
Math 562 Spring 2012
Homework 5 Drew Armstrong

Problems that are all connected:

We say that a polynomial f(x1, x2, . . . , xn) ∈ F [x1, x2, . . . , xn] is symmetric if for every permutation
σ of {1, 2, . . . , n} we have

f = f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)) = σ(f).

The elementary symmetric polynomials e1, . . . , en ∈ F [x1, . . . , xn] are defined implicitly by

tn − e1tn−1 + e2t
n−2 − · · ·+ (−1)nen := (t− x1)(t− x2) · · · (t− xn),

where t is an indeterminate. Newton’s Theorem says that the subring of F [x1, . . . , xn] consisting of
symmetric polynomials is equal to F [e1, . . . , en] (i.e. every symmetric polynomial can be written
uniquely as a polynomial in e1, . . . , en).

1. The polynomial x3
1 +x3

2 + · · ·+x3
n is clearly symmetric. Express it as an element of F [e1, e2, . . . , en].

Proof. I will use the notation
pk := xk1 + xk2 + · · ·+ xkn

for the kth power sum symmetric polynomial. The difficulty here is how to deal with n. For n = 1 we
have p3 = x3

1 = e31 and for n = 2 we have p3 = x3
1 + x3

2 = (x1 + x2)3− 3(x1 + x2)(x1x2) = e31− 3e1e2. I
claim that for all n ≥ 3 we have p3 = e31 − 3e1e2 + 3e3 (i.e. the problem stabilizes).

To show this I will introduce the lexicographic order on degree sequences: say that

α = (α1, . . . , αn) < β = (β1, . . . , βn)

if there exists ` such that α` < β` and αi = βi for all 1 ≤ i < `. (That is, in the leftmost position in
which α and β differ, β is larger. Note that this is the same as the natural order on integers with at
most n decimal digits.) Given f ∈ F [x1, . . . , xn], its leading term is the term with the largest degree
sequence.

So let n ≥ 3 and observe that p3 has leading term x3
1. Next note that e31 has leading term x3

1

and second-largest term 3x2
1x2. (Indeed, every term of e31 has degrees summing to 3.) Subtracting e31

from p3 gives us another symmetric polynomial with smaller leading term: p3 − e31 = −3x2
1x2 +

lower order terms. Next note that 3e1e2 has leading term 3x2
1x2. (Again, every term of e1e2 has

degrees summing to 3, so the only possible term higher than x2
1x2 is x3

1, and this does not occur.)
Adding 3e1e2 to p3 − e31 then gives

p3 − e31 + 3e1e2 = 3x1x2x3 + lower order terms.

I claim that the expression on the right actually equals 3e3. How do I know this? Since p3− e31 + 3e1e2
is symmetric, we must have p3 − 3e31 + 3e1e2 = 3e3 + f , for some symmetric f ∈ F [x1, . . . , xn] with
highest term of degree strictly less than (1, 1, 1, 0, . . . , 0). But every term of f has degrees adding to
3, thus the only possibilities are permutations of {3, 0, . . . , 0}, {2, 1, 0, . . . , 0} or {1, 1, 1, 0, . . . , 0}. If
f contains any of these three types, then by symmetry it must contain a term with degree sequence
(3, 0, . . . , 0), (2, 1, 0, . . . , 0) or (1, 1, 1, 0, . . . , 0). This contradicts the fact that every term of f is strictly
smaller than (1, 1, 1, 0, . . . , 0). Hence f = 0 and we conclude that p3 = e31 − 3e1e2 + 3e3. �

[At every step of the algorithm we subtract a polynomial of the form eα := eα1
1 eα2

2 · · · eαnn . Note that
every term of eα has degrees summing to exactly 1α1 + 2α2 + · · · + nαn (just call this constant d),
hence we say that the polynomial eα is homogeneous of degree d. More generally, we say that a
polynomial f ∈ F [x1, . . . , xn] has “total degree” d if d is the maximum sum of exponents over the terms



of f .. It follows from these observations that every symmetric polynomial f ∈ F [x1, . . . , xn] of total
degree d satisfies f ∈ F [e1, . . . , ed], independently of n. (Note that p3 is homogeneous of degree 3, hence
p3 ∈ F [e1, e2, e3].)]

2. Consider a polynomial f(x) ∈ F [x] and let F ⊆ K be a field extension that contains the roots
α1, . . . , αn of f(x) (i.e. K contains the splitting field of f(x)). If α = g(α1, . . . , αn) ∈ K for some
symmetric polynomial g, prove that α is actually in F .

Proof. By assumption, the polynomial f(x) ∈ K[x] splits as

f(x) = (x− α1)(x− α2) · · · (x− αn).

It follows that the elementary symmetric polynomials e1, . . . , en evaluated at (α1, . . . , αn) are in the
field F (because by definition these are ± the coefficients of f(x), which is in F [x]). Finally, let
g ∈ F [x1, . . . , xn] be symmetric. By Newton’s theorem we can write g as a polynomial in e1, . . . , en with
coefficients in F . Evaluate everything at (x1, . . . , xn) 7→ (α1, . . . , αn) to conclude that g(α1, . . . , αn) ∈
F . �

[This proof has two steps. 1. Note that every symmetric combination of the roots is a polynomial in
elementary symmetric combinations of the roots (Newton’s Theorem). 2. Note that every elementary
symmetric combination of the roots is a coefficient, hence it’s in F . You could think of this as the very
first theorem of Galois theory.]

3. The Splitting Theorem. Consider f(x) ∈ F [x] with splitting field F ⊆ K (i.e. K =
F (α1, . . . , αn) where α1, . . . , αn are the roots of f(x).) If g(x) ∈ F [x] is irreducible over F and
has one root in K, then g(x) actually splits in K. Your assignment is to read and understand the
following proof.

Proof. Suppose that g(x) ∈ F [x] is irreducible and has a root β1 ∈ K. Then we can write β1 =
p(α1, . . . , αn) for some polynomial p in the roots of f(x). Let {β1, . . . , βk} be the set of values of
p(ασ(1), . . . , ασ(n)) ∈ K as σ runs over all permutations of {1, 2, . . . , n} (you can note that k ≤ n!, but
this fact is not important). We claim that the polynomial

h(x) := (x− β1)(x− β2) · · · (x− βk) ∈ K[x]

is actually in F [x]. Indeed, the coefficients of h(x) are the elementary symmetric polynomials in
β1, . . . , βk. Since each βi ∈ K is a polynomial in the αj (as is any element of K), the coefficients of
h(x) are polynomials in the αj . Now note that any permutation of the αj induces a permutation of
the βi (by definition). Since the coefficients of h(x) are symmetric under permutations of the βi, they
are also symmetric under permutations of the αj . By Problem 2, we conclude that h(x) ∈ F [x].

Finally, note that g(x) is the minimal polynomial for β1 over F ; i.e. the evaluation map ϕβ1 :
F [x] → K has kernel (g(x)). Since h(β1) = 0 we have h(x) ∈ (g(x)), hence g(x) divides h(x). Then
since h(x) splits in K, so does g(x). �

4. Let F ⊆ K be a normal field extension (this means that K is the splitting field for some (non-
unique) polynomial over F ). Given any α ∈ K, let mα(x) ∈ F [x] be its minimal polynomial. Then we
define the norm of α by

NK/F (α) := (α1α2 · · ·αk)[K:F ]/ deg(mα(x)),

where α1, . . . , αk are the roots of mα(x). (Without loss, you can say α = α1.)
(a) Prove that [K : F ]/deg(mα(x)) ∈ N.
(b) Use The Splitting Theorem to prove that NK/F (α) ∈ K.
(c) Then use Problem 2 to prove that actually NK/F (α) ∈ F .



(d) Suppose 0 6= d ∈ Z is squarefree (i.e. has no repeated prime factor) and consider the quadratic
field extension Q ⊆ Q(

√
d). Given a, b ∈ Q, find the minimal polynomial of a+ b

√
d ∈ Q(

√
d)

over Q and use this to compute the norm NQ(
√
d)/Q(a + b

√
d). Do you recognize this? (All

things are connected.)

Proof. First we prove (a). Given any α ∈ K with minimal polynomial mα(x) ∈ F [x], we consider the
intermediate field F ⊆ F (α) ⊆ K. Then the Tower Law says

[K : F ] = [K : F (a)] · [F (a) : F ] = [K : F (a)] · deg(mα(x)).

We conclude that deg(mα(x)) divides [K : F ], hence [K : F ]/ deg(mα(x)) ∈ N.
To prove (b), note that the irreducible polynomial mα(x) ∈ F [x] has one root in K (namely, α).

Since K is the splitting field for some polynomial in F [x] (namely, mα(x)), the Splitting Theorem says
that all of the roots α1, α2, . . . , αk are in K. We conclude that any power of the product α1 · · ·αk is
in K, hence NK/F (α) ∈ K.

To prove (c), let r = [K : F ]/ deg(mα(x)). Then the polynomial g(x1, . . . , xk) := xr1x
r
2 · · ·xrk is

symmetric, hence Problem 2 implies that NK/F (α) = g(α1, . . . , αk) ∈ F .
Finally, let d ∈ Z be squarefree, so

√
d is irrational and Q ⊆ Q(

√
d) is a degree 2 field extension.

In fact, Q(
√
d) is the splitting field of x2 − d ∈ Q[x], so parts (a),(b),(c) will apply. Now consider an

element a+ b
√
d ∈ Q(

√
d) with b 6= 0. The minimal polynomial of a+ b

√
d over Q is

(x− (a+ b
√
d))(x− (a− b

√
d)) = x2 − 2ax+ (a2 − db2) ∈ Q[x].

(Since a ± b
√
d are irrational, this quadratic polynomial has no rational root, hence it’s irreducible

over Q.) We conclude that the norm is

NQ(d)/Q(a± b
√
d) = ((a+ b

√
d)(a− b

√
d))2/2 = a2 − db2 ∈ Q.

If b = 0 then the minimal polynomial of a ∈ Q(d) over Q is x − a ∈ Q[x]. In this case the formula
gives NQ(d)/Q(a) = (a)2/1 = a2, which still looks good. �

[Notice that the norm is a natural generalization of |z|2 for complex numbers. In fact if d < 0 (the case

of imaginary quadratic fields) then |a+ b
√
d|2 = a2 − db2 is a true statement. (See Chapter 13 of Artin.)

You used this on HW2 to prove that Z[
√
−2] is a Euclidean domain.]

5. Consider γ = 3
√

2 ∈ R and ω = e2πi/3 ∈ C.
(a) Prove that Gal(Q(γ)/Q) is trivial, and hence Q(γ) is not the splitting field of x3 − 2 ∈ Q[x].
(b) Prove that the splitting field of x3 − 2 ∈ Q[x] is Q(γ, ω).
(c) Prove that G = Gal(Q(γ, ω)/Q) is isomorphic to the dihedral group D3 of size 6. [Hint: An

element is determined by how it acts on γ and ω. Define σ by (σ(γ) := ωγ, σ(ω) := ω) and
define ρ by (ρ(γ) := γ, ρ(ω) := ω2). Recall the description of D3 as a semi-direct product.]
Note: This is the smallest nonabelian group in the world.

Proof. Let µ ∈ Gal(Q(γ)/Q). Then µ is determined by the single value µ(γ) ∈ Q(γ). Furthermore,
since γ3−2 = 0 we must have 0 = µ(0) = µ(γ3−2) = µ(γ)3−2, so µ(γ) is also a root of x3−2 ∈ Q[x].
But Q(γ) ⊆ R and x3 − 2 has only one real root (namely, γ). Hence the only choice is µ(γ) = γ and
we conclude that µ is the identity map. In particular, we have |Gal(Q(γ)/Q)| = 1 < [Q(γ) : Q] = 3,
which means that Q(γ) is not a splitting field for any polynomial in Q[x]. (You can just quote this
from class.)

So what is the splitting field of x3 − 2 ∈ Q[x]? The roots of x3 − 2 are γ, ωγ, ω2γ (thought of as
complex numbers), hence the splitting field is K = Q(γ, ωγ, ω2γ) ⊆ C. Clearly γ, ωγ, ω2γ ∈ Q(γ, ω),
hence K ⊆ Q(γ, ω). Conversely, γ ∈ K and ω = (ωγ)/ω ∈ K imply Q(γ, ω) ⊆ K, hence K = Q(γ, ω).



You showed on Exam 2 that [Q(γ, ω) : Q] = 6 so we expect a Galois group of size 6. Any element
µ ∈ Gal(Q(γ, ω)/Q) is determined by the two values µ(γ), µ(ω) ∈ Q(γ, ω). Furthermore, µ(γ) must be
a root of x3−2 and µ(ω) must be a root of x2 +x+1. If we let σ denote the map (γ, ω) 7→ (ωγ, γ) and
let ρ denote the map (γ, ω) 7→ (γ, ω2) then we can generate all six group elements as in the following
table:

1 σ σ2 ρ ρσ ρσ2

γ 7→ γ
ω 7→ ω

γ 7→ ωγ
ω 7→ ω

γ 7→ ω2γ
ω 7→ ω

γ 7→ γ
ω 7→ ω2

γ 7→ ω2γ
ω 7→ ω2

γ 7→ ωγ
ω 7→ ω2

(Here we use juxtaposition to denote composition; i.e. ρσ = ρ ◦ σ.) Note that the group is not
abelian because ρσ sends (γ, ω) 7→ (ω2γ, ω2), whereas σρ sends (γ, ω) 7→ (ωγ, ω2). In fact, this
shows that σρ = ρσ2. Recall the definition of the dihedral group D3, the group of symmetries of an
equilateral triangle. It is generated by a rotation R satisfying R3 = 1, a flip F satisfying F 2 = 1,
and the single relation RF = FR2. Sending σ 7→ R and ρ 7→ F gives the desired group isomorphism
Gal(Q(γ, ω)/Q) ∼→ D3. We can also view this as a semi-direct product

Gal(Q(γ, ω)/Q) = 〈ρ〉n 〈σ〉
where 〈σ〉 is a normal subgroup and the (non-normal) subgroup 〈ρ〉 acts on 〈σ〉 by conjugation,
sending σ to ρσρ = σ2. �

6. The norm from Problem 4 can be defined equivalently in terms of the Galois group. Let F ⊆ K be
a normal extension with Galois group G = Gal(K/F ). For each α ∈ K we define the norm

NK/F (α) :=
∏
σ∈G

σ(α) ∈ K.

(a) Use this definition to give a different proof that actually NK/F (α) ∈ F . [Hint: For all µ ∈ G,
show that µ(NK/F (α)) = NK/F (α).]

(b) Consider the field Q(ω), where ω = e2πi/3. The minimal polynomial of ω over Q is x2 + x+ 1,
hence Q(ω) has basis 1, ω as a vector space over Q. Compute a formula for the inverse of
a + bω ∈ Q(ω). Use the norm in your answer. [Hint: It’s “the same” as the formula for
inverting a complex number; i.e. z−1 = z̄/|z|2.]

Proof. To show part (a), suppose [K : F ] = n and let G = {σ1, . . . , σn}. If µ ∈ G, note that
G = {µσ1, . . . , µσn} is just a permutation of the group elements. Hence

µ(σ1(α) · · ·σn(α)) = µσ1(α) · · ·µσn(α) = σ1(α) · · ·σn(α) ∈ K
and we conclude that µ(NK/F (α)) = NK/F (α). Since this is true for all µ ∈ G we have that NK/F (α)
is an element of the fixed subfield KG ⊆ K. By the Tower Law we have [K : F ] = [K : KG] · [KG : F ].
We will see in class that [K : KG] = |G| = [K : F ], which implies that [KG : F ] = 1, or KG = F . We
conclude that NK/F (α) ∈ F .

Finally, part (b). Let’s just write N for the norm NQ(ω)/Q. The Galois group Gal(Q(ω)/Q) consists
of the identity element 1 and the “conjugation” map σ defined by σ(ω) := ω2. Note that σ(a+ bω) =
σ(a) + σ(b)σ(ω) = a+ bω2 = a+ b(−ω − 1) = (a− b)− bω for arbitrary a, b ∈ Q. Thus we have

N(a+ bω) = 1(a+ bω)σ(a+ bω) = (a+ bω)(a+ bω2)

= a2 + ab(ω + ω2) + bω3 = a2 − ab+ b2 ∈ Q.
Finally we get

1
a+ bω

=
1

a+ bω
· σ(a+ bω)
σ(a+ bω)

=
(a− b)− bω
a2 − ab+ b2

=
(

a− b
a2 − ab+ b2

)
−
(

b

a2 − ab+ b2

)
ω.

More compactly, this is (a+ bω)−1 = σ(a+ bω)/N(a+ bω). Compare z−1 = z̄/|z|2. �


