
MTH 562/662 Spring 2019
Exam 2 — Fri Apr 5 Drew Armstrong

Problem 1. Let R be an integral domain and assume that R[x] is a PID.

(a) Prove that x ∈ R[x] is irreducible.

Suppose that x = f(x)g(x) for some polynomials f(x), g(x) ∈ R[x]. Since R is a
domain this implies that deg(f) + deg(g) = deg(x) = 1, hence at least one of f(x) or
g(x) has degree zero, i.e., is a unit.

(b) Use the fact that R[x] is a PID to prove that 〈x〉 ⊆ R[x] is a maximal ideal.

Since x ∈ R[x] is irreducible we know that 〈x〉 is maximal among principal ideals. Since
R[x] is a PID this implies that 〈x〉 is maximal among all ideals.

(c) Prove that R ∼= R[x]/〈x〉 and hence R is a field.

Consider the map ϕ := R[x] → R defined by f(x) 7→ f(0). This is a surjective ring
homomorphism with kernel 〈x〉. Hence by the First Isomorphism Theorem we have

R[x]/〈x〉 = R[x]/ kerϕ ∼= imϕ = R.

Since 〈x〉 is a maximal ideal this implies that R is a field.

Problem 2. Let α ∈ E ⊇ F be an element of a field extension and consider the evaluation
homomorphism idα : F[x] → E defined by f(x) 7→ f(α). You may assume that ker(idα) =
〈m(x)〉 6= {0} is a maximal ideal with d := deg(m).

(a) Let F[α] = im(idα) ⊆ E and let F(α) ⊆ E be the smallest subfield containing F ∪ {α}.
Prove that F[α] = F(α).

Since 〈m(x)〉 is maximal, the First Isomorphism Theorem tells us that F[α] is a field:

R[x]/〈m(x)〉 = R[x]/ ker(idα) ∼= im(αα) = F[α].

Since F[α] contains the set F∪ {α} this implies that F(α) ⊆ F[α]. Conversely, let f(α)
be any element of F[α]. Since F(α) contains F ∪ {α} and is closed under addition and
multiplication we conclude that f(α) ∈ F(α), hence F[α] ⊆ F(α).

(b) Use part (a) to prove that every element of F(α) can be written in the form a0 +a1α+
· · ·+ ad−1α

d−1 for some a0, . . . , ad−1 ∈ F. [Hint: Division with remainder.]

Every element of F(α) = F[α] has the form f(α) for some polynomial f(x) ∈ F[x].
Divide by f(x) by m(x) to obtain q(x), r(x) ∈ F[x] such that

f(x) = q(x)m(x) + r(x) and deg(r) < deg(m) = d.

Then we have

f(α) = q(α)m(α) + r(α)

= q(α)0 + r(α)

= r(α)



= a0 + a1α+ · · ·+ ad−1α
d−1

for some a0, . . . , ad−1 ∈ F.

(c) Prove that the expression in part (b) is unique. [Hint: Suppose r(α) = 0 for some
polynomial r(x) ∈ F[x] of degree < d.]

Suppose that

a0 + a1α+ · · ·+ ad−1α
d−1 = b0 + a1α+ · · ·+ bd−1α

d−1

for some ai, bi ∈ F. This implies that r(α) = 0 where r(x) =
∑

i(ai − bi)xi has degree
< d. Then by definition of m(x) we have m(x)|r(x), which is a contradiction unless
r(x) = 0 and hence ai = bi for all i.

Problem 3. Let E be a field of size pk.

(a) Let F ⊆ E be the image of the unique ring homomorphism Z→ E. Prove that F ∼= Fp.

You can feel free to quote the theorem on prime subfields, but I’m going to prove it.
Let ϕ : Z → E be the unique ring homomorphism from Z. Then since kerϕ = nZ is
principal we have

Z/nZ ∼= F ⊆ E.
Since E is finite we have n 6= 0 and since F (being a subring of a field) is a domain we
conclude that nZ is a prime ideal, hence n = p is prime.

(b) Use Lagrange’s Theorem to show that αp
k−1 = 1 for all non-zero α ∈ E.

The group of non-zero elements (E×,×, 1) has size pk − 1. By Lagrange’s Theorem

it follows that αp
k−1 = 1 for all α ∈ E×.

(c) Prove that E is a splitting field for xp
k − x ∈ Fp[x].

Let f(x) = xp
k − x ∈ Fp[x]. Clearly we have f(0) = 0 and from (b) we know that

f(α) = 0 for all α ∈ E×. Since f(x) has degree pk it follows that f(x) splits over E:

f(x) =
∏
α∈E

(x− α) ∈ E[x].

Furthermore, since the polynomial f(x) has pk distinct roots in E, it cannot split over
any subfield of E.

Problem 4. Let α = 6
√

2 ∈ R and ω = e2πi/6 = (1 + i
√

3)/2.

(a) Prove that Q(α, ω) is the splitting field of x6 − 2 over Q.

The six roots of x6 − 2 are {α, ωα, ω2α, ω3α, ω4α, ω5α}, hence the splitting field is

E := Q(α, ωα, ω2α, ω3α, ω4α, ω5α).

Since all six roots are in Q(α, ω) we have E ⊆ Q(α, ω). On the other hand, since α ∈ E
and ω = (ωα)/α ∈ E we have Q(α, ω) ⊆ E.



(b) Prove that x2 − x+ 1 is the minimal polynomial of ω over Q(α). [Hint: Q(α) ⊆ R.]

You may recall that Φ6(x) = x2 − x+ 1. Otherwise, one can check directly that

x2 − x+ 1 = (x− ω)(x− ω5) = (x− ω)(x− ω−1).
Since this polynomial has degree 2 and no real roots, it is irreducible over Q(α).

(c) Assuming that x6 − 2 ∈ Q[x] is irreducible, prove that [Q(α, ω)/Q] = 12.

Consider the chain of field extensions

Q ⊆ Q(α) ⊆ Q(α)(ω) = Q(α, ω).

If x2 − 6 is irreducible over Q then since α6 − 2 = 0 we have [Q(α)/Q] = 6, and from
part (b) we have [Q(α, ω)/Q(α)] = 2. It follows from Dedekind’s Tower Law that

[Q(α, ω)/Q] = [Q(α, ω)/Q(α)] · [Q(α)/Q] = 2 · 6 = 12.

Problem 5 (optional). What is Sanjoy’s Kundu’s favorite Pokémon?

Sanjoy named his favorite Pokémon from each generation. His first generation favorite is
Pikachu. Gregory said Charmander. David said “Pokémon.”


