
Math 562 Spring 2014
Homework 5 Drew Armstrong

1. (Finite Implies Algebraic) Consider a field extension L ⊇ K. Recall that we say α ∈ L
is algebraic over K if there exists nonzero f(x) ∈ K[x] such that f(α) = 0. We say that the
field extension K ⊆ L is algebraic if every element of L is algebraic over K. Prove that if
[L : K] <∞ (i.e. if L is finite dimensional as a vector space over K) then L ⊇ K is algebraic.
[Hint: Given any α ∈ L the set 1, α, α2, . . . is linearly dependent over K.]

Proof. Suppose that [L : K] < ∞. Then for any α ∈ L the set {1, α, α2, . . .} is linearly
dependent over K. That is, there exist some elements a0, . . . , an ∈ K not all zero such that

a0 + a1α+ a2α
2 + · · ·+ anα

n = 0.

Define the polynomial f(x) := a0 + a1x + · · · + anx
n ∈ K[x]. Since f 6= 0 and f(α) = 0 we

conclude that α is algebraic over K. Since this is true for all α ∈ L we conclude that L is
algebraic over K. �

2. (Algebraic Closure) Given a field extension L ⊇ K, define the set

K̄ := {α ∈ L : α is algebraic over K} ⊆ L,

called the algebraic closure of K in L. Prove that K̄ is a field. [Hint: Given α, β ∈ K̄ we want
to show that α− β, αβ−1 ∈ K̄. Since α− β, αβ−1 ∈ K(α, β) it suffices by Problem 1 to show
that K(α, β) ⊇ K is a finite dimensional extension. Use the Tower Law.]

Proof. Consider a field extension L ⊇ K and let α, β ∈ L be algebraic over K. We want
to show that both α − β and αβ−1 are algebraic over K. So consider K(α, β) ⊆ L which
is the smallest subfield of L containing K ∪ {α, β}. Because α is algebraic over K we know
that K(α) = K[α] has finite dimension over K. Then since β is algebraic over K (hence
also over K(α)) we know that K(α)(β) = K(α)[β] has finite dimension over K(α). It is
straightforward to check that K(α, β) and K(α)(β) are the same thing, so by the Tower Law
for field extensions we have

[K(α, β) : K] = [K(α)(β) : K] = [K(α)(β) : K(α)] · [K(α) : K] <∞.

Since α−β and αβ−1 are in K(α, β), we conclude from Problem 1 that they are both algebraic
over K. �

[Remark: Given α, β ∈ L satisfying f(α) = g(β) = 0 for some f, g ∈ K[x], it is possible to prove
that α−β and αβ−1 are algebraic by using f, g to explicitly construct polynomials that they must
satisfy. However this method of proof is much more difficult than the nonconstructive method
given above.]

3. (Characteristic of a Domain) Let R be a domain.

(a) Show that there exists a unique ring homomorphism ϕ : Z → R. [Hint: ϕ(2Z) =
ϕ(1Z + 1Z) = ϕ(1Z) + ϕ(1Z) = 1R + 1R.]

(b) Show that ker(ϕ) = (p) < Z, where p = 0 or p is prime. This p is called the characteristic
of the domain R.

(c) If R is finite, show that its characteristic is not 0.



Proof. For part (a), let ϕ : Z → R be any ring homomorphism, so that we have ϕ(0Z) = 0R
and ϕ(1Z) = 1R. For any integer n > 1 we have

ϕ(n) = ϕ(1Z + · · ·+ 1Z) = ϕ(1Z) + · · ·+ ϕ(1Z) = 1R + · · ·+ 1R = “n · 1R”,

and for any integer n < 0 we have

ϕ(n) = −ϕ(−n) = −“(−n) · 1R”.

Now the map is determined.
For part (b), note that imϕ ⊆ R is a subring of a domain, hence is itself a domain. By the

First Isomorphism Theorem we have Z/ kerϕ ≈ imϕ and then HW3.1 implies that kerϕ is a
prime ideal of Z. Recall that the prime ideals of Z are (0) and (p) for p ∈ N prime.

For part (c), let R be finite and assume for contradiction that kerϕ = (0). Then since
Z ≈ Z/(0) ≈ imϕ we have

∞ = |Z| = |imϕ| ≤ |R| <∞.
Contradiction. �

[Remark: We just proved that the characteristic of a finite domain is a prime p > 0. It is a bit silly
to say it this way because any finite domain is actually a field. Indeed, let R be a finite domain.
Then given any nonzero element x ∈ R we consider the map R → R defined by y 7→ xy. Since
R is a domain this map is injective. Then since R is finite the map is also surjective, i.e., there
exists y ∈ R such that xy = 1.]

4. (The Size of a Finite Field). Suppose that the field K is finite. By Problem 3, the
unique ring map ϕ : Z→ K has kernel (p) for some prime 0 6= p ∈ Z.

(a) Prove that the image ϕ(Z) ⊆ K is a subfield of K (called the prime subfield).
(b) Prove that K is a finite dimensional vector space over ϕ(Z), say [K : ϕ(Z)] = n <∞.
(c) Conclude that |K| = pn.

Proof. Let K be a finite field of characteristic p > 0. By Problem 3 this means that Z/(p) ≈
ϕ(Z) ⊆ K. But since Z is a PID we know that the prime ideal (p) < Z is also maximal, hence
Z/(p) is a field. This proves part (a).

For part (b) we consider K as a vector space over ϕ(Z). Since K is finite it has a finite
spanning set (K itself). Since any spanning set contains a basis we conclude that K has a
finite basis over ϕ(Z), say [K : ϕ(Z)] = n.

For part (c) note that every element of K can be written uniquely as an ordered n-tuple of
elements of ϕ(Z) (the coefficients when expanded in some basis). Thus we have

|K| = |ϕ(Z)|n = |Z/(p)|n = pn.

�

5. (Examples of Finite Fields) For all primes p ∈ Z we define

Fp := Z/(p).

This a field of size p. However, it is not obvious that fields of size pn exist for any n > 1.

(a) Prove that the polynomial f(x) = x2 + x+ 1 ∈ F2[x] is irreducible.
(b) Prove that the ring F2[x]/(x2 + x+ 1) is a field of size 4. We will call it F4.
(c) Let α := x+ (x2 + x+ 1) ∈ F4. Explicitly write down the addition and multiplication

tables of F4 in terms of the (“imaginary”) element α.



Proof. For part (a) suppose for contradiction that we can write

x2 + x+ 1 = f(x)g(x)

where f, g ∈ F2[x] have degree strictly between 0 and 2. Then we have f(x) = α+βx for some
α, β ∈ F2 with β 6= 0 and hence −α/β ∈ F2 is a root of x2 +x+ 1. But this polynomial has no
roots in F2 because 12 +1+1 = 3 = 1 6= 0 and 02 +0+1 = 1 6= 0. We conclude that x2 +x+1
is irreducible over F2. [Remark: It is relatively easy to determine if a polynomial of degree ≤ 3 is
irreducible. It is relatively hard to determine if a polynomial of degree ≥ 4 is irreducible.]

For part (b) note that the ideal (x2 + x + 1) < F2[x] is maximal among principal ideals
because x2 +x+ 1 is irreducible. Since F2[x] is a PID this implies that (x2 +x+ 1) is maximal
among all ideals and hence K := F2[x]/(x2 + x + 1) is a field. In fact we saw in class that
K can be thought of as a field extension of F2 that contains an element α ∈ K such that
α2 + α+ 1 = 0. (To see this we show that the map F2 → K defined by a 7→ a+ (x2 + x+ 1)
is injective and note that α := x+ (x2 + x+ 1) ∈ K satisfies α2 + α+ 1 = 0 in the field K.)

For part (c) we note that x2 +x+ 1 is the minimal polynomial of α ∈ K over F2. Indeed, if
mα(x) ∈ F2[x] is the minimal polynomial then mα(x) divides x2 + x+ 1 over F2. But we saw
in part (a) that x2 + x+ 1 is irreducible over F2, hence mα(x) = x2 + x+ 1. By a result from
class this implies that K ≈ F2[α] = {a+ bα : a, b ∈ F2}. Note that this field has 4 elements:

F2[α] = {0, 1, α, 1 + α}.
Finally, using the fact that α2 + α + 1 = 0, we can explicitly write down the addition and
multiplication tables:

+ 0 1 α 1 + α
0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

× 0 1 α 1 + α
0 0 0 0 0
1 0 1 α 1 + α
α 0 α 1 + α 1

1 + α 0 1 + α 1 α

�

[Remark: It’s just like working with complex numbers.]

6. (A Special Polynomial) Let n, p ∈ N with p prime and consider the special polynomial
xp

n − x ∈ Fp[x]. If f(x) ∈ Fp[x] is irreducible of degree d, prove that

f(x) divides (xp
n − x) in Fp[x] ⇐⇒ d divides n in Z.

[Hint: The group of units of the field Fp[x]/(f(x)) has size pd−1, hence Langrange’s Theorem

implies that cp
d

= c for all c ∈ Fp[x]/(f(x)). If n = dk then raising any c ∈ Fp[x]/(f(x)) to

the pd-th power k successive times gives

c = cp
d

= cp
2d

= · · · = cp
kd

= cp
n
.

Now let c = x + (f(x)). Conversely, assume f(x) divides xp
n − x and divide n by d to get

n = qd+ r with 0 ≤ r < d. From above we know that xp
d

= x mod f(x), and hence

x = xp
n

= (xp
qd

)p
r

= xp
r

mod f(x).

Now recall the Freshman’s Binomial Theorem which says that (a + b)p = ap + bp mod p for
a, b in any ring. It follows that g(x)p

r
= g(x) mod f(x) for any polynomial g(x) ∈ Fp[x]. Thus

every element of the field Fp[x]/(f(x)) is a root of the polynomial T p
r−T ∈ Fp[x]/(f(x))[T ]. If

r 6= 0, use HW4.4 and Problem 4(b) to show that pd ≤ pr, and hence d ≤ r. This contradiction
implies that r = 0 as desired.]



Proof. Let f(x) ∈ Fp[x] be irreducible of degree d.

Using the same argument as Problem 5 we can show that Fp[x]/(f(x)) is a field of size pd.

This field has group of units of size pd−1 and hence for all nonzero c ∈ Fp[x]/(f(x)) Lagrange’s

Theorem implies that cp
d−1 = 1. Then multiplying by c gives cp

d
= c for any element c (even

zero). Now suppose that n = dk for some k ∈ N. Raising any c ∈ Fp[x]/(f(x)) to the pd-th
power k successive times gives

c = cp
d

= (cp
d
)p

d
= cp

2d
= · · · = cp

kd
= cp

n
.

Finally, taking c = x + (f(x)) gives x + (f(x)) = (x + (f(x)))p
n

= xp
n

+ (f(x)), hence
xp

n − x = 0 + (f(x)). We conclude that f(x) divides xp
n − x over Fp.

Conversely, suppose that f(x) divides xp
n − x over Fp, i.e., suppose that x = xp

n
in

Fp[x]/(f(x)). Divide n by d to get n = qd + r with 0 ≤ r < d. Using Lagrange’s Theo-

rem again shows that xp
d

= x in Fp[x]/(f(x)) and taking the pd-th power k successive times

gives xp
kd

= x for any k ∈ N. This implies that

x = xp
n

= xp
qd+r

= xp
qdpr = (xp

qd
)p

r
= xp

r
in Fp[x]/(f(x)).

Now recall that (a+ b)p = ap + bp mod p for a, b in any ring because the binomial coefficient(
p
k

)
= p!

k!(p−k)! is divisible by p when 0 < k < p (in this case p divides the numerator and not

the denominator). Let g(x) =
∑

k akx
k ∈ Fp[x] be any polynomial. If we raise g(x) to the

p-th power r successive times and use the Freshman’s Binomial Theorem each time we get

(
∑
k

akx
k)p

r
=
∑
k

(ak)
pr(xk)p

r
=
∑
k

(ak)
pr(xp

r
)k =

∑
k

(ak)
prxk.

But note that for all a ∈ Fp we have ap = a (again by Lagrange’s Theorem) and so a = ap =

(ap)p = ap
2

= · · · = ap
r
. We conclude that g(x)p

r
= g(x) in Fp[x]/(f(x)) for any polynomial

g(x) ∈ Fp[x], hence every element of the field Fp[x]/(f(x)) is a root of the polynomial T p
r−T ∈

Fp[x]/(f(x))[T ]. If r 6= 0 then T p
r − T has degree pr, so it can have at most pr distinct roots

in any field extension. Since the field Fp[x]/(f(x)) has pd elements we conclude that pd ≤ pr,
and since p ≥ 1 (in fact p ≥ 2) this implies that d ≤ r. This contradicts the fact that r < d.
Hence r = 0 as desired. �

[Remark: That polynomial is pretty special, right?]

7. (Gauss’ Formula for Counting Irreducible Polynomials)

(a) Let K be a field. For all f(x) =
∑

k akx
k ∈ K[x] we define the formal derivative:

f ′(x) :=
∑
k

kakx
k−1.

Prove that if f(x) has a repeated factor then f(x) and f ′(x) are not coprime. [Hint:
You can assume that the usual product rule holds.]

(b) Let Np(d) be the number of irreducible polynomials in Fp[x] of degree d and with
leading coefficient 1. Use Problem 6 to prove Gauss’ formula:

pn =
∑
d|n

dNp(d).

[Hint: Show that the special polynomial xp
n−x ∈ Fp[x] and its derivative are coprime,

so every irreducible factor of xp
n − x occurs with multiplicity 1.]



Proof. For part (a), suppose that f(x) ∈ K[x] has a nontrivial repeated factor, say f(x) =
g(x)rh(x) with deg(g) ≥ 1 and r ≥ 2. Taking the derivative and using the product rule gives

f ′(x) = rg(x)r−1h(x) + g(x)rh′(x) = g(x)(g(x)r−2h(x) + g(x)r−1h′(x)).

We conclude that f(x) and f ′(x) share the nontrivial factor g(x).
For part (b), let Np(d) be the number of irreducible polynomials in Fp[x] of degree d and

with leading coefficient 1. (The total number of irreducible polynomials in Fp[x] of degree
d equals (p − 1)Np(d) because we can multiply by any nonzero constant.) Now suppose we
have factored the special polynomial xp

n − x ∈ Fp[x] into irreducibles. We may assume all
the factors have leading coefficient 1 by collecing units. By Problem 6, each irreducible factor
has degree d dividing n, and every irreducible polynomial with degree dividing n occurs in the
factorization at least once. Note that the derivative (xp

n − x)′ = pnxp
n−1 − 1 = 0 − 1 = −1

has no nontrivial factor and so xp
n − x has no repeated factor by part (a). We conclude that

xp
n − x can be expressed as the product of all irreducible polynomials in Fp[x] with leading

coefficient 1 and degree d dividing n, each appearing once. Comparing degrees on both sides
of the factorization gives Gauss’ formula:

pn =
∑
d|n

dNp(d).

�

[Remark: Gauss’ formula is more often written as

Np(n) =
1

n

∑
d|n

µ(n/d)pd,

but to make sense of this we would need to discuss the number-theoretic möbius function µ : N→
{−1, 0, 1}, and we don’t have time for that. If you will allow me to suppose that the coefficients
are indeed in {−1, 0, 1} then we can use Gauss’ formula to prove that Np(n) > 0 (see course
notes). Thus there exist finite fields of all sizes pn.]


