Math 562/662 Spring 2022
Homework 2 Drew Armstrong

1. One Step Subgroup Test. Let (G, *,¢) be a group and let H C G be a subset. We say
that H is a subgroup when the following three conditions are satisfied:

(1) e € H,
(2)acH=a'1cH,
(3) a,be H=axbe H.
Prove that these three conditions are equivalent to the following single condition:
(4) a,bc H=a"'xbec H.

Proof. First assume that (1), (2) and (3) hold. Then for any a,b € H we have a! € H by
(2) and since a~!,b € H we have a~! *b € H by (3). Hence (4) holds.

Conversely, suppose that (4) holds. In this case we will show that (1), (2) and (3) hold. It is
important to prove these in a specific order:

(1): For any a € H we have by (4) that e =a ' xa € H.
(2): For any a € H we have a,c € H by (1) and hence a=! = a~! xe € H by (4).
(3): For any a,b € H we have a~!,b € H by (2). Hence by (4) we have

axb= (a1t xbec H.
O
2. Congruence Modulo a Subgroup. Let (G,#*,¢) be a group and let H C G be a
subgroup. For any a,b € G we define the relation of congruence modulo H:
a=bmod H <= al'xbeH.
And for any a € G we define the coset of H generated by a:
axH:={axh:he H} CQG.

(a) Prove that congruence mod H is an equivalence relation on G.
(b) For all a,b € G, prove that a and b are congruent mod H if and only if the cosets that
they generate are equal:

a=bmod H <= axH=0bxH.

(a): The properties (1), (2) and (3) of subgroups are defined precisely so that this relation is
an equivalence:

1

Reflexive. From (1) we have a™ xa = ¢ € H and hence a = a mod H for all a € G.

Symmetric. For all a,b € G we have
a=bmod H = a '«xbe H
— (a7 xb) e H from (2)
—blx@HlteH
= b lxacH
= b=amod H.



Transitive. For all a,b,c € G we have
a=bandb=cmod H = a '«bc Hand b 'xcec H
— (atxb)x (bt xc)e H from (3)

— alx(bxb )xceH

1

= qa xe*xcE H

1

=—a xcc€ H

= a=cmod H.

(b): First suppose that we have ax H = bx H. Since ¢ € H we have b =b*¢e € bx H, which
implies that b € a x H. By definition this means that b = a * h for some h € H, which implies
that a= '« b= h € H. We conclude that ¢ = b mod H, as desired.

Conversely, suppose that we have a = b mod H, so that a='xb € H. Let’ssay a 'xb=h € H,
so that b=axh and a = bx h~'. Our goal is to show that a * H = b* H and for this we must
prove two inclusions:
e To see that bx H C a* H, consider any element bxh' € bx H, with ' € H. Then since
H is a subgroup we have h x ' € H and hence

bxh'=(axh)xh'=ax(hxh')€axH.
e To see that a x H C b H, consider any element a x h" € a* H, with h” € H. Then
since H is a subgroup we have h™! x b € H and hence
axh”" =Oxh™ ) «h =bx (W'« h")€bxH.

Remark: It follows from (a) and (b) that the group G is partitioned into cosets of H.
Furthermore, we observe that the function H — a x H defined by h — a % h is an invertible
function with inverse g — a~! % g. Hence any coset a x H is in bijection with H. If G is finite
then H is finite and it follows that any two cosets have the same number of elements. Finally,
if G/H is the set of cosets, we conclude that

#G = #(G/H) - #H.

This is called Lagrange’s Theorem.

3. Orbit-Stabilizer Theorem. Let (G, *,¢) be a group and let X be a set. Consider a
function - : G x X — X, which we will denote by (g,x) — ¢ -x. We call this function an
action of G on X when the following two properties are satisfied:

(i) ecz=xzxforallz e X,

(ii) a-(b-2z) =(axb)-x forall a,b € G and = € X.

(a) For any element z € X we define the set Stab(z) :== {a € G :a -z =z} C G, called
the stabilizer of x. Prove that this set is a subgroup of G.

(b) For any element z € X we define the set Orb(z) := {g-z : g € G} C X, called the
orbit of . Prove that there exists a bijection Orb(z) <+ G/Stab(z) between elements
of the orbit and cosets of the stabilizer. [Hint: Send the element g - x € Orb(z) to the
coset g * Stab(x). Check that this is well-defined and bijective.]

(c) If G is finite, combine (b) with Lagrange’s Theorem to prove that

#G = #Orb(x)#Stab(z) for any x € X.

(a): We must show that (1), (2) and (3) hold.



(1): From (i) we have € - x = z for all x € X, and hence ¢ € Stab(z).
(2): For any a € Stab(z), it follows from (i), (ii) and (1) that
atz=atl (a-z)=(a %a) z=c-z=u,

and hence a~! € Stab(z).
(3): For any a,b € Stab(z), it follows from (ii) that

(axb)-z=a-(b-z)=a -z =ux,

and hence a xb € H.

Remark: We could also have used the one step subgroup test.

(b): We want to define a bijection from Orb(x) to the set of cosets G/Stab(x). I claim that
the following function does the trick:

¢: Orb(z) — G/Stab(x)
g-xr — gx*Stab(x).

First observe that the function ¢ is well-defined:
az=b-r=a'l (a-x)=at (b 2)
— 2= (a"txb) x (i) and (ii)
— a ! % b € Stab(z)
= a * Stab(z) = b * Stab(z) from 2(b)
= p(a-z)=p(b- ).
Next we observe that the function ¢ is surjective by definition because any coset has the form
g € Stab(z) for some g € G, and hence g * Stab(x) = ¢(g - ). Finally, we observe that ¢ is
injective:
ola-x) =p(b-x) = a* Stab(x) = b * Stab(x)
— a ! x b € Stab(z) from 2(b)
— o= (a"txb) z
—a-z=a-[(a"t*b)] 2z
= a-x=b-x from (i) and (ii)

Remark: We could have proved simultaneously that ¢ is well-defined and injective by observing
that each of the implications in the argument is reversible. I only avoided this for pedagogical
reasons.

(c): If G is finite then the subgroup Stab(z) C G is finite Lagrange’s Theorem gives

#G = #(G/Stab(z)) - #Stab(x).
But from the Orbit-Stabilizer Theorem we know that the sets Orb(z) and G/Stab(x) have
the same number of elements, hence

#G = #O0rb(x) - #Stab(z).

4. The Alternating Group, Part 2. Consider the following polynomial in n variables:
(1, xy) = H (x; —xj) € Qlzy, ..., xy).

1<i<j<n



Recall that the symmetric group 5, acts on the ring of polynomials by permuting variables:
For all o € S, and f(z1,...,2,) € Q[z1,...,x,] we define

(U ’ f)(xlv s 71'?1) = f(xa(1)7 s 7$U(n)) S @[(IZ]
(a) Prove that for any transposition ¢ € S,, we have t -6 = —9.
se part (a) to prove that the stabilizer of 0 is the alternating group:
(b) Use part (a) to p hat th bili f ¢ is the al ing group
Stab(d) = A,.
(c) Now use the Orbit-Stabilizer Theorem to prove that
1 1
A, = =#S, = -nl.
# 2#5’ 5"
[Hint: Show that Orb(J) has size 2.]

(a): I realized this is too hard so I told you not to prove it. For any o € S,, we have

o0 = H(.%'U(Z) — Qfa(j)).
1<j
When o(i) < o(j) the factor z,; — 2,(j) occurs in both § and o - §. But when o(i) > o(j)
the factor z,(jy — To(;) = —(To(i) — T4(j)) occurs in 6. This means that o - § = +J, where the
sign is determined by the number of pairs ¢ < j such that o(i) > o(j). Such a pair i < j is
called an inversion of o. If inv(o) denotes the number of inversions of o then we see that

o-6=(—1)"™0g

Thus our goal is to show that any transposition ¢ € S, has an odd number of inversions.
In fact, I claim that the transposition (k¢) € S,, with k& < ¢, has exactly 2(¢ —k — 1) + 1
inversions, which come in three kinds:

e The pair k£ < £ is an inversion.

e Each pair k < j (with j < ¢) is an inversion. There are £ — k — 1 of these.

e Each pair j < ¢ (with k£ < j) is an inversion. There are £ — k — 1 of these.

To see this it’s best to draw a picture. The inversions of ¢ correspond to pairs of numbers
o(i) and o(j) in the one-line notation where the larger number is on the left. Thus we need
to count such pairs in the one-line notation for the transposition (k¢) € S,,. Here’s the picture

for (37) € Sio:

1 2 ¥ 5 ¢ 5 ¥ ) 0

(b): You showed on a previous homework that every permutation o € S,, can be expressed in
the form o =ty oty o --- o tg, where t1,...,t; € S, are transpositions. In this case, part (a)
and property (ii) of group actions imply that

(%) o-0=t1-(ta-(t3-(---tg - 0)) = (—=1)%.



The transpositions ¢; and the number k& are not unique. However, we see that the parity of
k (i.e., the evenness or oddness) is unique. Indeed, if ¢ is a composition of an even number
transpositions then (x) says that o -6 = § and if o is a product of an odd number of transpo-
sitions then (x) says that o - = —J. But since § # —4¢, this implies that no permutation can
simultaneously be a composition of an even and an odd number of transpositions. By defini-
tion, A, is the set of permutations that are a composition of an even number of transpositions.

Hence it follows that
A, ={0c€S,:0-0=0} =Stab(9).

(c): In part (b) we observed that o-§ = £4 for all o € S,,, and in part (a) we found that both
of these possibilities do indeed occur. Thus we have

Orb(6) ={c-0:0€S,} ={4,—6}.
Finally, we conclude from the Orbit-Stabilizer Theorem that
#S, = #0rb(J)#Stab(0)
n! = 2#A,
#A, =nl/2.



