = ε,

• g1 = g,

• gm+n = gm ∗ gn for all integers m,n ∈ Z.

It follows from these properties that g(−1) is the inverse of g, which agrees with our
previous notation. Indeed, we observe from these properties that

ε = g0 = g1+(−1) = g1 ∗ g(−1) = g ∗ g(−1).

33This is the one step subgroup test expressed in additive language.
34Actually, the first property g0 = ε is redundant. To see this, we observe from the third property

that g0 = g0+0 = g0 ∗ g0. Then we can multiply both sides by the inverse element of g0, which exists
because we are working in a group. Compare to Exercise 4.A.
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Proof. Informally, we just define

gn :=



n times︷ ︸︸ ︷
g ∗ g ∗ · · · ∗ g if n > 0,
ε if n = 0,
g−1 ∗ g−1 ∗ · · · ∗ g−1︸ ︷︷ ︸

−n times

if n < 0.

A formal proof would use induction.35 □

The notations g−1 and gn are based on the intuition that ∗ is multiplication (or func-
tional composition). In an additive group (G,+, 0) we prefer to write the inverse of
g ∈ G as −g and we prefer to write the element gn as n ·g. Then the defining properties
become

• 0 · g = 0,

• 1 · g = g,

• (m+ n) · g = m · g + n · g for all integers m,n ∈ Z.

Sometimes we will write n · g as ng when no confusion will result.

Based on this notation we can give a more explicit description of cyclic groups.

Alternate Description of Cyclic Groups. Let g ∈ G be an element of a group
(G, ∗, ε) and let 〈g〉 be the smallest subgroup of G containing the element g. Then 〈g〉
is just the set of powers of g:

〈g〉 = {gn : n ∈ Z} = {. . . , g−2, g−1, ε, g, g2, . . .}.

(The list of powers may contain repetition; see below.)

Proof. Let P = {gn : n ∈ Z} be the set of powers of g. We first note that P is a
subgroup of G. Indeed, for any powers gk and g` we have36

(gk) ∗ (g`)−1 = gk−` ∈ {gn : n ∈ Z}.

Then since P contains g = g1, we must have 〈g〉 ⊆ P . On the other hand, since 〈g〉 is a
group and since g ∈ 〈g〉 one can prove by induction that gn ∈ 〈g〉 for all n ∈ Z. Hence
P ⊆ 〈g〉. □

As a preview of things to come, we will summarize these results in more abstract
language. For each element g ∈ G of a group (G, ∗, ε) there exists a special function
ϕg : Z→ G defined by

ϕg : Z → G
n 7→ gn,

35This is similar to the way that addition and multiplication of natural numbers are defined by
induction using the Peano axioms.

36The general identity (gm)n = gmn can be proved by induction.
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which satisfies the property

ϕg(m+ n) = ϕg(m) ∗ ϕg(n) for all m,n ∈ Z.

In this next section we will see that ϕg is an example of a group homomorphism. This
function need not be injective or surjective. It is surjective if and only if every element
of G has the form gn for some n ∈ Z, i.e., if and only if G is a cyclic group and g is a
generator.

What about injectivity? If ϕg is injective then since Z is infinite the group G must
also be infinite. If G is a finite group then the function ϕg cannot be injective, which
means that there exist some integers k 6= ` satisfying ϕg(k) = ϕg(`). In more mundane
terms, the infinite list of elements

. . . , g−2, g−1, ε, g, g2, . . .

must contain some repetition. Suppose that gk = g` for some integers k < `. Since the
group element gk has inverse g−k we see that

g` = gk

g` ∗ g−k = ε

g`−k = ε,

where `− k ≥ 1 is a positive integer. If m is the smallest positive integer satisfying
gm = ε then you will prove in Exercise 3.C that the group 〈g〉 has exactly m elements:

〈g〉 = {ε, g, g2, . . . , gm−1}.

The positive integer m is called the order of the group element g. If we don’t want to
waste a letter of the alphabet then we can just write

#〈g〉 = order of the group element g.

The oldest non-trivial theorem of group theory says that in a finite group the order of
an element always divides the order of the group. It is difficult to attribute this result
to any one person since it developed slowly over centuries. I attribute this result to
Euler, Fermat and Lagrange, even though they all died before groups were invented.

The Euler-Fermat-Lagrange Theorem. Let (G, ∗, ε) be a finite group. Then for
any element g ∈ G we have

#〈g〉
∣∣∣#G.

In Exercise 3.F you will prove this theorem when G is a finite abelian group, using a
method due to Euler. In Week 6 we will prove the non-abelian case as an easy corollary
to Lagrange’s Theorem. In Exercise 6.C you will examine Euler’s and Fermat’s original
versions of the theorem. In Exercise 10.A you will see why Lagrange’s name is involved.

This family of theorems is a perfect advertisement for the abstract approach to alge-
bra, since the original proofs were quite intricate, but the modern abstract proof (via
Lagrange’s Theorem) is almost trivial.
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3.3 Isomorphism of Groups

Last time we gave the abstract definition of cyclic groups. Note that any cyclic group
G = 〈g〉 is abelian. Indeed, for any two powers gm and gn we have

gm ∗ gn = gm+n = gn+m = gn ∗ gm.

Thus any non-abelian group (e.g., the symmetric group S3) cannot be cyclic. On the
other hand, the Euler-Lagrange-Fermat Theorem allows us to prove that any group
with a prime number of elements must be cyclic.

Groups of Prime Order are Cyclic. Let p be a prime and consider any group G
with #G = p. Then there exists an element g ∈ G such that G = 〈g〉.

Proof. Let (G, ∗, ε) be a group with #G = p for some prime p ≥ 2. Since #G 6= 1
we know that G 6= {ε}, hence there exists some non-identity element g ∈ G. Consider
the cyclic subgroup 〈g〉 ⊆ G. By Euler-Fermat-Lagrange we know that the size of 〈g〉
divides the size of G. Since #G prime and #〈g〉 6= 1 this implies that #〈g〉 = #G,
hence 〈g〉 = G. □

In fact, the proof demonstrates that any non-identity element of G is a generator,
hence the number of generators is p − 1. For a general cyclic group G = 〈g〉 of size n
we will see later (WHEN?) that the number of generators is φ(n), where φ is Euler’s
totient function:

φ(n) = #{1 ≤ k ≤ n : k is coprime to n}.

For example, we have φ(10) = 4 because among the numbers 1, 2, . . . , 10 only the four
numbers 1, 3, 7, 9 are coprime to 10. We will prove later that if g is a generator of a
cyclic group G of size 10 then g3, g7 and g9 are also generators.

The properties of cyclic groups were studied long before the invention of group theory,
because of the following two important examples:

• The group Z/nZ of integers modulo n.

• The group Ωn of complex nth roots of unity.

We will now introduce these groups and discuss the relationship between them.

Modular Arithmetic. In the Disquisitiones Arithmeticae (1801), Carl Friedrich
Gauss introduced the notion of congruence modulo an integer. Let n ≥ 1 be a fixed
integer. Then for any integers k, ` ∈ Z we define the notation37

k ∼n ` ⇐⇒ k − ` is an integer multiple of n.

So, for example,
· · · ∼4 −7 ∼4 −3 ∼4 1 ∼4 5 ∼4 9 ∼4 · · · .

We will use the notation “Z/nZ” to denote the set of integers with respect to to the
relation ∼n. I claim that this set has exactly n elements. To see this, we recall the

37The traditional notation is k ≡ ` mod n, which I find too cumbersome.
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division property of integers: For any integer k ∈ Z (and fixed positive integer n ≥ 1)
there exist unique integers q, r ∈ Z (called the quotient and remainder of k modulo n)
satisfying the following two properties:{

k = qn+ r,
0 ≤ r < n.

In this case we observe that k ∼n r, so that every integer is congruent to an integer
in the set {0, 1, 2, . . . , n − 1}, and the uniqueness of remainders tells us that no two
members of this set are congruent. Hence we can write

Z/nZ = {0, 1, 2, . . . , n− 1}.

One can check that this set forms a group under “addition modulo n”.38 For example,
here is the group table for (Z/4Z,+, 0):

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

I claim that this group is cyclic. Indeed, we have Z/4Z = 〈1〉, since every element of
Z/4Z is an integer multiple of 1.39 Moreover, we have Z/nZ = 〈1〉 for any n ≥ 1. This
is the prototypical example of an additive cyclic group.

Roots of Unity. The fundamental example of a multiplicative cyclic group is given
by the complex roots of unity.

Suppose that a complex number α = a+bi ∈ C satisfies αn = 1 for some integer n ≥ 1.
Because of the multiplicative property of absolute value, this implies that

|αn| = |1|
|α|n = 1
|α| = 1

a2 + b2 = 1.

Hence there exists a unique angle 0 ≤ θ < 2π with a = cos θ and b = sin θ. In Euler’s
notation we can write

α = eiθ = cos θ + i sin θ.

Euler introduced this notation in order to explain de Moivre’s curious observation that

(cosα+ i sinα)(cosβ + i sin β) = cos(α+ β) + i sin(α+ β)

38The details are a bit subtle. You will investigate this in Exercise 3.E.
39Note that we also have Z/4Z = 〈3〉, but Z/4Z 6= 〈2〉. See Exercise 5.B.
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for all angles α, β ∈ R. Euler defined the natural exponential function in terms of
power series:40

ex := 1 + x+ x2

2
+ x3

6
+ · · ·+ xn

n!
+ · · · .

Next week we will give an alternative explanation in terms of rotation matrices.

Since cos θ and sin θ depend only on the angle represented by the real number θ ∈ R,
we observe that

eiα = eiβ ⇐⇒ α− β is an integer multiple of 2π.

Now fix some integer n ≥ 1 and consider the special complex number

ω := e2πi/n.

Note that ωn = (e2πi/n)n = e2πi = e0i = 1, and hence

(ωk)n = (ωn)k = 1k = 1

for any integer k ∈ Z. Thus every complex number of the form ωk with k ∈ Z is an
nth root of unity. For all integers k, ` ∈ Z we observe that

ωk = ω` ⇐⇒ e2πik/n = e2πi`/n

⇐⇒ 2πk/n− 2π`/n is an integer multiple of 2π
⇐⇒ k/n− `/n is an integer multiple of 1
⇐⇒ k − ` is an integer multiple of n
⇐⇒ k ∼n `.

Thus we have obtained n distinct nth roots of unity.41 We denote this set by

Ωn = {1, ω, ω2, . . . , ωn−1}.

Note that this is a cyclic group under multiplication, with generator ω.42 Geometrically,
we can view the elements of Ωn as equally spaced points around the unit circle in the
complex plane. This is where cyclic groups get their name.

PICTURE

Group Homomorphism and Isomorphism. For any integer n ≥ 1, the additive
group (Z/nZ,+, 0) and the multiplicative group (Ωn, ·, 1) are “essentially the same”.
What does this mean?

40The key property of this power series is that exey = ex+y for any numbers x and y (real or complex).
This follows from the binomial theorem.

41We will prove in Week 16 that a polynomial of degree n can have no more than n distinct roots.
Hence we have found all of the nth roots of unity.

42The generator of a cyclic group is not unique. In Exercise 5.B you will show that Ωn = 〈ωk〉 for
any integer 1 ≤ k < n with gcd(k, n) = 1.
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Given two groups (G, ∗, εG) and (H, •, εH), a function ϕ : G → H is called a group
homomorphism when it satisfies the following property:

ϕ(a ∗ b) = ϕ(a) • ϕ(b) for all a, b ∈ G.

If ϕ is also an invertible function then we call it a group isomorphism. If there exists43

a group isomorphism ϕ : G→ H then we say that G and H are isomorphic as groups44

and we write
(G, ∗, εH) ∼= (H, •, εH), or just G ∼= H.

For example, I claim that (Z/nZ,+, 0) ∼= (Ωn, ·, 1) for any integer n ≥ 1.

Proof. We must find a bijective function ϕ : Z/nZ→ Ωn satisfying

ϕ(k + `) = ϕ(k)ϕ(`) for all k, ` ∈ Z/nZ.

We already know such a function. If ω = e2πi/n then we showed above that

ωk = ω` ⇐⇒ k ∼n `.

Thus the function ϕ : Z/nZ → Ωn defined by ϕ(k) = ωk is a bijection. And this
function is a group homomorphism by the properties of exponents:

ϕ(k + `) = ωk+` = ωkω` = ϕ(k)ϕ(`). □

In essence, a group isomorphism is just a way to relabel the entries of the group table.
For example, we consider the groups Z/4Z = {0, 1, 2, 3} and Ω4 = {1, i,−1,−i} (where
ω = e2πi/4 = i). The bijection ϕ(k) = ωk sends 0, 1, 2, 3 to 1, i,−1,−i, respectively.
Thus it relates the two group tables as follows:

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

ϕ−→

· 1 i −1 −i

1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −i

In fact, we will show that any cyclic group is isomorphic to the (Z,+, 0) or (Z/nZ,+, 0)
for some n ≥ 1. In other words, there is a unique infinite cyclic group and there is a
unique cyclic group of each size.

Uniqueness of Cyclic Groups. If (G, ∗, ε) is a cyclic group then we have

G ∼= (Z,+, 0) or G ∼= (Z/nZ,+, 0) for some integer n ≥ 1.

Proof. By assumption we have G = 〈g〉 for some element g ∈ G. Consider the group
homomorphism ϕg : (Z,+, 0) → G defined by ϕ(k) := gk. Since G = 〈g〉 we know

43Isomorphisms are not unique. It one exists then many will exist.
44We will also use the notation ∼= for isomorphisms of other stuctures, such as rings and vector

spaces. There are only so many symbols that look like an equals sign.
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that ϕg is a surjective function. If G has infinitely many elements, I claim that ϕg
is also injective. Indeed if ϕg is not injective then the argument in Section 3.2 shows
that 〈g〉 has finitely many elements, which since G = 〈g〉 implies that G has finitely
many elements. We have shown that ϕg : Z→ G is a bijective homomorphism, i.e., an
isomorphism.

Now suppose that G has finitely many elements, say #G = n ≥ 1. In this case the
surjective homomorphism ϕg : Z → G is not injective. Instead, you will prove in
Exercise 3.C that

gk = g` ⇐⇒ k ∼n `.

It follows that that ϕg defines an isomorphism45 from Z/nZ to G. □

In summary:

• Any infinite cyclic group is isomorphic to (Z,+, 0).

• Any cyclic group of order n ≥ 1 is isomorphic to (Z/nZ,+, 0).

• Any group of prime order p is cyclic, hence isomorphic to (Z/pZ,+, 0).

• Any cyclic group is abelian, hence non-abelian groups are not cyclic.

Here is a table listing the number of non-isomorphic groups of small orders:

#G 1 2 3 4 5 6 7 8 9 10 11

number of groups 1 1 1 2 1 2 1 5 2 2 1

We will meet all of these groups in this course.46

Exercises

3.A Powers of a Cycle

Consider the “standard 12-cycle” in cycle notation:

c := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) ∈ S12.

Compute the first twelve powers c, c2, c3, . . . , c12 and express each of them in cycle
notation. Try to guess what the k-th power of an n-cycle looks like.

45The phrase “defines an isomorphism” is intentionally a bit vague. We will be more precise when
we discuss the First Isomorphism Theorem in Week 7.

46In general it is probably hopeless to compute the number of groups with a given number of elements.
See the remarks after Exercise 4.D.
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3.B Join of Two Subgroups

Let G be a group and let H,K ⊆ G be subgroups. Recall that the subgroup generated
by the union H ∪K is called the join:

H ∨K := 〈H ∪K〉
:= the intersection of all subgroups that contain H ∪K.

(a) If (G,+, 0) is abelian, we define the sum of H and K as follows:

H +K := {h+ k : h ∈ H, k ∈ K}.

Prove that this is a subgroup.

(b) If (G,+, 0) is abelian, use part (a) to prove that H ∨K = H +K.

(c) If (G, ∗, ε) is non-abelian, show that the following set is not necessarily a sub-
group, and hence it does not coincide with the join:

H ∗K := {h ∗ k : h ∈ H, k ∈ K}.

[Hint: The smallest non-abelian group is S3.]

3.C Order of an Element

Let (G, ∗, ε) be a group and let g ∈ G be any element. Recall that there is a unique
way to define group elements gn ∈ G for all integers n ∈ Z so that

• g1 = g,

• gm+n = gn ∗ gm for all m,n ∈ Z.

Equivalently, there exists a unique group homomorphism from (Z,+, 0) to G sending
1 to g, and we denote this homomorphism by n 7→ gn.

(a) Let 〈g〉 ⊆ G be the smallest subgroup of G that contains the element g. Prove
that

〈g〉 = {gn : n ∈ Z}.

[Hint: Show that the set on the right is a subgroup of G.]

(b) If 〈g〉 is a finite set, prove that there exists some n ≥ 1 such that gn = ε.

(c) Let 〈g〉 be a finite set and let m ≥ 1 be the smallest positive integer satisfying
gm = ε. In this case, prove that 〈g〉 has exactly m elements:

〈g〉 = {ε, g, g2, . . . , gm−1}.

This m is called the order of the element g ∈ G. If the set 〈g〉 is infinite then
we will say that g has infinite order. [Hint: For each integer k ∈ Z there exist
unique integers q, r ∈ Z satisfyiing k = qm+ r and 0 ≤ r < m.]
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3.D Matrices of Finite and Infinite Order

Consider the matrices

J =
(

1 1
0 1

)
and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
for any θ ∈ R.

(a) Show that J is invertible and has infinite order.

(b) Next week we will show that the function R2 → R2 defined by x 7→ Rθx rotates
each vector counterclockwise around the origin by angle θ. Use this fact to prove
that RαRβ = Rα+β for all angles α, β ∈ R. [Hint: Matrix multiplication is the
same as composition of functions.]

(c) For any integer n ≥ 1, use part (b) to show that the matrix R2π/n has order n.

(d) For which angles θ does the matrix Rθ have infinite order?

3.E Properties of Modular Arithmetic

Fix an integer n ≥ 1. Then for any integers k, ` ∈ Z we define the notation

k ∼n ` ⇐⇒ k − ` is an integer multiple of n.

Prove the following fundamental properties.

(a) For all a ∈ Z we have a ∼n a.

(b) For all a, b ∈ Z we have a ∼n b if and only if b ∼n a.

(c) For all a, b, c ∈ Z, if a ∼n b and b ∼n c then a ∼n c.

(d) For all a, b, a′, b′ ∈ Z, show that

a ∼n a′ and b ∼n b′ =⇒ a+ b ∼n a′ + b′ and ab ∼n a′b′.

[Remark: The first three properties say that ∼n is an equivalence relation on the set
Z. The last property says that addition and multiplication are well-defined with respect
to ∼n. We will develop these ideas in Weeks 6 and 7. They form the basis for the
concepts of quotient groups and quotient rings.]

3.F The Euler-Fermat-Lagrange Theorem, I

Let (G, ∗, ε) be a group and let g ∈ G be any element. Define the function µg : G→ G
by µg(a) := g ∗ a.

(a) Prove that µg : G→ G is a bijection.

(b) Recall that 〈g〉 ⊆ G is the subgroup consisting of powers of g ∈ G. If G is a finite
abelian group, prove that

#〈g〉 divides #G for all g ∈ G.
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That is, “the order of each element divides the order of the group”. [Hint: Suppose
that G = {a1, a2, . . . , an}. Use part (a) to show that

∏
i ai =

∏
i fg(ai). Rearrange

and then cancel.]

(c) Use part (b) to show that any abelian group of prime order is cyclic.

[Remark: This theorem is also true for finite non-abelian groups but we don’t have
the technology to prove it yet. The technology we need is called “Lagrange’s Theorem”.
In Exercise 6.C you will see what this result has to do with Euler and Fermat.]
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Week 4

This week we will discuss the important relationship between groups and geometry.
Some students wonder why there is very little geometry in the undergraduate curricu-
lum. Around 1900 there was a strong trend among research mathematicians toward
rigor and axiomatization. Eventually it was decided that set theory would be the logi-
cal foundation of mathematics. By the mid-1900s this trend had trickled down to the
undergraduate curriculum.

It takes a long time to develop geometry via set theory, so most geometric topics were
postponed until graduate school. As a prime example of this trend, the collective
of French mathematicians known as “Nicolas Bourbaki” wrote an influential series
of textbooks intended to develop mathematics from scratch using the new rigorous
foundations. These textbooks carefully avoided illustrations, on the grounds that the
eyes can deceive.

Today there is a general agreement that Bourbaki over-corrected. Recent textbooks
such as Michael Artin’s Algebra (1991) strive for a balance between axiomatic proof
and motivating examples. This book is part of that trend. When reading such a book,
the student should be aware that some examples are presented without proof because
the proofs are either too difficult or too long. The purpose of these examples is to show
why we care about the subject.

4.1 Vector Spaces

The modern axiomatic treatment of geometry begins with “vector spaces” over the real
numbers. More generally, we can define vector spaces over any field.

Definition of Vector Spaces. A vector space consists of:

• an abelian group (V,+,0) of “vectors”,47

• a field (F,+, ·, 0, 1) of “scalars”,

• an operation F × V → V called “scalar multiplication”, which we denote by
juxtaposition: (α,v) 7→ αv.

Scalar multiplication must satisfy the following rules:48

47I typically use boldface to denote vectors.
48These rules can be summarized further by saying that (V, +, 0) is an “F-module”.
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• 1v = v for all v ∈ V ,

• α(βv) = (αβ)v for all α, β ∈ F and v ∈ V ,

• (α+ β)v = αv + βv for all α, β ∈ F and v ∈ V ,

• α(u + v) = αu + αv for all α ∈ F and u,v ∈ V .

We will denote the vector space by V when the field of scalars is understood. If we
want to emphasize the field then we will write V/F or we will say that “V is a vector
space over F”.49 ///

As usual, there are some basic properties that we do not include as axioms because
they can be proved. For example, we must have 0v = 0 for all v ∈ V because

0v = (0 + 0)v = 0v + 0v.

Then adding the inverse −0v (which exists because V is a group) to both sides gives
0 = 0v. From this we can show that (−1)v is the additive inverse of v for all v ∈ V .
Indeed, we have

v + (−1)v = 1v + (−1)v = (1− 1)v = 0v = 0,

and then adding −v to both sides gives (−1)v = −v. Note that we may use the
same symbol “+” for addition in the group V and in the field F without confusion.
Furthermore, the axiom α(βv) = (αβ)v allows us to use juxtaposition for both kinds
of “multiplication”. This is the mark of good notation.

The following is a continuation of the discussion in Section 2.3.

Definition of Cartesian Space. Fix an integer n ≥ 1 and a field F. Let Fn denote
the set of n× 1 column vectors with entries from F:

Fn :=



x1
...
xn

 : x1, . . . , xn ∈ F

 .
The following familiar definitions make Fn into a vector space over F:

0 :=


0
...
0

 ,

x1
...
xn

+


y1
...
yn

 :=


x1 + y1

...
xn + yn

 , α


x1
...
xn

 :=


αx1

...
αxn

 .
This example looks quite specific, but in a certain sense these are the only vector spaces
that exist. To be precise, we will prove below that “any vector space of dimension n
over a field F is isomorphic to the Cartesian space Fn”. In order to state this theorem

49The notation V/F and the word “over” don’t mean anything technical. They are just colloquial.
The idea is the field F is the foundation and we build a theory of geometry on top of it. The classical
choice is F = R.
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precisely I need to define the concepts of “dimension” and “isomorphism” for vector
spaces. Intuitively, the dimension of a vector space is the number of parameters required
to specify a vector. This can be formalized via the concept of a “basis”.

Basis and Dimension of a Vector Space. Let V be a vector space over a field F.
A set of vectors {b1, . . . ,bn} ⊆ V is called a basis for V if every vector v ∈ V has a
unique expression of the form

v = v1b1 + · · ·+ vnbn for some scalars v1, . . . , vn ∈ F.

A given vector space has many different bases, but it turns out that any two bases must
have the same number of elements. This common number is called the dimension:50

dimF(V ) := the number of elements in any basis for V .

By convention, the trivial vector space {0} has dimension zero. (If you want, you can
say that the empty set is a basis.) If V/F does not have a finite basis then we write
dimF(V ) =∞. Infinite-dimensional vector spaces are much more subtle and we do not
discuss them in this class. ///

The fact that any two bases have the same number of elements was well-known in
the 1800s. The standard proof was given by Ernst Steinitz (1913), using the method
of “Steinitz Exchange” (see Exercise 7.C). Most of the basics of what we call “linear
algebra” were common knowledge in the late 1800s. Early attempts at axiomatization
were made by Peano (1888) and Weyl (1918), but they did not catch on right away.
The subject developed rapidly in the 1920s when it became a necessary ingredient of
quantum theory. The first textbook treatment was in van der Waerden’s Moderne
Algebra (1930) and the first English treatment was given by Birkhoff and Mac Lane in
their Survey of Modern Algebra (1941). The basic definitions have not changed since
then.51

The Standard Basis. The Cartesian space Fn is n-dimensional because it has a basis
consisting of n vectors. The standard basis consists of vectors e1, . . . , en ∈ Fn where ei
has a 1 in the ith coordinate and zeroes elsewhere:

e1 =


1
0
...
0

 , · · · , en =


0
...
0
1

 .

We observe that this is a basis since any vector x = (x1, . . . , xn) ∈ Fn has the unique
expression

x = x1e1 + · · ·+ xnen

50If the field is understood we will just write dim(V ).
51See Moore, The Axiomatization of Linear Algebra: 1875-1940 (1995).
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
x1
x2
...
xn

 = x1


1
0
...
0

+ · · ·+ xn


0
...
0
1

 .

Next we will prove that any finite-dimensional vector space is “isomorphic” to Fn for
some field F and integer n ≥ 0. The notion of isomorphism for vector spaces is based
on the notion of linear functions.52

Linear Functions and Isomorphism of Vector Spaces. Let U and V be vector
spaces over a field F. A function ϕ : U → V is called F-linear if it preserves vector
addition and scalar multiplication. To be precise, we require that:

• ϕ(u + v) = ϕ(u) + ϕ(v) for all u,v ∈ V ,

• ϕ(αu) = αϕ(u) for all u ∈ V and α ∈ F.

We can summarize these two properties by saying that ϕ preserves “F-linear combina-
tions” of vectors:

ϕ(α1u1 + · · ·+ αkuk) = α1ϕ(u1) + · · ·+ αkϕ(uk)

for all vectors u1, . . . ,uk ∈ V and scalars α1, . . . , αk ∈ F. If the field is understood
then we say “linear” instead of “F-linear”.

If the linear function ϕ is invertible then we call it a vector space isomorphism.53 If
there exists a vector space isomorphism ϕ : U → V then we say that U and V are
isomorphic as vector spaces and we write U ∼= V . ///

One might object to our use of the same symbol “∼=” to denote isomorphism of groups
and vector spaces. Note that a linear map ϕ : U → V is, in particular, a group
homomorphism from (U,+,0) to (V,+,0). Thus an isomorphism of vector spaces
U ∼= V implies an isomorphism of groups. The notation can only carry so much
information, and we must rely on context clues.

Now we can prove the uniqueness theorem.

Uniqueness of Finite Dimensional Vector Spaces. Let V be an n-dimensional
vector space over a field F. Then we have a vector space isomorphism:

V ∼= Fn.

Proof. The idea of the proof is to “choose a basis” for V . Suppose that dimF(V ) = n.
By definition this means that there exists a basis consisting of n vectors: b1, . . . ,bn ∈

52Linear functions are also called linear maps, or linear transformations. More abstractly, we can
call them “vector space homomorphisms”. The process of generalization sometimes leaves us with too
many words for the same concept.

53As was the case with group homomorphisms, you will prove in Exercise ?? that the inverse of a
linear function is also linear.



4.1 Vector Spaces 47

V . To be precise, any vector u ∈ V can be expressed as u = u1b1 + · · ·unbn for some
scalars u1, . . . , un ∈ F, and for any scalars u1, . . . , un, v1, . . . , vn ∈ F we have

u1b1 + · · ·+ unbn = v1b1 + · · ·+ vnbn ⇐⇒ ui = vi for all i.

Given any such basis, we can define a function ϕ : V → Fn by sending the coefficient
of bi to the ith Cartesian coordinate:

ϕ(u1b1 + · · ·+ unbn) :=


u1
...
un

 .
It is not difficult to check that this ϕ is a vector space isomorphism. □

We end this section by describing the relationship between linear functions and matri-
ces. If U and V are finite-dimensional vector spaces over a field F then by choosing
bases we obtain isomorphisms U ∼= Fn and V ∼= Fm. This allows us to represent each
linear function ϕ : U → V as a matrix with m rows and n columns, whose entries come
from F. The following is a continuation of the discussion from Section 2.3.

Matrices = Linear Functions. Let F be a field. For any integers m,n ≥ 1 we will
construct a bijection:

{linear functions Fn → Fm} ←→ {m× n matrices over F} .

To be precise, given an F-linear function ϕ : Fn → Fm we let [ϕ] ∈ Matm×n(F) denote
the m × n matrix whose jth column vector is ϕ(ej) ∈ Fm, where e1, . . . , en ∈ Fn are
the standard basis vectors:

[ϕ] :=

 | |
ϕ(e1) · · · ϕ(en)
| |

 .
Then for any vector x ∈ Fn one can check that

ϕ(x) = [ϕ]x,

where [ϕ]x is the matrix product of the m× n matrix [ϕ] and the n× 1 column x. In
fact, this formula motivates the definition of the matrix product.

Thus we have a map ϕ 7→ [ϕ] sending linear functions to matrices. This map is
injective because “any linear function is determined by its values on a basis”. To be
precise, consider two linear functions ϕ,ψ : Fn → Fm with corresponding matrices
[ϕ], [ψ]. If [ϕ] and [ψ] are the same matrix then they have the same columns, hence
ϕ(ej) = ψ(ej) for all standard basis vectors e1, . . . , en ∈ Fn. It follows that for any
vector x = (x1, . . . , xn) ∈ Fn we have

ϕ(x) = ϕ(x1e1 + · · ·+ xnen)
= x1ϕ(e1) + · · ·+ xnϕ(en)
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= x1ψ(e1) + · · ·+ xnψ(en)
= ψ(x1e1 + · · ·+ xnen)
= ψ(x),

hence ϕ and ψ are the same function.

To see that the map ϕ 7→ [ϕ] from linear functions to matrices is surjective, we must
show that for every matrix A ∈ Matm×n(F) there exists some linear function ϕ : Fn →
Fm satisfying ϕ(x) = Ax for all x ∈ Fn. This is easy; we simply define ϕ(x) := Ax using
matrix multiplication. This function is linear by the properties of matrix multiplication,
and it satisfies [ϕ] = A because

Aej = the jth column of A = ϕ(ej)

for all j ∈ {1, . . . , n}.

Matrix Multiplication = Composition of Linear Functions. We have defined a
correspondence between linear functions and matrices. Now we will show that matrix
multiplication corresponds to composition of linear functions.

Fix some integers `,m, n ≥ 1 and consider two linear functions ψ : Fn → Fm and
ϕ : Fm → F` with corresponding matrices [ϕ] ∈ Mat`×m(F) and [ψ] ∈ Matm×n(F).
Since ψ maps into Fm and ϕ maps from Fm, we may consider the composite function
ϕ ◦ ψ : Fn → F`. This function is also linear since for any vectors u1, . . . ,un ∈ Fn and
scalars α1, . . . , αn ∈ F we have

(ϕ ◦ ψ)(α1u1 + · · ·+ αnun) = ϕ(ψ(α1u1 + · · ·+ αnun))
= ϕ(α1ψ(u1) + · · ·+ αnψ(un))
= α1ϕ(ψ(u1)) + · · ·+ αnϕ(ψ(un))
= α1(ϕ ◦ ψ)(u1) + · · ·+ αn(ϕ ◦ ψ)(un).

Thus it has a corresponding matrix [ϕ◦ψ] ∈ Matn×`(F). I claim that the three matrices
[ϕ], [ψ], [ϕ ◦ ψ] are related by matrix multiplication:

[ϕ ◦ ψ] = [ϕ][ψ].

In fact, this formula motivates the definition of the matrix product.

To verify this, recall that for any `×m matrix A with ij entry aij and for any m× n
matrix B with ij entry bij , the `×m matrix AB has ij entry cij defined by

cij =
m∑
k=1

aikbkj .

This definition is equivalent to the statement that

(the jth column of AB) = A(the j column of B).
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Now let A = [ϕ] and B = [ψ], where ϕ,ψ are the linear functions from above. Putting
all of the definitions together gives

(jth column of [ϕ ◦ ψ]) = (ϕ ◦ ψ)(ej)
= ϕ(ψ(ej))
= [ϕ]ψ(ej)
= [ϕ](jth column of [ψ])
= (jth column of [ϕ][ψ]).

Since this holds for all j, we conclude that [ϕ ◦ ψ] = [ϕ][ψ] as desired.

4.2 Euclidean Space and Orthogonal Matrices

Abstract vector spaces allow us to talk about “dimension”, which is an important
geometric concept. In traditional “Euclidean” geometry we also need to talk about
lengths and angles, which means we must work over the field of real numbers. This
leads to the concept of an inner product space.

Definition of Inner Product Spaces. An inner product space consists of a vector
space V over the field of real numbers R and a function V × V → R denoted by
(u,v) 7→ 〈u,v〉, which satisfies the following properties:54

• 〈u,v〉 = 〈v,u〉 for all u,v ∈ V ,

• 〈αu + βv,w〉 = α〈u,w〉+ β〈v,w〉 for all α, β ∈ R and u,v,w ∈ V ,

• 〈u,u〉 ≥ 0 for all u ∈ V ,

• 〈u,u〉 = 0 if and only if u = 0.

Each of these properties has a special name. The four properties above, in order, say
that the function 〈−,−〉 must be symmetric, bilinear,55 positive and definite. Two inner
product spaces U and V are called isomorphic if there exists a vector space isomorphism
ϕ : U → V preserving inner products:56

〈ϕ(u), ϕ(v)〉 = 〈u,v〉 for all u,v ∈ U . ///

EXERCISE IDEA: WORKING WITH AXIOMS

The abstract concept of inner products is necessary in the context of infinite-dimensional
spaces, such as those that occur in quantum theory. However, for finite dimensional
spaces there is only one example, which we call “Euclidean space”.

54The physics notation is 〈u|v〉, which was made popular by Dirac in the context of quantum theory.
55Linearity in the first position together with symmetry implies linearity in the second position.
56It turns out that this extra condition is automatic for finite-dimensional spaces. That is, if U and

V are isomorphic finite-dimensional spaces over R and if U and V each has an inner product, then
there exists a vector space isomorphism ϕ : U → V preserving inner products. Thus we need not worry
too much about isomorphism of inner product spaces.
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Euclidean Space. Recall that any finite dimensional vector space over R is isomorphic
to the Cartesian space Rn for some integer n ≥ 0. This space comes equipped with the
standard inner product, which is just the elementary “dot product”. That is, for any
vectors x,y ∈ Rn we define

〈x,y〉 := xTy =
(
x1 x2 · · · xn

)

y1
y2
...
yn

 = x1y1 + x2y2 + · · ·+ xnyn,

where xTy is the product of a 1×n matrix with an n×1 matrix, yielding a 1×1 matrix,
i.e., a scalar. Note the important role of transposition x 7→ xT in this definition.

The dot product allows us to discuss distances. We can think of x = (x1, . . . , xn) ∈ Rn
either as a point or as an arrow with head at x and tail at the origin 0 = (0, . . . , 0).
Let ‖x‖ denote the length of this arrow — equivalently, the distance between points 0
and x. Then the extended Pythagorean theorem says that57

‖x‖2 = 〈x,x〉 = x2
1 + x2

2 + · · ·+ x2
n.

We can think of the difference y − x = (y1 − x1, . . . , yn − xn) as the arrow with head
at y and tail at x, hence we have a formula for the distance between two points:

(distance between x and y)2 = ‖x− y‖2 = 〈x− y,x− y〉.

More surprisingly, we can use the inner product to compute the angle between any two
vectors. To see this, we observe that the vectors x, y and x − y form three sides of a
triangle:

By expanding the the expression ‖x− y‖2 = 〈x− y,x− y〉 algebraically, we obtain

‖x− y‖2 = 〈x− y,x− y〉
= 〈x,x− y〉 − 〈y,x− y〉
= 〈x,x〉 − 〈x,y〉 − (〈y,x〉 − 〈y,y〉)
= 〈x,x〉 − 〈x,y〉 − 〈y,x〉+ 〈y,y〉
= 〈x,x〉+ 〈y,y〉 − 2〈x,y〉
= ‖x‖2 + ‖y‖2 − 2〈x,y〉.

On the other hand, the geometric “law of cosines” applied to the same triangle gives

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2 ‖x‖ ‖y‖ cos θ,

57In dimensions 2 and 3 this is a theorem. In higher dimensions you may regard it as a definition.
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where θ is the angle between the vectors x and y, set tail-to-tail. Finally, by comparing
the algebraic and geometric formulas, we obtain the important geometric interpretation
of the dot product:

〈x,y〉 = ‖x‖‖y‖ cos θ.

This formula is the basic link between algebra and geometry. A special example says
that the vectors x,y are perpendicular precisely when their dot product is zero:

x ⊥ y ⇐⇒ cos θ = 0 ⇐⇒ 〈x,y〉 = 0.

In the nineteenth and early twentieth centuries, when a new professor joined a German
speaking university, the professor was expected to give a public lecture laying out their
research program. Felix Klein’s 1872 inaugural address at the University of Erlangen
has become a famous event in the history of geometry. In this so-called Erlangen
program, Klein advocated the point of view that geometric structures should be studied
via their “groups of symmetries”.

By a “symmetry” of Euclidean space Rn we mean any bijective function ϕ : Rn → Rn
that preserves distances and angles. In fact, we will see that a function that preserves
distance is necessarily invertible and also preserves angles. Hence we make the following
definition.

Definition of Isometries. An isometry is any function ϕ : Rn → Rn on Euclidean
space that preserves distances:

‖ϕ(x)− ϕ(y)‖ = ‖x− y‖ for all x,y ∈ Rn.

For example, for any vector v ∈ Rn we define the translation function τv : Rn → Rn
by τv(x) := x + v. This function is an isometry since for all x,y ∈ Rn we have

‖τv(x)− τv(y)‖ = ‖(x + v)− (y + v)‖ = ‖x− y‖.

For another example, letA ∈ On(R) be any orthogonal matrix (i.e., satisfying ATA = I)
and consider the function ϕA : Rn → Rn defined by matrix multiplication: ϕ(x) := Ax.
Then for any x,y ∈ Rn we have

〈ϕA(x), ϕA(y)〉 = 〈Ax, Ay〉
= (Ax)T (Ay)
= xTATAy
= xTy
= 〈x,y〉.

Then since ϕA preserves inner products, it necessarily preserves distances and angles.
The following amazing theorem says that every isometry is a composition of a trans-
lation and an orthogonal matrix. We will defer its proof to the exercises (WHICH
ONES?).
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The Isometry Theorem. Let ϕ : Rn → Rn be any isometry. Then there exist a
unique vector v ∈ Rn and a unique orthogonal matrix A ∈ On(R) such that

ϕ(x) = Ax + v for all x ∈ Rn. ///

Remark: Note that ϕ(0) = A0 + v = 0 + v = v. If v 6= 0 then this function is not
linear, i.e., it does not preserve linear combinations. On the one hand, we have

ϕ(αx + βy) = A(αx + βy) + v = αAx + βAy + v.

On the other hand, we have

αϕ(x) + βϕ(y) = α(Ax + v) + β(Ay + v) = αAx + βAy + (α+ β)v.

These expressions are not the same. Functions of the form x 7→ Ax+v are called affine
functions, or affine transformations.

Here is a sketch of the main steps in the proof of the Isometry Theorem. You will fill
in the details in Exercise 4.B.

Sketch of a Proof. Here are the main steps in the proof of existence:

• Let ϕ : Rn → Rn be an isometry and consider the vector v := ϕ(0).

• Let ψ = τ−v ◦ ϕ, where τ−v : Rn → Rn is the translation by −v. This function,
being a composition of isometries, is an isometry, and it sends the origin to itself:

ψ(0) = (τ−v ◦ ϕ)(0) = τ−v(ϕ(0)) = τ−v(v) = v− v = 0.

• If ψ : Rn → Rn is any isometry sending the origin to itself, one can show that

〈ψ(x), ψ(y)〉 = 〈x,y〉 for all x,y ∈ Rn.

• One can show that any isometry preserving the dot product is necessarily linear.

• One can show that any linear function preserving the dot product has the form
ψ(x) = Ax for some orthogonal matrix A ∈ On(R).

• We conclude that τ−v(ϕ(x)) = ψ(x) = Ax and hence

ϕ(x) = τ−1
−v(Ax) = τv(Ax) = Ax + v for all x ∈ Rn.

The uniqueness of the matrix A and vector v is easier to show. Consider any matrices58

A,B and vectors u,v satisfying Ax + u = Bx + v for all x ∈ Rn. This implies that
(A−B)x = v−u for all x ∈ Rn. In particular, taking x = 0 gives 0 = (A−B)0 = u−v
and hence u = v. Then canceling u from both sides of Ax + u = Bx + v = Bx + u
gives Ax = Bx for all x ∈ Rn. Finally, substituting the jth basis vector, x = ej , shows
that the matrices A and B have the the same jth column vector. Hence A = B. □

The ideas in the Isometry Theorem will make more sense later when we discuss semi-
direct products. For now we will use the theorem to study some important examples.

58Actually, we do not need to assume that A is orthogonal. The proof of uniqueness holds for any
affine transformation Ax + v.
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4.3 Rotations and Reflections

At the beginning of this chapter I promised to discuss the relationship between groups
and geometry. The first example of this relationship is the family of “dihedral groups”.
These are the simplest kinds of groups after the cyclic groups.

Introduction to Dihedral Groups.59 Let D2n denote the “group of symmetries of
a regular n-gon in the plane”. These words make intuitive sense but it will take a bit
of work to make them precise. We begin by considering the group D12 of symmetries
of a regular hexagon. I claim that this group has exactly 12 elements, consisting of 6
rotations (including the identity function) and 6 reflections:

For simplicity, suppose that our hexagon has center at (0, 0) and one of its vertices
on the positive x-axis. Let R : R2 → R2 be the rotation counterclockwise by 2π/6
and let F : R2 → R2 be the reflection across the x-axis. Each of these functions is
an isometry, hence from the Isometry Theorem can be represented as an orthogonal
matrix. Specifically, we will find that

R =
(

1/2 −
√

3/2√
3/2 1/2

)
and F =

(
−1 0
0 1

)
.

This group is not abelian because, for example, RF 6= FR. One can check that R has
order 6 and F has order 2. Furthermore, one can check that FRF = R−1 = R5. In
Exercise 4.C you will use these facts to prove that the subgroup of O2(F) generated by
R and F has 12 elements, which can be listed as follows:

〈R,F 〉 := 〈{R,F}〉 = {I,R,R2, R3, R4, R4, R5,

F,RF,R2F,R3F,R4F,R4F,R5F}.

In order to complete our description of D12, it remains to show that every symmetry
of the hexagon can be expressed in terms of rotations and reflections.

Isometries of the Plane. In fact, we will show that any isometry of R2 that fixes
the origin is either a rotation or a reflection. Recall from the Isometry Theorem that
any such isometry has the form ϕ(x) = Ax for some orthogonal matrix A ∈ O2(R),
i.e., a 2× 2 matrix with real entries satisfying ATA = I. Let us write

A =
(
a b
c d

)
for some a, b, c, d ∈ R.

59A “dihedron” is a polygon with two sides: front and back.
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Then the equation ATA = I tells us that(
1 0
0 1

)
=
(
a c
b d

)(
a b
c d

)

=


(
a c

)(a
c

) (
a c

)(b
d

)
(
b d

)(a
c

) (
b d

)(b
d

)
 =

(
a2 + c2 ab+ cd

ab+ cd b2 + d2

)
.

In other words, the column vectors (a, c) and (b, d) of A are perpendicular unit
vectors. Since (a, c) has length 1 we can write

(a, c) = (cos θ, sin θ) for some unique angle 0 ≤ θ < 2π.

Now there only two possibilities for the vector (b, d). Since (b, d) is a unit vector that is
perpendicular to (a, c), we must have (b, d) = (− sin θ, cos θ) or (b, d) = (sin θ,− cos θ).
Here is a picture:

In summary, we have shown that every 2× 2 orthogonal matrix A ∈ O2(R) has one of
the following two forms:

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
or Fθ =

(
cos θ sin θ
sin θ − cos θ

)
.

Note that any orthogonal matrix of any size satisfies det(A) = ±1 since

ATA = I

det(ATA) = det(I)
det(AT ) det(A) = 1

det(A) det(A) = 1
det(A)2 = 1
det(A) = ±1.
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In the case of 2× 2 matrices we observe that

det(Rθ) = cos2 θ + sin2 θ = 1 and det(Fθ) = − cos2 θ − sin2 θ = −1.

I claim that Rθ is a rotation60 and Fθ is a reflection. [Remark: R is for Rotation and
F is for reFlection (or Flip).] The Isometry Theorem says that any isometry fixing the
origin is necessarily linear. Since rotations and reflections are clearly isometries, they
are linear functions. Hence we only need to show that Rθ and Fθ act as expected on
the standard basis vectors e1 = (1, 0) and e2 = (0, 1). The following picture shows that
Rθ rotates the basis vectors counterclockwise by angle θ, while Fθ reflects the basis
vectors across the line that makes angle θ/2 with the x-axis:

Thus we have shown that any isometry of the plane that fixes the origin is a rotation
or a reflection. In particular, this implies that any symmetry of a regular n-gon is a
rotation or a reflection.

In Exercise 4.C you will verify the following matrix identities:

• RαRβ = Rα+β,

• FαFβ = Rα−β,

• RαFβ = Fα+β,

• FαRβ = Fβ−α.

The first of these is geometrically obvious, since the composition of two rotations by
angles α and β is just a rotation by angle α+β. The identity FαFβ = Rα−β tells us that
the composition of two reflections is a rotation, which is not easy to see geometrically.
These four identities make it possible to prove theorems about rotations and reflections
without needing to draw any pictures.

Dihedral Groups in General. Consider a regular n-gon centered at the origin in R2,
with one vertex on the positive x-axis. If R = R2π/n then the complete list of rotation

60You already used this fact in Exercise 3.D.
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symmetries is the cyclic group generated by R:

〈R〉 = {I,R, . . . , Rn−1} = {R0, R2π/n, . . . , R2π(n−1)/n}.

Since one of the polygon vertices is on the x-axis, we know that the reflection F :=
F0 across the x-axis is a symmetry. Since the composition of symmetries is again a
symmetry, we see that

RkF = Rk2π/nF0 = R2πk/nF0 = F2πk/n+0 = F2πk/n

is a symmetry for any integer k. This gives the complete list of reflection symmetries:

{F,RF, . . . , Rn−1F} = {F0, F2π/n, . . . , F2π(n−1)/n}.

Here is the picture when n = 6:

Thus the full dihedral group can be expressed as

D2n = {RaF b : a ∈ {0, 1, . . . , n− 1}, b ∈ {0, 1}}.

The subscript 2n indicates that this group has 2n elements.

Reflections in Higher Dimensions. It turns out that reflection symmetries of Rn
are easy to describe, but rotations are tricky. For any nonzero vector v ∈ Rn we
consider the corresponding hyperplane v⊥ ⊆ Rn, which is the (n − 1)-dimensional
subspace consisting of vectors that are perpendicular to v:

v⊥ = {x ∈ RT : 〈x,v〉 = 0}.

Let Fv : Rn → Rn denote the linear function that fixes every point of the hyperplane
v⊥ and sends v to −v. We call this the reflection across v⊥. The corresponding n× n
matrix is61

Fv = I − 2
‖v‖2 vvT .

61If v is an n × 1 column vector then the product vvT is an n × n matrix. Compare this to the inner
product vTv = ‖v‖2, which is a scalar (i.e., a 1 × 1 matrix). Given two column vectors x, y ∈ Rn, the
matrix xyT is sometimes called the outer product of x and y.
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Indeed, suppose that x lies in the hyperplane v⊥, so the dot product of x and v is zero:
vTx = 0. Then we have

Fvx =
(
I − 2
‖v‖2 vvT

)
x

= Ix− 2
‖v‖2 vvTx

= x− 2
‖v‖2 v0

= x− 0
= x,

as expected. And Fv sends v to −v because

Fvv =
(
I − 2
‖v‖2 vvT

)
v

= Iv− 2
‖v‖2

vvTv

= v− 2
‖v‖2 v‖v‖2

= v− 2v
= −v.

For example, consider the plane x + 2y − z = 0 in R3, which can be expressed as
(1, 2,−1)⊥. The 3× 3 matrix that reflects across this plane is

F(1,2,−1) = I − 2
12 + 22 + (−1)2

 1
2
−1

(1 2 −1
)

=

1 0 0
0 1 0
0 0 1

− 2
6

 1 2 −1
2 4 −2
−1 −2 1


= 1

3

−2 2 −1
2 1 −2
−1 −2 −2

 .
It is a remarkable fact that any orthogonal matrix can be expressed as a product of
(a small number of) reflection matrices. This result is quite elementary and could in
principle have been discovered in the 19th century, if there had been sufficient interest
in higher dimensional geometry. The earliest known proof was published by Cartan
(1937) in his investigation of quantum theory, and was later generalized by Dieudonné.
Householder (1958) gave a computational proof, which is today known as “Householder
QR factorization”.62

62I took the name “Cartan-Dieudonné Theorem” from Gallier’s Geometric Methods (2001).
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The Cartan-Dieudonné Theorem. For any n × n orthogonal matrix A ∈ On(R),
there exists a (non-unique) sequence of vectors v1, . . . ,vk ∈ Rn with k ≤ n such that

A = Fv1Fv2 · · ·Fvk .

[Remark: This is analogous to the fact that every permutation of {1, . . . , n} can be
expressed (non-uniquely) as a product of k transpositions, with k ≤ n.]

Products of two reflections are sometimes called “rotations”, but they are a bit difficult
to describe. Let θ be the angle between two non-parallel vectors u,v ∈ Rn, and let
X = u⊥ ∩v⊥ ⊆ Rn be the (n− 2)-dimensional space that is the intersection of the two
hyperplanes. Then the product FuFv is the “rotation around the space X by angle
2θ”. This construction is most interesting in R3, when X is just a line.

Rotations in Three Dimensions. The main theorem about three dimensional ro-
tations was proved by Euler in his study of the physics of rigid bodies. It says the
following.63

Euler’s Rotation Theorem (1776). Quomodocunque sphaera circa centrum suum
conuertatur, semper assignari potest diameter, cuius directio in situ translato conueniat
cum situ initiali. [When a sphere is moved around its centre it is always possible to
find a diameter whose direction in the displaced position is the same as in the initial
position.]

Consider any two non-parallel vectors u,v ∈ R3 and let w be any vector perpendicular
to both so the intersection of the planes u⊥ and v⊥ is just the line generated by w:

u⊥ ∩ v⊥ = wR.

Three dimensional rotations were first studied by Euler

Rodrigues formula. Euler’s rotation theorem.

4.4 Unitary Matrices*

Euler’s Isomorphism, Circle group, Quaternions?

4.5 Cyclic and Dihedral Groups

Last time we defined cyclic groups. Now some examples.

Example: Z+ is Cyclic. In an additive group (G,+, 0) we prefer to write the inverse
of g ∈ G as −g and we prefer to write the element gn as n · g, using the analogy that

63Wikipedia gives the 1776 Latin reference. This paper mentions an earlier 1750 reference in French:
https://www.cairn.info/revue-philosophia-scientiae-2012-1-page-105.htm

https://www.cairn.info/revue-philosophia-scientiae-2012-1-page-105.htm
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“multiplication is repeated addition”. To be precise, for each element g ∈ G and for
each integer n ∈ Z we define

n · g :=



n times︷ ︸︸ ︷
g + g + · · ·+ g if n > 0,
0 if n = 0,
−(g + g + · · ·+ g︸ ︷︷ ︸

−n times

) if n < 0.

When the group is Z+ = (Z,+, 0) this notation becomes completely literal:

for all k ∈ Z+ and n ∈ Z we have n · k = nk ∈ Z+.

It follows that the cyclic subgroup of Z+ generated by the element k ∈ Z+ is just the
set of multiples of k. We have a special notation for this:

kZ := 〈k〉 = {n · k : n ∈ Z} = {kn : n ∈ Z}.

Since every integer is a multiple of 1 (also of −1) we conclude that the additive group
Z+ is cyclic:

Z+ = 〈1〉 = 〈−1〉.

It will turn out later that Z+ is, in some sense, the only infinite cyclic group. ///

Example: Roots of Unity. Recall the “absolute value” of complex numbers,

| − | : C→ R≥0,

which is defined by |a + ib| :=
√
a2 + b2. Through some miracle it turns out that the

absolute value respects multiplication. [Exercise: Check this.] It follows from this
that the complex numbers of unit length form a subgroup of the multiplicative group
C×, which we call U(1):

U(1) := {α ∈ C : |α| = 1} ⊆ C× = {α ∈ C : α 6= 0}.

Since these numbers form a circle in the complex plane, we sometimes call U(1) the
circle group. Here’s an interesting question:

Is the circle group a cyclic group?

Strictly speaking, the answer is no. Indeed, the cyclic subgroup 〈ω〉 ⊆ U(1) generated
by any element ω ∈ U(1) consists of the integer powers of this element, and hence is
a countable set. However, the set of all points on the unit circle is uncountable.
Let’s examine the cyclic subgroups of U(1).

Recall that every unit length complex number has the form

cos θ + i sin θ = eiθ for some angle 0 ≤ θ < 2π.

If ω = e2πi/n for some integer n ≥ 1 then we obtain a cyclic group of size n:

〈ω〉 = {1, ω, ω2, . . . , ωn−1} = {1, e2πi/n, e4πi/n, . . . , e2πi(n−1)/n}.
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This is the group of n-th roots of unity. It is important to note that this group does
not have a unique generator. In Exercise 3.A you will show (indirectly) that the group
of 12-th roots of unity has four possible generators:

e2πi/12, e10πi/12, e14πi/12, e22πi/12,

which are called the primitive 12-th roots of unity.

If ω = eiαπ for some irrational number α ∈ R then one can show that the element
ω has infinite order. This infinite set of powers 〈ω〉 = {ωn : n ∈ Z} does not coincide
with the circle but it turns out that this set is dense in the circle. In other words, the
circle group U(1) is equal to the topological closure of this subgroup:

〈ω〉 = U(1).

In this case we say that ω is a “topological generator” of U(1). ///

Example: Symmetries of a Regular Polygon. Consider a regular hexagon. In
the following discussion and exercises we will show that this shape has exactly 12
symmetries, consisting of 6 rotation symmetries and 6 reflection symmetries:

We can think of a symmetry as a function f : R2 → R2 that leaves the hexagon looking
the same. Thus, the symmetries can be combined by composition and they form a
group called the dihedral group of size 12 (“dihedral” because the hexagon has two
faces: front and back). If we let R denote rotation (counterclockwise) by 2π/6 and if
we let F denote any reflection symmetry of the hexagon then one can represent R and
F as elements of the orthogonal group O2(R). Furthermore, one can show that D12 is
the subgroup of O2(R) generated by these two elements:

D12 = 〈R,F 〉 := 〈{R,F}〉.

Finally, one can show that the dihedral group is not cyclic because neither of the
generators can be expressed as a nontrivial power of the other. ///

It will take some time to prove these assertions but the proof will be very interesting.
Here are the main steps:

• A “symmetry” of a regular polygon should preserve the distance between any two
points and send the center of the polygon to itself.

• Any function f : R2 → R2 that preserves distance and sends the origin to itself
is a linear function.
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• Any linear function f : R2 → R2 has the form f(x) = Ax for some matrix
A ∈ Mat2(R).

• If the linear function preserves distance then the corresponding matrix A satisfies
ATA = I.

• Any such matrix represents a rotation or a reflection.

• Finally, rotations and reflections are related by the identity RF = FR−1.

I will prove some of these assertions next week and you will prove the rest in Exercises
3.D, 4.B and 4.C.

4.6 Isomorphism of Groups

You might have noticed that the n-th roots of unity and the rotation symmetries of a
regular n-gon are really just “the same group” in two different disguises. We express
this fact by saying that the group groups are “isomorphic”. The word was coined by
Camille Jordan in his Traité des substitutions et des équations algébriques (1870, page
56), the first textbook-length treatment of group theory.64

Definition of Group Homomorphism and Isomorphism. Let (G, ∗) and (H, •)
be abstract groups and let ϕ : G → H be a function. We say that ϕ is a (group)
homomorphism if it satisfies the following condition:

ϕ(a ∗ b) = ϕ(a) • ϕ(b) for all a, b ∈ G.

We say that G and H are isomorphic (as groups), and write G ∼= H, if there exists a
function ϕ : G→ H satisfying three properties:

• the function ϕ : G→ H is invertible,

• ϕ : G→ H is a group homomorphism,

• ϕ−1 : H → G is a group homomorphism.

In this case say that the function ϕ : G → H is a (group) isomorphism.65 It defines
a one-to-one pairing between the elements of G and H which “preserves the group
structure”. ///

Remarks:

• The three conditions of isomorphism listed above are not independent. You will
show in ?? that the third condition follows automatically from the first two.

64Today we use homomorphism and isomorphism, where Jordan used isomorphism and holoedric
isomorphism. The terminology for different kinds of functions (such as “injective” and “surjective”)
took a long time to stabilize. Van der Waerden lamented the lack of a stable terminology for functions
between groups in Moderne Algebra (1930, page 32). Even today there is a lack of stable terminology
for “group actions”. See Week 10.

65The words homomorphism and isomorphism are used in many different contexts. Next week we
will discuss “poset homomorphism” and “poset isomorphism”.
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• We write G ∼= H to mean that there exists at least one group isomorphism
ϕ : G → H. But this isomorphism need not be unique. If G ∼= H then we will
see in Week 8 that the set of all isomorphisms G→ H is itself a group.

Example: Cyclic Groups. Let (G, ∗, ε) = 〈g〉 be a cyclic group. Recall from Exercise
3.C that if #G <∞ then there exists a smallest positive integerm such that gm = ε,
and it follows from this that

G = {ε, g, g2, . . . , gm−1}.

In this case I claim that

gk = g` ⇐⇒ k − ` ∈ mZ.

Proof. If k− ` ∈ mZ then by definition we have k = `+mx for some x ∈ Z and hence

gk = g`+mx = g` ∗ gmx = g` ∗ (gm)x = g` ∗ (ε)x = g`.

Conversely, let us suppose that gk = g` (and hence gk−` = ε) for some k, ` ∈ Z. By
computing the remainder of k − ` mod m we obtain{

k − ` = qm+ r,

0 ≤ r < m.

If r 6= 0 then we find that

gr = gk−`−qm = gk−` ∗ (gm)−q = ε ∗ (ε)−q = ε,

contradicting the minimality of m. Hence k − ` = qm+ 0 ∈ mZ. □

And if G is an infinite cyclic group then I claim that

gk = g` ⇐⇒ k = `.

Proof. Clearly k = ` implies gk = g`. Conversely, suppose for contradiction that there
exist integers k 6= ` with gk = g`. Without loss of generality we may assume that k < `.
Then we have

g` = gk

g` ∗ g−k = gk ∗ g−k

g`−k = ε,

where `−k is a positive integer. If m is the smallest positive integer such that gm = ε
then from Exercise 3.C we have #G = m, which contradicts the fact that G is infinite.

□

With these facts in hand we can prove the following theorem.
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Theorem. Let G = 〈g〉 and H = 〈h〉 be cyclic groups. Then we have

G ∼= H ⇐⇒ #G = #H.

In other words, there is exactly one cyclic group of each size.

Proof. Clearly G ∼= H implies #G = #H. Conversely, let us suppose that #G = #H.
There are two cases. (Case 1) If the groups are finite then we have #G = #H = m
for some m ≥ 1. Our goal is to define an isomorphism ϕ : G → H and there is an
obvious candidate:

let ϕ(gk) := hk for all k ∈ Z.

There are four things to check:

Well-Defined.66 Since the representation gk is not unique we need to make sure
that gk = g` implies ϕ(gk) = ϕ(g`). Indeed, from the above lemma we have

gk = g` ⇒ k − ` ∈ mZ ⇒ hk = h` ⇒ ϕ(gk) = ϕ(g`).

Surjective. Every element of H has the form hk for some k ∈ Z and hence has
the form ϕ(gk) for some gk ∈ G.

Injective. We need to show that ϕ(gk) = ϕ(g`) implies gk = g`. And, indeed,

ϕ(gk) = ϕ(g`) ⇒ hk = h` ⇒ k − ` ∈ mZ ⇒ gk = g`.

Homomorphism. For all k, ` ∈ Z we have

ϕ(gk ∗ g`) = ϕ(gk+`) = hk+` = hk • h` = ϕ(gk) • ϕ(g`).

(Case 2) If #G = #H = ∞ then the proof is even easier because we don’t need to
check well-definedness.67 □

It follows from this theorem that every infinite cyclic group is isomorphic to Z+. In
Weeks 6 and 7 we will see that every finite cyclic group of size n is isomorphic to the
“quotient group” Z/nZ.68

So much for cyclic groups. Now let’s talk about the circle group.

EXPLAIN BETTER? I THINK I WILL JUST DELETE THE ABSTRACT CHAR-
ACTERIZATION OF ADJOINT OPERATORS.

66Whenever a function is defined on a set of equivalence classes, one must check that the image of a
class does not depend on the choice of representative used to define the image. This will be formalized
when we discuss “quotient groups”.

67Indeed, in this case the function is defined on the set of integers, not on a set of equivalence classes
of integers.

68Preview: If G is a cyclic group of size n then there exists a surjective group homomorphism
ϕ : Z+ → G with kernel nZ.
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Definition of Unitary Matrices. If A ∈ Matn(R) is a real n× n matrix, recall that
AT denotes the transpose matrix. If 〈−,−〉 is the standard inner product on Rn then
the transpose matrix is characterized the fact that

〈Ax,y〉 = 〈x, ATy〉 for all x,y ∈ Rn.

For vectors x,y ∈ Cn in complex space we prefer to work with the “Hermitian” inner
product

〈x,y〉 := x∗y =
∑
i

x∗
i yi,

where x∗ is the conjugate transpose row vector. More generally if A ∈ Matn(C) is
an n × n complex matrix then we let A∗ denote the conjugate transpose of A. It is
characterized by the condition

〈Ax,y〉 = 〈x, A∗y〉 for all x,y ∈ Cn.

Based on this, we define the (special) orthogonal and (special) unitary groups as fol-
lows:69

O(n) = {A ∈ Matn(R) : ATA = I},
SO(n) = {A ∈ Matn(R) : ATA = I and detA = 1},
U(n) = {A ∈ Matn(C) : A∗A = I},

SU(n) = {A ∈ Matn(C) : A∗A = I and detA = 1},

We have seen above that O(n) and SO(n) can be viewed as groups of symmetries of
Euclidean space. The geometric meaning of U(n) and SU(n) is not so obvious but these
groups are extremely important in quantum physics. These four groups are distinct in
general but for small values of n there can be “accidental isomorphisms”.

Theorem (Euler’s Isomorphism). We have U(1) ∼= SO(2).

[Remark: We call this “Euler’s isomorphism” because it is essentially equivalent to
Euler’s formula:

eiθ = cos θ + i sin θ.

It is an amusing consequence of this theorem that SO(2) is an abelian group, which
is not obvious from the definition.]

Proof. Let (α) ∈ Mat1(C) be a 1 × 1 complex matrix. Then the unitary condition
says

(α)∗(α) = (1)
(α∗α) = (1)

69In Exercise 2.D we used the notations On(R) and SOn(R) instead of O(n) and SO(n). There is
no difference.
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(|α|2) = (1),

which implies that |α| = 1. Euler showed that all such complex numbers have the form
eiθ = cos θ + i sin θ. In other words, U(1) is the familiar circle group:

U(1) = {eiθ : θ ∈ R}.

On the other hand, we proved above that any element of O(2) has the form Rθ (a
rotation) or Fθ (a reflection). Since detRθ = 1 and detFθ = −1 for all θ ∈ R we find
that

SO(2) =
{
Rθ =

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
.

I claim that we can define a group isomorphism ϕ : U(1)→ SO(2) by

ϕ(eiθ) := Rθ for all θ ∈ R.

There are four things to check:

Well-Defined. For all η, θ ∈ R we have

eiη = eiθ ⇒ η − θ ∈ 2πZ ⇒ Rη = Rθ ⇒ ϕ(eiη) = ϕ(eiθ).

Surjective. Every element of SO(2) has the form Rθ for some θ ∈ R and hence
has the form ϕ(eiθ) for some eiθ ∈ U(1).

Injective. For all η, θ ∈ R we have

ϕ(eiη) = ϕ(eiθ) ⇒ Rη = Rθ ⇒ η − θ ∈ 2πZ ⇒ eiη = eiθ.

Homomorphism. For all η, θ ∈ R we have

ϕ(eiηeiθ) = ϕ(ei(η+θ)) = Rη+θ = RηRθ = ϕ(eiη)ϕ(eiθ).

The third equality was proved in Exercise 3.D. □

Note that this isomorphism restricts to an isomorphism between the subgroup of n-th
roots of unity under multiplication and the subgroup of rotational symmetries of a
regular n-gon under composition.

Exercises

4.A Homomorphism and Isomorphism

Consider two groups (G, ∗, εG) and (H, •, εH). A function ϕ : G→ H is called a (group)
homomorphism when it satisfies the following condition:

ϕ(a ∗ b) = ϕ(a) • ϕ(b) for all a, b ∈ G.

(a) If ϕ : G→ H is a homomorphism, prove that ϕ(εG) = εH .
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(b) If ϕ : G→ H is a homomorphism, prove that

ϕ(a−1) = ϕ(a)−1 for all a ∈ G.

(c) Let ϕ : G→ H be a homomorphism and suppose the inverse function ϕ−1 : H →
G exists. Prove that the ϕ−1 is also a homomorphism. It follows that invertible
homomorphisms are the same as isomorphisms. [Hint: Given elements a, b ∈ H,
apply the function ϕ to the group element ϕ−1(a) ∗ ϕ−1(b) ∈ G.]

4.B Isometry Theorem Details

Let ϕ : Rn → Rn be any function satisfying

‖ϕ(x)− ϕ(y)‖ = ‖x− y‖ for all x,y ∈ Rn and ϕ(0) = 0.

(a) Show that 〈ϕ(x), ϕ(y)〉 = 〈x,y〉 for all x,y ∈ Rn. [Hint: Use the formula
‖v‖2 = 〈v,v〉 sereval times. First substitute v = ϕ(x) and v = x to show
that 〈ϕ(x), ϕ(x)〉 = 〈x,x〉. Then substitute v = ϕ(x) − ϕ(y) and v = x − y to
show that 〈ϕ(x), ϕ(y)〉 = 〈x,y〉.]

(b) Next show that ϕ is a linear function. [Hint: Since ‖v‖ = 0 implies v = 0, it
suffices to show that ‖ϕ(x + y)−ϕ(x)−ϕ(y)‖ = 0 and ‖ϕ(αx)−αϕ(x)‖ = 0 for
all vectors x,y ∈ Rn and scalars α ∈ R. Use the formula ‖v‖2 = 〈v,v〉 again.]

(c) Finally, show that ϕ(x) = Ax for some orthogonal matrix A ∈ On(R). [Hint: Let
e1, . . . , en ∈ Rn be the standard basis and let A be the matrix whose jth column
is ϕ(ej). From the linearity of ϕ we have ϕ(x) = Ax for all x ∈ Rn. Then from
part (a) we have eTi ATAej = 〈Aei, Aej〉 = 〈ei, ej〉 = δij . For any n × n matrix
B, observe that eTi Bej is the ij entry of B.]

4.C Rotation and Reflection

We have seen that every element of O(2) has the form

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
or Fθ =

(
cos θ sin θ
sin θ − cos θ

)
.

(a) Verify that Rθ ∈ SO(2) and that Fθ ∈ O(2)− SO(2).

(b) You proved in Exercise 3.D that x 7→ Rθx is a rotation. Use a similar argument
to prove that x 7→ Fθx is a reflection.

(c) For all α, β ∈ R prove that

• RαRβ = Rα+β,

• FαFβ = Rα−β,

• RαFβ = Fβ(Rα)−1 = Fα+β.
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(d) Fix a positive integer n and define the matrices R := R2π/n and F := F0. Prove
that the subgroup 〈R,F 〉 ⊆ O(2) generated by the subset {R,F} has 2n elements
and is given by

〈R,F 〉 = {RaF b : a ∈ {0, . . . , n− 1} and b ∈ {0, 1}}.

[Hint: It follows from (c) that RF = FR−1.]

4.D Two Groups with Eight Elements

There are two different non-abelian groups with eight elements, called the dihedral
group D8 and the quaternion group Q8. We will use multiplicative notation to describe
them.

(a) The dihedral group has elements

D8 = {1, r, r2, r3, r4, f, rf, r2f, r3f},

subject to relations r4 = f2 = rfrf = 1. Write out the full group table.

(b) The quaternion group has elements

Q8 = {1, i, j, k, e, ei, ej, ek},

subject to the relations i2 = j2 = k2 = ijk = e, e2 = 1 and ae = ea for all
a ∈ Q8/ Write out the full group table. [If you want you can write e as “−1” and
write the elements ei, ej, ek as −i,−j,−k, respectively.]

(c) Prove that D8 and Q8 are not isomorphic. [Hint: Isomorphic groups must have
the same number of elements of each order.]

[Remark: In Week 12 we will see that there three different non-isomorphic groups
with eight elements:

Z/8/Z, Z/4Z⊕ Z/2Z, Z/2Z⊕ Z/2Z⊕ Z/2Z.

Thus there 5 non-isomorphic groups of size 8. In general it is hopeless to compute the
number of groups of size n. On one extreme, if p is prime then there is only one group
of size p — the cyclic group. On the other extreme, Higman70 showed that there are
at least p2k2(k−6)/27 non-isomorphic groups of size pk. In fact, “most” groups have size
2k: computations have shown that among all groups of size ≤ 2000, more than 99%
have size 1024 = 210.]

70Higman, Enumerating p-groups. I. Inequalities. (1960)
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Week 5

5.1 Posets and Lattices

This week we will dive into the structure of the infinite cyclic group Z+ = (Z,+, 0). In
the process we will meet the concepts of “poset” (partially-ordered set) and “lattice”.
SAY MORE ABOUT THE CORRESPONDENCE THEOREM

Definition of Posets and Lattices. Let P be a set equipped with an abstract
relation “≤”. We say that the pair (P,≤) is a poset if the following three axioms are
satisfied:

(P1) The relation ≤ is reflexive: for all a ∈ P we have

a ≤ a.

(P2) The relation ≤ is anti-symmetric: for all a, b ∈ P ,

if a ≤ b and b ≤ a then we have a = b.

(P3) The relation ≤ is transitive: for all a, b, c ∈ P ,

if a ≤ b and b ≤ c then we have a ≤ c.

Moreover, we say that the poset (P,≤) is a lattice if it satisfies the following additional
axiom:71

(L) Every subset of P has a greatest lower bound and a least upper bound.

In the special case of two elements {a, b} ⊆ P we say that ` ∈ P is the least upper
bound if it satisfies the following two properties:

• We have a ≤ ` and b ≤ `.

• if a ≤ c and b ≤ c then we must have ` ≤ c.

71Some authors call this a complete lattice and use the term lattice to indicate that every finite
subset has a greatest lower bound and least upper bound. The distinction is not important in this
course.
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If `′ is another least upper bound of {a, b} then the second property implies that ` ≤ `′
and `′ ≤ `, hence we conclude from axiom (P2) that ` = `′. In this case we will write
` = a∨ b and we will say that ` the join of a and b. Dually, g ∈ P is the greatest lower
bound of a, b if it satisfies:

• The element g is a lower bound of a and b:

we have g ≤ a and g ≤ b.

• The element g is greater than every other lower bound:

if c ≤ a and c ≤ b then we have c ≤ g.

In this case we will write g = a ∧ b and we will say that g is the meet of a and b. We
can define the join and meet of any finite set by induction.

We will use the symbols 1 and 0 to denote the least upper bound and the greatest
lower bound of the entire set P , so that a ≤ 1 and 0 ≤ a for all a ∈ P . [Exercise: By
convention we will also view 0 and 1 as the least upper bound and the greatest lower
bound, respectively, of the empty set ∅ ⊆ P .] Here is how I visualize a lattice:

///

Example: The Lattice of Subsets. Let U be any set and let 2U be the set of all
subsets of U . I claim that 2U is a lattice with the following structure:

partial order ≤ set containment ⊆
join ∨ union ∪
meet ∧ intersection ∩

bottom 0 empty set ∅
top 1 the universe U

Example: The Lattice of Subgroups. Now let (G, ∗, ε) be a group and let L (G)
be the set of all subgroups of G. I claim that L (G) is a lattice with the following
structure:
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partial order ≤ set containment ⊆
join ∨ join ∨
meet ∧ intersection ∩

bottom 0 trivial group {ε}
top 1 full group G

The join operation was defined in Week 3 as follows:

H ∨K = 〈H ∪K〉 = the intersection of all subgroups that contain H ∪K.

Now here is an example with a different flavor.

Example: The Lattice of Divisors. For any integer n ≥ 0 let Div(n) ⊆ N be the
set of non-negative divisors of n. Thus we have Div(0) = N and for any n ≥ 1 the set
Div(n) is finite. I claim that Div(n) is a lattice with the following structure:

partial order ≤ reverse divisibility
join ∨ greatest common divisor
meet ∧ least common multiple

bottom 0 the integer n
top 1 the integer 1

Indeed, it is immediate that divisibility (or reverse divisibility) satisfies the three ax-
ioms of partial order. You will prove in Exercise 5.A that the greatest common divisor
d = gcd(a, b) satisfies the universal property of the join under reverse divisibility (equiv-
alently, the meet under divisibility). That is:

• We have d|a and d|b.

• If c|a and c|b then we must have c|d.

Dually, one can show that the least common multiple m = lcm(a, b) satisfies the fol-
lowing properties:

• We have a|m and b|m.

• If a|c and b|c then we must have m|c.

Remarks:

• The concept of a lattice was introduced by Ernst Schröder in his Vorlesungen über
die Algebra der Logic (Lectures on the algebra of logic, 1890). In this context the
elements of the lattice are logical statements and the meet ∧ and join ∨ operations
correspond to the logical operators “AND” and “OR”, and the special elements
“0” and “1” correspond to “false” and “true”.
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• Dedekind later connected the lattice concept to divisors and subgroups in his
paper Über die Theorie der ganzen algebraischen Zahlen (On the theory of alge-
braic integers, 1894). Essentially, this was an abstract approach to the concepts
of gcd and lcm. It is interesting to note that Dedekind’s term for a lattice was
Dualgruppe.

• These ideas were not taken up by Dedekind’s contemporaries, and did not appear
in van der Waerden’s Morderne Algebra (1930). Instead, the ideas went dormant
for 30 years and reemerged in the work of the American mathematicians Garrett
Birkhoff and Oystein Ore. Eventually the lattice concept was absorbed into the
language of category theory.72

5.2 The Lattice of Subgroups of Z+

Last time we defined lattices of subgroups and lattices of divisors. The following
theorem shows how these two concepts are related.73

Theorem (Subgroups of Z+). The lattice of subgroups of Z+ under containment is
isomorphic to the lattice of non-negative integers under reverse divisibility:

L (Z+) ∼= (N, reverse divisibility).

The proof has three steps.

Step 1. We already know that the cyclic subgroups of Z+ have the form

mZ = {mk : k ∈ Z} for some m ∈ N.

I claim that every subgroup has this form.74

Proof. Let H ⊆ Z+ be a subgroup. If H = {0} is the trivial group then we have
H = 0Z as desired. Otherwise, suppose that H 6= {0} and let m be the smallest
positive element of H. In this case I claim that H = mZ. Indeed, since mZ = 〈m〉 is
the smallest subgroup containing m we must have mZ ⊆ H. On the other hand, let
n ∈ H be any element of H and divide it by m to obtain{

n = qm+ r,

0 ≤ r < m.

72See Leo Corry’s Modern algebra and the rise of mathematical structures (2004), especially Section
2.3.

73Indeed, Heinrich Weber’s Lehrbuch der Algebra (1895) uses the same word Teiler for both subgroups
and divisors. The current German word for subgroup is Untergruppe, but Normalteiler is still used for
normal subgroups. See Week 7 for the definition.

74In Week 17 we will re-interpret this result in terms of ring theory, by saying that the ring
(Z, +, ×, 0, 1) is a “principal ideal domain”.
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We will show that r = 0. To see this, first observe that since n and m are in H we also
have r = n− qm ∈ H.75 But if r 6= 0 then 0 < r < m contradicts the minimality of m.
We conclude that r = 0 and hence n = qm ∈ mZ. Finally, since n ∈ H was arbitrary
we conclude that H ⊆ mZ as desired. □

Step 2. For all integers a, b ∈ Z we define divisibility as follows:

“a|b” = “a divides b” = “∃k ∈ Z, ak = b.”

Then for all a, b ∈ Z I claim that

aZ ⊆ bZ ⇐⇒ b|a.

Proof. Let aZ ⊆ bZ. Then since a ∈ aZ ⇒ a ∈ bZ we must have a = bk for some
k ∈ Z, hence b|a. Conversely, let b|a so that a = bk for some k ∈ Z. Then for any
a` ∈ aZ we have

a` = (bk)` = b(k`) ∈ bZ

and it follows that aZ ⊆ bZ as desired. □

Step 3. Now consider the function f : N → L (Z+) defined by f(m) := mZ. I claim
that this is an isomorphism of posets.

Proof. We saw in Step 1 that this function is surjective. If we can show that the
function is injective (hence invertible) then it follows from Step 2 that the function
f and its inverse f−1 preserve order. So let us assume that aZ = bZ for some non-
negative integers a, b ∈ N. From Step 2 we know that a|b and b|a, hence there exist
integers k, ` ∈ Z with ak = b and b` = a. If either a or b is zero then we have a = b = 0
as desired. Otherwise, both a and b are positive and we have

a = b`

a = ak`

a(1− k`) = 0
(1− k`) = 0

1 = k`.

The only solutions are k = ` = ±1 which implies that a = ±b. Finally, since a, b are
both positive we conclude that a = b as desired. □

Remarks:

• Since f preserves order we call it a poset homomorphism. Since f−1 exists and
also preserves order we call the pair (f, f−1) a poset isomorphism.

75We note that qm ∈ H for any q ∈ Z because H is closed under repeated addition or subtraction.
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• Unlike in the case of group homomorphisms, an invertible poset homomorphism
is not necessarily an isomorphism. For example, the following function of posets
is invertible and it preserves order:

However the inverse f−1 does not preserve order because γ is below β but c =
f−1(γ) is not below b = f−1(β).

This completes the proof that L (Z+) is isomorphic to N under reverse divisibility.
Here is a picture of this lattice.76 Notice that 0 is divisible by every integer, and every
integer is divisible by 1.

Since any isomorphism of posets preserves meets and joins, it follows from the theorem
that the meet and join operations in L (Z+) correspond to the least common multiple
and the greatest common divisor.

Corollary (Meet and Join of Subgroups of Z+). For all a, b ∈ Z we have

aZ ∧ bZ = aZ ∩ bZ = lcm(a, b)Z,
aZ ∨ bZ = aZ + bZ = gcd(a, b)Z. □

Here are some special cases:

• For any a ∈ N we have aZ ∩ 0Z = 0Z and aZ + 0Z = aZ, hence

lcm(a, 0) = 0 and gcd(a, 0) = a.

76An interesting property of this lattice is that it contains infinite decreasing chains, such as 1 ≥ 2 ≥
4 ≥ 8 ≥ · · · . However, the well-ordering principle tells us that there is no infinite increasing chain.
In modern terms we say that the ring Z is Noetherian but not Artinian.
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• For any a ∈ N we have aZ ∩ 1Z = aZ and aZ + 1Z = 1Z, hence

lcm(a, 1) = a and gcd(a, 1) = 1.

• Since 0Z ∩ 0Z = 0Z and 0Z + 0Z = 0Z, the corollary also says that

lcm(0, 0) = 0 and gcd(0, 0) = 0.

You are free to disagree with these last identities if you want.

5.3 Galois Connections*

When 〈g〉 is an infinite cyclic group we have seen that the lattice of subgroups L 〈g〉 is
isomorphic to the lattice of natural numbers N under reverse-divisibility. Specifically,
the isomorphism f : N → L 〈g〉 is defined by f(m) = 〈gm〉. But what if the cyclic
group 〈g〉 is finite?

I’ll tell you the answer and then we’ll discuss how to prove it.

Fundamental Theorem of Cyclic Groups. For any n ∈ N recall that Div(n) ⊆ N
is the set of non-negative divisors of n. Thus Div(0) = N and for n ≥ 1 the set Div(n)
is finite.

If 〈g〉 is an infinite cyclic group, we have already seen that the function f : Div(0) →
L 〈g〉 defined by f(k) := 〈gk〉 is a poset isomorphism:

(Div(0), reverse divisibility) ∼= (L 〈g〉,⊆).

If 〈g〉 is a finite cyclic group of size n ≥ 1 then I claim that the same function f
restricted to the subset Div(n) ⊆ Div(0) is a poset isomorphism:

(Div(n), reverse divisibility) ∼= (L 〈g〉,⊆).

Finally, if n ≥ 1 then the permutation Div(n) → Div(n) defined by d 7→ n/d switches
the relations of divisibility and reverse-divisibility, hence

(L 〈g〉,⊆) ∼= (Div(n), reverse divisibility) ∼= (Div(n), divisibility).

[Remark: This last isomorphism is false when n = 0, since there exist infinite decreas-
ing chains in Div(0) but no infinite increasing chains. See the footnote on page 74.]

///

For example, here is a picture of the theorem when n = 12:
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I could give a quick and dirty proof right now but I prefer to develop a more abstract
proof that illustrates what’s really going on. The key idea is the concept of a “Galois
connection” between posets.

Definition of Galois Connections.77 Let (P,≤) and (Q,≤) be posets and consider
any functions f : P ⇄ Q : g. The pair f, g is called a Galois connection if it satisfies

p ≤ g(q)⇐⇒ f(p) ≤ q for all p ∈ P and q ∈ Q. ///

For example, if f : P → Q is a poset isomorphism then the pair (f, f−1) is a Galois
connection. Indeed, in that case we have f(p) ≤ q ⇒ f−1(f(p)) ≤ f−1(q)⇒ p ≤ f−1(q)
and vice versa. A general Galois connection f, g need not be an isomorphism, but it
always restricts to an isomorphism between certain subposets P ′ ⊆ P and Q′ ⊆ Q.

Fundamental Theorem of Galois Connections. If f : P ⇄ Q : g is a Galois
connection then we have the following properties:

• For all p1, p2 ∈ P and q1, q2 ∈ Q we have

p1 ≤ p2 ⇒ f(p1) ≤ f(p2) and q1 ≤ q2 ⇒ g(q1) ≤ g(q2).

We say that f : P → Q and g : Q→ P are poset homomorphisms.

• For all p ∈ P and q ∈ Q we have

p ≤ g(f(p)) and f(g(q)) ≤ q.

We say that g ◦ f : P → P is an increasing function function and f ◦ g : Q→ Q
is a decreasing function.

• f ◦ g ◦ f = f and g ◦ f ◦ g = g.

Furthermore, if we define the subposets

P ′ = g[Q] := {g(q) : q ∈ Q} and Q′ = f [P ] := {f(p) : p ∈ P},

then it follows from the above three properties that f and g restrict to a poset isomor-
phism:

f : P ′ ∼←→ Q′ : g.

Proof. See Exercise 5.C. □
77This definition was introduced by Oystein Ore in his Galois Connexions (1944) but you won’t

find it in any standard algebra textbook. I learned this concept from George Bergman’s Invitation to
General Algebra (1998) and it changed the way I teach the subject. It is a convenient way to organize
messy families of results such at the Correspondence Theorem for Groups. It is also the prototype
for the mid-twentieth-century concept of “adjoint functors” and serves as an excellent entry point into
category theory.
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[Remark: Specific examples of this theorem are often called “correspondence theo-
rems”. We will see one of these in the next section.]

It is easier to understand Galois connections via pictures. Since I can’t draw general
posets, let me assume for convenience that (P,≤,∨,∧, 0P , 1P ) and (Q,≤,∨,∧, 0Q, 1Q)
are lattices. In this case I claim that f(0P ) = 0Q and g(1Q) = 1P .

Proof. By definition we have 0P ≤ p for all p ∈ P and 0Q ≤ q for all q ∈ Q. In
particular, setting q = f(0P ) in the second inequality gives 0Q ≤ f(0P ). On the other
hand, the definition of Galois connections says that

0P ≤ g(q)⇐⇒ f(0P ) ≤ q for all q ∈ Q.

In particular, since 0P ≤ g(0Q) we conclude that f(0P ) ≤ 0Q, and then it follows from
antisymmetry that f(0P ) = 0Q. The proof of g(1Q) = 1P is similar. □

Then here is the picture:

Let me emphasize that the images P ′ and Q′ are isomorphic as posets, but the original
P and Q need not be. And what does all of this have to do with Évariste Galois? I’ll
tell you later (in Week 14). For now, an example.

Example: Image and Preimage. Let (G, ∗, εG) and (H, •, εH) be groups and let
ϕ : G → H be any function. Then for all subsets S ⊆ G and T ⊆ H we define the
image set ϕ[S] ⊆ H and the preimage set ϕ−1[T ] ⊆ G as follows:

ϕ[S] := {ϕ(g) : g ∈ S} ⊆ H,
ϕ−1[T ] := {g ∈ G : ϕ(g) ∈ T} ⊆ G.

Remarks:

• I use square brackets to distinguish between the function ϕ : G → H that sends
elements to elements and the function ϕ : 2G → 2H that sends subsets to subsets.

• The preimage function ϕ−1 : 2H → 2G always exists, but the inverse function
ϕ−1 : H → G need not exist. The inverse function exists if and only if for all
h ∈ H the preimage ϕ−1[{h}] ⊆ G consists of one element, which we may call
ϕ−1(h) ∈ G. SEE EXERCISE ??
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If we think of (2G,⊆) and (2H ,⊆) as posets then I claim that the image and preimage
functions are a Galois connection:

ϕ : 2G ⇄ 2H : ϕ−1.

Proof. For all subsets S ⊆ G and T ⊆ H we have

S ⊆ ϕ−1[T ]⇐⇒ ∀s ∈ S, s ∈ ϕ−1[T ]
⇐⇒ ∀s ∈ S, ϕ(s) ∈ T
⇐⇒ ϕ[S] ⊆ T. □

So far these remarks apply to any sets G,H and any to any function ϕ : G → H.
Now let us assume that ϕ is a group homomorphism. In this case you will show in
Exercise 5.D that

• S ⊆ G is a subgroup ⇒ ϕ[S] ⊆ H is a subgroup,

• T ⊆ H is a subgroup ⇒ ϕ−1[T ] ⊆ G is a subgroup,

and hence we obtain a Galois connection ϕ : L (G) ⇄ L (H) : ϕ−1 between the
lattices of subgroups. It follows from the Fundamental Theorem of Galois Connections
that image and preimage restrict to an isomorphism between certain subposets of
subgroups:

ϕ : L (G)′ ∼←→ L (H)′ : ϕ−1.

In other words, we obtain an inclusion-preserving bijection between certain kinds of
subgroups of G and certain kinds of subgroups of H.

What kinds of subgroups? Let me spoil the surprise right now: It will turn out that
L (G)′ consists of subgroups that “contain the kernel of ϕ”, and L (H)′ consists of
subgroups of H that “are contained in the image of ϕ”. Next time I will define these
notions and I will prove the theorem.

5.4 The Correspondence Theorem for Groups

We have seen that any group homomorphism ϕ : G → H induces the image and
preimage functions ϕ : L (G) ⇄ L (H) : ϕ−1 which form an abstract Galois connection.
Among the images and preimages of subgroups, there are two important special cases.

Kernel and Image of a Homomorphism. Let ϕ : (G, ∗, εG) → (H, •, εH) be
a group homomorphism. We define the kernel of ϕ as the preimage of the trivial
subgroup {εH} ⊆ H:

kerϕ := ϕ−1[{εH}] = {g ∈ G : ϕ(g) = εH}.

And we define the image of ϕ as the image of the full group G:

imϕ := ϕ[G] = {ϕ(g) : g ∈ G}.
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From general properties (see Exercise 5.D) we know that the subsets kerϕ ⊆ G and
imϕ ⊆ H are subgroups. ///

We now have the ingredients necessary to state and prove the important Correspon-
dence Theorem for Groups. Afterwards, we will obtain the Fundamental Theorem of
Cyclic Groups is an easy corollary.

The Correspondence Theorem for Groups. Let ϕ : (G, ∗, εG) → (H, •, εH) be
any group homomorphism and define the following posets:

L (G, kerϕ) := {subgroups K ⊆ G : kerϕ ⊆ K}
L (imϕ) := {subgroups L ⊆ H : L ⊆ imϕ}.

I claim that the image and preimage ϕ : L (G) ⇄ L (H) : ϕ−1 restrict to an isomor-
phism of posets:

ϕ : L (G, kerϕ) ∼←→ L (imϕ) : ϕ−1. ///

Proof. Since ϕ : L (G) ⇄ L (H) : ϕ−1 is a Galois connection we automatically
obtain a poset isomorphism ϕ : L (G)′ ←→ L (H)′ : ϕ−1 between certain subposets
L (G)′ ⊆ L (G) and L (H)′ ⊆ L (H). In Exercise 5.C you will show that these
subposets satisfy

L (G)′ = {K ⊆ G : K = ϕ−1[ϕ[K]]},
L (H)′ = {L ⊆ H : L = ϕ[ϕ−1[L]]}.

So far these are purely poset-theoretic facts that apply to any function between sets.
To complete the proof of the theorem we will use the fact that ϕ is a group homo-
morphism to prove the following identities:

L (G)′ = L (G, kerϕ) and L (H)′ = L (imϕ).

There are two steps in the proof. The first step makes heavy use of Exercises 5.C and
5.D.

Step 1. I claim that for all subgroups K ⊆ G and L ⊆ H we have

ϕ[ϕ−1[L]] = L ∧ imϕ,

ϕ−1[ϕ[K]] = K ∨ kerϕ.

For the first equality, note that ϕ−1[L] ⊆ G implies ϕ[ϕ−1[L]] ⊆ ϕ[G] = imϕ because
ϕ[−] preserves order, and that ϕ[ϕ−1[L]] ⊆ L because ϕ ◦ϕ−1[−] is decreasing. There-
fore we have ϕ[ϕ−1[L]] ⊆ L ∩ imϕ = L ∧ imϕ. For the converse, consider any element
h ∈ L ∧ imϕ = L ∩ imϕ. Since h ∈ imϕ we must have h = ϕ(g) for some g ∈ G and
since h ∈ L we must have g ∈ ϕ−1[L]. Now it follows that h = ϕ(g) ∈ ϕ[ϕ−1[L]] and
hence L ∧ imϕ ⊆ ϕ[ϕ−1[L]].
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For the second equality, note that {εH} ⊆ ϕ[K] implies kerϕ = ϕ−1[{εH}] ⊆ ϕ−1[ϕ[K]]
because ϕ−1[−] is order-preserving, and that K ⊆ ϕ−1[ϕ[K]] because ϕ−1 ◦ ϕ[−] is
increasing. Then since ϕ−1[ϕ[K]] is a subgroup of G containing K ∪ kerϕ we must
have K ∨ kerϕ ⊆ ϕ−1[ϕ[K]]. For the converse, consider any element g ∈ ϕ−1[ϕ[K]].
By definition this means that ϕ(g) = ϕ(k) for some k ∈ K. Then by general properties
of homomorphisms we have

ϕ(g) = ϕ(k)
ϕ(k−1) • ϕ(g) = εH

ϕ(k−1 ∗ g) = εH ,

and hence k−1 ∗ g ∈ kerϕ. Finally, since K ∨ kerϕ is a subgroup of G containing the
elements k ∈ K and k−1 ∗ g ∈ kerϕ we conclude that

g = k ∗ (k−1 ∗ g) ∈ K ∨ kerϕ,

and hence ϕ−1[ϕ[K]] ⊆ K ∨ kerϕ. □

[Remark: The equation ϕ[ϕ−1[L]] = L ∧ imϕ did not use any group theory. For the
equation ϕ−1[ϕ[K]] = K ∨ kerϕ we used the fact that the product set K ∗ kerϕ :=
{k ∗ ` : k ∈ K, ` ∈ kerϕ} is contained in the join K ∨ kerϕ. We will see in Week 9
that in fact K ∗ kerϕ = K ∨ kerϕ. More generally, you will show in Exercise 9.B that
the product set KN ⊆ G equals the join K ∨ N ⊆ G whenever N ⊴ G is a “normal
subgroup”.]

Step 2. In Step 1 we proved that

L (G)′ = {K ⊆ G : K = K ∨ kerϕ},
L (H)′ = {L ⊆ H : L = L ∧ imϕ}.

Now it only remains to show that

K = K ∨ kerϕ ⇐⇒ kerϕ ⊆ K,
L = L ∧ imϕ ⇐⇒ L ⊆ imϕ.

This has nothing to do with groups so I will prove it for lattices. Let (L,≤,∨,∧, 0, 1)
be a lattice and consider any elements a, b ∈ L. Then I claim that

a = a ∨ b ⇐⇒ b ≤ a,
a = a ∧ b ⇐⇒ a ≤ b.

For the first statement, if a = a∨b then by definition we have b ≤ a∨b = a. Conversely,
suppose that b ≤ a. Then we have a ≤ a∨b by definition and we have a∨b ≤ a because
a is an upper bound of a and b. Hence a = a ∨ b.

For the second statement, if a = a ∧ b then by definition we have a = a ∧ b ≤ b.
Conversely, suppose that a ≤ b. Then we have a ∧ b ≤ a by definition and we have
a ≤ a ∧ b because a is a lower bound of a and b. Hence a = a ∧ b. □
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This completes the proof of the Correspondence Theorem for Groups. Finally, we
obtain the Fundamental Theorem of Cyclic Groups.

Corollary (Fundamental Theorem of Cyclic Groups). Let 〈g〉 be a cyclic group
and consider the group homomorphism ϕ : Z+ → 〈g〉 defined by ϕ(k) := gk. Note that
we have imϕ = 〈g〉 by definition, and since the kernel is a subgroup of Z+ we must
have kerϕ = nZ for some unique n ∈ N. If n = 0 then 〈g〉 is infinite and otherwise we
have #〈g〉 = n.

Now we conclude from the Correspondence Theorem that

L 〈g〉 = L (imϕ) ∼= L (Z+, kerϕ) = L (1Z, nZ).

But recall that the subgroups of Z+ between 1Z and nZ have the form dZ where d is a
divisor of n, and that these groups are ordered by “reverse divisibility”. It follows that

L 〈g〉 ∼= L (1Z, nZ) ∼= (Div(n), reverse divisibility),

and the explicit isomorphism Div(n)→ L 〈g〉 is given by the image function:

d 7→ dZ 7→ ϕ[dZ] = {gdk : k ∈ Z} = 〈gd〉. □

Exercises

5.A Bézout’s Identity

Consider a, b ∈ Z with ab 6= 0 and let Div(a, b) = {k ≥ 1 : k|a and k|b} be the set of
common divisors. We define gcd(a, b) as the greatest element of this set.

(a) Bézout’s Identity. Consider the set of “positive linear combinations”:

S := {ax+ by : x, y ∈ Z and ax+ by > 0}.

This set is non-empty because ab 6= 0, hence by well-ordering there exists a least
element d ∈ S. Prove that d = gcd(a, b). [Hint: Divide a by d to obtain a = dq+r
with 0 ≤ r < d. Show that r 6= 0 leads to a contradiction, therefore we must have
r = 0 and hence d|a.]

(b) Use part (a) to prove that d = gcd(a, b) satisfies the universal property of the
meet under divisibility:

If c|a and c|b then we must have c|d.

It follows from this that gcd(a, b) can also be characterized as the smallest positive
element of the set aZ + bZ.

[Remark: I follow Wikipedia in calling this result “Bézout’s Identity”. According
to Jean-Pierre Tignol (2001, page 87) the result was actually proved by Bachet de
Méziriac in 1624. Etienne Bézout proved an analogous result for polynomials in his
Théorie générale des équations algébriques (1779).]
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5.B Order of a Power

Let G be a group and let g ∈ G be an element of order n (see Exercise 3.C).

(a) For all k ∈ Z, prove that 〈gk〉 = 〈gd〉 where d = gcd(n, k). [Hint: From Exercise
5.A we can write d = nx+ ky for some x, y ∈ Z.]

(b) For any positive divisor d|n show that gd has order n/d.

(c) Combine (a) and (b) to prove that for any k ∈ Z the element gk has order
n/ gcd(n, k).

[Remark: This verifies the observation that we made in Exercise 3.A.]

5.C Galois Connections

Let (P,≤) and (Q,≤) be posets and let f : P → Q and g : Q → P be any functions
satisfying

p ≤ g(q)⇐⇒ f(p) ≤ q for all p ∈ P and q ∈ Q.

(a) For all p ∈ P and q ∈ Q prove that

p ≤ g(f(p)) and f(g(q)) ≤ q.

(b) For all p1, p2 ∈ P and q1, q2 ∈ Q prove that

p1 ≤ p2 ⇒ f(p1) ≤ f(p2) and q1 ≤ q2 ⇒ g(q1) ≤ g(q2).

(c) For all p ∈ P and q ∈ Q prove that

f(p) = f(g(f(p))) and g(q) = g(f(g(q))).

(d) Define the “images” P ′ := g[Q] := {g(q) : q ∈ Q} and Q′ := f [P ] := {f(p) : p ∈
P}. Prove that these are the same as the sets of “closed elements”

P ′ = {p ∈ P : p = g(f(p))} and Q′ = {q ∈ Q : q = f(g(q))}.

(e) Prove that the functions f, g restrict to an isomorphism of posets:

f : P ′ ←→ Q′ : g.

5.D Image and Preimage

Let (G, ∗, εG) and (H, •, εH) be groups and let ϕ : G→ H be any group homomorphism.
For every subset S ⊆ G we define the image set

ϕ[S] := {ϕ(g) : g ∈ S} ⊆ H,

and for every subset T ⊆ H we define the preimage set

ϕ−1[T ] := {g ∈ G : ϕ(g) ∈ T} ⊆ G.
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(a) The preimage function ϕ−1 : 2H → 2G always exists, however the inverse function
ϕ−1 : H → G might not. Prove that the inverse function exists if and only if
#ϕ−1[{h}] = 1 for all h ∈ H.

(b) If S ⊆ G is a subgroup prove that ϕ[S] ⊆ H is a subgroup.

(c) If T ⊆ H is a subgroup prove that ϕ−1[T ] ⊆ G is a subgroup.

(d) Now you have two functions ϕ : L (G) ⇆ L (H) : ϕ−1 between the subgroup
lattices. Prove that this is a Galois connection.
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Week 6

6.1 Equivalence Modulo a Subgroup

Last week we discussed the abstract properties of the symbol “≤”. This week we’ll
discuss the abstract properties of the symbol “=”.

Definition of Equivalence Relations. Let S be a set and let ∼ be a relation on S.
Technically, this means that ∼ is a subset of S×S. We will write “a ∼ b” to mean that
“(a, b) ∈ ∼ ”. We say that ∼ is an equivalence relation if the following three axioms
hold:

(E1) The relation ∼ is reflexive: for all a ∈ S we have

a ∼ a.

(E2) The relation ∼ is symmetric: for all a, b ∈ S we have

a ∼ b ⇐⇒ b ∼ a.

(E3) The relation ∼ is transitive: for all a, b, c ∈ S,

(a ∼ b and b ∼ c) =⇒ a ∼ c.

[Remark: The symbol “=” always denotes our favorite equivalence relation on a given
set.] For each element a ∈ S we define the equivalence class:

[a]∼ := {b ∈ S : a ∼ b}.

Then we use the notation

S/∼ = “ S mod ∼ ” = the set of ∼-equivalence classes.

You will verify in Exercise 6.A that for all a, b ∈ S the following three conditions are
equivalent:

• a ∼ b,

• [a]∼ = [b]∼,
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• [a]∼ ∩ [b]∼ 6= ∅.

We say that the equivalence classes form a partition of the set S and we express this
fact by writing S as a disjoint union of classes:

S =
∐

X∈S/∼
X. ///

I assume that you are familiar with the following example.

Example: Equivalence Modulo an Integer. Fix an integer n ∈ Z. Then for all
integers a, b ∈ Z we define

a ∼n b ⇐⇒ b− a ∈ nZ ⇐⇒ n|(b− a).

We call this relation “equivalence mod n”. I won’t bother to prove that this is an
equivalence relation because it will follow from a more general result below.

In the case of equivalence mod n we have a special notation for equivalence classes:

[a]∼n = {b ∈ Z : a ∼n b}
= {b ∈ Z : b− a ∈ nZ}
= {b ∈ Z : b− a = nk for some k ∈ Z}
= {b ∈ Z : b = a+ nk for some k ∈ Z}
= {a+ nk : k ∈ Z}
=: a+ nZ.

The equivalence class [a]∼n = a+nZ is called a coset of the subgroup nZ ⊆ Z. If n = 0
then each coset has a single element:

a+ 0Z = {a+ 0k : k ∈ Z} = {a}.

Thus we see that “equivalence mod 0” is the same as “equality”:

a ∼0 b ⇐⇒ a+ 0Z = b+ 0Z ⇐⇒ {a} = {b} ⇐⇒ a = b.

If n 6= 0 then each coset is in one-to-one correspondence with Z:

a+ nZ = {. . . , a− 2n , a− n , a , a+ n , a+ 2n , . . .}.

In this case, the partition of Z into equivalence classes is called “division with remain-
der”. By convention we say that a “remainder mod n” must satisfy 0 ≤ r < |n|.
Therefore we have the following disjoint union:

Z =
|n|−1∐
r=0
{integers with remainder r mod n} =

|n|−1∐
r=0

(r + nZ).
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And instead of Z/∼n we use the following notation for the set of cosets:

Z/nZ = {nZ , 1 + nZ , 2 + nZ , . . . , (|n| − 1) + nZ}. ///

That was just an example. Here is the general concept.

Definition of Equivalence Modulo a Subgroup. Let (G, ∗, ε) be a group and let
H ⊆ G be any subgroup. Then for all a, b ∈ G we define

a ∼H b ⇐⇒ a−1 ∗ b ∈ H ⇐⇒ b−1 ∗ a ∈ H,
aH∼ b ⇐⇒ a ∗ b−1 ∈ H ⇐⇒ b ∗ a−1 ∈ H.

I claim that each of ∼H and H∼ is an equivalence relation on G. We call these relations
left and right equivalence mod H.

Proof. Let H ⊆ G be a subgroup. We will prove that left equivalence ∼H is an
equivalence relation and leave the proof of right equivalence H∼ to the reader.

(E1) Consider any a ∈ G. Since the subgroup H contains the identity ε we have
a−1 ∗ a = ε ∈ H, and hence a ∼H a.

(E2) Consider any a, b ∈ G such that a ∼H b. By definition this means that a−1 ∗ b ∈
H. Then since the subgroup H is closed under inversion we have b−1 ∗ a =
(a−1 ∗ b)−1 ∈ H, and hence b ∼H a.

(E3) Consider any a, b, c ∈ G such that a ∼H b and b ∼H c. By definition this means
that a−1 ∗ b ∈ H and b−1 ∗ c ∈ H. Then since the subgroup H is closed under ∗
we have

a−1 ∗ c = (a−1 ∗ b) ∗ (b−1 ∗ c) ∈ H,

and hence a ∼H c. □

[Remark: Note that the three axioms of equivalence correspond perfectly with the
three axioms of a subgroup. This confirms that the axioms are good.]

The equivalence classes of ∼H are called left cosets:

[a]∼H = {b ∈ G : a ∼H b}
= {b ∈ G : a−1 ∗ b ∈ H}
= {b ∈ G : a−1 ∗ b = h for some h ∈ H}
= {b ∈ G : b = a ∗ h for some h ∈ H}
= {a ∗ h : h ∈ H}
=: aH.

And the equivalence classes of H∼ are called right cosets:

[a]
H∼ = {h ∗ a : h ∈ H} =: Ha.



88 6.1 Equivalence Modulo a Subgroup

Instead of G/∼H and G/H∼ , we prefer the following notations:

G/H := the set of left cosets of H,
H\G := the set of right cosets of H. ///

Now before we go any further let me explain the meaning of the notation “G/H”. The
following basic result has been known as “Lagrange’s Theorem” for over 100 years.
However, in the words of R. D. Carmichael:

In this case we have attributed to Lagrange a theorem which he probably
never knew or conjectured, on the ground (it would seem) that he knew a
certain special case of it.78

You will examine this “certain special case” in Exercise 10.A. Here is the general modern
statement.

Lagrange’s Theorem. Let (G, ∗, ε) be a group and let H ⊆ G be any subgroup.
Then there is a bijection between any two left (or right) cosets of H. If G is finite it
follows that

#(H\G) = #(G/H) = #G/#H,

hence the number of elements of H divides the number of elements of G. [Remark:
This confirms that the fractional notation is good.] ///

Proof. For each element a ∈ G note that the surjective function H → aH defined
by h 7→ a ∗ h is invertible with inverse g 7→ a−1 ∗ g. Similarly, the surjective function
H → Ha defined by h 7→ h∗a is invertible with inverse g 7→ g∗a−1. We have shown that
each left (or right) coset is in bijection with H, hence any two cosets are in bijection
with one another.

Next let us assume that G is finite. Then for all a ∈ G the above bijections prove that

#(aH) = #H = #(Ha).

Finally, since the set G is a disjoint union of left (or right) cosets, each having size #H,
we conclude #G equals the number of left (or right) cosets times #H:

#G = #(G/H) ·#H = #(H\G) ·#H. □

In Exercise ?? you proved the following theorem for finite abelian groups. Now we can
use Lagrange’s Theorem to prove it for non-abelian groups.

78The quotation is from Carmichael’s review in the Bulletin of the American Mathematical Society
(1921) of a book by G. H. Hardy on Some famous problems of the theory of numbers and in particular
Waring’s problem.
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Corollary (The Euler-Fermat-Lagrange Theorem). Let (G, ∗, ε) be a finite
group and let g ∈ G be any element. Then we have

g#G = ε.

Proof. Suppose that g has order d, so that #〈g〉 = d. Since 〈g〉 ⊆ G is a subgroup,
Lagrange’s Theorem tells us that #G = dk for some k ∈ Z. Finally, we have

g#G = gdk = (gd)k = εk = ε. □

I still haven’t told you what this has to do with Fermat and Euler. Be patient.79

Historical Remarks:

• Gauss introduced the concept of equivalence modulo an integer in his Disquisi-
tiones Arithmeticae (1801). He called this relation “congruence”, and he used the
symbol “≡” to provide a clear distinction from “=”.

• Gauss’ notion of congruence was successively generalized by various mathemati-
cians. The notion of congruence modulo a subgroup was explicitly defined by
Camille Jordan in (1873). Dedekind wrote about the concept in the 1850s, but
this work was only published after his death in (1932).

• The abstract concept of equivalence developed slowly over the following years. It
appeared in its modern form in van der Waerden’s Moderne Algebra (1930, page
13).

6.2 Lagrange’s Theorem and Applications.

6.3 Quotients of Abelian Groups

That was the theory. Now let’s see some examples of cosets.

Example: Parallel Lines. Let G = (R2,+,0) be the additive group of points in the
plane, and for any nonzero vector 0 6= u ∈ R2 let H = Ru := {αu : α ∈ R} be the line
through the origin in the direction of u. Note that H ⊆ G is a subgroup.

Since G is abelian there is no difference between left and right cosets. We will emphasize
this fact by writing the cosets additively. That is, for any vector v ∈ R2 we will write

v +H = H + v = {v + h : h ∈ H}.

The following picture shows that the cosets of H are precisely the lines parallel to
H:

79Or skip ahead to Exercise ??.
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Indeed, for any vectors v,w ∈ R2 we have by definition that

v +H = w +H ⇐⇒ v−w ∈ H ⇐⇒ v−w is parallel to H.

In this case the bijection τv : H → v + H defined by τv(x) = v + x extends to an
isometry of the plane, which we call translation by v. Indeed, for any two points
x,y ∈ R2 we observe that the distance between τv(x) and τv(y) equals the distance
between x and y:

‖τv(x)− τv(y)‖ = ‖(v + x)− (v + y)‖ = ‖x− y‖.

This explains why all of the cosets “look the same”. However, note that only one of
the cosets (namely, H itself) is a subgroup of G because only one of the parallel lines
contains the origin 0 ∈ R2. In summary, we have

G/H = R2/Ru = the set of all lines parallel to Ru.

Now let K = Rv ⊆ R be any other line through the origin, i.e., with v 6∈ H. Then
each coset w + H intersects K in a unique point so we obtain a bijection G/H ↔ K
defined as follows:

the line w +H ←→ the point of intersection (w +H) ∩K.

Following the old Euclidean terminology we will call such a bijection a transversal of
the cosets. Here is a picture:

Of course the choice of the line K was arbitrary. In linear algebra it is common to let
K = H⊥ be the line (more generally, the complementary subspace) that is orthogonal
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to H. Then we obtain a bijection

G/H ←→ H⊥.

But note that (H⊥,+, 0) is a group. Does this mean that G/H is a group? See
below. ///

Example: Concentric Circles. Let C× = (C−{0},×, 1) be the multiplicative group
of nonzero complex numbers and let U(1) = {eiθ : θ ∈ R} be the circle group. Note
that U(1) ⊆ C× is a subgroup.

This time we will write the cosets multiplicatively, but there is still no difference between
left and right cosets because C× is abelian. The following picture shows that the cosets
of U(1) are precisely the circles centered at 0 ∈ C:

Indeed, we observe that two numbers α, β ∈ C× are in the same coset if and only if
they differ by a rotation:

αU(1) = βU(1) ⇐⇒ α−1β ∈ U(1) ⇐⇒ β = αeiθ for some θ ∈ R.

Note that any infinite ray gives rise to a transversal of the cosets. In particular, let
R>0 = {α ∈ R : α > 0} be the infinite ray of positive real numbers. Then we obtain
a bijection between C×/U(1) and R>0 as follows:

the circle rU(1) = {reiθ : θ ∈ R} ←→ the positive real number r ∈ R>0.

Here is a picture:
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In summary, we have a bijection

C×/U(1)←→ R>0.

But note that (R>0,×, 1) is a group. Does this mean that C×/U(1) is a group? See
below. ///

Example: Modular Arithmetic. Let 〈g〉 be a cyclic group of order n ≥ 1 and
consider the group homomorphism ϕ : Z+ → 〈g〉 defined by

ϕ(k) := gk.

By convention the preimage of a single element is called a fiber. Note that the fibers
of ϕ are precisely the cosets of nZ:

ϕ−1[{gk}] = {` ∈ Z : ϕ(`) = gk}
= {` ∈ Z : g` = gk}
= {` ∈ Z : `− k ∈ nZ}
= {` ∈ Z : `− k = nm for some m ∈ Z}
= {` ∈ Z : ` = k + nm for some m ∈ Z}
= {k + nm : m ∈ Z}
= k + nZ.

In other words, we have a bijection between the cosets of the subgroup nZ ⊆ Z and
the elements of the cyclic group 〈g〉:

Z/nZ←→ 〈g〉.

But we know that 〈g〉 is a group. Does this mean that the set of cosets Z/nZ is also a
group?

Sure, why not? We can simply define a group structure on Z/nZ by transferring it
from 〈g〉 via the bijection. To be specific, since gk ∗ g` = gk+` for all k, ` ∈ Z we will
define the “same operation” on the fibers:

(k + nZ) ∗ (`+ nZ) := (k + `) + nZ.

But now the symbol “∗” looks silly, so let’s replace it by “+”:

(k + nZ) + (`+ nZ) := (k + `) + nZ.

[Warning: The “+” symbol here is just an analogy. We are really “adding” two
infinite sets of integers to obtain another infinite set of integers. It just happens that
everything works out nicely.] In summary, the set of cosets Z/nZ has a natural group
structure (Z/nZ,+, 0 + nZ) which makes it isomorphic to the cyclic group 〈g〉. ///

Based on these three examples, it is not surprising that we can define a group structure
on the set of cosets G/H whenever G is an abelian group. Here is the official statement.
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Theorem/Definition (Quotients of Abelian Groups). Let (G,+, 0) be any
abelian group and let H ⊆ G be any subgroup. Since G is abelian, the left and
right cosets of H are equal. That is, for all elements a ∈ G we have

a+H = {a+ h : h ∈ H} = {h+ a : h ∈ H} = H + a.

I claim that we can define “addition of cosets” so that for all a, b ∈ G the following
equation makes sense:

(a+H) + (b+H) = (a+ b) +H.

Proof. What needs to be checked? In the three examples above we knew ahead of
time that everything would work out, but in the abstract setting we need to prove that
this operation is well-defined. In other words, we need to show that the definition does
not depend on the particular choice of “coset representatives” a and b.

So let us assume that a+H = a′ +H and b+H = b′ +H, which means that a−a′ ∈ H
and b− b′ ∈ H. In this case we need to show the cosets (a+ b) +H and (a′ + b′) +H
are equal, or, equivalently, that (a+ b)− (a′ + b′) ∈ H. This follows immediately from
the fact that H is closed under addition:

(a+ b)− (a′ + b′) = (a− a′) + (b− b′) ∈ H. □

[Remark: I used the fact that G is abelian when I switched b − a′ with −a′ + b. In
fact, the analogous result for non-abelian groups is generally false. We will discuss this
next week.] Having checked that “addition of cosets” is well-defined, I claim that this
operation defines a group structure on the set of cosets G/H.

Proof. The identity element is H = 0 +H since for all a ∈ G we have

(a+H) +H = (a+H) + (0 +H) = (a+ 0) +H = a+H.

And the inverse of (a+H) is (−a+H) because

(a+H) + (−a+H) = (a− a) +H = 0 +H = H.

Finally, associativity is inherited from G because for all a, b, c ∈ G we have

(a+H) + [(b+H) + (c+H)] = (a+H) + ([b+ c] +H)
= (a+ [b+ c]) +H

= ([a+ b] + c) +H

= ([a+ b] +H) + (c+H)
= [(a+H) + (b+H)] + (c+H). □

In summary, for every abelian group (G,+, 0) and for every subgroup H ⊆ G we have
constructed the quotient group (G/H,+,H). Next week we’ll consider the more difficult
case when G is non-abelian.
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Exercises

6.A Equivalence = Partition

Let S be a set. A partition of S consists of a set of subsets {A1, . . . , Ak} ⊆ 2S satisfying
the following two properties:

• S = A1 ∪A2 ∪ · · · ∪Ak,

• Ai ∩Aj = ∅ for all i 6= j.

In this case we write S =
∐
iAi and we say that S is the disjoint union of the subsets

Ai. The sets Ai are called the classes of the partition.

(a) Given a partition S =
∐
iAi we can define a relation ∼⊆ S × S by setting

a ∼ b ⇐⇒ a and b are in the same class Ai.

Prove that this relation satisfies the three axioms of equivalence.

(b) Conversely, let ∼⊆ S×S be any equivalence relation and let [a]∼ ⊆ S denote the
∼-equivalence class of the element a ∈ S. For all a, b ∈ S prove that the following
conditions are equivalent:

(1) a ∼ b,

(2) [a]∼ = [b]∼,

(3) [a]∼ ∩ [b]∼ 6= ∅.

Conclude that the set S/∼ of equivalence classes forms a partition of S.

6.B Quotient Rings

Let (R,+,×, 0, 1) be a commutative ring. Technically: This means that (1) (R,+, 0)
is an abelian group, (2) (R,×, 1) is a commutative monoid (abelian group without
inverses), and (3) for all a, b, c ∈ R we have a(b+ c) = ab+ ac.

(a) Let I ⊆ R be an additive subgroup and recall that “addition of cosets” is well-
defined:

(a+ I) + (b+ I) = (a+ b) + I.

Thus we obtain the quotient group (R/I,+, 0 + I). Now suppose that for all
a ∈ R and b ∈ I we have ab ∈ I. [Jargon: We say that I ⊆ R is an ideal.] In
this case prove that the following “multiplication of cosets” is well-defined:

(a+ I)(b+ I) = (ab) + I.

It follows that (R/I,+,×, 0 + I, 1 + I) is a ring, called the quotient ring. [You do
not need to check all the details.]

(b) Apply part (a) to show that Z/nZ is a ring.

[Remark: We will say much more about this concept in Week 15.]
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6.C The Euler-Fermat-Lagrange Theorem, II

Let (R,+,×, 0, 1) be a ring and let R× ⊆ R denote the subset of elements that have
multiplicative inverses. We call (R×,×, 1) the group of units.

(a) For all n ∈ Z prove that (Z/nZ)× = {a+nZ : gcd(a, n) = 1}. [Hint: If gcd(a, n) =
1 then you proved in Exercise 5.A that there exist integers x, y ∈ Z with ax+by =
1. This is called Bézout’s Identity.]

(b) Euler’s Totient Theorem. Euler’s totient function is defined by

φ(n) := #(Z/nZ)×.

For all a ∈ Z with gcd(a, n) = 1 prove that

aφ(n) = 1 mod n.

(c) Fermat’s Little Theorem. If p ∈ Z is prime and p ∤ a prove that

ap−1 = 1 mod p.

[Remark: Fermat stated this result (without proof) in a letter to Frénicle in 1640.
Leibniz (between 1676 and 1680) and Euler (1731) later gave proofs by induction.
Around 1750 Euler obtained a new proof by multiplying together all of the elements of
(Z/pZ)×, which allowed him to generalize the result to (Z/nZ)×.80 This is the proof
that you gave in Exercise ??.]

6.D The Chinese Remainder Theorem

In this problem I will use the shorthand notation [a]n := a + nZ. Now fix some
m,n ∈ Z with gcd(m,n) = 1 and consider the following function from the set Z/mnZ
to the Cartesian product of sets Z/mZ× Z/nZ:

ϕ : Z/mnZ → Z/mZ× Z/nZ
[a]mn 7→ ([a]m, [a]n).

(a) Prove that ϕ is well-defined. That is, for all a, a′ ∈ Z prove that

[a]mn = [a′]mn implies [a]m = [a′]m and [a]n = [a′]n.

(b) For all c ∈ Z prove that m|c and n|c together imply (mn)|c. [Hint: There exist
x, y ∈ Z such that mx + ny = 1.] Use this to conclude that the function ϕ is
injective.

(c) Compare cardinalities to show that ϕ is surjective.

80See André Weil’s Number Theory: An approach through history from Hammurapi to Legendre (1984,
pages 57–57).
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(d) Find an explicit formula for the inverse. [Big Hint: Given ([a]m, [b]n) we need to
find some explicit c ∈ Z such that [a]m = [c]m and [b]n = [c]n. Try c := any+bmx.]

(e) Prove that ϕ restricts to a bijection between groups of units:

ϕ : (Z/mnZ)× ←→ (Z/mZ)× × (Z/nZ)×.

[Hint: Use the fact that gcd(k, `) = 1 if and only if there exist integers x, y ∈ Z
such that kx+ `y = 1.] It follows that Euler’s totient function satisfies φ(mn) =
φ(m)φ(n) for all gcd(m,n) = 1.

[Remark: For distinct primes p, q this result says that we have φ(pq) = φ(p)φ(q) =
(p− 1)(q − 1). Then Euler’s Totient Theorem says that for any integers a, k ∈ Z with
gcd(a, pq) = 1 (i.e., with p ∤ a and q ∤ a) we have

a(p−1)(q−1) = 1 mod pq,

a(p−1)(q−1)k = 1 mod pq,

a(p−1)(q−1)k+1 = a mod pq.

In fact, one can show that the third identity still holds when gcd(a, pq) 6= 1. This result
is the foundation of the RSA Cryptosystem.]



Week 7

7.1 Normal Subgroups

Let me recall the final proof from last week using more generic language. If (G, ∗, ε) is
a group and if H ⊆ G is any subgroup, then it seems natural to define the following
operation on left cosets:

(aH) ∗ (bH) := (a ∗ b)H for all a, b ∈ G.

However, we need to be careful because this definition is stated in terms of non-unique
representatives of equivalence classes. To make sure there is no logical contradiction
we must prove that a1H = a2H and b1H = b2H imply (a1 ∗ b1)H = (a2 ∗ b2)H. If G is
abelian then we have the following proof.

Proof. Assume that a1H = a2H and b1H = b2H, which by definition means that
a−1

1 ∗a2 ∈ H and b−1
1 ∗b2 ∈ H. In this case we want to show that (a1∗b1)H = (a2∗b2)H,

which by definition means that (a1 ∗ b1)−1 ∗ (a2 ∗ b2) ∈ H. Then we have

(a1 ∗ b1)−1 ∗ (a2 ∗ b2) = b−1
1 ∗

[
(a−1

1 ∗ a2) ∗ b2
]

= b−1
1 ∗

[
b2 ∗ (a−1

1 ∗ a2)
]

= (b−1
1 ∗ b2) ∗ (a−1

1 ∗ a2) ∈ H

because H is closed under the operation “∗”. □

If G is non-abelian then it might be the case that

(a−1
1 ∗ a2) ∗ b2 6= b2 ∗ (a−1

1 ∗ a2),

which seems to break the proof. But all is not lost. If we can always find some element
h ∈ H such that

(a−1
1 ∗ a2) ∗ b2 = b2 ∗ h

then the operation “∗” on cosets is still well-defined because

(a1 ∗ b1)−1 ∗ (a2 ∗ b2) = b−1
1 ∗

[
(a−1

1 ∗ a2) ∗ b2
]

= b−1
1 ∗ [b2 ∗ h]

= (b−1
1 ∗ b2) ∗ h ∈ H.
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To paraphrase: The proof still works if

for all h ∈ H and g ∈ G there exists some h′ ∈ H such that h ∗ g = g ∗ h′.

This strange kind of subgroup was considered by Galois all the way back in 1830.
If H ⊆ Sn is a subgroup of permutations satisfying the above condition then Galois
described the set of cosets Sn/H as a “proper decomposition”. Later authors used
the adjectives “distinguished” and “invariant”. The modern term “normal subgroup”
apparently comes from Heinrich Weber’s massive Lehrbuch der Algebra (1895–1896).81

Theorem (Definition of Normal Subgroups). Let (G, ∗, ε) be a group and let
H ⊆ G be any subgroup. Then the following three statements are equivalent:

(N1) Left and right equivalence mod H are the same relation. In other words, the
partitions of G into left and right cosets of H are the same:

G/H = H\G.

(N2) For all g ∈ G the left and right cosets containing g are equal:

gH = Hg.

(N3) For all g ∈ G and h ∈ H we have

g ∗ h ∗ g−1 ∈ H.

We say that H is closed under conjugation by elements of G.

Any subgroup H ⊆ G satisfying one (and hence all) of these conditions is called normal.
In this case we will use the notation

H ⊴G. ///

[Remark: Condition (N3) is the standard textbook definition of “normal”, and it is
usually the easiest condition to check.]

Proof. We will show that (N1)⇒(N2)⇒(N3)⇒(N1).

(N1)⇒(N2): Assume that G/H = H\G and consider any element g ∈ G. Since
gH ∈ G/H we must also have gH ∈ H\G, which means that gH = Ha for some
a ∈ G. Then since g = g ∗ ε ∈ gH we must have g ∈ Ha. In other words, the right
cosets Hg and Ha both contain the element g. Finally, since non-equal cosets are
disjoint (Exercise 6.A) this implies that Hg = Ha. We conclude that

gH = Ha = Hg.

81See Gray, A history of abstract algebra (2018, page 241).
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(N2)⇒(N3): Assume that gH = Hg for all g ∈ G. Then for all g ∈ G and h ∈ H we
have g ∗ h ∈ gH and hence g ∗ h ∈ Hg. In other words, there exists some h′ ∈ H such
that g ∗ h = h′ ∗ g and we conclude that

g ∗ h = h′ ∗ g
g ∗ h ∗ g−1 = h′ ∈ H.

(N3)⇒(N1): Assume for all g ∈ G and h ∈ H that we have g ∗h∗g−1 ∈ H. In this case
we will show that left and right equivalence mod H are the same relation on G, and
hence the equivalence classes are the same. In other words, for all a, b ∈ G we want to
prove that

a−1 ∗ b ∈ H ⇐⇒ b ∗ a−1 ∈ H.

For one direction, assume that a−1 ∗ b = h ∈ H. Then we have

b ∗ a−1 = a ∗ (a−1 ∗ b) ∗ a−1 = a ∗ h ∗ a−1 ∈ H.

For the other direction, assume that b ∗ a−1 = h′ ∈ H. Then we have

a−1 ∗ b = a−1 ∗ (b ∗ a−1) ∗ (a−1)−1 = a−1 ∗ h′ ∗ (a−1)−1 ∈ H. □

Important Example:

Every subgroup of an abelian group is normal.
///

Smallest Non-Example: Consider the smallest non-abelian group, which sometimes
is called the symmetric group S3 and at other times is called the dihedral group D6.
Today we will call it D6. Recall that this group has a specific representation

D6 = {I,R,R2, F,RF,R2F},

where R = R2π/3 is rotation counterclockwise by 2π/3 and F = F0 is reflection across
the x-axis. In other words:

R =
(
−1/2 −

√
3/2√

3/2 1/2

)
and F =

(
1 0
0 −1

)
.

One can check directly from the matrices that FR = R2F = R−1F . To see this
geometrically we should think of R−1 and R as clockwise and counterclockwise rotation
of an equilateral triangle and we should think of F as flipping the triangle over. Note
that flipping the triangle and then rotating clockwise is the same as first rotating
counterclockwise and then flipping the triangle. More generally, for any angle θ we
have

(rotate clockwise by θ) ◦ (flip) = (flip) ◦ (rotate counterclockwise by θ)
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(Rθ)−1F = FRθ.

Now consider the cyclic subgroup 〈R〉 = {I,R,R2} ⊆ D6. By Lagrange’s Theorem we
have

#(〈R〉\D6) = #(D6/〈R〉) = #D6/#〈R〉 = 2,

which tells us that there are two left cosets and two right cosets. Furthermore, since
〈R〉 itself is both a left and a right coset, it follows (somewhat accidentally) that

D6/〈R〉 = {{I,R,R2}, {F,RF,R2F}} = 〈R〉\D6.

In other words, 〈R〉⊴D6 is a normal subgroup. [Remark: The same counting argument
shows that H ⊴G whenever #G/#H = 2.]

Now for the non-example. Consider the cyclic subgroup 〈F 〉 = {I, F} ⊆ D6. Since
#D6/#〈F 〉 = 3 it follows again from Lagrange’s Theorem that there are three left
cosets and three right cosets. Explicitly, the left cosets are

D6/〈F 〉 = {〈F 〉, R〈F 〉, R2〈F 〉}
= {{I, F}, {R,RF}, {R2, R2F}}

and the right cosets are

〈F 〉\D6 = {〈F 〉, 〈F 〉R, 〈F 〉R2}
= {{I, F}, {R,FR}, {R2, FR2}}.

But recall that FR = R2F and FR2 = RF . It follows that the partitions into left and
right cosets are not the same:

In other words, the subgroup 〈F 〉 ⊆ D6 is not normal. This is the smallest possible
example of a non-normal subgroup. [Exercise: Work out the details of this example
in the language of the symmetric group S3, using R = (123) and F = (12).] ///

7.2 Quotient Groups in General

The definition of normal subgroups might seemed a bit arbitrary. Today I’ll show you
a modern characterization that is more natural. But first let me remind you of two
important concepts:

• Let (G, ∗, εG) and (H, •, εH) be abstract groups and let ϕ : G→ H be a function.
We say that ϕ is a group homomorphism if

ϕ(a ∗ b) = ϕ(a) • ϕ(b) for all a, b ∈ G.
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• The kernel of the homomorphism is the subgroup of G defined by

kerϕ = ϕ−1[{ε}] = {a ∈ G : ϕ(a) = ε} ⊆ G.

Historical Remarks:

• The concept of “homomorphism” is more modern than the concept of “isomor-
phism”. The distinction was understood by Camille Jordan in his Traité (1870)
but the term “homomorphism” apparently originated in lectures of Felix Klein
and first appeared in print with Fricke and Klein’s Vorlesungen über die Theorie
der automorphen Functionen (1897).

• The close relationship between homomorphisms and normal subgroups emerged
slowly in the 1800s and was strongly emphasized by Emmy Noether in the 1920s.82

The word “kernel” was imported by Lev Pontryagin (1931) from linear algebra
into group theory.

• The use of the arrow notation “ϕ : G → H” is surprisingly recent. The first use
of this notation is sometimes credited to Witold Hurewicz (1941). Apparently
the arrow notation emerged from a synthesis of the concepts of group homomor-
phisms and continuous maps in topology. Arrow-theoretic thinking (also called
category theory) exploded in the mid twentieth-century, to the extent that to-
day the concept of “homomorphism” is more fundamental than the concept of
“group”.83 ///

Here is the modern point of view on normal subgroups.

Theorem (Definition of Quotient Groups). Let (G, ∗, ε) be a group and let H ⊆ G
be any subgroup. Then the following are equivalent:

(N) H ⊴G is normal,

(N4) H is the kernel of a group homomorphism ϕ : G→ G′. ///

Proof. Let (G′, ∗′, ε′) be any group and let ϕ : G→ G′ be any group homomorphism.
To show that kerϕ ⊆ G is normal, consider any elements g ∈ G and h ∈ kerϕ. Then
from general properties of homomorphisms we have

ϕ(g ∗ h ∗ g−1) = ϕ(g) ∗′ ϕ(h) ∗′ ϕ(g)−1

82Her definitive statement appears in Hypercomplexe Größen und Darstellungstheorien (1929, page
648). According to van der Waerden, On the sources of my book Moderne Algebra (1975), Emmy
Noether’s motto was: Es steht alles schon bei Dedekind. (All of this is already found in the work of
Dedekind.) The motto is accurate in this case, since Dedekind realized as early as the 1850s that the
cosets of a normal subgroup themselves form a group (see Gray’s History of Abstract Algebra, page
142).

83For more information on terminology see the MathOverflow answers by Francois Ziegler (2017,
2019). See Julia Nicholson (1993) for more information on the development of the quotient group
concept.
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= ϕ(g) ∗′ ε′ ∗′ ϕ(g)−1

= ϕ(g) ∗′ ϕ(g)−1

= ε′

and hence g ∗ h ∗ g−1 ∈ kerϕ. It follows from condition (N3) above that kerϕ⊴G is a
normal subgroup.

Conversely, suppose that H ⊴G is normal. In this case we want to define a group G′

and a group homomorphism ϕ : G→ G′ such that kerϕ = H. The idea is to let G′ be
the set of left (or right) cosets of H:

G′ = G/H (= H\G).

Since H ⊴G is normal I claim that the following operation on cosets is well-defined:

(aH) ∗ (bH) := (a ∗ b)H.

To see this, suppose that we have a1H = a2H and b1H = b2H, so that a−1
1 ∗ a2 ∈ H

and b−1
1 ∗ b2 ∈ H. Since H is normal we have (a−1

1 ∗ a2) ∗ b2 = b2 ∗ h for some element
h ∈ H. It follows that

(a1 ∗ b1)−1 ∗ (a2 ∗ b2) = b−1
1 ∗

[
(a−1

1 ∗ a2) ∗ b2
]

= b−1
1 ∗ [b2 ∗ h]

= (b−1
1 ∗ b2) ∗ h ∈ H,

and hence (a1 ∗ b1)H = (a2 ∗ b2)H. One can easily check that this operation makes
G/H into a group with identity element εH = H. To complete the proof we only need
to find a group homomorphism ϕ : G → G/H such that kerϕ = H, and the choice is
completely obvious: for all g ∈ G we define

ϕ(g) := gH.

This function is a group homomorphism by definition and the kernel is

kerϕ = {g ∈ G : gH = H} = H. □

Remarks:

• If I were teaching this course for graduate students I would probably take (N4) as
the definition of normal subgroups, and derive the properties (N1), (N2), (N3)
as theorems.

• The homomorphism ϕ in the proof is called canonical because there is only one
possible choice. It is important to remember that the quotient group is really
a pair (G/H,ϕ), where G/H is the group and ϕ : G → G/H is the canonical
surjection.

• If ϕ : G→ G′ is any surjective group homomorphism then we will see below that
ϕ is secretly the canonical surjection onto the quotient group G/ kerϕ. ///
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Example: “Special” Matrix Groups. Every kind of matrix group has a “special”
subgroup, consisting of matrices with determinant 1. For example:

SLn(F) ⊆ GLn(F),
SO(n) ⊆ O(n),
SU(n) ⊆ U(n).

I claim that each of these subgroups is normal.

Proof. Let G be a group of square matrices over a field F and recall that the de-
terminant satisfies det(AB) = det(A) det(B) for all A,B ∈ G. In other words, the
determinant is a group homomorphism from G into the multiplicative group of nonzero
elements of F:

det : G→ F× = (F− {0},×, 1).
It follows that the kernel of the determinant is a normal subgroup. By definition we
call this the “special” subgroup:

SG := ker(det) = {A ∈ G : det(A) = 1}⊴G. □

In Exercise 7.A you will use the “same proof” to show that the group of alternating
permutations is a normal subgroup of the symmetric group:

An ⊴ Sn.

7.3 The First Isomorphism Theorem

How should one visualize a group homomorphism? I have two pictures in my mind.
We have already discussed one of them.

The Lattice Picture of a Group Homomorphism. If ϕ : G → H is a homo-
morphism of groups then we have seen that there is an isomorphism (called a “Galois
Correspondence”)

ϕ : L (G, kerϕ) ∼←→ L (imϕ) : ϕ−1

between the the lattice L (imϕ) of subgroups of the image and the lattice L (G, kerϕ)
of subgroups of G that contain the kernel:
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///

Today I will give you a second picture, related to the “fibers” of the homomorphism.

Definition of Fibers. Let G,H be sets and let ϕ : G → H be any function. Recall
that for each subset T ⊂ H we define the preimage as follows:

ϕ−1[T ] = {g ∈ G : ϕ(g) ∈ T} ⊆ G.

If the set T = {h} contains just one element h ∈ H then we prefer to call this the fiber
over h:

ϕ−1(h) := ϕ−1[{h}] ⊆ G.

Warning: This notation does not imply the existence of the inverse function. Indeed,
the inverse function exists if and only if each fiber contains a single element:

ϕ−1 : H → G exists ⇐⇒ #ϕ−1(h) = 1 for all h ∈ H.

In this sense the “fiber function” ϕ−1 : H → 2G from elements of H to subsets of G is
a generalization of the concept of “inverse”. ///

The fibers of a general function can be strange but the fibers of a group homomorphism
are particularly nice.

Lemma (Nonempty Fibers = Cosets of the Kernel). Let (G, ∗, εG) and (H, •, εH)
be groups and let ϕ : G → H be a group homomorphism. Note that for each element
h ∈ H − imϕ we have ϕ−1(h) = ∅ by definition. I claim that for each element ϕ(g) ∈
imϕ we have84

ϕ−1(ϕ(g)) = g(kerϕ) = (kerϕ)g.

Then since each coset of the kernel has the same size k = # kerϕ, it follows that ϕ is
a k-to-1 map. In particular, we see that

ϕ is injective ⇐⇒ # kerϕ = 1 ⇐⇒ kerϕ = {εG}.

///

Proof. Fix an element g ∈ G. Then for all elements a ∈ G we have

a ∈ ϕ−1(ϕ(g))⇐⇒ ϕ(a) = ϕ(g)
⇐⇒ ϕ(g)−1 • ϕ(a) = ε

⇐⇒ ϕ(g−1 ∗ a) = ε

⇐⇒ g−1 ∗ a ∈ kerϕ
⇐⇒ a ∈ g(kerϕ).

84Recall that kernels are normal subgroups, so there is no difference between left and right cosets.
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□

Here is the picture.

The Fiber Picture of a Group Homomorphism. Let ϕ : G → H be a group
homomorphism with kernel K = kerϕ. Instead of thinking of the lattice of subgroups, I
will visualize G and H as sets of points. For each element of the image h = ϕ(g) ∈ imϕ,
the fiber over h equals the coset gK. Hence each fiber has the same size:

///

But the image of ϕ is a group and the set of cosets of the kernel is also a group (because
the kernel is normal). Thus we obtain the following basic theorem. Dedekind wrote
about this theorem in the 1850s, but this work was not published during his lifetime.
The result later became synonymous with Emmy Noether, who emphasized this point
of view in the 1920s.85

The First Isomorphism Theorem. Let ϕ : G → H be a group homomorphism.
Then the fiber function ϕ−1 : H → 2G restricts to a group isomorphism imϕ ∼=
G/ kerϕ:

ϕ−1 : imϕ
∼−→ G/ kerϕ.

Proof. If h ∈ imϕ then we have h = ϕ(g) for some g ∈ G and it follows from the
lemma that ϕ−1(h) = g(kerϕ) is a coset of the kernel. We need to show that this
function is injective, surjective and a homomorphism.

85On page 647 of her Hypercomplexe Größen (1929), Emmy Noether refers to three Isomorphiesätze
(Isomorphism Theorems), which she called Homomorphiesatz (Homomorphism Theorem), Erster Iso-
morphiesatz (First Isomorphism Theorem) and Zweiter Isomorphiesatz (Second Isomorphism Theo-
rem). Somewhere along the way the numbering system got scrambled. Following Wikipedia, I choose
to call them the First, Third and Second Isomorphism Theorems, respectively. (See Exercise 7.B.)
Dedekind’s writing on this topic appears in his collected works (1932), which were edited by Noether.
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• Injective. For all h1, h2 ∈ imϕ there exist g1, g2 ∈ G such that h1 = ϕ(g1) and
h2 = ϕ(g2). Then we have

ϕ−1(h1) = ϕ−1(h2)⇐⇒ g1(kerϕ) = g2(kerϕ)
⇐⇒ g−1

1 ∗ g2 ∈ kerϕ
⇐⇒ ϕ(g−1

1 ∗ g2) = εH

⇐⇒ ϕ(g1) = ϕ(g2)
⇐⇒ h1 = h2.

• Surjective. This is true by definition.

• Homomorphism. For all ϕ(a), ϕ(b) ∈ imϕ, the lemma says that

ϕ−1(ϕ(a)) ∗ ϕ−1(ϕ(b)) = a(kerϕ) ∗ b(kerϕ)
= (a ∗ b) kerϕ
= ϕ−1(ϕ(a ∗ b))
= ϕ−1(ϕ(a) • ϕ(b)).

□

Now here is a summary of everything we know about group homomorphisms.

Summary: From any group homomorphism ϕ : G→ H we obtain:

(1) an isomorphism of posets ϕ : L (G, kerϕ) ∼−→ L (imϕ),

(2) an isomorphism of groups ϕ−1 : imϕ
∼−→ G/ kerϕ, and hence

(3) an isomorphism of posets L (imϕ) ∼−→ L (G/ kerϕ).

To be specific, we know from (1) that each subgroup of imϕ has the form ϕ[K] for some
unique subgroup kerϕ ⊆ K ⊆ G. The map (3) sends this to the following subgroup of
G/ kerϕ:

K/ kerϕ = {k(kerϕ) : k ∈ K} ⊆ G/ kerϕ.

Finally, by composing (1) and (3) we obtain an isomorphism of lattices from L (G, kerϕ)
to L (G/ kerϕ):

L (G, kerϕ) ∼−→ L (imϕ) ∼−→ L (G/ kerϕ)
K 7→ ϕ[K] 7→ K/ kerϕ.

In other words, every subgroup of G/ kerϕ has the form K/ kerϕ for some unique
subgroup kerϕ ⊆ K ⊆ G, and this correspondence preserves order. ///

There are a couple more decorations that one can add to this picture, called the Second
and Third Isomorphism Theorems, but I will save those for Exercise 7.B. For now just
a quick example.
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Example: Cyclic Groups. Let G be a group and let g ∈ G be any element. Then
we have a group homomomorphism from the additive integers:

ϕ : Z → G

k 7→ gk.

The image is (by definition) the cyclic subgroup 〈g〉 ⊆ G and the kernel, being a
subgroup of Z, has the form nZ for some unique integer n ≥ 0. Thus we obtain an
isomorphism of groups

〈g〉 = imϕ ∼= Z/ kerϕ = Z/nZ,

and two isomorphisms of lattices:

L (Z, nZ) ∼−→ L 〈g〉 ∼−→ L (Z/nZ)
dZ 7→ 〈gd〉 7→ dZ/nZ.

The elements of the leftmost lattice (and hence all three lattices) are in bijection with
the set of divisors Div(n) = {d ≥ 0 : d|n}, which is finite for n ≥ 1 and infinite for
n = 0.

Remark: From the group isomorphism 〈g〉 ∼= Z/nZ we obtain a bijection between
each pair of corresponding subgroups. If n ≥ 1 then it follows86 for all d ∈ Div(n) that

#(dZ/nZ) = #〈gd〉 = n/d.

Lagrange’s Theorem does not help in this case because #dZ = #nZ = ∞. This is an
example of two infinite groups having a finite quotient.

Exercises

7.A Permutation Matrices

Let Sn be the group of permutations of {1, 2, . . . , n}, and for each permutation f ∈ Sn
let [f ] ∈ Matn(R) be the matrix whose i, j-entry is 1 if f(j) = i and 0 if f(j) 6= i.

(a) If e1, . . . , en ∈ Rn is the standard basis, prove that we have [f ]ej = ef(j) for each
index j.

(b) Use (a) to prove that f 7→ [f ] defines a group homomorphism Sn → O(n).

(c) Let det : O(n)→ {±1} be the determinant. Use (b) to prove that ϕ(f) := det[f ]
is a group homomorphism ϕ : Sn → {±1}.

(d) Show that the kerϕ is the alternating subgroup An ⊆ Sn which was defined in
Exercise 2.B. [Hint: If t is a transposition then ϕ(t) = −1.]

(e) Use the First Isomorphism Theorem and Lagrange’s Theorem to conclude that

#An = n! / 2.
86Recall from Exercise 5.B that the element gk ∈ G has order n/ gcd(n, k), thus for all d|n we have

#〈gd〉 = n/d.
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7.B Second and Third Isomorphism Theorems

(a) Let H,K ⊆ G be subgroups with K ⊴ G normal. In this case prove that the
product set HK := {h∗k : h ∈ H, k ∈ K} ⊆ G is a subgroup (but not necessarily
normal).

(b) Continuing from (a), prove that K ⊴ HK is a normal subgroup and the map
h 7→ hK defines a surjective group homomorphism H → (HK)/K with kernel
H ∩K. It follows that

H

H ∩K
∼=
HK

K
.

(c) Now consider another normal subgroup N ⊴ G such that N ⊆ K. Prove that
N ⊴K is normal and that the map gN 7→ gK defines a surjective group homo-
morphism G/N → G/K with kernel K/N . It follows that

G/N

K/N
∼=
G

K
.

[Remark: If G is finite then the Third Isomorphism Theorem doesn’t tell us anything
new about cardinality, but the Second Isomorphism Theorem and Lagrange’s Theorem
tell us that

#(HK) = #H ·#K
#(H ∩K)

.

It turns out that this formula is still true even when HK ⊆ G is not a subgroup. You
will prove a generalization of this in Exercise 10.B using the Orbit-Stabilizer Theorem.]

7.C Dimension of a Vector Space, Part I

Let (F,+,×, 0, 1) be a field (of “scalars”) and let (V,+,0) be an abelian group (of
“vectors”). We say that V is a vector space over F if there exists a function F×V → V
denoted by (a,u) 7→ au that satisfies four axioms:

• For all u ∈ V we have 1u = u.

• For all a, b ∈ F and u ∈ V we have (ab)u = a(bu).

• For all a, b ∈ F and u ∈ V we have (a+ b)u = au + bu.

• For all a ∈ F and u,v ∈ V we have a(u + v) = au + av.

(a) In this case prove that 0u = 0 for all u ∈ V and a0 = 0 for all a ∈ F.

(b) Steinitz Exchange Lemma.87 For all vectors u1, . . . ,um ∈ V we define their span
as the set

F{u1, . . . ,um} := {a1u1 + · · ·+ amum : a1, . . . , am ∈ F} ⊆ V

87Ernst Steinitz wrote a significant paper on the Algebraische Theorie der Körper (1910), which
directly inspired the Göttingen school of abstract algebra, and was immortalized in van der Waerden’s
Moderne Algebra (1930). Surprisingly, the “Steinitz Exchange Lemma” does not appear in the 1910
paper, but in a 1913 paper on conditionally convergent series. Steinitz regarded this idea as common
knowledge; still, he was the first to write it down.
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and we say that u1, . . . ,um is a spanning set when F{u1, . . . ,um} = V . We say
that v1, . . . ,vn ∈ V is an independent set if for all b1, . . . , bn ∈ F we have

(b1v1 + · · ·+ bnvn = 0)⇒ (b1 = · · · = bn = 0).

If u1, . . . ,um are spanning and v1, . . . ,vn are independent, prove that n ≤ m.
[Hint: Assume for contradiction that m < n. Since the ui are spanning we have
v1 =

∑
i aiui and since the vj are independent, not all of the coefficients are zero.

Without loss suppose that a1 6= 0 and use this to show that v1,u2, . . . ,um is
spanning. Now show by induction that v1, . . . ,vm is a spanning set and use this
to obtain a contradiction.]

(c) An independent spanning set is called a basis of V . If V has a finite spanning
set, prove that V has a finite basis.

(d) Continuing from (b) and (c), prove that any two finite bases have the same size.
This size is called the dimension of the vector space V .

[Remark: This is the prototype for the concept of “dimension” in any area of mathe-
matics. As you see, it is a subtle concept. You will develop a different characterization
of vector space dimension in Exercise 9.D.]
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Week 8

8.1 Historical Interlude

So far we have focused on the “external structure” of groups, which deals with the
collection of all abstract groups and the collections of homomorphisms between them.
The foundational results in this direction are the Correspondence Theorem and the
three Isomorphism Theorems. The external point of view is quite modern. One could
make the case that it goes back to the work of Galois, but it is more accurate to say that
it emerged from the work of Dedekind in the 1850s, whose ideas were later standardized
by German mathematicians in the early twentieth century. Today the external point
of view is called “category theory”.88

For the remainder of this semester we will turn to the “internal structure” of groups.
This is an older point of view that is concerned with intricate details and specific
examples. One could also call this the “French school” of group theory (though it
was practiced by Germans and Norwegians as well). The internal structure of groups
was first seriously studied by Augustin-Louis Cauchy between 1812 and 1815. The
purpose of this work was to explain the ideas of Lagrange (1770) purely in terms of
the structure of permutations. Cauchy’s first major result (1815) was the statement
and proof of Lagrange’s Theorem89 (see Exercise 10.A below). Later in (1844) Cauchy
returned to the subject to prove the following partial converse to Lagrange’s Theorem.

Cauchy’s Theorem. Let G be a finite group. (For Cauchy this was always a subgroup
of the symmeteric group.) If p is any prime dividing the size of G then there exists an
element g ∈ G of order p, hence also a subgroup 〈g〉 ⊆ G of size p. ///

At the time this was the deepest theorem of group theory. It was later generalized by
the Norwegian mathematician Ludwig Sylow (1872). We will not prove Cauchy’s nor
Sylow’s theorems in this course (since they are not necessary for Galois Theory) but
we will discuss some preliminary results and specific examples in Week 11.

The French school of group theory was systematized in the influential textbooks of
Joseph Serret (1949) and Camille Jordan (1870). This tradition also directly inspired

88Again, I will not define categories in this course. Please feel free to look up the definition on
Wikipedia. For historical perspective please see Leo Corry’s Modern Algebra and the Rise of Mathe-
matical Structures (2004).

89This was the only paper cited by Abel in his (1826) proof of the unsolvability of the general quintic.
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the work of Sophus Lie (a Norwegian) and Felix Klein (a German) on continuous
transformation groups. In the twentieth century this developed into the modern theory
of Lie groups, which is central to mathematical physics. In the following weeks we will
give a selective treatment of these ideas, focusing mainly on the parts that are relevant
to Galois theory.

MENTION FROBENIUS (Hawkins, page 335)

CONJUGACY CLASSES (Frobenius exploited orbit-stabilizer type ideas by thinking
of lists with repeated elements)

ABSTRACT FORMULATION AND PROOF OF SYLOW THEOREMS BY CLASS
EQUATION AND DOUBLE COSETS

8.2 Automorphisms and Group Actions

The goal of modern abstract algebra is prove theorems at the greatest possible level
of generality as a way of compactifying our knowledge into a small conceptual space.
Of course, there is no reason to do this unless we have a large stock of interesting
examples.

Definition of Automorphism Groups. Let X be any “set with structure”. For
example, X could be a topological space, a manifold, a vector space, a poset, a
group/ring/field, or any kind of mathematical structure. By an automorphism of X we
mean any invertible function f : X → X such that f and f−1 “preserve the structure
of X”. We denote the set of automorphisms by

Aut(X) = {invertible f : X → X such that f, f−1 preserve structure}.

It follows directly from the definition that (Aut(X), ◦, id ) is a group under composition,
with identity given by the identity function id : X → X. ///

Example: Permutations. Let X be just a set (i.e., with no extra structure). Then
the automorphisms of X are called permutations. In this case we use the notation

Aut(X) = Perm(X) = SX .

[The S is for symmetric group, which is another name for this group.] If the set X is
finite with #X = n then we might as well say that X = {1, 2, . . . , n}, in which case we
have

SX = S{1,2,...,n} = Sn.

Prior to 1880s the word “group” was (almost) exclusively applied to groups of permuta-
tions. The first textbook on the subject was Camille Jordan’s Traité des Substitutions
(1870). Here “substitution” means a permutation of the inputs of a multivariable func-
tion. The key fact (going back to Galois) is that the collection of substitutions that
leave a given function invariant is a subgroup of Sn. The axiomatic definition of a group
was given by Arthur Cayley in 1854: On the Theory of Groups, as depending on the
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Symbolic Equation θn = 1, however this level of abstraction was not widely accepted
until the twentieth century.90 ///

Example: Matrices. Let V be a vector space over a field F. (See Exercise ?? for the
definition.) Homomorphisms of vector spaces are called linear functions and the group
of automorphisms of V is called the general linear group of V :

Aut( vector space V ) = GL(V ).

Now suppose that V has dimension n. Given a basis U = {u1, . . . ,un} ⊆ V we can
represent each vector x ∈ V as an n× 1 column by defining

[x]U =


x1
...
xn

 ∈ Fn ⇐⇒ x =
∑
i

xiui.

Then for each linear function f : V → V we define the n × n matrix [f ]U ∈ Matn(F)
whose j-th column is [f(uj)]U and it follows from linearity that

[f(x)]U = [f ]U [x]U for all x ∈ V .

In summary, the basis U gives us an identification of the group GL(V ) of linear auto-
morphisms with the group of n× n invertible matrices over F:

Aut( vector space V with a fixed basis U ) = GLn(F)

However, we observe that there is no canonical choice of basis. If U ⊆ V and V ⊆ V
are two bases for the vector space V and if f : V → V is a linear function then I claim
that

C[f ]U C−1 = [f ]V ,

where C ∈ Matn(F) is the (unique, invertible) matrix satisfying C[x]U = [x]V for all
x ∈ V .

Proof. For all x ∈ V we have

(C[f ]U C−1)[x]V = C[f ]U (C−1[x]V )
= C[f ]U [x]U
= C([f ]U [x]U )
= C[f(x)]U
= [f(x)]V
= [f ]V [x]V .

Then by substituting x = vj we see that the j-th columns of the matrices C[f ]U C−1

and [f ]V are equal for all j. □

90See Part III, Chapter 4 of Hans Wussing’s The Genesis of the Abstract Group Concept (1984).
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In other words, we have shown that conjugate elements of the group GLn(F) represent
the same linear function with respect to different bases. In Exercise 11.A you will show
that a similar idea holds for the symmetric group. ///

Example: Orthogonal (and Unitary) Matrices. Let V be an n-dimensional
Euclidean vector space. In other words, let V be an n-dimensional vector space over
R, equipped with a symmetric and positive-definite bilinear form91

〈−,−〉 : V × V → R.

The group of automorphisms of Euclidean space is called the orthogonal group:

Aut(Euclidean space V ) = O(V ).

If U ⊆ V is an orthonormal basis (consisting of orthogonal unit vectors) then for each
automorphism f : V → V one can show that [f ]U ∈ Matn(R) is an orthogonal matrix.
(In fact you already showed this in Exercise 4.B.) Such a basis gives us an identification
of the group O(V ) with the group O(n) of n× n orthogonal matrices:

Aut( Euclidean space V with a fixed orthonormal basis U ) = O(n).

However, there is no canonical choice of basis. In this case, conjugate elements of the
group O(n) represent the same linear function with respect to some orthogonal (i.e.,
distance preserving) change of coordinates.

More generally, if V is an n-dimensional “Hermitian space” over C with positive-definite
sesquilinear form92 〈−,−〉 : V × V → C then all of the same remarks apply for the
unitary groups U(V ) and U(n). ///

These examples include all of the interesting kinds of (non-abelian) groups that we
have studied in this course. Indeed, the subject of abstract group theory is meant to
synthesize the study of concrete groups such as

Sn, GLn, O(n), U(n)

into one coherent theory. After studying groups from the abstract point of view,
however, we might want to go back to concrete examples.

The heart’s desire of an abstract group is to “act” on a nice structure.

Definition of Group Actions. Let (G, ∗, ε) be an abstract group and let X be
a set with structure. Let G × X → X be some function written as (g, x) 7→ g(x).
Equivalently, for each group element g ∈ G we let x 7→ g(x) be an arbitrary function
from X to itself. We call this function a group action if the following two axioms are
satisfied:

91“Symmetric” means that 〈x, y〉 = 〈y, x〉 for all x, y ∈ V and “positive-definite” means that 〈x, x〉 ≥
0 for all x ∈ V , with 〈x, x〉 = 0 if and only if x = 0.

92A “sesquilinear form” satisfies 〈x + αy, z〉 = 〈x, z〉 + α∗〈y, z〉 and 〈x, y + αz〉 = 〈x, y〉 + α〈x, z〉 for
all x, y, z ∈ V and α ∈ C, where α∗ ∈ C is the complex conjugate of α.
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(A1) The group operation acts like composition of functions:

(g ∗ h)(x) = g(h(x)) for all g, h ∈ G and x ∈ X.

(A2) Each element of G acts like an automorphism of X:

for all g ∈ G the function x 7→ g(x) is in Aut(X).

But there is a quicker way to say this. Equivalently, a group action is defined by a
group homomorphism from G into the automorphisms of X:

ϕ : G→ Aut(X).

Proof. Given any function (g, x) 7→ g(x) satisfying (A1) and (A2) we will define
ϕg(x) := g(x). By axiom (A2) the function ϕg is in Aut(X). Then by axiom (A1) we
have

ϕg∗h(x) = ϕg(ϕh(x)) = (ϕg ◦ ϕh)(x) for all g, h ∈ G and x ∈ X.
It follows that

ϕg∗h = ϕg ◦ ϕh
and hence the function ϕ : G → Aut(X) sending g ∈ G to ϕg : X → X is a group
homomorphism. Conversely, suppose we have a group homomorphism ϕ : G→ Aut(X)
denoted by ϕ 7→ ϕg. Now define a function G×X → X by (g, x) 7→ ϕg(x) and observe
that this function satisfies (A1) and (A2). □

I like the homomorphism definition better because it emphasizes that a given group G
can act on a given structure X in different ways, corresponding to different homomor-
phisms ϕ : G→ Aut(X).

Remarks:

• The notation ϕg(x) is a simile because it says that the group element g “acts
like a function”. The notation g(x) is a metaphor because it says that the group
element g “is a function”, which is not literally true.

• My definition of group action is slightly nonstandard. Most books only define the
action of groups on sets, not on “sets with structure”. The standard definition
says that (1) ε(x) = x for all x ∈ X, and (2) (g ∗ h)(x) = g(h(x)) for all
g, h ∈ G and x ∈ X. Exercise: Prove that this is equivalent to my definition
when Aut(X) = Perm(X), i.e., when the set X has no additional structure.

• Sometimes we use the notation G↷ X to indicate that G acts on X. If we want
to be specific about the homomorphism ϕ : G→ Aut(X) then we can write

G
ϕ
↷ X.

• Jargon: If V is a vector space, then an action ϕ : G → GL(V ) is also called a
linear representation of G, and the vector space V is called a G-module. More
generally, the study of group actions is called representation theory by mathe-
maticians. Physicists just call it group theory.
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8.3 Translation and Conjugation

You won’t appreciate the definition of group action until you understand some exam-
ples. In this lecture we will discuss two important examples of a group acting on itself,
called “translation” and “conjugation”.

Example: Translation. For all g ∈ G we define τg : G→ G by

τg(a) := g ∗ a for all a ∈ G.

For each g ∈ G I claim that the function τg is invertible, with τ−1
g = τg−1 .

Proof. For all a ∈ G we have

τg(τg−1(a)) = g ∗ (g−1 ∗ a) = (g ∗ g−1) ∗ a = ε ∗ a = a

and
τg−1(τg(a)) = g−1 ∗ (g ∗ a) = (g−1 ∗ g) ∗ a = ε ∗ a = a.

□

Thus we obtain a function τ : G → Perm(G) sending g 7→ τg. Moreover, I claim that
τ is a group homomorphism.

Proof. For all a, g, h ∈ G we have

τg∗h(a) = (g ∗ h) ∗ a = g ∗ (h ∗ a) = (τg ◦ τh)(a),

and hence τg∗h = τg ◦ τh. □

To summarize, we say that G acts on itself (as a set) by translation.

Example: Conjugation. For all g ∈ G we define κg : G→ G by

κg(a) := g ∗ a ∗ g−1 for all a ∈ G.

For each g ∈ G I claim that the function κg is invertible, with κ−1
g = κg−1 .

Proof. For all a, g ∈ G we have

κg(κg−1(a)) = g ∗ (g−1 ∗ a ∗ g) ∗ g−1 = ε ∗ a ∗ ε = a

and
κg−1(κg(a)) = g−1 ∗ (g ∗ a ∗ g−1) ∗ g = ε ∗ a ∗ ε = a.

□

Thus we obtain a function κ : G → Perm(G) sending g 7→ κg. Moreover, I claim that
κ is a group homomorphism.

Proof. For all a, g, h ∈ G we have

κg∗h(a) = (g ∗ h) ∗ a ∗ (g ∗ h)−1 = g ∗ (h ∗ a ∗ h−1) ∗ g−1 = (κg ◦ κh)(a),
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and hence κg∗h = κg ◦ κh. □

But even more is true. I claim that the image of κ is contained in the subgroup
Aut(G) ⊆ Perm(G) of automorphisms, i.e., the subgroup of permutations that preserve
the group structure.

Proof. For all g, a, b ∈ G we have

κg(a) ∗ κg(b) = (g ∗ a ∗ g−1) ∗ (g ∗ b ∗ g−1)
= g ∗ a ∗ (g−1 ∗ g) ∗ b ∗ g−1

= g ∗ a ∗ ε ∗ b ∗ g−1

= g ∗ (a ∗ b) ∗ g−1

= κg(a ∗ b),

and hence κg ∈ Aut(G). □

Thus we obtain a group homomorphism κ : G → Aut(G), and we say that G acts on
itself (as a group) by conjugation.

Remarks:

• The action of G on itself by translation does not preserve the group structure of
G because τg(a∗b) = g∗a∗b is not in general equal to τg(a)∗τg(b) = g∗a∗g∗b. In
other words, the image of the homomorphism τ : G→ Perm(G) is not contained
in the subgroup Aut(G) ⊆ Perm(G).

• The actions τ and κ defined here are sometimes called “left translation” and “left
conjugation”, and the notion of action defined above is sometimes called a “left
action”. There is an associated notion of “right action”, which is defined by an
anti-homomorphism

ϕ : G→ Aut(X).

In other words, a right action must satisfy ϕg∗h = ϕh ◦ ϕg for all g, h ∈ G.
Exercise: Define the notions of “right translation” and “right conjugation”, and
prove that these are “right actions”.

///

Application: Cayley’s Theorem. What happens when we apply the First Isomor-
phism Theorem to the translation homomorphism τ : G → Perm(G)? First of all, I
claim that τ is injective.

Proof. It is enough to show that ker τ = {ε}. So consider any g ∈ ker τ . By definition
this means that τg : G→ G is the identity function:

τg(a) = a for all a ∈ G.

In particular, we have ε = τg(ε) = g ∗ ε = g. □
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It follows that G is isomorphic to its image, which is a subgroup of Perm(G):

G = G/ ker τ ∼= im τ ⊆ Perm(G).

So what? In the 1850s the word “group” meant a “group of permutations”. When
Arthur Cayley promoted an axiomatic definition of groups in (1854) he had to overcome
this bias. Cayley’s Theorem says that every abstract group G is isomorphic to a group
of permutations of some set (namely, itself). This shows that the concept of abstract
groups is not more general than the concept of permutation groups. [Remark:
However, the subgroup im τ ⊆ Perm(G) is certainly not equal to the full permutation
group, because

#im τ = #G < (#G)! = #Perm(G).]

Application: Definition of the Center and Inner Automorphisms. If we apply
the First Isomorphism Theorem to the conjugation homomorphism κ : G → Aut(G)
then we obtain

G/ kerκ ∼= im κ ⊆ Aut(G).

We have a special name for the kernel. It is called the center of G:93

Z(G) := kerκ
= {g ∈ G : κg = id }
= {g ∈ G : κg(a) = a for all a ∈ G}
= {g ∈ G : g ∗ a ∗ g−1 = a for all a ∈ G}
= {g ∈ G : g ∗ a = a ∗ g for all a ∈ G}.

This is the set of elements of G that commute with everything. Being a kernel, it is
necessarily a normal subgroup:

Z(G) ⊴G.

And what about the image? An automorphism of a group that arises from conjugation
is called an inner automorphism, and we use the notation

Inn(G) := im κ ⊆ Aut(G).

It follows from the First Isomorphism Theorem that

Inn(G) ∼= G/Z(G).

I have nothing interesting to say about this right now.

Exercises

8.A Automorphisms of a Cyclic Group

For all integers n ∈ Z prove that

Aut(Z/nZ) ∼= (Z/nZ)×.

93Z is for Zentrum.
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[Hint: Let [k]n ∈ Z/nZ denote the equivalence class of k mod n. Show that any
automorphism ϕ : Z/nZ→ Z/nZ has the form ϕa([k]n) := [ak]n for some integer a ∈ Z
satisfying gcd(a, n) = 1.]

8.B An Application of Conjugation

Consider any two elements a, b ∈ G. Prove that the cyclic groups 〈a ∗ b〉 and 〈b ∗ a〉 are
isomorphic, hence the elements a ∗ b and b ∗ a have the same order.

8.C Why Does AB = I Imply BA = I ?

Given a field F and a positive integer n we define

M := Matn(F) = the set of n× n matrices with entries in F.

I claim that this set is a vector space of dimension n2 over the field F. (This is because
each matrix has n2 independent entries. Never mind the details.) Now consider any
two matrices A,B ∈M such that AB = I.

(a) Show that the set BM := {BM : M ∈ M} is a vector subspace of M. In other
words, for all matrices X,Y ∈ BM and scalars α, β ∈ F, show that αX + βY ∈
BM.

(b) More generally, for each integer k ≥ 0 define the set BkM := {BkM : M ∈ M}
and show that Bk+1M is a vector subspace of BkM.

(c) I claim that a finite-dimensional vector space has no infinite descending chain
of subspaces.94 Use this fact to prove that there exists an integer k ≥ 0 and a
matrix C ∈M satisfying Bk = Bk+1C.

(d) Let C be as in part (c). Prove that BC = I and hence C = A. It follows that
BA = I.

[Remark: Believe it or not, this is the easiest proof I know. The same ideas can
be used to show that ab = 1 implies ba = 1 in any “Artinian ring”. The prototypical
examples of Artinian rings are finite rings and finite dimensional algebras (for example,
matrix algebras) over a field.]

94You will prove this in Exercise 9.D.
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Week 9

9.1 The Direct Product of Groups

The study of finite groups has always been concerned with “factoring” groups into
smaller pieces. This comes directly from Galois Theory, where the goal is to “break
down” the symmetries of a given polynomial equation. After discussing the basics of
this theory we will finally be in a position to prove the group-theoretic side of the
theorem that the general quintic equation is not solvable. (We will just assume for now
that Galois’ Solvability Theorem from Week 2 is true. You will have to wait until the
end of next semester if you want to see a proof of that.)

Theorem (Definition of External Direct Product). Let (H, ∗, εH) and (K, •, εk)
be abstract groups and consider the Cartesian product set

H ×K := {(h, k) : h ∈ H, k ∈ K}.

I claim that the obvious definition

(h1, k1) ⊡ (h2, k2) := (h1 ∗ h2, k1 • k2)

makes H ×K into a group with identity element (εH , εK). Furthermore, I claim that
the sets H̃ := {(h, εK) : h ∈ H} and K̃ := {(εH , k) : k ∈ K} are subgroups of H ×K
with the following properties:

• We have group isomorphisms H̃ ∼= H and K̃ ∼= K.

• The intersection is trivial: H̃ ∩ K̃ = {(εH , εK)}.

• For all h̃ ∈ H̃ and k̃ ∈ K̃ we have h̃⊡ k̃ = k̃ ⊡ h̃.

///

Proof. First we prove that (H ×K,⊡, (εH , εK)) is a group:

Associative. The operation ⊡ inherits associativity from ∗ and •.

Identity. For all (h, k) ∈ H ×K we observe that

(h, k) ⊡ (εH , εK) = (εH , εK) ⊡ (h, k) = (h, k).
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Inverse. For all (h, k) ∈ H ×K we have

(h, k) ⊡ (h−1, k−1) = (h−1, k−1) ⊡ (h, k) = (εH , εK).

Now consider the subsets H̃, K̃ ⊂ H ×K. We clearly have H̃ ∩ K̃ = {(εH , εK)}. To
see that H̃ ⊆ H ×K is a subgroup we observe that for any two elements (h1, εK) and
(h2, εk) in H̃ we have

(h1, εK) ⊡ (h2, εK)−1 = (h1, εK) ⊡ (h−1
2 , εK) = (h1 ∗ h−1

2 , εK) ∈ H̃.

Then the map H → H̃ defined by h 7→ (h, εK) is a bijective group homomorphism.
A similar argument shows that K̃ ⊆ H ×K is a subgroup with K̃ ∼= K. Finally, we
consider any two elements h̃ = (h, εK) ∈ H̃ and k̃ = (εH , k) ∈ K̃ and we observe that
these elements commute:

h̃⊡ k̃ = (h, εK) ⊡ (εH , k)
= (h ∗ εH , εK • k)
= (h, k)
= (εH ∗ h, k • εK)
= (εH , k) ⊡ (h, εK)
= k̃ ⊡ h̃.

□

We call this construction the “external” direct product in order to emphasize the special
case whenH andK are subgroups of a common groupG. In this case there is an obvious
function from H ×K into G.

Theorem (Definition of Internal Direct Product). Let (G, ∗, ε) be a group and let
H,K ⊆ G be any two subgroups. We define the following “multiplication function”’95

from the external direct product:

µ : H ×K → G
(h, k) 7→ h ∗ k.

And we define the product set as the image of this function:96

HK := imµ = {h ∗ k : h ∈ H, k ∈ K}.

Then I claim that:

(1) The function µ is injective if and only if H ∩K = {ε}.

(2) The function µ is a group homomorphism if and only if for all h ∈ H and k ∈ K
we have h ∗ k = k ∗ h.

95In general this function is not a group homomorphism.
96Because µ is not necessarily a group homomorphism, the product set HK ⊆ G is not necessarily

a subgroup. You will see an example of this in Exercise ??.
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If both of these properties hold then since µ is a group homomorphism we find that
HK = imµ ⊆ G is a subgroup and since µ is injective (equivalently, kerµ is trivial)
we obtain a group isomorphism:

H ×K ∼=
H ×K
kerµ

∼= imµ = HK.

In this case we will write HK = H ×K and we will say that HK is the internal direct
product of the subgroups H ⊆ HK and K ⊆ HK. In the special case that HK = G
we will write G = H ×K. ///

Proof. (1) Note that for all g ∈ H ∩K we have

µ(g, g−1) = g ∗ g−1 = ε = ε ∗ ε = µ(ε, ε).

If µ is injective then it follows that (g, g−1) = (ε, ε) and hence g = ε. Conversely, let
H ∩K = {ε} and suppose that

h1 ∗ k1 = µ(h1, k1) = µ(h2, k2) = h2 ∗ k2

for some h1, h2 ∈ H and k1, k2 ∈ K. Then we have h−1
2 ∗ h1 = k2 ∗ k−1

1 ∈ H ∩K. Since
H ∩K = {ε} this implies that h−1

2 ∗ h1 = k2 ∗ k−1
1 = ε, hence h1 = h2 and k1 = k2. In

other words, µ is injective.

(2) Assume that h ∗ k = k ∗ h for all h ∈ H and k ∈ K. Then multiplication defines a
homomoprhism µ : H ×K → G because

µ((h1, k1) ∗ (h2, k2)) = µ(h1 ∗ h2, k1 ∗ k2)
= (h1 ∗ h2) ∗ (k1 ∗ k2)
= h1 ∗ (h2 ∗ k1) ∗ k2

= h1 ∗ (k1 ∗ h2) ∗ k2

= (h1 ∗ k1) ∗ (h2 ∗ k2)
= µ(h1, k1) ∗ µ(h2, k2).

Conversely, let µ be a homomorphism. Then for all (h, k) ∈ H ×K we have

(h ∗ k) ∗ (h−1 ∗ k−1) = µ(h, k) ∗ µ(h−1, k−1)
= µ(h ∗ h−1, k ∗ k−1)
= µ(ε, ε) = ε

and it follows that

h ∗ k ∗ h−1 ∗ k−1 = ε

h ∗ k = k ∗ h.

□
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The idea of a direct product is that the groups H and K don’t even see each other and
we can really think of HK as two independent groups sitting side by side. If G = H×K
then we might say that G “factors” as a product of two normal subgroups.97 If G is
abelian then every subgroup is normal and the concept of the direct product simplifies.

Simplification: The Direct Sum of Abelian Groups. Let (G, ∗, ε) be an abelian
group and let H,K ⊆ G be subgroups. Then since h ∗ k = k ∗ h for all h ∈ H and
k ∈ K we have

G = H ×K ⇐⇒
{

HK = G
H ∩K = {ε}

}
.

When the group (G,+, 0) is expressed in additive language then we prefer to use the
direct sum notation:98

G = H ⊕K ⇐⇒
{
H +K = G
H ∩K = {0}

}
.

This notation says that every element g ∈ G has a unique decomposition of the form
g = h+ k = k + h, where h ∈ H and k ∈ K. ///

Example: The Chinese Remainder Theorem. Consider any integers m,n ∈ Z
with gcd(m,n) = 1. In Exercise 6.D you proved that the following map from the cyclic
group Z/mnZ to the external direct sum99 Z/mZ⊕ Z/nZ is a bijection:

ϕ : Z/mnZ ↔ Z/mZ⊕ Z/nZ
[a]mn 7→ ([a]m, [a]n).

In fact, I claim that this bijection is a group isomorphism.

Proof. For all integers a, b ∈ Z we have

ϕ([a]mn + [b]mn) = ϕ([a+ b]mn)
= ([a+ b]m, [a+ b]n)
= ([a]m + [b]m, [a]n + [b]n)
= ([a]m, [a]n) ⊡ ([b]m, [b]n)
= ϕ([a]mn) ⊞ ϕ([b]mn).

□

It follows that Z/mnZ can be expressed as an internal direct sum of the preimages of
{([a]m, [0]n) : a ∈ Z} and {([0]m, [b]n) : b ∈ Z}, which are isomorphic to Z/mZ and
Z/nZ, respectively. Specifically, we observe that the preimage of {([a]m, [0]n) : a ∈ Z}
is equal to {[nk]mn : k ∈ Z} and the preimage of {[0]m, [b]n : b ∈ Z} is equal to

97In the next section we will discuss semidirect products, in which only one of the factors is normal.
98This suggests that maybe “⊗” would be a good notation for direct product of multiplicative groups.

Sadly, that notation is used for a different purpose. Sometimes history saddles us with bad notation,
such as the negatively charged electron.

99I will use the symbol ⊞ to denote the group operation of the external direct sum.
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{[m`]mn : ` ∈ `}.100 Thus we obtain the following decomposition of Z/mnZ as an
internal direct sum:

Z/mnZ = {[nk]mn : k ∈ Z} ⊕ {[m`]mn : ` ∈ Z}.

And here is the smallest non-trivial example:

Z/6Z = {[0]6, [3]6} ⊕ {[0]6, [2]6, [4]6} ∼= Z/2Z⊕ Z/3Z.

///

Let me end this section by mentioning two important applications of the direct sum
concept. In the next lecture we will discuss the more subtle case of non-abelian groups.

Application: The Fundamental Theorem of Finite Abelian Groups. An im-
portant structural result going back to Gauss tells us that, in some sense, the theory
of finite abelian groups is no more complicated than the theory of cyclic groups. Here
is the precise statement:

every finite abelian group is a direct sum of cyclic subgroups.

The proof is surprisingly difficult. Perhaps the first modern statement of the theorem
is due to Frobenius and Stickelberger (1878), who have the following to say:

The theory of finite groups of commuting elements was founded, on the one
hand, by Euler and Gauss, and, on the other hand, by Lagrange and Abel,
the former in their number-theoretic work on residues of powers, the latter in
their algebraic work on the resolution of equations. After these foundational
works, Gauss and Schering developed the theory further. Gauss . . . showed
how to decompose a group into primary groups, whose orders are relatively
prime . . . Schering its decomposition into cyclic groups whose orders are
such that each is divisible by those that follow.101

In Exercise 11.B you will explore Gauss’ decomposition of a finite abelian group into
primary factors, which can be viewed as a generalization of the Chinese Remainder
Theorem. Schering’s decomposition of each primary factor into cyclic groups is beyond
the scope of this course.102 ///

The other application comes from the theory of vector spaces.

Application: Basis of a Vector Space. Recall that a vector space consists of a field
F acting (by “scaling”) on an additive group (V,+,0). We say that a subgroup U ⊆ V

100In Exercise 6.D you proved that the inverse function can be expressed as ϕ−1([a]m, [b]n) = [any +
bmx]mn for any integers x, y ∈ Z such that mx + ny = 1. However, we don’t really need to know this
to compute the preimages.

101Quoted in Hawkins, The mathematics of Frobenius in context (2013, page 307).
102The theorem is best viewed as an analogue of the Jordan Normal Form of a matrix, thus it fits

more naturally into the theory of modules (i.e., abstract linear algebra). I consider that topic more
suitable for a gradute course.
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is a subspace if it is closed under this scaling. Then the notion of direct sum applies
without modification to subspaces. As an application, I claim that a set of nonzero
vectors u1,u2, . . . ,un ∈ V − {0} is a basis for V if and only if

V = Fu1 ⊕ Fu2 ⊕ · · · ⊕ Fun.

Proof. We define the direct sum of multiple groups by induction. The sum condition
is easy:

V = Fu1 + Fu2 + · · ·+ Fun.

This equation literally says that u1,u2, . . . ,un ∈ V is a spanning set. The intersection
condition is trickier. By induction we will require that

Fui ∩ (Fu1 + · · ·+ Fui−1 + Fui+1 + · · ·+ Fun) = {0} for all i.

If u1,u2, . . . ,un ∈ V is a linearly independent set then this condition is clearly satisfied.
Conversely, suppose that b1u1 + · · · + bnun = 0 for some coefficients bi ∈ F. Then for
each i we have

biui = −b1u1 − · · · − bi−1ui−1 − bi+1ui+1 − · · · − bnun.

If the intersection condition holds then this implies that biui = 0 and hence bi = 0.
We conclude that the set u1, . . . ,un ∈ V is linearly independent. □

9.2 Semidirect Products of Groups

Last time we discussed direct products of abelian groups (i.e., direct sums). Today we
will consider the case of non-abelian groups.

Non-Example of Direct Products: Dihedral Groups. Consider the dihedral
group of size 2n:

D2n = 〈R,F 〉 = {I,R, . . . , Rn−1, F,RF, . . . Rn−1F}.

In Exercise 4.C you showed that every element has the form RaF b for some integers
a, b ∈ Z, which implies that

D2n = 〈R〉〈F 〉 = {hk : h ∈ 〈R〉, k ∈ 〈F 〉}.

Furthermore, I claim that 〈R〉∩〈F 〉 = {I}. In order to prove this we only need to show
that F is not a power of R. The easiest way to see this is to consider the representation
where R is a rotation matrix and F is a reflection matrix, so that det(R) = 1 and
det(F ) = −1. Then since det(Ra) = det(R)a = 1 for all a ∈ Z we conclude that F
is not a power of R. It follows from the two previous remarks that the multiplication
function is bijective:

〈R〉 × 〈F 〉 ←→ D2n
(Ra, F b) 7→ RaF b.
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However, if n ≥ 3 then this is not a direct product because the multiplication map is
not a group homomorphism. Indeed, in this case the elements of 〈R〉 and 〈F 〉 do not
commute:

RF = FR−1 6= FR.

///

We would like to relax our concept of group products to include examples such as
D2n = “〈R〉 × 〈F 〉”. The relevant fact here is that the subgroup 〈R〉 ⊆ D2n is normal,
but if n ≥ 3 then the subgroup 〈F 〉 ⊆ D2n is not normal.

Proof. To see that 〈R〉⊴D2n is a normal subgroup we need to show that gRag−1 ∈ 〈R〉
for all a ∈ Z. This is obvious when g is a power of R, so let us assume that g = RbF
for some b ∈ Z. Then we have

gRag−1 = (RbF )Ra(RbF )−1

= RbFRaFR−b

= Rb��FFR−aR−b

= R−a ∈ 〈R〉.

Now suppose that n ≥ 3. Then since R2 6= I we observe that

RFR−1 = R(FR−1) = R(RF ) = R2F 6∈ 〈F 〉,

and hence 〈F 〉 ⊆ D2n is not a normal subgroup. □

The concept of a “semi-direct product” is meant to capture cases like this, where exactly
one of the factor groups is normal.

Theorem (Definition of Internal Semidirect Product). Let (G, ∗, ε) be a group
and let H,K ⊆ G be subgroups satisfying H ∩K = {ε}. In this case we have seen that
the multiplication function defines a bijection from the direct product H ×K onto the
product set HK:

H ×K ←→ HK
(h, k) 7→ h ∗ k.

If the elements of H and K do not commute then we know that the set HK ⊆ G is
not isomorphic to the direct product H ×K. However, it may still be a group of some
sort.

(1) If at least one of the subgroups H ⊆ G and K ⊆ G is normal then I claim that
the product set HK ⊆ G is a subgroup. In this case we say that HK is a semidirect
product of H and K and we write103

HK = H ⋊K (if H ⊴G is normal),

103The triangles in the symbols ⋊ and ⋉ are supposed to remind us of the normal subgroup symbols
◁ and ▷.
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HK = H ⋉K (if K ⊴G is normal).

(2) If both of H ⊆ G and K ⊆ G are normal then I claim that h ∗ k = k ∗ h for all
h ∈ H and k ∈ K, hence we recover the direct product direct product:104

HK = H ×K (if H ⊴G and K ⊴G are normal)

///

Proof. (1) Suppose that K ⊴ G is normal and consider any two elements h1 ∗ k1
and h2 ∗ k2 of the product set HK. Since H,K ⊆ G are a subgroups we know that
h1 ∗ h−1

2 ∈ H and k1 ∗ k−1
2 ∈ K. Then since K is closed under conjugation by elements

of H (in fact, by all elements of G) we know that h2 ∗ (k1 ∗ k−1
2 ) ∗ h−1

2 = k for some
k ∈ K. It follows that

(h1 ∗ k1) ∗ (h2 ∗ k2)−1 = (h1 ∗ k1) ∗ (k−1
2 ∗ h

−1
2 )

= h1 ∗ h−1
2 ∗ (h2 ∗ k1 ∗ k−1

2 ∗ h
−1
2 )

= h1 ∗ h−1
2 ∗ k ∈ HK,

and hence HK ⊆ G is a subgroup. A similar proof works in the case when H ⊴ G is
normal.

(2) Now suppose that H ⊴ G and K ⊴ G are both normal, with H ∩K = {ε}. Then
for all h ∈ H and k ∈ K we have h ∗ k ∈ h−1 ∈ H and k ∗ h−1 ∗ k−1 ∈ K, so that

h ∗ k ∗ h−1 ∗ k−1 = (h ∗ k ∗ h−1) ∗ k−1 = h ∗ (k ∗ h−1 ∗ k−1) ∈ H ∩K.

It follows that h ∗ k ∗ h−1 ∗ k−1 = ε and hence h ∗ k = k ∗ h. □

Remark: The situation is actually a bit more complicated than this theorem lets on.
You will investigate the subtleties of subgroup multiplication in Exercise 9.A

I STOPPED HERE. FINISH THE DIHEDRAL EXAMPLE: D2n = 〈R〉⋊〈F 〉. WHAT
ABOUT THE CONCEPT OF AN “EXTERNAL SEMIDIRECT PRODUCT”? Let
H ⊴G and H ∩K = {ε}. Then the factorization is unique. What is it? Let θ : K →
Aut(H).

It follows that the dihedral group is a semidirect product:

D2n = 〈R〉⋊ 〈F 〉.

104This result suggests that ./ might be a good notation for the direct product, but absolutely no
one uses it for this purpose. In fact, the notation G = H ./ K is sometimes used when G = HK
and H ∩ K = {ε}, but H ⊆ G and K ⊆ G are both non-normal. This terrible situation is called a
Zappa–Szép product and I will have no more to say about it.
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More precisely, the rule for multiplying elements is

(RaF b)(RcF d) = [RaF b(Rc)F−b][F bF d] =
{

(RaR−c)(F bF d) b odd,
(RaRc)(F bF d) b even.

The whole structure is determined by the fact F acts on 〈R〉 by inversion:

FRaF−1 = R−a.

The geometric meaning behind this is that flipping the polygon reverses the senses of
clockwise and counterclockwise. ///

Example: Dihedral Groups. Consider the dihedral group of size 2n:

D2n = 〈R,F 〉 = {I,R, . . . , Rn−1, F,RF, . . . Rn−1F}.

in Exercise 4.C you showed that every element has the form RaF b for some a, b ∈ Z,
which implies that

D2n = 〈R〉〈F 〉 = 〈F 〉〈R〉 = 〈R〉 ∨ 〈F 〉.

The easiest way to show that 〈R〉∩〈F 〉 = {I} is to think of the representation where R
is a rotation matrix and F is a reflection matrix, so that det(R) = 1 and det(F ) = −1.
Since det(Ra) = det(R)a = 1 for all a ∈ Z this implies that F is not a power of R.
Since F 2 = I this completes the proof.

Thus we conclude that the multiplication map is a bijection:

〈R〉 × 〈F 〉 ←→ D2n
(Ra, F b) 7→ RaF b.

What kind of product is this? If n = 2 then it’s a direct product. However if n ≥ 3
then it’s not a direct product because the elements of 〈R〉 and 〈F 〉 don’t commute:

FRF−1 = FRF = R−1 6= R.

This implies indirectly that the subgroups 〈R〉 ⊆ D2n and 〈F 〉 ⊆ D2n are not both
normal. I claim that 〈R〉 is normal and 〈F 〉 is not.

Proof. Assume that n ≥ 3. Then since R2 6= I we have

RFR−1 = RRF = R2F 6∈ 〈F 〉,

and hence 〈F 〉 ⊆ D2n is not a normal subgroup. To see that 〈R〉 ⊴D2n is normal we
need to show that gRag−1 ∈ 〈R〉 for all a ∈ Z. This is obvious when g is a power of R,
so let’s assume that g = RbF for some b ∈ Z. Then we have

gRag−1 = (RbF )Ra(RbF )−1 = RbFRaFR−b = Rb��FFR−aR−b = R−a ∈ 〈R〉.

□
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It follows that the dihedral group is a semidirect product:

D2n = 〈R〉⋊ 〈F 〉.

More precisely, the rule for multiplying elements is

(RaF b)(RcF d) = [RaF b(Rc)F−b][F bF d] =
{

(RaR−c)(F bF d) b odd,
(RaRc)(F bF d) b even.

The whole structure is determined by the fact F acts on 〈R〉 by inversion:

FRaF−1 = R−a.

The geometric meaning behind this is that flipping the polygon reverses the senses of
clockwise and counterclockwise. ///

More generally, we can define an abstract (“external”) product group whenever one
group acts on another.

External Multiplication of Groups. Let (H, ∗, εH) and (K, •, εK) be abstract
groups. Previously we assumed that H and K are subgroups of some “ambient” group
G. Now there is no G, but we still want to construct a group that could be called
the “product” of H and K. Specifically, we want to define a group operation on the
Cartesian product set H ×K. Let’s call this hypothetical operation ⊡, so that for all
h1, h2 ∈ H and k1, k2 ∈ K we have

(h1, k1) ⊡ (h2, k2) = (h3, k3)

for some unique elements h3 and k3. We also want to require that the subsets

H̃ = {(h, εK) : h ∈ H} ⊆ H ×K
K̃ = {(εH , k) : k ∈ K} ⊆ H ×K

are subgroups isomorphic to H and K, respectively. It turns out that it is hopeless to
solve this problem in general. However, there are two constructions that are particularly
nice.

• External Direct Product. The direct product structure is defined by

(h1, k1) ⊡ (h2, k2) = (h1 ∗ h2, k1 • k2).

It is easy to check that G := (H ×K,⊡, (εH , εK)) is an abstract group. Further-
more, I claim that G is the internal direct product H̃ and K̃.

Proof. Clearly we have H̃ ∩ K̃ = {(εH , εK)} and H̃K̃ = G. The fact that H̃⊴G
and K̃ ⊴G are both normal follows from the fact that their elements commute:

(h, εK) ⊡ (εH , k) = (h, k) = (εH , k) ⊡ (h, εK) for all h ∈ H and k ∈ K.

□
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The definition of the external direct product is so obvious105 that we just use the
Cartesian product notation:

H ×K = (H ×K,⊡, (εH , εK)).

• External Semidirect Product. Suppose that the abstract group (K, •, εK) acts on
the abstract group (H, ∗, εH) by automorphisms. In other words, suppose that
we have a group homomorphism

θ : K → Aut(H).

Then we can define the operation

(h1, k1) ⊡θ (h2, k2) = (h1 ∗ θk1(h2), k1 • k2).

It is relatively easy to check that G := (H×K,⊡θ, (εH , εK)) is an abstract group
and I will leave this as an optional exercise for the reader. The reason we call it
semidirect is because this G is an internal semidirect product of its subgroups H̃
and K̃.

Proof. I’ll skip some details. The main point is that H̃ is closed under conjuga-
tion by elements of K̃. To see this, note that for all (h, εK) ∈ H̃ and (εH , k) ∈ K̃
we have

(εH , k) ⊡θ (h, εK) ⊡θ (εH , k)−1 = (εH , k) ⊡θ (h, εK) ⊡θ (εH , k−1)
= (εH , k) ⊡θ (h ∗ θεK (εH), k−1)
= (εH , k) ⊡θ (h ∗ εH , k−1)
= (εH , k) ⊡θ (h, k−1)
= (εH ∗ θk(h), k • k−1)
= (θk(h), εK) ∈ H̃.

□

In summary, given any action θ : K → Aut(H) of one abstract group on another
we have defined an abstract group G out of thin air, which contains isomorphic
copies H̃, K̃ ⊆ G, in which H̃ ⊴G is a normal subgroup, and in which the action
of K̃ on H̃ by conjugation coincides with the abstract action of K on H. We call
this G the external semidirect product with respect to θ and we use the notation

H ⋊θ K = (H ×K,⊡θ, (εH , εK)).

///

Remarks:
105Another reason for this notation is the fact that the direct product is the “categorical product” in

the category of groups. Convention says that categorical products are always denoted by ×.
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• The external semidirect product is sometimes called a “twisted product”, and the
homomorphism θ is sometimes called a “twist”. The use of the Greek character
θ is traditional in this context.

• What if H acts on K? For any homomorphism θ : H → Aut(K) we can define
the following group structure on the set H ×K:

(h1, k1) θ⊡(h2, k2) = (h1 ∗ h2, θ
−1
h2

(k1) • k2).

If we call this group H θ⋉K then it turns out that

H θ⋉K ∼= K ⋊θ H,

so there is nothing new gained by this construction.

• Let triv : K → Aut(H) be the “trivial action” that sends each k ∈ K to the
identity function trivk = id : H → H. Then the semidirect product coincides
with the direct product:

H ⋊triv K = H ×K.

• If H and K are abelian groups then the external direct product H × K is also
abelian. However, a semidirect product H⋊θK need not be abelian. For example,
the non-abelian dihedral group is a semidirect product of two abelian (cyclic)
groups.

• Many authors of undergraduate algebra textbooks choose to omit the semidirect
product on the grounds that it is too abstract. I agree that it’s abstract, but I
prefer to keep it because of its importance to geometry and physics. We will see
an interesting example next time.

9.3 Isometries of Euclidean Space

Today we will discuss a very interesting example of a semidirect product. But first,
here’s a more basic example.

Example: Dihedral Groups Again. Consider the cyclic groups Z/2Z and Z/nZ.
You proved in Exercise 8.A that every automorphism of the group Z/nZ has the form
k 7→ ak mod n for some a ∈ Z satisfying gcd(a, n) = 1. Now suppose we have a group
homomorphism

θ : Z/2Z → Aut(Z/nZ)
0 7→ θ0
1 7→ θ1

By definition the automorphisms θ0, θ1 ∈ Aut(Z/nZ) must satisfy

θa+bmod 2 = θamod 2 ◦ θbmod 2.

This implies that θ0 = id and θ2
1 = θ2 = θ0 = id . On the other hand we know that

θ1(k) = ak for some a ∈ Z and since θ2
1 = id we must have a2 = 1. Thus there are only

two possible ways that Z/2Z can act on Z/nZ by automorphisms:
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• The trivial action sends each element of Z/2Z to the identity function Z/nZ →
Z/nZ.

• The nontrivial action θ : Z/2Z → Aut(Z/nZ) sends 0 ∈ Z/2Z to the identity
function and sends 1 ∈ Z/2Z to the “inversion function” k 7→ −k. In this case
one can show that the semidirect product is isomorphic to the dihedral group:

(Z/nZ) ⋊θ (Z/2Z) ∼= D2n.

[Exercise: Show that the function (a, b) 7→ RaF b is the desired group isomor-
phism.]

Now for the interesting example.

Example: Isometries of Euclidean Space. Recall that n-dimensional Euclidean
space consists of the vector space Rn together with the standard dot product 〈−,−〉 :
Rn × Rn → R. By an isometry of Euclidean space we mean any function f : Rn → Rn
that preserves the distance between points:

‖f(x)− f(y)‖ = ‖x− y‖ for all x,y ∈ Rn.

Clearly the identity is an isometry and the composition of any two isometries is an
isometry. It is less obvious, but it will follow from the analysis below, that any isometry
is invertible.

Thus we obtain a group

Isom(Rn) = {f : Rn → Rn : f preserves distance}.

This group has two interesting subgroups:

• Let Isom0(Rn) ⊆ Isom(Rn) denote the subset of isometries that fix the origin:
f(0) = 0. We saw in Exercise 4.B that this subgroup is isomorphic to the group
O(n) of n× n orthogonal matrices. To be specific, for each f ∈ Isom0(Rn) there
exists a unique matrix A ∈ O(n) such that

f(x) = Ax for all x ∈ Rn.

The hardest part of that proof is to show that any isometry that fixes the origin
must be a linear function.

• Recall that each group acts on itself by translation. In the case of the additive
group (Rn,+,0) we have a group homomorphism

τ : Rn → Aut(Rn)

which sends each vector u ∈ Rn to the translation function τu(x) = x+u = u+x.
I claim that τu : Rn → Rn is an isometry.

Proof. For all x,y ∈ Rn we have

‖τu(x)− τu(y)‖ = ‖(x + u)− (y + u)‖ = ‖x− y‖.
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□

Thus we have a group homomorphism from (Rn,+,0) into Isom(Rn):

τ : (Rn,+,0)→ Isom(Rn).

I claim that this homomorphism is injective.

Proof. We will show that the kernel is trivial. So consider any vector u ∈ Rn
such that τu : Rn → Rn is the identity function. Then in particular we must have
u = 0 + u = τu(0) = 0. □

In conclusion, we find that the image of τ is a subgroup of Isom(Rn) which is
isomorphic to the additive group (Rn,+,0). We will call this the translation
subgroup and we will label it by T (Rn):

Rn ∼= im τ =: T (Rn) ⊆ Isom(Rn).

Then we have the following theorem.

Theorem (Isometries of Euclidean Space). The group of isometries is a semidirect
product of translations with the origin-fixing isometries:

Isom(Rn) = T (Rn) ⋊ Isom0(Rn).

Proof. There are three things to check: (1) T (Rn) and Isom0(Rn) meet at the identity,
(2) T (Rn) and Isom0(Rn) join to the full group, and (3) T (Rn) is a normal subgroup
of Isom(Rn).

(1) To show that T (Rn)∩ Isom0(Rn) = {id }, suppose that τu is a translation that fixes
the origin. We saw above that this implies u = 0 and hence τu = τ0 = id .

(2) To show that T (Rn) ◦ Isom0(Rn) = Isom(Rn) consider any isometry f : Rn → Rn
and suppose that f(0) = u. Now define g := τ−u ◦ f and observe that

g(0) = τ−u(f(0)) = τ−u(u) = u− u = 0.

It follows that g ∈ Isom0(Rn) and hence

f = τu ◦ g ∈ T (Rn) ◦ Isom0(Rn).

(3) To show that T (Rn) ⊴ Isom(Rn) it is enough106 to show that T (Rn) is closed
under conjugation by elements of Isom0(Rn). So consider any f ∈ Isom0(Rn). The
important fact (which was tricky to prove)107 is that f is a linear function. Therefore
for any x ∈ Rn we have

(f ◦ τu)(x) = f(x + u) = f(x) + f(u) = τf(u)(f(x)) = (τf(u) ◦ f)(x).

106This follows from part (2).
107See Exercise 4.B.
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It follows that f ◦ τu = τf(u) ◦ f and hence

f ◦ τu ◦ f−1 = τf(u) ∈ T (Rn).

□

In summary, every element of Isom(Rn) has a unique factorization of the form τu ◦ f
where τu ∈ T (Rn) is a translation and f ∈ Isom0(Rn) is an orthogonal linear function.
In this language the group operation is given by

(τu ◦ f) ◦ (τv ◦ g) = (τu ◦ f ◦ τv ◦ f−1) ◦ (f ◦ g) = (τu ◦ τf(v)) ◦ (f ◦ g).

There is also an external point of view. Let θ : O(n)→ Aut(Rn) be the natural action
of the group of orthogonal matrices on the vector space (Rn,+,0). This is defined by
matrix multiplication:

θA(x) := Ax for all A ∈ O(n) and x ∈ Rn.

We can then form the external semidirect product

Rn ⋊θ O(n).

By the above theorem this semidirect product is isomorphic to the group of isometries
of Euclidean space. ///

Finally, here’s a less interesting version of the same construction.

Example: The General Affine Group. Let V be a vector space and let G be
the group of all invertible functions V → V . (These do not need to preserve any
structure.) Inside this group there is a subgroup T (V ) ⊆ G of translations and a
subgroup GL(V ) ⊆ G of linear functions. By the same reasoning as above one can
show that

f ◦ τu = τf(u) ◦ f for all τu ∈ T (V ) and f ∈ GL(V ).

It follows that the product set T (V ) ◦GL(V ) ⊆ G is a subgroup, which contains T (V )
as a normal subgroup. We call this the general affine group of V :

GA(V ) := T (V ) ◦GL(V ) = T (V ) ⋊GL(V ).

This construction is less interesting because it’s not so clear why we should care about
this kind of function (i.e., compositions of linear functions and translations).108

108Given a vector space V , there is a technical way to “forget” which point is the origin. After doing
this we call V an “affine vector space”. It turns out that GA(V ) is the group of automorphisms of this
structure.
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Exercises

9.A Subtleties of Subgroup Multiplication

Let (G, ∗, ε) be a group and let H,K ⊆ G be subgroups satisfying H ∩ K = {ε}.
Let µ : H × K → G be the multiplication function from the direct product and let
HK = imµ = {h ∗ k : h ∈ H, k ∈ K} be the product set.

(a) If G is finite, prove that #(HK) = #H ·#K. [Warning: You may not assume
that HK ⊆ G is a subgroup.]

(b) For any subgroup L ⊆ G we define its normalizer:

NG(L) := {g ∈ G : g ∗ ` ∗ g−1 ∈ L}.

Prove that NG(L) is the smallest subgroup of G that contains L as a normal
subgroup.

(c) If H ⊆ NG(K) or K ⊆ NG(H), prove that HK ⊆ G is a subgroup.

(d) Find specific groups H,K ⊆ G such that HK ⊆ G is a subgroup, but H 6⊆
NG(K) and K 6⊆ NG(H). [Hint: Let G = S4 with H = 〈(1234), (12)(34)〉 and
K = 〈(123)〉.]

(e) Prove that HK ⊆ G is a subgroup if and only if HK = KH.

9.B Direct Product of Subgroups

Let G be a group and let H,K ⊆ G be any two subgroups.

(a) If at least one of H or K is normal, prove that HK ⊆ G is a subgroup and hence
that HK equals the join H ∨K. The converse is not true.

(b) Prove that the multiplication function µ : H ×K → G is a group isomorphism if
and only if (1) H and K are both normal, (2) H ∧K = {ε} and (3) H ∨K = G.
In this case we write

G = H ×K

and we say that G is the internal direct product of the subgroups H and K.

9.C Matrix Representation of Isometries

Consider the following set of matrices:

G =


 A u

0 · · · 0 1

 : A ∈ O(n) and u ∈ Rn
 ⊆ Matn+1(R).

(a) Prove that G ⊆ Matn+1(R) is a subgroup. [Hint: Block multiplication.]

(b) Use results from class to prove that G is isomorphic to the group Isom(Rn) of
isometries of n-dimensional Euclidean space.
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[Remark: An affine function Rn → Rn has the form x 7→ Ax + u for some matrix
A ∈ Matn(R) and some vector u. The same trick can be used to represent affine
functions as (n+ 1)× (n+ 1) matrices.]

9.D Dimension of a Vector Space, Part II

Let V be a vector space over a field F.

(a) Let u1, . . . ,un ∈ V be a basis and consider the subspaces

Vk := F{u1, . . . ,uk} ⊆ V.

Prove for all 0 ≤ k < n that there is no subspace U satisfying

Vk ⊊ U ⊊ Vk+1.

(b) Conversely, suppose that we have a maximal chain of subspaces

{0} = V0 ⊊ V1 ⊊ · · · ⊊ Vn = V.

Prove by induction that Vk has a basis of size k, hence dim(Vk) = k. Parts (a)
and (b) together show that dimension equals the length of a maximal chain of
subspaces

(c) If U ⊆ V is a subspace you may assume that the quotient group V/U is a vector
space. Prove that dim(V/U) = m if and only if there exists a maximal chain of
subspaces

U = V0 ⊊ V1 ⊊ · · · ⊊ Vm = V.

[Hint: You may assume that the Correspondence Theorem and the First Isomor-
phism Theorem still hold after replacing the word “subgroup” with “subspace”.109]

(d) Combine (a), (b) and (c) to prove that dim(V ) = dim(U) + dim(V/U).

(e) Rank-Nullity Theorem. If ϕ : V →W is any linear function, use part (d) and the
First Isomorphism Theorem to prove that

dim(V ) = dim(kerϕ) + dim(imϕ).

[Remark: In elementary linear algebra the subspaces kerϕ ⊆ V and imϕ ⊆ W are
called the nullspace and the range of the linear function ϕ. The dimensions dim(kerϕ)
and dim(imϕ) are called the nullity and the rank of ϕ. Hence the name of the theorem.
The elementary proof (which is quite different from our proof) uses the Reduced Row
Echelon Form of the corresponding dim(W )× dim(V ) matrix [ϕ] to show that

dim(imϕ) = #(pivot columns in RREF of [ϕ])
dim(kerϕ) = #(non-pivot columns in RREF of [ϕ]),

109For that matter, the Second and Third Isomorphism Theorems also hold.



138 Exercises for Week 9

and hence
dim(imϕ) + dim(kerϕ) = #(columns in [ϕ]) = dim(V ).

The most important consequence of this theorem says that if dim(V ) = dim(W ) (i.e.,
if [ϕ] is a square matrix) then we have

(ϕ is injective)⇐⇒ kerϕ = {0}
⇐⇒ dim(kerϕ) = 0
⇐⇒ dim(imϕ) = dim(V )
⇐⇒ dim(imϕ) = dim(W )
⇐⇒ imϕ = W

⇐⇒ (ϕ is surjective).

This can be used to show that that AB = I implies BA = I for any square matrices
A,B over a field. Of course, we already had a slightly easier proof of this fact in
Exercise 8.C.]



Week 10

10.1 Unsolvability of the Symmetric Group

For me this is the hardest part of the course, when I need to start thinking about
tying up loose ends. Back in Week 2 I mentioned that the unsolvability of the quintic
equation has something to do with the group of symmetries of the regular icosahedron.
Let’s return to that topic now. Just so we’re all on the same page, here’s a picture:

Assume that the regular icosahedron is centered at the origin in R3 and let I ⊆ SO(3)
be the subgroup of rotations that leave the icosahedron invariant. We will prove below
that this group has 60 elements and it satisfies the following special property:

{id } ⊊ H ⊴ I =⇒ H = I.

This property has a name.

Definition of Simple Groups. We say that a group G is simple if it has no nontrivial
normal subgroups. This implies that G cannot be decomposed as a direct or semidirect
product of smaller groups. ///

Example: Simple Abelian Groups. Since every subgroup of an abelian group is
normal, we see that an abelian group is simple if and only if it has no non-nontrivial
subgroups. I claim that the only such groups are Z/pZ.

Theorem. Every simple abelian group has the form Z/pZ for some prime p ∈ Z.
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Proof. Let (G, ∗, ε) be a simple abelian group and consider any element g ∈ G. If
g 6= ε then we have {ε} ⊊ 〈g〉 ⊆ G, which implies that G = 〈g〉 is cyclic. If G were
infinite then we would have G ∼= (Z,+, 0), which is not simple. Therefore we must
have G ∼= Z/nZ for some n ≥ 1. But recall from the Fundamental Theorem of Cyclic
Groups that the lattice of subgroups L (Z/nZ) is isomorphic to the lattice of divisors
Div(n). It follows that Z/nZ has no proper subgroup if and only if n has no proper
divisor, i.e., if and only if n is prime. □

[Remark: You will show on the homework that Z/pZ is actually a field.]

In this sense we can think of simple groups as a generalization of prime numbers. It is
much more difficult to find non-abelian simple groups. If you only know about small
groups then you might suspect that there is no such thing. In fact, it turns out that the
icosahedral group I of size 60 is the smallest possible non-abelian simple group.

Building on the analogy with prime numbers, it turns out that every group110 has a
“unique decomposition” into simple factors.

The Jordan-Hölder Theorem and “Solvable” Groups. Let (G, ∗, ε) be a group
and consider a finite chain of subgroups:

G = G0 ⊋ G1 ⊋ G2 ⊋ · · · ⊋ G` = {ε}.

We call this chain a composition series if it satisfies the following two conditions:

• Gi+1 ⊴Gi is normal for each i,

• the quotient group Gi/Gi+1 is simple for each i.

We can summarize these conditions by saying that Gi+1 ⊴ Gi is a maximal normal
subgroup for each i. To prove equivalence, one should check that the correspondence
between subgroups ofGi/Gi+1 and subgroups betweenGi andGi+1 preserves normality.
Then the quotient group Gi/Gi+1 has no non-trivial normal subgroup (i.e., is simple)
if and only if there is no normal subgroup strictly between Gi and Gi+1 (i.e., if Gi+1 is
maximal normal in Gi).

Under these conditions, the Jordan-Hölder Theorem says that the list of simple groups

G1/G0, G2/G1, · · · Gn−1/G`, G`/{ε} = G`

is unique up to isomorphism and permutations. ///

Unfortunately the proof of this theorem is beyond the scope of the course, however you
will prove a similar theorem for vector spaces on the homework. The unique simple
groups Gi+1/Gi arising from a composition series are called the composition factors of
the group G. If G is a cyclic group and if a prime p divides #G with multiplicity k,

110Not literally every group, but it’s true for all finite groups and many infinite groups.
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then the simple group Z/pZ is a composition factor of G with multiplicity k. In this
sense the Jordan-Hölder Theorem is a vast generalization of the Fundamental Theorem
of Arithmetic.

Example: Composition Factors of Z/12Z. Let 〈g〉 ∼= Z/12Z be a cyclic group of
size 12. Since we know the subgroup lattice, it is easy to see that this group has exactly
three different composition series, labeled (a), (b), (c) in the following picture. Each
edge in the diagram is labeled with the corresponding quotient group. Observe that
the sequence of composition factors is the same for all three composition series:

The big difference between integers and groups is that multiplying integers is easy,
while “multiplying groups” can be arbitrarily complicated. Indeed, suppose that p
is prime and let f(p) be the number of different (non-isomorphic) groups having the
composition factors

Z/pZ, Z/pZ, · · · , Z/pZ (k times)

Graham Higman proved in 1960 that the number of such groups is really big:

f(p) ≥ p2k2(k−6)27.

On the other hand, there is only one integer with the prime factors p, p, . . . , p (k times).
Even though it is impossible to classify these so-called p-groups, we still say that these
groups are “solvable” in the following technical sense.

Definition of Solvable Groups. Since every simple abelian group is isomorphic to
Z/pZ for some prime p ∈ Z, we have the following equivalence:{

G has abelian
composition factors

}
⇐⇒

{
G has composition factors of the form
Z/pZ for various prime numbers p

}
.

Any group satisfying these conditions is called a solvable group.

And what is so “solvable” about these groups? To explain this, here is another restate-
ment of Galois’ Theorem.
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Galois’ Solvability Theorem Again. The general n-th degree polynomial equation
is solvable by radicals if and only if the symmetric group Sn has abelian composition
factors, i.e., if and only if the symmetric group Sn is a “solvable group”. ///

At this point I might as well go ahead and prove that for all n ≥ 5 the group Sn is not
solvable. If you believe Galois’ Theorem then this fact implies that the general n-th
degree equation is not solvable by radicals when n ≥ 5. We will prove Galois’ Theorem
next semester.

Theorem. The symmetric group Sn is not solvable when n ≥ 5.

Proof. Let n ≥ 5 and assume for contradiction that there exists a chain of subgroups

Sn = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr = {id }

such that each quotient group Gi/Gi+1 exists and is abelian. Now let C ⊆ Sn = G0
be the set of all 3-cycles. We will prove by induction that C ⊆ {id } = Gr, which is a
contradiction.

So fix 0 ≤ i < r and assume for induction that C ⊆ Gi. If c1, c2 ∈ C are any two
3-cycles, then since Gi/Gi+1 is abelian we have

(c1c2c
−1
1 c−1

2 Gi+1) = (c1Gi+1)(c2Gi+1)(c1Gi+1)−1(c2Gi+1)−1

= (c1Gi+1)(c1Gi+1)−1(c2Gi+1)(c2Gi+1)−1

= (id Gi+1)(id Gi+1)
= id Gi+1

= Gi+1,

which implies that c1c2c
−1
1 c−1

2 ∈ Gi+1. Thus in order to show that C ⊆ Gi+1 it is
enough to show that every 3-cycle c ∈ C has the form c = c1c2c

−1
1 c−1

2 for some 3-cycles
c1, c2 ∈ C. For this we will use the fact that n ≥ 5. To be specific, let c = (ijk). Then
for any numbers ` 6= m not in the set {i, j, k} we have

(ijk) = (jkm)(i`j)(jkm)−1(i`j)−1.

[Exercise: Check this.] □

Remarks:

• It is remarkable that the proof of the unsolvability of polynomial equations looks
like this. Clearly this is the most efficient way to think about the problem.

• With more work, one can show that the alternating subgroup An ⊆ Sn is actually
simple when n ≥ 5. (The proof is a bit hairy so we won’t do it. In general it
is difficult to prove that a non-abelian group is simple.) It follows from this that
the composition factors of Sn are An and Sn/An ∼= Z/2Z. The fact that An is
non-abelian is the ultimate reason why Sn is not solvable.
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• Thus there exists an infinite sequence A5, A6, A7, . . . of non-abelian finite simple
groups. We will see later that the group A5 is isomorphic to the icosahedral
group, which is why the icosahedron is related to the quintic equation.

• You will show on a future homework that the group A4 has a normal subgroup
of size 4. This is the ultimate reason why the quartic equation is solvable. You
already know that A3 and A2 are solvable. In fact they are abelian.

10.2 The Orbit-Stabilizer Theorem

I claimed last time that the icosahedral group I ⊆ SO(3) has 60 elements and no
non-trivial normal subgroups, but I didn’t prove either of these statements. In order
to count the elements we will use the method of “orbits” and “stabilizers”. I turns out
that the same method (applied to conjugacy classes) will also help us study the normal
subgroups.

Definition of Orbits and Stabilizers. Let (G, ∗, ε) be a group, let X be a set with
structure and let ϕ : G → Aut(X) be a group homomorphism (i.e., an action of G on
X). Then for any point x ∈ X we define the following sets:

Orbϕ(x) := {ϕg(x) : g ∈ G} ⊆ X,
Stabϕ(x) := {g ∈ G : ϕg(x) = x} ⊆ G.

When the specific action ϕ is understood we will just write Orb(x) and Stab(x). We
can also view orbits as the equivalence classes of the following relation:

x ∼ϕ y ⇐⇒ ∃g ∈ G,ϕg(x) = y.

Let’s verify that this relation is an equivalence.

Proof.

(E1) For all x ∈ X we have ϕε(x) = x and hence x ∼ϕ x.

(E2) Let x, y ∈ X and assume that x ∼ϕ y so that ϕg(x) = y for some g ∈ G. But
then we have ϕg−1(y) = ϕ−1

g (y) = x, which implies that y ∼ϕ x because g−1 ∈ G.

(E3) Let x, y, z ∈ X and assume that x ∼ϕ y and y ∼ϕ z. This means that ϕg(x) = y
and ϕh(y) = z for some g, h ∈ G. But then we have

ϕh∗g(x) = ϕh(ϕg(x)) = ϕh(y) = z,

which implies that x ∼ϕ z because h ∗ g ∈ G. □

It follows that X is a disjoint union of the orbits:

X =
∐
i

Orb(xi) for some arbitrary class representatives xi ∈ X.

///
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If the set X has some nice structure (e.g., if it’s a topological space or a manifold)
then the orbits might also have this structure but it depends on the properties of the
action ϕ. There is not much we can say in general. As for the stabilizer, it is always a
subgroup of G.

Proof. For all x ∈ X and a, b ∈ Stab(x) we have ϕa(x) = x and ϕb(x) = x, hence
ϕ−1
b (x) = x. But then since ϕ is a group homomorphism we have

ϕa∗b−1(x) = (ϕa ◦ ϕ−1
b )(x) = ϕa(ϕ−1

b (x)) = ϕa(x) = x,

and it follows that a ∗ b−1 ∈ Stab(x). □

Unfortunately the subgroup Stab(x) ⊆ G is generally not normal, but we still have a
nice structure theorem for group actions, which is analogous to the First Isomorphism
Theorem for group homomorphisms.

The Orbit-Stabilizer Theorem. Let ϕ : G → Aut(X) be a group action. Then
for all x ∈ X we have a bijection between points of the orbit and left cosets of the
stabilizer:

Φ : Orb(x) −→ G/Stab(x)
ϕg(x) 7→ g Stab(x).

Proof. The function Φ is well-defined and injective because

ϕa(x) = ϕb(x)⇐⇒ ϕ−1
b (ϕa(x)) = x

⇐⇒ x = ϕb−1∗a(x)
⇐⇒ b−1 ∗ a ∈ Stab(x)
⇐⇒ aStab(x) = bStab(x),

and it is surjective by definition. □

It follows that X can be identified with a disjoint union of sets of cosets:

X =
∐
i

Orb(xi) ←→
∐
i

G/Stab(xi).

We will see below that this formula is often useful for counting. ///

[Remark: We could also define a bijection between points of the orbit and right
cosets of the stabilizer. The reason I use left cosets is because the map Φ : Orb(x)→
G/Stab(x) “commutes” with the natural action of G on both sides. In other words,
the bijection Φ is actually an isomorphism of G-sets. But we won’t use this extra
structure.]

For example, let’s count the symmetries of an icosahedron.
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Example: Counting the Symmetries of a Regular Icosahedron. Let I ⊆ SO(3)
be the group of rotational symmetries of a regular icosahedron centered at the origin
in R3. The Greek prefix icos- indicates that the icosahedron has 20 triangular faces.
Consider the set

F = {faces of the icosahedron}.

The group I acts on the set F in the obvious way, and we say that this action is
transitive since for any face f ∈ F we have Orb(f) = F . (Indeed, the adjective “regular”
in “regular icosahedron” indicates that every face/edge/vertex of the polyhedron looks
the same up to symmetry.) Furthermore, the only symmetries that stabilize the triangle
f are the three rotational symmetries through the center of the triangle. We conclude
from the Orbit-Stabilizer Theorem and Lagrange’s Theorem that

Orb(f) = F ↔ I/ Stab(f)
#F = #I/# Stab(f)

20 = #I/3
#I = 60.

Similarly, we have transitive actions of I on the set of edges E and the set of vertices V
of the icosahedron. It is easy to see that for each edge e ∈ E the stabilizer Stab(e) is
a (cyclic) group of size 2, and for each vertex v the stabilizer Stab(v) is a cyclic group
of size 5. (Look at the picture above.) Thus we obtain two more equations

#Orb(e) = #I/# Stab(e),
#E = #I/2,

#Orb(v) = #I/# Stab(v),
#V = #I/5.

It follows from this that the number of edges of the icosahedron is #E = 60/2 = 30
and the number of vertices is #V = 60/5 = 12. I find this method much easier than
counting the edges and vertices by hand. ///

10.3 Klein’s Erlangen Program

Today’s lecture will be a bit philosophical.

What is group theory? In retrospect, one could say that Carl Friedrich Gauss was
doing group theory when he invented and studied the group Z/nZ in his Disquisitiones
Arithmeticae (1801). However, as you know by now, the study of finite abelian groups
is only a tiny part of the subject. The main concepts of the theory were only revealed
with Galois’ and Cauchy’s work on the (non-abelian) symmetric group Sn. Galois
developed his theory on chains of subgroups just before his death in 1832, but this work
was only published in 1846. During this same time, Cauchy proved some deep results
on permutations, which contain the germs of important group-theoretical concepts such
as the Orbit-Stabilizer Theorem and the Sylow Theorems. Until 1870 the subject of
group theory basically consisted of the study of Sn and finite abelian groups. The
subject still had nothing to do with geometry.
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Meanwhile, the discovery of non-Euclidean geometries111 inspired Sophus Lie and Felix
Klein to study “geometric transformations”. Slowly they realized that the collection
of all transformations of a geometry X forms an abstract group, which today we call
the automorphism group Aut(X). After reading Camille Jordan’s 1870 book on per-
mutations, they decided it would be worthwhile to develop some “Galois theory” of
geometric transformations. This inspired Klein’s famous Erlangen Program of 1872.
Here is the key definition:

Definition of Transitive Actions. Let G be a group and let X be a set with
structure. We say that an action ϕ : G→ Aut(X) is transitive if it has only one orbit.
In other words:

Orbϕ(x) = X for each point x ∈ X.

Then from the Orbit-Stabilizer Theorem we obtain a bijection

X ←→ G/Stabϕ(x) for each point x ∈ X.

If X is a finite set then it follows from Lagrange Theorem that #X divides #G. ///

Klein’s Erlangen Program concerns the case whenX is a non-Euclidean geometry andG
is the corresponding group of transformations, i.e., functions f : X → X that preserve
the geometric structure. An essential feature of such a geometry is that any two points
should “look the same”, which means that the action G ↷ X should be transitive.
Klein suggested that one could classify and study different geometries X by looking at
the coset spaces G/H for various H ⊆ G. Today we use the term homogeneous space
instead of non-Euclidean geometry. After the 1870s the study of geometry was slowly
integrated into group theory. By the 1920s even physicists had reluctantly switched to
the new group-theoretic language.

Before giving an example of a “non-Euclidean geometry”, let me recall what we know
about Euclidean geometry.

Example: Euclidean Space. Let X = (Rn, 〈−,−〉) be n-dimensional Euclidean
space and let Isom(Rn) be the group if isometries, i.e., functions f : X → X that
preserve distance. Clearly the action of Isom(Rn) on X is transitive. (Indeed, for any
points x,y ∈ X the translation τy−x ∈ Isom(Rn) sends x to y.) Thus for any point
x ∈ X we obtain a bijection

X ←→ Isom(Rn)/Isomx(Rn),

where Isomx(Rn) := {f ∈ Isom(Rn) : f(x) = x} is the stabilizer of x. In particular, we
already know that Isom0(Rn) is isomorphic to the orthogonal group. Hence we obtain
a bijection:

Rn ←→ Isom(Rn)/O(n).

111The existence of logically consistent non-Euclidean geometries was asserted independently by János
Bolyai and Nikolai Lobachevky around 1830. Gauss may also have discovered non-Euclidean geometry
but he published nothing on the subject.



10.3 Klein’s Erlangen Program 147

But this is not so interesting because it follows from the group isomorphism

Isom(Rn) ∼= (Rn,+,0) ⋊O(n)

which we proved above. ///

Here’s something new.

Example: Real Projective Space. The basic idea of projective geometry is that any
two lines in a plane should meet at a unique point. Lines which are called “parallel” in
Euclidean geometry now intersect at some ideal “point at infinity”, and the collection of
all points at infinity forms the “line at infinity” for this plane. In the modern “analytic”
treatment, we define (n− 1)-dimensional projective space as the set

Pn−1(R) = {lines through the origin in Rn}.

In other words, a “point” in (n−1)-dimensional projective space corresponds to a “line
through the origin” in n-dimensional Euclidean space. In order to get some concrete
representation of this set, we observe that the orthogonal group O(n) acts transitively
on Pn−1(R). [Indeed, given two lines `, `′ ⊆ Rn intersecting at 0 ∈ Rn, we can send `
to `′ by rotating the plane that they generate, and this rotation can be realized as an
orthogonal matrix.] Furthermore, I claim that for any line ` ∈ Pn−1(R) the stabilizer is
isomorphic to a direct product Stab(`) ∼= O(1)×O(n− 1), hence we obtain a bijection

Pn−1(R) ←→ O(n)
O(1)×O(n− 1)

.

Actually I will prove something more general than this. For any vector subspace U ⊆ Rn
let U⊥ ⊆ Rn be the orthogonal subspace defined by

U⊥ := {v ∈ Rn : 〈u,v〉 = 0 for all u ∈ U}.

Then for any orthogonal matrix A ∈ O(n) I claim that

A stabilizes U ⇐⇒ A stabilizes U⊥.

Proof. Suppose that A ∈ O(n) stabilizes U . Then for all u ∈ U and v ∈ U⊥ we have
Au ∈ U and A−1 = AT , hence

〈u, A−1v〉 = 〈u, ATv〉 = uT (ATv) = (Au)Tv = 〈Au,v〉 = 0.

If follows that A−1v ∈ U⊥ for all v ∈ U⊥ and hence A−1U⊥ ⊆ U⊥ is a vector subspace.
But since A−1 : Rn → Rn is injective, it follows from the Rank-Nullity Theorem (proved
in Exercise 9.D) that A−1U⊥ and U⊥ have the same dimension, hence A−1U⊥ = U⊥.
Finally, since every element v ∈ U⊥ has the form v = A−1v′ for some v′ ∈ U⊥, we
conclude that Av = v′ ∈ U⊥ as desired. The other direction is similar. □

[Remark: Note that the proof uses finite-dimensionality. The situation is more com-
plicated for infinite-dimensional spaces.]
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If U ⊆ Rn is a k-dimensional subspace then we can choose an orthonormal basis
u1, . . . ,un ∈ V such that u1, . . . ,uk is a basis for U and uk+1, . . . ,un is a basis for U⊥.
If B ∈ O(n) is the matrix whose i-th column is ui then for any A ∈ Stab(U) ⊆ O(n)
it follows from the result just proved that

B−1AB =

 A′ 0

0 A′′

 for some A′ ∈ O(k) and A′′ ∈ O(n− k).

Finally, the map A 7→ (A′, A′′) defines a group isomorphism Stab(U) ∼= O(k)×O(n−k)
and we obtain a bijection{

k-dimensional
subspaces of Rn

}
←→ O(n)

O(k)×O(n− k)
.

The case k = 1 corresponds to projective space. ///

Remarks:

• It would take us too far afield to discuss what this has to do with “points at
infinity”. One hundred years ago it was common for every math major to take a
course in synthetic projective geometry. Sadly, the analytic version the subject
is so technical that it is usually only studied by graduate students.

• The set O(n)/[O(k)× O(n− k)] is called a Grassmann manifold or a Grassman
variety. It is important for the study of vector bundles in physics.

• I understand that this example was challenging. It will not be on the exam. An
easier version of the same argument shows that:{

subsets of size k from
the set {1, . . . , n}

}
←→ Sn

Sk × Sn−k
.

Observe that this is related to the binomial coefficients.

To end the lecture I will discuss some easier (but still philosophical) examples.

Definition of Free and Regular Actions. Let G be a group and let X be a set with
structure. We say that an action ϕ : G→ Aut(X) is free if each stabilizer is trivial:

Stabϕ(x) = {ε} for each point x ∈ X.

In this case, every orbit is in bijection with G:

Orbϕ(x) ←→ G/{ε} = G.

If G is a finite group then since X is a disjoint union of orbits, each of size #G, it
follows that X is finite and that #G divides #X.
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If in addition there is only one orbit (i.e., if the action is also transitive) then we say
that the action is regular.112 In this case, each point x ∈ X defines a bijection between
X and G:

X ←→ G
ϕg(x) ←→ g.

However, since there is no “best” point of X, none of these bijections is “best”. ///

Example: Dihedral and Cyclic Groups. The dihedral group D2n acts by symme-
tries on a regular n-sided polygon. This induces transitive actions of D2n on the set
of vertices and on the set of edges of the polygon. But is there some set of objects on
which the group acts freely?

Answer: Divide the polygon into n isoceles triangles from the center and then divide
each of these into 2 right triangles. Let X be the resulting set of 2n triangles. Then
D2n ↷ X is a regular action, hence for each arbitrary choice of “basepoint” x ∈ X we
obtain a bijection D2n ↔ X. Here are two choices of basepoint when n = 6. Note that
the two bijections are quite different:

We can obtain a geometric model for the cyclic group C2n = 〈R〉 ⊆ D2n by shading
half of the triangles. For example, the group C6 acts freely and transitively on the six
shaded triangles in the following picture:

///

If G↷ X is a regular action, then after choosing a basepoint x ∈ X we can think of X
as a group isomorphic to G, with identity element x. However, no basepoint is better
than any other. Thus, in some sense, we can think of X as a version of G where we
have forgotten which element is the identity. Sometimes this is useful.

112I don’t like this word too much. I’ll probably just say free and transitive. The term simply-transitive
is also common. The fanciest way to describe a regular action G ↷ X is to say that X is a G-torsor.
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Definition of Affine Space. When René Descartes invented Cartesian coordinates
(in 1637) his intention was to model the real world. However, there is one big problem:
The Cartesian space R3 has an origin but the real world does not. Can we fix this
problem?

Answer: Let X be a set and let ϕ : (Rn,+,0) → Perm(X) be a regular action. Then
for any arbitrary basepoint x ∈ X we obtain a bijection X ↔ Rn identifying x ∈ X
with 0 ∈ Rn. The pair (X,ϕ) is called affine n-dimensional space. Affine space is a
better model for the real world because it has no origin. ///

And here is one last example.

Example: Rotations and Reflections of an Icosahedron. Let I ⊆ SO(3) be the
group of rotational symmetries of a regular icosahedron centered at the origin in R3.
Can we find some set of 60 things on which this group acts regularly?

Answer: Consider the “barycentric subdivision” of the icosahedron. This is defined
by dividing each edge at the midpoint and dividing each triangular face into six right
triangles. Then we shade alternating triangles, as in the following picture:

The group I acts freely and transitively on the set of shaded triangles. If we choose an
arbitrary triangle to play the role of the identity element then we obtain a bijection

{shaded triangles} ←→ I.

And what about the 60 unshaded triangles? Let Î ⊆ O(3) be the group of rotation
and reflection symmetries of the icosahedron, which contains the rotations I ⊆ Î as a
subgroup. Then the group Î acts freely and transitively on the set of all 120 triangles,
and it follows that

#Î = 120.

[Remark: Note that I ⊆ Î is analogous to the cyclic subgroup Cn ⊆ D2n of the
dihedral group. More generally, for any shape X ⊆ Rn in Euclidean space we have
a group of symmetries Sym(X) ⊆ O(n) and an “alternating subgroup” Alt(X) =
Sym(X) ∩ SO(n) consisting of “rotational symmetries”.]
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Exercises

10.A Lagrange’s Version of Lagrange’s Theorem

The original prototype of “Lagrange’s Theorem” was stated by Lagrange without proof
in Article 96 of his Reflexions sur la résolution algébrique des équations (1770). The
first proof was given by Cauchy in (1815).113 Here is the statement in modern language:

Let X,Y be sets and let f : Xn → Y be a function with n inputs. Consider
a given list of inputs: x1, . . . , xn ∈ X. If the inputs are permuted in all
ways then the number of different outputs is a divisor of n!.

Use Orbit-Stabilizer and the modern version of Lagrange’s Theorem to prove this.

10.B Double Cosets

Let G be a group and let H,K ⊆ G be any subgroups. For each pair (h, k) ∈ H ×K
consider the function ϕ(h,k)(g) := hgk−1.

(a) Prove that this defines a group homomorphism ϕ : H ×K → Perm(G).

(b) For each g ∈ G, prove that the orbit satisfies

Orbϕ(g) = HgK := {hgk : h ∈ H, k ∈ K}.

These orbits are called double cosets. Unlike single cosets, we will see that double
cosets do not all have the same size.

(c) We also have a group action ψ : H → Perm(G/K) defined by ψh(gK) := (hg)K.
(Don’t bother to prove this.) For all g ∈ G prove that HgK is the disjoint union
of the cosets in the ψ-orbit of gK:

HgK =
∐

C ∈ Orbψ(gK)
C.

(d) For all g ∈ G prove that Stabψ(gK) = H ∩ gKg−1, where gKg−1 := {gkg−1 :
k ∈ K}.

(e) Combine (c) and (d) with Lagrange’s Theorem and Orbit-Stabilizer to conclude
that

#HgK = #H ·#K
#(H ∩ gKg−1)

.

[Remark: In the special case g = ε we obtain the formula

#HK = #H ·#K
#(H ∩K)

.

We already proved this using the Second Isomorphism Theorem when one of H or K
is normal. But now we have a proof that works for any H and K. That’s nice.]

113Augustin-Louis Cauchy, Mémoire sur les arrangements que l’on peut former avec des lettres données
et sur les permutations ou substitutions à l’aide desquelles on passe d’un arrangement à un autre (1815).
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10.C Burnside’s Lemma

Let ϕ : G → Perm(X) be a group action, and let X/G denote the set of orbits. For
each g ∈ G, let Fixϕ(g) denote the set of elements fixed by g:

Fixϕ(g) := {x ∈ X : ϕg(x) = x} ⊆ X.

(a) Count the elements of the set {(g, x) ∈ G×X : ϕg(x) = x} in two ways to prove
that ∑

g∈G
#Fixϕ(g) =

∑
x∈X

# Stabϕ(x).

(b) Use Orbit-Stabilizer to obtain a formula for the number of orbits:

#(X/G) = 1
#G

∑
g∈G

#Fixϕ(g).

(c) Application: Consider a “bracelet” (circular string of beads) containing 6 beads.
There are k possible colors for the beads, and we regard two bracelets to be the
same if they are equivalent up to dihedral symmetry. Use the formula in part (b)
to compute the number of different bracelets. [Hint: The dihedral group D12 acts
on a set X of size k6. You want to compute the number of orbits: #(X/D12).
To get started I’ll tell you that #Fix(R) = k and #Fix(R2) = k2.]

10.D Lagrange vs. Rank-Nullity

Let p ∈ Z be prime. You showed on the previous homework that every nonzero element
of the ring Fp := Z/pZ has a multiplicative inverse. In other words, Fp is a field of size
p.

(a) Let V be an n-dimensional vector space over Fp. Prove that #V = pn.

(b) Now let U ⊆ V be a k-dimensional subspace. Show that Lagrange’s Theorem and
the Rank-Nullity Theorem give you the same information about this subspace.



Week 11

11.1 Conjugacy Classes

This week we will apply the Orbit-Stabilizer Theorem to a group acting on itself. Recall
that a group G acts on itself in two basic ways:

• Translation. For any g ∈ G we define the function τg : G → G by τg(a) := ga.
Then one can show that the map g 7→ τg defines a group homomorphism

τ : G→ Perm(G).

• Conjugation. For any g ∈ G we define the function κg : G→ G by κg(a) := gag−1.
Then one can show that the map g 7→ κg defines a group homomorphism

κ : G→ Aut(G).

First let’s deal with translation.

Orbit-Stabilizer for Translation. We already know that the kernel of τ is trivial,
which implies that G is isomorphic to the group of permutations im τ ⊆ Perm(G).
[Jargon: We say that τ is a faithful action. This is another way to state Cayley’s
Theorem.] Now I claim that translation is free and transitive.114

Proof.

• Free. For all a ∈ G we want to show that Stabτ (a) ⊆ G is the trivial group. So
consider any elememnt g ∈ Stabτ (a). By definition we have a = τg(a) = ga, and
multiplying by a−1 on the right gives g = ε. We conclude that Stabτ (a) = {ε}
for all a ∈ G.

• Transitive. For all a, b ∈ G we want to show that there exists some group element
g ∈ G with τg(a) = b. Simply take g = ba−1. Then we have

τg(a) = τba−1(a) = (ba−1)a = b.

114We already proved this for the abelian group G = (Rn, +, 0). Now we’ll show that it holds in
general.
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□

Now that we know the orbits and stabilizers, let’s see what the Orbit-Stabilizer Theorem
tells us. For each a ∈ G we have Orbτ (a) = G and G/Stabτ (a) = G/{ε} = G. Thus
we obtain a bijection from G to itself:

G = Orbτ (a) ←→ G/Stabτ (a) = G
ga ←→ g.

Note that we can explicitly describe the bijection G = G/Stabτ (a)→ Orbτ (a) = G as
multiplication on the right by a. It’s a bit interesting that multiplication on the
right comes into play (since the action is by left multiplication). Otherwise, there’s not
much going on here. ///

Orbit-Stabilizer for conjugation is much more interesting.

Orbit-Stabilizer for Conjugation: The Class Equation. Recall that the kernel
of the conjugation action is the set of group elements that commute with everything.
We call this the center [Z is for Zentrum] of G:

Z(G) := kerκ = {g ∈ G : κg = id }
= {g ∈ G : κg(a) = a for all a ∈ G}
= {g ∈ G : gag−1 = a for all a ∈ G}
= {g ∈ G : ga = ag for all a ∈ G}.

Being a kernel, we know that the center Z(G) ⊴ G is a normal subgroup. Observe
that Z(G) = G if and only if G is abelian. The orbits and stabilizers also have special
names:

• Conjugacy Classes. For all a ∈ G we define the conjugacy class [K is for Klasse]:

K(a) := Orbκ(a) = {gag−1 : g ∈ G}.

• Centralizers. For all a ∈ G we define the centralizer [Z is for Zentrum again]:

Z(a) := Stabκ(a) = {g ∈ G : gag−1 = a} = {g ∈ G : ga = ag}.

Thus for each group element a ∈ G the Orbit-Stabilizer Theorem gives us a bijection
between elements of the conjugacy class K(a) and the set G/Z(a) of left cosets of the
centralizer:

K(a) ←→ G/Z(a)
gag−1 ←→ gZ(a).

We will combine these facts to obtain a useful formula. First, observe for all a ∈ G
that

K(a) = {a} ⇐⇒ Z(a) = G ⇐⇒ a ∈ Z(G).
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This suggests that we should collect the singleton conjugacy classes together. If
a1, a2, . . . , ak ∈ G is an arbitrary system of conjugacy class representatives, then we
obtain a disjoint union:

G =
∐

K(ai) =
∐

K(ai)={ai}
{ai}

⋃ ∐
K(ai)6={ai}

K(ai)

=
∐

ai∈Z(G)
{ai}

⋃ ∐
K(ai)6={ai}

K(ai)

= Z(G)
⋃ ∐

K(ai)6={ai}
K(ai).

And if G is finite then we apply the Orbit-Stabilizer Theorem to obtain

#G = #Z(G) +
∑

K(ai)6={ai}
#K(ai)

#G = #Z(G) +
∑

Z(ai)6=G
#G/#Z(ai).

This last formula is called the class equation. It is surprisingly useful. ///

11.2 The Sylow Theorems

The main application of the “class equation” is to study how the size of a finite group
affects its structure. This general topic is called “Sylow theory”. I have decided not to
go very far in this direction; the next theorem will give you just a taste. ACTUALLY
I WILL PROVE SYLOW I AND LEAVE II AND III FOR THE EXERCISES.

Theorem (Groups of size p2). Let p ∈ Z be prime and let G be a group of size p2.
Then:

(1) G is abelian,

(2) G is isomorphic to Z/p2Z or Z/pZ× Z/pZ.

///

To prove this we need two basic lemmas.

Lemma 1. Any group of size p is cyclic.

Proof. Let #G = p be prime and consider any non-identity element ε 6= g ∈ G. By
Lagrange’s Theorem, the cyclic subgroup 〈g〉 ⊆ G has size dividing p. Since p is prime
this means that #〈g〉 = 1 or #〈g〉 = p. But since g 6= ε we know that 〈g〉 6= {ε}, and
it follows that #〈g〉 = p. Finally, since 〈g〉 ⊆ G and #〈g〉 = #G we conclude that
G = 〈g〉. □
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Lemma 2. If the quotient group G/Z(G) is cyclic then G is abelian.

Proof. Recall that Z(G)⊴G is a normal subgroup. Assume that the quotient G/Z(G)
is a cyclic group. This means there exists an element g ∈ G such that every left coset
of Z(G) has the form (gZ(G))k = gkZ(G) for some k ∈ Z. Then since the cosets cover
G it follows that every element of G has the form gkz for some k ∈ Z and z ∈ Z(G).
Finally, if gk1z1 and gk2z2 are any two elements of G then since z1, z2 commute with
everything, and since

gk1gk2 = gk1+k2 = gk2+k1 = gk2gk1 ,

we conclude that

(gk1z1)(gk2z2) = gk1gk2z1z2 = gk2gk1z2z1 = (gk2z2)(gk1z1).

□

Proof of the Theorem. Let p ∈ Z be prime and let G be a group of size p2.

(1) To prove that G is abelian, we consider the class equation:

p2 = #G = #Z(G) +
∑

Z(ai) 6=G
#G/#Z(ai)

Let Z(ai) ⊆ G be any centralizer. From Lagrange’s Theorem we know that #Z(ai)
divides #G = p2, which implies that #Z(ai) ∈ {1, p, p2}. But if Z(ai) 6= G then we
must have #Z(ai) ∈ {1, p} and hence #G/#Z(ai) ∈ {p, p2}. Thus p divides the sum∑

Z(ai) 6=G
#G/#Z(ai),

which implies that p divides the size of the center:

#Z(G) = p2 −
∑

Z(ai)6=G
#G/#Z(ai) = p2 − (some multiple of p).

Since Z(G) ⊴ G is a subgroup, Lagrange tells us that #Z(G) ∈ {1, p, p2} and the
previous formula tells us that #Z(G) ∈ {p, p2}. Thus there are two possible cases:

• If #Z(G) = p2 then we have Z(G) = G which implies that G is abelian as desired.

• If #Z(G) = p then G is not abelian because Z(G) 6= G. I will show that this
case is impossible. Indeed, if #Z(G) = p then we must have #(G/Z(G)) =
#G/#Z(G) = p2/p = p. But then Lemma 1 says that G/Z(G) is cyclic and
Lemma 2 says that G is abelian. Contradiction.

(2) Now we will prove that G ∼= Z/p2Z or G ∼= Z/pZ × Z/pZ. For each non-identity
element g ∈ G−{ε} we know from Lagrange’s Theorem that the order #〈g〉 6= 1 divides
#G = p2 and hence #〈g〉 ∈ {p, p2}. Now there are two cases:

• Suppose that there exists some element g ∈ G− {ε} such that #〈g〉 = p2. Then
we conclude that G = 〈g〉 ∼= Z/p2Z.
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• Otherwise we must have #〈g〉 = p for all g ∈ G− {ε}. So choose some arbitrary
element g ∈ G− {ε} and then choose an arbitrary element h ∈ G− 〈g〉. I claim
that G is an internal direct product:

G = 〈g〉 × 〈h〉 ∼= Z/pZ× Z/pZ.

To see this, first note that 〈g〉 ∩ 〈h〉 ⊆ 〈g〉 is a subgroup. Thus by Lagrange we
have

#(〈g〉 ∩ 〈h〉) ∈ {1, p}.
If #(〈g〉 ∩ 〈h〉) = p then we have 〈g〉 ∩ 〈h〉 = 〈g〉 which contradicts the fact that
h 6∈ 〈g〉. Therefore 〈g〉 ∩ 〈h〉 = {ε}. Now consider the multiplication map

µ : 〈g〉 × 〈h〉 → G

(gk, h`) 7→ gkh`.

Since 〈g〉∩〈h〉 = {ε} we know that µ is injective, hence the image 〈g〉〈h〉 = imµ ⊆
G has size #(〈g〉 × 〈h〉) = p2, which implies that G = 〈g〉〈h〉. Finally, since G is
abelian we know that each of 〈g〉⊴G and 〈h〉⊴G is normal.

□

Remarks:

• The first part of the theorem fails for higher powers of p. For example, not every
group of size 23 is abelian. Proof: D8 is not abelian.

• For abelian groups of size pk, the second part of the theorem still holds. That
is, any abelian group of size pk is a direct product of cyclic groups. The different
ways to decompose the group correspond to the different partitions of the integer
k. For example, here are the non-isomorphic abelian groups of size p4:

– Z/p4Z,

– Z/p3Z× Z/p,

– Z/p2Z× Z/p2Z,

– Z/p2Z× Z/pZ× Z/pZ,

– Z/pZ× Z/pZ× Z/pZ× Z/pZ.

This result is rightly seen as a theorem of advanced linear algebra, which is
outside the scope of this course. The easiest proof uses the Smith Normal Form
of a matrix over Z.

• You might wonder if there is a formula for counting these abelian p-groups. Let
P (k) be the number of ways to partition the integer k, i.e., the number of non-
isomorphic abelian groups of size pk. Hardy and Ramanujan proved in 1918 that
this number satisfies

P (k) ∼ 1
4k
√

3
· exp

π
√

2k
3

 as k →∞.

There is no closed formula.
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• It is less difficult to prove that every finite abelian group is a direct product of
abelian p-groups. You will prove this in Exercise ??, assuming that the famous
“Sylow Theorems” are true.

The following theorems were originally proved by Ludwig Sylow (1872) in the context of
permutations. The results were given new proofs and generalized to abstract groups by
Frobenius (1887). One can view part (1) as a partial converse to Lagrange’s Theorem.

The Sylow Theorems. Let G be a finite group of size #G = pkm where p is prime
and gcd(p,m) = 1. Then:

(1) There exists at least one subgroup H ⊆ G of size pe for each 1 ≤ e ≤ k. The
subgroups of size pk are called Sylow p-subgroups.

(2) Any p-subgroup is contained in a Sylow p-subgroup. In fact, for any subgroups
H,S ⊆ G where #S = pk and #H = pe ≤ pk, there exists an element g ∈ G such
that H ⊆ gSg−1.

(3) Let np be the number of Sylow p-subgroups. Then we have np|m and np = 1 mod
p. If np = 1 then by part (2) we conclude that the unique Sylow p-subgroup is
normal.

///

I will give here an elegant proof of part (1) due to Helmut Wielandt (1959). You will
supply the proofs of parts (2) and (3) in Exercise 11.C.

Proof of (1).

Counting Lemma: Let gcd(p,m) and 1 ≤ e ≤ k. Then pk−e is the highest power of p
that divides the binomial coefficient

(pkm
pe
)
. Indeed, consider the following expression:(

pkm

pe

)
= pk−em · (pkm− 1) · · · (pkm− `) · · · (pkm− pe + 1)

(pe − 1) · · · (pe − `) · · · 1
.

If pα‖(pe−`) for some ` 6= 0 then we must have pα‖`. But then we also have pα‖(pem−
`), so the fraction on the right represents an integer that is not divisible by p. ///

Let X := {S ⊆ G : #S = pe} be the set of all subsets of size pe. We want to prove
that at least one of these subsets is a subgroup. To do this we let G act on X by left
multiplication and consider the partition into orbits

X =
∐
i

Orb(Si)

for some arbitrarily chosen subsets Si ⊆ G.

I claim that there exists some i such that pk−e+1 ∤ Orb(Si). Indeed, if we had pk−e+1 ∤
Orb(Si) for all i then from the equation #X =

∑
i #Orb(Si) we would conclude that
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pk−e+1|#X, which contradicts the above lemma. Now consider the stabilizer subgroup
H := Stab(Si) ⊆ G. By definition this means that the set Si is closed under left
multiplication by H. In other words, Si is a union of left H-cosets. It follows from
this that #H divides #S = pe, so #H is a power of p. Finally, we observe from the
Orbit-Stabilizer Theorem that

#H ·Orb(Si) = # Stab(Si) ·#Orb(Si) = #G = pkm.

Since #H is a power of p and since pk−e+1 ∤ #Orb(Si) this implies that #Orb(Si) =
pk−em and #H = pe. Thus H ⊆ G is the desired subgroup of size pe. □

Corollary. If #G = pkm with p prime and gcd(p,m) then G has subgroups of order
pe for all 1 ≤ e ≤ k.

Proof. Let H ⊆ G be a subgroup with #H = pk. Since p|#H we know from Cauchy’s
Theorem that there exists a subgroup N ⊆ H with #N = p. By induction the quotient
H/N has subgroups of size pe for all 1 ≤ e ≤ pk−1. Then the result follows from the
Correspondence Theorem. □

The proof is not very instructive so I won’t include it here. Instead I’ll just show you
a slick application.

Application of Sylow. Let p < q < r be prime. No group of size pqr is simple.

Proof. Suppose that #G = pqr with p < q < r prime. Let np, nq, nr be the numbers of
subgroups of size p, q, r, respectively. If any of np, nq, nr equals 1 then from Sylow (2) we
obtain a non-trivial normal subgroup. So assume for contradiction that np, nq, nr > 1.
Then from Sylow (3) we have nr = pq, nq ∈ {r, pr} and np ∈ {q, r, qr}, hence nq ≥ r
and np ≥ q. By Lagrange’s Theorem we see that any two subgroups with sizes in
{p, q, r} intersect trivially (i.e., they are equal or they intersect at the identity). By
counting the elements of these subgroups we obtain np(p−1)+nq(q−1)+nr(r−1)+1
distinct elements of G:

It follows that

pqr = #G ≥ np(p− 1) + nq(q − 1) + nr(r − 1) + 1
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≥ q(p− 1) + r(q − 1) + pq(r − 1) + 1
= (��pq − q) + (qr − q) + (pqr −��pq) + 1
= pqr + (qr − q − r + 1)
= pqr + (q − 1)(r − 1),

which implies that 0 ≥ (q − 1)(r − 1). But this contradicts the fact that (q − 1) > 0
and (r − 1) > 0. □

[Remark: Using similar tricks with Sylow theory, one can show that no non-abelian
group of size < 60 is simple. Some people think these tricks make good exam problems
but I don’t agree. I prefer to ask about generalities.]

Exercises

11.A Some Examples of Conjugacy Classes

Let G be a group and for all a, b ∈ G define the following relation:

a ∼ b ⇐⇒ a = gbg−1 for some g ∈ G.

(a) Prove that this is an equivalence relation, called conjugacy.

(b) Compute the conjugacy classes for the dihedral group:

D2n = 〈R,F 〉 = {I,R, . . . , Rn−1, F,RF, . . . , Rn−1F}.

Observe that conjugate elements “do the same thing” to the triangle.

(c) Explicitly describe the conjugacy classes of the symmetric group Sn. [Hint: Let
f, g ∈ Sn. Show that g sends i to j if and only if fgf−1 sends f(i) to f(j). What
does this say about the cycle structure?]

11.B Primary Factorization of a Finite Abelian Group

Let G be finite abelian group.

(a) Suppose that there exist subgroups H,K ⊆ G such that #G = #H · #K and
gcd(#H,#K) = 1. In this case, prove that G is an internal direct product:

G = H ×K.

(b) Now suppose that #G = pe1
1 · · · penn for distinct primes p1, . . . , pn. The Sylow

Theorems tell us that for each i there exists a unique subgroup Hi ⊆ G of size
#H = peii . Use part (a) and induction to prove that G is the direct product of
these subgroups:

G = H1 ×H2 × · · · ×Hn.

This is called the primary factorization of G. It also true that each primary factor
Hi is a product of cyclic subgroups but this is harder to prove.
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(c) In the special case that G is cyclic, prove that

G ∼=
Z
pe1

1 Z
× Z
pe2

2 Z
× · · · × Z

penn Z
.

This is a non-constructive version of the Chinese Remainder Theorem.

11.C Sylow Two and Thee

11.D Euler’s Rotation Theorem

Recall the definition of the special orthogonal group:

SO(3) = {A ∈ Mat3(R) : ATA = I and det(A) = 1}.

We have seen that every element of this group is an isometry of R3. Now you will show
that every element of this group is a rotation.

(a) Recall that there exists a nonzero vector 0 6= u ∈ R3 satisfying Au = λu if and
only if det(A − λI) = 0. Prove that there exists a unit vector u ∈ R3 satisfying
Au = u.

(b) For all v perpendicular to u, prove that Av is perpendicular to u.

(c) Prove that there exists a matrix B ∈ SO(3) and a real number θ ∈ R such that

B−1AB =


1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 .
[Hint: Choose unit vectors v,w ∈ R3 so that u,v,w are mutually perpendicular.
These are the columns of B.] It follows from this that x 7→ Ax is a rotation
around the line Ru ⊆ R3 by angle θ.

[Remark: As a corollary of this, if R1 and R2 are rotations of R3—hence are both ele-
ments of SO(3)—then it follows that the composition R1R2 ∈ SO(3) is also a rotation.
This fact is not obvious to the human visual imagination.]
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Week 12

12.1 Conjugacy Classes in the Symmetric Group

To end this course, I want to complete our discussion of the quintic equation and
the icosahedral group. Namely, I will prove that the group I ⊆ SO(3) of rotational
symmetries of a regular icosahedron is a simple group.115 This is related to the
solvability of the quintic equation because of an “accidental isomorphism” with the
alternating group A5:

I ∼= A5.

Before discussing the group A5, I will state a general theorem about alternating groups.

If G is a finite group, recall that a composition series consists of a chain of subgroups

G = G0 ⊋ G1 ⊋ · · · ⊋ G` = {ε}

in which each quotient group Gi/Gi+1 exists and is simple (i.e., has no non-trivial
normal subgroup). Recall from the Jordan-Hölder Theorem that the list of simple
groups {Gi/Gi+1}i is the same (up to isomorphism and permutation) for any two
composition series of G. These unique simple groups are called the composition factors
of G. Recall further that the group G is called solvable when its composition factors
are abelian (i.e., have the form Z/pZ for various primes p). We have already proved
that the symmetric group Sn is not solvable when n ≥ 5. Now we will be more specific.

Theorem (Composition Factors of Sn). Let n ≥ 5 and consider the symmetric
group Sn. Let An ⊆ Sn be the alternating subgroup. Then we have:

• An ⊴ Sn is the only non-trivial normal subgroup of Sn,

• An is simple.

It follows from this that the group Sn has a unique composition series:

Sn ⊋ An ⊋ {id }.

Hence the simple composition factors are Sn/An ∼= Z/2Z and An/{id } ∼= An. ///

Remarks:
115In fact, the infinite group SO(3) is also simple, but this is beyond the scope of the course.
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• Now we see that the group Sn is not solvable (for n ≥ 5) because the composition
factor An is not abelian. It’s just an accident of nature that all simple groups
smaller than A5 are abelian.

• One might even say that the group Sn is “almost simple”, except for the piddly
factor of Z/2Z. After all, #An = n!/2 is much larger than #Z/2Z = 2.

• Similar theorems say that the matrix groups GLn(F), O(n) and U(n) are “almost
simple” (i.e., simple except for a piddly quotient). However these results are quite
involved and are never proved in undergraduate courses.

• Some undergraduate books do give a proof that An is simple (for n ≥ 5), but this
proof is also not very nice. Michael Artin only included the proof in the second
edition of his book. I think it’s fair to omit the proof entirely. In this course we
will only discuss the special case n = 5. ///

The following trick will help us to prove (1) that A5 is the only non-trivial normal
subgroup of S5 and (2) that A5 is a simple group.

Trick. Let N ⊴G be a normal subgroup. Then N is a union of conjugacy classes.

Proof. Let κ : G → Aut(G) be the conjugation action consider any element n ∈ N .
Then since N is normal, we have gng−1 ∈ N for all g ∈ G and hence

Orbκ(n) = {gng−1 : g ∈ G} ⊆ N.

It follows that ⋃
n∈N

Orbκ(n) ⊆ N.

On the other hand, we obviously have

N ⊆
⋃
n∈N

Orbκ(n)

because n ∈ Orbκ(n) for all n ∈ N . □

The reason this trick is useful is because sometimes we can compute the sizes of all
the conjugacy classes. Then by using Lagrange’s Theorem we can dramatically narrow
the search for normal subgroups. To see how this works, let’s compute the sizes of the
conjugacy classes in the symmetric group. We might as well do this for general n. The
following result was first stated by Cauchy in the Exercices d’analyse et de physique
mathematique (1844).

Theorem (Sizes of Conjugacy Classes in Sn). Let κ : Sn → Aut(Sn) be the
conjugation action and consider any permutation f ∈ Sn. Recall that the conjugacy
class K(f) := Orbκ(f) consists of all permutations that have the same “cycle structure”
as f (i.e., the same number of cycles of each length). To be specific, let’s say that
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the cycle decomposition of f contains contains mi cycles of length i, for each i ∈
{1, 2, . . . , n}. Then we have

#K(f) = n!
1m1m1! 2m2m2! · · ·nmnmn!

.

///

Before proving this, let’s test some simple examples. Note that the identity permutation
id ∈ Sn has m1 = n cycles of length 1 and mi = 0 cycles of length i for each i ∈
{2, 3, . . . , n}. Thus the formula gives

#K(id ) = n!
1nn! 200! · · ·n00!

= n!
n!

= 1.

This is correct because the identity is only conjugate to itself. Next, let’s count the
conjugacy class of transpotitions (2-cycles), which has m1 = n− 2, m2 = 1 and mi = 0
for i ∈ {3, . . . , n}. If t ∈ Sn is any transposition then the formula gives

#K(t) = n!
1n−2(n− 2)! 211! 300! · · ·n00!

= n!
2(n− 2)!

= n!
2!(n− 2)!

=
(
n

2

)
.

This is correct because each transposition (ij) ∈ Sn corresponds to a choice of two
elements i 6= j from the set {1, 2, . . . , n}.

Proof of the Theorem. We will use the Orbit-Stabilizer Theorem. Let f ∈ Sn and
recall that the stabilizer under conjugation is called the centralizer:

Z(f) := Stabκ(f) = {g ∈ Sn : gfg−1 = f}.

Now suppose that the permutation f has mi cycles of length i for each i ∈ {1, 2, . . . , n}.
By Orbit-Stabilizer we have #K(f) = #Sn/#Z(f) = n!/#Z(f), thus our goal is to
prove that

#Z(f) = 1m1m1! 2m2m2! · · ·nmnmn!.

To see this, suppose that (j1, j2, . . . , ji) is one of the cycles of f . This means that

f(j1) = j2, f(j2) = j3, · · · f(jm−1) = jm and f(jm) = j1.

Then for any g ∈ Sn we see that (g(j1), g(j2), . . . , g(ji)) is a cycle of gfg−1. (You
proved this on a previous homework.) If g ∈ Z(f) (i.e., if gfg−1 = f) then this cycle
must equal one of the cycles of f . If there is only one cycle of length i (i.e., if mi = 1)
then we must have

(j1, j2, . . . , ji) = (g(j1), g(j2), . . . , g(ji)).

In this case there are exactly i ways to choose the values g(j1), g(j2), . . . , g(ji) ∈
{j1, j2, . . . , ji} since we are only allowed to rotate the cycle. If mi > 1 then we can
also permute the various i-cycles. There are mi! ways to do this and then there are
i · i · i · · · i = imi ways to rotate each of the cycles. Hence there are imimi! different ways
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to choose the values inside the i-cycles of gfg−1. Since the choices for different values
of i are independent, the total number of ways to choose a permutation g ∈ Z(f) is

#Z(f) =
n∏
i=1

#(ways to fill the i-cycles) =
n∏
i=1

imimi!.

□

The notation in that proof is terrible. Hopefully an example will be more convincing.

Example: Conjugacy Classes and Normal Subgroups of S5. Recall that the
conjugacy classes of S5 consist of permutations with the same number of i-cycles for
each i. There are two equivalent ways to encode this “cycle structure”. First, since the
order of the cycles doesn’t matter we will record the lengths of the cycles in a vector
λ = λ1λ2λ3λ4λ5, where

• λ1 ≥ λ2 ≥ λ3 ≥ λ5 ≥ λ5 ≥ 0,

• λ1 + λ2 + λ3 + λ4 + λ5 = 5.

Thus the set of possible vectors λ is {50000, 41000, 32000, 31100, 22100, 21110, 11111}.
Second, we will write m = m1m2m3m4m5, where mi is the number of cycles of length
i. These numbers must satisfy

• mi ≥ 0 for all i ∈ {1, 2, 3, 4, 5},

• 1m1 + 2m2 + 3m3 + 4m4 + 5m5 = 5.

Thus the set of possible vectors m is {00001, 10010, 01100, 20100, 12000, 31000, 50000}.
Now we have the following table recording the sizes of the conjugacy classes and cen-
tralizers in S5:

λ m #Z #K

50000 00001 51 · 1! = 5 120/5 = 24
41000 10010 11 · 1! · 41 · 1! = 4 120/4 = 30
32000 01100 21 · 1! · 31 · 1! = 6 120/6 = 20
31100 20100 12 · 2! · 31 · 1! = 6 120/6 = 20
22100 12000 11 · 1! · 22 · 2! = 8 120/8 = 15
21110 31000 13 · 3! · 21 · 1! = 12 120/12 = 10
11111 50000 15 · 5! = 120 120/120 = 1

Note that λ = 11111 corresponds to the conjugacy class {id } and λ = 21110 cor-
responds to the conjugacy class of 2-cycles {(12), (13), . . . , (45)}, which has

(5
2
)

= 10
elements. For the rest of the calculation, we can tell that we didn’t make a mistake
because the sizes of the conjugacy classes add up to the size of the group:

24 + 30 + 20 + 20 + 15 + 10 + 1 = 120 = 5! = #S5.

I find this example more convincing than the general proof above. That’s often how
it goes with combinatorics. Now let’s use this information to find all the normal
subgroups.
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Theorem. The alternating group A5 ⊴ S5 is the only non-trivial normal subgroup of
S5.

Proof. Recall that a normal subgroup N ⊴ S5 is a union of conjugacy classes, which
must include the class {id }. We also know from Lagrange’s Theorem that #N divides
#S5. Let Kλ ⊆ S5 be the conjugacy class with cycle type λ. Then combining all of
these restrictions leaves only three possible normal subgroups:

N = K11111 ∪K22100 ∪K50000,

N ′ = K11111 ∪K22100 ∪K31100 ∪K50000,

N ′′ = K11111 ∪K22100 ∪K32000 ∪K50000.

It is easy to check that N ′ = A5 and that the sets N,N ′′ ⊆ S5 are not subgroups. If
follows that A5 ⊴ S5 is the only non-trivial normal subgroup of S5. □

12.2 The Icosahedron and A5

Obviously, the previous proof won’t work for higher values of n. For general n we
should first prove that An is simple, then use that fact to prove that Sn has no other
normal subgroups. (See the homework.) We will only prove this for n = 5 because
I don’t know a nice general proof.116 The conjugacy classes of A5 are a bit tricky to
describe so we will use the following strategy:

(1) Prove that the icosahedral group I ⊆ SO(3) is simple.

(2) Then prove that I ∼= A5. This isomorphism is just a lucky accident, resulting
from the fact that 60 is a relatively small number. Felix Klein made a big deal
of this lucky accident in his Lectures on the Icosahedron (1888).

Theorem. The icosahedral group I ⊆ SO(3) is simple.

Proof. We will use the fact that the conjugacy classes have geometric meaning. Recall
that two invertible matrices A,B ∈ GLn(R) are conjugate if and only if they represent
the same linear function after a change of basis. More specifically, two matrices A,B ∈ I
are conjugate in I if and only if they represent the same function after a rotational
symmetry of the icosahedron. Thus we obtain the following table of conjugacy classes:

description of the conjugacy class number of elements

–id } 1
–rotate by ±2π/5 around a vertex} 12
–rotate by ±4π/5 around a vertex} 12

–rotate by π around an edge} 15
–rotate by ±2π/3 around a face} 20

We know that we didn’t make a mistake because

1 + 12 + 12 + 15 + 20 = 60 = #I.

116See the second edition of Artin for a not-nice proof.
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Now let’s look for normal subgroups. Recall that any normal subgroup N⊴I is a union
of conjugacy classes, which must include the identity class {id }. Furthermore, we know
from Lagrange that #N divides #I. It is easy to check that there is no non-trivial
solution to this arithmetic problem. □

Theorem. The icosahedral group I ⊆ SO(3) is isomorphic to the alternating group
A5 ⊆ S5.

Proof. The proof relies on the strange fact that a regular icosahedron can be inscribed
in exactly 5 different cubes.117 To see this, we observe that the 30 edges of the icosa-
hedron divide into 15 parallel pairs. Furthermore, these 15 pairs can be divided into 5
triples of mutually orthogonal pairs. And for each triple of pairs there exists a unique
cube whose 6 faces contain the 6 edges of the triple. Here is a picture:

Now consider the set of these five cubes. Since any isometry f ∈ I sends cubes to cubes
we obtain a group homomorphism

ϕ : I → Perm({5 cubes}) ∼= S5.

Since kerϕ⊴ I is a normal subgroup and since I is simple, we must have kerϕ = {id }
or kerϕ = I. But the second option is impossible because clearly some element of I
moves the cubes. Therefore we have kerϕ = {id } and hence ϕ is injective. It follows
from the First Isomorphism Theorem that I is isomorphic to its image:

I ∼= I/ kerϕ ∼= imϕ ⊆ S5.

Now it only remains to show that imϕ = A5. To do this we recall from Exercise
7.A that the determinant homomorphism det : Sn → {±1} has kernel A5 = ker(det).
Consider the composition of these homomorphisms:

det ◦ϕ : I → {±1}.

117I learned this proof from Michael Artin’s Algebra (1991).
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Again, since ker(det ◦ϕ)⊴ I is a normal subgroup and since I is simple, we must have
ker(det ◦ϕ) = {id } or ker(det ◦ϕ) = I. This time the first option is impossible because
I has more elements than {±1}. It follows that ker(det ◦ϕ) = I and hence

imϕ ⊆ ker(det) = A5 ⊆ S5.

Finally, since #imϕ = #I = #A5 = 60, we conclude that imϕ = A5 as desired. □

This concludes our study of S5 and the icosahedron. Next semester we will see what
this has to do with the general quintic equation.

12.3 Epilogue: Finite Simple Groups

Epilogue: I don’t want to end it there. Let me just say a few final words about
simple groups. Recall from the Jordan-Hölder Theorem that every finite group G has
a unique collection of simple composition factors. These are something like the “prime
factors” of the group. This suggests a strategy for classifying all finite groups, which
is sometimes called Hölder’s Program because the project was begun by Otto Hölder
(1859–1937):

• Classify all finite simple groups.

• Describe all ways of putting them together.

The second problem is far too difficult to have a nice solution. The first problem, on the
other hand, turns out to be solvable. After 100 years of intense work by generations of
group theorists, the full classification of finite simple groups was announced by Daniel
Gorenstein in 1983. The details are complicated but the general outline is easy to
describe.

Theorem (The Classification of Finite Simple Groups). There exist three infi-
nite families of finite simple groups:

• Cyclic groups Z/pZ for p prime.

• Alternating groups An for n ≥ 5.

• Groups related to GLn(Z/pZ). This includes finite versions of the orthogonal and
unitary groups, together with a few strange families that we need not mention.118

On top of this, there are exactly 26 so-called “sporadic groups”, which are not related
to any of the infinite families. The largest of these is the Monster group M which has
approximately 8× 1053 elements. ///

The amount of work involved in the classification is mind-boggling. The original proof
was spread over tens of thousands of journal pages. Right now some group theorists are

118Fine, I’ll mention them. There is one more “classical” family Sp(n) coming from the quaternions
and then five “exceptional” families called G2, F4, E6, E7, E8.
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working on a “second generation proof”, which is estimated to fill about 5000 pages.
It’s fair to say that the mathematical community is far from understanding all the
details.

As for infinite groups: If we had a few more weeks, I would like to discuss the re-
lationship between the continuous groups SU(2) and SO(3). This is beautiful topic
related to geometry and physics.119 Of course, we do have another whole semester
together, but that semester will be devoted to a completely different topic (rings, fields
and polynomials). See you then.

Exercises

12.A The Alternating Group A4 is Not Simple

Recall that A4 ⊆ S4 is the subgroup of permutations of {1, 2, 3, 4} which can be ex-
pressed as the product of an even number of transpositions.

(a) Prove that the following set is a normal subgroup:

V = {id , (12)(34), (13)(24), (14)(23)}⊴A4.

It follows that A4 is not a simple group.

(b) Furthermore, prove that V ∼= Z/2Z × Z/2Z. The letter V is for Klein’s Vier-
ergruppe. [Once upon a time it was surprising that not every abelian group is
cyclic.]

12.B Normal Subgroups of Sn

Assuming that An is simple (which is true for n ≥ 5) you will prove that An is the only
non-trivial normal subgroup of Sn.

(a) For n ≥ 3, prove that the center of Sn is trivial: Z(Sn) = {id }. [Hint: For any
id 6= g ∈ Sn, prove that there exists some f ∈ Sn such that fgf−1 6= g.]

(b) Suppose that N ⊴Sn is a normal subgroup not equal to {id } or Sn. Use the fact
that An is simple to prove that N = An or #N = 2. [Hint: Consider N∩An⊴An.]

(c) Continuing from (b), if #N = 2 then we must have N = {id , τ} for some τ ∈ Sn
such that τ 6= id and τ2 = id . Prove that τ ∈ Z(Sn) and get a contradiction.

[Remark: We have shown that if An is simple and if n ≥ 3, then An is the only non-
trivial normal subgroup of Sn. It is easy to check that A3 is simple, and you showed
above in Problem 1 that A4 is not simple. It turns out to be true that An is simple for
all n ≥ 5, but, again, I don’t want to prove that here. Look up a proof if you want.]

119I recommend John Stillwell’s Naive Lie Theory.
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12.C Gaussian Binomial Coefficients

Let p be prime and consider the field Fp := Z/pZ.

(a) For all n ≥ 0 we define the p-factorial:

[n]p! :=
n∏
i=1

pi − 1
p− 1

=
n∏
i=1

(1 + p+ p2 + · · ·+ pi−1) ∈ Z.

Prove that #GLn(Fp) = p(
n
2) · (p− 1)n · [n]p!. [Hint: The columns of an invertible

matrix are just an ordered basis for the vector space Fnp . Argue that there are
pn−1 ways to choose the first basis vector, then pn−p ways to choose the second
basis vector, etc., so that #GLn(Fp) =

∏n−1
i=0 (pn − pi).]

(b) Let X be the set of all k-dimensional subspaces of Fnp . The group GLn(Fp) acts
on X in the obvious way. For any k-dimensional subspace U ∈ X, prove that the
stabilizer of U is isomorphic to the following subgroup of GLn(Fp):

 A C

0 B

 : A ∈ GLk(Fp), B ∈ GLn−k(Fp), C ∈ Matk×(n−k)(Fp)

 .
[Hint: Choose a basis u1,u2, . . . ,un for Fnp such that u1,u2, . . . ,uk is a basis for
U .]

(c) Combine parts (a) and (b) with the Orbit-Stabilizer Theorem to prove that

#X = [n]p!
[k]p! · [n− k]p!

.

This is called a Gaussian binomial coefficient.

[Remark: If we treat p as a formal variable then one can check that

[n]p!
[k]p! · [n− k]p!

−→ n!
k! (n− k)!

as p −→ 1.

This suggests that a “k-subset of an n-subset” is somehow the same thing as a “k-
dimensional subspace of an n-dimensional vector space over the field Z/1Z”. Unfortu-
nately this makes no sense because Z/1Z ∼= {0}, so every vector space over Z/1Z has
size 1. Strange.]
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Second Semester:
Field Theory





Week 13

13.1 The Classical Problem of Algebra

Last semester I used the story of Galois Theory to motivate the study of abstract
groups. This semester I will use the same story to motivate the study of abstract
rings and fields. As before, we will find that linear algebra is always hiding just
beneath the surface.

To begin, let me refresh your memory. The classical (pre-1830) problem of algebra
was to find explicit “formulas” for the roots of a polynomial equation. To be precise,
suppose that some rational numbers (called “coefficients”) are given:

e1, e2, . . . , en ∈ Q.

Then we want to find some numbers r1, r2, . . . , rn (called “roots”) such that

xn − e1x
n−1 + e2x

n−2 − · · ·+ (−1)nen = (x− r1)(x− r2) · · · (x− rn).

A priori, it is not obvious what kind of “numbers” the roots should be, or whether they
exist at all. Soon we will prove a result called the Fundamental Theorem of Algebra
which says that the roots always exist in the field C of complex numbers. Unfortunately,
this theorem will not tell us how to find the roots.

We would really like to have some formula or algorithm for computing the roots. To
state the problem explicitly, we expand the right hand side and then equate coefficients
to obtain a system of n non-linear equations in n unknowns:

e1 = r1 + r2 + · · ·+ rn
e2 = r1r2 + r1r3 + · · ·+ rn−1rn

...
ek =

∑
1≤i1<i2<···<ik≤n ri1ri2 · · · rik

...
en = r1r2 · · · rn.

Our goal is to somehow “invert” this system. The best we could hope for is to find
some explicit functions f1, f2, . . . , fn from Qn to C such that

r1 = f1(e1, e2, . . . , en)
r2 = f2(e1, e2, . . . , en)

...
rn = fn(e1, e2, . . . , en).
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But this hope is too naive. Indeed, no such functions can exist. To see why, observe
that each coefficient ek can be thought of as a function of the roots:

ek = ek(r1, r2, . . . , rn) =
∑

1≤i1<i2<···<ik≤n
ri1ri2 · · · rik .

Furthermore, this function has the nice property of being “symmetric” under permuta-
tions of the roots. In other words, if σ ∈ Sn is any permutation of the set {1, 2, . . . , n}
then we have

ek(r1, r2, . . . , rn) = ek(rσ(1), rσ(2), . . . , rσ(n)).

The easiest way to see this is to observe that the product (x− r1)(x− r2) · · · (x− rn)
is symmetric under permutations of its factors. If we expand the product then each
coefficient must also be a symmetric function.

[Jargon: The coefficients e1, . . . , en are called the elementary symmetric functions of
the roots. This explains my use of the letter “e”.]

If f : Qn → C is any function then we can think of the expression f(e1, . . . , en) as a
function of the roots, as follows:

f(e1, . . . , en)(r1, . . . , rn) := f (e1(r1, . . . , rn), . . . , en(r1, . . . , rn)) .

Furthermore, it is clear that f(e1, . . . , en) is a symmetric function of the roots. Now
we see why our first hope was too naive:

There can be no function fk such that rk = fk(e1, e2, . . . , en) because
fk(e1, e2, . . . , en) is always a symmetric function of the roots, whereas
rk is certainly not a symmetric function of the roots.

The solution is to weaken the requirement that fk is a “function”. Instead, we will allow
“multi-valued functions”120 such as square roots. We often talk about “the” square root
as though it were a function √

− : C→ C.

But this is not a function. Indeed, for any 0 6= α ∈ C, the expression
√
α represents

two distinct complex numbers and there is no natural way to choose between them.
We can use this ambiguity to solve the quadratic equation.

Example: The Quadratic Formula. For any rational coefficients e1, e2 ∈ Q we
want to find some complex roots r1, r2 ∈ C such that

x2 − e1x+ e2 = (x− r1)(x− r2) = x2 − (r1 + r2)x+ (r1r2).

In other words, we want to find some “multi-valued functions” f1, f2 such that{
e1 = r1 + r2
e2 = r1r2

⇐⇒
{
r1 = f1(e1, e2)
r2 = f2(e1, e2).

120Recall that a “multi-valued function” is not a function. This is a terrible but common notation.
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As you know, the solution is f1(e1, e2) = (e1 +
√
e2

1 − 4e2)/2

f2(e1, e2) = (e1 −
√
e2

1 − 4e2)/2.

The only subtlety here is that we must interpret the ambiguous expression “
√
e2

1 − 4e2
′′

in the same way for both equations. In other words, we let “
√
e2

1 − 4e2” denote one
particular number α ∈ C such that α2 = e2

1 − 4e2. If e2
1 − 4e2 6= 0 then there will be

two choices and we just pick one at random.121 ///

The process of choosing a random square root is called “breaking the symmetry”. For
higher degree equations we expect that we will need to break the symmetry by choosing
random 3rd roots, 4th roots, etc. This leads us to the classical problem of algebra.

The Classical Problem of Algebra. Let e1, . . . , en ∈ Q be any rational numbers.
By the Fundamental Theorem of Algebra there exist some unique complex numbers
r1, . . . , rn ∈ C such that

xn − e1x
n−1 + e2x

n−2 − · · ·+ (−1)nen = (x− r1)(x− r2) · · · (x− rn).

Our goal is to find some way to compute these roots. Specifically, we want to find
an “algebraic formula” expressing the roots in terms of the coefficients, using only the
“algebraic operations”

+,−,×,÷,√, 3
√
, 4
√
, 5
√
, . . . .

///

As you know, this problem turns out to be impossible when n ≥ 5. Last semester we
developed the group theory necessary for the proof of impossibility.122 This semester
we will fill in the other half of the proof.

13.2 Definition of Fields

The Classical Problem was definitively solved by Galois in the 1820s. However, he died
too soon to really explain it to anyone. Galois’ work was eventually published in 1846
by Joseph Liouville. The first textbook on Galois theory was Camille Jordan’s Traité
des substitutions et des équations algébraiques (1870). At this point “Galois theory”
and “group theory” were the same subject, so Jordan’s work can also be viewed as the
first book about groups.

121If the roots are imaginary then there is a deep sense in which they are indistinguishable. Indeed,
we usually define the imaginary unit i as “the” square root of −1. But if −1 has any square root then
it must have two. Which one do you want to call i ?

122Specifically, we proved that the group Sn not “solvable” when n ≥ 5.
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However, the subject was still difficult to understand. The next major advance was
made by Richard Dedekind when he defined the concept of a field.123 Apparently
Dedekind lectured on this material at Göttingen as early as the 1850s, but he published
it in an 1894 supplement to Dirichlet’s Lectures on Number Theory. Dedekind began
§160 of the supplement with the definition of fields and later said in §164 that “the
real subject of today’s algebra” lies in “the detailed investigation of the relationship
between different fields”.124

Definition of Fields and Subfields/Extensions. A field is a set F together with
two binary operations

+,× : F× F→ F

(called addition and multiplication) and two special elements

0, 1 ∈ F

(called zero and one), which satisfy the following three axioms:

(F1) (F,+, 0) is an abelian group.

(F2) (F − {0},×, 1) is an abelian group. We will use juxtaposition to denote multi-
plication:

ab := a× b.

Furthermore, since multiplication is commutative we are free to use fractional
notation to denote division:

ab−1 = b−1a = a

b
.

(F3) Distribution. For all a, b, c ∈ F we have

a(b+ c) = ab+ ac.

Now let S ⊆ F be any subset. We say that S is a subfield of F (equivalently, F is a field
extension of S) if the following properties are satisfied:

• The special elements 0, 1 are in S.

• For all a, b ∈ S we have a± b ∈ S.

• For all a, b ∈ S we have ab ∈ S.

• For all a ∈ S − {0} we have a−1 ∈ S.

123Dedekind’s name for this structure was Körper, short for Zahlkörper (body of numbers). Dedekind’s
rival Leopold Kronecker used the term Rationalitätsbereich (domain of rationality). The English term
field was coined by E. H. Moore in 1893, possibly motivated by the word “domain”. This creates
a problem for English speakers: should we denote fields by the letter K or the letter F ? To avoid
confusion I will use the blackboard bold font (i.e., K or F) to denote fields. Sadly, this is not a perfect
solution because Z and N are not fields.

124Quoted from Edward T. Dean, Dedekind’s treatment of Galois theory in the Vorlesungen (2009,
page 27).
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In other words: A subfield is a subset that is also a field with respect to the same
operations and special elements. [Remark: We could shorten this definition by using
the word “subgroup” in various places. Unfortunately, the subfield test cannot be
reduced to one step, as the subgroup test can.] ///

The most basic examples of fields are

Q,R,C and Fp := Z/pZ for p prime.

Note that the inclusions Q ⊆ R ⊆ C are field extensions. Prior to Dedekind no one
felt the need to define the abstract concept of fields because it was synonymous with
the concept of “numbers”. However, Dedekind found that the abstract concept was
helpful to simplify various ideas in number theory and Galois theory. Here is the first
non-basic example.

The First Interesting Example. Let α =
√

2 be any real number satisfying α2 = 2.
If you want you want you can think of α as the positive square root of 2, but it doesn’t
really matter. Now consider the set

Q(
√

2) := {a+ b
√

2 : a, b ∈ Q} ⊆ R.

I claim that Q(
√

2) ⊆ R is a subfield.

Proof. What needs to be checked?

• Special Elements. Note that 0 = 0 + 0
√

2 ∈ Q(
√

2) and 1 = 1 + 0
√

2 ∈ Q(
√

2).

• Addition/Subtraction. For all a+ b
√

2 and c+ d
√

2 in Q(
√

2) note that

(a+ b
√

2)− (c+ d
√

2) = (a− c) + (b− d)
√

2 ∈ Q(
√

2)

because a− c ∈ Q and b− d ∈ Q.

• Multiplication. For all a+ b
√

2 and c+ d
√

2 in Q(
√

2) we have

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2 ∈ Q(
√

2)

because ac+ 2bd ∈ Q and ad+ bc ∈ Q.

• Division. This is the hardest step. For all nonzero elements a+ b
√

2 ∈ Q(
√

2) we
want to show that there exists some element c+ d

√
2 ∈ Q(

√
2) such that

(a+ b
√

2)(c+ d
√

2) = 1 = 1 + 0
√

2.

The solution is a trick called “rationalizing the denominator”. First note that

(a+ b
√

2)(a− b
√

2) = (a2 − 2b2) + (ab− ab)
√

2 = (a2 − 2b2) + 0
√

2 ∈ Q.

Now assume that a+ b
√

2 6= 0 (i.e., assume that a and b are not both zero). We
are looking for rational numbers c, d ∈ Q such that

c+ d
√

2 = 1
a+ b

√
2
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= 1
a+ b

√
2
· a− b

√
2

a− b
√

2

= a− b
√

2
a2 − 2b2

=
(

a

a2 − 2b2

)
+
( −b
a2 − 2b2

)√
2.

If a2 − 2b2 6= 0 then we can take

c = a

a2 − 2b2 ∈ Q and d = −b
a2 − 2b2 ∈ Q.

So assume for contradiction that a2− 2b2 = 0. If b = 0 then a2 = 2b2 = 0 implies
a = 0, which contradicts the fact that a and b are not both zero. If b 6= 0 then
we have

a2 = 2b2

a2/b2 = 2
(a/b)2 = 2.

Since a/b ∈ Q this contradicts the well-known fact that ±
√

2 6∈ Q.125 □

[Jargon: The field Q(
√

2) is called Q adjoin
√

2. We will see a generalization of this
construction below.]

13.3 Adjoining a Subset to a Subfield

As with subgroups, It follows immediately from the definition that the intersection of
subfields is a subfield.

Intersection of Subfields is a Subfield. Let (F,+,×, 0, 1) be a field and let Ki ⊆ F
be any family of subfields (possibly infinite or even uncountable). Then the intersection⋂

i

Ki ⊆ F

is also a subfield.

Proof. Since 0, 1 ∈ Ki for all i we have 0, 1 ∈ ∩iKi. Now consider any two elements
a, b ∈ ∩iKi with a 6= 0. By definition this means that a, b ∈ Ki for each i. But then
since Ki ⊆ F is a subfield we know that a ± b, ab and a−1 are in Ki. It follows that
a± b, ab and a−1 are also in the intersection. □

However, the union of subfields is not necessarily a subfield.

125I’ll put a proof of this on the first homework to remind you.
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Union of Subfields is Not a Subfield. Consider the subfields Q(
√

2) ⊆ R and
Q(
√

3) ⊆ R.126 I claim that the union Q(
√

2) ∪Q(
√

3) is not a subfield of R.

Proof. Suppose for contradiction that Q(
√

2) ∪ Q(
√

3) ⊆ R is a subfield. Since a
subfield is closed under addition, we must have

√
2 +
√

3 ∈ Q(
√

2) ∪ Q(
√

3), which
implies that

√
2 +
√

3 is in Q(
√

2) or in Q(
√

3). Let’s assume that
√

2 +
√

3 ∈ Q(
√

2).
Then by definition we have

√
2 +
√

3 = a+ b
√

2 for some a, b ∈ Q.

If b = 1 then we obtain the contradiction that
√

3 ∈ Q:
√

2 +
√

3 = a+
√

2 =⇒
√

3 = a ∈ Q.

Furthermore, if a = 0 then we obtain the contradiction that
√

6 ∈ Q:
√

2 +
√

3 = b
√

2
√

3 = (b− 1)
√

2
√

3 ·
√

2 = (b− 1)
√

2 ·
√

2
√

6 = 2(b− 1) ∈ Q.

But in all other cases we obtain the contradiction that
√

2 ∈ Q:
√

2 +
√

3 = a+ b
√

2
√

3 = a+ (b− 1)
√

2

3 =
(
a+ (b− 1)

√
2
)2

3 =
(
a2 + 2(b− 1)2

)
+ 2a(b− 1)

√
2

√
2 = 3−

(
a2 + 2(b− 1)2)
2a(b− 1)

∈ Q.

In conclusion we have
√

2+
√

3 6∈ Q(
√

2). A similar proof shows that
√

2+
√

3 6∈ Q(
√

3).
□

Remarks:

• In the proof we needed the fact that
√

2,
√

3,
√

6 ∈ R are irrational numbers. On
the homework you will prove for all integers D ∈ Z that

±
√
D 6∈ Z =⇒ ±

√
D 6∈ Q.

• There is a more sophisticated way to phrase the theorem we just proved. One
can view the real numbers (R,+, 0) as a vector space over Q in a very boring way.

126The proof that Q(
√

3) ⊆ R is a subfield is exactly the same as the proof for Q(
√

2) ⊆ R.
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That is, for every “scalar” a ∈ Q and for every “vector” b ∈ R we define “scalar
multiplication” via regular multiplication:

a(b) := ab ∈ R.

Then the vector space axioms are easily verified.127 So what? In this language
we can rephrase the above theorem by saying that

the real numbers 1,
√

2,
√

3 ∈ R are linearly independent over Q.

In fact, it is true that any list of square roots of square-free integers is linearly
independent over Q, but this is quite tricky to prove. It seems that most algebra
books pass over this fact without comment.

• More generally, if E ⊇ F is any field extension then we can view E as a vector
space over F in the same boring way. For this reason it turns out that linear
algebra is very useful for the study of fields. In particular, we are interested in
the dimension:

[E/F] := dimF(E) = the dimension of E as a vector space over F.

On the homework you will verify that [Q(
√

2)/Q] = 2. With more work (for
example, by using the tricky theorem about square roots stated above) one can
prove that [R/Q] = ∞, which is bad. In this course we prefer to study finite-
dimensional field extensions.

///

As with subgroups, we should replace the union of subfields with the smallest subfield
that contains the union. Here is the general construction.

The Subfield Generated by a Subset. Let (F,+,×, 0, 1) be a field and let S ⊆ F
be any subset. Let 〈S〉 ⊆ F denote the intersection of all subfields K ⊆ F that contain
S:

〈S〉 :=
⋂

S⊆K⊆F
K.

We know from above that 〈S〉 ⊆ F is a subfield. I claim that it is the smallest subfield
of F that contains S. We call it the subfield of F generated by S.

Proof. The intersection is contained in any field that contains S. □

Actually, the notation 〈S〉 is not standard in field theory and we will only use it tem-
porarily. The more common notation refers to the smallest subfield F′ := 〈∅〉 ⊆ F,
which is called the prime subfield. The reason for the notation is because the prime
subfield of any field satisfies

F′ ∼= Q or F′ ∼= Z/pZ for some prime p.

127This is a good time to remind yourself of the vector space axioms.
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You will prove this on a future homework, after we develop the necessary technology.

Here is the more standard notation for a subfield generated by a set.

The Definition of Adjunction. For any field extension F ⊆ E and for any subset
S ⊆ E we let F ⊆ F(S) ⊆ E be the intersection of all subfields that contain F ∪ S:

F(S) := 〈F ∪ S〉 =
⋂

(F∪S)⊆K⊆E
K.

We call this field “F adjoin S”. If we omit any mention of the base field F then we
obtain

〈S〉 = E′(S),

where E′ ⊆ E is the prime subfield. This explains the relationship between the standard
and nonstandard terminology. In the case that S is a finite set we will write

F({α1, α2, . . . , αk}) = F(α1, α2, . . . , αk).

This is the smallest field between E and F that contains the elements α1, . . . , αk. ///

I’ll ask you to verify some formal (i.e., “trivial”) properties of adjunction on the home-
work. For example, you will verify that F(α)(β) = F(β)(α) = F(α, β) for any α, β ∈ E.

Exercises

13.A Square Roots are Irrational

Let D ∈ N be a positive integer and let
√
D ∈ R be any real square root. In this

problem you will show that
√
D 6∈ Z =⇒

√
D 6∈ Q.

(a) Consider the set S = {n ∈ N : n
√
D ∈ Z} ⊆ N. Observe that

S = ∅ ⇐⇒
√
D 6∈ Q.

(b) Assuming that
√
D 6∈ Z, use Well-Ordering to prove that there exists a ∈ Z such

that
a <
√
D < a+ 1.

(c) Suppose in addition that
√
D ∈ Q. By part (a) and Well-Ordering, this means

that the set S has a smallest element, say m ∈ S. Now use part (b) to obtain a
contradiction. [Hint: Consider the number m(

√
D − a).]
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13.B Formal Properties of Adjunction

Let F ⊆ E be a field extension and let S ⊆ E be any subset. We let F(S) ⊆ E denote
the smallest subfield of E that contains the set F ∪ S.

(a) Prove that F(S) = F(S − F).

(b) For any two subsets S, T ⊆ F prove that F(S)(T ) = F(T )(S) = F(S ∪ T ).

(c) If K ⊆ F is a subfield, prove that F(K) = K(F) = F ∨ K is the join operation in
the lattice of subfields. We also call this the compositum of subfields:

FK := F(K).



Week 14

14.1 Definition of Galois Groups

We saw last week that the union of two subfields is not necessarily a subfield. Instead,
we will replace the union with the least upper bound in the lattice of subfields.

The Lattice of Subfields. Let E ⊇ F be a field extension and consider the set

L (E,F) = {all subfields between E and F} = {K : F ⊆ K ⊆ E}.

This set is partially ordered by containment, with bottom element F and top element
E. We have seen that any two intermediate fields K,L ∈ L (E,F) have a greatest lower
bound (“meet”) given by the intersection:

K ∧ L = K ∩ L.

Furthermore, the least upper bound (“join”) is the intersection of all subfields contain-
ing the set K ∪ L. Equivalently, we can view this field as “K adjoin L” or “L adjoin
K”:

K ∨ L := 〈K ∪ L〉 = K(L) = L(K).

More commonly this operation is called the compositum of subfields:

KL := K ∨ L.

With these operations, the set L (E,F) is called the lattice of intermediate fields. Here
is the picture that I have in my mind:
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If the base field F is not specified then we will write

L (E) = L (E,E′),

where E′ ⊆ E is the prime subfield. This is called the lattice of all subfields of E. ///

My goal for the rest of this week is to tell you Galois’ Solvability Theorem in its modern
form. I will also state the so-called Fundamental Theorem of Galois Theory, which is
not due to Galois. It will take the rest of the semester to fill in the proofs of these
theorems.

The main innovation of Galois was to associate a group to each polynomial equation
f(x) = 0. If the coefficients of f(x) lie in a field F then we will denote this group by
Gal(f/F) and we will call it the Galois group of f over F. Galois’ original definition
was a bit technical.

Galois’ Definition of the Galois Group. The group Gal(f/F) is a certain subgroup
of the group of permutations of the roots of f(x). ///

It would take quite a few pages to tell you what “certain subgroup” means. Instead I
will present the modern definition which is due to Dedekind. His main innovation was
to translate the discussion of polynomials into the language of fields.

Dedekind’s Definition of the Galois Group. Let f(x) be a polynomial with
coefficients in a field F. There exists a certain “smallest” field extension E ⊇ F (called
the splitting field) in which F has all of its roots. For example, if F ⊆ C then the
FTA says that all the roots exist in C, so E is just the intersection of all subfields that
contain the roots. Then we define

Gal(f/F) := {field automorphisms σ : E→ E such that σ(a) = a for all a ∈ F}.

By a field automorphism we mean any invertible function σ : E→ E that satisfies

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

for all a, b ∈ E. [Remark: You will prove on the homework that the invertibility
hypothesis is redundant. That is, you will show that any function σ : E → E that
fixes F and preserves addition and multiplication is necessarily invertible.] Cleary the
collection of such functions is a group under composition. Since the definition doesn’t
refer to the polynomial f(x) we will also use the notation

Gal(E/F) := Gal(f/F).

///

And what do field automorphisms have to do with permutations of the roots? Suppose
that α ∈ E is a root of f(x) and let σ ∈ Gal(E/F) be any element of the Galois group.
I claim that σ(α) ∈ E is also a root of f(x).
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Proof. Since f(x) has coefficients in F we can write

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n for some a0, a1, . . . , an ∈ F.

And since α ∈ E is a root of f(x) we have

f(α) = a0 + a1α+ a2α
2 + · · ·+ anα

n = 0.

Now we apply the field automorphism σ to both sides of this equation and use the fact
that σ(a) = a for all a ∈ F to obtain

σ(f(α)) = σ(0)
σ(a0 + a1α+ a2α

2 + · · ·+ anα
n) = σ(0)

σ(a0) + σ(a1)σ(α) + σ(a2)σ(α)2 + · · ·+ σ(an)σ(α)n = σ(0)
a0 + a1σ(α) + a2σ(α)2 + · · ·+ anσ(α)n = 0

f(σ(α)) = 0.

In other words, σ(α) ∈ E is a root of f(x). □

It follows that every element σ ∈ Gal(E/F) restricts to a permutation of the roots of
f(x). Furthermore, it seems reasonable that since E is the “smallest” field contain-
ing the roots then two different field automorphisms should restrict to two different
permutations. Thus we obtain an injective group homomorphism:

Gal(f/F)→ {permutations of the roots of f(x)}.

We will return to the details in Weeks 21 and 22.

14.2 Basic Examples

Before stating the Fundamental Theorem I want to show you a couple of basic examples.

Example: The Galois Group of x2 − 2.

Consider the polynomial x2 − 2 with coefficients in Q. If
√

2 ∈ R is the positive real
square root of 2 then we know that this polynomial has exactly two roots: +

√
2 and

−
√

2.128 I claim that the splitting field E ⊇ Q is the same field that we studied above:

E = Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}.

Proof. Certainly we know that the field Q(
√

2) contains the roots +
√

2 and −
√

2.
Now let K ⊇ Q be any field extension that contains these roots and consider any two

128Wait, why do we know this? You will prove on the next homework that a polyomial of degree n can
have at most n roots in any field extension. It may have more roots in other kinds of ring extensions.
For example, the polynomial x2 − 2 has uncountably many roots in the ring of quaternions H ⊇ Q.
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rational numbers a, b ∈ Q. Then since K is closed under addition and multiplication
we have

a, b,
√

2 ∈ K =⇒ a+ b
√

2 ∈ K,

and it follows that Q(
√

2). □

Now let σ ∈ Gal(Q(
√

2)/Q) be an element of the Galois group. By definition this
means that σ : Q(

√
2) → Q(

√
2) is a field automorphism that fixes elements of Q.129

This means that for all a+ b
√

2 ∈ Q(
√

2) we have

σ(a+ b
√

2) = σ(a) + σ(b)σ(
√

2) = a+ bσ(
√

2) ∈ Q(
√

2),

hence the automorphism σ is uniquely specified by the value of σ(
√

2). What are the
options? Since

√
2 is a root of the polynomial x2 − 2 we must have

(
√

2)2 − 2 = 0

σ
(
(
√

2)2 − 2
)

= σ(0)

σ(
√

2)2 − σ(2) = σ(0)
σ(
√

2)2 − 2 = 0,

and it follows that σ(
√

2) ∈ {±
√

2}. Therefore σ must be one of the following two
functions:

id (a+ b
√

2) = a+ b
√

2,
τ(a+ b

√
2) = a− b

√
2.

The only remaining question is whether these two functions are indeed field auto-
morphisms. Well, the identity clearly is, but it needs to be checked by hand that τ
preserves addition and multiplication. You will do this on the homework.

In summary, we have found that the Galois group of the equation x2 − 2 = 0 is the
group of size 2 generated by the “conjugation automorphism” τ : Q(

√
2)→ Q(

√
2):

Gal((x2 − 2)/Q) = Gal(Q(
√

2)/Q) = {id , τ} ∼= Z/2Z.

On the homework you will show that essentially the same results hold for any so-called
“quadratic field extension” F(

√
D) ⊇ F. Another example is the complex field over the

real field, which is the splitting field of the polynomial x2 + 1. In this case we have

Gal((x2 + 1)/R) = Gal(C/R) = {id , τ} ∼= Z/2Z,

where the function τ : C→ C defined by

τ(a+ b
√
−1) := a− b

√
−1

is called “complex conjugation”. ///

129Actually, the requirement that σ fixes Q is redundant here because Q is the prime subfield of
Q(

√
2).
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Example: The Galois Group of x3 − 2.

Consider the polynomial x3 − 2 with coefficients in Q. We know that this polynomial
has one real root and two complex roots. To be specific, let α := 3√2 ∈ R be the real
3rd root of 2 and let ω := exp(2πi/3) be a primitive 3rd root of 1. Then the roots
α, ωα, ω2α are the verticies of an equilateral triangle in the complex plane:

I claim that the splitting field E ⊇ Q is obtained by adjoining the set {α, ω}:

E = Q(α, ω) = the smallest subfield of C that contains Q ∪ {α, ω}.

Proof. Since the field Q(α, ω) contains the elements α, ω and is closed under multi-
plication, it must contain the roots α, ωα, ω2α. Now let C ⊇ K ⊇ Q be any field that
contains the roots. Then since K is closed under inversion we must have

α, ωα ∈ K =⇒ ω = (ωα)(α−1) ∈ K.

It follows that Q ∪ {α, ω} ⊆ K and hence Q(α, ω) ⊆ K. □

Unlike the previous example, we do not already know a basis for the vector space
Q(α, ω)/Q and this makes it harder to compute the Galois group. So let me just tell
you without proof that the set {1, α, α2, ω, ωα, ωα2} is a basis. In other words, every
element of the splitting field γ ∈ Q(α, ω) can be written in the form

γ = a+ bα+ cα2 + dω + eωα+ fωα2 for some unique a, b, c, d, e, f ∈ Q.

If σ ∈ Gal(Q(α, ω)/Q) is any element of the Galois group then we find that

σ(γ) = a+ bσ(α)a+ cσ(α)2 + dσ(ω) + eσ(ω)σ(α) + fσ(ω)σ(α)2,

and it follows that σ is uniquely specified by the values σ(α) and σ(ω). What are the
options? Since α3 − 2 = 0 and ω3 − 1 = 0 we find that

σ(α)3 − 2 = 0 and σ(ω)3 − 1 = 0.

Furthermore, since σ is invertible with σ(1) = 1 and ω 6= 1, we know that σ(ω) 6= 1. It
follows that there are at most 6 = 3 · 2 possibilities:

σ(α) ∈ {α, ωα, ω2α} and σ(ω) ∈ {ω, ω2}.
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Let me claim without proof that each of these six functions is indeed a field auto-
morphism. It would extremely tedious to check this by hand. Later we will have an
indirect method.

Thus we obtain a Galois group of size 6. Finally, I claim that this is the group of all
permutations of the three roots, and hence

Gal((x3 − 2)/Q) = Gal(Q(α, ω)/Q) ∼= S3.

Proof. The function defined by (σ(α), σ(ω)) := (α, ω2) transposes the roots ωα and
ω2α and leaves α alone. (In fact this map is just complex conjugation.) Furthermore,
the function defined by (σ(α), σ(ω)) := (ωα, ω2) transposes the roots α and ωα and
leaves ω2α alone. Any other permutation can be obtained by composing these two
transpositions. □

I apologize that there were some gaps in the second example. Sadly it will take some
time to fill them in. But I wanted to have this example available next time when we
discuss the Fundamental Theorem.

14.3 Preview of the Fundamental Theorem

Now we have enough ingredients that I can state the main theorems of Galois the-
ory. The modern definitions are really due to Dedekind, and the notation is heavily
influenced by Emil Artin’s 1942 lectures at the University of Notre Dame.130

First, here is the Dedekind-Artin translation of the notion of “solvability”.

Definition of Solvable Field Extensions. Let E ⊇ F be a field extension. We say
that this extension is solvable if there exists a chain of field extensions

F = F0 ⊆ F1 ⊆ · · · ⊆ Fk ⊇ E

satisfying the following condition:

For all i we have Fi = Fi−1(αi) for some element αi ∈ Fi such that αi 6∈ Fi−1
but αnii ∈ Fi−1 for some power ni ≥ 2.

Essentially, this just means that every element of the field E can be expressed in terms
of the elements of F using only the operations

+,−,×,÷,√, 3
√
, 4
√
, 5
√
, . . . .

130Dedekind was the last student of Carl Friedrich Gauss at the University of Göttingen. The mod-
ern language of abstract algebra later emerged through the lectures of Emmy Noether at Göttingen
and Emil Artin as Hamburg in the 1920s. Noether in particular viewed Dedekind as the spiritual
father of the subject. When the German universities were decimated by the Nazis, many prominent
mathematicians, including Artin and Noether, ended up in the United States.



14.3 Preview of the Fundamental Theorem 191

Beginning with F = F0, if we apply the operations +,−,×,÷ then we will stay inside
the same field. But if we adjoin a specific ni-th root αi of some element αnii ∈ Fi−1
then we may jump up into a bigger field Fi = Fi−1(αi). The goal is to obtain every
element of E after a finite number of adjunctions. If E is a field containing the roots of
a polynomial f(x) ∈ F[x] then we also say that f(x) = 0 is solvable by radicals. ///

And here is the big theorem. This theorem is the ultimate motivation for many of the
definitions in field theory and group theory. It took over 100 years to clean up all the
details and still most mathematicians have never seen a full proof.

Galois’ Solvability Theorem. Let E ⊇ F be the splitting field for some polynomial
f(x) with coefficients in F and let G = Gal(E/F) = Gal(f/F) be the Galois group.
Then we have {

E ⊇ F is a solvable
field extension

}
⇐⇒

{
G is a solvable

group

}
.

///

The key idea of the proof is a certain “abstract Galois connection” between the lattice
of intermediate fields L (E,F) and the lattice of subgroups L (G). Recall that G =
Gal(E/F) is the group of field automorphisms E→ E that fix elements of the subfield
F. If F ⊆ K ⊆ E is any intermediate field then it follows by definition that Gal(E/K) is
a subgroup of G. Indeed, since F ⊆ K we know that any automorphism fixing K also
fixes F. On the other hand, let H ⊆ G be any subgroup and consider the set

FixE(H) := {a ∈ E : σ(a) = a for all σ ∈ H} ⊆ E.

This set contains F because σ(a) = a for all σ ∈ G and because H ⊆ G. I claim that
F ⊆ FixE(H) ⊆ E is an intermediate field, called the fixed subfield of H.

Proof. Consider any σ ∈ H. Since σ : E → E is a field automorphism we must have
σ(0) = 0 and σ(1) = 1, which implies that 0, 1 ∈ FixE(H). Then for all a, b ∈ FixE(H)
we have

σ(a+ b) = σ(a) + σ(b) = a+ b and σ(ab) = σ(a)σ(b) = ab,

which implies that a+ b, ab ∈ FixE(H). Finally, for all a ∈ E− {0} we have

σ(a−1) = σ(a)−1 = a−1,

which implies that a−1 ∈ FixE(H). □

In summary, we have a pair of functions between the lattices L (E,F) and L (G).
In the language of Week 5, I claim that these two functions form an abstract Galois
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connection.131 Actually it will be a Galois connection after we reverse the partial order
on one of the posets. We will do this with the superscript “op” for “opposite”:

Gal(E/−) : L (E,F) ⇄ L (G)op : FixE(−).

Proof. Consider any intermediate field F ⊆ K ⊆ E and any subgroup H ⊆ G. By the
definition of Galois connection we need to show that

K ⊆ FixE(H)⇐⇒ Gal(E/K) ⊇ H.

And this is immediate from the definitions of Gal(E/−) and FixE(−):

K ⊆ FixE(H)⇐⇒ ∀a ∈ K, a ∈ FixE(H)
⇐⇒ ∀a ∈ K, ∀σ ∈ H,σ(a) = a

⇐⇒ ∀σ ∈ H, ∀a ∈ K, σ(a) = a

⇐⇒ ∀σ ∈ H,σ ∈ Gal(E/K)
⇐⇒ H ⊆ Gal(E/K).

□

Let me remind you what we get from this. It follows for purely formal (i.e., “trivial”)
reasons that these functions restrict to an isomorphism between certain subposets

Gal(E/−) : L (E,F)′ ∼←→ (L (G)′)op : FixE(−),

where the subposets are defined by

L (E,F)′ := {F ⊆ K ⊆ E : FixE(Gal(E/K)) = K},
L (G)′ := {H ⊆ G : Gal(E/FixE(H)) = H}.

Here’s a picture:

131This is a good time to remind yourself of the definition.
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Actually this picture is a bit too loose because we always have Gal(E/E) = {id }. But
never mind. The Fundamental Theorem says that under certain nice conditions (when
E ⊇ F is a splitting field for some polynomial) then the correspondence is as tight as
possible.

The Fundamental Theorem of Galois Theory. Let E ⊇ F be the splitting field of
some polynomial f(x) ∈ F[x].132 and let G = Gal(E/F) be the Galois group. Then:

(1) The Galois connection Gal(E/−) : L (E,F) ⇆ L (G)op : FixE(−) is actually a
bijection. That is, for all intermediate fields E ⊇ K ⊇ F and for all subgroups
H ⊆ G we have

FixE(Gal(E/K)) = K and Gal(E/FixE(H)) = H.133

(2) For any pair K = FixE(H) and H = Gal(E/K) we have

#{cosets of H in G} = #(G/H) = [K/F] = dim(K as a vector space over F).

(3) Furthermore, we have

K ⊇ F is a Galois field extension ⇐⇒ H ⊴G is a normal subgroup,

in which case the quotient group is isomorphic to the Galois group:

G

H
= Gal(E/F)

Gal(E/K)
∼= Gal(K/F).

///

[Remark: The notation “G/H” for the set of cosets is motivated by Lagrange’s The-
orem:

#(G/H) = #G/#H.

The notation “K/F”134 for K as a vector space over F is motivated by a similar
theorem, called Dedekind’s Tower Law:

[E/K] = [E/F] / [K/F].

You will prove Dedekind’s Law on the homework. In the situation where E ⊇ F is a
splitting field for some polynomial over F, it follows from the Fundamental Theorem
that Lagrange’s Theorem and Dedekind’s Law are equivalent.]

132Later we will see that we also need to restrict our attention to certain “perfect” kinds of fields F.
Luckily, every field you have ever seen is “perfect”.

133As I mentioned above, the equation Gal(E/FixE(H)) = H holds for any field E and for any
finite group of automorphisms H ⊆ Aut(E). The proof only depends on Artin’s Fixed Field Lemma
(which, however, we did not prove in full generality). The other equation FixE(Gal(E/K)) = K is more
interesting.

134The standard notation is K : F, but I think that the use of a colon to suggest a quotient doesn’t
read well to modern eyes. So I decided to update the notation.
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It is easy to imagine how the proof of Galois’ Solvability Theorem might following
from the Fundamental Theorem, since the solvability of field extensions and groups
are both defined by the existence of certain kinds of chains. Sadly, there are still some
difficulties. To go between solvable chains of subfields and solvable chains of subgroups
we need to be careful about roots of unity. Never mind the details right now. Let me
just show you an interesting example.

The Smallest Interesting Example. We saw last time that the splitting field E ⊇ Q
for the polynomial x3 − 2 is given by

E = Q(ω, α) = {a+ bα+ cα2 + dω + eωα+ fωα2 : a, b, c, d, e, f ∈ Q} ⊇ Q.

Furthermore, we saw that the Galois group is isomorphic to the group of all permu-
tations of the roots {α, ωα, ω2α}. To be concrete, let’s identify this group with the
dihedral group of symmetries of the equilateral triangle, as in the following picture:

Recall that the six elements of this group can be expressed as follows:

D6 = {id , R,R2, F,RF,R2F}.

The “rotation” R : Q(ω, α) → Q(ω, α) is defined on the generators by R(α) = ωα
and R(ω) = ω, while the “reflection” F : Q(ω, α) → Q(ω, α) is defined by F (α) = α
and F (ω) = ω2. (In fact, F is the restriction of “complex conjugation” to the subfield
E ⊆ C.) By working with the coordinates a, b, c, d, e, f ∈ Q one can compute the fixed
fields of the cyclic subgroups generated by R and F :

FixE(〈R〉) = Q(ω) and FixE(〈F 〉) = Q(α).

With a bit more work we obtain the following bijection:
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Since the finite group D6 has finitely many subgroups, it follows from the Fundamental
Theorem that the field extension Q(ω, α) ⊇ Q has finitely many intermediate
fields, which is certainly not obvious. I have labeled the edges with the degree of the
field extension (left) or the number of cosets (right). The Fundamental Theorem says
that these numbers are equal.

Finally, I have labeled the non-normal subgroups with squiggly lines. These corre-
spond on the left to field extensions that are not splitting fields for any polynomial.
We say that the group D6 is solvable because of the existence of the chain of normal
subgroups

D6 ⊵ 〈R〉⊵ {id }

with abelian quotients D6/〈R〉 ∼= Z/2Z and 〈R〉/{id } ∼= Z/3Z. It is less clear what is
special about the corresponding chain of fields. We might ask:

Why is the chain Q ⊆ Q(ω) ⊆ Q(ω, α) better than the chain Q ⊆ Q(α) ⊆
Q(ω, α)?

I’ll just let you puzzle over this for now. Later we will see that the key to a “good”
chain of field extensions is to

adjoin the roots of unity first.

///

My goal is to prove all of this before the end of the course. We will do this by build-
ing everything up slowly from the basic theory of “commutative rings”. The study
of commutative rings (which is called “commutative algebra”) is an absolutely huge
subject,135 so we will only cover the material that is relevant to Galois’ theorem.

Exercises

135Eisenbud’s textbook on Commutative Algebra (with a View Toward Algebraic Geometry) is 800
pages long and it assumes everything that we will say in this course as a pre-requisite.
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14.A Dedekind’s Tower Law

Let E ⊇ F be a field extension.

(a) There is an obvious “multiplication function” F × E → E defined by the rule
(a, b) 7→ ab. Verify that this multiplication makes E into a vector space over F.
We will denote this vector space by E/F. Its dimension is called the degree of the
extension:

[E/F] := dim(E/F).
[Remark: The fractional notation is a mnemonic device. Do not take it literally.]

(b) Now let E ⊇ K ⊇ F be any intermediate field. Prove that the degrees of the three
extensions satisfy

[E/F] = [E/K] · [K/F].
[Hint: Let {αi}i be a basis for K/F and let {βj}j be a basis for E/K. Prove
that the set {αiβj}i,j is a basis for E/F.] Does this remind you of Lagrange’s
Theorem?

14.B Axioms for the Galois Group

In this problem you will show that the hypothesis of invertibility is redundant in the
definition of the Galois group. Let E ⊇ F be a field extension and let σ : E→ E be any
function satisfying

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b) for all a, b ∈ E.

(a) Prove that σ is necessarily injective.

(b) If σ(a) = a for all a ∈ F, prove that σ : E/F→ E/F is a linear function.

(c) If σ(a) = a for all a ∈ F and if [E/F] <∞,136 combine parts (a) and (b) to prove
that σ is necessarily bijective. [Hint: Use the Rank-Nullity Theorem.]

14.C Quadratic Field Extensions

Let E ⊇ F be a field extension and let α ∈ E be any element such that α 6∈ F and
α2 ∈ F. Consider the subfield F ⊆ F(α) ⊆ E generated by α.

(a) Prove that the set {1, α} ⊆ F(α)/F is linearly independent.

(b) Prove that {1, α} ⊆ F(α)/F is a spanning set. [Hint: Prove that {a+ bα : a, b ∈
F} ⊆ E is a subfield by “rationalizing the denominator”.] It follows that {1, α} is
a basis for F(α)/F and hence [F(α)/F] = 2.

(c) Use Dedekind’s Tower Law to prove that there does not exist any intermediate
field:

F ⊊ K ⊊ F(α).

(d) Prove that the function τ : F(α)→ F(α) defined by τ(a+ bα) := a− bα is a field
automorphism. We call this operation conjugation.

136This will be true if E is the splitting field of a polynomial over F.
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14.D A Biquadratic Field Extension

Let
√

2,
√

3 ∈ R be some specific square roots of 2 and 3, and consider the subfields
Q(
√

2),Q(
√

3) ⊆ R. We saw in class that the union Q(
√

2) ∪ Q(
√

3) ⊆ R is not a
subfield. So instead we will consider the join/compositum subfield:

Q(
√

2) ∨Q(
√

3) = Q(
√

2)Q(
√

3) = Q(
√

2)(
√

3) = Q(
√

2,
√

3) ⊆ R.

(a) A Basis. Prove that elements of this field have the following explicit form:

Q(
√

2,
√

3) = {a+ b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q}.

[Hint: It’s quite tricky to prove directly that the set on the right is a field. Use
Dedekind’s Tower Law for an indirect proof.]

(b) The Galois Group. Let σ : Q(
√

2,
√

3)→ Q(
√

2,
√

3) be any field automorphism.
Prove that σ necessarily fixes the prime subfield Q, and hence that σ is uniquely
determined by the two values σ(

√
2) and σ(

√
3). Write down all of the possibilities

and observe that you get a group isomorphic to Z/2Z× Z/2Z.

(c) A Primitive Element. Define the number γ =
√

2 +
√

3 and prove that

Q(
√

2,
√

3) = Q(γ).

[Hint: One inclusion is easy. For the other inclusion, expand γ3 to show that
√

2
and
√

3 are in the field Q(γ).] You know from part (a) that [Q(
√

2,
√

3)/Q] = 4.
It follows that the five elements 1, γ, γ2, γ3, γ4 ∈ Q(

√
2,
√

3) are not linearly
independent over Q, hence γ must satisfy a quartic equation of the form

a+ bγ + cγ2 + dγ3 + eγ4 = 0 for some nontrivial a, b, c, d, e ∈ Q.

Find this equation. [Hint: Expand γ4 and work down.] If σ : Q(
√

2,
√

3) →
Q(
√

2,
√

3) is any field automorphism, prove that σ(γ) is another solution of the
same equation. Finally, use part (b) to obtain all four roots of the equation.

[Remark: In this problem we observe that there exists a bijection between the elements
of the Galois group and the roots of the “minimal polynomial” for a “primitive element”.
This is actually how Galois defined the Galois group. But then one has to prove that
different primitive elements lead to isomorphic groups. See Tignol’s book for details.
In order to prove that Dedekind’s version of the Galois group is well-defined we will
show later that the splitting field of a polynomial is unique up to isomorphism.]
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Week 15

15.1 Definition of Rings

In this course I have followed a mostly chronological development of abstract algebra.
The study of groups began with Galois in the 1820s and the study of fields began
with Dedekind in the 1870s. The first work to study algebra from a purely axiomatic
point of view was Ernst Steinitz’ Algebraic Theory of Fields (1910). Inspired by this,
several authors considered a weaker structure called “rings”.137 Abstract ring theory
was standardized by Emmy Noether in the 1920s. Here is the modern definition.

Definition of Rings and Subrings/Extensions. Let R be a set equipped with two
binary operations +,× : R × R → R and two special elements 0, 1 ∈ R. We call this
structure a (commutative) ring if the following axioms hold:

(R1) (R,+, 0) is an abelian group.

(R2) (R,×, 1) is a (commutative) monoid.138

(R3) For all a, b, c ∈ R we have a(b+ c) = ab+ ac.

Now let S ⊆ R be any subset. We say that S is a subring of R if the following properties
hold:

• The special elements 0, 1 are in S.

• For all a, b ∈ S we have a± b ∈ S and ab ∈ S.

Equivalently, we say that R is a ring extension of S. ///

Remarks:

• The distributive law (R3) tells us how the two binary operations + and × interact.

137The word ring (or Zahlring) comes from David Hilbert’s Zahlbericht (1897). The word “Zahlbericht”
means “number report” and “Zahlring” means “number ring”. Nobody knows why he chose the word
“ring”.

138This means that multiplication is an associative operation with identity element 1.
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From this we obtain some basic rules mixing additive and multiplicative concepts:

0a = 0,
a(−b) = (−a)b = −(ab),

(−a)(−b) = ab.

You will prove these on 15.B.

• We are are allowed to have 1 = 0 in a ring. But in this case we also have

a = 1a = 0a = 0 for all a ∈ R.

This structure is called the zero ring R = 0.

• If R 6= 0 (i.e., if 1 6= 0) then we define the set

R× := {a ∈ R : ∃b ∈ R, ab = 1} ⊆ R− {0}.

It follows that (R×,×, 1) is a group, called the group of units of the ring.

• If R× = R− {0} then we say that R is a field. Note that this implies 1 6= 0.139

• As with subgroups and subfields, the intersection of any collection of subrings
is again a subring, and we can use this to define the “subring genererated by a
subset”. For example, if E ⊇ R is any ring extension and if α ∈ E is any element
then we will use the following “square-bracket” notation:

R[α] := the smallest subring of E containing R ∪ {α}.

More on this later. ///

The main innovation (CHANGE THIS) of Emmy Noether was to recognize the impor-
tance of homomorphisms in the study of rings. These are much more interesting than
homomorphisms between fields.

Definition of Ring Homomorphisms. Let R and S be rings and let ϕ : R→ S be
any function. We say that ϕ is a ring homomorphism if the following properties hold:

(H1) ϕ(a+ b) = ϕ(a) + ϕ(b),

(H2) ϕ(ab) = ϕ(a)ϕ(b),

(H3) ϕ(1) = 1.

///

Remarks:
139There is no “field with one element”. I don’t know why.
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• The first axiom (H1) says that ϕ : (R,+, 0) → (S,+, 0) is a homomorphism of
groups. Let me refresh your memory why this implies that

ϕ(0) = 0 and ϕ(−a) = −ϕ(a) for all a ∈ R.

Proof. First note that ϕ(0) = ϕ(0 + 0) = ϕ(0) + ϕ(0). Now subtract ϕ(0) from
both sides to obtain 0 = ϕ(0). Then for any a ∈ R we have

0 = ϕ(0) = ϕ(a− a) = ϕ(a) + ϕ(−a),

which implies that ϕ(−a) = −ϕ(a). □

• Unfortunately, the second axiom (H2) does not imply that ϕ(1) = 1. Indeed,
the proof from above does not work because we are not allowed to divide. For
this reason we must include axiom (H3). Alternatively, we could combine axioms
(H2) and (H3) by saying that ϕ : (R,×, 1) → (S,×, 1) is a homomorphism of
monoids. ///

Recall from last semester that a homomorphism of groups ϕ : G → H leads to a
Correspondence Theorem and three Isomorphism Theorems. Our next goal is to extend
all of this structure to rings. However, we will find that the situation is a bit more
complicated.

First of all, we note that a subring is the same thing as the image of a homomorphism.

Subring = Image of a Ring Homomorphism. Let S be a ring and let S′ ⊆ S be a
subset. I claim that S′ ⊆ S is a subring if and only if there exists a ring homomorphism
ϕ : R→ S such that imϕ = S′.

Proof. First let ϕ : R→ S be a ring homomorphism and consider the image

imϕ := {ϕ(a) : a ∈ R} ⊆ S.

Since ϕ(0) = 0 and ϕ(1) = 1 we find that 0, 1 ∈ imϕ. Furthermore, if ϕ(a), ϕ(b) ∈ imϕ
are any two elements of the image then we have

ϕ(a)± ϕ(b) = ϕ(a± b) ∈ imϕ and ϕ(a)ϕ(b) = ϕ(ab) ∈ imϕ,

as desired. Conversely, let S′ ⊆ S be any subring and let id |S′ : S′ → S be the
restriction of the identity function id : S → S. Clearly id S′ is a ring homomorphism
with image S′. □

Digression: The urge to translate all concepts (such as “subring”) into the language
of homomorphisms ultimately leads to the subject of category theory.140 I will not

140The language of categories emerged in the 1940s and 1950s in order to clarify the subject of
topology. Since our course is focused on the years 1830–1930 we will not use this language. However,
this course does contain two examples of categories ideas. One is the idea of a “universal property”,
which is a special case of limits and colimits. The other is the idea of an “abstract Galois connection”,
which is a special example of adjoint functors.
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actually define categories in this class, but I will point out a few category-theoretic
ideas. Here’s one.

Initial and Final Rings. Let R be any ring. Then there exists a unique ring ho-
momorphism from the ring of integers and a unique ring homomorphism to the zero
ring:

Z ∃!−→ R and R
∃!−→ 0.

[Jargon: We say that Z is the initial object and 0 is the final object in the category of
rings.]

Proof. There is a unique function ϕ : R→ 0 and this function is a ring homomorphism.
On the other hand, recall that for any a ∈ R and n ∈ Z we have defined the following
notation:

n · a :=



n times︷ ︸︸ ︷
a+ a+ · · ·+ a if n ≥ 1,
0 if n = 0,
−a− a− · · · − a︸ ︷︷ ︸

−n times

if n ≤ 1.

When discussing cyclic groups we proved by induction that the map n 7→ n · a is the
unique group homomorphism (Z,+, 0) → (R,+, 0) sending 1 ∈ Z to a ∈ R. Now let
ϕ : Z→ R be any ring homomorphism. In particular, since ϕ : (Z,+, 0)→ (R,+, 0) is
a group homomorphism we must have ϕ(n) = n · 1 for all n ∈ Z. It only remains to
prove that the function ϕ(n) := n · 1 preserves multiplication, and this must be done
by induction. Here is the key step:

ϕ(m)ϕ(n+ 1) = (m · 1) [(n+ 1) · 1]
= (m · 1)(n · 1 + 1)
= (m · 1)(n · 1) +m · 1
= (mn) · 1 +m · 1 induction on n

= (mn+m) · 1
= [m(n+ 1)] · 1 = ϕ(m(n+ 1)).

□

15.2 General Structure of Rings

Last time we saw that a subring is the same thing as the image of a ring homomorphism.
As with group homomorphisms, there is also a notion of kernel for ring homomorphisms.
This concept was implicit in the work of Kummer and Dedekind on unique factorization.
(We will discuss this below.) Emmy Noether synthesized the ideas of number theory
and algebraic geometry to obtain the modern definition.

Ideal = Additive Kernel of a Ring Homomorphism. Consider any ring homo-
morphism ϕ : R → S. In particular this defines a homomorphism of additive groups
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ϕ : (R,+, 0)→ (S,+, 0). Let kerϕ ⊆ R denote the kernel of this group homomorphism:

kerϕ := {a ∈ R : ϕ(a) = 0}.

Then the First Isomorphism Theorem for groups tells us that the (well-defined) func-
tion a+ kerϕ 7→ ϕ(a) is an isomorphism of additive groups:(

R

kerϕ
,+, 0 + kerϕ

)
∼= (imϕ,+, 0).

However, since ϕ : R→ S satisfies the extra properties ϕ(ab) = ϕ(a)ϕ(b) and ϕ(1) = 1
we know from the above that imϕ ⊆ S actually a ring. By pulling back this structure
we conclude that the quotient group R/ kerϕ is also a ring with multiplication defined
by

(a+ kerϕ)(b+ kerϕ) := (ab+ kerϕ).

The fact that this operation is well-defined reflects a certain structural property of the
kernel, which is analogous to the “normal subgroup” property of group kernels. In
order to motivate the following definition I will state it as a theorem.

Theorem (Definition of Ideals and Quotient Rings). Let (R,+,×, 0, 1) be a ring
and let I ⊆ (R,+, 0) be any additive subgroup. Then the following are equivalent:

(I1) For all a ∈ I and b ∈ R we have ab ∈ I. In this case we say that I is an ideal of
R.

(I2) There exists a ring homomorphism ϕ : R→ S with I = kerϕ.

///

Proof. First we do the easy direction.

(I2)⇒(I1): Let ϕ : R → S be a ring homomorphism and consider the kernel kerϕ :=
{a ∈ R : ϕ(a) = 0}. Then for all a ∈ kerϕ and b ∈ R we have

ϕ(ab) = ϕ(a)ϕ(b) = 0ϕ(b) = 0,

and hence ab ∈ kerϕ. In other words, kerϕ ⊆ R is an ideal.

(I1)⇒(I2): Let I ⊆ R be an ideal and consider the additive quotient group (R/I,+, 0+
I). I claim that the following “multiplication operation” on R/I is well-defined:

(a+ I)(b+ I) := (ab+ I).

Indeed, suppose that we have a + I = a′ + I and b + I = b′ + I. By definition this
means that a− a′ and b− b′ are in I. But then we have

ab− a′b′ = ab− ab′ + ab′ − a′b′ = a(b− b′) + (a− a′)b′ ∈ I

and hence ab + I = a′b′ + I as desired. It is easy to check that this defines a ring
structure:

(R/I,+,×, 0 + I, 1 + I).
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Finally, consider the function π : R → R/I defined by a 7→ a + I. It is easy to check
that this function is a ring homomorphism with kerπ = I. □

Remarks:

• The construction of quotient rings appeared on 6.B last semester. I decided to
repeat it here to emphasize the connection with ring homomorphisms.

• In category theory we emphasize that the quotient ring is really a pair (R/I, π)
where π : R → R/I is the canonical projection with kerπ = I. It satisfies the
following so-called universal property:

R π
//

∀ϕ

))R/I
∃!ϕ̄

// S

In words: For any ring homomorphism ϕ : R → S with I ⊆ kerϕ, there exists a
unique ring homomorphism ϕ̄ : R/I → S satisfying ϕ = ϕ̄ ◦π. Feel free to ignore
this remark.

• The word “ideal” comes from Ernst Kummer’s concept of “ideal numbers”. He
introduced this concept in order to recover some version of unique prime factor-
ization in rings such as Z[

√
−5] where the literal version fails. Dedekind shortened

the name from “ideal number” to “ideal”. ///

The whole point of the above theorem/definition was to generalize the First Isomor-
phism Theorem from additive groups to rings. Here is the statement.

The First Isomorphism Theorem for Rings. Let ϕ : R → S be any ring homo-
morphism. Since kerϕ ⊆ R is an ideal we may consider the quotient ring R/ kerϕ.
Then the natural map a+ kerϕ 7→ ϕ(a) is a well-defined isomorphism of rings:

R/ kerϕ ∼= imϕ.

///

And what about the Correspondence Theorem and the Second/Third Isomorphism
Theorems? This is a bit more complicated because there are three lattices naturally
associated to a ring:

• The lattice of additive subgroups.

• The lattice of subrings.

• The lattice of ideals.

Since subrings and ideals are both examples of additive subgroups, it seems most
reasonable to use the notation L for the lattice of additive subgroups. Thus for any
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ring R we define

L (R) := {the lattice of subgroups of (R,+, 0)}.141

For any subgroups A,B ⊆ R recall from last semester that the meet and join are given
by the intersection and the sum, respectively:

A ∧B = A ∩B and A ∨B = A+B := {a+ b : a ∈ A, b ∈ B}.

Furthermore, if I ⊆ R is any subgroup (probably an ideal) then we will use the notation

L (R, I) := {subgroups A such that I ⊆ A ⊆ R}.

Then we have the following theorem.

The Correspondence Theorem for Rings. Let R be a ring and let I ⊆ R be an
ideal. In particular, I is an additive subgroup, so the Correspondence Theorem for
Groups gives us an isomorphism of lattices:

L (R, I) ∼−→ L (R/I)
A 7→ A/I.

Here is a picture:

So far this is just group theory. To incorporate ring theory, we first observe that R/I
is a ring because I ⊆ R is an ideal. Then for any subgroup I ⊆ A ⊆ R I claim that

A ⊆ R is a subring ⇐⇒ A/I ⊆ R/I is a subring

and

A ⊆ R is an ideal ⇐⇒ A/I ⊆ R/I is an ideal.

///

Proof. Last semester we gave a lengthy proof of the Correspondence Theorem for
Groups. Luckily we don’t have to prove it again. You will prove the final statements
about subrings and ideals in Exercise 15.E, where you will also prove ring versions of
the Second and Third Isomorphism Theorems. □

141I apologize that this choice conflicts with my use of L (F) for the lattice of subfields of a field F.
Hopefully this will cause no confusion.
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Exercises

15.A One Step Ideal Test

Let (R,+,×, 0, 1) be a ring and let S ⊆ R be any subset. Prove that S is an ideal if
and only if for all a, b ∈ S and r ∈ R we have a+ rb ∈ S.

15.B Addition vs. Multiplication

Prove that following properties hold in any ring.

(a) 0a = 0,

(b) a(−b) = (−a)b = −(ab),

(c) (−a)(−b) = ab.

15.C The Characteristic of a Ring

Let R be a ring and let R′ ⊆ R be the smallest subring. Recall that there exists a
unique ring homomorphism ιR : Z→ R from the integers.

(a) Prove that R′ ∼= Z/nZ for some integer n ≥ 0, which we call the characteristic of
R:

char(R) = n.

[Hint: Apply the First Isomorphism Theorem to ιR.]

(b) If ϕ : R → S is any ring homomorphism prove that char(S) divides char(R).
[Hint: By uniqueness we know that ιS = ϕ ◦ ιR. Consider the kernel.]

(c) Next let R be an integral domain, which means that R has no zero-divisors:

∀a, b ∈ R, (ab = 0)⇒ (a = 0 or b = 0).

In this case prove that char(R) = 0 or char(R) = p for some prime p.

(d) Finally, let F ba a field and let F′ ⊆ F be the smallest subfield. Prove that

F′ ∼= Q or F′ ∼= Z/pZ for some prime p.

15.D The Chinese Remainder Theorem, Part II

Let R be a ring. For any ideals I, J ⊆ R we define the product ideal:

IJ := intersection of all ideals that contain {ab : a ∈ I, b ∈ J}.

(a) Prove that IJ ⊆ I ∩ J .

(b) We say that I, J ⊆ R are coprime if I+J = R. In this case show that I∩J ⊆ IJ ,
and hence IJ = I ∩ J . [Hint: Since 1 ∈ I + J we have 1 = x+ y for some x ∈ I
and y ∈ J .]
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(c) If I, J ⊆ R are coprime, prove that the obvious map (a + IJ) 7→ (a + I, a + J)
defines an isomorphism of rings:

R

IJ
∼=
R

I
× R

J
.

[Hint: The hardest part is surjectivity. Use the same trick that you used when
R = Z.]

15.E Ring Isomorphism Theorems

Let R be a ring and let I ⊆ R be an ideal.

(a) For any additive subgroup I ⊆ S ⊆ R prove that

S ⊆ R is a subring ⇐⇒ S/I ⊆ R/I is a subring.

(b) For any subring S ⊆ R prove that we have an isomorphism of rings:

S

S ∩ I
∼=
S + I

I
.

[Hint: Consider the ring homomorphism ϕ : S → R/I defined by ϕ(a) = a+ I.]

(c) For any additive subgroup I ⊆ J ⊆ R prove that

J ⊆ R is an ideal ⇐⇒ J/I ⊆ R/I is an ideal,

in which case we have an isomorphism of rings:

R/I

J/I
∼=
R

J
.

[Hint: Consider the ring homomorphism ϕ : R/I → R/J defined by ϕ(a + I) =
a+ J .]

15.F Uniqueness of the Integers

For any ring R we proved that there exists a unique ring homomorphism from the
ring of integers: ιR : Z → R. More generally, a ring Z is called an initial object
in the category of rings if for each ring R there exists a unique ring homomorphism
ιZ,R : Z → R. If Z1 and Z2 are two initial objects in the category of rings, prove that
there exists a (unique) ring isomorphism Z1 ∼= Z2. [Hint: Consider the composite ring
homomorphisms ιZ2,Z1 ◦ ιZ1,Z2 : Z1 → Z1 and ιZ1,Z2 ◦ ιZ2,Z1 : Z2 → Z2. By uniqueness,
each of these is the identity.]
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Week 16

16.1 Ideal Theory of F and Z

That was the general theory. This week we will start to focus on specific examples.
But first, a bit of notational hygiene.

The Subring and the Ideal Generated by a Subset. Let R be a ring and let
S ⊆ R be any subset. Here’s a question for you:

What should the notation 〈S〉 ⊆ R represent?

I can think of at least four possibilities:

• The smallest additive subgroup containing S.

• The smallest subring containing S.

• The smallest ideal containing S.

• The smallest subfield containing S (if any exist).

Because of this ambiguity I will try to avoid the notation 〈S〉 as much as possible.142

Instead I will use the following notations, which are fairly standard.

First, let E ⊇ R be any ring extension and let S ⊆ E be any subset. Then we define

R[S] :=
⋂
{subrings of E that contain the set R ∪ S} ⊆ E.

In other words, R[S] is the smallest subring of E that contains the set R ∪ S. If E
contains a subfield (for example, if E is a field) then we will also define

R(S) :=
⋂
{subfields of E that contain the set R ∪ S} ⊆ E.

Observe that this is consistent with our previous notation for field extensions. Since
every subfield is itself a subring, observe that we always have

R ⊆ R[S] ⊆ R(S) ⊆ E.

142One major exception: When it comes to rings of polynomials I will tend to write 〈S〉 for the ideal
generated by a subset S, since the alternative notations are too cumbersome.
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In general the inclusion R[S] ⊆ R(S) is strict. However, we will meet a nice class of
examples below (when R is a field and S is a finite set that is “algebraic” over R) for
which R[S] = R(S).

Next let R be a ring and let S ⊆ R be any subset. Then we define

RS :=
⋂
{ideals of R that contain S} ⊆ R.

In other words, RS is the smallest ideal of R that contains the set S. You should be
aware that many authors use the notations 〈S〉 or (S) for this ideal. But I prefer the
“multiplicative” notation RS because of the following fact:

The ideal generated by S equals the set of finite R-linear combinations:143

RS = {a1α1 + a2α2 + · · ·+ akαk : a1, . . . , ak ∈ R,α1, . . . , αk ∈ S, k ≥ 1}.

Proof. Let I be the set of linear combinations above. Since RS is an ideal containing
S we see that I ⊆ RS. On the other hand, for all a1α1 + · · · akαk ∈ I and b ∈ R we
have

b(a1α1 + · · · akαk) = (ba1)α1 + · · ·+ (bak)αk ∈ I,

which implies that I ⊆ R is an ideal. Furthermore, we have S ⊆ I since α = 1α ∈ I
for all α ∈ S. Finally, since RS is the smallest ideal containing S we conclude that
RS ⊆ I. □

If R is a commutative ring (which for us it always will be), then we will also write
RS = SR. However, when R is non-commutative then the notations RS and SR
will denote the smallest left ideal and right ideal containing S, respectively. You
can probably guess all the relevant definitions. ///

Ideals generated by a single element are very important so we give them a special name.

Definition of Principal Ideals. Let R be a commutative ring. The ideal generated
by a single element is called a principal ideal. For α ∈ R we will use the notation

αR = Rα := R{α} = {aα : a ∈ R}.

The smallest and largest ideals are both principal, generated by 0 and 1, respectively:

0R = {0} is called the zero ideal.
1R = R is called the unit ideal.

///

By the way, the name “unit ideal” is motivated by the following fact:

Let I ⊆ R be an ideal. Then I = R if and only if I contains a unit.

143This fact suggests an analogy between “ideals” and “vector subspaces”. The analogy can be made
precise with the definition of R-modules. But again, we don’t have a need for that level of abstraction
in this course.
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Proof. If I = R then I contains the unit 1. Conversely, let u ∈ I be a unit. By
definition this means that uu−1 = 1 for some (unique) u−1 ∈ R. But then since I is an
ideal we must have 1 = uu−1 ∈ I, and it follows that

a = 1a ∈ I for all a ∈ R.

□

Now for the examples.

Example: Fields. Let F be a field. Then I claim that 0F and 1F are the only ideals.

Proof. Let I 6= 0F be a non-zero ideal. Then I contains a non-zero element, which
must be a unit because F is a field. It follows from the previous remark that I = 1F.

□

Conversely, if R is any ring that contains exactly two ideals, then I claim that R is
a field.

Proof. Assume that 0R 6= 1R are the only two ideals of R and let 0 6= a ∈ R be any
nonzero element. Now consider the principal ideal aR. Since aR 6= 0R we must have
aR = 1R. In particular, since 1 ∈ aR there exists an element b ∈ R such that 1 = ab.

□

We have shown that a field is a ring with exactly two ideals. But recall that a
group G with exactly two normal subgroups is called a simple group. Since ideals
are analogous to normal subgroups (being kernels of the relevant homomorphisms) we
might say that

a field is a “simple ring”.

///

Example: The Integers. Fields are in some sense “too simple”. The prototypical
example of a ring is the ring of integers:

(Z,+,×, 0, 1).

But the ring Z is still “rather simple” because of the following fact:

Every ideal of Z is principal.

Proof. Let I ⊆ Z be any ideal. If I = 0Z then it is principal. Otherwise, let 0 6= n ∈ I
be a nonzero element with minimal absolute value (which exists by the well-ordering).
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Since I is an ideal we have nZ ⊆ I. I claim that in fact I = nZ. To see this, consider
any element a ∈ I and divide by n to obtain

a = qn+ r for some (unique) q, r ∈ Z with 0 ≤ r < |n|.144

If r 6= 0 then the facts r = a− qn ∈ I and 0 < |r| = r < |n| contradict the minimality
of n. Thus we must have r = 0 and hence a = qn ∈ nZ. Finally, since this is true for
all a ∈ I we conclude that I ⊆ nZ. □

You may recall that we already proved this last semester under the guise of “cyclic
groups”. In fact, we now see that every cyclic group Z/nZ has a natural ring structure
defined by

(a+ nZ)(b+ nZ) = (ab+ nZ).

I had to hold my tongue many times.145 Here is another important property of integers:

For all a, b ∈ Z, if ab = 0 then we must have a = 0 or b = 0.

This could be taken as an axiom, but it is usually proved using induction and the fact
that 0 6= 1. Equivalently we could say that

the ring Z has no zero-divisors.

The technical term for a ring without zero-divisors is an integral domain.146 You might
at first assume that every ring is an integral domain, but consider the following fact:

If n ∈ Z is not zero or prime then the ring Z/nZ is not an integral domain.

Proof. If n is not prime then by definition there exist a, b ∈ Z where n = ab and
neither of a, b is in the ideal nZ. Then we have

(a+ nZ)(b+ nZ) = (n+ nZ) = (0 + nZ),

where neither of a+ nZ or b+ nZ is equal to the zero element 0 + nZ. □

On the other hand, you proved on a previous homework that the ring Z/pZ for prime
p is actually a field (hence also an integral domain). This fact is closely related to the
concept of

division with remainder.
144This is not usually regarded as an axiom, but it is close to being the defining property of the

integers.
145And the tongue holding will continue, because abelian groups are the same as “Z-modules” and

rings are the same as “Z-algebras”. Modules and algebras are important types of algebraic structures
but I consider them more suitable for a graduate course.

146This notation is a near-literal translation of Kronecker’s term Integralitätsbereich [domain of inte-
grality]. Compare this to the term Rationalitätsbereich [domain of rationality], which was his name for
fields. Why are these terms so closely related? You will prove on a future homework that the concepts
of “integral domain” and “subring of a field” are equivalent.
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///

The examples of fields and integers will motivate much of the theory going forward.
Next time we will meet the third fundamental example of a ring: polynomials.

16.2 What is a Polynomial?

Today’s lecture is a bit philosophical, but don’t worry — we’ll discuss examples soon.

What is a Polynomial? For any subset of a ring S ⊆ R we saw that the the smallest
ideal S ⊆ RS ⊆ R containing S consists of all the finite R-linear combinations:

RS = {a1α1 + a2α2 + · · ·+ akαk : a1, . . . , ak ∈ R,α1, . . . , αk ∈ S, k ≥ 0}.

We can give a similar explicit characterization of the subring generated by a subset.
To be specific, let E ⊇ R be a ring extension and let S ⊆ E be any subset. Then
the smallest subring (R ∪ S) ⊆ R[S] ⊆ E containing R ∪ S equals the set of all “finite
polynomial expressions”:

R[S] =
{ ∑
n1,...,nk

an1,...,nkα
n1
1 · · ·α

nk
k : an1,...,nk ∈ R,αi ∈ S, k, ni ≥ 0

}
.

The word “finite” means that only finitely many of the coefficients an1,...,nk are nonzero.
I won’t bother to prove this fact because the notation is atrocious. Instead we’ll prove
the special case when S = {α} ⊆ E has just one element. In this case I claim that we
have

R[α] = {a0 + a1α+ a2α
2 + · · ·+ anα

n : a0, . . . , an ∈ R,n ≥ 0}.

Proof. Let P = {a0 +a2α
2 + · · ·+anα

n} be the set of “finite R-polynomial expressions
in α”. Since R[α] ⊆ E is a subring containing R ∪ {α} we note that P ⊆ R[α]. On
the other hand, one can see that P contains 0, 1 ∈ E and is closed under addition and
multiplication, hence P ⊆ E is a subring. Then since P contains R ∪ {α}, and since
R[α] is the smallest subring containing R ∪ {α}, we conclude that R[α] ⊆ P . □

This fact motivates the following definition.

Definition of Polynomials in One Variable. Let R be a ring and let x be a formal
symbol, called a “variable”. We use this to define a sequence of formal symbols “xn”
for n ≥ 0:

x0 := 1, x1 := x, x2, x3, x4, . . . .

Then we define the set of formal polynomials in x:

R[x] := {a0 + a1x+ a2x
2 + · · · anxn : a0, . . . , an ∈ R,n ≥ 0}.
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This set has a natural ring structure which we define by pretending that

anx
n = an · x · x · · ·x︸ ︷︷ ︸

n times

,

even though x is not a number so this multiplication is imaginary. In other words, for
all polynomials f(x) =

∑
i aix

i and g(x) =
∑
i bix

i we define(∑
i

aix
i

)
+
(∑

i

bix
i

)
:=
∑
i

(ai + bi)xi

and (∑
i

aix
i

)(∑
i

bix
i

)
:=
∑
k

 ∑
i+j=k

aibj

xk.
To interpret these expressions one should assume that the indices run over all non-
negative integers and that only finitely many coefficients are non-zero. ///

Remarks:

• Someone should prove that addition and multiplication of polynomials satisfy the
ring axioms, but I won’t do it here because the notation is too ugly. The proof
that multiplication is associative comes down to the following identity:

∑
k+`=m

 ∑
i+j=`

aibj

 ck =
∑

i+j+k=m
aibjck =

∑
i+`=m

ai

 ∑
j+k=`

bjck

 .
• What is the relationship between “formal polynomials” and “polynomial func-

tions”? For any formal polynomial f(x) =
∑
i aix

i ∈ R[x] we define a function
f : R→ R by evaluating f(x) at α ∈ R:

f(α) :=
∑
i

aiα
i ∈ R.

More generally, for any ring homomorphism ϕ : R → S we define a polynomial
fϕ(x) ∈ S[x] by applying ϕ to the coefficients and then we define a function
fϕ : S → S by evaluating at α ∈ S:

fϕ(α) :=
∑
i

ϕ(ai)αi ∈ S.

For any fixed α ∈ S it turns out that the “evaluate at α” function f(x) 7→ fϕ(α)
is a ring homomorphism R[x] → S, which plays an important role in Galois
theory. (Don’t worry, I’ll remind you of the definitions later.) ///

The key to the structure of polynomial rings is the following “division algorithm”,
which is analogous to the division algorithm for integers. In order to state and prove
this result we need a couple of definitions.
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Definition: Degree of a Polynomial. Let R be a ring and consider any polynomial
f(x) ∈ R[x]. The degree of f(x) is defined as the highest power of x that occurs with
a nonzero coefficient. In other words, we say that deg(f) = n when

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n with an 6= 0.

Note that a polynomial of degree 0 is the same thing as a nonzero constant:

deg(f) = 0 ⇐⇒ f(x) = a0 for some 0 6= a0 ∈ R.

It is more difficult to define the degree of the zero polynomial 0 ∈ R[x]. We could just
say that deg(0) is undefined, but I prefer the following convention:

deg(0) := −∞.

[After all, this is the highest power of x that occurs with a nonzero coefficient.] Note
that the degree of a sum always satisfies the following property:

deg(f + g) ≤ max{deg(f), deg(g)}.

What about the degree of a product? We would like to say that deg(fg) = deg(f) +
deg(g), but this is not always true. For example, consider the polynomials f(x) = 1+2x
and g(x) = 1 + 2x2 with coefficients in Z/4Z. Then we have

(1 + 2x)(1 + 2x2) = 1 + 2x+ 2x2 + 4x3 = 1 + 2x+ 2x2 + 0x3 = 1 + 2x+ 2x2,

so that 2 = deg(fg) 6= deg(f) + deg(g) = 1 + 2. The problem here is that the leading
coefficients of f and g are zero-divisors. If we assume that the leading coefficients of
f(x) and g(x) are not zero-divisors then we will have

deg(fg) = deg(f) + deg(g).

///

Now we are ready for the theorem.

The Division Theorem for Polynomials. Let R be a ring and consider polynomials
f(x), g(x) ∈ R[x]. If the leading coefficient of g(x) is a unit then there exist unique
polynomials q(x), r(x) ∈ R[x] such that{

f(x) = q(x)g(x) + r(x),
deg(r) < deg(g).

These q(x) and r(x) are called the quotient and the remainder of f(x) mod g(x). ///

Proof. First we will prove existence of q(x) and r(x), then we will prove uniqueness.

Existence. Consider the set of potential remainders:

S = {f(x)− q(x)g(x) : q(x) ∈ R[x]}.
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Let r(x) ∈ S be a potential remainder of minimal degree, which exists by well-
ordering of the set of degrees {−∞ < 0 < 1 < 2 < · · · }. By definition we have f(x) =
q(x)g(x) + r(x) for some q(x) ∈ R[x] and it remains to prove that deg(r) < deg(g). To
do this, let us assume for contradiction that deg(r) ≥ deg(g). Then we must have

g(x) = a0 + · · ·+ amx
m and r(x) = b0 + · · · bnxn

where am is a unit, bn is nonzero, and 0 ≤ m ≤ n. We can use these facts to cook up
a remainder with strictly lower degree. Specifically, we define the polynomial

h(x) := r(x)− bn
am

xn−m · g(x) =
(
bn −

bn
am

am

)
xn + lower terms.

Note that deg(h) < deg(r) by construction. But we also have

h(x) = f(x)− q(x)g(x)− bn
am

xn−m · g(x) = f(x)−
(
q(x) + bn

am
xn−m

)
g(x) ∈ S,

which contradicts the minimality of r(x). It follows that deg(r) < deg(g) as desired.

Uniqueness. Suppose that we have polynomials q1, q2, r1, r2 ∈ R[x] satisfying{
f(x) = q1(x)g(x) + r1(x),
deg(r1) < deg(g),

{
f(x) = q2(x)g(x) + r2(x),
deg(r2) < deg(g).

To prove that r1 = r2 and q1 = q2 we first equate expressions for f to obtain

q1g + r1 = q2g + r2

(q1 − q2)g = (r2 − r1).

If r2 − r1 6= 0 then since the leading coefficient of g is a unit (in particular, not a
zero-divisor) we also have q1 − q2 6= 0, which implies that

deg(r2 − r1) = deg((q1 − q2)g) = deg(q1 − q2) + deg(g) ≥ deg(g).

But this contradicts the fact that deg(r2 − r1) ≤ max{deg(r1),deg(r2)} < deg(g), so
we must have r2 − r1 = 0. Finally, since r2 − r1 = 0 and since g has a unit leading
coefficient we conclude that

(q1 − q2)g = 0 =⇒ q1 − q2 = 0.

□

This theorem is most interesting when R = F is a field, because of the following fact:

Every nonzero polynomial in F[x] has a unit leading coefficient.
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16.3 Descartes’ Factor Theorem

The Division Theorem for Polynomials is really an algorithm. Here are two examples.

Example: Long Division Over Z. Consider the following polynomials over Z:

f(x) = 2x3 + 3x+ 1,
g(x) = x+ 1.

Since the leading coefficient of g(x) is the unit 1 ∈ Z we we know that there exist
(unique) polynomials q(x), r(x) satisfying{

(2x3 + 3x+ 1) = q(x)(x+ 1) + r(x),
deg(r) < deg(x+ 1) = 1.

The proof of existence above leads to the following algorithm for computing q(x) and
r(x):

2x2 −2x +5

x+ 1 2x3 +3x +1
−2x3 −2x

−2x2 +3x +1
−2x2 −2x

5x +1
−5x −5

−4
We conclude that

(2x3 + 3x+ 1) = q(x)(x+ 1) + r(x) = (2x2 − 2x+ 5)(x+ 1)− 4.

Note that the remainder r(x) = −4 satisfies 0 = deg(−4) < deg(x+1) = 1 as expected.
///

Example: Long Division Over Q. Let’s change the example slightly:

f(x) = 2x3 + 3x+ 1,
g(x) = 2x+ 1.

This time the polynomial g(x) = 2x+1 ∈ Z[x] has a non-unit leading coefficient. Thus
there is no guarantee that the quotient and remainder exist in Z[x]. In fact, we see
that the division algorithm fails at the second step:

2x2 ?

2x+ 1 2x3 +3x +1
−2x3 −x2

−x2 +3x +1
?
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In order to cancel the “leading term” −x2 we would need to multiply 2x + 1 by the
“monomial” −1

2x, which does not exist in Z[x]. However, since Z ⊆ Q is a subring we
could also think of f(x) and g(x) as elements of Q[x]. Then since 2 is a unit in Q
(with inverse 1/2) the algorithm is guaranteed to succeed:

2x2 −1
2x +7

4

2x+ 1 2x3 +3x +1
−2x3 −x2

−x2 +3x +1
x2 +1

2x

7
2x +1
−7

2x −7
4

−3
4

We conclude that the unique quotient and remainder in Q[x] are

q(x) = 2x2 − 1
2
x+ 7

4
and r(x) = −3

4
.

Actually we don’t have to extend all the way to Q. The quotient and remainder already
exist in the smaller ring Z[1/2][x] ⊆ Q[x], where Z[1/2] ⊆ Q is the subring of fractions
whose denominators are powers of 2. This is the smallest subring of Q in which 2 is a
unit. ///

Next I will show you two important corollaries of the division algorithm. The first result
goes back to René Descartes in his work La Géométrie (1637). This is the same work in
which he introduced the concepts of “analytic geometry” and “Cartesian coordinates”.
Here is Descartes’ statement of the result:

It is evident from the above that [a polynomial equation] having several
roots is always divisible by a binomial consisting of the unknown quantity
diminished by the value of one of the true roots, or plus the value of one of
the true roots. In this way, the degree of an equation can be lowered. On
the other hand, if [a polynomial] is not divisible by a binomial consisting of
the unknown quantity plus or minus some other quantity, then this latter
quantity is not a root of the equation.147

And here is the modern statement.

Corollary (Descartes’ Factor Theorem). Let E ⊇ R be an extension of (commu-
tative) rings. Then for any polynomial f(x) ∈ R[x] and for any element α ∈ E there

147Quoted from page 159–160 of The Geometry of René Descartes (1954).
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exists a (unique) polynomial g(x) ∈ E[x] of degree deg(f)− 1 such that

f(x) = (x− α)g(x) + f(α).

It follows from this that

α ∈ E is a root of f(x) ⇐⇒ (x− α) divides f(x) in the ring E[x].

///

Proof. Since x− α = 1x− α ∈ E[x] has a unit leading coefficient we know that there
exist (unique) polynomials q(x), r(x) ∈ E[x] satisfying{

f(x) = (x− α)q(x) + r(x),
deg(r) < deg(x− α).

Since deg(x − α) = 1 this implies that deg(r) = 0 or deg(r) = −∞. In other words,
r(x) = c ∈ E is a constant. To compute this constant we simply plug in x = α to
obtain

f(α) = (α− α)q(α) + c = 0 · q(α) + c = 0 + c = c.

[Remark: For this step we needed the fact that α commutes with all of the coefficients
of q(x). This is why we assumed that E is a commutative ring.] Then to compute
the degree of q(x) we use the fact that 1 is not a zero-divisor to obtain

deg(f) = deg((x− α)q + c) = deg((x− α)q) = deg(x− α) + deg(q) = 1 + deg(q).

Finally, if f(x) = (x − α)g(x) for some polynomial g(x) ∈ E[x] then we have f(α) =
(α− α)g(α) = 0 · g(α) = 0. [Again, we assume that E is commutative.] Conversely, if
f(α) = 0 then the above result implies that

f(x) = (x− α)q(x) + f(α) = (x− α)q(x) + 0 = (x− α)q(x)

for some q(x) ∈ E[x]. □

For example, recall from above that −4 is the remainder of 2x3 + 3x + 1 mod x + 1.
On the other hand, by plugging x = −1 into 2x3 + 3x+ 1 we obtain

2(−1)3 + 3(−1) + 1 = −4.

Remarks:

• You will give a more constructive proof of this result on the homework.

• You will also use induction to prove the following corollary: A polynomial of
degree n has at most n distinct roots in any integral domain. This finally
justifies some of our remarks from Weeks 13 and 14.
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• A polynomial of degree n may have more than n roots in a non-commutative
ring. For example, you may be familiar with the ring of quaternions:

H = {a+ bi+ cj + dk : a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}.

This ring is non-commutative because, for example, ij = −ji. Note that the
polynomial x2 + 1 ∈ H[x] has at least three roots: i, j, k. [In fact, one can show
that x2 + 1 has uncountably many roots in H.]

• On the homework you will also show that a polynomial of degree n may have
more than n roots in a non-integral domain. ///

To end this section I will present another important corollary of the division algorithm.

Corollary (Every Ideal of F[x] is Principal). Let F be a field and consider the
ring of polynomials F[x]. Then every ideal I ⊆ F[x] is principal.

Proof. Let I ⊆ F[x] be an ideal. If I = 0F[x] then it is principal. Otherwise, let
0 6= m(x) ∈ I be a nonzero element of minimal degree (which exists by well-ordering of
degrees). Since I is an ideal we have m(x)F[x] ⊆ I. I claim that in fact I = m(x)F[x].
To see this, consider any element f(x) ∈ I. Since F is a field and m(x) 6= 0 we know that
the leading coefficient of m(x) is a unit, hence there exist q(x), r(x) ∈ F[x] satisfying{

f(x) = q(x)m(x) + r(x),
deg(r) < deg(m).

If r(x) 6= 0 then the fact that r(x) = f(x) − q(x)m(x) ∈ I contradicts the minimality
of m(x). Hence we must have r(x) and it follows that f(x) = m(x)q(x) ∈ m(x)F[x].
Finally, since this is true for all f(x) ∈ I we conclude that I ⊆ m(x)F[x] as desired. □

Remarks:

• Note that this proof is almost identical to our proof that every ideal of Z is
principal. They both depended on the existence of a division algorithm.

• In addition to having only principal ideals, both of the rings Z and F[x] are integral
domains. For this reason we will call them PIDs (Principal Ideal Domains).

• The definition of PIDs is not completely obvious, but it turns out that this is a
very natural class of rings with many nice properties. In particular, every PID
satisfies “unique prime factorization”. We will discuss this next week.

Exercises

16.A Invariance of Quotient and Remainder

CHANGE S TO E. Let R ⊆ S be a subring, so that R[x] ⊆ S[x] is also a subring.
Consider any two polynomials f(x), g(x) ∈ R[x] where g(x) has a unit leading coefficient
u ∈ R×.
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(a) Suppose that there exist polynomials q(x), r(x) ∈ S[x] such that deg(r) < deg(g)
and f(x) = q(x)g(x) + r(x). In this case prove that we actually have q(x), r(x) ∈
R[x].

(b) Prove that g(x)|f(x) in R[x] if and only if g(x)|f(x) in S[x].

16.B Descartes’ Factor Theorem Again

Let E ⊇ R be any ring extension and let f(x) ∈ R[x] be any polynomial with coefficients
in R.

(a) For any element α ∈ E prove that f(α) = 0 if and only if there exists a polynomial
h(x) ∈ E[x] with coefficients in E such that f(x) = (x − α)h(x) and deg(h) =
deg(f)− 1. [Hint: For all integers n ≥ 2 observe that

xn − αn = (x− α)(xn−1 + xn−2α+ · · ·+ xαn−2 + αn−1) ∈ E[x].

Now consider the polynomial f(x)− f(α) ∈ E[x].]

(b) Counting Roots. If E is an integral domain, use the result of part (a) to prove
that any polynomial f(x) ∈ R[x] has at most deg(f) distinct roots in E.

(c) A Non-Example. Let E = R = Z/8Z and consider the polynomial x2 − 1. How
many roots does this polynomial have? Why does this not contradict part (b)?

16.C Prime and Maximal Ideals

Let R be a ring and let I ⊆ R be an ideal.

(a) We say that I is a maximal ideal if

for any ideal J ⊆ R we have (I ⊊ J)⇒ (J = R).

Prove that R/I is a field if and only if I is maximal.

(b) We say that I is a prime ideal if

for any a, b ∈ R we have (ab ∈ I)⇒ (a ∈ I or b ∈ I).

Prove that R/I is an integral domain if and only if I is prime.

(c) Prove that every maximal ideal is prime.

(d) Let Z[x] be the ring of polynomials over Z and consider the principal ideal

xZ[x] = {xf(x) : f(x) ∈ Z[x]}.

Prove that xZ[x] is prime but not maximal. [Hint: Z[x]/xZ[x] ∼= Z.]
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Week 17

17.1 Definition of PIDs

Abstract ring theory is a big subject with too many definitions, but I believe that most
of the theory is motivated by an analogy between the following two kinds of rings:

integers Z ≈ polynomials in one variable over a field F[x]

This week we will explore the basics of this analogy up to the theory of unique prime
factorization. I will try not to get too distracted by pathological counterexamples.

The first similarity between Z and F[x] is the property of being “integral domains”.
We have already seen some of the following concepts but I want to collect them in one
place for posterity.

Theorem (Definition of Integral Domains). Let R be a ring. Then the following
three conditions are equivalent:

(D1) The zero ideal 0R ⊆ R is prime:

(a 6∈ 0R and b 6∈ 0R)⇒ (ab 6∈ 0R).

(D2) The ring R has no zero-divisors:

(a 6= 0 and b 6= 0)⇒ (ab 6= 0).

(D3) The ring R satisfies multiplicative cancellation:

(a 6= 0 and ab = ac)⇒ (b = c).

Any ring satisfying one (and hence all) of these conditions is called an integral domain.
///

Proof. Note that (D1)⇔(D2) because a ∈ 0R⇔ a = 0.
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(D2)⇒(D3): Suppose that R has no zero-divisors and consider a, b, c ∈ R with a 6= 0
and ab = ac. Then we have

ab = ac

ab− ac = 0
a(b− c) = 0
(b− c) = 0 because a 6= 0

b = c.

(D3)⇒ (D2): Let R satisfy multiplicative cancellation and assume for contradiction
that there exists a pair of zero-divisors: a 6= 0, b 6= 0 and ab = 0. Then we have
ab = a0 which since a 6= 0 implies that b = 0. Contradiction. □

Remarks:

• Recall from the homework that a general ideal I ⊆ R is called prime when its
complement is closed under multiplication:

(a 6∈ I and b 6∈ I)⇒ (ab 6∈ I).

If I ⊆ J ⊆ R are any ideals, then one can show that “primeness” is preserved by
the Correspondence Theorem:

(J/I ⊆ R/I is prime)⇔ (J ⊆ R is prime).

It follows that

(R/I is a domain)⇔ (I/I ⊆ R/I is prime)⇔ (I ⊆ R is prime).

• As for the name “prime”, suppose that p, a, b ∈ Z are integers with p prime. Then
Euclid’s Lemma says that

(p|ab)⇒ (p|a or p|b).

Note that this is the same as

(ab ∈ pZ)⇒ (a ∈ pZ or b ∈ pZ).

In other words, pZ ⊆ Z is a prime ideal. We will generalize this idea below.

• There are only two basic ways148 that a ring can fail to be an integral domain,
both of which are illustrated by the rings Z/nZ:

148I’m lying a bit here. The real theorem says that a ring with zero-divisors has a nilpotent element
or more than one minimal prime ideal. Having more than one minimal prime ideal is closely related
to the existence of idempotents, and both of these are related to the idea of being “disconnected” in
algebraic geometry.



17.1 Definition of PIDs 225

(1) We say that a ∈ R is nilpotent if a 6= 0 and am = 0 for some minimal m ≥ 2.
Then a ·am−1 = 0 shows that R is not an integral domain. For example, the
element 2 ∈ Z/2kZ is nilpotent.

(2) We say that e ∈ R is idempotent if e 6∈ {0, 1} and e2 = e. Then e(1− e) = 0
shows thatR is not an integral domain. For example, note that e = 3 ∈ Z/6Z
is idempotent with 1− e = 4 and e(1− e) = 3 · 4 = 0. Ultimately this comes
from the Chinese Remainder isomorphism

Z/2Z× Z/3Z → Z/6Z
(a, b) 7→ 3a+ 4b

since the elements (1, 0), (0, 1) of the direct product Z/2Z×Z/3Z are idem-
potents.

And that’s probably enough about that. ///

As the name suggests, the ring Z is an integral domain. Some authors adopt (D2)
or (D3) as an axiom for the integers, but usually these are proved from the following
axioms of order:

• For all a, b ∈ Z exactly one of following holds: a < b, a = b or a > b.

• For all a, b, c ∈ Z with a < b we have (c > 0)⇒ (ac < bc) and (c < 0)⇒ (ac > bc).

These axioms, in turn, can be derived from Peano’s Axioms. Basically, every property
of the ring Z is a property of induction.

The fact that F[x] is an integral domain is implied by the following more general fact:

(R is an integral domain)⇒ (R[x] is an integral domain).

Proof. Let R be an integral domain let f(x), g(x) ∈ R[x] be nonzero polynomials. By
definition this means that

f(x) = a0 + a1x+ · · ·+ amx
m and g(x) = b0 + b1x+ · · ·+ bnx

n,

where the leading coefficients am, bn ∈ R are nonzero. But then we have

f(x)g(x) = ambnx
n+m + lower terms.

Since R is a domain it follows that ambn 6= 0 and hence f(x)g(x) 6= 0. □

The second similarity between Z and F[x] is the fact that each has a “division algo-
rithm”. The following definition is a bit awkward and we only really care about it as a
stepping-stone to the next theorem.

Definition of Euclidean Ring. We say that a ring R is Euclidean if there exists a
well-ordered149 set (Ω,≤) and a function ν : R→ Ω satisfying the following property:

149This means that every non-empty subset of Ω has a smallest element.
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For all a, b ∈ R with b 6= 0, there exist q, r ∈ R such that{
a = qb+ r,
ν(r) < ν(b).

We do not assume that the elements q, r are unique.

///

Note that Z is Euclidean with ν : Z → {0 < 1 < 2 < · · · } given by the absolute value
and that F[x] is Euclidean with ν : F[x] → {−∞ < 0 < 1 < · · · } given by the degree.
Here is the only reason we care about Euclidean rings.

Theorem (Euclidean Implies Principal Ideals). Let R be a ring. Then

(R is Euclidean)⇒ (Every ideal I ⊆ R is principal).

///

Proof. We already proved this twice but let’s do it one last time. If I = 0R then we’re
done. Otherwise, choose 0 6= m ∈ I with minimal ν(m). Then mR ⊆ I and I claim
that mR = I. Indeed, for any a ∈ I we have{

a = qm+ r,
ν(r) < ν(m).

If r 6= 0 then since r ∈ I we get a contradiction to minimality. It follows that r = 0
and hence a = qm ∈ mR. Since this is true for all a ∈ I we get I ⊆ mR. □

We summarize all of these properties with the following definition.

Definition of PIDs. Let R be a (commutative) ring. We say that R is a principal
ideal domain (PID) if the following two properties hold:

• R is an integral domain,

• every ideal of R is principal.

///

In a subject with too many bad definitions, I believe that the definition of PIDs is
good.150

150What do I mean by this? There are many theorems of the form PID ⇒ X for which we surprisingly
also have X ⇒ PID or (X + something small) ⇒ PID. (The most basic example says that if R[x] is a
PID then R is a field.) This is rare in commutative algebra. When it happens you know you have a
good definition.
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17.2 Ideal Theory of F[x]

Commutative algebra began with the study of number theory. In particular, many
concepts of the subject were motivated by attempts to prove the following theorem:

for all integers x, y, z, n ∈ Z with n ≥ 3 and xyz 6= 0 we have

xn + yn 6= zn.

In 1637 (the same year as Descartes’ Géométrie), Pierre de Fermat scribbled this result
in the margin of his copy of Diophantus’ Arithmetica, together with the following
remark:

I have a truly marvelous demonstration of this proposition, which this mar-
gin is too narrow to contain.

Through his correspondence Fermat tried to interest his contemporaries in number
theory and he often challenged them by stating results without proof. However, this was
the during the heart of the scientific revolution and it is likely that his contemporaries
were more interested in applied areas of mathematics. For example, Christian Huygens
made the following remark about Fermat’s challenges in a 1658 letter to John Wallis:

There is no lack of better things for us to do.151

It was approximately 100 years later when Leonhard Euler became interested in Fer-
mat’s number-theoretic ideas. Euler provided proofs for some of Fermat’s unproved
theorems (e.g., Fermat’s Little Theorem) and he disproved others (e.g., Fermat’s as-
sertion that every number of the form 22n + 1 is prime).152 But the result stated
above resisted Euler’s attempts and hence became known as “Fermat’s Last Theorem”
(FLT). In 1847 Gabriel Lamé gave a false proof of FLT in which he assumed that the
ring Z[e2πi/n] always has unique prime factorization. However, in 1844 Ernst Kummer
had discovered the surprising fact that

the ring Z[e2πi/23] does not have unique prime factorization.

This motivated Kummer to develop a theory of “ideal prime factorization”, which sadly
did not repair Lamé’s proof of FLT153 but it did lead to the abstract theory of ideals.

In modern language, the motivation for Kummer’s theory is to replace each element
a in a ring R by the principal ideal aR ⊆ R that it generates. The first observation
is that

aR ⊇ bR ⇐⇒ a|b.

Proof. Suppose that aR ⊇ bR. Then since b ∈ aR we have ac = b for some c ∈ R.
Conversely, suppose that ac = b for some c ∈ R. Then for all d ∈ R we have bd =
(ac)d = a(cd) ∈ aR, and hence bR ⊆ aR. □

151See Weil, Number Theory: An approach through history from Hammurapi to Legendre, (1984, page
119).

152On the homework you will investigate another result of Fermat on integers that can be expressed
as a sum of two squares.

153It was eventually proved by Andrew Wiles in 1994.



228 17.2 Ideal Theory of F[x]

Many books use the following mnemonic:

to contain is to divide.

For the next observation we assume that R is an integral domain. Then we have

aR = bR ⇐⇒ au = b for some unit u ∈ R×.

Proof. One direction is done. For the other direction, suppose that aR = bR. If a = 0
or b = 0 then we have a · 1 = 0 = b with 1 ∈ R× as desired. So assume that a 6= 0.
From the previous result we have a|b and b|a, which implies that ak = b and b` = a for
some k, ` ∈ R. Finally, since R is an integral domain we have

b` = a

ak` = a

a(k`− 1) = 0
k`− 1 = 0 (a 6= 0)

k` = 1,

and it follows that k, ` ∈ R×. □

In general, we define a relation on the elements of a ring called “association”.

Definition of Association. Let R be a ring. For all elements a, b ∈ R we define

a ∼ b ⇐⇒ au = b for some unit u ∈ R×.

[Exercise: Check that this is an equivalence relation.] When a ∼ b holds we say that
a and b are associates. We will write aR× := {au : u ∈ R×} for the equivalence class
of a ∈ R, so that

a ∼ b ⇐⇒ aR× = bR×,

and we will use the notation R/R× := {aR× : a ∈ R} for the set of equivalence classes.
Warning: This is not a set of cosets because R× ⊆ R is not a multiplicative subgroup.

///

Remarks:

• We always have 0R× = {0} and 1R× = R×. If a ∈ R is non-zero-divisor then
the function R× → aR× defined by u 7→ au is a bijection R× ↔ aR×.

• If R is an integral domain then the previous result says that

aR = bR ⇐⇒ aR× = bR×.

Hence we obtain a bijection between principal ideals and classes of associates.
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• The most basic example is the ring of integers Z with group of units Z×. In this
case the classes of associates are

Z/Z× = {{0}, {1,−1}, {2,−2}, {3,−3}, . . .} .

By choosing the non-negative integer from each class we obtain the well-known
bijection

N ↔ Z/Z× ↔ {principal ideals of Z} = {ideals of Z}
n nZ.

• If R is not an integral domain then strange things can happen. For example,
consider the ring Z/12Z with group of units (Z/12Z)× = {1, 5, 7, 11}. One can
check that

(Z/12Z)/(Z/12Z)× = {{0}, {1, 5, 7, 11}, {2, 10}, {3, 9}, {4, 8}, {6}}.

Note that each class contains a unique divisor of 12. [Challenge Problem: Prove
that the same holds in general for Z/nZ.] ///

Next we want to classify the principal ideals (hence all ideals) of the ring F[x]. More
generally, let R be any integral domain. Then I claim that

R[x]× = R×.

Proof. We think of R ⊆ R[x] as the subring of constant polynomials. Note that
this implies R× ⊆ R[x]×. Conversely, consider any elements f(x), g(x) ∈ R[x] with
f(x)g(x) = 1. Since R is a domain this implies that deg(f) + deg(g) = deg(1) = 0.
Then since degrees are non-negative we conclude that deg(f) = deg(g) = 0 and hence
f(x), g(x) ∈ R×. □

[Remark: If the ring R has a nilpotent element then the inclusion R× ⊊ R[x]× is
strict. For example, suppose we have a 6= 0 and an = 0 for some n ≥ 2. Then the
polynomial 1− ax ∈ R[x] is a unit because

1 = 1− 0x = 1− anxn = (1− ax)(1 + ax+ a2x2 + · · ·+ an−1xn−1).

This is yet another reason to prefer integral domains.]

This leads to the following theorem/definition.

Theorem (Definition of Monic Polynomials). We say that a polynomial is monic
when its leading coefficient equals 1. If F is a field then we have a bijection

{ideals of F[x]} ←→ {0} ∪ {monic polynomials in F[x]}.

Proof. We know that f(x)F[x] is a PID, hence every ideal has the form f(x)F[x] for
some polynomial f(x) ∈ F[x]. If f(x) 6= 0 then we have f(x) = a0 + a1x + · · · anxn
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for some an 6= 0. Since F is a field we can divide by an to obtain a monic polynomial
g(x) := f(x)/an. Then since f(x)|g(x) and g(x)|f(x) we have f(x)F[x] = g(x)F[x].
Conversely, suppose that g(x)F[x] = h(x)F[x] where g(x) and h(x) are both monic.
Since F[x] is a domain this implies that g(x)u(x) = h(x) for some unit u(x) ∈ F[x]×,
which from the previous result equals a nonzero constant u(x) = u ∈ F×. But then

u = (leading coefficient of gu) = (leading coefficient of h) = 1,

and we conclude that g(x) = h(x). □

In summary, for any field F we have an isomorphism of lattices:{
ideals of F[x] under
reverse containment

}
∼=
{

monic polynomials ∪ 0
under divisibility

}
.

17.3 Every PID is a UFD

To end this week I will prove that each of the rings Z and F[x] has “unique prime
factorization”. The hardest part of the proof is to find the correct definition of “prime”.

Let’s begin with some examples. In the ring Z we can factor 12 in many ways:

12 = 2 · 2 · 3
= 2 · 3 · 2
= (−2) · (−3) · 2
= 3 · 2 · (−1)(−1) · 2 · 1 · 1 · 1
etc.

We say that 12 has prime factors ±2 and ±3 with multiplicities 2 and 1, respectively.
We don’t want to say that ±1 are prime because this will ruin uniqueness.

In the ring Q[x] the polynomial x2 + 1 has many trivial factorizations:

(x2 + 1) = 1
2

(2x2 + 2)

= 3
(1

3
x2 + 1

3

)
etc.

But I claim that x2 + 1 cannot be factored in a non-trivial way.

Proof. Recall that a polynomial f(x) ∈ Q[x] is non-constant if and only if deg(f) ≥ 1.
Now suppose for contradiction that we have x2 + 1 = f(x)g(x) for some non-constant
polynomials f(x)g(x) ∈ Q[x]. Since deg(f) + deg(g) = deg(fg) = 2 this implies that
deg(f) = deg(g) = 1. In particular we must have f(x) = αx + β for some α, β ∈ Q
with α 6= 0. But then f(−β/α) = 0, which implies that

(−β/α)2 + 1 = f(−β/α)g(−β/α) = 0g(−β/α) = 0.
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But I claim that this is impossible. Indeed, since −β/α ∈ Q we must have −β/α = c/d
for some c, d ∈ Z with d 6= 0. But then we have

(−c/d)2 + 1 = 0
c2/d2 = −1

c2 = −d2 < 0,

which contradicts the fact that c2 ≥ 0. □

We say that the polynomial x2 +1 is irreducible over Q. However, the same polynomial
is reducible over the field extension C ⊇ Q because

x2 + 1 = (x− i)(x+ i).

Hopefully these examples will motivate the following definition. The definition is a bit
awkward because it only applies to integral domains, and because it rather arbitrarily
excludes the zero element and the units. We exclude units because they lead to silly
non-unique factorizations. As for the zero element: I say that 0 is irreducible in a
domain, but that’s just my opinion.

Definition of Irreducible Elements. Let R be an integral domain. We say that an
element a ∈ R is irreducible if the principal ideal aR ⊆ R is “nontrivial and maximal
among principal ideals”. In other words, when the following two conditions hold:

• 0R ⊊ aR ⊊ 1R,

• for all b ∈ R we have (aR ⊆ bR ⊆ 1R)⇒ (aR = bR or bR = 1R).

Equivalently, these two conditions say that

• a is not zero and not a unit,

• if a = bc for some b, c ∈ R then we have c ∈ R× (aR = bR) or b ∈ R× (bR = 1R).

///

Our first goal is to show that every element in a domain can be factored as a (finite)
product of irreducible elements, times a unit. Sadly, there exist pathological examples
where this is false. For example, consider the ring of polynomials over Q with constant
term in Z:

Z + xQ[x] = {f(x) ∈ Q[x] : f(0) ∈ Z} ⊆ Q[x].

The units of this ring are just Z× = {±1}. But the polynomial x can never be factored
into irreducibles because

x = 2 · x
2

= 2 · 2 · x
4

= 2 · 2 · 2 · x
8

= · · · .

Ultimately, the problem is that we have an infinite increasing chain of principal ideals:

〈x〉 ⊊ 〈x/2〉 ⊊ 〈x/4〉 ⊊ 〈x/8〉 ⊊ · · · .
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We will show that this problem does not occur in a PID.

Theorem (PID ⇒ Factorization Terminates). Every element in a PID can be
expressed as a (finite)154 product of irreducible elements, times a unit.

Proof. Let a0 ∈ R be a non-zero non-unit155 and assume for contradiction that the
factoring process does not terminate. Then we obtain an infinite increasing chain of
principal ideals:

a0R ⊊ a1R ⊊ a2R ⊊ a3R ⊊ · · · .

I claim that the infinite union I = ∪iaiR ⊆ R is an ideal. To see this, consider any
b, c ∈ I and r ∈ R. By definition there exist indices i, j such that b ∈ aiR and c ∈ ajR.
If k = max{i, j} then we have b, c ∈ akR and it follows that

b− rc ∈ akR ⊆ I.

Since R is a PID we must have I = aR for some a ∈ I. But then by definition we have
a ∈ akR for some k and it follows that

I = aR ⊆ akR ⊊ ak+1R ⊆ I.

Contradiction. □

[Jargon: We say that a ring R is Noetherian if it does not contain an infinite strictly
increasing chain of ideals. We can rephrase the above theorem by saying that every
PID is Noetherian. Emmy Noether showed that this condition is a very convenient
abstract substitute for the well-ordering principle.]

And what about uniqueness? Consider the ring Z[
√
−3] = {a + b

√
−3 : a, b ∈ Z} and

note that the element 4 has two seemingly different factorizations:

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3).

Indeed, you will show on the homework that the elements 2, (1 +
√
−3) and (1−

√
−3)

are irreducible but that 2 is not associate to either of (1 +
√
−3) or (1 −

√
−3). The

problem is that none of these irreducible elements is “prime” in the following sense.

Definition of Prime Elements. Let p ∈ R be a non-unit element of a ring. We say
that

p is prime ⇐⇒ pR ⊆ R is a prime ideal.

In other words, we say that p 6∈ R× is prime if for all a, b ∈ R we have

(p|ab) =⇒ (p|a or p|b).

154Products in a general ring are necessarily finite. To definite an infinite product one would need
some notion of “convergence”, which we do not have.

155I say that 0 is irreducible (times 1) and that every unit is a product of itself times no irreducibles.
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///

If R is a domain then for all elements p ∈ R we have

p is prime =⇒ p is irreducible.

Proof. Let p ∈ R be prime. If p = 0 then we’re done because (in my opinion) 0 is
irreducible. So let p 6= 0 and assume for contradiction that we have p = ab, where a
and b are non-zero non-units. Since p is prime we have p|a or p|b. Without loss of
generality, suppose that p|a. Then the facts that p|a and a|p imply that p = au for
some unit u ∈ R×. Finally, we have

�ab = �au

b = u,

which contradicts the fact that b 6∈ R×. □

But irreducible elements are not prime in general. For example, consider again the
domain Z + xQ[x]. I claim that the element x is irreducible but not prime. Indeed, a
polynomial of degree 1 over a domain is always irreducible. To see that x is not prime,
first note that x divides the product 2 · (x/2). But x ∤ 2 (for reasons of degree) and
x ∤ (x/2) because 1/2 is not in the ring. This example was necessarily rather artificial,
because of the following theorem.

I call this Euclid’s Lemma because he proved it for integers.

Theorem (Euclid’s Lemma). Let R be a PID. Then for all p ∈ R we have

p is prime ⇐⇒ p is irreducible.

Fancy Proof. We already proved that every prime element in a domain is irreducible.
For the other direction, let p ∈ R be irreducible. By definition this means that the
ideal pR ⊊ R is maximal among principal ideals. Since R is a PID this means that pR
is maximal among all ideals. Finally, since every maximal ideal is prime we conclude
that pR is a prime ideal, hence p ∈ R is a prime element. □

Euclid’s Proof. Let p ∈ R be irreducible and assume that p|ab for some a, b,∈ R, say
pk = ab. We will show that p ∤ a implies p|b. So suppose that a 6∈ pR, which means
that pR ⊊ pR + aR. Since R is a PID we know that pR is a maximal ideal, hence
pR + aR = R. In other words, there exist elements x, y ∈ R such that px + ay = 1.
Now multiply both sides by b to obtain

px+ ay = 1
pbx+ (ab)y = b
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pbx+ (pk)y = b

p(bx+ ky) = b.

We conclude that p|b as desired. □

[Jargon: We say that elements a, b ∈ R are coprime if aR + bR = R, or, in other
words, if there exist elements x, y ∈ R such that ax+ by = 1. If the ring R is Euclidean
then one can use the so-called Euclidean Algorithm to find some specific elements x, y.]

Finally, we can prove that every element in a PID has a unique factorization into
irreducibles. The proof of this result should be taken as the motivation for all of the
previous definitions.

Theorem (PID ⇒ UFD). Let R be a PID. We showed previously that every element
can be factored as a product of irreducibles, times a unit. Now suppose that we have

p1p2 · · · pk = u · q1q2 · · · q`

where u is a unit and where the elements p1, . . . , pk, q1, . . . , q` are irreducible. Then I
claim that k = ` and we can relabel the factors so that pi ∼ qi are associate for all i.

Proof. We use induction on min{k, `}. For the base case, let ` = 0, so we have
p1 · · · pk = u. If k 6= 0 then p1|u and u|p1 imply that p1 is a unit, contradicting the fact
that p1 is irreducible. For the general case, assume that

p1p2 · · · pk = u · q1q2 · · · q`.

Since p1|q1 · · · q` it follows from Euclid’s Lemma that p1|qi for some i. Without loss,
suppose that p1|q1. Since q1 is irreducible and p1 is not a unit we must have q1 = p1u

′

for some unit u′ ∈ R×. Then since p1 6= 0 we can cancel p1 from both sides to obtain

��p1p2 · · · pk = uu′ ·��p1q2 · · · q`
p2 · · · pk = uu′ · q2 · · · q`

Since min{k − 1, ` − 1} < min{k, `}, we have by induction that k − 1 = ` − 1 and we
can reorder the factors so that pi ∼ qi are associate for all i ≥ 2. □

By the way, any domain that satisfies the conclusion of this theorem is called a unique
factorization domain (UFD).

In summary, here is a sketch of the different kinds of integral domains:
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Remarks:

• As you see, each of the inclusions is strict:

{Fields} ⊊ {Euclidean Domains} ⊊ {PIDs} ⊊ {UFDs} ⊊ {Domains}.

• Carl Friedrich Gauss proved that the ring Z[x] is also a UFD, even though Z is
not a field. See Exercise 18.C for the surprisingly tricky proof. More generally,
one can use the same argument to show that R[x] is a UFD whenever R is a
UFD. Then since F[x] is a UFD it follows that F[x, y] = F[x][y] is a UFD, and by
induction the ring of polynomials in any (finite) number of variables over a field
is a UFD.

• The rings Z[
√
d] for negative integers d < 0 are well understood. (Technically:

If d = 1 mod 4 then we should replace Z[
√
d] by the ring Z[(1 +

√
d)/2], which

has nicer properties. One such nice property is that PID ⇔ UFD.) Gauss proved
that these rings have unique factorization when

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

It is a modern theorem of Baker, Heenger and Stark that for all other d < 0 the
ring of integers does not have unique factorization.

• For d > 0 it is an unsolved problem to determine when Z[
√
d] has unique factor-

ization. Number theory is hard.

• Understanding polynomials in one variable over a field is easier, so we return to
that topic next week.

Exercises
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17.A The Definition of PIDs is Good

For any ring R prove that

(R is a field) ⇐⇒ (R[x] is a PID).

17.B Quadratic Field Extensions, Part II

Let E = F(ι) ⊇ F for some element ι ∈ E satisfying ι 6∈ F and ι2 ∈ F. Recall that the
vector space E/F has basis {1, ι} and the Galois group Gal(E/F) is generated by the
“conjugation” automorphism (a+ bι)∗ := a− bι.

(a) For any α ∈ E show that α ∈ F if and only if α∗ = α. Use this to show that αα∗

and α+ α∗ are in F for all α ∈ E.

(b) For any polynomial f(x) =
∑
i αix

i ∈ E[x] we define f∗(x) :=
∑
i α

∗
i x
i. Show that

this is a ring automorphism ∗ : E[x] → E[x]. Use this to prove that f(x)f∗(x)
and f(x) + f∗(x) are in F[x] for all f(x) ∈ E[x].

(c) For all f(x) ∈ F[x] show that the roots of f(x) in E− F come in conjugate pairs.

(d) Application. Let f(x) ∈ F[x] have degree 3. If f has a root in E, prove that f
also has a root in F. [Hint: Use Descartes’ Factor Theorem.]

17.C Wilson’s Theorem

We saw in the previous problem that any ring homomorphism ϕ : R→ S extends to a
ring homomorphism ϕ : R[x]→ S[x] by acting on coefficients. Now let p ∈ Z be prime
and consider the following polynomial with integer coefficients:

f(x) := (xp−1 − 1)−
p−1∏
k=1

(x− k) ∈ Z[x].

(a) Let π : Z → Z/pZ be the quotient homomorphism. Prove that the polynomial
fπ(x) ∈ (Z/pZ)[x] has p − 1 distinct roots and degree < p − 1. [Hint: Fermat’s
Little Theorem.]

(b) Use Descartes’ Factor Theorem to show that every coefficient of f(x) ∈ Z[x] is a
multiple of p. Show that this implies (p− 1)! = −1 mod p.

17.D Gaussian Integers

The following theorem is mostly due to Fermat:

An integer n ∈ N is a sum of two squares if and only if any prime factor
p|n satisfying p = 3 mod 4 occurs to an even power.

In this problem we will give a mostly algebraic proof due to Gauss. Let i ∈ C be any
square root of −1 and consider the following ring extension of Z, called the ring of
Gaussian integers:

Z ⊆ Z[i] = {a+ bi : a, b ∈ Z} ⊆ C.
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(a) Let N : Z[i] → N be the “norm” function defined by N(a + ib) := a2 + b2.
Prove that (Z[i], N) is a Euclidean domain, hence Z[i] is a UFD. [Hint: For any
α, β ∈ Z[i] with β 6= 0, the ideal βZ[i] is a “square lattice” in C with (squared)
side length N(β). Let βζ be the closest element of βZ[i] to α and observe that
N(α− βζ) < N(β).]

(b) For all α, β ∈ Z[i] prove that N(αβ) = N(α)N(β). Use this to show that

Z[i]× = {α ∈ Z[i] : N(α) = 1} = {±1,±i}.

(c) For all n ∈ N show that n = 3 mod 4 implies n 6∈ imN . [Hint: What are the
square elements of the ring Z/4Z?]

(d) Use induction on n to prove the following statement:

n ∈ imN ⇒ (every prime p|n with p = 3 mod 4 occurs to an even power).

[Hint: Let n = a2 +b2 ∈ imN and let p ∈ Z be prime. If p = 3 mod 4 use (b) and
(c) to show that p is irreducible in Z[i]. Then if p|n use (a) to show that p|(a+bi)
or p|(a− bi) in Z[i]. In either case show that p|a and p|b, hence n/p2 ∈ imN .]

(e) Conversely, for prime p ∈ N show that p = 1 mod 4 implies p ∈ imN . [Hint: Let
p = 4k+ 1 and assume for contradiction that p 6∈ imN . Use (a) and (b) to show
that p is irreducible and hence prime in Z[i]. On the other hand, set m := (2k)!
and use Wilson’s Theorem to show that p|(m− i)(m+ i).]

(f) Finish the proof.

[Remark: The expression as a sum of squares is not necessarily unique. Lagrange
actually gave a formula for the number of distinct representations of n ∈ N as a sum
of squares:

2
(

1 +
(−1
n

))∑
d|n

(−1
d

)
.

Here the notation
(
a
b

)
is called the Jacobi symbol and I am not going to define it.]

17.E Z[
√
−3] is not a UFD

Let
√
−3 ∈ C be a fixed square root of −3 and consider the ring

Z ⊆ Z[
√
−3] = {a+ b

√
−3 : a, b ∈ Z} ⊆ C.

(a) Let N : Z[
√
−3] → N be defined by N(a + b

√
−3) := a2 + 3b2. For all α, β ∈

Z[
√
−3] prove that N(αβ) = N(α)N(β) and use this to show that

Z[
√
−3]× = {α ∈ Z[

√
−3] : N(α) = 1} = {±1}.

(b) Prove that there is no element α ∈ Z[
√
−3] with N(α) = 2. Use this to show

that any element with N(α) = 4 is irreducible. In particular, 2 ∈ Z[
√
−3] is

irreducible.
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(c) But show that 2 ∈ Z[
√
−3] is not prime because

2|(1 +
√
−3)(1−

√
−3) and 2 ∤ (1 +

√
−3) and 2 ∤ (1−

√
−3).

(d) Use this to prove that the following ideal is not principal:

{2α+ (1 +
√
−3)β : α, β ∈ Z[

√
−3]} ⊆ Z[

√
−3].

[Remark: The previous two problems are part of a tricky subject called algebraic
number theory. We will now leave this subject behind, since any further discussion
would lead us away from the main goals of this course.]
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18.1 Universal Property of Polynomials

In the 1700s, Enlightment mathematicians such as Leonhard Euler took for granted
the nature and existence of the basic number systems:

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

These mathematical objects were regarded as real in the same sense that the physical
world is real. In the 1800s, mathematicians began to doubt their intuition156 and they
started to ask for more rigorous definitions of basic concepts.

The first major post-Enlightment mathematician was Augustin-Louis Cauchy (1789–
1857). His textbook Cours d’Analyse (1821) gave the first rigorous treatment of cal-
culus. Later, in 1847, he gave the first rigorous definition of the complex numbers.
Assuming that the real numbers exist, Cauchy defined the complex numbers as a quo-
tient ring:

C := R[x]
(x2 + 1)R[x]

.

Since the polynomial x2 + 1 is an irreducible element of the PID R[x] we know that
the ideal (x2 + 1)R[x] ⊆ R[x] is maximal, hence the quotient ring is a field. The role of
the imaginary unit “

√
−1” is played by the coset of x:

√
−1 := x+ (x2 + 1)R[x] = {x+ (x2 + 1)f(x) : f(x) ∈ R[x]}.

Indeed, this coset is nonzero and we can check that it is a square root of the coset of
−1: (

x+ (x2 + 1)R[x]
)2

=
(
x2 + (x2 + 1)R[x]

)
=
(
−1 + (x2 + 1)R[x]

)
.

This level of abstraction was too much for Cauchy’s contemporaries but it was later
taken up in the 1880s by Leopold Kronecker. This week I will present Kronecker’s
proof that every polynomial over a field has a root in some extension field.

In order to do this we need a more modern definition of polynomials.

156There were many reasons, but perhaps the most important was the discovery of self-consistent
“non-Euclidean geometries” by Gauss, Bolyai and Lobachevsky.
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Theorem/Definition (Universal Property of Polynomials). Let R be a ring
and let x be an indeterminate. We say that a ring E is a/the free R-algebra generated
by x if the following two properties hold:

(1) We have x ∈ E and we have a subring R ⊆ E isomorphic to R.

(2) For any ring homomorphism ϕ : R→ S and for any element α ∈ S there exists a
unique ring homomorphism ϕα : E → S satisfying ϕα(x) = α and ϕα(a) = a for
all a ∈ R. In other words, there exists a unique ϕα making the following diagram
commute:

Note that the polynomial ring R[x] satisfies (1) and (2). Furthermore, if E and E′

are any two rings satisfying (1) and (2) then there exists a unique ring isomorphism
E ∼= E′ fixing the subset R ∪ {x}. In this sense, we can say that

R[x] is the unique free R-algebra generated by x.

///

Proof. The fact that R[x] satisfies (1) and (2) is easy. For (1) we can think of R ⊆ R[x]
as the subring of constant polynomials. For (2) suppose that ϕα : R[x]→ S is any ring
homomorphism satisfying ϕα(x) = α and ϕα(a) = a for all a ∈ R. Then we must have

ϕα

(∑
i

aix
i

)
=
∑
i

ϕα(ai)ϕα(x)i =
∑
i

ϕ(ai)αi.

And it is easy to check that this function is indeed a ring homomorphism, as long as
α ∈ S commutes with the elements of the subring imϕ ⊆ S.157

The surprising thing is that properties (1) and (2) determine the ring R[x] up to
isomorphism. I will only sketch the proof of this and you are free to skip it. So let
E and E′ be two rings satisfying (1) and (2). From (1) we note that R ∪ {x} is a
subset of E and E′ and from (2) we note that the identity maps idE : E → E and
idE′ : E′ → E′ are the unique ring homomorphisms E → E and E′ → E′ fixing
the subset R ∪ {x}. Also from (2) we know that there exist ring homomorphisms
φ : E → E′ and ψ : E′ → E fixing R ∪ {x}. Since the compositions fix R ∪ {x}, we
conclude from the previous remark that φ ◦ ψ = idE and ψ ◦ φ = idE′ , hence E ∼= E′.

□

Remarks:
157For us this condition is automatic because we assume that S is a commutative ring.
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• This definition is an example of a “universal property”. You will see another
example on the homework when you study the field of fractions of a domain.
The concept of universal properties was promoted by Saunders Mac Lane in the
1940s and 1950s, so it is strictly speaking a bit too modern for this course.158

Nevertheless, the universal property of polynomials is important for Galois theory.

• Instead of telling us what a polynomial “is”, the universal property tells us what
a polynomial “does”. Sometimes this is more important.

• To be explicit, the purpose of a polynomial is to be “evaluated”. Given a ring
homomorphism ϕ : R→ S, there exists a unique ring homomorphism ϕ : R[x]→
S[x] acting by ϕ on the coefficients and sending x 7→ α. We denote this map
by f(x) 7→ fϕ(x). Then for any element α ∈ S there exists a unique ring
homomorphism ϕα : R[x] → S[x] → S defined by “evaluating the polynomial
fϕ(x) at the argument x = α”. ///

18.2 The Minimal Polynomial Theorem

Last time we proved that for any ring homomorphism ϕ : R→ S and for any element
α ∈ S there exists a ring homomorphism ϕα : R[x]→ S acting on the coefficients by ϕ
and sending x 7→ α. Today we will focus on the special case when ϕ is just the identity
homomorphism on a subring R ⊆ S.

Definition of Evaluation. Let R ⊆ S be a subring and let id : R ↪→ S be the
restriction of the identity homomorphism S → S. Then for any element α ∈ S we have
a homomorphism id α : R[x]→ S defined by fixing the coefficients and sending x 7→ α.
For any polynomial f(x) =

∑
i aix

i ∈ R[x] we will use the notation

f(α) := id α(f(x)) = id α

(∑
i

aix
i

)
=
∑
i

aiα
i.

We call id α the evaluation homomorphism at x = α. ///

I claim that the image of the evaluation id α : R[x]→ S is equal to the smallest subring
of S that contains the set R ∪ {α}:

im(id α) = R[α] ⊆ S.

Proof. Since R[α] is a subring containing R∪{α} and since every element of im(id α) is
formed from R∪{α} using a finite number of ring operations, we have im(id α) ⊆ R[α].
Conversely, since im(id α) ⊆ S is a subring containing R ∪ {α} and since R[α] ⊆ S is
the smallest subring containing R ∪ {α} we must have R[α] ⊆ im(id α). □

158Saunders Mac Lane was an American mathematician who studied at Göttingen in the 1930s. After
the war he co-founded with Samuel Eilenberg the subject of category theory. The extreme abstraction
of categories was shortly taken up by French mathematicians and became part of the mathematical
mainstream in the 1960s.
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The kernel of an evaluation is more complicated, so we will restrict our attention to
polynomials over a field. Then there are two basic cases, called transcendental and
algebraic.

Definition of the Minimal Polynomial. Let α ∈ E ⊇ F be an element of a field
extension and consider the evaluation homomorphism id α : F[x] → E. By the First
Isomorphism Theorem we have

F[x]
ker(id α)

∼= im(id α) = F[α] ⊆ E.

If ker(id α) = 0 then we say that α is transcendental over F and we obtain an isomor-
phism

F[x] ∼= F[α].

In other words, we can think of a transcendental element as a “variable”.

If ker(id α) 6= 0 then we say that α is algebraic over F. In this case, since F[x] is a PID
there exists a unique monic polynomial mα/F(x) ∈ F[x] satisfying

ker(id α) = 〈mα/F(x)〉 = mα/F(x)F[x] = {mα/F(x)g(x) : g(x) ∈ F[x]}.

We call this mα/F(x) ∈ F[x] the minimal polynomial of α over F. ///

In less algebraic terms we can say that mα/F(x) ∈ F[x] is the unique monic polynomial
of minimal degree that has α as a root.

Proof. Indeed, we havemα/F(α) = 0 by definition. And for any polynomial f(x) ∈ F[x]
we have

f(α) = 0 ⇔ f(x) ∈ ker(id α) ⇔ f(x) ∈ 〈mα/F(x)〉 ⇔ mα/F(x)|f(x).

If f(α) = 0 with f(x) ∈ F[x] monic, then since mα/F(x)|f(x) and f(x) 6= 0 we conclude
that deg(mα/F) ≤ deg(f). □

The most basic case occurs when α ∈ F. In this case I claim that the minimal polyno-
mial is just mα/F(x) = x− α ∈ F[x]. Indeed, we already know from Descartes’ Factor
Theorem that for all f(x) ∈ F[x] we have

f(α) = 0 ⇐⇒ (x− α)|f(x).

Thus we can view the concept of the minimal polynomial as some kind of generalization
of Descartes’ Theorem.

The following theorem is one of our main tools for studying field extensions.

The Minimal Polynomial Theorem. Let E ⊇ F be a field extension and let α ∈ E
be algebraic over F with minimal polynomial mα/F(x) ∈ F[x].
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(1) If f(x) ∈ F[x] is irreducible and monic with f(α) = 0 then f(x) = mα/F(x).

(2) The minimal polynomial mα/F(x) ∈ F[x] is irreducible and it follows that F[α] is
a field. In other words, we have

F[α] = F(α).

(3) If deg(mα/F) = n then I claim that {1, α, . . . , αn−1} is a basis for the vector space
F(α) over F. It follows that

[F(α)/F] = deg(mα/F).

///

Proof. (1) Suppose that we have f(α) = 0 for some f(x) ∈ F[x]. By definition this
means that mα/F(x)|f(x). If f(x) is irreducible then this implies that f(x) = λ·mα/F(x)
for some nonzero constant λ ∈ F and if f(x) is monic then we must have λ = 1, hence
f(x) = mα/F(x).

(2) To prove that mα/F(x) is irreducible, suppose that we have mα/F(x) = f(x)g(x)
for some non-constant polynomials f(x), g(x) ∈ F[x]. In particular, we have deg(f) <
deg(mα/F) and deg(g) < deg(mα/F). Then evaluating at x = α gives

f(α)g(α) = mα/F(α) = 0.

Since F is a domain this implies that f(α) = 0 or g(α) = 0. Without loss of generality
suppose that f(α) = 0, so that mα/F(x)|f(x). But then since f(x) 6= 0 we must have
deg(mα/F) ≤ deg(f), which is a contradiction.

Now recall that F[α] and F(α) are by definition the smallest subring and subfield of
E that contain the set F ∪ {α}. Since every subfield is a subring we have F[α] ⊆ F(α).
Conversely, since mα/F(x) ∈ F[x] is irreducible in a PID we know that 〈mα/F(x)〉 ⊆ F[x]
is a maximal ideal and hence

F[x]
〈mα/F(x)〉

= F[x]
ker(id α)

∼= im(id α) = F[α] is a field.

Then since F[α] ⊆ E is a subfield that contains F ∪ {α} we conclude that F(α) ⊆ F[α].

(3) Let deg(mα/F) = n and consider the set {1, α, α2, . . . , αn−1} ⊆ F(α). To show that
this set spans F(α) over F we observe that every element of F(α) = F[α] = im(id α)
has the form f(α) for some polynomial f(x) ∈ F[x]. From the Division Theorem there
exist polynomials q(x), r(x) ∈ F[x] with

f(x) = mα/F(x)q(x) + r(x) and deg(r) < deg(mα/F).

Since deg(r) < deg(mα/F) = n we can write r(x) = a0 + a1x+ · · ·+ an−1x
n−1 for some

a0, . . . , an−1 ∈ F and then evaluating at x = α gives

f(α) = mα/F(α)q(α) + r(α)
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= 0 · q(α) + r(α)
= r(α)
= a0 + a1α+ · · ·+ an−1α

n−1.

Finally, to show that {1, α, α2, . . . , αn−1} is independent over F, suppose that

a0 + a1α+ · · ·+ an−1α
n−1 = 0 for some a0, . . . , an−1 ∈ F.

In other words, suppose we have f(α) = 0 for some polynomial f(x) = a0 +a1x+ · · ·+
an−1x

n−1 ∈ F[x]. In this case I claim that f(x) = 0 is the zero polynomial and hence
a0 = a1 = · · · = an−1 = 0. Indeed, since f(α) = 0 we have mα/F(x)|f(x). If f(x) 6= 0
then this implies that deg(mα/F) ≤ deg(f), which contradicts the fact that deg(f) < n.

□

You investigated a special case of this theorem on a previous homework. Now we will
relate this example to the theory of minimal polynomials.

Example: Quadratic Field Extensions. Let E ⊇ F be a field extension and consider
an element α ∈ E with α2 ∈ F and α 6∈ F. Then I claim that x2 − α2 ∈ F[x] is the
minimal polynomial of α over F. Since x2−α2 is monic and has α as a root, it suffices
to show that this polynomial is irreducible. So assume for contradiction that we have
x2 − α2 = f(x)g(x) for some non-constant polynomials f(x), g(x) ∈ F[x]. This implies
that deg(f) = deg(g) = 1. If f(x) = ax + b with a, b ∈ F and a 6= 0 then we see that
−b/a ∈ F is a root of f(x), hence also a root of x2 − α2. But from Descartes’ Factor
Theorem we know that ±α are the only roots of x2 −α2 and by assumption these are
not in F.

Then since mα/F(x) = x2−α2 has degree 2 we conclude from the Minimal Polynomial
Theorem that [F(α)/F] = 2 with basis {1, α}, and it follows that

F(α) = {a+ bα : a, b ∈ F}.

Recall that we originally proved this result by “rationalizing the denominator”. The
new method is better because it extends to more general situations. ///

And here is one of those more general situations.

Example: The Minimal Polynomial of 3√2 Over Q. Let α = 3√2 ∈ R be the
unique real cube root of 2. I claim that the minimal polynomial of α over Q is

mα/Q(x) = x3 − 2.

Proof. Since α is a root of x3 − 2, we only need to check that x3 − 2 ∈ Q[x] is
irreducible. So suppose for contradiction that x3−2 = f(x)g(x) for some non-constant
polynomials f(x), g(x) ∈ Q[x]. By considering degrees we must have deg(f) = 1 or
deg(g) = 1, and then it follows as in the previous example that x3− 2 has a root in Q.



18.3 Kronecker’s Theorem 245

To be specific, suppose that (a/b)3 − 2 = 0 for some a, b ∈ Z with gcd(a, b) = 1. Then
we have

a3/b3 − 2 = 0
a3/b3 = 2

a3 = 2b3.

Since b|a3 with gcd(a, b) = 1 we must have b ∈ {±1}. And since a|2b3 with gcd(a, b) = 1
we must have a ∈ {±1,±2}. It follows that

a/b ∈ {±1,±2},

and one can check that that none of these is a root of x3 − 2. [Remark: This method
is called the Rational Root Test. We will give the general statement below.] □

Finally, since mα/Q(x) = x3−2 has degree 3 we conclude from the Minimal Polynomial
Theorem that {1, α, α2} is a basis for the field Q(α) over Q, and it follows that

Q(α) = {a+ bα+ cα2 : a, b, c ∈ Q}.

In particular, we conclude that the set on the right is a field. However, you would find
it very difficult to “rationalize the denominator” by hand:

1
a+ bα+ cα2 = (?) + (?)α+ (?)α2.

I set up a 3× 3 linear system and used my computer to find that

1
a+ bα+ cα2 =

(
a2 − 2bc

∆

)
+
(

2c2 − ab
∆

)
α+

(
b2 − ac

∆

)
α2,

with ∆ = a3 + 2b3 + 4c3 − 6abc. This formula is probably not useful for anything. ///

18.3 Kronecker’s Theorem

Let f(x) ∈ F[x] be any irreducible polynomial and suppose that there exists a field
extension E ⊇ F and an element α ∈ E such that f(α) = 0. Last time we proved
that 〈f(x)〉 is the kernel of the evaluation homomorphism id α : F[x]→ E. Then since
〈f(x)〉 ⊆ F[x] is a maximal ideal we obtain an isomorphism of fields:

F[x]/〈f(x)〉 = F[x]/ ker(id α) ∼= im(id α) = F(α) ⊆ E.

Furthermore, we observe that the coset x + 〈f(x)〉 ∈ F[x]/〈f(x)〉 gets identified with
the root α ∈ E. But what if we don’t know any roots of f(x)? Today we will reverse
this construction and use it to create a root for any given polynomial over a field.

Leopold Kronecker is known as a “constructivist” mathematician, meaning that he
would not accept the existence of a mathematical entity unless he could give a finite al-
gorithm for constructing it. His contemporary Dedekind, on the other hand, was happy



246 18.3 Kronecker’s Theorem

to accept infinite sets implicitly defined by satisfying certain conditions. Dedekind’s
point of view eventually became standard but the following construction of Kronecker
is still imporant. Kronecker’s original goal was to give a concrete way to work with
algebraic irrational numbers such as

√
2.159

Kronecker’s Theorem (Every Polynomial Has a Root Somewhere). Let F be
a field160 and let f(x) ∈ F[x] be a polynomial of degree ≥ 1. Then there exists a field
extension E ⊇ F in which f(x) has a root.

Proof. Let f(x) ∈ F[x] be a polynomial of degree ≥ 1. Since F[x] is a PID we know
that we can write f(x) = p(x)g(x) with p(x), g(x) ∈ F[x] and with p(x) irreducible.
Suppose that we can find an extension E ⊇ F and an element α ∈ E such that p(α) = 0.
Then this α is also a root of f(x) because “evaluation at x = α” is a ring homomor-
phism:

f(α) = p(α)g(α) = 0g(α) = 0.

In order to construct such a field E and element α ∈ E we consider the principal ideal

〈p(x)〉 = p(x)F[x] = {p(x)g(x) : g(x) ∈ F[x]}.

Again, since p(x) ∈ F[x] is irreducible in a PID we know that 〈p(x)〉 ⊆ F[x] is a
maximal ideal, hence the quotient ring is a field. We will call it E:

E := F[x]/〈p(x)〉.

I claim that the coset α = x + 〈p(x)〉 ∈ E is the desired root of f(x). Wait a minute,
that sounds ridiculous. How can a coset be a root?

First we need to view F as a subfield of E. So consider the following ring homomorphism:

ι : F → E
a 7→ a+ 〈p(x)〉.

Note that this function is injective. Indeed, if ι(a) = ι(b) for some a, b ∈ F then we
have

ι(a) = ι(b)
a+ 〈p(x)〉 = b+ 〈p(x)〉

a− b ∈ 〈p(x)〉
a− b = p(x)g(x) for some g(x) ∈ F[x].

But note that deg(p) ≥ 1 (since p(x) is an irreducible polynomial) and deg(a− b) ≤ 0
(since a − b is a constant). Then since deg(pg) = deg(p) + deg(g), the only possible
solution is g(x) = 0, which implies that a− b = 0 as desired.

159The method doesn’t help with transcendental numbers such as π. It is said that Kronecker did not
believe in such numbers.

160The result also applies to polynomials over an integral domain R by taking F = Frac(R) ⊇ R.
As always, non-domains are a different story. I’m starting to think that the concept of “rings” is too
broad.



18.3 Kronecker’s Theorem 247

From the First Isomorphism Theorem we conclude that im ι = {a+ 〈p(x)〉 : a ∈ F} ⊆ E
is a subfield isomorphic to F. Now pay close attention to the following remark:

we choose to identify F with the subfield {a+ 〈p(x)〉 : a ∈ F} ⊆ E.

Now it only remains to show that the element α = x + 〈p(x)〉 ∈ E is a root of the
polynomial p(x) ∈ F[x]. More generally, consider any polynomial h(x) =

∑
i aix

i =∑
i(ai + 〈p(x)〉)xi. Then by definition we have

h(α) = h(x+ 〈p(x)〉)

=
∑
i

(ai + 〈p(x)〉)(x+ 〈p(x)〉)i

= (
∑
i

aix
i) + 〈p(x)〉

= h(x) + 〈p(x)〉.

In particular, this implies that p(α) = p(x) + 〈p(x)〉 = 0 + 〈p(x)〉 as desired.161 □

I apologize for level of abstraction in that proof. Kronecker’s Theorem is similar in spirit
to the construction of fractions from integers, or the construction of real numbers from
fractions. At first we think of a fraction as an infinite equivalence class of ordered
pairs of integers. Similarly, we first think of a real number as either a “Dedekind cut”
(ordered pair of infinite sets of fractions) or an infinite equivalence class of “Cauchy
sequences”. However, after we are satisfied with the existence of these objects we always
revert to a more concrete point of view.

For example, see the following corollary.

Corollary/Definition (Every Polynomial Has a Splitting Field). Let F be a
field and let f(x) ∈ F[x] be a polynomial of degree n ≥ 1. Then there exists a field
E ⊇ F and elements α1, . . . , αn ∈ E such that

f(x) = (x− α1)(x− α2) · · · (x− αn) in E[x].

Recall that we define F ⊆ F(α1, . . . , αn) ⊆ E as the smallest subfield of E containing
the set F ∪ {α1, . . . , αn}. In the case that

F(α1, . . . , αn) = E

we will say that E is a splitting field for f(x). ///

161If you don’t like that, here’s a different argument. From the universal property of polynomials we
know that there exists a unique ring homomorphism F[x] → E sending x 7→ x+〈p(x)〉, called “evaluation
at x + 〈p(x)〉”. But note that the quotient map F[x] → F[x]/〈p(x)〉 also satisfies this condition! Hence
by uniqueness we conclude that the evaluation map equals the quotient map: h(x) 7→ h(x) + 〈p(x)〉.
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Proof by Induction. The base case is Kronecker’s Theorem. So let n ≥ 2 and consider
a polynomial f(x) ∈ F[x] of degree n ≥ 2. By Kronecker’s Theorem there exists a field
K1 ⊇ F and an element α1 ∈ K1 such that f(α1) = 0, and then by Descartes’ Factor
Theorem we have

f(x) = (x− α1)g(x) for some polynomial g(x) ∈ K1[x] of degree n− 1.

Now by induction there exists a field K ⊇ K1 ⊇ F and elements α2, . . . , αn ∈ K such
that

g(x) = (x− α2) · · · (x− αn)
f(x) = (x− α1)g(x) = (x− α1)(x− α2) · · · (x− αn) in K[x].

Finally, note that E := F(α1, . . . , αn) ⊆ K is a splitting field for f(x). □

You may recall from Week 14 that splitting fields are central to the Fundamental
Theorem of Galois Theory. Later we will show that if E ⊇ F and E′ ⊇ F are two
splitting fields for the same polynomial f(x) ∈ F[x] then there exists an isomorphism
E ∼= E′ fixing F. However, this isomorphism is not unique.162 In fact, you already
know this. The collection of such isomorphisms E ∼= E′ is called the Galois group of
f(x) over F.

Exercises

18.A Invariance of the GCD

Let F be a field and consider two polynomials f(x), g(x) ∈ F[x], not both zero. Since
F[x] is a PID we know that there exists a unique monic polynomial d(x) ∈ F[x] such
that

f(x)F[x] + g(x)F[x] = d(x)F[x],

which we call the greatest common divisor of f(x) and g(x) in F[x].

(a) For any field extension E ⊇ F prove that the greatest common divisor of f(x), g(x) ∈
F[x] is the same, whether computed in F[x] or E[x].

(b) We say that polynomials f(x), g(x) ∈ F[x] are coprime when gcd(f, g) = 1. Prove
that

gcd(f, g) 6= 1 ⇐⇒ f(x) and g(x) have a common root in some field extension.

18.B Field of Fractions

In this problem you will show that “integral domain” and “subring of a field” are the
same concept. Let R be an integral domain and consider the following set of abstract
symbols, called fractions:

Frac(R) :=
{
a

b
: a, b ∈ R, b 6= 0

}
.

162In other words, the splitting field does not satisfy a “universal property”.
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(a) Prove that the following relation is an equivalence on the set of fractions:

a

b
∼ a′

b′ ⇐⇒ ab′ = a′b.

(b) Prove that the following operations are well-defined on equivalence classes:

a

b
· c
d

:= ac

bd
and a

b
+ c

d
:= ad+ bc

bd
.

It follows that the set of equivalence classes Frac(R)/∼ is a field. Following tradi-
tion, we will just call it Frac(R) and we will write = instead of ∼. Furthermore,
we will write R ⊆ Frac(R) for the image of the injective ring homomorphism
a 7→ a/1.

(c) Universal Property. Let F be a field and let ϕ : R → F be an injective ring
homomorphism. Prove that this extends to a unique ring homomorphism ϕ :
Frac(R) → F, which is also injective. [Hint: Show that ϕ̂(a/b) := ϕ(a)/ϕ(b) is
well-defined.] Here is a picture:

(d) Application. If a field F contains a subring isomorphic to Z, prove that F also
contains a subfield isomorphic to Q.

[Remark: Part (d) fills a gap in our earlier proof characterizing prime subfields. This
problem illustrates that the rigorous theory of fractions is subtle.163 We will usually
just follow our intuition.]

18.C Gauss’ Lemma

In this problem you will prove that Z[x] is a unique factorization domain. The key idea
of the proof is to consider the greatest common divisor of the coefficients of an integer
polynomial. To be specific, for any polynomial f(x) = a0 + a1 + · · ·+ anx

n ∈ Z[x] we
define the content164 as follows:

I(f) = c(a0 + a1x+ · · ·+ anx
n) := gcd(a0, a1, . . . , an) ∈ N.

(a) Let d = gcd(a0, a1, . . . , an) with ai = da′
i for all i. Prove that

gcd(a′
0, a

′
1, . . . , a

′
n) = 1.

163And it is deeper than it looks. The general construction of fractions is called “localization”. It
somehow corresponds to “zooming in” on a point of an algebraic variety.

164The letter I stands for Inhalt (German for “content”).
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(b) If f(x) ∈ Q[x] is monic, prove that there exists an integer k ∈ N with kf(x) ∈ Z[x]
and I(kf) = 1. [Hint: Choose any n ∈ N such that nf(x) ∈ Z[x] and let
d = I(nf).]

(c) For all f(x), g(x) ∈ Z[x] and prime p ∈ Z prove that p|f(x)g(x) implies that
p|f(x) or p|g(x). Use this to conclude that I(f) = I(g) = 1 implies I(fg) = 1.
[Hint: Consider the ring homomorphism Z[x] → Z/pZ[x] defined by reducing
each coefficient mod p.]

(d) If f(x), g(x) ∈ Q[x] are monic with f(x)g(x) ∈ Z[x], prove that f(x), g(x) ∈ Z[x].
[Hint: From (b) we have k, ` ∈ N with kf(x), `g(x) ∈ Z[x] and I(kf) = I(`g) = 1.
Now use (c) to show that k` = 1.]

(e) Use the previous results to prove that Z[x] is a UFD. [Hint: It suffices to prove that
every irreducible element of Z[x] is prime. There are two cases: (1) irreducible
constants p ∈ Z and (2) non-constant irreducible polynomials p(x) ∈ Z[x].]

18.D Waring’s Theorem on Symmetric Polynomials

Given a ring R and a set of “independent variables” x = {x1, . . . , xn} we define multi-
variate polynomials by induction:

R[x] = R[x1, . . . , xn] := R[x1, . . . , xn−1][xn] =

f(x) =
∑

k∈Nn
akxk : ak ∈ R

 .
To save space we use the notations k = (k1, . . . , kn) ∈ Nk and xk = xk1

1 · · ·xknn . We
assume that all but finitely many of the coefficients ak ∈ R are zero.

(a) We say that a polynomial f(x) = R[x] is symmetric if for all σ ∈ Sn we have

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn).

Observe that the symmetric polynomials are a subring of R[x].

(b) Waring’s Theorem. Recall the definition of the elementary symmetric polynomi-
als:

ek(x1, . . . , xn) :=
∑

1≤i1<···<ik≤n
xi1 · · ·xik .

For convenience, let’s define ek := ek1
1 · · · eknn . For any symmetric polynomial

f(x) =
∑

k akxk ∈ R[x], prove that there exist some bk ∈ R such that f(x) =∑
k bkek. [Hint: Order the degree vectors k ∈ Nn by “dictionary order” and let

akxk be the “leading term”. By symmetry of f we must have k1 ≥ k2 ≥ · · · ≥ kn.
Show that there exists k′ ∈ Nk so that akek′ has the same leading term, hence
f(x)− akek′ is a symmetric polynomial of “smaller degree”.]

(c) Important Corollary. Suppose that a polynomial f(x) ∈ R[x] of degree n splits
in some ring extension E ⊇ R. That is, suppose that we have

f(x) = xn − e1x
n−1 + e2x

n−2 − · · ·+ (−1)nen = (x− α1) · · · (x− αn) ∈ E[x].

Prove that any “symmetric expression of the roots” is in R.
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(d) Application: Discriminant of a Cubic. Let f(x) = x3 + ax2 + bx+ c ∈ R[x] and
let E ⊇ R be a ring extension such that

x3 + ax2 + bx+ c = (x− α)(x− β)(x− γ) ∈ E[x].

From part (c) we know that the following element of E (called the discriminant
of f) is actually in R:

Disc(f) := (α− β)2(α− γ)2(β − γ)2.

Use the algorithm from part (b) to express Disc(f) as a specific polynomial in
the coefficients. [I’ll get you started: Note that Disc(f) = (α4β2 + lower terms)
and a2b2 = (α4β2 + lower terms). Now find the leading term of Disc(f)− a2b2.]
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Week 19

19.1 Irreducible Polynomials

Last week we developed the following tool for studying field extensions:

Let α ∈ E ⊇ F be an element of a field extension and consider the interme-
diate field E ⊇ F(α) ⊇ F. If f(x) ∈ F[x] is an irreducible polynomial with
f(α) = 0 then 1, α, α2, . . . , αdeg(f)−1 is a basis for F(α) as a vector space
over F, hence

[F(α)/F] = deg(f).

But this tool is only useful if we have some way to prove that a given polynomial is
irreducible. Here are a couple of basic tricks.

Low-Degree Trick. Let f(x) ∈ F[x] have degree 2 or 3. Then

f(x) ∈ F[x] is reducible ⇐⇒ f(x) has a root in F.

Proof. Since F is a field we know from Descartes’ Theorem that

f(x) ∈ F[x] has a factor of degree 1 ⇐⇒ f(x) has a root in F.

Indeed, if α ∈ F is a root then we have f(x) = (x − α)g(x) for some g(x) ∈ F[x].
Conversely, if f(x) = (ax + b)g(x) for some a, b ∈ F with a 6= 0 then −b/a ∈ F is a
root. Finally, if f(x) ∈ F[x] has degree 2 or 3 then we observe that f(x) is reducible if
and only if f(x) has a factor of degree 1. □

Here is an example to show that the trick does not work for polynomials of degree four.

Example: Leibniz’ Mistake. One of the first problems of Calculus was to compute
the antiderivative for any given rational function f(x)/g(x) with f(x), g(x) ∈ R[x]. By
1675, Leibniz knew that∫

xndx = xn+1

n+ 1
(if n 6= 1),

∫
dx

x
= log(x),

∫
dx

x2 + 1
= arctan(x).

He also knew that if the denominator g(x) can be factored into polynomials of degree
1 and 2, then the function f(x)/g(x) can be expanded by partial fractions and hence
the antiderivative can be computed from the above three formulas.
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Today we know that every irreducible polynomial in R[x] has degree 1 or 2. (This
is one way to state the Fundamental Theorem of Algebra.) But this fact is certainly
not obvious. Indeed, Leibniz made a famous mistake in 1702 when he claimed that
polynomials of the form x4 + a4 with a ∈ R and a 6= 0 are irreducible over R. Here is
his exact quote:

Therefore,
∫ dx
x4+a4 cannot be reduced to the squaring of the circle or the

hyperbola by our analysis above, but founds a new kind of its own.165

Leibniz’ problem was that he didn’t have a good understanding of the complex 4th roots
of −1. Today we know that these roots are the vertices of a square in the complex
plane:

Then by grouping the complex roots of x4 + a4 into conjugate pairs we obtain

x4 + a4 =
(
x− a(1 + i)√

2

)(
x− a(1− i)√

2

)(
x− a(−1 + i)√

2

)(
x− a(−1− i)√

2

)
=
(
x2 − a

√
2x+ a2

) (
x2 + a

√
2x+ a2

)
,

and it follows from this that the antiderivative of 1/(x4 +a4) can be expressed in terms
of log and arctan (but I won’t write the formula because it’s too terrible). However,
for our purposes, the main point of this example is that the polynomial x4 + a4 ∈ R[x]
(for a 6= 0) is reducible over R but has no roots in R. ///

To apply the Low-Degree Trick we still need some method to prove that a polynomial
has no roots in a certain field. The following trick works when we are looking for roots
in the field of fractions of a UFD.

The Rational Root Test. Let R be a UFD (for example, Z) and consider a polyno-
mial

f(x) = a0 + a1x+ · · ·+ anx
n ∈ R[x].

Since R is a UFD we can write any fraction p/q ∈ Frac(R) in “lowest terms”, i.e., with
gcd(p, q) = 1. If f(p/q) = 0 then we must have

p|a0 and q|an.

165See Tignol, page 75. By “squaring of the circle” Leibniz means
∫

dx
x2+1 = arctan(x) and “squaring

of the hyperbola” he means
∫
dx
x

= log(x).
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And these restrictions give us a finite list of possible roots p/q that we can check by
hand.

Proof. Multiplying both sides of the equation f(p/q) = 0 by qn gives

a0 + a1(p/q) + · · ·+ an−1(p/q)n−1 + an(p/q)n = 0
a0q

n + a1pq
n−1 + · · ·+ an−1p

n−1q + anp
n = 0.

Pulling a0q
n to one side gives

a0q
n = −p(a1q

n−1 + · · ·+ an−1p
n−2q + anp

n−1) =⇒ p|a0q
n,

which implies that p|a0 because gcd(p, q) = 1. Similarly, pulling anpn to one side gives

anp
n = −q(a0q

n−1 + a1pq
n−2 + · · ·+ an−1p

n−1) =⇒ q|anpn,

which implies that q|an because gcd(p, q) = 1. □

[Remark: We just used the fact that a|bc and gcd(a, b) = 1 imply a|c. In a PID we
can prove this by writing ax+by = 1 and then multiplying both sides by c. In a general
UFD these x, y might not exist, but we can still prove the result by comparing prime
factorizations. The details are not important.]

19.2 Gauss and Cyclotomy

The tricks from the previous lecture are surprisingly useful. Here is an example that
fills in a gap from our discussion in the introduction.

Example: The Splitting Field of x3 − 2. The polynomial x3 − 2 ∈ Q[x] has three
distinct complex roots. To be specific, if α := 3√2 ∈ R and ω := e2πi/3 ∈ C then we can
write

x3 − 2 = (x− α)(x− ωα)(x− ω2α) ∈ C[x].

Let E := Q(α, ωα, ω2α) ⊆ C be the splitting field. In the introduction I claimed that
[E/Q] = 6 with basis {1, α, α2, ω, ωα, ωα2} but we were not able to prove this at the
time. Now we can.

Proof. First observe that Q(α, ωα, ω2α) = Q(α, ω) because {α, ωα, ω2α} can be ob-
tained from {α, ω} through field operations and, conversely, {α, ω} can be obtained
from {α, ωα, ω2α} through field operations. Consider the following chain of field ex-
tensions:

Q ⊆ Q(α) ⊆ Q(α)(ω) = E.

Our goal is to compute a vector space basis for each extension and then combine them
using Dedekind’s Tower Law. We have already seen that Q(α)/Q has basis {1, α, α2}
but let me prove this again quickly. Note that α is a root of f(x) := x3 − 2 ∈ Q. If
f(p/q) = 0 is a rational root in lowest terms then the Rational Root Trick says that
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p|2 and q|1. But we can check by hand that ±2 are not roots of f(x). Since f(x)
has degree 3 and no rational roots we conclude that f(x) = mα/Q(x) is the minimal
polynomial for α over Q, and since deg(mα/Q) = 3 we conclude that {1, α, α2} is a
basis for Q(α)/Q.

To find a basis for Q(α)(ω)/Q(α) we need to compute the minimal polynomial:

mω/Q(α)(x) ∈ Q(α)[x].

First of all, note that ω is a root of x3 − 1 ∈ Q[x] ⊆ Q(α)[x]. But this polynomial is
not irreducible because

x3 − 1 = (x− 1)(x2 + x+ 1) ∈ Q[x] ⊆ Q(α)[x].

Furthermore, since
(ω − 1)(ω2 + ω + 1) = ω3 − 1 = 0

we must have ω2 + ω + 1 = 0. I claim that g(x) := x2 + x+ 1 ∈ Q(α)[x] is irreducible
and hence is the minimal polynomial for ω over Q(α). Indeed, since g(x) has degree
2 we only need to check that it has no roots in the field Q(α). But we know that
g(x) has two non-real roots ω, ω2 ∈ C − R and since α ∈ R we know that Q(α) is
contained in R, hence

mω/Q(α)(x) = x2 + x+ 1.

Then since deg(mω/Q(α)) = 2 we conclude that {1, ω} is a basis for E = Q(α)(ω)/Q(α).
Finally, by applying Dedekind’s Tower Law we obtain the basis

{1, α, α2} · {1, ω} = {1 · 1, α · 1, α2 · 1, 1 · ω, α · ω, α2 · ω} = {1, α, α2, ω, ωα, ωα2}

for the splitting field E/Q, and it follows that [E/Q] = 6. □

Remarks:

• After seeing that Q(α, ωα, ω2α) = Q(α, ω) you might wonder if the splitting field
can be generated by a single element:

Q(α, ω) = Q(γ) for some γ ∈ Q(α, ω)?

If this is possible then we will call γ a primitive element for the field extension.166

Later we will prove that any finite dimensional extension over Q has a primitive
element (in fact, infinitely many). However, it is not easy to find one by hand.
For this example I used my computer to verify that γ := α + ω is a primitive
element with minimal polynomial167

mγ/Q(x) = x6 + 3x5 + 6x4 + 3x3 + 0x2 + 9x+ 9 ∈ Q[x].

Note this polynomial has degree 6 as expected.

166Another name for a primitive element is a Galois resolvent, hence the letter γ.
167In particular, this polynomial is irreducible over Q. But I would never know that if you showed it

to me out of context.
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• Suppose that we have field extensions E ⊇ K ⊇ F and an element α ∈ E. If
the minimal polynomial mα/K(x) ∈ K[x] has coefficients in F then it necessarily
follows that

mα/K(x) = mα/F(x) ∈ F[x].

Proof. Any polynomial that is irreducible over K is still irreducible over F. Then
the result follows since mα/K(x) ∈ F[x] is monic, irreducible and has α as a root.

□

Thus from the above example we have

mω/Q(α)(x) = mω/Q(x) = x2 + x+ 1.

///

We have seen that x2 + x+ 1 is the minimal polynomial over Q for the primitive third
roots of unity. More generally, I claim that the following definition gives the minimal
polynomial over Q for any primitive n-th root of unity.

Definition of Cyclotomic Polynomials. For any integer n ≥ 1 we define

Φn(x) :=
∏

0≤k<n
gcd(k,n)=1

(x− e2πik/n) ∈ C[x].

///

At first it seems that cyclotomic polynomials have complex coefficients. However, on
the next homework you will prove by induction that Φn(x) ∈ Z[x] ⊆ Q[x] for all n ≥ 1.
We have already seen the first few examples:

Φ1(x) = x− 1,
Φ2(x) = x+ 1,
Φ3(x) = x2 + x+ 1.

For the next case, observe that the primitive 4th roots of unity are {±i}, hence

Φ4(x) = (x− i)(x+ i) = x2 + 1.

So far it is clear that each of these polynomials is irreducible over Q. But you will show
that

Φ5(x) = x4 + x3 + x2 + x+ 1,

and more generally that

Φp(x) = xp−1 + xp−2 + · · ·+ x2 + x+ 1 for any prime p.

It is not clear why these polynomials should be irreducible over Q. Gauss proved
in the Disquisitiones that Φp(x) ∈ Z[x] is irreducible for any prime p. The typical
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textbook proof of this uses a clever trick called “Eisenstein’s Criterion”, which was
communicated in an 1850 letter from Gotthold Eisenstein to Gauss. It is also true,
but quite tricky to prove (see Exercise 22.C), that Φn(x) ∈ Q[x] is irreducible for any
n. Then it follows that Φn(x) ∈ Q[x] is the minimal polynomial for any primitive root
of n over Q, and hence the dimension of the cyclotomic field Q(e2πi/n)/Q is equal to
Euler’s totient function:

[Q(e2πi/n)/Q] = φ(n) = #{0 ≤ k < n : gcd(k, n) = 1}.

Any why did Gauss care about this? His original goal was to investigate whether the
n-th roots of unity can be expressed in terms of square roots.

Definition of Constructible Numbers. We say that a complex number α ∈ C is
constructible if it can be obtained from Q by solving a sequence of quadratic equations,
i.e., if there exists a chain of fields

α ∈ Fk ⊇ Fk−1 ⊇ · · · ⊇ F1 ⊇ F0 = Q

satisfying [Fi+1/Fi] = 2 for all i. ///

The motivation for the word “constructible” comes from Euclidean geometry. Suppose
that we start with the points (0, 0) and (1, 0) in the Cartesian plane R2. From these
two points we are allowed to construct new points via Euclid’s Postulates:

• We are allowed to draw the straight line through any two points.

• Given points x,y ∈ R2 we are allowed to draw the circle through y with center
at x.

• We are allowed to draw the points of intersection for any constructed lines and
circles.

One can check that the points of intersection of any two lines and circles can always be
computed by a quadratic equation,168 hence any point (α, β) ∈ R2 that is constructible
in the geometric sense will have coordinates α, β ∈ R that are constructible in the
algebraic sense.169

The young Gauss applied this reasoning to the construction of regular polygons. He
completed the Disquisitiones Arithmeticae in 1798, at the age of 21. The final chapter
of this work contains a study of “cyclotomy”. We can summarize the main points as
follows:

the regular n-gon is constructible

168The hardest case is the intersection of two circles.
169The converse is also true but I feel no need to discuss this.
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⇐⇒ the point (cos(2π/n), sin(2π/n)) ∈ R2 is constructible
⇐⇒ the numbers cos(2π/n), sin(2π/n) ∈ R are constructible
⇐⇒ the number e2πi/n ∈ C is constructible
⇐⇒ the dimension [Q(e2πi/n)/Q] is a power of 2
⇐⇒ e2πi/n ∈ C has minimal polynomial with degree a power of 2
⇐⇒ the cyclotomic polynomial Φn(x) has degree a power of 2
⇐⇒ Euler’s totient φ(n) is a power of 2.

Some of these implications were filled in by Pierre Wantzel in 1837, when he was 23
years old.170 Hence this result is sometimes called the Gauss-Wantzel Theorem.

For example, by observing that φ(7) = 6 is not a power of 2 we can explain why the
ancient Greeks were never able to construct a regular heptagon with straightedge and
compass. (You will give a more elementary proof of this fact on the next homework.)
However, the more surprising result is the existence of constructible polygons that the
ancient Greeks missed. By observing that φ(17) = 16 is a power of 2, Gauss was able
to prove (indirectly) that

the regular 17-gon is constructible with straightedge and compass!

Exercises

19.A Computing Minimal Polynomials

Define α := 3√2 ∈ R and ω := e2πi/3 ∈ C.

(a) Prove that x3 − 2 is the minimal polynomial for α over Q(ω).

(b) Prove that x2 + x+ 1 is the minimal polynomial for ω over Q(αω).

(c) Prove that x2 + (αω)x+ (αω)2 is the minimal polynomial for α over Q(αω).

[Hint: Consider any β ∈ E ⊇ F and let f(x) ∈ F[x] be a polynomial satisfying deg(f) =
[E/F]. Suppose also that f(x) is monic and satisfies f(β) = 0, hence mβ/F(x)|f(x).
Then since mβ/F(x) and f(x) are monic of the same degree we conclude that mβ/F(x) =
f(x).]

19.B Cyclotomic Polynomials

Fix an integer n and consider the polynomial xn − 1 ∈ Z[x].

(a) Factor xn − 1 into irreducible polynomials over C. [Hint: Let ω := e2π/n.]

(b) Factor xn − 1 into irreducible polynomials over R. [Hint: For all integers k ∈ Z
we have ωk + ω−k = 2 cos(2πk/n).]

170Abel died in 1829 at age 26 and Galois died in 1832 at age 20. For some reason there were a lot
of precocious mathematicians in the early 1800s.
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(c) We define the n-th cyclotomic polynomial Φn(x) ∈ C[x] as follows:

Φn(x) :=
∏
ω∈Ω′

n

(x− ω) where Ω′
n := {e2πik/n : 0 ≤ k < n, gcd(k, n) = 1}.

Prove that
xn − 1 =

∏
d|n

Φd(x) =
∏
d|n

Φn/d(x).

[Hint: The elements of Ω′
n are called the primitive nth roots of unity. Prove that

the set of all nth roots of unity can be expressed as a disjoint union
∐
d|n Ω′

d.]

(d) Use part (c) and induction to prove that actually Φn(x) ∈ Z[x]. [Hint: For any
f(x), g(x) ∈ Z[x] with g(x) monic there exist unique polynomials q(x), r(x) ∈
Z[x] such that f(x) = q(x)g(x) + r(x) and deg(r) < deg(g).]

[Remark: We will prove in Exercise 22.C that in fact Φn(x) is irreducible over Q,
hence is the minimal polynomial over Q for any primitive n-th root of unity ω. It
follows that the cyclotomic field Q(ω)/Q has dimension equal to Euler’s totient φ(n).]

19.C Quadratic Field Extensions, Part III

Prove that [E/F] = 2 implies E = F(ι) for some ι ∈ E− F with ι2 ∈ F. [Hint: For any
α ∈ E− F note that the set 1, α, α2 is linearly dependent, hence we have f(α) = 0 for
some polynomial f(x) ∈ F[x] of degree 2. Let β ∈ E be the other root of f(x) and
define ι := α− β ∈ E.]

19.D Impossible Constructions

We say that a number α ∈ R is constructible over Q if there exists a chain of field
extensions

α ∈ Fk ⊇ Fk−1 ⊇ · · · ⊇ F1 ⊇ F0 = Q

such that [Fi+1/Fi] = 2 for all i. [Reason: A point of R2 is “constructible with straight-
edge and compass” if and only if both of its coordinates are constructible in the above
sense.]

(a) Let f(x) ∈ Q[x] be any polynomial of degree 3. Prove that

f has a constructible root α ∈ R =⇒ f has a root in Q.

[Hint: You proved the induction step on the previous homework.]

(b) Prove that the real numbers 3√2, cos(2π/18) and cos(2π/7) are not constructible.
It follows from this that the classical problems of “doubling the cube”, “trisecting
the angle”, and “constructing the regular heptagon” are impossible. [Hint: Show
that each is a root of some irreducible polynomial f(x) ∈ Q[x] of degree 3.]



Week 20

20.1 Fields of Size Four and Eight

This week we will apply our knowledge of irreducible polynomials to the construction
of finite fields. We already know that finite fields exist since Fp := Z/pZ is a field for
any prime p ∈ Z. But are there any other finite fields?

Suppose that E is a finite field. This implies that E has characteristic p > 0 since
otherwise the prime subfield would be Q, which is infinite. So let Fp ⊆ E be the prime
subfield and consider the vector space E/Fp. Since E is finite we know that this vector
space is finite-dimensional, say [E/Fp] = k. In this case I claim that #E = pk.

Proof. Let α1, α2, . . . , αk ∈ E be a basis for E as a vector space over Fp. By definition,
every element of E can be expressed uniquely in the form

a1α1 + a2α2 + · · ·+ akαk for some a1, a2, . . . , ak ∈ Fp.

Then since there are p ways to choose each coefficient we conclude that

#E = (# choices for a1)(# choices for a2) · · · (# choices for ak) = pk.

□

But we still have not seen any fields of size pk with k ≥ 2. Here is our first example.

Example: A Field of Size Four. Consider the polynomial x2 + x+ 1 ∈ F2[x] with
coefficients in the field of two elements F2 = {0, 1}. It is easy to see that this polynomial
is irreducible over F2 because it has no roots in F2:

x 0 1

x2 + x+ 1 1 1

Since char(F2) = 2 6= 0 the Fundamental Theorem of Algebra doesn’t tell us anything
about the existence of roots, so we have to apply Kronecker’s Theorem. Specifically,
since F2[x] is a PID it follows that the ideal 〈x2 + x+ 1〉 ⊆ F2[x] is maximal, hence we
obtain a field:

E := F2[x]
〈x2 + x+ 1〉

.
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If we identify F2 with the subfield {a + 〈x2 + x + 1〉 : a ∈ F2} ⊆ E then we can think
of E ⊇ F2 as a field extension which contains an element α ∈ E satisfying

α2 + α+ 1 = 0.171

In fact, since x2 + x + 1 ∈ F2[x] is monic, irreducible and has α ∈ E as a root, we
conclude that it is the minimal polynomial for α over F2 and it follows from this that
E = F2(α):

E = F2[x]
〈x2 + x+ 1〉

= F2[x]
〈mα/F2(x)〉

∼= F2(α) ⊆ E.

Furthermore, since the minimal polynomial has degree 2 we conclude that {1, α} is a
basis for E over F2 and it follows that

E = {0 + 0α, 1 + 0α, 0 + 1α, 1 + 1α} = {0, 1, α, 1 + α}.

Thus we have constructed a field of size four. The addition table is just inherited from
the vector space structure of E/F2:

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

But the multiplication table is more interesting because it uses the polynomial relation

α2 + α+ 1 = 0 =⇒ α2 = −1− α = 1 + α.

For example, we have (1 + α)2 = 12 + 2α+ α2 = 1 + 0 + (1 + α) = α. Here is the full
table:

× 0 1 α 1 + α

0 0 0 0 0
1 0 1 α 1 + α
α 0 α 1 + α 1

1 + α 0 1 + α 1 α

In fact one could use this table as the definition of multiplication in E and then
check by hand that all of the field axioms are satisfied. However, that would leave the
existence of E completely unexplained. ///

The construction of the field E = {0, 1, α, 1 + α} above might have seemed rather
arbitrary, but I claim that there were no other options.

Theorem (There is Only One Field of Size Four). If E′ is any field of size four
then we have a ring isomorphism E′ ∼= E.

171Technically, α = x + 〈x2 + x + a〉 is the coset generated by x but from this point on we will just
call it α. Prior to Kronecker’s Theorem the “imaginary” roots of polynomials over finite fields were
called “Galois imaginaries” and their nature was somewhat mysterious.
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Proof. Let #E′ = 4. Then from previous remarks we know that E′ is a 2-dimensional
vector space over F2. Extend the set {1} to a basis {1, γ}. Then by definition we must
have

E′ = {0, 1, γ, 1 + γ}.

Clearly we have a vector space isomorphism identifying α↔ γ. But does this isomor-
phism also preserve multiplication? For this we need to prove that γ2 = 1 + γ. So
consider the element γ2 ∈ {0, 1, γ, 1 + γ}. Since γ 6= 0 in a field we must have γ2 6= 0.
Then since γ 6∈ {0, 1} in a field we must have γ2 6= γ. Finally, assume for contradiction
that we have γ2 = 1, so that 1− γ2 = 0. But then we have

0 = 1− γ2 = (1− γ)(1 + γ) = (1 + γ)(1 + γ) = (1 + γ)2,

which contradicts the fact that 1 + γ 6= 0. By process of elimination we conclude that
γ2 = 1 + γ and hence E′ ∼= E as rings. □

The next-smallest non-trivial power of a prime is 23 = 8.

Example: Two Fields of Size Eight? Based on the previous example, we will be
able to construct a field of size 8 if we can find an irreducible polynomial in F2[x] of
degree 3. In fact, there are two such polynomials! Indeed, the polynomials x3 + x2 + 1
and x3 + x+ 1 are both irreducible over F2 since they each have degree 3 and no roots
in F2:

x 0 1

x3 + x2 + 1 1 1
x3 + x+ 1 1 1

This guarantees that the following two vector spaces over F2 are fields:

E := {a+ bα+ cα : a, b, c ∈ F2, α
3 + α2 + 1 = 0},

E′ := {a+ bβ + cβ2 : a, b, c ∈ F2, β
3 + β + 1 = 0}.

For your information, here is the multiplication table of the field E:

× 0 1 α 1 + α α2 1 + α2 α+ α2 1 + α+ α2

0 0 0 0 0 0 0 0 0
1 0 1 α 1 + α α2 1 + α2 α+ α2 1 + α+ α2

α 0 α α2 α+ α2 1 + α2 1 + α+ α2 1 1 + α

1 + α 0 1 + α α+ α2 1 + α2 1 α 1 + α+ α2 α2

α2 0 α2 1 + α2 1 1 + α+ α2 1 + α α α+ α2

1 + α2 0 1 + α2 1 + α+ α2 α 1 + α α+ α2 α2 1
α+ α2 0 α+ α2 1 1 + α+ α2 α α2 1 + α 1 + α2

1 + α+ α2 0 1 + α+ α2 1 + α α2 α+ α2 1 1 + α2 α

And here is the multiplication table of E′:
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× 0 1 β 1 + β β2 1 + β2 β + β2 1 + β + β2

0 0 0 0 0 0 0 0 0
1 0 1 β 1 + β β2 1 + β2 β + β2 1 + β + β2

β 0 β β2 β + β2 1 + β 1 1 + β + β2 1 + β2

1 + β 0 1 + β β + β2 1 + β2 1 + β + β2 β2 1 β

β2 0 β2 1 + β 1 + β + β2 β + β2 β 1 + β2 1
1 + β2 0 1 + β2 1 β2 β 1 + β + β2 1 + β β + β2

β + β2 0 β + β2 1 + β + β2 1 1 + β2 1 + β β β2

1 + β + β2 0 1 + β + β2 1 + β2 β 1 β + β2 β2 1 + β

///

Even though these two multiplication tables look completely different I claim that

E ∼= E′.

Proof. It is difficult to find an isomorphism by hand so we will use an indirect method.
First observe that mα/F2(x) = x3 + x2 + 1 is the minimal polynomial for α/F2, so that

E = F2(α) ∼=
F2[x]

〈mα/F2(x)〉
= F2[x]
〈x3 + x2 + 1〉

.

Sadly, β does not satisfy the same equation. However, if we can prove that there exists
some element γ ∈ E′ satisfying γ3 + γ2 + 1 = 0 then since x3 + x2 + 1 is irreducible
over F2 we will conclude that mγ/F2(x) = x3 + x2 + 1 and hence

E = F2(α) ∼=
F2[x]

〈mα/F2(x)〉
= F2[x]
〈mγ/F2(x)〉

∼= F2(γ) ⊆ E′.

Finally, since F2(γ) and E′ both have size 8 we will conclude that E ∼= F2(γ) = E′.

To prove the existence of such an element we consider the group of units (E×,×, 1).
Since #E× has size 7, Lagrange’s Theorem tells us that υ7 = 1 for all υ ∈ E×. In
particular, since α ∈ E× we must have α7 − 1 = 0. Then since x3 + x2 + 1 is the
minimal polynomial for α/F2 we conclude that

(x3 + x2 + 1)f(x) = (x7 − 1) for some f(x) ∈ F2[x] of degree 4.

Next consider any non-zero element γ ∈ E′. Since the group of units of E′ also has size
7 we conclude again from Lagrange’s Theorem that γ7 = 1 and hence

(γ3 + γ2 + 1)f(γ) = (γ7 − 1) = 0.

Since this is true for all 0 6= γ ∈ E′ and since f(x) has at most 4 roots in E′, we
conclude that there exist at least three (hence exactly three) elements γ ∈ E′ such that
γ3 + γ2 + 1 = 0. □

That’s the best I can do by hand. To be more explicit, I used my computer to check
that

γ = 1 + β, 1 + β2, 1 + β + β2
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are the three promised roots of x3 + x2 + 1 in the field E′. Then by sending α 7→ γ we
obtain the following three explicit isomorphisms:

0 1 α 1 + α α2 1 + α2 α+ α2 1 + α+ α2

0 1 1 + β β 1 + β2 β2 β + β2 1 + β + β2

0 1 1 + β2 β2 1 + β + β2 β + β2 β 1 + β

0 1 1 + β + β2 β + β2 1 + β β β2 1 + β2

We will prove later that there can be no other isomorphisms E ∼= E′ because the Galois
group Gal(E/F2) has size 3 = [E/F2].

Note that the above proof does not imply that all fields of size 8 are isomorphic, just
these two particular fields of size 8. It happens to be true that any two finite fields
of the same size are isomorphic but in order to prove this we need an extra ingredient
called the Primitive Root Theorem.

20.2 Uniqueness of Finite Fields

The existence of finite fields beyond Z/pZ was discovered by Galois.172 However, the
concept of isomorphism is more modern. E. H. Moore first stated and proved the
uniqueness of finite fields in A Doubly-Infinite System of Simple Groups (1896), which
was read at the International Mathematical Congress in Chicago in 1893.173 This is the
same paper in which he introduced the English term “field” for the German “Körper”.
Moore denoted the unique field of size pk by GF[pk] for “Galois field”, but I will use
the modern notation Fpk .

In the next two lectures we will complete our discussion of finite fields by proving that
for all p, k ∈ Z with p prime and k ≥ 1, there exists a field of size pk which is unique
up to isomorphism. The full proof will require three lemmas, two of which you will
prove on the homework. The first lemma shows that any finite field whatsoever has
the form Fp[x]/〈f(x)〉 for some irreducible polynomial f(x) ∈ Fp[x].

Lemma (Primitive Root Theorem). If E is a finite field then (E×,×, 1) is a cyclic
group.

To be specific, let Fp ⊆ E be the prime subfield and suppose that [E/Fp] = k, hence
#E = pk. Since E× is cyclic we can write E = {0, 1, α, α2, . . . , αp

k−2} for some α ∈
E. Then since every element of E can be expressed in terms of Fp ∪ {α} using field
operations we conclude that

E = Fp(α) ∼=
Fp[x]

〈mα/Fp(x)〉
with deg(mα/Fp) = k.

172Gauss probably discovered them independently but he didn’t publish the results. Gauss’ approach
to publication was described by his motto: Pauca sed matura (Few, but ripe). His extensive mathe-
matical notebooks were published after his death and complicated many issues of priority.

173The main topic of the paper is the family P SL2(pk) of finite simple groups.
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Proof. Homework. □

Remarks:

• Recall that a generator of the group 〈e2πi/n〉 ⊆ C× is called a primitive n-th root
of unity. The number of generators is φ(n) and they are given by e2πik/n for
gcd(k, n) = 1. Since 〈e2πi/n〉 ∼= Z/nZ the term “primitive roots” can also be
applied to the additive generators of Z/nZ.

• In the Disquisitiones Arithmeticae (1801) Gauss proved for any prime p that the
multiplicative group (Z/pZ)× is cyclic. He applied the term primitive root to any
generator of this group and said that he was following Euler’s notation.

• Next, Galois claimed without showing any details that Gauss’ proof can be ex-
tended to show that the fields GF (pk) also have cyclic groups of units. He followed
Gauss in calling the generators primitive roots.

• So now the term “primitive root” had three different meanings. We can extend the
meaning yet again by observing that if α ∈ E× is a primitive root (multiplicative
generator for the units of a finite field) then it follows that E = Fp(α), so that α
is a generator of the field extension E ⊇ Fp.

• Finally, if E = F(γ) ⊇ F is any field extension generated by a single element γ ∈ E
then γ ∈ E is called a primitive element for the extension. Later we will prove
the so-called Primitive Element Theorem, which says that a primitive element
exists when char(F) = 0 and [E/F] <∞.

• In conclusion, the terms “primitive root” and “primitive element” are confusing
and terrible. I prefer the term “Galois resolvent” instead of “primitive element”,
but the damage has already been done. The most I can do is warn you. ///

Theorem (Uniqueness of Finite Fields). Let E and E′ be finite fields. Then

#E = #E′ =⇒ E ∼= E′.

Proof. Let Fp ⊆ E be the prime subfield and suppose that [E/Fp] = k, hence #E = pk.
From the Primitive Root Theorem there exists some α ∈ E of multiplicative order pk−1.
It follows from this that E = {0, 1, α, α2, . . . , αp

k−2} = Fp(α) and hence

E = Fp(α) ∼=
Fp[x]

〈mα/Fp(x)〉
with deg(mα/Fp) = k.

Since αpk−1 = 1 we also know that

mα/Fp(x)f(x) =
(
xp

k−1 − 1
)

for some f(x) ∈ Fp[x] of degree pk − 1− k.

Now consider the field E′, which also has size pk. Since the group of units of E′ has
size pk − 1 we conclude from Lagrange’s Theorem that γpk−1 = 1 and hence

mα/Fp(γ)f(γ) =
(
γp

k−1 − 1
)

= 0 for all 0 6= γ ∈ E′.
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Since this holds for pk − 1 distinct values of γ and since deg(f) < pk − 1 there must
exist some γ ∈ E′ such that mα/Fp(γ) = 0 and hence mα/Fp(x) = mγ/Fp(x) ∈ Fp[x]. It
follows that

E = Fp(α) ∼=
Fp[x]

〈mα/Fp(x)〉
= Fp[x]
〈mγ/Fp(x)〉

∼= Fp(γ) ⊆ E′.

Finally, since #Fp(γ) = #E = #E′ we conclude that

E ∼= Fp(γ) = E′.

□

[Remark: In fact, since xpk−1− 1 splits in E′[x] we conclude that mα/Fp(x) also splits
in E′[x].174 Then from the Repeated Root Lemma below, this implies that mα/Fp(x)
has k distinct roots γ ∈ E′, leading to k distinct isomorphisms E ∼= E′. We will see
later that there can be no other isomorphisms between E and E′.]

20.3 Existence of Finite Fields

So far we have proved that:

• Any finite field has size pk for some prime p.

• Any two finite fields of the same size are isomorphic.

We have also see that irreducible polynomials in Fp[x] can be used to create finite fields.
Indeed, if f(x) ∈ Fp[x] is irreducible of degree k then we obtain a field of size pk:

#
( Fp[x]
〈f(x)〉

)
= pk.

But it not obvious whether irreducible polynomials exist. Gauss gave a tricky proof
for the existence of irreducible polynomials in the Disquisitiones. Galois was inspired
by Gauss’ work and he came up with an elegant direct proof for the existence of finite
fields, which does not assume the existence of an irreducible polynomial, but obtains
one as a corollary.

The proof requires two more lemmas, one of which you will prove on the homework.

Lemma (Repeated Roots). Let F be a field and let D : F[x]→ F[x] be the “formal
derivative” of polynomials. Given a polynomial f(x) ∈ F[x] we say that α ∈ F[x] is a
repeated root of f(x) if f(x) = (x− α)2g(x) for some g(x). Then I claim that

α is a repeated root of f(x) ⇐⇒ f(α) = 0 and Df(α) = 0.

Proof. Homework. □
174Here were are using the fact that E′[x] is a UFD.
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Lemma (The Frobenius Endomorphism).175 Let R be any ring of prime char-
acteristic p. Then the map a 7→ ap defines a ring homomorphism R → R, called the
Frobenius endomorphism of R.

Proof. Note that 0p = 0 and 1p = 1, and for any a, b ∈ R note that (ab)p = apbp.
It only remains to show that (a + b)p = ap + bp for all a, b ∈ R. By definition we say
that R has characteristic p when the unique ring homomorphism ι : Z→ R has kernel
pZ. Then for all n ∈ pZ and a ∈ R it follows that ι(n)a = 0. Now recall the binomial
theorem:

(a+ b)p = ap + bp +
p−1∑
k=1

ι

(
p!

k!(p− k)!

)
akbp−k ∈ R.

Now let 1 ≤ k ≤ p− 1 and consider the prime factorization of the binomial coefficient
p!/ [k!(p− k)!] ∈ Z. Clearly p divides the numerator. But the denominator k!(p − k)!
is a product of integers, each of which is smaller than p. Thus it follows from Euclid’s
lemma that p does not divide the denominator, and we conclude that

p!
k!(p− k)!

∈ pZ =⇒ ι

(
p!

k!(p− k)!

)
= 0 ∈ R.

□

The following proof comes from Galois’ paper On the theory of numbers (1830). This
is the reason that finite fields are sometimes called “Galois fields”.

Theorem (Existence of Finite Fields). For any integers p, k ≥ 1 with p prime
there exists a field of size pk. In fact, I claim that any splitting field of xpk − x ∈ Fp[x]
has size pk.

Proof. The idea of this proof is due to Galois. Let E ⊇ Fp be a splitting field for the
polynomial f(x) := xp

k − x ∈ Fp[x]. From the Repeated Root Lemma we know that
if α ∈ E is a repeated root of f(x) then we must have f(α) = 0 and Df(α) = 0. But
the derivative is Df(x) = pkxp

k−1 − 1 = 0− 1 = −1 ∈ Fp[x], which has no roots at all.
It follows that f(x) has pk distinct roots in E. Let Ω ⊆ E be the set of roots. We will
show that in fact Ω ⊆ E is a subfield, hence Ω = E is our desired field of size pk.

Indeed, Ω contains 0 and 1. Furthermore, if f(α) = 0 and f(β) = 0 with α 6= 0 then
we have

(αβ)pk = αp
k
βp

k = αβ =⇒ f(αβ) = 0

175This result is sometimes called the “Freshman’s Binomial Theorem”, which I think is undignified.
Apparently the name of Georg Frobenius was attached to this idea by Helmut Hasse in (1926–1930)
because of a related and more difficult result proved by Frobenius. See the footnote on page 325
of The Mathematics of Frobenius in Context (2013), by Thomas Hawkins. Frobenius was a Berlin
mathematician who nevertheless was influenced by Dedekind and the Göttingen school. He is known
for proving many deep theorems that now form the backbone of linear algebra and representation
theory. The history of linear algebra is much harder to trace than the history of abstract algebra
because it is so ubiquitous in every area of mathematics.
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and (
α−1

)pk
=
(
αp

k
)−1

= α−1 =⇒ f(α−1) = 0.

Finally, by applying the Frobenius endomorphism k times we obtain

(α+ β)pk = (αp + βp)pk−1 = (αp2 + βp
2)pk−2 = · · · = αp

k + βp
k = α+ β,

and hence f(α+ β) = 0. □

Notation. We have seen that there exists a unique field of size pk for any integers
p, k ≥ 1 with p prime. We will use the following notation for this field:

Fpk := the unique field of size pk.

Observe that this agrees with the earlier notation Fp = Z/pZ. ///

Corollary (Existence of Irreducible Polynomials). For any integers p, k ≥ 1 with
p prime there exists at least one irreducible polynomial f(x) ∈ Fp[x] of degree k.

Proof. Consider the field Fpk . By Lagrange’s Theorem, the prime subfield (being an
additive subgroup) must have size dividing pk, hence the prime subfield is Fp ⊆ Fpk .
Observe that [Fpk/Fp] = k since for any finite-dimensional vector space V over Fp we
have

#V = pdim(V ).

Next, recall recall from the Primitive Root Theorem that there exists an element γ ∈
Fpk such that Fpk = Fp(γ). Finally, we have

[Fp(γ)/Fp] = [Fpk/Fp] = k,

which implies that the minimal polynomial mγ/Fp(x) ∈ Fp[x] has degree k. (Recall that
minimal polynomials are always irreducible.) □

[Remark: It is not necessarily easy to find an irreducible polynomial of a given degree.]

Remarks:

• It follows from the uniqueness of finite fields that any two splitting fields of
xp

k − x ∈ Fp[x] are isomorphic. Next week we will prove that the same result
holds for the splitting fields of any polynomial over any field.

• Conversely, let E be any field of size pk with prime subfield Fp ⊆ E. From
Lagrange’s Theorem applied to the group of units, one can show that every
element of E is a root of xpk−1−x ∈ Fp[x] and hence E is a splitting field for this
polynomial. Thus the uniqueness of splitting fields will give a new proof for the
uniqueness of finite fields.
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• As I mentioned at the beginning of this lecture, Gauss proved in the Disquisitiones
that there exist irreducible polynomials of all degrees in Fp[x]. The way he did
this was to first count the polynomials. To be specific, he first showed that the
number of irreducible polynomials of degree k over Fp is given by

1
k

∑
d|k

µ(k/d)pd,

where µ : Z→ {−1, 0, 1} is the number-theoretic möbius function. Then he gave
a tricky argument that this formula can never equal zero. This result can be
viewed as the proof of existence for finite fields, but Gauss never discussed this
in print. It turns out that Gauss privately developed a full theory of finite fields
in parallel with Galois’ theory, but this was only discovered after his death in
1855.176

Exercises

20.A Formal Derivation and Repeated Roots

If F is a field then we can think of the ring of polynomials F[x] as an infinite dimensional
F-vector space with basis {1, x, x2, . . .}. Let D : F[x] → F[x] be the unique F-linear
function defined by

D(xn) = nxn−1 for all n ≥ 0.

(a) For all polynomials f(x), g(x) ∈ F[x] prove that the product rule holds:

D(fg) = f ·Dg +Df · g.

[Hint: Show that each side is an F-bilinear function of f and g. Thus it suffices
to check the case when f = xm and g = xn are basis elements.]

(b) For all polynomials f(x) ∈ F[x] use part (a) and induction to prove the power
rule:

D(fn) = nfn−1 ·Df for all n ≥ 0.

(c) Consider a polynomial f(x) ∈ F[x] and a field extension E ⊇ F. We say that
α ∈ E is a repeated root of f when f(x) = (x − α)2g(x) for some polynomial
g(x) ∈ E[x]. Use part (a) to prove that

α is a repeated root of f ⇐⇒ f(α) = 0 and Df(α) = 0.

20.B The Primitive Root Theorem

If F is a finite field then the group of units F× is cyclic.

176According to Günther Frei (2005) these results appear in an early unpublished section eight of
the Disquisitiones, written by Gauss in 1797. Moreover, it seems that Gauss’ treatment was more
rigorous than that of Galois, since he treated the “Galois imaginagies” as cosets of polynomials. The
“unpublished section eight” was first published by Dedekind in 1863 with a second printing in 1876.
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(a) Consider m,n ∈ Z with gcd(m,n) = 1. If m|nk prove that m|k. If m|k and
n|k prove that mn|k. [Hint: Since gcd(m,n) = 1 there exist x, y ∈ Z with
mx+ ny = 1.]

(b) Let A be an abelian group. If elements a, b ∈ A have orders m,n with gcd(m,n) =
1, prove that ab has order mn. [Hint: Show that (ab)k = ε implies m|k and n|k.]

(c) Let A be an abelian group. If m is the maximal order of an element, prove
that every element has order dividing m. [Hint: Let a, b ∈ A have orders `,m
with ` ∤ m. Then for some prime p we have ` = pi`′ and m = pjm′ with p ∤ `′,m′

and i > j. Use (b) to show that a`′bpj has order greater than m.]

(d) If α ∈ F× is an element of maximal order m, prove that F× = {1, α, . . . , αm−1}.
[Hint: If not then the polynomial xm − 1 ∈ F[x] has too many roots. Use (c).]

20.C Laplace’s Proof of the FTA

The FTA is easily proved with complex analysis. However, it is still nice to have an
elementary proof that is mostly algebraic. The following proof from Laplace (1795)
builds on earlier ideas of Euler (1749) and Lagrange (1770). A logical gap in the proof
was later filled by Kronecker’s Theorem (1887). Specifically, we will prove that

every non-constant polynomial f(x) ∈ R[x] has a root in C.

(a) Observe that every polynomial f(x) ∈ R[x] of odd degree has a root in R.

(b) Now let f(x) ∈ R[x] have degree n = 2em with e ≥ 1 and m odd. Consider f(x)
as an element of C[x] and let E ⊇ C be a splitting field:

f(x) = (x− α1)(x− α2) · · · (x− αn) ∈ E[x].

Now for any real number λ ∈ R we define the polynomial

gλ(x) :=
∏

1≤i<j≤n
(x− βijλ) ∈ E[x] with βijλ := αi + αj + λαiαj ∈ E.

Prove that gλ(x) ∈ R[x] and deg(gλ) = 2e−1m′ with m′ odd. [Hint: Newton.]

(c) By induction on e we can assume that gλ(x) has a complex root βijλ ∈ C. If we
apply this argument for more than

(n
2
)

different values of λ ∈ R then we will find
specific indices i < j and real numbers λ 6= µ such that βijλ and βijµ are both
in C. In this case prove that αi and αj are in C, hence f(x) has a complex root.
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Week 21

21.1 The Finiteness Theorem

After our detour through ring and field theory, we are finally ready to resume our
discussion of Galois groups. The following definition is due to Dedekind, although he
was only interested in the case when E is a subfield of C.

Dedekind’s Definition of Galois Groups. For any field extension E ⊇ F we define

Gal(E/F) := {field automorphisms σ : E→ E such that σ(a) = a for all a ∈ F}.

///

Our first goal is to show that the Galois group Gal(E/F) is finite whenever E is a
finite-dimensional vector space over F. The proof will involve the notion of multi-
variable polynomials. We skirted around this concept before, but now I will give you
the official definition.

Definition of Multi-Variable Polynomials. Let R be a field and let {x1, . . . , xn}
be a set of formal symbols, called “variables”. We define the ring of polynomials by
induction:

R[x1, . . . , xn] := R[x1, . . . , xn−1][xn].

Explicitly, each element of this ring has the form

f(x1, . . . , xn) =
∑

ak1,...,knx
k1
1 · · ·x

kn
n ,

where the sum is over all n-tuples of natural numbers (k1, . . . , kn) ∈ Nn and all but
finitely many of the coefficients ak1,...,kn ∈ R are equal to zero. This ring also satisfies
a universal property, which is inherited from the one variable case.

Let ϕ : R → S be any ring homomorphism and let α1, . . . , αn ∈ S be any elements,
not necessarily distinct. Then there exists a unique ring homomorphism ϕα1,...,αn :
R[x1, . . . , xn] → S sending xi 7→ αi for all i and acting on the coefficients by ϕ. Here
is the explicit definition:

ϕα1,...,αn

(∑
ak1,...,knx

k1
1 · · ·x

kn
n

)
=
∑

ϕ(ak1,...,kn)αk1
1 · · ·α

kn
n .

And here is the commutative diagram:
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In modern terms we say that

R[x1, . . . , xn] is the free R-algebra generated by the set {x1, . . . , xn}.

///

The definition of multi-variable polynomials is motivated by the following fact, which
generalizes the case of one variable. For any ring extension E ⊇ R and for any elements
α1, . . . , αn ∈ E, the smallest subring containing the set R∪{α1, . . . , αn} is equal to the
image of the evaluation:

R[α1, . . . , αn] = im(id α1,...,αn).

Proof. Since im(id α1,...,αn) ⊆ E is a subring containing the set R ∪ {α1, . . . , αn},
it must contain the smallest such subring. Conversely, since R[α1, . . . , αn] ⊆ E is a
subring containing the set R∪{α1, . . . , αn}, it must contain every polynomial expression
f(α1, . . . , αn). □

We are ready to prove our first theorem about Galois groups. Before reading the proof
you may want to go back and remind yourself about the Orbit-Stabilizer Theorem for
group actions.

The Finiteness Theorem. Let [E/F] <∞ and G = Gal(E/F). Then

(1) There exist elements α1, . . . , αn ∈ E such that E = F(α1, . . . , αn).

(2) Every element of E is algebraic over F, hence

F(α1, . . . , αn) = F[α1, . . . , αn].

(3) If σ ∈ G satisfies σ(αi) = αi for all i then we have σ = id .

(4) Let mi(x) ∈ F[x] be the minimal polynomial of αi/F. Then we have

#G ≤ deg(m1) deg(m2) · · · deg(mn)

and hence G is finite.

///

Proof. (1) If E = F then we are done. Otherwise, let α1 ∈ E − F and consider the
extension F(α1) ⊇ F. Since [F(α1)/F] > 1 we have [E/F(α1)] < [E/F] and it follows by
induction that there exist elements α2, . . . , αn ∈ E such that

E = F(α1)(α2, . . . , αn) = F(α1, α2, . . . , αn).
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(2) Consider any element α ∈ E. Since [E/F] <∞ we know that the set {1, α, α2, . . .}
is linearly dependent over F, hence there exist some coefficients a0, . . . , ak ∈ F, not all
zero, such that a0 + a1α+ · · ·+ akα

k = 0. In other words, α is algebraic over E over F.

Now consider the elements α1, . . . , αn from part (1). Since α1 is algebraic over F the
Minimal Polynomial Theorem tells us that F[α1] is a field and hence F[α1] = F(α1).
Then since α2 is algebraic over F, hence also over F(α1), the Minimal Polynomial
Theorem tells us that F[α1](α2) = F[α1][α2] = F[α1, α2]. Continuing in this way gives
the result.

(3) Consider any element σ ∈ G such that σ(αi) = αi for all i. From part (2) and
the remarks before the theorem we know that every element of E can be expressed as
f(α1, . . . , αn) for some polynomial f(x1, . . . , xn) ∈ F[x1, . . . , xn]. But then since σ fixes
F and preserves ring operations we have

σ (f(α1, . . . , αn)) = f (σ(α1), . . . , σ(αn)) = f(α1, . . . , αn),

and hence σ = id .

(4) From (2) we know that each generator αi ∈ E has a minimal polynomial mi(x) ∈
F[x]. For any σ ∈ G we observe that σ(αi) is a root of mi(x) because

mi(σ(αi)) = σ(mi(α)) = σ(0) = 0.

In other words, the group G acts on the set Ωi ⊆ E of roots of mi(x) in the field E.
Moreover, G acts on the Cartesian product of sets:

G↷ (Ω1 × · · · × Ωn).

Let ~α = (α1, . . . , αn) be the only element of this set that we know,177 and consider the
G-orbit:

Orb(~α) = {(σ(α1), . . . , σ(αn)) : σ ∈ G} ⊆ Ω1 × · · · × Ωn.

In part (3) we proved that the stabilizer is trivial: Stab(~α) = {id }. Hence from the
Orbit-Stabilizer Theorem we obtain a bijection

G↔ G

{id }
= G

Stab(~α)
↔ Orb(~α) ⊆ Ω1 × · · · × Ωn.

Since mi(x) has at most deg(mi) roots in the field E we have #Ωi ≤ deg(mi) and hence

#G = #Orb(~α) ≤ #(Ω1 × · · · × Ωn) = #Ω1 × · · · ×#Ωn ≤
∏

deg(mi) <∞.

□

In fact, Dedekind proved a sharper bound:

#Gal(E/F) ≤ [E/F].

177In fact, there may be no other elements.
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However, his proof used very different methods.178 For pedagogical reasons I chose to
prove a weaker result using more relevant methods.

Below we will see that Galois theory is concerned with certain “nice” field extensions
E ⊇ F that achieve the upper bound: #Gal(E/F) = [E/F]. From the proof of the
Finiteness Theorem we can already see how this might happen. Suppose that an
extension E ⊇ F satisfies:

• E = F(γ) for some element γ ∈ E with minimal polynomial m(x) ∈ F[x],

• the polynomial m(x) splits in E[x],

• the polynomial m(x) has no multiple roots in E,

• the Galois group G = Gal(E/F) acts transitively on the roots of m(x). In other
words, for any two roots α, β there exists a group element σ ∈ G with σ(α) = β.

In this case let Ω ⊆ E be the set of roots of m(x). From the assumptions we have

#Ω = deg(m) = [F(γ)/F] = [E/F].

Now if σ ∈ G fixes γ then for every element f(γ) ∈ F[γ] = F(γ) = E we have σ(f(γ)) =
f(σ(γ)) = f(γ) and hence σ = id . Finally, since G acts transitively on Ω we obtain
bijections

G↔ G

{id }
= G

Stab(γ)
↔ Orb(γ) = Ω

and it follows that #G = #Ω = [E/F]. ///

It may seem to you that the four properties above are rather special, but we will soon
prove that these properties hold for a large and natural class of field extensions. To be
specific, we will show that these four properties hold whenever:

• F is finite or has characteristic zero,179

• E is a splitting field for some polynomial f(x) ∈ F[x].

21.2 Definition of Galois Extensions

From now on we will only consider finite-dimensional field extensions. Last time we
proved that if [E/F] <∞ then the group Gal(E/F) is finite. I also mentioned (but did
not prove) Dedekind’s theorem, which says that

#Gal(E/F) ≤ [E/F].

We have a special name for field extensions that achieve this bound.

178It uses the “linear independence of characters”.
179This includes every field that you have ever seen, so it is barely a restriction.
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Definition of Galois Extensions. Let E ⊇ F be a finite-dimensional field extension.
We say that E/F is a Galois extension180 if the following equality holds:

#Gal(E/F) = [E/F].

///

Galois extensions are the field-theoretic version of “normal subgroups”. (The Funda-
mental Theorem of Galois Theory will make this analogy precise.) And, just as with
normal subgroups, there are several equivalent ways to state the definition. Before
investigating this, let me show you some small examples.

Example: If [E/F] = 1 or 2 then E/F is Galois.

Proof. If [E/F] = 1 then we have E = F and it follows that Gal(E/F) = {id }. Now
suppose that [E/F] = 2. On a previous homework you showed that this implies E = F(ι)
for some element ι ∈ E with ι 6∈ F and ι2 ∈ F. Let me briefly recall the proof.

Choose any α ∈ E − F. Since [E/F] = 2 we know that the set {1, α, α2} is linearly
dependent over Q. Since α 6∈ F it follows that f(α) = 0 for some f(x) ∈ Q[x] of degree
2. Let β ∈ E be the other root of f(x) and define ι := α− β. Then ι2 = (α− β)2 ∈ F
is the discriminant of f(x) and one can show that E = F(α) = F(ι).

If follows that {1, ι} is a basis for the vector space E/F. To compute the Galois group,
let σ ∈ Gal(E/F). Then for any element a+ bι ∈ E we have

σ(a+ bι) = a+ bσ(ι).

Furthermore, since ι2 = a for some a ∈ F we must also have

σ(ι)2 = σ(ι2) = σ(a) = a.

Since the polynomial x2−a ∈ F[x] has at most two roots in E, this implies that σ(ι) = ι
or σ(ι) = −ι. The first choice corresponds to the identity element and the second choice
yields the following function:

τ(a+ bι) := a− bι.

One can check by hand that this function is, indeed, a field automorphism and hence

#Gal(E/F) = #{id , τ} = 2 = [E/F].

□

[Remark: This result is analogous to the fact that a subgroup H ⊆ G satisfying
#(G/H) = 2 is necessarily normal. Again, The Fundamental Theorem of Galois Theory
will make this analogy precise.]

180I don’t know the origin of this terminology but it seems reasonable. In the literature you will
see a “Galois extension” defined as “finite-dimensional, normal and separable”. These last two terms
have technical meanings that are only relevant for infinite fields of positive characteristic. I think it is
appropriate to ignore such fields in a first course on the subject. (Also, I plan never to teach a second
course.)
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Non-Example: The field extension Q( 3√2) ⊇ Q is not Galois.

Proof. Let α = 3√2 ∈ R be the real cube root of 2. Since α is a root of the irreducible
polynomial x3 − 2 ∈ Q[x] we know from the Minimal Polynomial Theorem that

[Q(α)/Q] = deg(x3 − 2) = 3.

On the other hand, for any σ ∈ Gal(Q(α)/Q) we must have

0 = σ(0) = σ(α3 − 2) = σ(α)3 − 2.

Then since Q(α) ⊆ R and since α is the only real root of x3−2 we must have σ(α) = α.
Finally, since α/Q is algebraic we know that every element of Q(α) = Q[α] has the
form f(α) for some polynomial f(x) ∈ Q[x] and hence

σ (f(α)) = f (σ(α)) = f(α).

If follows that #Gal(Q(α)/Q) = #{id } = 1 < 3 = [Q(α)/Q]. □

[Remark: The ultimate problem with this example is that the field Q( 3√2) contains
only one root of the irreducible polynomial x3 − 2 ∈ Q[x]. We can fix this problem by
passing to the splitting field.]

Example: The splitting field of x3 − 2 ∈ Q[x] is Galois.

Proof. The roots of x3 − 2 ∈ Q[x] are the complex numbers α, ωα, ω2α ∈ C where
α = 3√2 ∈ R and ω = e2πi/3. It follows that the splitting field is

E = Q(α, ωα, ω2α) = Q(α, ω).

Since x3−2 is the minimal polynomial for α/Q and since x2 +x+1 is the minimal poly-
nomial for ω/Q(α) we conclude from the Minimal Polynomial Theorem and Dedekind’s
Tower Law that [E/Q] = 6 with basis {1, α, α2, ω, ωα, ωα2}. To compute the Galois
group, let σ ∈ Gal(E/Q). Then for any a, b, c, d, e, f ∈ Q we have

σ(a+ bα+ cα2 + dω + eαω + fα2ω)
= a+ bσ(α) + cσ(α)2 + cσ(ω) + eσ(α)σ(ω) + fσ(α)2σ(ω).

It follows that the function σ is determined by the two numbers σ(α) and σ(ω). Fur-
thermore, since σ(α) is a root of x3 − 2 and since σ(ω) is a root of x2 + x+ 1 we must
have

σ(α) ∈ {α, ωα, ω2α} and σ(ω) ∈ {ω, ω2}.

Since all of these roots exist in E we obtain six different functions σ : E → E. These
functions are necessarily F-linear, hence they fix F and preserve addition.

But how do we know that these functions preserve multiplication?



21.3 The Splitting Field Theorem 279

For the moment let me just say that one can check this by hand, or, better, with a
computer. It follows that #Gal(E/Q) = 6 = [E/Q] and hence E/Q is Galois. □

This last example illustrates two points:

• Splitting fields are likely to be Galois. In fact, we will prove below that any
splitting field E/F is Galois as long as F is finite or has characteristic zero.

• The hard part of the proof is to show that certain functions defined on the roots
can be lifted to automorphisms of the splitting field. Clearly the brute force
method is not good enough. We will need a general theorem about this.

21.3 The Splitting Field Theorem

The Finiteness Theorem showed that Galois groups are small. Now we want to prove
that the Galois group of a splitting field is big. The Splitting Field Theorem below is
probably the most subtle theorem in this course. It is good to prepare for this theorem
with a lemma.

The Lifting Lemma. Let E ⊇ F and E′ ⊇ F′ be field extensions and let ϕ : F → F′

be an isomorphism. Let α ∈ E be a root of an irreducible polynomial f(x) ∈ F[x]
and let β ∈ E′ be any root of fϕ(x) ∈ E′. Then there exists a field isomorphism
ϕ̂ : F(α)→ F′(β) lifting ϕ : F→ F′ and sending α 7→ β. Here is a picture:

It is worth highlighting the special case when F = F′, E = E′ and ϕ = id . In this case
if α, β ∈ E are any two roots of an irreducible polynomial f(x) ∈ F then there exists
an isomorphism F(α)→ F(β) sending α 7→ β and fixing the elements of F. ///

Proof. The proof is easy, but only because we have developed the right technology. Let
ϕ : F→ F′ be a field isomorphism and let α ∈ E ⊇ F be a root of an irreducible poly-
nomial f(x) ∈ F[x]. Since ϕ : F→ F′ is a ring isomorphism we obtain an isomorphism
of polynomial rings F[x]→ F′[x] by letting ϕ act on the coefficients:

F[x] ∼−→ F′[x]
f(x) 7→ fϕ(x).

Suppose that there exist a root β ∈ E′ of the image polynomial fϕ(x) ∈ F[x]. Since
f(x) and fϕ(x) are both irreducible, it follows that these polynomial are (up to non-
zero scalar multiples) the minimal polynomials for α/F and β/F′, respectively. Then
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from the isomorphism F[x] ∼= F′[x] and the Minimal Polynomial Theorem we obtain a
sequence of three isomorphisms:

F(α) ∼= F[x]/〈f(x)〉 ∼= F′[x]/〈fϕ(x)〉 ∼= F′(β)
α ↔ x+ 〈f(x)〉 ↔ x+ 〈fϕ(x)〉 ↔ β.

Composing these gives the desired isomorphism F(α) ∼= F′(β). □

Application: Complex Conjugation. Let E = F(ι) with ι2 = a ∈ F and ι 6∈ F.
Then ±ι are roots of the irreducible polynomial x2 − a ∈ F[x]. It follows from the
Lifting Lemma that there exists an isomorphism E = F(ι) → F(−ι) = E sending
ι 7→ −ι and fixing F. This proves that the “conjugation” map a+ bι 7→ a− bι is a field
automorphism, without doing any calculations. ///

That was a small time savings, but the next one is substantial.

Application: The Splitting Field of x3 − 2 ∈ Q[x]. Recall that there exist six
functions σ : E → E defined by letting σ(α) and σ(ω) be any roots of x3 − 2 and
x2 + x+ 1, respectively. Let’s prove that these functions are field automorphisms.

First, let α′ ∈ {α, ωα, ω2α} be any root of x3 − 2. Since x3 − 2 is irreducible there
exists a field isomorphism ϕ : Q(α) → Q(α′) sending α 7→ α′ and fixing Q. Next,
observe that the polynomial x2 + x+ 1 is still irreducible over Q(α) because Q(α) ⊆ R
and x2 + x + 1 has no real roots. Thus if ω′ ∈ {ω, ω2} is any root of x2 + x + 1 then
there exists an isomorphism ϕ̂ : Q(α)(ω)→ Q(α′)(ω′) lifting ϕ and sending ω 7→ ω′. In
particular, this ϕ̂ also sends α 7→ α′ and fixes Q. Finally, since

E = Q(α, ω) = Q(α)(ω) ∼= Q(α′)(ω′) ⊆ E

we conclude that ϕ̂ : E → E is a field automorphism. Thus we have proved the
existence of the six desired elements of the Galois group Gal(E/Q). ///

The following theorem simply generalizes this procedure. The theorem is strangely
worded, but this is only for the purposes of the induction proof. Our real interest is
the special case when ϕ = id : F → F is the identity. Before stating the theorem it is
worth restating the definition of a splitting field.

Let f(x) ∈ F[x] be a polynomial. We say that E ⊇ F is a splitting field for f(x) if

• The polynomial f(x) splits in E[x]. That is, we have

f(x) = (x− α1)(x− α2) · · · (x− αn) for some α1, . . . , αn ∈ E.

• If E ⊇ K ⊇ F and if f(x) splits in K[x] then K = E. Equivalently, we have

E = F(α1, . . . , αn).
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The Splitting Field Theorem (Existence of Automorphisms). Consider the
following:

• Let ϕ : F→ F′ be an isomorphism of fields and let f(x) ∈ F[x] be any polynomial.

• Let E ⊇ F and E′ ⊇ F′ be splitting fields for f(x) ∈ F[x] and fϕ(x) ∈ F′[x].

• Let pi(x)|f(x) be a list of distinct181 irreducible factors in F[x].

• For each i let αi ∈ E be a root of pi(x) and let βi ∈ E′ be a root of pϕi (x). Note
that such roots always exist because E and E′ are splitting fields.182

Then there exists an isomorphism Φ : E → E′ lifting ϕ and sending αi 7→ βi for all i.
///

[Remark: There are two small issues in this proof that you will check on the home-
work. Namely, (a) any divisor of a split polynomial is also split, and (b) non-associate
irreducible polynomials have no roots in common.]

Proof. We will use induction on deg(f). The result is vacuously true when deg(f) = 1
so let deg(f) = n ≥ 2 and let E ⊇ F be a splitting field for f(x) ∈ F[x]. If p1(x)|f(x) is
any irreducible factor then since p1(x) splits in E we know that p1(x) has a root, say
α1 ∈ E. Next, observe that pϕ1 (x)|fϕ(x) in F′[x]. Since E′ is a splitting field for fϕ(x)
this implies that pϕ1 (x) has some root, say β1 ∈ E′. Thus from the Lifting Lemma we
obtain an isomorphism ϕ̂ : F(α1)→ F′(β1) lifting ϕ and sending α1 7→ β1.

Next, by Descartes’ Theorem there exists g(x) ∈ F(α1)[x] of degree n − 1 such that
f(x) = (x−α1)g(x) and by applying the isomorphism ϕ̂ we obtain fϕ(x) = (x−β1)gϕ(x)
for some gϕ(x) ∈ F′[x]. Observe that E ⊇ F(α) is a splitting field for g(x) since if g(x)
splits over an intermediate field E ⊇ K ⊇ F(α) then f(x) also splits over K. Since E is
a splitting field for f(x) this implies that K = E. Similarly, E′ is a splitting field for
gϕ(x).

Furthermore, if p2(x)|f(x) is irreducible and not a scalar multiple of p1(x) then since
p1(x), p2(x) have no common root we must have p2(x) ∤ (x−α1) and hence p2(x)|g(x).
Finally, let αi ∈ E and βi ∈ E′ be any roots of the polynomials pi(x) ∈ F[x] and
pϕ(x) ∈ F′[x] for i ≥ 2. Since deg(g) < deg(f) we conclude by induction that there
exists an isomorphism Φ : E → E′ lifting ϕ̂ : F(α1) → F′(β1) and sending αi 7→ βi for
all i ≥ 2, hence Φ also lifts ϕ and sends α1 7→ β1. Here is a picture:

181Technically: We assume that the polynomials a pairwise non-associate. That is, for any i 6= j and
λ ∈ F we have pi(x) 6= λpj(x).

182This is fairly obvious but it still needs a proof. You will provide a proof on the homework, using
the fact that E[x] is a UFD.
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□

To see how this applies to the previous example, let E ⊇ Q be a splitting field for
x3 − 2 and observe that E is also a splitting field for f(x) = (x3 − 2)(x2 + x+ 1). Let
p1(x) = x3 − 2 and p2(x) = x2 + x + 1. Then for any roots α, α′ of x3 − 2 and roots
ω, ω′ of x2 + x + 1 there exists an isomorphism E → E sending (α, ω) 7→ (α′, ω′) and
fixing Q. This is a powerful theorem.

In addition to helping us compute Galois groups, the Splitting Field Theorem has an
important theoretical corollary.

Corollary (Uniqueness of Splitting Fields). Let E,E′ ⊇ F be splitting fields
for the same polynomial f(x) ∈ F[x]. Then there exists a (non-unique) isomorphism
Φ : E→ E′ fixing F.

Proof. Take F = F′ and ϕ = id in the theorem. Ignore the roots of f(x). □

So far we have only defined Galois groups for extensions. This corollary allows us to
define the Galois group of a polynomial. Note that this is the reverse of the historical
development.

The Galois Group of a Polynomial. Let f(x) ∈ F[x] be any polynomial and let
E ⊇ F be any splitting field for f(x). We define the Galois group of f over F as follows:

Gal(f/F) := Gal(E/F).

I claim that this group is well-defined up to isomorphism.

Proof. Let E,E′ ⊇ F be any two splitting fields and let Φ : E→ E′ be an isomorphism
fixing F, which exists by the corollary. Then claim that the map σ 7→ Φ ◦ σ ◦ Φ−1 is a
group isomorphism Gal(E/F)→ Gal(E′/F). Indeed, for any σ ∈ Gal(E/F) we observe
that the function Φ ◦ σ ◦ Φ−1 : E′ → E′ is a field automorphism that fixes F. Then we
observe that the function σ 7→ Φ ◦ σ ◦ Φ−1 is invertible and preserves composition. □

Remarks:
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• The uniqueness of splitting fields is not news for finite extensions of Q. Indeed,
if [F/Q] <∞ then since every element of F is algebraic over Q we know from the
FTA that F ⊆ C. Then for any polynomial f(x) ∈ F[x] we may view the splitting
field as the intersection of all subfields of C that contain the roots of f(x).

• However, for fields of characteristic p we get new information. For example, let E
be finite of characteristic p. Then we have previously shown that E is a splitting
field for the polynomial xpk−x ∈ Fp[x] for some k. It follows from the uniqueness
of splitting fields that any two fields of size pk are isomorphic. This new proof
is a bit more elegant than our old proof because it avoids the Primitive Root
Theorem.

• It is worth emphasizing one more consequence of the Splitting Field Theorem. If
E ⊇ F is a splitting field for f(x) ∈ F[x] and if p(x)|f(x) is any irreducible factor,
then for any two roots α, β ∈ E of p(x) there exists an automorphism σ : E→ E
fixing F and sending α 7→ β. In other words:

The Galois group Gal(E/F) acts transitively on the roots of p(x).

Note that this fact does not apply to reducible polynomials. For example, let
E ⊇ Q be a splitting field for f(x) = (x2 − 2)(x2 − 3). Then we have f(

√
2) =

f(
√

3) = 0, but there does not exist any group element σ ∈ Gal(E/F) sending√
2 7→

√
3. (Why not?)

Exercises

21.A Divisor of a Split Polynomial

Let E ⊇ F be and suppose that g(x)|f(x) in F[x]. If f(x) splits in E[x] prove that g(x)
also splits in E[x]. [Hint: Use the fact that E[x] is a UFD.]

21.B Repeated Roots, Part II

We say that a polynomial f(x) ∈ F[x] is inseparable if it has a repeated root in some
field extension. Otherwise we say that f(x) is separable. Prove that

f(x) is separable ⇐⇒ gcd(f,Df) = 1.

21.C Finite Fields are Separable

Let E be finite field of characteristic p. For all polynomials f(x) ∈ E[x] we will show
that

f(x) is irreducible =⇒ f(x) is separable.

(a) Let f(x) ∈ E[x] be irreducible and assume for contradiction that f(x) is insepa-
rable. Prove that the derivative Df(x) ∈ E[x] is the zero polynomial.

(b) Use part (a) to show that f(x) = g(xp) for some polynomial g(x) ∈ E[x].
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(c) Finally, show that g(xp) = h(x)p for some polynomial h(x) ∈ E[x]. Contradiction.
[Hint: You showed in a previous problem that the Frobenius map α 7→ αp is
surjective.]
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22.1 Perfect Fields

We will see that that the basic theorems of Galois theory hold for finite fields and for
fields of characteristic zero. However, it is a sad fact that there exist certain infinite
fields of characteristic p for which the theorems break down. Ernst Steinitz (1910) was
the first person to deal uniformly with the good cases, while excluding the pathological
cases. He did this with the following definition.

Steinitz’ Definition of Perfect Fields. We say that a field F is perfect [vollkommene]
if

• char(F) = 0, or

• char(F) = p and the function F → F defined by a 7→ ap is surjective. You will
show on the homework that this case includes all finite fields.

///

Unfortunately, this definition is just a notational device because any theorem about
perfect fields requires two separate proofs for the two cases.183 Here are the properties
that we need for Galois theory.

Nice Properties of Perfect Fields. Let F be a perfect field. Then:

(1) Irreducible Polynomials are Separable. If f(x) ∈ F[x] is irreducible then
f(x) has no repeated roots in any field extension.

(2) Primitive Elements Exist. If E ⊇ F is finite-dimensional then there exists an
element γ ∈ E such that E = F(γ).

///

As I mentioned, this theorem requires separate proofs for the cases char(F) = 0 and
#F <∞. I hope you don’t mind that I relegated some of the steps to the homework.
Also, we will ignore the case of infinite perfect fields of characteristic p.

183Maybe there is a deep connection between the two cases that I don’t know about?



286 22.1 Perfect Fields

Proof. (1) Let f(x) ∈ F[x] be irreducible and assume for contradiction that f(x) has a
repeated root in some field extension. On the homework you will show that this implies
g(x) = gcd(f,Df) has degree ≥ 1, where Df(x) ∈ F[x] is the formal derivative. Since
f(x) is irreducible this implies that g(x) = λf(x) for some λ ∈ F. But we also know that
g(x)|Df(x). If char(F) = 0 then this is a contradiction because deg(Df) = deg(f)− 1.
If #F < ∞ then it could possibly be the case that Df(x) is identically zero, but you
will show on the homework that this also leads to a contradiction.

(2) If #F <∞ and [E/F] <∞ then we also have #E <∞. You showed on a previous
homework that the group (E×,×, 1) is cyclic (we called this the Primitive Root
Theorem). Say E× = {γn : n ∈ Z} for some γ ∈ E. Then clearly every element of E
can be expressed in the form f(γ) for some f(x) ∈ F[x], hence E = F(γ).

(2) Next suppose that char(F) = 0 and [E/F] < ∞. This case is sometimes called the
Primitive Element Theorem. The proof is due to Galois.

By the Finiteness Theorem we know that E = F(α1, . . . , αn) for some algebraic elements
α1, . . . , αn ∈ E. Thus by induction it suffices to prove for all algebraic α, β ∈ E that

F(α, β) = F(γ) for some γ ∈ E.

Let mα(x),mβ(x) ∈ F[x] be the minimal polynomials of α, β over F. Then since F is
infinite we may choose a non-zero element c ∈ F such that

c 6= α′ − α
β − β′ for all roots α′ 6= α of mα and β′ 6= β of mβ.

In this case I claim that γ := α + cβ is a primitive element. Indeed, since γ ∈ F(α, β)
we have F(γ) ⊆ F(α, β). Conversely, we want to show that α, β ∈ F(γ) and hence
F(α, β) ⊆ F(γ), and for this it suffices to prove β ∈ F(γ) since then we also have
α = γ − cβ ∈ F(γ).

We will show that β ∈ F(γ) by an indirect argument. That is, let m′
β(x) ∈ F(γ)[x] be

the minimal polynomial of β over F(γ). We will prove that deg(m′
β) = 1 and hence

β ∈ F(γ). By thinking of mβ(x) as an element of F(γ)[x] we clearly have m′
β(x)|mβ(x).

Now we need to get α in on the action. So (TRICK) define the polynomial

f(x) := mα(γ − cx) ∈ F(γ)[x].

By construction we have f(β) = mα(γ − cβ) = mα(α) = 0 which implies that
m′
β(x)|f(x). It follows that any root of m′

β(x) is a common root of mβ(x) and f(x).

Finally, let E′ ⊇ E be a splitting field for the polynomial mα(x)mβ(x). We know
from part (1) that each of the polynomials mα(x), f(x),mβ(x),m′

β(x) splits and has no
repeated roots in E′. It follows that the number of common roots of mβ(x) and f(x) in
E′ is equal to deg(m′

β). We will be done if we can show that β is the only common
root. So assume for contradiction that we have mβ(β′) = f(β′) = 0 for some β′ 6= β.
By definition of f(x) this means that α′ := γ − cβ′ is a root of mα(x). But then we
have

α′ = γ − cβ′
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α′ = (α+ cβ)− cβ′

c = (α′ − α)/(β − β′),

which contradicts the definition c. □

Here is an application to our favorite example.

Example: A Primitive Element for the Splitting Field of x3 − 2. Recall that
the splitting field is Q(α, ω) where α = 3√2 ∈ R and ω = e2πi/3. We are looking for an
element of the form γ = α+ cω with nonzero c ∈ Q such that Q(α, ω) = Q(γ). By the
proof of the previous theorem it suffices to choose c such that

c 6= α′ − α
ω − ω′ for all α′ ∈ {ωα, ω2α} and ω′ ∈ {ω2}.

But note that ω − ω2 is purely imaginary and α′ − α never is. Thus we may take any
nonzero element c ∈ Q. For example, c = 1. ///

Remarks:

• The proof of (2) for finite fields goes back to Gauss and the proof of (2) for
characteristic zero fields is due to Galois. In fact, John Stillwell184 says that
this was the first substantial result in Galois’ 1831 memoir. In modern language,
Galois’ version says that for any algebraic imaginaries α, β ∈ C there exists an
integer c ∈ Z such that Q(α, β) = Q(α + cβ). By induction it follows that any
finite extension satisfies

Q(α1, . . . , αn) = Q(c1α1 + · · ·+ cnαn) for some integers c1, . . . , cn ∈ Z.

Such an element γ = c1α1 + · · · + cnαn was called a Galois resolvent, but today
it is usually called a primitive element.

• Sadly, there exist pathological examples of finite-dimensional field extensions
which do not have a primitive element. For example, consider the field F =
Fp(x, y) consisting of fractions f(x, y)/g(x, y) where f, g ∈ Fp[x, y] and g 6= 0. Let
E = F(α, β) where αp = x and βp = y. Then one can show that [E/F] = p2 <∞
but has no primitive element.

• When Dedekind modernized Galois theory he continued to use primitive elements
because his main concern was with finite extensions of Q. However, after Steinitz
included characteristic p in his 1910 memoir, other mathematicians such as Emmy
Noether began to reject the use of primitive elements because they are not com-
pletely general. In a 1935 memorial address185 after Emmy Noether’s death,
Hermann Weyl praised her “drive toward axiomatic purity”, but he thought that
it was not always appropriate:

184Elements of Algebra, page 160
185Reprinted as an appendix in Emmy Noether: 1882–1935 by Auguste Dick (1981).
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This can be carried too far, however, as when she disdained to employ
a primitive element in the development of Galois theory.

• I agree with with Weyl that the use of primitive elements leads to the cleanest
development of Galois theory, at least for beginners. You will see this in the next
lecture.

22.2 Characterization of Galois Extensions

Dedekind proved for any field extension E ⊇ F that #Gal(E/F) ≤ [E/F].186 Recall
that finite-dimensional extensions satisfying #Gal(E/F) = [E/F] are called Galois ex-
tensions. As with normal subgroups, there are several equivalent ways to state the
definition. Today we will prove a big characterization theorem for Galois extensions
over perfect fields.

We isolate the following lemma for pedagogical reasons. Emil Artin proved this lemma
for general fields,187 using linear algebraic techniques inspired by Dedekind. We will
only prove it for finite-dimensional extensions over perfect fields.

Artin’s Fixed Field Lemma. Let E be any field and let G ⊆ Aut(E) be any finite
group of automorphisms with fixed field FixE(G) ⊆ E. Then we have

[E/FixE(G)] = #G.

///

Proof. As I said, we will only prove a special case of this. Let F be perfect and let
E ⊇ F be a finite-dimensional extension, so there exists a primitive element E = F(γ).
Now consider any (finite) subgroup G ⊆ Gal(E/F) and let OrbG(γ) = {γ1, . . . , γn} be
the G-orbit of γ. Since E is generated by γ over F we see that StabG(γ) = {id } and
hence

n = #OrbG(γ) = #G/# StabG(γ) = #G.

Now consider the following polynomial with degree n and no repeated roots:

f(x) = (x− γ1) · · · (x− γn) ∈ E[x].

Since every element of G permutes the roots of f(x) it also fixes the coefficients, hence
f(x) ∈ FixE(G)[x]. I claim in fact that f(x) is the minimal polynomial for γ over
FixE(G). Indeed, let m(x) ∈ FixE(G)[x] be the minimal polynomial. Then since
f(γ) = 0 we have m(x)|f(x). Conversely, since every γi ∈ OrbG(γ) has the form σ(γ)
for some σ ∈ G we must have

m(γi) = m(σ(γ)) = σ(m(γ)) = σ(0) = 0.

Then it follows from Descartes’ Theorem that f(x)|m(x) and hence f(x) = m(x).
Finally, since FixE(γ) = F(γ) = E we conclude from the Minimal Polynomial Theorem

186We didn’t prove this, but we did prove a weaker version called the Finiteness Theorem.
187It is Theorem 14 in his Galois Theory (1942), reprinted by Dover (1998).
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that

[E/FixE(G)] = [FixE(G)(γ)/FixE(G)] = deg(m) = deg(f) = n = #G.

□

Before stating today’s theorem let me note that if F is perfect and if E ⊇ F is finite-
dimensional then E is also perfect. Indeed, for all E ⊇ F we have char(F) = 0 ⇒
char(E) = 0 and for all [E/F] < ∞ we have #F < ∞ ⇒ #E < ∞. Again, we don’t
care about the other cases.

I find the following theorem amazing. Galois is lucky to have this concept named after
him.

Characterization Theorem for Galois Extensions (of Perfect Fields). Let
E ⊇ F be a finite-dimensional extension of perfect fields. Then the following five
conditions are equivalent:

(GE1) #Gal(E/F) = [E/F]

(GE2) FixE(Gal(E/F)) = F

(GE3) E is a splitting field for some polynomial f(x) ∈ F[x].

(GE4) For any E′ ⊇ E and σ ∈ Gal(E′/F) we have σ(E) ⊆ E.188

(GE5) If m(x) ∈ F[x] is irreducible and has a root in E, then m(x) splits in E[x].

///

Proof. To save space we will write G = Gal(E/F).

(GE1)⇔(GE2): Since F is perfect and [E/F] < ∞ there exists a primitive element
γ ∈ E with E = F(γ). Since E ⊇ FixE(G) ⊇ F this also implies E = FixE(G)(γ). Then
from the Fixed Field Lemma and Dedekind’s Tower Law we have

[E/F] = [E/FixE(G)] · [FixE(G)/F] = #G · [FixE(G)/F].

It follows that

#G = [E/F] ⇐⇒ [FixE(G)/F] = 1 ⇐⇒ FixE(G) = F.

(GE2)⇒(GE3): Assume that FixE(G) = F. Since F is perfect there exists a prim-
itive element E = F(γ) with minimal polynomial m(x) ∈ F[x] satisfying deg(m) =
[F(γ)/F] = [E/FixE(G)] = #G. From the proof of the Fixed Field Lemma we also

188And hence σ(E) = E. Indeed, since σ(1) = 1 we know that ker σ 6= E. Then since a field has no non-
trivial ideals we must have ker σ = {0}. Finally, since σ : E/F → E/F is an injective endomorphism of a
finite-dimensional F-vector space we conclude from the Rank-Nullity Theorem that σ is also surjective.
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know that m(x) has #G distinct roots in E. It follows that m(x) splits in E[x] and
hence E = F(γ) is a splitting field for m(x) ∈ F[x].

(GE3)⇒(GE4): Assume that there exists some f(x) ∈ F[x] with f(x) = (x−α1) · · · (x−
αn) ∈ E[x] and E = F(α1, . . . , αn). From the Finiteness Theorem we know that
F(α1, . . . , αn) = F[α1, . . . , αn]. In other words, E is the set of evaluations g(α1, . . . , αn)
of polynomials g ∈ F[x1, . . . , xn]. Now consider any field extension E′ ⊇ E and any
automorphism σ ∈ Gal(E′/F). Since σ fixes F it necessarily permutes the roots of f(x).
Then for any element g(α1, . . . , αn) ∈ E we have

σ (g(α1, . . . , αn)) = g (σ(α1), . . . , σ(αn)) ∈ E,

since this last expression is also a polynomial evaluated at the roots of f(x).

(GE4)⇒(GE5): Let m(x) ∈ F[x] be irreducible and let E′ ⊇ E be a splitting field
for m(x). Let Ω ⊆ E′ be the roots of m(x) and assume that this set contains an
element of E, say α ∈ Ω ∩ E. Now consider the group G′ = Gal(E′/F). Since E′ is a
splitting field for the irreducible polynomial m(x) ∈ F[x] we know from the Splitting
Field Theorem that G′ acts transitively on Ω. In other words, we have OrbG′(α) = Ω.
But by assumption we also know that G′ sends E to E. It follows that

Ω = OrbG′(α) ⊆ E,

and hence m(x) splits in E[x].

(GE5)⇒(GE1): Since F is perfect there exists a primitive element E = F(γ). If m(x) ∈
F[x] is the minimal polynomial for γ/F then by assumption we know that m(x) splits
in E[x]. Let Ω ⊆ E be the set of roots of m(x) and consider the action of G on Ω. Since
γ generates E over F we have StabG(γ) = {id } and since E = F(γ) is a splitting field
for m(x) we know from the Splitting Field Theorem that OrbG(γ) = Ω. Finally, since
F is perfect189 we know that m(x) has no repeated roots in E and it follows that

#G = #G
# StabG(γ)

= #OrbG(γ) = #Ω = deg(mγ) = [F(γ)/F] = [E/F].

[This is the argument that I previewed after the proof of the Finiteness Theorem.] □

Remarks:

• Normally I don’t like TFAE190 theorems, but I can’t think of any pedagogically
better way to state these results.

• Observe that this theorem contains 5 · 4 = 20 implications. I tried to make
the whole proof as short as possible, which has the drawback that your favorite
implication might not be optimized.

• Many of these equivalences break for extensions of non-perfect fields. If you want
to know the details about that then you are reading the wrong book.

189Alternatively, we could argue again that m(x) =
∏
i
(x − γi) where OrbG(γ) = {γi}i.

190“The following are equivalent”.
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22.3 The Fundamental Theorem of Galois Theory

The previous lecture was the most difficult of the course. It’s all downhill from here.

Consider any field extension E ⊇ F with Galois group G = Gal(E/F). Let L (E,F) be
the lattice of intermediate fields and let L (G) be the lattice of subgroups. Now recall
from the introduction of Part II that we have an abstract Galois connection:

Gal(E/−) : L (E,F) ⇄ L (G)op : FixE(−).

Technically, this means that for all subfields E ⊇ K ⊇ F and for all subgroups H ⊆ G
we have

K ⊆ FixE(H)⇐⇒ Gal(E/K) ⊇ H.

Recall that an abstract Galois connection always restricts to an isomorphism between
certain subposets of “closed elements”. In general, it follows from Artin’s Fixed Field
Lemma that every finite subgroup of G is “closed”. If E ⊇ F is a Galois extension
of perfect fields then it turns out that every intermediate field is also “closed”, and in
this case we have an isomorphism of lattices L (E,F) ∼= L (G)op.191 Here is the full
statement.

The Fundamental Theorem of Galois Theory. Let E ⊇ F be a Galois extension
of perfect fields and let G = Gal(E/F) be the Galois group. Then:

(1) The Galois connection Gal(E/−) : L (E,F) ⇆ L (G)op : FixE(−) is actually a
bijection. That is, for all intermediate fields E ⊇ K ⊇ F and for all subgroups
H ⊆ G we have

FixE(Gal(E/K)) = K and Gal(E/FixE(H)) = H.192

(2) For any pair K = FixE(H) and H = Gal(E/K) we have

#{cosets of H in G} = #(G/H) = [K/F] = dim(K as a vector space over F).

(3) Furthermore, we have

K ⊇ F is a Galois field extension ⇐⇒ H ⊴G is a normal subgroup,

in which case the quotient group is isomorphic to the Galois group:

G

H
= Gal(E/F)

Gal(E/K)
∼= Gal(K/F).

191This result can be extended to certain “infinite Galois extensions” by replacing the lattice of
subgroups with the lattice of “profinite subgroups”. Never mind.

192As I mentioned above, the equation Gal(E/FixE(H)) = H holds for any field E and for any
finite group of automorphisms H ⊆ Aut(E). The proof only depends on Artin’s Fixed Field Lemma
(which, however, we did not prove in full generality). The other equation FixE(Gal(E/K)) = K is more
interesting.
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///

Proof. The proof will refer to the Characterization Theorem for Galois extensions.

(1) Consider any intermediate field E ⊇ K ⊇ F. Since E/F is Galois we know from
(GE3) that E is a splitting field for some polynomial f(x) ∈ F[x]. But then E is also
a splitting field for f(x) ∈ K[x] which implies that E/K is Galois. We conclude from
(GE2) that FixE(Gal(E/K)) = K.

Now consider any subgroup H ⊆ G and let K = FixE(G), so that H ⊆ Gal(E/K). As
above we know that E/K is Galois, hence from (GE1) we have #Gal(E/K) = [E/K].
On the other hand, we know from the Fixed Field Lemma that #H = [E/K] and it
follows that H = Gal(E/K).

(2) Consider any pair K = FixE(H) and H = Gal(E/K). Since E/F and E/K are both
Galois, we know from Lagrange’s Theorem, (GE1) and Dedekind’s Tower Law that

#(G/H) = #G
#H

= #Gal(E/F)
#Gal(E/K)

= [E/F]
[E/K]

= [K/F].

(3) Furthermore, I claim that

Gal(E/σ(K)) = σGal(E/K)σ−1 = σHσ−1 for all σ ∈ G.

Indeed, this follows immediately from the definitions:

µ ∈ Gal(E/σ(K))⇐⇒ µ(σ(a)) = σ(a) for all a ∈ K.
⇐⇒ (σ−1µσ)(a) = a for all a ∈ K.
⇐⇒ σ−1µσ ∈ H
⇐⇒ µ ∈ σHσ−1.

Now suppose that K/F is Galois. Then from (GE4) we have σ(K) = K and hence
σHσ−1 for all σ ∈ G. In other words, H ⊴ G is normal. Conversely, suppose that
H ⊴G is normal. Then we have σHσ−1 = H and hence Gal(E/σ(K)) = Gal(E/K) for
all σ ∈ G. We conclude from the bijection in part (1) that σ(K) = K for all σ ∈ G.

Now since each σ ∈ G restricts to an element of Gal(K/F) we obtain a “restriction
homomorphism” ϕ : Gal(E/F)→ Gal(K/F) with kernel Gal(K/F) = H. Furthermore,
since E/K is a splitting field we know from the Splitting Field Theorem that each
automorphism σ : K → K fixing F lifts to an automorphism σ̂ : E → E. Hence the
restriction homomorphism is surjective and we conclude from the First Isomorphism
Theorem that

Gal(E/F)
Gal(E/K)

= G

H
= G

kerϕ
∼= imϕ = Gal(K/F).

Finally, from part (2) we have #Gal(K/F) = #(G/H) = [K/F] and it follows from
(GE1) that K ⊇ F is a Galois extension. □

Mathematical Remarks:
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• Note that this proof was quite short because already did the hard work. The
details are spread over three previous results: the Splitting Field Theorem, the
Fixed Field Lemma and the Characterization Theorem for Galois Extensions.

• One surprising corollary of this theorem is that any finite-dimensional extension
E ⊇ F of perfect fields has finitely many intermediate fields. Indeed, if E ⊇ F
is not Galois then let E′ ⊇ E be a splitting field for some polynomial f(x) ∈ F[x].
Then it follows from the Fundamental Theorem that that L (E′,F) ∼= L (G)op

where G = Gal(E′/F). Since G is a finite group this implies that the lattice
L (E′,F) is finite. Finally, since L (E,F) is a subposet of L (E′,F) we conclude
that L (E,F) is also finite.

• If the field E is infinite then one can prove from the finiteness of L (E,F) that
there exists a primitive element E = F(γ). Indeed, suppose that E has finitely
many maximal subfields over F. Since each of these is a proper F-subspace of E
we conclude that there exists some γ ∈ E that is not in any maximal subfield.193

Then since F(γ) is not contained in any maximal subfield we must have F(γ) = E.

• In fact, Steinitz (1910) proved that the existence of a primitive element is equiv-
alent to the existence of only finitely many intermediate fields. But this equiva-
lence is useless for us because it doesn’t help us to prove either statement.

Historical Remarks:

• The Fundamental Theorem is a theorem of Galois Theory, but it is not Galois’
Theorem. The original version of the theorem appears in Dedekind’s 11th supple-
ment (1894) to Dirichlet’s Vorlesungen über Zahlentheorie (Lectures on Number
Theory). According to Walther Purkert (1976), Dedekind had lectured on this
material at Göttingen as early as 1856.

• The modern statement of the theorem for abstract fields (i.e., not just for subfields
of C) is due to Emil Artin in his Notre Dame lectures (1942).

• So what did Galois actually do? Recall from the introduction that his main
concern was the solvability of polynomial equations with rational or integer coef-
ficients. Next week we will return to this subject and we will apply the Fundamen-
tal Theorem to finally prove Galois’ Solvability Theorem (in modern language).

///

For now let me show you a “toy example” of the Fundamental Theorem.

Example: Galois Theory of Finite Fields. We have seen that any finite field has
the form E = Fpk where Fpk is the splitting field of the polynomial xpk − x ∈ Fp[x].
It follows that Fpk ⊇ Fp is a Galois extension of perfect fields. Furthermore, you will

193We are using the intuitively obvious fact that the complement of finitely many proper subspaces
is not empty. I prefer not to prove this.
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show on the homework that the Galois group is cyclic and generated by the Frobenius
automorphism:

ϕ : Fpk → Fpk
α 7→ αp.

In other words, you will show that

Gal(Fpk/Fp) = 〈ϕ〉 = {id , ϕ, ϕ2, . . . , ϕk−1}.

Then it follows from the Fundamental Theorems of Galois Theory and Cyclic Groups
(which we proved early last semester) that the lattice of intermediate fields L (Fpk ,Fp)
is isomorphic to the lattice of positive divisors d|k of the integer k:

L (Fpk ,Fp) ∼= L 〈ϕ〉op ∼= Div(k)
Fpd ↔ 〈ϕd〉 ↔ d.

Here is a picture for k = 12:

///

In hindsight, we see that the theory of finite fields is roughly as complicated as the
theory of cyclic groups (i.e., not very). Galois studied finite fields in his paper On
the Theory of Numbers, and this directly inspired his later work on the solvability of
polynomial equations over Q. The passage from finite fields to fields of characteristic
zero is analogous to the passage from cyclic groups to all finite groups.194 We
should not expect it to be easy.

Exercises

22.A Cyclotomic Extensions are Abelian

Let E ⊇ F ⊇ Q and let ω ∈ E be a primitive n-th root of unity. That is, assume that
we have

xn − 1 = (x− 1)(x− ω) · · · (x− ωn−1) in E[x].
194The major open problem in Galois theory today is to establish whether or not every finite group G

can be expressed in the form G = Gal(E/Q). This is called the “inverse Galois problem”. Shafarevich
(1954) proved that every solvable group can be expressed in this way.
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(a) Prove that F(ω) ⊇ F is a Galois extension.

(b) For all σ ∈ Gal(F(ω)/F) prove that σ(ω) = ωkσ for some gcd(kσ, n) = 1.

(c) Prove that the map σ 7→ kσ defines an injective group homomorphism

Gal(F(ω)/F) ↪→ (Z/nZ)×,

and hence Gal(F(ω)/F) is abelian.

(d) Let Φn(x) ∈ Q[x] be the cyclotomic polynomial. Prove that

Gal(F(ω)/F) ∼= (Z/nZ)× ⇐⇒ Φn(x) is irreducible in F[x].

22.B Radical Extensions are Abelian

Consider field extensions E ⊇ F(α) ⊇ F ⊇ Q where αn ∈ F for some n ≥ 2 and suppose
that F contains a primitive n-th root of unity.

(a) Prove that F(α) ⊇ F is a Galois extension.

(b) For any σ ∈ Gal(E/F) and β ∈ F(α) prove that σ(β) ∈ F(α).

(c) Prove that Gal(E/F(α)) ⊆ Gal(E/F) is a normal subgroup. [Hint: Use part
(a) to define a group homomorphism Gal(E/F) → Gal(F(α)/F) with kernel
Gal(E/F(α)).]

(d) Prove that the quotient group is abelian.

22.C Dedekind’s Proof of the Irreducibility of Φn(x).

For any integer n ≥ 1 recall that the cyclotomic polynomial is defined by

Φn(x) =
∏

0<k<n
gcd(k,n)=1

(x− ωk) where ω = e2πi/n.

You proved in Exercise 19.B that Φn(x) ∈ Z[x]. Now you will prove that Φn(x) is
irreducible in the ring Q[x].195 The following proof from van der Waerden’s Moderne
Algebra (1930) goes back to Dedekind.196

(a) Let p ∈ Z be prime and let f(x) 7→ fϕ(x) denote the ring homomorphism Z[x]→
Z/pZ[x] defined by reducing each coefficient mod p. Prove that for any f(x) ∈
Z[x] we have fϕ(xp) = fϕ(x)p. [Hint: The ring Z/pZ[x] has characteristic p,
hence it has a Frobenius endomorphism.]

(b) If n ∈ Z is not divisible by p, show that xn−1 has no repeated factor in Z/pZ[x].
[Hint: Any repeated factor is also a factor of the derivative.]

195By Gauss’ Lemma (Exercise 18.C) we also conclude that Φn(x) is irreducible in Z[x], but this fact
is not very useful because Z[x] is not a PID.

196See Dedekind, Beweis für die Irreductibilität der Kreisteilungs-Gleichungen (1857). Gauss had
proved the irreducibility of Φp(x) for prime p in the Disquisitiones (1801).
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(c) Suppose that we can write Φn(x) = f(x)g(x) for some monic f(x), g(x) ∈ Q[x]
with f(x) irreducible. Use Gauss’ Lemma to prove that f(x) and g(x) must have
integer coefficients.

(d) Continuing from (c), suppose that we have f(ωk) = 0 ⇒ f(ωkp) = 0 for all
gcd(k, n) = 1 and for all primes p ∤ n. In this case prove that f(x) = Φn(x) and
hence Φn(x) is irreducible. [Hint: Show that f(ω`) = 0 for all gcd(`, n) = 1.]

(e) Now we will show that the situation of part (d) must hold. To do this we assume
for contradiction that there exists some integer gcd(k, n) = 1 and prime p ∤ n
with f(ωk) = 0 and g(ωkp) = 0. In this case prove that g(xp) = f(x)h(x) for
some h(x) ∈ Z[x]. [Hint: Show that f(x) is the minimal polynomial for ωk over
Q.]

(f) Now it follows from (a) and (c) that fϕ(x)hϕ(x) = gϕ(x)p in Z/pZ[x]. Use the
fact that Z/pZ[x] is a UFD to prove that fϕ(x) and gϕ(x) have a common factor
in Z/pZ[x].

(g) Finally, use part (b) to obtain a contradiction.



Week 23: Epilogue

23.1 Radical Implies Solvable

We have come full circle. At the very beginning of this course I told you that Galois
established a relationship between the “solvability of polynomial equations by radicals”
and a certain structural property of abstract groups (which for this reason is called
“solvability of groups”). Now we have (almost) all of the tools that we need to prove
Galois’ theorem.

However, let me warn you that you might find the result unsatisfying. To illustrate
this, let’s consider the case of Emil Artin, who — more than anyone — is responsible
for the modern form of the subject. Here is a quote from a lecture he gave in 1950:

Since my mathematical youth I have been under the spell of the classical
theory of Galois. This charm has forced me to return to it again and again,
and to try to find new ways to prove its fundamental theorems.197

However, in Artin’s Notre Dame lectures (1942) which are considered his definitive
statement on the subject, he did not include a proof of the solvability theo-
rem! Instead, this theorem appears in an appendix198 on “Applications”, written by
the American mathematician Arthur Milgram. It seems that in the preceding hun-
dred years, the core of Galois theory had shifted from the “solvability theorem” to
the “fundamental theorem”, and that Milgram’s appendix was included only as an
accommodation to tradition.

It often happens in mathematics that the original motivation for a subject is discarded
after we have discovered “what is really going on”. But tradition still has pedagogical
value.

So on to the Solvability Theorem. Let me recall the important definitions.

Definition of Solvable Groups. We say that a finite group G is solvable if there
exists a chain of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr = {id }

197Quoted in The development of Galois Theory from Lagrange to Artin (1971) by B. Melvin Kiernan.
198Technically, it is Part III.
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in which Gi ⊴Gi−1 is normal for all i and the quotient group Gi−1/Gi is abelian.

By inserting extra groups into the chain as necessary, we may assume without loss
of generality that the that there does not exist any subgroup Gi−1 ⊋ H ⊋ Gi with
H ⊴ Gi−1 normal, which, by the Correspondence Theorem, is equivalent to assuming
that the quotient groups Gi−1/Gi have no non-trivial normal subgroups. Finally, since
each Gi−1/Gi is abelian, we may assume without loss of generality that Gi−1/Gi ∼=
Z/piZ for some prime numbers pi ∈ Z. ///

Next let me recall Dedekind’s algebraic version of “solvable by radicals”.

Definition of Solvable Field Extensions. We say that a field extension E ⊇ F is
solvable if there exists a chain of field extensions

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fr ⊇ E

in which for all i we have Fi = Fi−1(αi) for some element with αnii ∈ Fi−1. In the
special case that E is the splitting field for a polynomial f(x) ∈ F[x] we say that that
the equation f(x) = 0 is solvable by radicals. ///

Galois’ Solvability Theorem. Consider a polynomial f(x) ∈ F[x] over a field F of
characteristic zero, and let E ⊇ F be a the splitting field. Then

f(x) = 0 is solvable by radicals ⇐⇒ Gal(E/F) is a solvable group.

///

Even though we have some rather powerful theorems at our disposal, the proof of this
result is still trickier than one might guess. It is amazing how much effort is required
to appreciate the the insights of an 18 year old who lived almost 200 years ago! Today
we will prove that

f(x) = 0 is solvable by radicals =⇒ Gal(E/F) is a solvable group,

and for this we still need a few lemmas.

Lemma (Quotient of a Solvable Group is Solvable). Let G be a solvable group
and let ϕ : G → G′ be a surjective group homomorphism. Then I claim that G′ is
solvable. It follows that any quotient group G/N is solvable since it is the image of the
projection G→ G/N .

Proof. By assumption we have a chain of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr = {id }

where each quotient Gi−1/Gi exists and is abelian. Now apply ϕ to obtain a chain of
subgroups

G′ = G′
0 ⊇ G′

1 ⊇ G′
2 ⊇ · · · ⊇ G′

r = {id },
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where G′
i := ϕ[Gi] for all i. It remains to prove that each quotient G′

i−1/G
′
i exists an is

abelian. So consider any elements ϕ(h) ∈ G′
i and ϕ(g) ∈ G′

i−1. Then since Gi ⊴ Gi−1
is normal we have

ϕ(g)ϕ(h)ϕ(g)−1 = ϕ(ghg−1) ∈ ϕ[Gi] = G′
i,

which implies that G′
i ⊴G′

i−1 is normal. Furthermore, I claim that the rule Φ(gGi) :=
ϕ(g)G′

i defines a (surjective) group homomorphism Φ : Gi−1/Gi → G′
i−1/G

′
i. Indeed,

we only need to check that this function is well-defined:

gGi = hGi =⇒ h−1g ∈ Gi
=⇒ ϕ(h−1g) ∈ G′

i

=⇒ ϕ(h)−1ϕ(g) ∈ G′
i

=⇒ ϕ(g)G′
i = ϕ(h)G′

i.

Finally, consider any two elements Φ(a),Φ(b) ∈ G′
i−1/G

′
i. Since Gi−1/Gi is abelian we

have
Φ(a)Φ(b) = Φ(ab) = Φ(ba) = Φ(b)Φ(a),

and hence G′
i−1/G

′
i is abelian. □

The next two lemmas were proved by you on the previous homework. I will state them
in exactly the form that we will use them.

Abelian Lemmas. Let E ⊇ F be fields of chacteristic zero.

(1) For any root of unity ω ∈ E the extension F(ω)/F is Galois with abelian Galois
group.

(2) If F contains a primitive n-th root of unity and if α ∈ E satisfies αn ∈ F then the
extension F(α)/F is Galois with abelian Galois group.

Proof. Homework. □

Proof That Radical Implies Solvable. Let E ⊇ F ⊇ Q be the splitting field of a
polynomial f(x) ∈ F[x] and assume that there exists a chain of radical extensions

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fr ⊇ E

where for each i we have Fi = Fi−1(αi) for some element αi ∈ Fi with αnii = ai ∈ Fi−1.
Our goal is to construct a field F′

r ⊇ Fr such that F′
r/F is Galois and Gal(F′

r/F) is a
solvable group.199 Then since E ⊇ F (being a splitting field) is Galois we will conclude
from the Fundamental Theorem and the Lemma on quotient groups that

Gal(E/F) ∼=
Gal(F′

r/F)
Gal(F′

r/E)
is also solvable.

199If F′
r/F is Galois then to prove that Gal(F′

r/F) is solvable it suffices by the Fundamental Theorem
to show that we can get from F to F′

r by a sequence of Galois extensions, each of which has an abelian
Galois group.
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The difficulty has to do with the existence of enough roots of unity. I will follow
Milgram’s proof from the appendix of Artin’s Notre Dame lectures. First let F′

0 :=
F0 = F. Then let F′

1 be the splitting field of the polynomial f1(x) := xn1 − a1 ∈ F[x]
and observe that

• F′
1/F is Galois,

• F′
1 ⊇ F1 = F(α1),

• If ωn1 is a primitive n1-th root of unity then we observe that the splitting field
contains α1 and ωn1α1, hence it also contains ωn1 . Furthermore, we can get from
F = F′

0 to F′
1 by first adjoining ωn1 and then adjoining α1. From the Abelian

Lemma we know that each of these extensions is Galois with abelian Galois group.

Next let F′
2 be a splitting field for the following polynomial:

f2(x) := f1(x) ·
∏

σ∈Gal(F′
1/F)

(xn2 − σ(a2)) ∈ F[x].200

Observe that

• F′
2/F is Galois,

• F′
2 ⊇ F2 = F(α1, α2),

• Again we note that the splitting field contains a primitive n2-th root of unity:
ωn2 ∈ F′

2. Then we can get from F′
1 to F′

2 by first adjoining ωn2 and then
adjoining (in any order) a primitive n2-th root of each element σ(a2). Again
we know from the Abelian Lemma that each of these extensions is Galois with
abelian Galois group.

One more time. Let F′
3 be the splitting field of

f3(x) := f2(x) ·
∏

σ∈Gal(F3/F)
(xn3 − σ(a3)) ∈ F[x].

For the same reasons as above we see that

• F′
3/F is Galois,

• F′
3 ⊇ F3 = F(α1, α2, α3),

• We can get from F′
2 to F′

3 by first adjoining a primitive root ωn3 and then
adjoining (in any order) a primitive n3-th root of each element σ(a3) ∈ F′

2. We
know that each of these extensions is Galois with abelian Galois group.

By continuing in this way we will obtain a field extension F′
r ⊇ Fr such that F′

r/F is
Galois and such that we can get from F to F′

r by a sequence of Galois extensions with
abelian groups, hence the Galois group Gal(F′

r/F) is solvable. □

200This polynomial has coefficients in F because each coefficient is a symmetric polynomial in the
elements {σ(a2) : σ ∈ Gal(F′

1/F)}. But the elements of this set are permuted by the action of Gal(F′
1/F),

hence every coefficient is in the fixed field. Finally, since F′
1/F is a Galois extension we know that the

fixed field is F.
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Corollary. For n ≥ 5 the general polynomial equation of degree n is not solvable by
radicals.

Proof. We will prove below that the “general polynomial equation of degree n” has
Galois group Sn. We proved last semester that this group is not solvable when n ≥ 5.

□

Of course, the unsolvabiity of the quintic was not an original discovery of Galois. It
is generally attributed to Abel (1824) and Ruffini (1799), so is called the Abel-Ruffini
Theorem. The original contribution of Galois was to explain precisely which equations
are solvable and to provide a method by which one could (in principle, but not usually
in practice) solve these equations. We will prove this next time.

23.2 Solvable Implies Radical

Today we will prove that any polynomial equation with a solvable Galois group is (in
principle) solvable by radicals. For this we will need two more lemmas. The first is a
straightforward translation of the Second Isomorphism Theorem for Groups into the
language of field extensions. I will prove this at the maximum level of generality.

Lemma (The Second Isomorphism Theorem). Let E ⊇ F be a finite-dimensional
extension of perfect fields and consider any two intermediate fields K,L ∈ L (E,F). If
L ⊇ F is Galois then (KL) ⊇ K and L ⊇ (K ∩ L) are both Galois and we have

Gal(KL/K) ∼= Gal(L/K ∩ L).

///

For the purpose of the proof we may assume that E ⊇ F is a Galois extension, since
otherwise we can enlarge E to a splitting field for some polynomial over F. The proof
will use the Fundamental Theorem of Galois Theory.

Proof. Let G = Gal(E/F). Since E ⊇ F is Galois we have the Galois correspondence:

L (E,F) ∼= L (G)op.

Now define H = Gal(E/K) and N = Gal(E/L). By assumption we know that N ⊴ G
is normal. Since any isomorphism of posets preserves201 meet and join we also have

H ∩N = Gal(E/KL) and HN = Gal(E/K ∩ L).

Then since (H ∩N) ⊴H and N ⊴HN are normal subgroups we see that KL/K and
L/(K∩L) are Galois extensions and it follows from the Second Isomorphism Theorem
that

Gal(KL/K) ∼=
Gal(E/K)

Gal(E/KL)
= H

H ∩N
∼=
HN

N
= Gal(E/K ∩ L)

Gal(E/L)
∼= Gal(L/K ∩ L).

Here is a picture:

201Note that the meet and join in L (G) are flipped because we are using the opposite partial order.
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□

The second lemma is similar in spirit to the Primitive Root Theorem and the Primitive
Element Theorem. Today this result is regarded as part of “Kummer Theory”, so we
will call it “Kummer’s Lemma”.202 However, the key idea of the proof goes back to
Lagrange’s 1770 work on algebraic equations.

Kummer’s Lemma (Existence of Lagrange Resolvents). Let E ⊇ F be a
Galois extension of characteristic zero fields and let [E/F] = p be prime. If F contains
a primitive p-th root of unity ω ∈ F then we can find some element α ∈ E − F such
that αp ∈ F and E = F(α). We will call this element α a Lagrange resolvent for the
extension E/F.

Proof. Let G = Gal(E/F). Since #G = [E/F] = p is prime we know that G =
{id , σ, . . . , σp−1} is cyclic. Furthermore, we know from Dedekind’s Tower Law that
E ⊇ F has no nontrivial intermediate field. Our goal is to find some α ∈ E − F with
σ(αp) = αp. Then α 6∈ F implies that E = F(α) because there are no intermediate
fields, and σ(αp) = αp implies that αp ∈ F because σ generates G and because F is the
fixed field of G. For fun, I will give two proofs: (1) an easy existence proof, (2) a tricky
constructive proof.

(1) We have assumed that there exists a primitive p-th root of unity ω ∈ F. Thus
we have xp − 1 =

∏p−1
k=0(x − ωk) in F[x]. Since powers of σ commute under compo-

sition we have an “evaluation homomorphism” from F[x] into the endomorphism ring
End(E/F)203 sending x 7→ σ and 1 7→ id . Applying this to xp − 1 gives

∏p−1
k (σ − ωk ·

id ) = σp− id = 0, where the product on the left denotes composition of functions and
0 denotes the zero function. Since σ 6= id there exists some β ∈ E with σ(β) 6= β and
hence (σ − id )(β) 6= 0. But note that

(σ − ωp−1 · id ) · · · (σ − ω2 · id )(σ − ω · id )(σ − id )(β) = 0(β) = 0.

202Ernst Eduard Kummer developed these ideas in the 1840s as part of his work on Fermat’s Last
Theorem.

203This is the non-commutative ring of F-linear functions E/F → E/F under pointwise addition
and composition. Note that we have a natural inclusion F → End(E/F) defined by a 7→ a · id . Since
the subring generated over F by a single element σ is commutative, the evaluation at σ is still a ring
homomorphism.
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Let k be minimal such that 0 6= (σ − ωk · id ) · · · (σ − ω · id )(σ − id )(β) and call this
nonzero element α ∈ E. By definition of k we have (σ − ωk+1 · id )(α) = 0 and hence
σ(α) = ωk+1α 6= α. Since F is the fixed field of G this implies that α 6∈ F. Finally, note
that

σ(αp) = σ(α)p = (ωk+1)pαp = (ωp)k+1αp = αp.

(2) Lagrange’s Proof. Choose any α ∈ E − F and for each 0 ≤ j ≤ p − 1 define the
element

αj :=
p−1∑
i=0

ωijσi(α) ∈ E.

Since ω ∈ F we have for all σ ∈ G that

σ(αj) =
p−1∑
i=0

ωijσi+1(α) = ω−j
p−1∑
i=0

ω(i+1)jσi+1(α) = ω−jαj

which implies that σ(αpj ) = σ(αj)p = (ω−j)pαpj = (ωp)−jαpj = αpj . It only remains to
show that αj 6∈ F for some j. To prove this, we observe for all 1 ≤ i ≤ p− 1 that ωi is
a primitive p-th root of unity and hence 1 + ωi + (ωi)2 + · · · + (ωi)p−1 = 0. Then we
have

p−1∑
j=0

αj =
p−1∑
i,j=0

ωijσi(α) =
p−1∑
i=0

σi(α)
p−1∑
j=0

(ωi)j = α0(α) · p = pα 6∈ F,

which implies that αj 6∈ F for some j. □

Proof that Solvable Implies Radical. Let E ⊇ F ⊇ Q be the splitting field for
some polynomial f(x) ∈ F[x]. Suppose that the Galois group G = Gal(E/F) is solvable.
From the above definition this means that we have a chain of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr = {id }

where Gi ⊴Gi−1 is normal for all i and each quotient Gi/Gi+1 is isomorphic to Z/piZ
for some prime number pi ∈ Z. Since E ⊇ F is a Galois extension we can apply the
Galois correspondence to obtain a chain of subfields

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fr = E

where Gi = Gal(E/Fi) for all i. Furthermore, since each subgroup Gi⊴Gi−1 is normal
we know from the Fundamental Theorem that each extension Fi ⊇ Fi−1 is Galois with

Gal(Fi/Fi−1) ∼= Gi−1/Gi ∼= Z/piZ.

This chain of fields might not be radical, due to the fact that it might not contain
enough roots of unity. To fix this situation I will describe a method to construct a
“zig-zag chain” of radical field extensions containing E:

F = F0
0 ⊆ F1

0 ⊆ F1
1 ⊆ F2

1 ⊆ F2
2 ⊆ · · · ⊆ Frr−1 ⊆ Frr ⊇ E

First let F0
i := Fi for all i. Then for all j let Fji := Fj−1

i (ωpj ) where ωpj is a primitive
pj-th root of unity. Here is a picture:
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By definition, each extension Fji ⊇ Fj−1
i is either trivial or a radical extension generated

by a root of unity ωpj ∈ Fji − Fj−1
i with ω

pj
pj = 1 ∈ Fj−1

i . Furthermore, for all indices
i, j we observe that the following “diamond” satisfies the hypotheses of the Second
Isomorphism Theorem:

Therefore we have Gal(Fji/F
j
i−1) ∼= Gal(Fj−1

i /Fj−1
i−1 ) and by induction it follows that

Gal(Fii/Fii−1) ∼= Gal(F0
i /F0

i−1) = Gal(Fi/Fi−1) ∼= Z/piZ for all i.

Finally, since the field Fii−1 = Fi−1
i−1(ωpi) contains ωpi by construction, we conclude from

Kummer’s Lemma that the extension Fii ⊇ Fii−1 is radical. □

23.3 General Equations of Small Degree

That was it. To end the course I will show you how to apply Galois’ theorem to the
general polynomial equations of degrees 2, 3, 4. But first, what is a “general polynomial
equation”?

Definition/Theorem (The General Polynomial Equation). Let {x1, . . . , xn} be
a set of variables representing the unknown roots of a general degree n polynomial over
Q. We will denote by Q(x1, . . . , xn) the field of fractions of the ring of polynomials
Q[x1, . . . , xn] (which is an integral domain). To be explicit, we consider the set of
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formal fractions

E = Q(x1, . . . , xn) :=
{
f(x1, . . . , xn)
g(x1, . . . , xn)

: f, g ∈ Q[x1, . . . , xn] and g 6= 0
}
.

with respect to the equivalence relation f/g = f ′/g′ ⇔ fg′ = f ′g. We know from
a previous homework that this set is a field with respect to the obvious operations.
Now consisider the elementary symmetric polynomials e1, e2, . . . , en ∈ Q[x1, x2, . . . , xn]
defined by

f(x) = xn − e1x
n−1 + e2x

n−2 − · · ·+ (−1)nen = (x− x1)(x− x2) · · · (x− xn)

and let F := Q(e1, . . . , en) ⊆ E be the smallest subfield containing these polynomials.
Then clearly E ⊇ F is a splitting field of f(x) ∈ F[x] and hence E/F is a finite-
dimensional Galois extension. Furthermore, since any element of the group Gal(E/F)

• permutes the variables x1, . . . , xn (i.e., the roots of f(x)), and

• is determined by its action on the variables x1, . . . , xn (i.e., the generators of
E/F),

we obtain an injective group homomorphism Gal(E/F) ↪→ Sn into the group of per-
mutations of the variables. I claim that this homomorphism is also surjective, and
hence

Gal(E/F) = Gal(Q(x1, . . . , xn)/Q(e1, . . . , en)) ∼= Sn.

///

Proof. We need to show that every permutation σ ∈ Sn of the variables {x1, . . . , xn}
extends to a field automorphism σ̂ : Q(x1, . . . , xn) → Q(x1, . . . , xn) that fixes the
subfield Q(e1, . . . , en).

First, we will prove the existence of σ̂ by messing around with universal proper-
ties. For any permutation σ ∈ Sn we know from the universal property of poly-
nomials that the inclusion Q ↪→ Q[x1, . . . , xn] extends to a unique ring homomor-
phism σ : Q[x1, . . . , xn] → Q[x1, . . . , xn] fixing Q and sending xi 7→ xσ(i) for all i.
One can check that this homomorphism is injective.204 Next, consider the inclusion
ι : Q[x1, . . . , xn] ↪→ Q(x1, . . . , xn) of the domain Q[x1, . . . , xn] into its field of frac-
tions. Then since ι ◦ σ is an injective homomorphism from a domain to a field, we
know from the universal property of fractions that there exists a unique extension
σ̂ : Q(x1, . . . , xn)→ Q(x1, . . . , xn) satisfying σ̂ ◦ ι = ι ◦ σ. Here is a picture:

204In other words, the variables {x1, . . . , xn} are algebraically independent over Q.
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We only need to show that the endomorphism σ̂ : Q(x1, . . . , xn) → Q(x1, . . . , xn) is
invertible. To see this we will prove that if σ, µ ∈ Sn are inverse permutations then
σ̂, µ̂ are inverse endomorphisms, and hence automorphisms of Q(x1, . . . , xn). Indeed,
we have σ̂ ◦ ι = ι ◦ σ and µ̂ ◦ ι = ι ◦ µ by definition. But then

(σ̂ ◦ µ̂) ◦ ι = σ̂ ◦ (µ̂ ◦ ι) = σ̂ ◦ (ι ◦ µ) = (σ̂ ◦ ι) ◦ µ = (ι ◦ σ) ◦ µ = ι ◦ (σ ◦ µ) = ι ◦ id

implies by uniqueness that σ̂ ◦ µ̂ = îd = id . For the same reason we have µ̂ ◦ σ̂ = id .

Next we need to show that each group element σ̂ fixes the subfield Q(e1, . . . , en).
Clearly we have σ̂(ei) = ei for each elementary symmetric polynomial, and hence
σ̂(f(e1, . . . , en)) for each polynomial f(x1, . . . , xn) ∈ Q[x1, . . . , xn]. If the polynomials
ei were algebraic over Q then we would be done. Since they are not, we need one more
step. We observe that

Q(e1, . . . , en) =
{
f(e1, . . . , en)
g(e1, . . . , en)

: f, g ∈ Q[x1, . . . , xn] and g(e1, . . . , en) 6= 0
}
.205

Indeed, the set on the right is a subfield of Q(x1, . . . , xn) containing the elements
e1, . . . , en, hence it contains the smallest such subfield. Conversely, since every element
of the set on the right can be formed from the set Q∪{e1, . . . , en} using field operations,
we see that this set is contained in Q(e1, . . . , en). Finally, we conclude that every
element of this field is fixed:

σ̂

(
f(e1, . . . , en)
g(e1, . . . , en)

)
= σ(f(e1, . . . , en))
σ(g(e1, . . . , en))

= f(e1, . . . , en)
g(e1, . . . , en)

.

□

Remarks:

• This finally completes our proof that the general polynomial equation of degree
n ≥ 5 is not solvable by radicals.

205In his second proof of the Fundamental Theorem of Algebra, Gauss proved that g(x1, . . . , xn) 6= 0
implies g(e1, . . . , en) 6= 0. In other words, the elementary symmetric polynomials are algebraically
independent over Q.
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• With a bit of extra work, one can use this result to give a non-constructive proof of
Waring’s Theorem. Here’s a sketch: Since E/F is a Galois extension with Galois
group Sn = Gal(E/F) we know from condition (GE2) of the Characterization
Theorem that F = FixE(Sn). Thus for any symmetric polynomial f(x1, . . . , xn) ∈
FixE(Sn) we must have f(x1, . . . , xn) ∈ F = Q(e1, . . . , en) and hence

f(x1, . . . , xn) = g(e1, . . . , en)
h(e1, . . . , en)

for some g, h ∈ Q[x1, . . . , xn].

Finally, one can argue206 that the denominator is constant, hence f is a polyno-
mial in the elementary symmetric polynomials. ///

Example: The General Quadratic. Let E = Q(x1, x2) and F = Q(e1, e2), so E ⊇ F
is the splitting field of the general quadratic polynomial

f(x) = x2 − e1x+ e2 = (x− x1)(x− x2) ∈ F[x].

Since [E/F] = 2 and since F contains a primitive 2-nd root of unity (namely, −1 ∈ F)
then we know from Kummer’s Lemma that there exists an element γ ∈ E − F with
γ2 ∈ F and E = F(γ). Furthermore, note that σ = (12) is a generator of Gal(E/F) =
S2 = {id , (12)}. Thus for any α ∈ E− F we know from Lagrange’s proof that at least
one of the following two elements is a resolvent:

α1 = α+ σ(α),
α2 = α− σ(α).

In fact, we know that α1 is not a resolvent because α(α1) = α1 implies that α1 is in
the fixed field F. Thus α2 is always a resolvent. For simplicity, let’s take α = x1 so
that α1 = x1 + x2 and α2 = x1 − x2 is a resolvent. To be specific, we have

α2
2 = (x1 − x2)2 = e2

1 − 4e2 ∈ F,

and then each of x1 and x2 is guaranteed to have the form a + bα2 = a + b
√
e2

1 − 4e2
for some a, b ∈ F. With a bit of thought we find that

x1 = (α1 + α2)/2 = (e1 +
√
e2

1 − 4e2)/2,

x2 = (α1 − α2)/2 = (e2 −
√
e2

1 − 4e2)/2.

///

Example: The General Cubic. Let E = Q(x1, x2, x3) and F = Q(e1, e2, e3) so that
E ⊇ F is the splitting field of the general cubic polynomial

f(x) = x3 − e1x
2 + e2x− e3 = (x− x1)(x− x2)(x− x3) ∈ F[x].

206This is the hardest part. It involves the concept of “integral elements” of a ring extension, which
is a generalization of “algebraic elements”. This topic is more suitable for a graduate course.
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From the above theorem we also have Gal(E/F) = S3. Recall that S3 is a solvable
group with composition series

S3 ⊋ A3 ⊋ {id }.

Explicitly, A3 ⊆ S3 is the cyclic subgroup generated by the 3-cycle (123). Now apply
the Galois correspondence to obtain a chain of field extensions

F ⊊ K ⊊ E,

with [K/F] = 2, [E/K] = 3 and Gal(E/K) = A3. Next I claim that K = F(δ), where

δ := (x1 − x2)(x1 − x3)(x2 − x3).

Indeed, we have δ ∈ K − F because δ is fixed by the alternating group A3 but not by
the full symmetric group S3. And we have δ2 ∈ F because δ2 is fixed by S3.207

Unfortunately, the extension E ⊇ K = F(δ) is not radical. To fix this, let ω2 +ω+1 = 0
be a primitive third root of unity and adjoin ω to every field in the chain:

Now since E(ω) ⊇ F(δ, ω) is a Galois extension of (prime) degree 3 which contains a
primitive 3-rd root of unity, Kummer’s Lemma guarantees that there exists a Lagrange
resolvent γ ∈ E(ω) with E(ω) = F(δ, ω, γ) and γ3 ∈ F(δ, ω). To be explicit, consider
the generator σ = (123) of the Galois group A3 = Gal(E(ω)/F(δ, ω)). Then for any
element α ∈ E(ω)− F(δ, ω) we know that at least one of the following elements208 is a
Lagrange resolvent:

α2 = α+ ωσ(α) + ω2σ2(α),
α3 = α+ ω2σ(α) + ωσ2(α).

To simplify things, let’s take α = x1 so the two potential Lagrange resolvents become

α2 = x1 + ωx2 + ω2x3 and α3 = x1 + ω2x2 + ωx3.

207Recall that δ2 is called the discriminant of the polynomial f(x). On a previous homework you
showed that

δ2 = e2
1e2

2 − 4e3
2 − 4e3

1e3 + 18e1e2e3 − 27e2
3.

208Again, the element α1 = α + σ(α) + σ2(α) is not a resolvent because σ(α1) = α1 implies that α1
is in the fixed field F(δ, ω).
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Since α3
2 and α3

3 are elements of F(δ, ω) and since F(δ, ω) ⊇ F(ω) has degree 2, we are
guaranteed that each of α3

2 and α3
3 is a root of a quadratic equation with coefficients in

F(ω). In fact, the choice α = x1 is particularly nice because it turns out that α3
2 and

α3
3 are both roots of a certain quadratic polynomial with coefficients in F. The rest of

the details are called “Cardano’s Formula”, which we discussed at the beginning of last
semester. ///

Example: The General Quartic. Let E = Q(x1, x2, x3, x4) and F = Q(e1, e2, e3, e4)
so that E ⊇ F is the splitting field of the general quartic polynomial

f(x) = x4 − e1x
3 + e2x

2 − e3x+ e4 = (x− x1)(x− x2)(x− x3)(x− x4) ∈ F[x]

with Galois group S4 = Gal(E/F). Since 4! = 24 is still a small number, it is a lucky
accident that the group S4 is solvable. To be explicit, we have the following composition
series:

S4 ⊋ A4 ⊋ V4 ⊋ 〈(12)(34)〉 ⊋ {id }.

Here V4 is the Kleinsche Vierergruppe:209

V4 = {id , (12)(34), (13)(24), (14)(23)}.

For the same reason as above, the fixed field of the subgroup A4 is FixE(A4) = F(δ),
where

δ := (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

is “the square root of the discriminant” δ2 ∈ F.210 Now apply the Galois correspondence
to obtain a chain of fields

F ⊊ F(δ) ⊊ K ⊊ L ⊊ E,

where K = FixE(V4) and L = FixE(〈(12)(34)〉). With a bit of thought, one can show
that

L = Q(x1 + x2, x1x2, x3 + x4, x3x4),
K = Q(x1x2 + x3x4, x1x3 + x2x4, x1x4 + x2x3).

Since [E/L] = 2 and [L/K] = 2, we are guaranteed that each of these extensions is
radical. However, since [K/F(δ)] = 3 and since F(δ) does not contain a primitive 3rd
root of unity,211 this extension is not radical. Thus we should adjoin a primitive root
ω2 + ω + 1 = 0 to obtain the following diagram:

209Klein’s four-group is isomorphic to Z/2Z × Z/2Z, and hence is the smallest non-cyclic group.
G. A. Miller tells us but according to Miller (Group theory in the history of mathematics, 1938) the term
was bestowed by “various German writers” in honor of Felix Klein, who used the term “Vierergruppe”
in his work. I think Ruffini’s four-group is a better name, since Paolo Ruffini (1799) was the first to
apply the group to the solvability of the quartic.

210Believe me, you do not want to see the explicit formula for δ2 in terms of the coefficients e1, e2, e3, e4.
211for reasons of degree
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The rest of the solution follows from the quadratic and cubic cases. First choose any
element of E(ω)− L(ω); for example x1. Then since σ = (12)(34) generates the group
Gal(E(ω)/L(ω)) we know that α := x1−σ(x1) = x1−x2 is a resolvent. Next choose any
element of L(ω) − K(ω); for example x1 + x2. Then since (the coset of) σ = (13)(24)
generates the group Gal(L(ω)/K(ω)) we know that β := x1 + x2 − σ(x1 + x2) =
x1 +x2−x3−x4 is a resolvent. Finally, we need to choose an element of K(ω)−F(δ, ω);
for example x1x2 + x3x4. Then since (the coset of) σ = (123) generates the group
Gal(K(ω)/F(δ, ω) = A4/V4 we know that

γ = (x1x2 + x3x4) + ωσ(x1x2 + x3x4) + ω2σ2(x1x2 + x3x4)
= (x1x2 + x3x4) + ω(x1x4 + x2x3) + ω2(x1x3 + x2x3)

is a resolvent. From this recipe it is possible to find explicit radical formulas for the
roots x1, x2, x3, x4 in terms of the coefficients e1, e2, e3, e4, but what would be the point?
The full solution will certainly not fit on a page.212 ///

Galois knew that he had achieved a complete conceptual understanding of the solv-
ability of polynomial equations. But he also knew that this understanding was mostly
useless because the solutions are too complicated to write down. I will end this course
by quoting Galois on this issue. The following excerpt is from the preface to a planned
pair of manuscripts. Galois wrote this in prison in December 1832. He was released in
April 1832, and died in May. The corrections and modifications are copied from the
handwritten original:213

Long algebraic calculations were at first hardly necessary for progress in
Mathematics; the very simple theorems hardly gained from being translated

212Here I chose only the most obvious resolvents. The history of the quartic equation is filled with
more elegant choices. But even the most beautiful version of the “quartic formula” will still not fit on
a page.

213Quoted from Dossier 11 in The mathematical writings of Évartiste Galois (2011) by Peter M. Neu-
mann.
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into the language of analysis. It is only since Euler that this briefer language
has become indispensable to the new extensions which this great geometer
has given to science. Since Euler calculations have become more and more
necessary but more and more complicated difficult, at least insofar as they
are applied to the most advanced objects of science. Since the beginning of
this century algorithmics had attained such a degree of complication that any
progress had become impossible by these means, except without the elegance
with which new modern geometers have believed they should imprint their
research, and by means of which the mind promptly and with a single glance
grasps a large number of operations.

It is clear that such vaunted elegance, and so properly claimed, has no other
goal. From the well established fact that the efforts of the most advanced
geometers have elegance as their object, it follows that we have come to
science has come to on this point one may therefore deduce conclude with
certainty that the further the research of one advances, the more it is that it
becomes more and more necessary to embrace several operations at a single
glance at once in other words because the less the mind does not have the
time any more to stop at each at details.

Thus I believe that the simplifications produced by elegance of calculations
(intellectual simplifications, of course; there are no material ones) have
their limits; I believe that the time will come when the calculations algebraic
transformations foreseen by the speculations of analysts will find neither the
time nor the place for their realisation; at which point one will have to be
content with having foreseen them.

That is, according to me, the mission of future geometers; that is the path
that I have entered. I would not wish to say that there is nothing new for
analysis without this rescue; but I believe that without this one day all will
run out. Embrace Jump with both feet on calculations. embrace put oper-
ations into groups, distinguish class them according to their difficulty and
not according to their form; that is, according to me, the mission of future
geometers, that is the path that I have entered in this work.
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