Math 562/662 Spring 2022
Homework 5 Drew Armstrong

1. A Field is a Ring with Exactly Two Ideals. Let R be a commutative ring.

(a) Let I C R be an ideal. Show that I = R if and only if I contains a unit.

(b) If R is a field, use part (a) to show that {0} C I C R implies I = R.

(c) Conversely, suppose that R has exactly two ideals: {0} and R. Use this to prove that
R is a field. [Hint: For any non-zero element 0 # a € R, the ideal aR must equal R.
Use this to prove that a=! exists.]

(a): If I = R then I contains all the units, and there is always at least one of these; namely,
1. Conversely, suppose that u € I for some unit u € R*. Then since v™! € R and u € I we
have 1 = u~'u € I. Finally, for any a € R we have a € R and 1 € I hence a = la € I.

(b): Let R be a field and consider an ideal {0} C I C R. Since I # {0} there exists a nonzero
element a € I, and since R is a field this element a is a unit. Hence I = R by part (a).

(c): Let R be a ring with exactly two ideals: {0} and R. To show that R is a field, consider
any nonzero element a € R and the corresponding ideal aR. Since a # 0 we have aR # {0}.
Since {0} and R are the only ideals of R, this implies that aR = R. Finally, since 1 € R = aR,
there exists some b € R such that 1 = ab. Hence R is a field.

2. Quotients of Euclidean Domains. Let (R, N) be a Euclidean domain.

(a) Show that every ideal I C R has the form I = aR for some a € R. [Hint: If I = {0}
then we have I = OR. If I # {0}, choose some non-zero element a € I with minimum
size N(a). Show that I = aR.]

(b) Show that aR = bR if and only if a and b are associates.

(c) Consider an ideal pR # R (so that p is not a unit). If p is primeEI prove that R/pR is
a field. [Hint: Consider a non-zero coset a + pR # 0 4+ pR. Show that we must have
ged(a, p) = 1, hence from Bézout’s Identity we have az + py = 1 for some z,y € R.]

(a): Consider an ideal I C R. If I = {0} then I = OR is principal. Otherwise, consider a
nonzero element ¢ € I with minimum size N(a). I claim that I = aR. On the one hand, since
a € I we have for all » € R that ar € I, and hence aR C I. On the other hand, consider any
element b € I and divide by a to obtain ¢,r € R such that

b=aqg+r,
r=0or N(r) < N(a).

Since a,b € [ and ¢ € R we have r =b—aq € I. If r # 0 then r is a nonzero element of I that
is smaller than a. Contradiction. Hence we must have r = 0 and hence b = aq € aR. Since
this holds for all b € I we have shown that I C aR as desired.

(b): First suppose that a ~ b, so that @ = bu and b = au~! for some unit v € R*. Then
for all » € R we have ar = b(ur) € bR, so that aR C bR. And for all » € R we have
br = a(u~!'r) € aR, so that bR = aR. It follows that aR = bR.

Conversely, suppose that aR = bR. If one of a or b is zero, then so is the other, hence a ~ b.
So let us suppose that a,b are both nonzero. Since a € bR we have a = bu for some v € R

1Recall: We say that p € R is prime when p is non-zero, non-unit, and p = ab implies that a or b is a unit.



and since b € aR we have b = av for some v € R. Since R is an integral domain, we see that
u and v are both units, hence a ~ b:

b=av
b= buv
b(1 —uv) =0
1—uww=0 b#0
1 =wuw.

(c): Let p € R be prime and consider the ideal pR # R. I claim that the quotient ring R/pR
is a field. To see this, consider any nonzero coset a + pR # 0 + pR, so that a &€ pR. In other
words, we have p { a. Since p is prime and p t a we must have ged(a,p) = 1, hence we can find
some b, ¢ € R satisfying ab + pc = 1. It follows ab + pR =1+ pR, so that

(a+pR)(b+ pR) = ab+pR =1+ pR.

We have shown that any nonzero element of R/pR has a multiplicative inverse.

3. The Minimal Polynomial Theorem. Consider a field extension E O F. Then for any
element a € E we have an evaluation homomorphism:

va: Flz] — E
flz) = fla).

(a) Prove that Fla] := im ¢, is the smallest subring of E that contains F and «.

(b) Let « be algebraic over I, so that ker ¢, # {0}. In this case, prove that there exists
a unique monicﬂ polynomial m(xz) € F[x] such that ker p, = m(x)F[z|. [Hint: Use
Problem 2(a,b).] This m(x) is called the minimal polynomial of o over F.

(c) Let d = deg(m). Prove that every element 5 € Fla] can be expressed uniquely as

B=by+ba+ba®+ - +bsi_ja®t for some bg,bq,...,bs_1 € F.

[Hint: By definition of Fla] we have § = f(«) for some polynomial f(z) € Flz]. Divide
f(z) by the minimal polynomial m(z) to get f(z) = m(z)q(x) + r(x).]

(d) Prove that m(z) is irreducible over F. [Hint: Suppose that m(z) = f(z)g(x). Since
m(z) is in the kernel of ¢, we have f(a)g(a) = m(a) = 0, and hence f(a) = 0 or
g(a) = 0. If f(or) =0 then f(z) is in the kernel of ¢, which implies that m(z)|f(z).]

(e) Continuing from part (d), use the First Isomorphism Theorem and Problem 2(b) to
show that F[a] is a field.

(a): Let R be a ring satisfying F C R C Fla] and o € R. A general element of F[a] looks like

B=ayg+aa+--a,a”,

for some ag,...,a, € F. Then since ayg,...,a,,a € R and since R is closed under addition
and multiplication, we must have 8 € R. Hence R = F|a] as desired.

(b): If kerp, = {0} then since F[x] is a PID we must have kerp, = f(z)F[x] for some
f(x) € F[z]. Furthermore, if f(x)F[x] = g(«)F[x] then from Problem 2(b) we must have
f(x) = Ag(zx) for some nonzero constant A € Flz|. It follows that there exists a unique monic
polynomial m(z) € F[x] such that ker ¢, = m(x)F[x]. Indeed, we can take m(z) = f(z)/A,
where A is the leading coefficient of f(x). Then for any other monic polynomial m’(x) satisfying

2The leading coefficient is 1.



(x)F[z] = m/(2)F[x] we must have m(z) = pum/(x) for some constant u. But since m(x) and
/

m(x)F [z
m’(z) have the same leading coefficient, we must have ;= 1 and hence m(z) = m/(x).

(c): Let m(z) be a generator of ker ¢, and let d = deg(m). I claim that for any element
B € Fla] there exist unique by, ...,bs_1 € F such that

B=by+bia+--+bg_1a?L.

Existence: By definition, any element of F[a] looks like 8 = f(«) for some polynomial f(z) €
F[z]. Divide f(x) by the nonzero polynomial m(x) to obtain

f(x) = m(x)q(x) + r(z),
r(z) =0 or deg(r) < deg(m).
Since 7(z) = 0 or deg(r) < deg(m) = d, we can write r(x) = by + by + -+ + bg_jz%"1 for
some elements by, ...,bs_1 € F (possibly all zero). Then since m(a) = 0 we have
B=fla)
m(a)q(e) + ()

=r(a)

=by+bra+--+bga® .

Uniqueness: Suppose that we have

bo + bra+ -+ + byt

=co+cra+ -4 cg1a%?

for some bg,...,bg_1,¢0,...,c4—1 € F. We wish to show that b; = ¢; for all i. To do this, we
define the polynomials r(x) = by + byx + bg_12% ! and s(z) = co + c1z + - - - + cq_12% 1. We
will be done if we can show that r(z) — s(x) is the zero polynomial, since then the coefficients
of r(z) and s(z) will be equal.

By assumption we have r(a) = s(a) and hence r(a) — s(ar) = 0. In other words, we have
r(z) — s(x) € ker ¢, which implies that r(z) — s(z) is divisible by m(z). If r(z) — s(z) # 0
then this gives a contradiction:

d = deg(m) < deg(r — s) < max{deg(r),deg(s)} < d.

Hence r(z) — s(z) = 0 as desired.

(d): Let m(x) be a generator of ker . To prove that m(x) is irreducible over F, suppose that
we have m(z) = f(x)g(x) for some (nonzero) f(x),g(z) € F[z]. Evaluating at = = « gives

0 =m(a) = fa)g(a),
which implies that f(a) =0 or g(a) = 0. Without loss of generality, suppose that f(a) = 0.
Then since f(z) € kery, we must have m(x)|f(x). But since m(xz) = f(x)g(z) we also
have f(x)|lm(z). It follows that m(z) = Af(z) for some constant A € F[z]. Finally, since
f(z)g(z) = Ag(z), it follows that g(xz) = A is constant. We have shown that

m(z) = f(z)g(z) ==  f(x) or g(z) is constant.
In other words, m(x) is irreducible over F.

(e): If ker ¢, = {0} then we have shown that ker ¢, = m(z)F[z| for a unique, monic polyno-
mial m(x) € Flz], which is irreducible. From the First Isomorphism Theorem we have

Flo _ Fl
ker o,  m(z)F[z]

F[O‘] =impq =



Finally, since m(x) is prime in F[z] we conclude from 2(c) that this quotient ring is a field.

Remark: This is a rather indirect way to prove that F[a] is a field. In particular, it does not
provide an algorithm to compute inverses in F[a]. The solution to this problem is to use 3(c)
to express F[a] as a vector space over F with basis 1, a, ... ,a®1 and then use linear algebra.

4. Cube Roots of 2. Let a € C be any root of the polynomial 2* — 2 € Q[z].

(a) Prove that 23 — 2 is irreducible over Q, hence it is the minimal polynomial for a over
Q. [Hint: If 23 —2 is not irreducible over Q then it has a root a/b € Q for some a,b € Z
with ged(a,b) = 1. Use this to get a contradiction.]

(b) It follows from Problem 3 that the following set of numbers is a field:

Qla] = {a+ba + ca® : a,b,c € Q} C C.

Find the inverse of the number 1 + a + o?. [Hint: Let (1 + a + o?)(a + ba + ca?) =
1+ 0 + 0. Expand the left side and equate coefficients. Use the fact that a® = 2.]

(a): Let a € C satisfy a®—2 =0, let f(z) = 23 —2 € Q[z] and let m(z) € Q[z] be the minimal
polynomial of a over Q, so that m(x)|f(x). I claim that in fact m(z) = f(z).To show this, it
is enough to prove that f(x) is irreducible over Q, since then m(z)|f(z) implies m(z) = A\ f(z)
and since f(x), m(z) are both monic we must have A = 1.

So suppose for contradiction that f(z) = g(x)h(z) for some g(x),h(x) € Q[z], both non-
constant. By comparing degrees we must have deg(f) = 1 or deg(g) = 1. Without loss of
generality, suppose that deg(f) = 1, so that f(z) = ax + 5 with «, 5 € Q and a # 0. Write
—B/a = a/b for some a,b € Z with gcd(a,b) = 1. Then we have

fla/b) = g(a/b)h(a/b) = g(—=B/a)h(a/b) = Oh(a/b) = 0,
which implies that

(a/b)®>—2=0
a® — 26 =0
a® =203,

Since a|2b and ged(a,b) = 1 we must have a|2 and since bla® we must have b|1. It follows
that a/bis £1 or :|:2E| But none of these four numbers is a root of 23 — 2. Contradiction.

(b): If @® — 2 = 0 then we have shown that 2 — 2 is the minimal polynomial of o over Q.
Since deg(z® — 2) = 3 this implies that the field Q[a] C C can be expressed as a vector space
over Q with basis 1, a, o

Qla] = {a+ ba +ca® : a,b,c € Q}.

This representation allows us to do computations in Q[«] via linear algebra. For example, we
compute the inverse of the nonzero element 1 + a 4+ a? € Q[a]. The inverse must have the
form a + ba + ca? for some a,b, ¢ € Q where

(1+a+a?)(a+ba+ca?) =1+ 0a+0a>

3We have just performed the “rational root test”, to find a finite list of potential roots of z* — 2 in Q.



Expanding the left hand side and using the fact that o® — 2 = 0 gives
(1+a+a?)(a+ba+ca?) =a+ba+ ca?

ao + ba? + ca’
ao® + ba? + cat

= a + ba + ca?
ao 4 ba? + 2¢
ao® + 2b+ 2ca

= (a+2b+2¢) + (a+b+2)a+ (a+b+c)a’.

Then comparing coefﬁcientﬁ gives a system of three linear equations in the unknowns a, b, c:

a + 206 + 2¢ = 1,
a + b + 2¢ = 0,
a + b + ¢ = 0.

After a bit of work we find that (a,b,c) = (—1,1,0), so that
(1+a+a?)(-1+a)=1

Remark: With a bit more work we can find a formula for the inverse of a general element
r+sa+ta?. By expanding (r+sa+ta?)(a+ba+ca?) = 1+ 0a+0a? we obtain the following
system of linear equations in a, b, c:

ra + 2tb + 2sc =
sa + rb + 2tc = 0,
ta + sb + rc

—_

I
e

Then my computer gives the following solution:
1
r3 + 283 + 413 — 6rst
That is, for any 7, s,t € Q, not all zero, we have
1 1 2 2 2y 2
= r° —2st) + (rs — 2t°)a + (rt — s%)a”) .
r+ sa + ta? r3+283+4t3—67‘5t(( )+ Jaot ( o)
As an interesting consequence, if 7, s,t € Q are not all zero then we must have
3+ 283 4+ 4t — 6rst # 0.

I have no idea how I would prove this by other methods.

(a,b,c) =

(7’2 — 2st,rs — 2t2, rt — 32) .

4We can do this because of uniqueness.



