
Math 562/662 Spring 2022
Homework 3 Drew Armstrong

1. Normal Subgroups. Let (G, ∗, ε) and let H ⊆ G be a subgroup. Prove that the following
two statements are equivalent:

(N1) For all g ∈ G and h ∈ H we have g ∗ h ∗ g−1 ∈ H.
(N2) For all g ∈ G we have g ∗H = H ∗ g.

(N2)⇒(N1): Suppose that (N2) is true. In order to prove (N1), consider any g ∈ G and
h ∈ H. Our goal is to show that g ∗ h ∗ g−1 ∈ H. Since g ∗ h ∈ g ∗H and since g ∗H = H ∗ g
by (N2), we must have g ∗h ∈ H ∗ g and hence g ∗h = h′ ∗ g for some h′ ∈ H. Finally, we have

g ∗ h ∗ g−1 = h′ ∈ H.

(N1)⇒(N2): Suppose that (N1) is true. In order to prove (N2), consider any g ∈ G. Our goal
is to prove the following inclusions:

(i) g ∗H ⊆ H ∗ g
(ii) H ∗ g ⊆ g ∗H

To prove (i), consider any element a ∈ g ∗H, which must have the form a = g ∗ h for some
h ∈ H. Then by (N1) we have g ∗ h ∗ g−1 = h′ for some h′ ∈ H and it follows that

a = g ∗ h = h′ ∗ g ∈ H ∗ g.
The proof of (ii) is similar.

2. Kernel and Image. Let ϕ : (G, ∗, ε) → (G′, •, δ) be a group homomorphism and define
the kernel and image as follows:

kerϕ := {a ∈ G : ϕ(a) = δ} ⊆ G,
imϕ := {ϕ(a) : a ∈ G} ⊆ G′.

(a) Prove that kerϕ ⊆ G is a normal subgroup.
(b) Prove that imϕ ⊆ G′ is a subgroup.
(c) Given an example to show that the image need not be a normal subgroup. [Hint: The

easiest example uses a homomorphism from (Z,+, 0) to S3. See Problem 3.]

Our proof will use the following facts, proved in the notes:

(1) ϕ(ε) = δ,
(2) ϕ(a−1) = ϕ(a)−1.

(a): First we prove that kerϕ ⊆ G is a subgroup:

• Identity. By (1) we have ϕ(ε) = δ and hence ε ∈ kerϕ.
• Inversion. Suppose that a ∈ kerϕ, so that ϕ(a) = δ. Then from (2) we have

ϕ(a−1) = ϕ(a)−1 = δ−1 = δ,

so that a−1 ∈ kerϕ.
• Closure under group operation. Suppose that a, b ∈ kerϕ so that ϕ(a) = δ and
ϕ(b) = δ. Then from the definition of group homomorphism we have

ϕ(a ∗ b) = ϕ(a) • ϕ(b) = δ • δ = δ,

so that a ∗ b ∈ kerϕ.



Next we prove that kerϕ ⊆ G is normal. To do this, consider any g ∈ G and h ∈ kerϕ, so
that ϕ(h) = δ. Then from the definition of homomorphism and property (2) we have

ϕ(g ∗ h ∗ g−1) = ϕ(g) • ϕ(h) • ϕ(g)−1

= ϕ(g) • δ • ϕ(g)−1

= ϕ(g) • ϕ(g)−1

= δ.

It follows that g ∗ h ∗ g−1 ∈ kerϕ, hence kerϕ is normal by property (N1).

(b): We verify that imϕ ⊆ G′ satisfies the subgroup axioms:

• Identity. By (1) we have δ = ϕ(ε) ∈ imϕ.
• Inversion. Let a′ ∈ imϕ, so that a′ = ϕ(a) for some a ∈ G. Then from (2) we have

(a′)−1 = ϕ(a)−1 = ϕ(a−1) ∈ imϕ.

• Closure under group operation. Suppose that a′, b′ ∈ imϕ so that a′ = ϕ(a) and
b′ = ϕ(b) for some a, b ∈ G. Then from the definition of group homomorphism we have

a′ • b′ = ϕ(a) • ϕ(b) = ϕ(a ∗ b) ∈ imϕ.

(c): To see that the image need not be normal, consider the group homomorphism from
(Z,+, 0) to (S3, ◦, id) defined by1

ϕ(k) = (12)k =

{
id if k is even,

(12) if k is odd.

The image is the subgroup {id, (12)} ⊆ S3 an we proved in class that this is not normal.

3. The Order of an Element. Let (G, ∗, ε) be a group and fix some element a ∈ G. Then
for any integer k we define the element an ∈ G as follows:

ak :=


k times︷ ︸︸ ︷

a ∗ a ∗ · · · ∗ a if k ≥ 1,

ε if k = 0,

a−1 ∗ a−1 ∗ · · · ∗ a−1︸ ︷︷ ︸
−k times

if k ≤ −1.

(a) Prove that the function ϕ(k) := ak is a group homomorphism (Z,+, 0)→ (G, ∗, ε).
(b) Prove that any group homomorphism ϕ : (Z,+, 0)→ (G, ∗, ϕ) sending 1 to a must be

equal to the homomorphism in part (a). We use the following notation for the image:

〈a〉 := imϕ = {ak : k ∈ Z} ⊆ G,

and we call this the cyclic subgroup of G generated by a. [Hint: Induction.]
(c) Use the First Isomorphism Theorem to prove that either 〈a〉 ∼= Z or 〈a〉 ∼= Z/nZ for

some integer n ≥ 1. This n is called the order of a as an element of G.
(d) If G is finite, conclude from Lagrange’s Theorem that the order of a divides #G.

1The fact that this is a homomorphism can be checked directly, or we can quote Problem 3(a).



(a): Our goal is to show that ak+` = ak ∗ a` for any integers k, ` ∈ Z. This is a surprisingly
annoying case-by-case check. Most textbooks just assume this fact without even acknowledging
that something needs to be proved.

(b): Consider any group homomorphism ϕ : (Z,+, 0) → G and let a := ϕ(1). Our goal is to
prove that ϕ(k) = ak for all k ∈ Z, and we can do this by induction on k. First we observe
that ϕ(0) = ε by property (1) of group homomorphisms. Hence ϕ(0) = a0 as desired. Now
let k ≥ 1 and assume for induction that ϕ(k) = ak. Then it follows by definition that

ϕ(k + 1) = ϕ(k) ∗ ϕ(1) = ak ∗ a = ak+1.

Hence we have shown that ϕ(k) = ak for all k ≥ 0. Finally, for any integer ` < 0 we let
k = −` > 0. Then it follows from property (2) of homomorphisms that2

ϕ(`) = ϕ(−k) = ϕ(k)−1 = (ak)−1 = a−k = a`.

(c): For any element a ∈ G, consider the unique homomorphism ϕ : Z → G satisfying
ϕ(1) = a. We will denote the image by

〈a〉 = imϕ = {ak : k ∈ Z}.

Hence the First Isomorphism Theorem tells us that

〈a〉 ∼= Z/ kerϕ.

The kernel of ϕ, being a subgroup of (Z,+, 0) must have the form nZ for some (unique) integer
n ≥ 0. In the special case kerϕ = 0Z = {0}, the quotient group Z/0Z is just isomorphic to
Z, because the cosets of the subgroup {0} are just the integers n+ {0} = {n} and the group
operation is just addition of integers:

(m+ {0}) + (m+ {0}) = (m+ n) + {0}
{m}+ {n} = {m+ n}.

(d): Since 〈a〉 ⊆ G is the image of a homomorphism it is necessarily a subgroup. If G is finite
then Largange’s Theorem tells us that

#〈a〉|#G.

Remark: We will write ordG(a) := #〈a〉 and call this the order of a as an element of G. If
#〈a〉 then because of the group isomorphism Z/mZ → 〈a〉 we have ak = a` if and only if
k ≡ ` mod m. It follows that every element of 〈a〉 has a unique representation of the form ar

for some 0 ≤ r < m:

〈a〉 = {ε, a, a2, . . . , am−1〉.
Now consider the case G = (Z/nZ)×, where #G is Euler’s phi function φ(n). For any element
a ∈ (Z/nZ)× part (d) gives

ord(a)|#φ(n),

say ord(a)d = φ(n) for some d ∈ Z. Then it follows that

aφ(n) = aord(a)d = (aord(a))d = 1d = 1 in (Z/nZ)×,

which is just Euler’s Totient Theorem.

2Oops, I didn’t ask you to prove that (ak)−1 = a−k. That is another annoying case-by-case proof.



4. The Order of a Power. Let (G, ∗, ε) and let a ∈ G be an element of order n. It follows
from Problem 4(c) that 〈a〉 ∼= Z/nZ and hence

ak = a` in G ⇐⇒ k ≡ ` mod n.

(a) For all k ∈ Z, prove that 〈ak〉 = 〈ad〉, where d = gcd(k, n). [Hint: Since d|k we see
that ak is a power of ad, hence 〈ak〉 ⊆ 〈ad〉. Conversely, use Bézout’s Identity to show
that ad is a power of ak, hence 〈ad〉 ⊆ 〈ak〉.]

(b) For any positive divisor d|n, show that #〈ad〉 = n/d. [Hint: Let m = n/d. The goal
is to show that the elements m elements ε, ad, (ad)2, . . . , (ad)m−1 are distinct. Use the
fact that adk = ad` if and only if dk ≡ d` mod n.]

(c) Combine (a) and (b) to prove that for all k ∈ Z we have

#〈ak〉 = n/ gcd(k, n).

(a): Let a ∈ (G, ∗, ε) be an element of order n, so that an = ε. Consider any integers k ∈ Z
with d = gcd(k, n) and k = dk′. Our goal is to show that 〈ak〉 = 〈ad〉. To prove 〈ak〉 ⊆ 〈ad〉,
consider any power of ak, say (ak)m = akm. Then we have

akm = adk
′m = (ad)k

′m ∈ 〈ad〉.
To prove 〈ad〉 ⊆ 〈ak〉, consider any power of ad, say (ad)m = adm. Since d = gcd(k, n) we
know from Bézout’s Identity that d = kx+ ny for some x, y ∈ Z. Hence we have

adm = a(kx+ny)m = (ak)xm ∗ (an)ym = (ak)xm ∗ (ε)ym = (ak)xm ∈ 〈ak〉.

(b): Let a ∈ (G, ∗, ε) have order n so that ax = ay if and only if x ≡ y mod n. Consider
any positive divisor d|n with n = dm, so that m is also positive Our goal is to show that
#〈ad〉 = m. Since (ad)m = adm = an = ε, it is enough to show that the elements

ε, ad, (ad)2, . . . , (ad)m−1

are all distinct. So let us assume for contradiction that there exist integers 0 ≤ k < ` < m
such that (ad)k = (ad)`, and hence

(ad)` = (ad)k

ad` = adk

ad(`−k) = ε.

Since 0 ≤ k < ` < m we have 0 < `− k < m and hence 0 < d(`− k) < dm = n. But since a

has order n, the identity ad(k−`) = ε implies that d(k − `) is a multiple of n. Contradiction.

(c): For any k ∈ Z we showed in part (a) that

〈ak〉 = 〈agcd(k,n)〉.
Then since gcd(k, n) is a positive divisor of n, it follows from part (b) that

#〈ak〉 = #〈agcd(k,n)〉 = n/ gcd(k, n).


