Math 562 Spring 2014
Homework 5 Drew Armstrong

1. (Finite Implies Algebraic) Consider a field extension L O K. Recall that we say a € L
is algebraic over K if there exists nonzero f(z) € K|[z] such that f(a) = 0. We say that the
field extension K C L is algebraic if every element of L is algebraic over K. Prove that if
[L: K] < oo (i.e. if L is finite dimensional as a vector space over K) then L D K is algebraic.
[Hint: Given any o € L the set 1,a,a?,. .. is linearly dependent over K]

Proof. Suppose that [L : K] < oo. Then for any a € L the set {1,a,a?,...} is linearly
dependent over K. That is, there exist some elements aq,...,a, € K not all zero such that

ap + a1+ asa® + - + apa” = 0.

Define the polynomial f(x) := ag + a1z + -+ + apz™ € K[x]. Since f # 0 and f(a) = 0 we
conclude that « is algebraic over K. Since this is true for all & € L we conclude that L is
algebraic over K. O

2. (Algebraic Closure) Given a field extension L D K, define the set
K :={a € L: ais algebraic over K} C L,

called the algebraic closure of K in L. Prove that K is a field. [Hint: Given «, 8 € K we want
to show that a — 3,a87 ! € K. Since a — 3,a8~! € K(a, B) it suffices by Problem 1 to show
that K(a, ) D K is a finite dimensional extension. Use the Tower Law.]

Proof. Consider a field extension L O K and let «,8 € L be algebraic over K. We want
to show that both a — 3 and af~! are algebraic over K. So consider K(a,3) C L which
is the smallest subfield of L containing K U {«, 5}. Because « is algebraic over K we know
that K(«a) = KJa] has finite dimension over K. Then since (3 is algebraic over K (hence
also over K(«)) we know that K(«a)(8) = K(«)[f] has finite dimension over K(a). It is
straightforward to check that K(«, 5) and K(«)(3) are the same thing, so by the Tower Law
for field extensions we have

[K(a, ) : K] = [K()(B) : K] = [K(a)(B) : K(a)] - [K(a) : K] < o0,

Since a— 3 and a~! are in K(«, ), we conclude from Problem 1 that they are both algebraic
over K. Il

[Remark: Given «, 8 € L satisfying f(a) = g(8) = 0 for some f,g € K|x], it is possible to prove
that a — 3 and a3~! are algebraic by using f, g to explicitly construct polynomials that they must
satisfy. However this method of proof is much more difficult than the nonconstructive method
given above.]

3. (Characteristic of a Domain) Let R be a domain.

(a) Show that there exists a unique ring homomorphism ¢ : Z — R. [Hint: ¢(2z) =
e(lz +1z) = o(1z) + v(1z) = 1r + 1g ]

(b) Show that ker(yp) = (p) < Z, where p = 0 or p is prime. This p is called the characteristic
of the domain R.

(c) If R is finite, show that its characteristic is not 0.



Proof. For part (a), let ¢ : Z — R be any ring homomorphism, so that we have ¢(0z) = Ogr
and ¢(1z) = 1g. For any integer n > 1 we have

(P(n):(P(12+"'+1Z):(P(lZ)‘f‘""F(P(lZ):1R+"'+1R:“n'lRwa

and for any integer n < 0 we have

Now the map is determined.

For part (b), note that im ¢ C R is a subring of a domain, hence is itself a domain. By the
First Isomorphism Theorem we have Z/ ker ¢ =~ im ¢ and then HW3.1 implies that ker ¢ is a
prime ideal of Z. Recall that the prime ideals of Z are (0) and (p) for p € N prime.

For part (c), let R be finite and assume for contradiction that kerp = (0). Then since
Z ~7/(0) ~ im ¢ we have

o0 = |Z| = [im¢| < |R| < 0.
Contradiction. O

[Remark: We just proved that the characteristic of a finite domain is a prime p > 0. It is a bit silly
to say it this way because any finite domain is actually a field. Indeed, let R be a finite domain.
Then given any nonzero element x € R we consider the map R — R defined by y — xy. Since
R is a domain this map is injective. Then since R is finite the map is also surjective, i.e., there
exists y € R such that xy = 1.]

4. (The Size of a Finite Field). Suppose that the field K is finite. By Problem 3, the
unique ring map ¢ : Z — K has kernel (p) for some prime 0 # p € Z.
(a) Prove that the image ¢(Z) C K is a subfield of K (called the prime subfield).

(b) Prove that K is a finite dimensional vector space over ¢(Z), say [K : ¢(Z)] =n < oo.
(c) Conclude that |K| = p™.

Proof. Let K be a finite field of characteristic p > 0. By Problem 3 this means that Z/(p) ~
©(Z) C K. But since Z is a PID we know that the prime ideal (p) < Z is also maximal, hence
Z/(p) is a field. This proves part (a).

For part (b) we consider K as a vector space over ¢(Z). Since K is finite it has a finite
spanning set (K itself). Since any spanning set contains a basis we conclude that K has a
finite basis over ¢(Z), say [K : ¢(Z)] = n.

For part (c) note that every element of K can be written uniquely as an ordered n-tuple of
elements of p(Z) (the coefficients when expanded in some basis). Thus we have

K| = le(Z)[" = |2/ (p)" = p".

5. (Examples of Finite Fields) For all primes p € Z we define
Fp :=Z/(p).

This a field of size p. However, it is not obvious that fields of size p™ exist for any n > 1.

(a) Prove that the polynomial f(x) = 2% + x + 1 € F[z] is irreducible.

(b) Prove that the ring Fo[z]/(2? + 2 + 1) is a field of size 4. We will call it Fy.

(c) Let a:=x + (2% + 2 + 1) € F4. Explicitly write down the addition and multiplication
tables of Fy in terms of the (“imaginary”) element «.



Proof. For part (a) suppose for contradiction that we can write
2 +x+1=f(x)g(x)

where f, g € Fao[z] have degree strictly between 0 and 2. Then we have f(z) = a+ Sz for some
a, B € Fy with 8 # 0 and hence —a/3 € Fy is a root of 22+ 4 1. But this polynomial has no
roots in Fy because 124+1+1=3=1%# 0and 02°4+0+1 = 1 # 0. We conclude that 224+ x+1
is irreducible over Fy. [Remark: It is relatively easy to determine if a polynomial of degree < 3 is
irreducible. It is relatively hard to determine if a polynomial of degree > 4 is irreducible.]

For part (b) note that the ideal (22 + z + 1) < Fa[z] is maximal among principal ideals
because z2 +z + 1 is irreducible. Since Fa[x] is a PID this implies that (z? +x + 1) is maximal
among all ideals and hence K := Fa[z]/(2? + z + 1) is a field. In fact we saw in class that
K can be thought of as a field extension of F9 that contains an element o € K such that
a? +a+1=0. (To see this we show that the map Fy — K defined by a + a + (22 + 2 + 1)
is injective and note that o := x + (2% + x + 1) € K satisfies o + a + 1 = 0 in the field K.)

For part (c) we note that 22+ + 1 is the minimal polynomial of « € K over Fy. Indeed, if
meq () € Fy[x] is the minimal polynomial then mq () divides 22 + 2 + 1 over Fy. But we saw
in part (a) that 22 4+ z + 1 is irreducible over Fy, hence mq(x) = 22 + 2 + 1. By a result from
class this implies that K ~ Fo[a] = {a + ba : a,b € Fy}. Note that this field has 4 elements:

Fola] =4{0,1, 0,1 4+ a}.

Finally, using the fact that o® + o + 1 = 0, we can explicitly write down the addition and
multiplication tables:

+ ‘ 0 1 « 1+« X ‘0 1 le} 14+«
0 0 1 « 14+« 0 0 0 0 0
1 1 0 1+« o 1 0 1 o 1+«
« le' 1+« 0 1 « 0 « 1+« 1
l+al|ll+a o 1 0 l1+a|0 14+« 1 «

[Remark: It's just like working with complex numbers.]

6. (A Special Polynomial) Let n,p € N with p prime and consider the special polynomial
aP" —x € Fplz]. If f(x) € Fplx] is irreducible of degree d, prove that

f(x) divides (27" — x) in Fplz] <= d divides n in Z.
[Hint: The group of units of the field F,[z]/(f(z)) has size p? — 1, hence Langrange’s Theorem

implies that ¢*" = ¢ for all ¢ € Fplz]/(f(x)). If n = dk then raising any ¢ € Fplz]/(f(x)) to
the p?-th power k successive times gives

d 2d kd n
c=c = =...=c ="

Now let ¢ = = + (f(z)). Conversely, assume f(z) divides zP" — 2 and divide n by d to get
n = gd +r with 0 <r < d. From above we know that 2" = r mod f(z), and hence

=" = (qud)pr = 2" mod f(z).
Now recall the Freshman’s Binomial Theorem which says that (a + b)? = a? + b” mod p for
a,bin any ring. It follows that g(z)?" = g(x) mod f(z) for any polynomial g(z) € Fp[z]. Thus
every element of the field F,[z]/(f(z)) is a root of the polynomial TP" —T € F,[z]/(f(z))[T]. If

r # 0, use HW4.4 and Problem 4(b) to show that p? < p”, and hence d < r. This contradiction
implies that » = 0 as desired.]



Proof. Let f(x) € Fp[z] be irreducible of degree d.

Using the same argument as Problem 5 we can show that F,[2]/(f(z)) is a field of size p?.
This field has group of units of size p? — 1 and hence for all nonzero ¢ € Fp[z]/(f(x)) Lagrange’s
Theorem implies that =1 = 1. Then multiplying by ¢ gives ' = ¢ for any element ¢ (even
zero). Now suppose that n = dk for some k € N. Raising any ¢ € F,[z]/(f(x)) to the p’-th
power k successive times gives

o de _ (de)pd _ Cp2d o Cpkd _ "
Finally, taking ¢ = = + (f(z)) gives z + (f(z)) = (z + (f(z)))?" = 27" + (f(z)), hence
2" —x =0+ (f(z)). We conclude that f(z) divides 27" — z over F,,.

Conversely, suppose that f(z) divides 2?" — x over F,, i.e., suppose that * = 2" in
F,[z]/(f(z)). Divide n by d to get n = gd + r with 0 < r < d. Using Lagrange’s Theo-
rem again shows that 27 = z in F,[z]/(f(x)) and taking the p-th power k successive times
gives 2P =z for any k € N. This implies that

= xpn _ quaH-r _ qudpr _ (aqud)pr _ xpr in }Fp[x}/(f(aj))

Now recall that (a + b)? = aP 4+ b” mod p for a,b in any ring because the binomial coefficient

(z) = #ik)! is divisible by p when 0 < k < p (in this case p divides the numerator and not

the denominator). Let g(z) = Y., axz® € Fp[z] be any polynomial. If we raise g(z) to the
p-th power r successive times and use the Freshman’s Binomial Theorem each time we get

Q_ara™y" =3 (@) @) = 3 (@) (@) = 3 (et
k k k k
But note that for all a € F,, we have a”? = a (again by Lagrange’s Theorem) and so a = a? =
(aP)P = a?” = --- = aP". We conclude that g(z)?" = g(z) in Fplz]/(f(x)) for any polynomial
g(x) € Fy[z], hence every element of the field Fp[z]/(f(z)) is a root of the polynomial TP —T €
Fplz]/(f(2))[T]. If r # 0 then TP" — T has degree p", so it can have at most p” distinct roots
in any field extension. Since the field F,[z]/(f(x)) has p? elements we conclude that p? < p",
and since p > 1 (in fact p > 2) this implies that d < r. This contradicts the fact that r < d.
Hence r = 0 as desired. O

[Remark: That polynomial is pretty special, right?]

7. (Gauss’ Formula for Counting Irreducible Polynomials)
(a) Let K be a field. For all f(z) =", axz® € K[z] we define the formal derivative:

fl(z) = Z kagxzFt.
k

Prove that if f(z) has a repeated factor then f(z) and f’(z) are not coprime. [Hint:
You can assume that the usual product rule holds.]

(b) Let N,(d) be the number of irreducible polynomials in Fp[z] of degree d and with
leading coefficient 1. Use Problem 6 to prove Gauss’ formula:

p" = dN,(d).
dln

[Hint: Show that the special polynomial zP" —x € [F,[x] and its derivative are coprime,
so every irreducible factor of 27" — 2 occurs with multiplicity 1.]



Proof. For part (a), suppose that f(x) € K[z] has a nontrivial repeated factor, say f(x) =
g(z)"h(z) with deg(g) > 1 and r > 2. Taking the derivative and using the product rule gives

fl(@) = rg(2)" "' h(z) + g(2)"h' (x) = g(2)(g(x)""*h(z) + g(2)" ' (x)).
We conclude that f(x) and f’(z) share the nontrivial factor g(x).

For part (b), let N,(d) be the number of irreducible polynomials in [F,[x] of degree d and
with leading coefficient 1. (The total number of irreducible polynomials in [F,[x] of degree
d equals (p — 1)Np(d) because we can multiply by any nonzero constant.) Now suppose we
have factored the special polynomial 27" — z € F,[z] into irreducibles. We may assume all
the factors have leading coefficient 1 by collecing units. By Problem 6, each irreducible factor
has degree d dividing n, and every irreducible polynomial with degree dividing n occurs in the
factorization at least once. Note that the derivative (zP" —z) = p"a?" 1 —1=0-1= —1
has no nontrivial factor and so 2P" — z has no repeated factor by part (a). We conclude that
xP" — x can be expressed as the product of all irreducible polynomials in [F,[z] with leading
coefficient 1 and degree d dividing n, each appearing once. Comparing degrees on both sides
of the factorization gives Gauss’ formula:

Pt =Y dNy(d).

dln

[Remark: Gauss' formula is more often written as

Ny(n) = 3 /),
din
but to make sense of this we would need to discuss the number-theoretic mobius function p: N —
{—1,0,1}, and we don't have time for that. If you will allow me to suppose that the coefficients
are indeed in {—1,0,1} then we can use Gauss' formula to prove that N,(n) > 0 (see course
notes). Thus there exist finite fields of all sizes p".]



