
Math 562/662 Spring 2024
Homework 6 Drew Armstrong

1. The Galois Group Permutes the Roots. Let E ⊇ F be a splitting field for a specific
polynomial f(x) ∈ F[x]. This means that E = F(α1, . . . , αn) for some distinct elements
α1, . . . , αn ∈ E satisfying

f(x) =
∏
i

(x− αi)ki

for some integers ki ≥ 1. Let G = Gal(E/F) be the group of automorphisms σ : E → E
satisfying σ(a) = a for all a ∈ F.

(a) For each σ ∈ G and each root αi of f(x), show that σ(αi) is also a root of f(x). Hence
for each σ ∈ G and i ∈ {1, . . . , n} there exists a unique πσ(i) ∈ {1, . . . , n} satisfying

σ(αi) = απσ(i).

Let πσ : {1, . . . , n} → {1, . . . , n} denote the corresponding function.
(b) Show that the function πσ is a permutation. [Hint: It suffices to show that πσ is

injective. Recall that σ is injective by assumption.]
(c) Show that the function Π : G→ Sn defined by σ 7→ πσ is a group homomorphism.
(d) Finally, show that Π is injective. [Hint: A group homomorphism is injective if and

only if its kernel is trivial. If πσ ∈ Sn is the identity permutation, show that σ ∈ G
must be the identity automorphism.]

2. Abstract Galois Connections. Let (P,≤) and (Q,≤) be posets. Let ∗ : P � Q : ∗ be
a pair of functions satisfying the following property:1

for all p ∈ P and q ∈ Q we have p ≤ q∗ ⇐⇒ q ≤ p∗.

Such a pair is called an abstract Galois connection. Since the following results are symmetric
in P and Q you only need to prove half of them.

(a) For all p ∈ P and q ∈ Q show that p ≤ p∗∗ and q ≤ q∗∗.
(b) For all p1, p2 ∈ P and q1, q2 ∈ Q show that p1 ≤ p2 ⇒ p∗2 ≤ p∗1 and q1 ≤ q2 ⇒ q∗2 ≤ q∗1.
(c) For all p ∈ P and q ∈ Q show that p∗∗∗ = p∗ and q∗∗∗ = q∗.
(d) Let P ′ = {p ∈ P : p∗∗ = p} and Q′ = {q ∈ Q : q∗∗ = q}. Show that the maps
∗ : P � Q : ∗ restrict to a bijection:

∗ : P ′ ↔ Q′ : ∗.

3. The Galois Group of a Cyclotomic Extension. Let ω = exp(2πi/n). The splitting
field of the polynomial xn − 1 over Q is

Q(1, ω, . . . , ωn−1) = Q(ω).

In this problem you will prove that G := Gal(Q(ω)/Q) ∼= (Z/nZ)×, assuming that the cyclo-
tomic polynomial Φn(x) is irreducible over Q.2

(a) For any σ ∈ G show that we must have σ(ω) = ωk for some gcd(k, n) = 1. [Hint: Show
that Φn(ω) = 0 implies Φn(σ(ω)) = 0.]

1We write p∗ instead of ∗(p). Because of the symmetry we don’t need to give the functions different names.
2This is fairly difficult to prove in general. On the previous homework you (almost) proved that Φp(x) is

irreducible over Q when p is prime.



(b) For any 0 ≤ k < n with gcd(k, n) = 1 show that there exists a (unique) element
σ ∈ G satisfying σ(ω) = ωk. [Hint: Since ω and ωk are both roots of the irreducible
polynomial Φn(x) ∈ Q[x], the minimal polynomial theorem implies that

Q(ω) ∼=
Q[x]

Φn(x)Q[x]
∼= Q(ωk).]

(c) For any 0 ≤ k < n with gcd(k, n) = 1 let σk ∈ G we the unique element satisfying
σk(ω) = ωk. Show that the map (Z/nZ)× → G defined by k 7→ σk is a group isomor-
phism. [Hint: First show that (σk ◦ σ`)(ω) = σk`(ω). Then use the fact that every
element of Q(ω) has the form f(ω)/g(ω) for some f(x), g(x) ∈ Q[x] with g(ω) 6= 0.]

4. Finite Dimensional Field Extensions. Consider a field extension E ⊇ F where E is
finite-dimensional as a vector space over F, i.e., [E/F] <∞.

(a) Prove that every element α ∈ E is algebraic over F, i.e., is the root of some polynomial
f(x) ∈ F[x]. [Hint: Since E is finite-dimensional over F, the infinite list of elements
1, α, α2, . . . must be linearly dependent over F.]

(b) Prove that E = F(α1, . . . , αn) for some finite list of elements α1, . . . , αn ∈ E. [Hint:
Use induction on dimension. If [E/F] = 1 then E = F and there is nothing to show so
suppose that [E/F] ≥ 2, i.e., E 6= F. Choose any element α1 ∈ E \ F and consider the
fields E ⊇ F(α1) ⊇ F. Dedekind’s Tower Law says

[E/F] = [E/F(α1)] · [F(α1)/F].

Since F(α1) 6= F we have [F(α1)/F] ≥ 2, hence [E/F(α1)] is strictly less than [E/F].]

5. Characteristic Zero Fields are Perfect. A field F is called perfect if irreducible
polynomials f(x) ∈ F[x] have no repeated roots in any field extension E ⊇ F. Prove that
fields of characteristic zero are perfect. [Hint: Since F has characteristic zero we know that
deg(Df) = deg(f)−1. In particular, Df(x) 6= 0. Use the fact that f(x) is irreducible to show
that gcd(f,Df) = 1 in F[x]. On the other hand, if f(x) has a repeated root α ∈ E ⊇ F in
some field extension show that we must have deg(f,Df) 6= 1 in E[x].]

6. The Primitive Element Theorem. Let F be any subfield of C, so F has characteristic
zero.3 Given any two numbers α, β ∈ C that are algebraic over F, we will prove that there
exists a number γ ∈ C (also algebraic over F) satisfying

F(α, β) = F(γ).

More precisely, we will show that there exists a scalar c ∈ F such that γ := α + cβ satisfies
the desired property.

(a) Show that every field of characteristic zero is infinite.
(b) Let f(x), g(x) ∈ F[x] be the minimal polynomials of α, β. Since F is infinite we may

choose an element c ∈ F such that c 6= (α′ − α)/(β − β′) for all roots α′, β′ ∈ E of
f(x), g(x), respectively. Define γ := α+ cβ and consider the polynomial

h(x) := f(γ − cx) ∈ F(γ)[x].

Show that the greatest common divisor of g(x) and h(x) in F(γ)[x] has degree ≤ 1.
[Hint: Note that β is a common root of g(x) and h(x). If the gcd of g(x) and h(x)
in F(γ)[x] has degree ≥ 2, use Problem 5 to show that g(x) and h(x) have another
common root β′ 6= β, which contradicts the definition of c.]

3This proof works more generally for any perfect field F; e.g., for any finite field. Then we replace C with
any field large enough to contain all the roots of the minimal polynomials of α and β.



(c) Let p(x) ∈ F(γ)[x] be the minimal polynomial of β over F(γ). Prove that p(x) = x−β,
and hence β ∈ F(γ). [Hint: Since g(x), h(x) ∈ F(γ)[x] have β as a common root, show
that p(x) divides the gcd of g(x) and h(x) in F(γ)[x]. Then use part (b).]

(d) Finally, use (c) to show that F(α, β) = F(γ).
(e) Corollary. Let E ⊇ F be any finite-dimensional extension of characteristic zero fields.

Use Problem 4 to show that E = F(γ) for some γ ∈ E.

Remark: This result is the first step in the proof of the Fundamental Theorem of Galois
Theory. I will provide a note that sketches out the rest of the proof.


