Math 562/662 Spring 2019
Homework 3 Drew Armstrong

1. The Definition of PIDs is Good. For any ring R prove that
(Ris afield) <= (R]z]is a PID).

2. Quadratic Field Extensions, Part II. Let E = F(:) O F for some element ¢+ € E
satisfying ¢ ¢ F and (2 € F. Recall that the vector space E/F has basis {1,.} and the Galois
group Gal(E/F) is generated by the “conjugation” automorphism (a + be)* := a — be.
(a) For any o € E show that a € F if and only if a* = a. Use this to show that aa® and
o+ o* arein I for all a € E.
(b) For any polynomial f(z) = >, a;z° € E[z] we define f*(z) := >, afa’. Show that
this is a ring automorphism x : E[z] — E[z]. Use this to prove that f(x)f*(x) and
f(z) + f*(x) are in Flz] for all f(z) € E[z].
(c) For all f(x) € Flz] show that the roots of f(z) in E — F come in conjugate pairs.
(d) Application. Let f(x) € F[x] have degree 3. If f has a root in E, prove that f also
has a root in F. [Hint: Use Descartes’ Factor Theorem.]

3. Wilson’s Theorem. We saw in the previous problem that any ring homomorphism
¢ : R — S extends to a ring homomorphism ¢ : R[z] — S[z] by acting on coefficients. Now
let p € Z be prime and consider the following polynomial with integer coefficients:
p—1
fz) =aP7t —1— H(w — k) € Zx].
k=1
(a) Let m: Z — Z/pZ be the quotient homomorphism. Prove that the polynomial f™(z) €
Z/pZ]z] has p — 1 distinct roots and degree < p — 1. [Hint: Fermat’s Little Theorem.]
(b) Use Descartes’ Factor Theorem to show that every coefficient of f(z) € Z[z] is a
multiple of p. Show that this implies (p — 1)! = —1 mod p.

4. Gaussian Integers (Optional). The following theorem is due to Fermat:

An integer n € N is a sum of two squares if and only if any prime factor p|n
satisfying p = 3 mod 4 occurs to an even power.

In this problem we will give an algebraic proof due to Gauss. Let i € C be a fixed square root
of —1 and consider the following ring extension of Z, called the ring of Gaussian integers:

ZCZi|={a+bi:a,beZ} CC.

(a) Let N : Z[i] — N be the “norm” function defined by N(a + ib) := a® + b2. Prove that
(Z[i], N) is a Euclidean domain, hence Z[i] is a UFD. [Hint: For any «, 5 € Z[i] with
B # 0, the ideal BZ[i] is the set of vertices of a square grid in C with (squared) side
length N (). Let 8¢ be the closest element of SZ]i] to a and observe that N(a— 5¢) <
N(B)]

(b) For all «, 5 € Z[i] prove that N(af) = N(a)N(8). Use this to show that

Z[i)* ={a € Zi] : N(a) = 1} = {£1, £i}.

(c) For all n € N show that n = 3 mod 4 implies n € im N. [Hint: What are the square
elements of the ring Z /477



(d) Use induction on n to prove the following statement:
n € im N = (every prime p|n with p = 3 mod 4 occurs to an even power).

[Hint: Let n = a® +b? € im N and let p € Z be prime. If p = 3 mod 4 use (b) and
(c) to show that p is irreducible in Z[i]. Then if p|n use (a) to show that p|(a + bi) or
p|(a — bi) in Z[i]. In either case show that pla and p|b, hence n/p? € im N.|

(e) Conversely, for prime p € N show that p = 1 mod 4 implies p € im N. [Hint: Let
p = 4k + 1 and assume for contradiction that p € im N. Use (a) and (b) to show that
p is irreducible and hence prime in Z[i]. On the other hand, set m := (2k)! and use
Wilson’s Theorem to show that p|(m —i)(m + ).]

(f) Finish the proof.

5. Z[v/—3] is not a UFD. Let /-3 € C be a fixed square root of —3 and consider the ring
ZCZN-3={a+b/-3:a,b€Z} CC.
(a) Let N : Z[v/=3] — N be defined by N(a + b\/—3) := a? + 3b%. For all a, 8 € Z[/—3]
prove that N(af) = N(a)N () and use this to show that
2V = {a € ZIV=3): N() = 1} = {+1}.

(b) Prove that there is no element « € Z[/—3] with N(«) = 2. Use this to show that any
element with N(«) = 4 is irreducible. In particular, 2 € Z[\/—3] is irreducible.
(¢) But show that 2 € Z[/—3] is not prime because

2/(1+v=3)(1 —v/~3) and 24 (1 + v=3) and 21 (1 — vV-3).

(d) Use this to prove that the following ideal is not principal:

{20+ (1+vV=3)8:a,p8 € Z[V=3]} C Z[vV—3).

6. Field of Fractions. In this problem you will show that “integral domain” and “subring
of a field” are the same concept. Let R be an integral domain and consider the following set
of abstract symbols, called fractions:

Frac(R) := {% cabe R,b;éo}.

(a) Prove that the following relation is an equivalence on the set of fractions:

!/

a @ I
Y — ab =da'b
(b) Prove that the following operations are well-defined on equivalence classes:
a ¢ ac a c ad + be
— == d -+ ==
bd " M 3TdT T

It follows that the set of equivalence classes Frac(R)/~ is a field. Following tradition,
we will just call it Frac(R) and we will write = instead of ~. Furthermore, we will
write R C Frac(R) for the image of the injective ring homomorphism a — a/1.

(c) Universal Property. Let F be a field and let ¢ : R — F be any ring homomorphism.
Prove that this extends to a unique ring homomorphism ¢ : Frac(R) — F, which is
injective if and only if ¢ is. [Hint: Show that ¢(a/b) := p(a)/p(b) is well-defined.]



7. Newton’s Theorem on Symmetric Polynomials. Given a ring R and a set of
“independent variables” x = {x1,...,x,} we define multivariate polynomials by induction:

R[x] = R[z1,...,xn) == R[z1, ..., Tn-1][zn] = {f(x) = Z axx® : ay € R} .

keN”

To save space we use the notations k = (ki,...,k,) € N¥ and x* = xlfl -k We assume
that all but finitely many of the coefficients ax € R are zero.

(a) We say that a polynomial f(x) = R[x] is symmetric if for all o € S,, we have

f(xa(l)a ) xo(n)) = f(xh sy xn)
Observe that the symmetric polynomials are a subring of R[x].
(b) Newton’s Theorem. Recall the definition of the elementary symmetric polynomials:

er(x1, ..., xp) = Z Tiy + - T

1<i1 << <n

For convenience, let’s define e := elfl ---eFn. For any symmetric polynomial f(x) =

>k axxX € R[x], prove that there exist some by € R such that f(z) = >, bkeX. [Hint:
Order the degree vectors k € N” by “dictionary order” and let aix¥ be the “leading
term.” By symmetry of f we must have k; > ko > --+ > k,,. Show that there exists
kK’ € N¥ so that axe¥ has the same leading term, hence f(x) — axe¥’ is a symmetric
polynomial of “smaller degree.”]

(¢) Important Corollary. Suppose that a polynomial f(x) € R[x] of degree n splits in
some ring extension £ O R. That is, suppose that we have

fl@)=a2" —erz" e 2 — 4 (=) = (r — 1) - (z — ap) € Ex].
Prove that any “symmetric expression of the roots” is in R.
(d) Application: Discriminant of a Cubic. Let f(z) = 23 + az? + bz + ¢ € R[z] and
let £ O R be a ring extension such that
2? +az? +br+c=(z—a)(z—B)(z—7) € Ez].
From part (c¢) we know that the following element of E (called the discriminant of f)
is actually in R:
Disc(f) := (a — f)*(a —7)*(8 — )%
Use the algorithm from part (b) to express Disc(f) as a specific polynomial in the
coefficients. [I'll get you started: Note that Disc(f) = (a*B? + lower terms) and
a’b? = (a*? + lower terms). Now find the leading term of Disc(f) — a?b?%]



