Math 562/662 Spring 2024
Homework 6 Drew Armstrong

1. The Galois Group Permutes the Roots. Let E DO F be a splitting field for a specific
polynomial f(z) € F[z]. This means that E = F(aq,...,a,) for some distinct elements
aq, ..., an € E satisfying
f@) =] —at
i
for some integers k; > 1. Let G = Gal(E/F) be the group of automorphisms o : E — E
satisfying o(a) = a for all a € F.

(a) For each o € G and each root «; of f(x), show that o(q;) is also a root of f(x). Hence
for each 0 € G and ¢ € {1,...,n} there exists a unique 7, (i) € {1,...,n} satisfying

o(@i) = ar, (-

Let 7y : {1,...,n} = {1,...,n} denote the corresponding function.

(b) Show that the function 7, is a permutation. [Hint: It suffices to show that 7, is
injective. Recall that o is injective by assumption. |

(¢) Show that the function Il : G — S,, defined by o +— 7, is a group homomorphism.

(d) Finally, show that IT is injective. [Hint: A group homomorphism is injective if and
only if its kernel is trivial. If m, € S, is the identity permutation, show that ¢ € G
must be the identity automorphism.]

(a): Consider any o € G. Since f(z) has coefficients in F and since G fixes F we have

0=0(0) = o(f(ew)) = f7(o(ai)) = f(o()).
Hence o(c;) = «; for some j. We define the function 7, : {1,...,n} — {1,...,n} so that
o(ai) = ag, ;- In other words, we have 7, (i) = j if and only if o(a;) = a;.

(b): If ms(i) = ms(j) then o(ay) = o(cy). Since o is injective this implies that o; = o, and
since the roots are distinct this implies ¢ = j.

(c): Define the function Il : G — S,, by II(0) := 7,. (This notation is really piling up!) I claim
that II is a group homomorphism. To see this, consider any o, u € G. We wish to show that
(o o p) =1I(o) o I(p), i.e., Tgop = Ty © T, as permutations. That is, for any ¢ € {1,...,n}
we wish to show that
7To‘ou(i) = [7’['0- © Wu] (,L)

This is a lot easier than it looks. Suppose that p(o;) = a; and (o) = o, hence (oop)(i) = k.
This implies that 7,(i) = j and 7,(j) = k, hence [r, o m,](i) = k. And it also implies that
Toou(t) = k. Done.

Remark: The difficulty here is that the function II sends functions ¢ to functions 7,. But in
order to check that functions are equal we need to apply them to all possible inputs. There’s
a lot going on. It’s really an exercise in notational hygiene.

(d): To show that the group homomorphism II is injective it is sufficient to show that ker IT =

{id}, where id is the identity automorphism E — E. So consider any o € kerIl, i.e., such

that 7, is the identity permutation. Since 7, (i) = ¢ for all i we have o(o;) = «; for all i.

Since E = F(ay,...,ay,), a general element of E has the form f(aq,...,a,)/g(au,...,ay) for
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polynomials f(x), g(x) with coefficients in F. Since o preserves field operations and fixes the
coefficients of f and g, we have

U(f(al,...,an)> _ flo(ar),...,(an))  flag,...,an)

glai,...,an) N

glo(ar),...,o(an)) gla,...,an)’
Since o fixes every element of E we conclude that ¢ = id as desired.

Remark: In general, an automorphism of a field extension F(aj, ..., a,) is determined by its
values on F and aq, ..., ay,.

2. Abstract Galois Connections. Let (P, <) and (@, <) be posets. Let x: P = @ : % be
a pair of functions satisfying the following property

() for all p € P and q € @ we have p < ¢ < ¢ < p".

Such a pair is called an abstract Galois connection. Since the following results are symmetric
in P and @ you only need to prove half of them.

(a) For all p € P and ¢ € @ show that p < p** and ¢ < ¢**.

(b) For all p1,p2 € P and q1,q2 € @ show that p; < ps = p5 <pj and ¢1 < ¢2 = ¢ < qf.

(c) For all p € P and ¢q € @ show that p*** = p* and ¢*** = ¢*.

(d) Let PP ={p e P:p*™* =pland Q = {¢g € Q : ¢** = ¢}. Show that the maps
x: P S (@ : * restrict to a bijection:

x: P e Qo+

(a): For any p € P we have (p*) < (p)* by reflexivity of <. Then from (%) we get (p) < (p*)*.

(b): Consider p1,p2 € P with p; < pa. From (a) we have p; < pa < p5*, which implies p; < p3*
by transitivity of <. Then (x) says that (p1) < (p3)* implies (p3) < (p1)*.

(c): Consider any p € P. By reflexivity of < we have (p**) < (p*)* and then (*) implies (p*) <
(p**)*. On the other hand, from (a) we have p < p**, then from (b) we have (p**)* < (p)*.
Since p* < p*™** and p™* < p* we conclude from antisymmetry of < that p*** = p*.

(d): First note that * sends elements of P’ to elements of @)'. Indeed, consider any p € P’ so
that p** = p and let ¢ = p*. Then from (c) we have ¢** = p*™* = p* = ¢, hence ¢ € Q’. To
show that x : P’ — @’ is injective, suppose that p{ = p} for some p;,ps € P’. Then applying
* to both sides gives p1 = pi* = p3* = pa. To show that x : P/ — @' is surjective, consider
any ¢ € Q' and define p := ¢*. This p is in P’ because p** = ¢*** = ¢* = p by (c). We also
have p* = ¢** = ¢, so ¢ is the image of p € P’ under *.

Remark: Abstract Galois connections between posets are a simple example of adjoint functors
between categom'esﬂ I say that category theory is “empty” because it doesn’t care what kind of
objects you're working with; only the abstract relations between them. In the sketch of Galois
theory linked below, when I say that something is true for “empty reasons”, I am referring to
Problem 2.

3. The Galois Group of a Cyclotomic Extension. Let w = exp(27i/n). The splitting
field of the polynomial " — 1 over Q is

Q1,w,... L, W) = Q(w).

lWe write p* instead of #(p). Because of the symmetry we don’t need to give the functions different names.
2A poset is a simple example of a category.



3

In this problem you will prove that G := Gal(Q(w)/Q) = (Z/nZ)*, assuming that the cyclo-
tomic polynomial ®,,(z) is irreducible over Q

(a) For any o € G show that we must have o(w) = w* for some ged(k,n) = 1. [Hint: Show
that @, (w) = 0 implies @, (o (w)) = 0.]

(b) For any 0 < k < n with gcd(k,n) = 1 show that there exists a (unique) element
o € G satisfying o(w) = w*. [Hint: Since w and w* are both roots of the irreducible
polynomial ®,,(z) € Q[z], the minimal polynomial theorem implies that

Q]
@, (2)Ql]
(¢) For any 0 < k < n with ged(k,n) = 1 let o € G we the unique element satisfying

or(w) = w¥. Show that the map (Z/nZ)* — G defined by k + o}, is a group isomor-

phism. [Hint: First show that (o} o 0)(w) = oge(w). Then use the fact that every
element of Q(w) has the form f(w)/g(w) for some f(z),g(z) € Q[z] with g(w) # 0.]

I

Q(w) ~ Q(w*).]

(a): Consider any o € G. Since ®,,(w) = 0 and since o fixes the coefficients of ®,,(z) (because
they are in Q) we have

0=0(0) = 0(®n(w)) = Pn(o(w)).
This implies that o(w) is also a root of ®,(z), which implies that o(w) = w* for some integer
1 <k <n with ged(k,n) = 1[]

(b): For any integer k we have w* € Q(w) and hence Q(w*) C Q(w). If gcd(k,n) = 1 then I
claim that we also have w € Q(w*), and hence Q(w) C Q(w*). Indeed, since ged(k,n) = 1 we
can write ka + nb = 1 for some a,b € Z. Then we have

W = wka-i—nb — (wk)a(wn)b — (wk)a(l)b _ (wk)a e Q(wk)

We have shown that Q(w) = Q(w*) when ged(k,n) = 1. In this case we also know that w
and w” are both roots of ®,(z). Assuming that ®,(x) is irreducible over Q (which it is), we
obtain ring isomorphisms ¢ : Q(w) = Q[z]/®,(z)Q[z] and v : Q(w*) = Q[z]/®,,(x)Q[z] with
¢(w) = [z] and ¥(w*) = [z]. Hence o}, := 1™ 0 ¢ is a ring isomorphism of Q(w) — Q(w*)
sending w to w*. But Q(w*) = Q(w), so o} is an automorphism of Q(w) as desired.

(c): Note that an element of G is uniquely determined by its action on w. This implies that

o =0y < WwF=w' < k=/¢modn.
Combining this with (a) and (b) gives us a bijection (Z/nZ)* — G defined by ¢ — 0. I claim
that this map is also a group homomorphism. To see this we must show that o, o oy = oy
and for this it suffices to show that the two maps do the same thing to wE| Indeed, we have

ope(w) = Wk = (WFE = o4 (w)! = op(Wh) = o (0e(w)) = [o% 0 o] (w).

3This is fairly difficult to prove in general. On the previous homework you (almost) proved that ®,(z) is
irreducible over Q when p is prime.

“Indeed, we defined ®,,(z) as the product of (z — w*) over integers 1 < k < n with ged(k,n) = 1. Then
from this we had to prove that the coefficients are in Q (in fact, in Z).

5For any two ¢, € G with ¢(w) = 1(w) we must have ¢ = v, since for any element a = f(w)/g(w) € Q(w)
with f(z),g(z) € Q[z] we must have
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4. Finite Dimensional Field Extensions. Consider a field extension E D F where E is
finite-dimensional as a vector space over F, i.e., [E/F| < co.

(a) Prove that every element o € E is algebraic over F, i.e., is the root of some polynomial
f(z) € Flz]. [Hint: Since E is finite-dimensional over F, the infinite list of elements
1,a,a?, ... must be linearly dependent over F.]

(b) Prove that E = F(a,...,aqy,) for some finite list of elements ay,...,a, € E. [Hint:
Use induction on dimension. If [E/F] = 1 then E = F and there is nothing to show so
suppose that [E/F] > 2, i.e., E # F. Choose any element «; € E\ F and consider the
fields E O F(a) 2O F. Dedekind’s Tower Law says

[E/F] = [E/F(a1)] - [F(a1)/F].
Since F(ay) # F we have [F(a1)/F] > 2, hence [E/F(ay)] is strictly less than [E/F].]

(a): Let E DO F be a field extension with [E/F] = n < oco. Then for any a € E the set
1,a,...,a"™ of n + 1 elements must be linearly dependent over F. That is, we can find some
agp, - .., a, € F, not all zero, such that

ap+ara+ -+ aya”™ = 0.

Then « is algebraic over F because it is a root of the nonzero polynomial f(x) = ag + a1z +
< Fapa” € Flzl.

(b): Let [E/F] < oo. If [E/F] = 1 then we have E = F. So let [E/F] > 2 and pick any
a; € E\F. Since F(a;) # F we have [F(a1)/F] > 2. Combining this with the Tower Law
[E/F] = [E/F(a1)][F(c)/F] shows that [E/F(c)] < [E/F]. By induction on dimension, we
may assume that there exist aw, ..., a, € E such that

E=TF(a1)(a,...,an).
But F(aq)(ag,...,an) =F(ag,...,a,).

5. Characteristic Zero Fields are Perfect. A field F is called perfect if irreducible
polynomials f(xz) € F[x] have no repeated roots in any field extension E O F. Prove that
fields of characteristic zero are perfect. [Hint: Since F has characteristic zero we know that
deg(Df) = deg(f)—1. In particular, Df(z) # 0. Use the fact that f(z) is irreducible to show
that ged(f, Df) = 1 in F[z]. On the other hand, if f(z) has a repeated root &« € E D F in
some field extension show that we must have deg(f, Df) # 1 in E[x].]

Let F have characteristic zero and let f(z) € F[z] be any irreducible polynomial. If f(x) has
a repeated root a € E O F then we can write f(z) = (z — a)?g(z) with g(z) € E[z] and
then taking the derivative shows that z — « divides ged(f, Df) in E[z]. But you showed on
the last homework that ged(f, Df) # 1 in E[z] implies ged(f, Df) # 1 in F[z]. Since f(x) is
irreducible in f(x) this is only possible if f(x) divides D f(x). But this is impossible because

deg(Df) < deg(f).

6. The Primitive Element Theorem. Let I be any subfield of C, so F has characteristic
zeroﬁ Given any two numbers «, 3 € C that are algebraic over F, we will prove that there
exists a number v € C (also algebraic over ) satisfying

F(o, 8) = F(7).

6T his proof works more generally for any perfect field F; e.g., for any finite field. Then we replace C with
any field large enough to contain all the roots of the minimal polynomials of « and .
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More precisely, we will show that there exists a scalar ¢ € F such that v := a + ¢/ satisfies
the desired property.

(a) Show that every field of characteristic zero is infinite.

(b) Let f(z),g(x) € F[z] be the minimal polynomials of «, 5. Since F is infinite we may
choose an element ¢ € F such that ¢ # (o/ — a)/(8 — 3') for all roots o, 8" € E of
f(z), g(x), respectively. Define v := o + ¢/3 and consider the polynomial

h(z) := f(y — cx) € F(y)[z].
Show that the greatest common divisor of g(z) and h(z) in F(vy)[z] has degree < 1.
[Hint: Note that § is a common root of g(z) and h(x). If the ged of g(x) and h(x)
in F(vy)[x] has degree > 2, use Problem 5 to show that g(x) and h(x) have another
common root 5" # 8, which contradicts the definition of ¢.]

(c) Let p(z) € F(v)[z] be the minimal polynomial of 5 over F(vy). Prove that p(z) = = —f,
and hence 5 € F(v). [Hint: Since g(x), h(z) € F(v)[z] have 8 as a common root, show
that p(z) divides the ged of g(x) and h(z) in F(+)[z]. Then use part (b).]

(d) Finally, use (c) to show that F(«, 8) = F(vy).

(e) Corollary. Let E D F be any finite-dimensional extension of characteristic zero fields.
Use Problem 4 to show that E = F(v) for some 7 € E.

(a): For any field F and for any integer n > 1 we recall that n-1:=14---4+1 (n times). If F
has characteristic zero then n - 1 # 0 for all n > 1. Furthermore, if m -1 =n-1 with m < n,
then subtracting m - 1 from both sides gives (n —m) - 1 = 0, which is a contradiction. Hence
F contains the infinitely many distinct elements n -1 with n € Nm

(b): This is the hard part. Let F have characteristic zero and let f(z), g(z) € F[x] be the
minimal polynomials of o, 8 € E D FF, respectively. Let’s say

fl)=(@—-a)(r—a)--- and g(z)=(z—F)(x—p2)

in (C[x}ﬁ with oy = @ and B; = . Since f(z) and g(z) are irreducible over F, it follows from
Problem 5 that a; # «; and 3; # f; for i # j. Since f(x) and g(z) have finitely many roots
and since F is infinite from part (a), we may choose ¢ € F such that ¢ # (a; — ) /(8 — ;) for
all 7, 7. Define v := a+ ¢f8 and h(z) := f(y — cx) € F(y)[z]. Let d(x) = ged(g, h) in the ring
F(vy)[z]. T claim that deg(d) < 1. Indeed, since g(5) = 0 and h(B) = f(y —¢B) = f(a) =0
we know that x — 8 divides d(z) in Clz|. Furthermore, since d(z) divides g(z) we know
that d(z) = [[;c,(z — B;) € C[z] for some set J containing 1. If deg(d) > 2 this implies
that d(x) has another root d(3;) = 0 with j # 1. Since d(x) divides h(x) we would have

= h(B;) = f(y — ¢B;), which implies that v — ¢f3; = o; for some 7. But this contradicts the
definition of ¢ because

y—chi=0; = c=(a;—a)/(B—Py).
We conclude that deg(d) < 1.

(c): Let p(x) be the minimal polynomial over 5 over F(+)[z]. Since g(x), h(x) € F(v)[z] both
have § as a root we see that p(x)|g(x) and p(x)|h(z), hence p(x)| ged(g, k), in F(y)[z]. From
part (b) this implies that deg(p) = 1, say p(z) = a + bz with a,b € F(v). But then since
p(B) = 0 we have 5 = —a/b € F(7).

“Or you can just quote the fact, proved on a previous homework, that every field of characteristic zero
contains Q as as its smallest subfield.

8Here we use the fact that C is algebraically closed. In the general case we would take a field extension
E D F that contains all the roots of f(x) and g(x).
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(d): Since ¢ € F and v = o + ¢f € F(a, 8) we have F(y) C F(a, 5). On the other hand, we
showed in (c) that 8 € F(y). Then we also have ao = v — ¢ € F(7), hence F(«, 5) C F(v).

(e): For any «, 8 € C algebraic over a subfield F, we have shown that there exists v € C
such that F(a, ) = F(y). For any C D E D F with [E/F] < co we proved in Problem 4 that

E =F(ay,...,a,) where aq, ..., a, € E are algebraic over F. Since ay,—1, o, are also algebraic
over F(ai,...,a,_2) there exists some v such that
Flar,ag,...,an) =F(aq,...,an—2)(apn—_1,an)
=F(aq,...,an—2)(7)
=F(ai,...,an—2,7).

Now the result follows by induction.

Remark: The Primitive Element Theorem is the first step in the proof of the Fundamental
Theorem of Galois Theory. Here is a note that sketches the rest of the proof: http://math.
miami.edu/~armstrong/562sp24/562sp24galois_sketch.pdf


http://math.miami.edu/~armstrong/562sp24/562sp24galois_sketch.pdf
http://math.miami.edu/~armstrong/562sp24/562sp24galois_sketch.pdf

