
Math 562/662 Spring 2022
Homework 5 Drew Armstrong

1. A Field is a Ring with Exactly Two Ideals. Let R be a commutative ring.

(a) Let I ⊆ R be an ideal. Show that I = R if and only if I contains a unit.
(b) If R is a field, use part (a) to show that {0} ( I ⊆ R implies I = R.
(c) Conversely, suppose that R has exactly two ideals: {0} and R. Use this to prove that

R is a field. [Hint: For any non-zero element 0 6= a ∈ R, the ideal aR must equal R.
Use this to prove that a−1 exists.]

(a): If I = R then I contains all the units, and there is always at least one of these; namely,
1. Conversely, suppose that u ∈ I for some unit u ∈ R×. Then since u−1 ∈ R and u ∈ I we
have 1 = u−1u ∈ I. Finally, for any a ∈ R we have a ∈ R and 1 ∈ I hence a = 1a ∈ I.

(b): Let R be a field and consider an ideal {0} ( I ⊆ R. Since I 6= {0} there exists a nonzero
element a ∈ I, and since R is a field this element a is a unit. Hence I = R by part (a).

(c): Let R be a ring with exactly two ideals: {0} and R. To show that R is a field, consider
any nonzero element a ∈ R and the corresponding ideal aR. Since a 6= 0 we have aR 6= {0}.
Since {0} and R are the only ideals of R, this implies that aR = R. Finally, since 1 ∈ R = aR,
there exists some b ∈ R such that 1 = ab. Hence R is a field.

2. Quotients of Euclidean Domains. Let (R,N) be a Euclidean domain.

(a) Show that every ideal I ⊆ R has the form I = aR for some a ∈ R. [Hint: If I = {0}
then we have I = 0R. If I 6= {0}, choose some non-zero element a ∈ I with minimum
size N(a). Show that I = aR.]

(b) Show that aR = bR if and only if a and b are associates.
(c) Consider an ideal pR 6= R (so that p is not a unit). If p is prime,1 prove that R/pR is

a field. [Hint: Consider a non-zero coset a + pR 6= 0 + pR. Show that we must have
gcd(a, p) = 1, hence from Bézout’s Identity we have ax+ py = 1 for some x, y ∈ R.]

(a): Consider an ideal I ⊆ R. If I = {0} then I = 0R is principal. Otherwise, consider a
nonzero element a ∈ I with minimum size N(a). I claim that I = aR. On the one hand, since
a ∈ I we have for all r ∈ R that ar ∈ I, and hence aR ⊆ I. On the other hand, consider any
element b ∈ I and divide by a to obtain q, r ∈ R such that{

b = aq + r,
r = 0 or N(r) < N(a).

Since a, b ∈ I and q ∈ R we have r = b−aq ∈ I. If r 6= 0 then r is a nonzero element of I that
is smaller than a. Contradiction. Hence we must have r = 0 and hence b = aq ∈ aR. Since
this holds for all b ∈ I we have shown that I ⊆ aR as desired.

(b): First suppose that a ∼ b, so that a = bu and b = au−1 for some unit u ∈ R×. Then
for all r ∈ R we have ar = b(ur) ∈ bR, so that aR ⊆ bR. And for all r ∈ R we have
br = a(u−1r) ∈ aR, so that bR = aR. It follows that aR = bR.

Conversely, suppose that aR = bR. If one of a or b is zero, then so is the other, hence a ∼ b.
So let us suppose that a, b are both nonzero. Since a ∈ bR we have a = bu for some u ∈ R

1Recall: We say that p ∈ R is prime when p is non-zero, non-unit, and p = ab implies that a or b is a unit.



and since b ∈ aR we have b = av for some v ∈ R. Since R is an integral domain, we see that
u and v are both units, hence a ∼ b:

b = av

b = buv

b(1− uv) = 0

1− uv = 0 b 6= 0

1 = uv.

(c): Let p ∈ R be prime and consider the ideal pR 6= R. I claim that the quotient ring R/pR
is a field. To see this, consider any nonzero coset a+ pR 6= 0 + pR, so that a 6∈ pR. In other
words, we have p - a. Since p is prime and p - a we must have gcd(a, p) = 1, hence we can find
some b, c ∈ R satisfying ab+ pc = 1. It follows ab+ pR = 1 + pR, so that

(a+ pR)(b+ pR) = ab+ pR = 1 + pR.

We have shown that any nonzero element of R/pR has a multiplicative inverse.

3. The Minimal Polynomial Theorem. Consider a field extension E ⊇ F. Then for any
element α ∈ E we have an evaluation homomorphism:

ϕα : F[x] → E
f(x) 7→ f(α).

(a) Prove that F[α] := imϕα is the smallest subring of E that contains F and α.
(b) Let α be algebraic over F, so that kerϕα 6= {0}. In this case, prove that there exists

a unique monic2 polynomial m(x) ∈ F[x] such that kerϕα = m(x)F[x]. [Hint: Use
Problem 2(a,b).] This m(x) is called the minimal polynomial of α over F.

(c) Let d = deg(m). Prove that every element β ∈ F[α] can be expressed uniquely as

β = b0 + b1α+ b2α
2 + · · ·+ bd−1α

d−1 for some b0, b1, . . . , bd−1 ∈ F.

[Hint: By definition of F[α] we have β = f(α) for some polynomial f(x) ∈ F[x]. Divide
f(x) by the minimal polynomial m(x) to get f(x) = m(x)q(x) + r(x).]

(d) Prove that m(x) is irreducible over F. [Hint: Suppose that m(x) = f(x)g(x). Since
m(x) is in the kernel of ϕα we have f(α)g(α) = m(α) = 0, and hence f(α) = 0 or
g(α) = 0. If f(α) = 0 then f(x) is in the kernel of ϕα which implies that m(x)|f(x).]

(e) Continuing from part (d), use the First Isomorphism Theorem and Problem 2(b) to
show that F[α] is a field.

(a): Let R be a ring satisfying F ⊆ R ⊆ F[α] and α ∈ R. A general element of F[α] looks like

β = a0 + a1α+ · · · anαn,
for some a0, . . . , an ∈ F. Then since a0, . . . , an, α ∈ R and since R is closed under addition
and multiplication, we must have β ∈ R. Hence R = F[α] as desired.

(b): If kerϕα = {0} then since F[x] is a PID we must have kerϕα = f(x)F[x] for some
f(x) ∈ F[x]. Furthermore, if f(x)F[x] = g(x)F[x] then from Problem 2(b) we must have
f(x) = λg(x) for some nonzero constant λ ∈ F[x]. It follows that there exists a unique monic
polynomial m(x) ∈ F[x] such that kerϕα = m(x)F[x]. Indeed, we can take m(x) = f(x)/λ,
where λ is the leading coefficient of f(x). Then for any other monic polynomialm′(x) satisfying

2The leading coefficient is 1.



m(x)F[x] = m′(x)F[x] we must have m(x) = µm′(x) for some constant µ. But since m(x) and
m′(x) have the same leading coefficient, we must have µ = 1 and hence m(x) = m′(x).

(c): Let m(x) be a generator of kerϕα and let d = deg(m). I claim that for any element
β ∈ F[α] there exist unique b0, . . . , bd−1 ∈ F such that

β = b0 + b1α+ · · ·+ bd−1α
d−1.

Existence: By definition, any element of F[α] looks like β = f(α) for some polynomial f(x) ∈
F[x]. Divide f(x) by the nonzero polynomial m(x) to obtain{

f(x) = m(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(m).

Since r(x) = 0 or deg(r) < deg(m) = d, we can write r(x) = b0 + b1x + · · · + bd−1x
d−1 for

some elements b0, . . . , bd−1 ∈ F (possibly all zero). Then since m(α) = 0 we have

β = f(α)

= m(α)q(α) + r(α)

= r(α)

= b0 + b1α+ · · ·+ bd−1α
d−1.

Uniqueness: Suppose that we have

b0 + b1α+ · · ·+ bd−1α
d−1 = c0 + c1α+ · · ·+ cd−1α

d−1

for some b0, . . . , bd−1, c0, . . . , cd−1 ∈ F. We wish to show that bi = ci for all i. To do this, we
define the polynomials r(x) = b0 + b1x+ bd−1x

d−1 and s(x) = c0 + c1x+ · · ·+ cd−1x
d−1. We

will be done if we can show that r(x)− s(x) is the zero polynomial, since then the coefficients
of r(x) and s(x) will be equal.

By assumption we have r(α) = s(α) and hence r(α) − s(α) = 0. In other words, we have
r(x) − s(x) ∈ kerϕα, which implies that r(x) − s(x) is divisible by m(x). If r(x) − s(x) 6= 0
then this gives a contradiction:

d = deg(m) ≤ deg(r − s) ≤ max{deg(r), deg(s)} < d.

Hence r(x)− s(x) = 0 as desired.

(d): Let m(x) be a generator of kerϕα. To prove that m(x) is irreducible over F, suppose that
we have m(x) = f(x)g(x) for some (nonzero) f(x), g(x) ∈ F[x]. Evaluating at x = α gives

0 = m(α) = f(α)g(α),

which implies that f(α) = 0 or g(α) = 0. Without loss of generality, suppose that f(α) = 0.
Then since f(x) ∈ kerϕα we must have m(x)|f(x). But since m(x) = f(x)g(x) we also
have f(x)|m(x). It follows that m(x) = λf(x) for some constant λ ∈ F[x]. Finally, since
f(x)g(x) = λg(x), it follows that g(x) = λ is constant. We have shown that

m(x) = f(x)g(x) =⇒ f(x) or g(x) is constant.

In other words, m(x) is irreducible over F.

(e): If kerϕα = {0} then we have shown that kerϕα = m(x)F[x] for a unique, monic polyno-
mial m(x) ∈ F[x], which is irreducible. From the First Isomorphism Theorem we have

F[α] = imϕα ∼=
F[x]

kerϕα
=

F[x]

m(x)F[x]
.



Finally, since m(x) is prime in F[x] we conclude from 2(c) that this quotient ring is a field.

Remark: This is a rather indirect way to prove that F[α] is a field. In particular, it does not
provide an algorithm to compute inverses in F[α]. The solution to this problem is to use 3(c)
to express F[α] as a vector space over F with basis 1, α, . . . , αd−1 and then use linear algebra.

4. Cube Roots of 2. Let α ∈ C be any root of the polynomial x3 − 2 ∈ Q[x].

(a) Prove that x3 − 2 is irreducible over Q, hence it is the minimal polynomial for α over
Q. [Hint: If x3−2 is not irreducible over Q then it has a root a/b ∈ Q for some a, b ∈ Z
with gcd(a, b) = 1. Use this to get a contradiction.]

(b) It follows from Problem 3 that the following set of numbers is a field:

Q[α] = {a+ bα+ cα2 : a, b, c ∈ Q} ⊆ C.

Find the inverse of the number 1 + α + α2. [Hint: Let (1 + α + α2)(a + bα + cα2) =
1 + 0α+ 0α2. Expand the left side and equate coefficients. Use the fact that α3 = 2.]

(a): Let α ∈ C satisfy α3−2 = 0, let f(x) = x3−2 ∈ Q[x] and let m(x) ∈ Q[x] be the minimal
polynomial of α over Q, so that m(x)|f(x). I claim that in fact m(x) = f(x).To show this, it
is enough to prove that f(x) is irreducible over Q, since then m(x)|f(x) implies m(x) = λf(x)
and since f(x),m(x) are both monic we must have λ = 1.

So suppose for contradiction that f(x) = g(x)h(x) for some g(x), h(x) ∈ Q[x], both non-
constant. By comparing degrees we must have deg(f) = 1 or deg(g) = 1. Without loss of
generality, suppose that deg(f) = 1, so that f(x) = αx + β with α, β ∈ Q and α 6= 0. Write
−β/α = a/b for some a, b ∈ Z with gcd(a, b) = 1. Then we have

f(a/b) = g(a/b)h(a/b) = g(−β/α)h(a/b) = 0h(a/b) = 0,

which implies that

(a/b)3 − 2 = 0

a3 − 2b3 = 0

a3 = 2b3.

Since a|2b3 and gcd(a, b) = 1 we must have a|2 and since b|a3 we must have b|1. It follows
that a/b is ±1 or ±2.3 But none of these four numbers is a root of x3 − 2. Contradiction.

(b): If α3 − 2 = 0 then we have shown that x3 − 2 is the minimal polynomial of α over Q.
Since deg(x3 − 2) = 3 this implies that the field Q[α] ⊆ C can be expressed as a vector space
over Q with basis 1, α, α2:

Q[α] = {a+ bα+ cα2 : a, b, c ∈ Q}.

This representation allows us to do computations in Q[α] via linear algebra. For example, we
compute the inverse of the nonzero element 1 + α + α2 ∈ Q[α]. The inverse must have the
form a+ bα+ cα2 for some a, b, c ∈ Q where

(1 + α+ α2)(a+ bα+ cα2) = 1 + 0α+ 0α2.

3We have just performed the “rational root test”, to find a finite list of potential roots of x3 − 2 in Q.



Expanding the left hand side and using the fact that α3 − 2 = 0 gives

(1 + α+ α2)(a+ bα+ cα2) = a+ bα+ cα2

aα+ bα2 + cα3

aα2 + bα3 + cα4

= a+ bα+ cα2

aα+ bα2 + 2c

aα2 + 2b+ 2cα

= (a+ 2b+ 2c) + (a+ b+ 2c)α+ (a+ b+ c)α2.

Then comparing coefficients4 gives a system of three linear equations in the unknowns a, b, c: a + 2b + 2c = 1,
a + b + 2c = 0,
a + b + c = 0.

After a bit of work we find that (a, b, c) = (−1, 1, 0), so that

(1 + α+ α2)(−1 + α) = 1.

Remark: With a bit more work we can find a formula for the inverse of a general element
r+sα+ tα2. By expanding (r+sα+ tα2)(a+bα+cα2) = 1+0α+0α2 we obtain the following
system of linear equations in a, b, c: ra + 2tb + 2sc = 1,

sa + rb + 2tc = 0,
ta + sb + rc = 0.

Then my computer gives the following solution:

(a, b, c) =
1

r3 + 2s3 + 4t3 − 6rst

(
r2 − 2st, rs− 2t2, rt− s2

)
.

That is, for any r, s, t ∈ Q, not all zero, we have

1

r + sα+ tα2
=

1

r3 + 2s3 + 4t3 − 6rst

(
(r2 − 2st) + (rs− 2t2)α+ (rt− s2)α2

)
.

As an interesting consequence, if r, s, t ∈ Q are not all zero then we must have

r3 + 2s3 + 4t3 − 6rst 6= 0.

I have no idea how I would prove this by other methods.

4We can do this because of uniqueness.


