MTH 562/662 Spring 2024
Exam 1 Fri Mar 8

Convention: All rings in this exam are commutative.

Problem 1. Ring Homomorphisms.

(a) Define ring homomorphism.

Let R and S be rings. A function ¢ : R — S is called a ring homomorphism when it
satisfies the following three properties:

e o(a+0b) =¢(a)+ ¢(b) for all a,b € R,

e o(ab) = p(a)p(b) for all a,b € R,

e o(1)=1.

(b) Prove that kernel of a ring homomorphism is an ideal.

An ideal is an additive subgroup I C (R, +,0) satisfying the extra property that ab € T
for all « € R and b € I. Equivalently, an ideal is a subset I C R satisfying a + bc € T
for all a,b € I and c € R. If ¢p: R — S is a ring homomorphism we define the kernel

ker¢ :={a € R: p(a) = 0}.
This is an ideal of R since for a,b € ker ¢ and ¢ € R we have
¢(a+be) = p(a) + ¢(b)p(c) =0+ 0c =0,
and hence a + bc € ker ¢.

(c¢) Prove that image of a ring homomorphism is a subring.

A subring of S is a subset T' C S satisfying the following properties:
e(ecTand 1 €T,
e forall a,b €T we havea+be T and abe T.
Given a ring homomorphism ¢ : R — S we define the image
imy = {p(a): a € R}.
This is a subring of .S since 0 = ¢(0) € im goEI 1 =¢(1) € im ¢, and for any ¢(a), ¢(b) €
im ¢ we have

p(a) +o(b) = pla+b) €imp and  @(a)p(b) = p(ab) € imep.
Problem 2. Fields.

(a) Let I C R be an ideal of a ring. Prove that I = R if and only if I contains a unit.

First suppose that I = R. Then I contains a unit because 1 € I. Conversely, suppose
that I contains a unit u € R*. Then for any a € R we have a = (au™!)u € I because
au™!' € R and u € I. Hence I = R.

IThe fact that ¢(0) = 0 follows from the property ¢(a + b) = ¢(a) + ¢(b) and the fact that ¢ is a
homomorphism of additive groups.



(b) Let R be a ring. Prove that R is a field if and only if it has exactly two ideals.

Any ring R has the ideals {0} and R. We will show that R is a field if and only if
these are its only ideals. First suppose that R is a field and let I C R be any ideal.
If I # {0} then there exists a nonzero element a € I. But every nonzero element of a
field is a unit, hence it follows from part (a) that I = R. Conversely, let R be a ring
and suppose that {0} and R are its only ideals. Let a € R be any nonzero element
and consider the ideal aR C R. Since a € aR and a # 0 we have aR # {0}, and hence
aR = R. Then since 1 € aR it follows that 1 = ab for some b € R. Hence R is a field.

Problem 3. Minimal Polynomials. Let E O F be a field extension and let @ € E be any
element. Then we have a ring homomorphism ¢, : F[z] — E defined by f(z) — f(«).

(a) Define Flo] := im ¢,. Prove that F[a] is the smallest subring of E that contains FU{a}.

From Problem 1(c) we know that F[a] is a subring of E. Now let R C E be any
subring that contains the set F U {a}. We will show that R contains F[a]. Indeed,
every element of F[a] has the form f(«) for some polynomial f(z) = ag + -+ + apz”
with ag,...,a, € F. Since o, aq,...,a, € R and since R is closed under addition and
multiplication, we have

flay=ap+a1a+--- 4+ a,a” € R.

(b) You may assume that ker ¢, = mq(z)F[z] for some monic polynomial m,(z) € F[z].
Prove that m/(x) is irreducible over F.

For any f(z) € Flz] we have f(a) = 0 (i.e., f(z) € kery,) if and only mq(z)|f(x)
in the ring F[z]. I claim that mq(z) is irreducible over F. To prove this, sup-
pose for contradiction that we have mq(z) = f(x)g(x) with f(z),g(x) € Flz| and
deg(f),deg(g) < deg(my). Substituting x = a gives 0 = mq(a) = f(a)g(a), which
implies that f(a) = 0 or g(a) = 0. Without loss, suppose that f(«) = 0, so that mq(x)
divides f(z). But then we have deg(my) < deg(f) < deg(my,)-

(c) Suppose that deg(mq) = n. In this case, prove that every element 8 € F[a] can be
written in the form 8 = ag + a1 + ap_10™ ! for some ag, . ..,an_1 € F.

Every element § € Fla] has the form 8 = f(«) for some f(x) € F[x]. Divide f(x) b
the nonzero polynomial mq(x) to obtain g(x),r(z) € F[x] satisfying

{f(x)— a(z)q(z) + ()
r(z) =0 or deg(r) <

Since 7(x) = 0 or deg(r) < n we can write r7(z) = ag + --- + ap_12""! for some
ag, - --,an—1 € F. But then we have

B=fla)
= ma(a)q(a) + r(a)
= Og(a) +r(a)
=r(@)
=ap+ a1 + ap_1a" 1,

as desired.



(d) Continuing from (c), consider any f(z),g(x) € F[z] with deg(f),deg(g) < n. In this
case, prove that f(a) = g(«) in E if and only if f(z) = g(z) in F[z].

Consider any polynomials f(z), g(z) € F[z] with deg(f),deg(g) < n. If f(z) = g(x)

then clearly f(a) = g(a). Conversely, suppose that f(a) = g(a), and define the

polynomial h(z) = f(x) — g(x). Since h(a) = f(a) — g(a) = 0 we see that mq(z)|h(x)

in the ring F[z]. If h(z) is not the zero polynomial then we obtain the contradiction
n = deg(ma) < deg(h) = deg(f — g) < max{deg(f),deg(9)} <n.

It follows that h(x) = 0, and hence f(z) = g(x), in the ring F[z].



