Math 562
Homework 4

Problems on Integers.

1. Z[V/—1] is Euclidean. Historically, the first Euclidean domain considered (by Gauss)

beyond Z and Q[x] was the ring of Gaussian integers:

Z[V—1]:={a+b/—1:a,b € Z}.

(a) We can think of Z[v/—1] as a “square lattice” in the complex plane C. Draw it.

(b) Given 0 # 8 € Z[v/—1] we can think of the principal ideal (8) = {pa : p € Z[\/—1]}
as a “square sublattice” of Z[v/—1]. Draw the ideal (2 + /—1).

(c) Consider the “size function” o : Z[y/—1] — N defined by o(a+by/—1) := |a+by/—1|* =
a® + b2 Given any «, B € Z[/—1] with 8 # 0, show that we can find an element 3 of
the lattice () such that o(a — uf) < o(B). [Hint: « lies in some square of the square

lattice (53).]

(d) Conclude that Z[y/—1] is a Euclidean domain with size function o.

Proof. For parts (a) and (b) consider the following picture.
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The vertices are the Gaussian integers in the complex plane.

elements of the principal ideal
2+v-1)={2+v-1(a+bV-1):a,beZ}
={(2a—b)+ (a+2b)V—1:a,be Z}.

One can show more generally that for any nonzero § € Z[v/—1], the principal ideal (5) <
Z[v/—1] is a square lattice consisting of integer translations of the square with vertices

{0,8,8V-1, (1 + V-1)}.

(Why do these four vertices form a square?)
For parts (c¢) and (d), consider any o, € Z[v/—1] with f # 0. We want to find u,p €

Z[v/—1] such that

«a=puB+p,
e p=0o0ralp) <o (B).
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Choose p € Z[v/—1] such that |o — pA3| is a minimum (this g might not be unique) and let
p = a — uf. We want to show that p =0 or o(p) < o(f). Since 8 # 0, we know that (3) is
a square lattice so that the « lies inside or on the boundary of some square. The worst case
scenario is when « is at the exact center of a square (which may or may not be an element of
Z[\/—1], depending on what 3 is). Since each square has side length |3| this implies that

V218 1

lpl = o — pp| < — = ﬁlﬁ\-

If p = 0 we are done, otherwise we have 1 < |p| and we can square both sides of the above
inequality to get

1
a(p) = lpl* < 181> < |B]> = o (B),

as desired. 0
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[Consider the ring Z[\/—2] with size function o(a + by/—2) := |a + by/—2]*> = a? + 2b%. Each
nonzero principal ideal (3) now looks like a lattice of rectangles of dimension |3| x v/2|3|. Given
a € Z[\/=2], choose i € Z[/—2] such that |a — p3| is minimal. The worst case scenario is
when « is at the exact center of a rectangle, in which case |a — ug| < @]ﬁ] In other words,
o(a—pp) < 30(B) < o(B), which is good. However, if you try to extend this proof to Z[v/—3],
something bad happens because the center of a 1 x /3 rectangle is exactly 1 unit from each
vertex, which is not close enough! Indeed, we will see in the next problem that Z[\/T3] is not a
UFD, so it can't be Euclidean.]

2. Z[v/=3] is not Euclidean. Now consider the ring
Z[V-3]:={a+bV/-3:a,bc Z} CC.
(a) Define the “norm function” N : Z[v/—3] — N by
N(a +bv=3) := |a + bv/=3> = a® + 3V°.

Prove that for all a, 3 € Z[v/=3] we have N(af8) = N(a)N(B).

(b) Prove that a € Z[/—3] is a unit if and only if N(a) = 1. [Hint: Use part (a).]

(c) Use part (b) to show that Z[v/—3]* = {£1}. [Hint: If a®> + 3> = 1 for a,b € Z then
we must have b = 0.]

(d) Prove that there is no o € Z[v/—3] such that N(a) = 2. [Hint: v/2 is not an integer.]

(e) If N(a) = 4, show that « is irreducible in Z[v/=3]. [Hint: If « is reducible then by
part (a) it has a factor of norm 2. Then use part (d).]

(f) Finally, note that we can factor 4 € Z[/=3] in two ways:

2:2=4=(1++/-3)(1—+-3).

Show that 2 and 1++/—3 are irreducible, but that 2 is not associate to 1++/—3. We
conclude that Z[v/—3] is not a UFD, hence it is not a PID, hence it is not Euclidean.
[Hint: Use parts (c) and (e).]

Proof. For part (a) let @ = a+by/—3 and 3 = c+dv/—3, so that af = (a+by/—3)(c+dv/—3) =
(ac — 3bd) + (ad + bc)y/—3. Now observe that
N(a)N(B) = (a® + 3b*)(c* + 3d*)
= a?®c® + 3a2d* + 3v%% + 9v*d?,



and that
N(ap) = (ac — 3bd)?* + 3(ad + be)?
a’c? — 6abed + 902 d? + 3a%d? + 6abed + 3b2d>
= a’¢® + 3a®d® + 3b%c% + 9p3d?
= N(a)N(B).
Alternatively, you could just say that the absolute value of complex numbers is multiplicative,
but someone needed to prove that once upon a time (it was Diophantus).
For part (b) assume that o € Z[y/—3] is a unit, i.e., assume there exists 3 € Z[v/—3] such
that a8 = 1. Then by part (a) we have
N(a)N(8) = N(af) = N(1) = 1.
Since N(«), N(f) are nonnegative integers this implies that N(a) = N(8) = 1. Conversely,

consider a = a+by/—3 € Z[/—3] with N(a) = a®+3b? = 1. Note that the complex conjugate
a =a — by/—3 is also in Z[v/—3] and we have

ad = |a>=N(a) = 1.
It follows that « is a unit with inverse .

For part (c), let a = a + by/=3 € Z[/=3] be a unit so that N(a) = a® + 3b> = 1 by part
(b). If b # 0 then we have b?> > 1 and hence

1=a®>+30>>a*>+3>3.

This contradiction shows that b = 0, and then a? + 0 = 1 implies that a = +1. That is,
the only possible units of Z[\/—3] are £1. Since both of these are units, we conclude that
ZIV=3)* = {1},

For part (d), suppose for contradiction that we have N(a+by/—3) =a?+3b> =2. If b# 0
then we have b2 > 1 and hence

2=a?+3b2>a®+3>3,

contradiction. Otherwise we have b = 0 and hence a? = 2. But this is impossible because /2
is not an integer. Thus there is no element of norm 2.

For part (e), consider a € Z[y/—3] with N(a) = 4 and assume for contradiction that
« is reducible, so we have a« = [~ where 8 and 7 are not units. By part (a) we have
N(a) = N(B)N(v) and by part (b) we know that N(5) # 1 and N(v) # 1. It follows that
N(B) = N(v) = 2, which is imossible by part (d).

For part (f), consider the factorizations 2 -2 = 4 = (14 v/=3)(1 — v/3). Since

N(2)=N(1++v-3) =4,

we know from part (e) that 2 and 1 + /=3 are irreducible. We also know from part (c)
that the only associates of 2 are +2 and hence 2 is not associate to either of 1 £ +/—3. We
conclude that 4 has two different irreducible factorizations. Thus number theory is more
difficult /interesting than one might expect. U

Problems on Polynomials Over a Field.

3. Evaluating a Polynomial. Let K C L be a field extension. That is, let K, L be fields
such that L is a subring of L. For all & € L we define a function ev,, : K[z] — L by

Z akack = Z akak.
k k



We will often write f(a) := evy(f(x)) for simplicity.
(a) Prove that ev,, : K[z] — L is a ring homomorphism.
(b) Since K|[z] is a PID, the kernel of the evaluation is generated by a single polynomial

ker(evq) = (ma(z)) = {ma(z)f(2) : f(z) € Klz]}.
We call mq(z) the minimal polynomial of a over K. (It is unique up to a nonzero
constant multiple.) Prove that mq(x) is irreducible. [Hint: Assume that mq(z) =
f(z)g(z). Evaluate at « to conclude that f(a) =0 or g(a) = 0. Then what?]
(c) The image of the evaluation K[a] := im (ev,) is called “K adjoin «”. It is the smallest
subring of L that contains K and «. If ev,, is not injective, prove that Klo] is a field.
[Hint: Show that the ideal (mq(x)) is maximal.]

Proof. For part (a), first note that ev, (1) = 1. Then for any f(z) = Y, arz® and g(z) =
> bra® in K[x] note that

evo(f +9) =evy (Z(ak + bk)xk)
k
= Z(ak + bk)ak
k
= Z apa® + Z bpa”
k k

= eva(f) +evalg)

and

eva(fg) = evqy Z Z a;b; z*

k \i+j=k
-3 3 o)
k \it+j=k

= Z apal - Z bpa®
k k

= eva(f) - eva(g)-

[Notice that we needed the fact that K is commutative in the proof of ev,(fg) = eva(f)eva(g).
So be careful when evaluating polynomials over noncommutative rings.|

For part (b) we suppose that mq(z) # 0. (Do you want to call the zero polynomial
irreducible? I don’t. Sorry, I probably should have mentioned that in the problem.) Now
assume for contradiction that m,(z) is reducible, i.e., assume we have

ma(z) = f(2)g(z)

where f,g € KJ[z]| have degrees strictly between 1 and deg(m,). Evaluating at « gives 0 =
ma(a) = f(a)g(a) and since K is a domain this implies that f(a) = 0 or g(«) = 0. Without
loss of generality, suppose that f(«) = 0, and hence f € ker(ev,) = (mg). This implies that
me(z) divides f(x) and hence deg(m,) < deg(f), which contradicts the fact that deg(f) <
deg(mq). We conclude that m,(z) is irreducible.

For part (c) assume that ev, : K[z] — L is not injective, that is, assume that ker(ev,) =
(ma(z)) # (0). To show that (mq(z)) is maximal we assume for contradiction that there
exists an ideal (mq(x)) < J < KJz|. Since K[z] is a PID we have J = (g(x)) for some



g(x) € K|z]. But then g(x) divides mq(x) (because (mq(x)) < (g(x))); g(x) is not associate
to mq(z) (because (mq(x)) # (g(z))); and g(z) is not a unit (because (g(z)) # K[x]). Thus
g(x) is a proper divisor of mq(x), which contradicts the fact that mq(x) is irreducible. We
conclude that (mq(z)) < KJ[z| is a maximal ideal. Finally, the First Isomosphism Theorem
and a result from class imply that

Kla] =im (evy) = K[z]/ ker(evy) = Klz]/(ma(x))
is a field. O

[For example, R[i] = C is a field, but you already knew that. More interestingly, Q[+/2] is a field.
How do you compute inverses in this field?]

4. Counting Roots. Let K C L be a field extension and consider a polynomial f(x) € K|[x].
We say that o € L is a root of f(z) if f(a) = 0. (Recall the evaluation morphism from
Problem 3.) You showed on HW1 that

a€ Lisaroot of f(z) <= (z—a)|f(x)in Lix].

If f(z) € K[z] has degree n, prove that f has at most n distinct roots in any field extension.
[Hint: Use induction on n. Recall that deg(fg) = deg(f) + deg(g).]

Proof. Assume for induction that a polynomial of degree n over a field has at most n roots in
any field extension. Now let L O K be a field extension and consider f(x) € K|z| of degree
n + 1. We will show that f(z) has at most n + 1 roots in L. If f(x) has no roots in L we're
done, so suppose that there exists a € L such that f(«) = 0. By Descartes’ Factor Theorem

we have

f(x) = (z — a)g(x)
where g(x) € L[z]. Since n + 1 = deg(f) = deg(z — a) + deg(g) = 1 + deg(g) we conclude
that deg(g) = n. Now let § € L be any other root of f(z). That is, assume that 5 # « and
f(B) =0. Then we have

0=f(8) = (8 —a)g(B).

Since 8 — « # 0 this implies that g(8) = 0. But by induction g(x) has at most n distinct roots
in L. We conclude that f(z) has at most n + 1 roots in L. O

[The most common application of this is the following: Let f(z) be a polynomial and suppose
that f(x) has infinitely many roots. Then f(z) is the zero polynomial. This result fails over
noncommutative rings. For example, the polynomial f(z) = 22 € R[] has infinitely many roots

in the ring of 2 X 2 matrices:
2
0 « 0 0
(0 0) = (O 0) for all a € R.

Where did the proof go wrong?]



