Math 562/662 Spring 2022
Homework 3 Drew Armstrong

1. Normal Subgroups. Let (G, *,¢) and let H C G be a subgroup. Prove that the following
two statements are equivalent:

(N1) For all g € G and h € H we have gxhxg~' € H.
(N2) For all g € G we have g« H = H * g.

(N2)=(N1): Suppose that (N2) is true. In order to prove (N1), consider any g € G and
h € H. Our goal is to show that gxh+g~! € H. Since gxh € g H and since g« H = H x g
by (N2), we must have gxh € H g and hence g*h = h'* g for some h' € H. Finally, we have

gxhxg '=h ecH.

(N1)=-(N2): Suppose that (N1) is true. In order to prove (N2), consider any g € G. Our goal
is to prove the following inclusions:

(i) gx HC Hxg
(i) Hxg Cg*x H
To prove (i), consider any element a € g * H, which must have the form a = g * h for some
h € H. Then by (N1) we have g * h *+ g~ = h/ for some h' € H and it follows that
a=gxh=hxgec Hxg.

The proof of (ii) is similar.

2. Kernel and Image. Let ¢ : (G, x,e) — (G’,9,0) be a group homomorphism and define
the kernel and image as follows:
kerp:={a € G:p(a) =06} CG,
imy:={p(a) :a € G} CG.
(a) Prove that ker ¢ C G is a normal subgroup.
(b) Prove that im ¢ C G’ is a subgroup.
(c) Given an example to show that the image need not be a normal subgroup. [Hint: The
easiest example uses a homomorphism from (Z, +,0) to Ss. See Problem 3.]

Our proof will use the following facts, proved in the notes:

(1) ¢(e) =9,
(2) pla™!) = p(a)"".

(a): First we prove that ker ¢ C G is a subgroup:

e Identity. By (1) we have p(¢) = ¢ and hence ¢ € ker ¢.
e Inversion. Suppose that a € ker ¢, so that ¢(a) = ¢. Then from (2) we have

pla™)=pla)t=6""=4
so that a™! € ker ¢.
e Closure under group operation. Suppose that a,b € ker ¢ so that p(a) = ¢ and
©(b) = §. Then from the definition of group homomorphism we have

plaxb)=p(a)ep() =505 =17,
so that a x b € ker ¢.



Next we prove that ker ¢ C G is normal. To do this, consider any g € G and h € ker ¢, so
that @(h) = d. Then from the definition of homomorphism and property (2) we have

elgxhxg ") =p(g) e p(h)ep(g)™"

=o(g)edep(g)”"
= o(g) e o(g)~"
5.

It follows that g % h* g~' € ker ¢, hence ker ¢ is normal by property (N1).

(b): We verify that im ¢ C G’ satisfies the subgroup axioms:
o Identity. By (1) we have § = p(c) € im .
e Inversion. Let a/ € im ¢, so that @’ = ¢(a) for some a € G. Then from (2) we have
(@) =) = pa!) €img.

e Closure under group operation. Suppose that a’,b’ € im ¢ so that a’ = p(a) and
b = p(b) for some a,b € G. Then from the definition of group homomorphism we have

@ ot = p(a) o p(b) = p(axb) € .
(c): To see that the image need not be normal, consider the group homomorphism from
(Z,+,0) to (S3,0,id) defined byﬂ

id if k£ is even,

(k) = (12)F = {(12) if k is odd.

The image is the subgroup {id, (12)} C S3 an we proved in class that this is not normal.

3. The Order of an Element. Let (G, x,¢) be a group and fix some element a € G. Then
for any integer k£ we define the element a” € G as follows:

k times
—N— .
a*xax---*a if k>1,
abh={e if k=0,

atxatsxoxal ifk<—1.

—k times

(a) Prove that the function ¢(k) := a* is a group homomorphism (Z, +,0) — (G, *,¢).
(b) Prove that any group homomorphism ¢ : (Z,+,0) — (G, , ¢) sending 1 to a must be
equal to the homomorphism in part (a). We use the following notation for the image:

(a) :=imep = {a": k€ Z} C G,

and we call this the cyclic subgroup of G generated by a. [Hint: Induction.]

(c) Use the First Isomorphism Theorem to prove that either (a) = Z or (a) = Z/nZ for
some integer n > 1. This n is called the order of a as an element of G.

(d) If G is finite, conclude from Lagrange’s Theorem that the order of a divides #G.

IThe fact that this is a homomorphism can be checked directly, or we can quote Problem 3(a).



(a): Our goal is to show that a*T* = a* x a’ for any integers k,¢ € Z. This is a surprisingly

annoying case-by-case check. Most textbooks just assume this fact without even acknowledging
that something needs to be proved.

(b): Consider any group homomorphism ¢ : (Z,+,0) — G and let a := ¢(1). Our goal is to
prove that ¢(k) = a* for all k € Z, and we can do this by induction on k. First we observe
that (0) = & by property (1) of group homomorphisms. Hence ¢(0) = a° as desired. Now
let k£ > 1 and assume for induction that ¢(k) = a*. Then it follows by definition that

ok +1) = @(k) * (1) = a* xa = a1,

Hence we have shown that ¢(k) = aF for all k > 0. Finally, for any integer £ < 0 we let
k = —¢ > 0. Then it follows from property (2) of homomorphisms thatE|

ol) = p(—k) = p(k) ™t = (a*)"t =a7F = d.

(c): For any element a € G, consider the unique homomorphism ¢ : Z — G satisfying
©(1) = a. We will denote the image by
(a) =imy = {a* : k € Z}.
Hence the First Isomorphism Theorem tells us that
(a) = 7/ ker .

The kernel of ¢, being a subgroup of (Z, +,0) must have the form nZ for some (unique) integer
n > 0. In the special case ker ¢ = 0Z = {0}, the quotient group Z/0Z is just isomorphic to
Z, because the cosets of the subgroup {0} are just the integers n 4+ {0} = {n} and the group
operation is just addition of integers:
(m+{0}) + (m +{0}) = (m +n) + {0}
{m} +{n} ={m+n}.

(d): Since (a) C G is the image of a homomorphism it is necessarily a subgroup. If G is finite
then Largange’s Theorem tells us that

#(a)|#G.

Remark: We will write ordg(a) := #(a) and call this the order of a as an element of G. If
#(a) then because of the group isomorphism Z/mZ — (a) we have a* = a’ if and only if
k = ¢ mod m. It follows that every element of (a) has a unique representation of the form a”

for some 0 <7 < m:
(a) = {e,a,d?,...,a™ 1),

Now consider the case G = (Z/nZ)*, where #G is Euler’s phi function ¢(n). For any element
a € (Z/nZ)* part (d) gives

ord(a)|#¢(n),
say ord(a)d = ¢(n) for some d € Z. Then it follows that

aqb(n) _ aord(a)d _ (aord(a))d _ 1d —1in (Z/TLZ)X,

which is just Euler’s Totient Theorem.

2Oops7 I didn’t ask you to prove that (a*)™' = ¢™*. That is another annoying case-by-case proof.



4. The Order of a Power. Let (G,*,¢) and let a € G be an element of order n. It follows
from Problem 4(c) that (a) = Z/nZ and hence

a*=a"in G +— k =/ mod n.

(a) For all k € Z, prove that (a¥) = (a%), where d = gcd(k,n). [Hint: Since d|k we see
that a¥ is a power of a?, hence (a*) C (a?). Conversely, use Bézout’s Identity to show
that a? is a power of a”, hence (a?) C (a*).]

(b) For any positive divisor d|n, show that #(a?) = n/d. [Hint: Let m = n/d. The goal
is to show that the elements m elements ¢, a?, (a?)?, ..., (a?)™~! are distinct. Use the
fact that a* = a® if and only if dk = d¢ mod n.]

(c) Combine (a) and (b) to prove that for all k € Z we have

#(a*) = n/ ged(k,n).

(a): Let a € (G, *,¢) be an element of order n, so that a™ = ¢. Consider any integers k € Z
with d = ged(k,n) and k = dk’. Our goal is to show that (a*) = (a?). To prove (a*) C (a?),
consider any power of a*, say (a¥)™ = a*™. Then we have

akm _ adk’m _ (ad)k’m c <ad>.
To prove (a?) C (a*), consider any power of a?, say (a?)™ = a®™. Since d = gcd(k,n) we
know from Bézout’s Identity that d = kx + ny for some x,y € Z. Hence we have

adm — a(ka:Jrny)m — (ak)zm % (an)ym _ (ak)xm % (g)ym — (ak)wm c <ak>

(b): Let a € (G,x*,¢) have order n so that a® = o if and only if 2 = y mod n. Consider
any positive divisor d|n with n = dm, so that m is also positive Our goal is to show that
#(a?) = m. Since (a?)™ = a?™ = a" = ¢, it is enough to show that the elements

e, a?, (ad)2, R (ad)mfl

are all distinct. So let us assume for contradiction that there exist integers 0 < k < £ < m
such that (a?)* = (a?)’, and hence

o= = ¢,

Since 0 < k < £ < m we have 0 < ¢/ — k < m and hence 0 < d({ — k) < dm = n. But since a
has order n, the identity a®*—9 = ¢ implies that d(k — ¢) is a multiple of n. Contradiction.
(c): For any k € Z we showed in part (a) that

<ak> — <agcd(k,n)>.
Then since ged(k,n) is a positive divisor of n, it follows from part (b) that

#(a") = #(a=®") = n/ ged(k,n).



