Math 562 Spring 2012
Homework 5 Drew Armstrong

Problems that are all connected:

We say that a polynomial f(z1,z2,...,z,) € Flz1,22,. .., z,] is symmetric if for every permutation
o of {1,2,...,n} we have

f=flxze,. . 20) = f(To(1), To@)s - -+ To(n) = o (f)-

The elementary symmetric polynomials ey, ..., e, € F[z1,...,x,] are defined implicitly by

" —ept" T peat" 2 — (1), = (t— ) (t— x) - (t— ),
where ¢ is an indeterminate. Newton's Theorem says that the subring of F[z1,...,x,] consisting of
symmetric polynomials is equal to Fley,...,e,| (i.e. every symmetric polynomial can be written
uniquely as a polynomial in ey, ..., e,).
1. The polynomial 23 + 23+ - -+ is clearly symmetric. Express it as an element of Fley, e, .. ., ey].

Proof. 1 will use the notation
ppi=ab+ak+ . 42k
for the kth power sum symmetric polynomial. The difficulty here is how to deal with n. For n = 1 we
have p3 = :1;‘;’ = e:{’ and for n = 2 we have p3 = :1;‘;’ —i—xg = (21 +22)% — 3(21 + 22) (w122) = e:{’ —3ejesn. 1
claim that for all n > 3 we have p3 = €3 — 3ejea + 3e3 (i.e. the problem stabilizes).
To show this I will introduce the lexicographic order on degree sequences: say that

Oé:(Oél,...,Oén)<,8:(617"'7/8n)

if there exists ¢ such that ay < y and a; = §; for all 1 < i < ¢. (That is, in the leftmost position in
which « and § differ, § is larger. Note that this is the same as the natural order on integers with at
most n decimal digits.) Given f € F[z1,...,x,], its leading term is the term with the largest degree
sequence.

So let n > 3 and observe that ps has leading term z$. Next note that €3 has leading term 3
and second-largest term 3z3z2. (Indeed, every term of €3 has degrees summing to 3.) Subtracting e3

from p3 gives us another symmetric polynomial with smaller leading term: p3 — e} = —3x2z5 +
lower order terms. Next note that 3ejes has leading term 31’%1‘2. (Again, every term of ejes has

degrees summing to 3, so the only possible term higher than zfxy is 23, and this does not occur.)

Adding 3ejes to p3 — €3 then gives
p3 — e“;’ + 3e1es = 3z1x023 + lower order terms.

I claim that the expression on the right actually equals 3e3. How do I know this? Since p3 — e3 + 3ejes
is symmetric, we must have p3 — 3e$ + 3ejes = 3e3 + f, for some symmetric f € F[z1,...,x,] with
highest term of degree strictly less than (1,1,1,0,...,0). But every term of f has degrees adding to
3, thus the only possibilities are permutations of {3,0,...,0}, {2,1,0,...,0} or {1,1,1,0,...,0}. If
f contains any of these three types, then by symmetry it must contain a term with degree sequence
(3,0,...,0),(2,1,0,...,0) or (1,1,1,0,...,0). This contradicts the fact that every term of f is strictly

smaller than (1,1,1,0,...,0). Hence f = 0 and we conclude that ps = e:f — 3ejeq + 3es. Il
[At every step of the algorithm we subtract a polynomial of the form e, := e]"e3?---e2". Note that

every term of e, has degrees summing to exactly lag + 2a + -+ + nay, (just call this constant d),
hence we say that the polynomial e, is homogeneous of degree d. More generally, we say that a
polynomial f € F[z1,...,x,] has “total degree” d if d is the maximum sum of exponents over the terms



of f.. It follows from these observations that every symmetric polynomial f € Flxy,...,x,] of total
degree d satisfies f € F'ley,...,eq|, independently of n. (Note that ps is homogeneous of degree 3, hence

p3 S F[61562a63]-)]

2. Consider a polynomial f(z) € F[z] and let F' C K be a field extension that contains the roots
at,...,an of f(z) (i.e. K contains the splitting field of f(x)). If a = g(ay,...,ap) € K for some
symmetric polynomial g, prove that « is actually in F.

Proof. By assumption, the polynomial f(z) € K[z] splits as
flx)=(@—a)(r—az)(z —an).

It follows that the elementary symmetric polynomials ey, ..., e, evaluated at (aq,...,a,) are in the
field F' (because by definition these are + the coefficients of f(z), which is in F[z]). Finally, let
g € Flxy,...,x,] be symmetric. By Newton’s theorem we can write g as a polynomial in eq, . .., ¢, with

coefficients in F. Evaluate everything at (x1,...,2,) — (a1,...,a,) to conclude that g(aq,...,a,) €
F. U

[This proof has two steps. 1. Note that every symmetric combination of the roots is a polynomial in
elementary symmetric combinations of the roots (Newton's Theorem). 2. Note that every elementary
symmetric combination of the roots is a coefficient, hence it's in F'. You could think of this as the very
first theorem of Galois theory.]

3. The Splitting Theorem. Consider f(x) € F[z] with splitting field FF C K (ie. K =
F(ai,...,ap) where ap,...,q, are the roots of f(z).) If g(x) € Flz] is irreducible over F' and
has one root in K, then g(x) actually splits in K. Your assignment is to read and understand the
following proof.

Proof. Suppose that g(z) € F[z] is irreducible and has a root #; € K. Then we can write §; =
p(ai,...,ap) for some polynomial p in the roots of f(x). Let {f1,...,0k} be the set of values of
P(Q(1), - -+ > Qg(ny) € K as o runs over all permutations of {1,2,...,n} (you can note that k < n!, but
this fact is not important). We claim that the polynomial
h(z) = (z = f1)(z — B2) -~ (x — B) € K[z]

is actually in F[z]. Indeed, the coefficients of h(z) are the elementary symmetric polynomials in
B1, ..., 0k Since each 3; € K is a polynomial in the «; (as is any element of K), the coefficients of
h(x) are polynomials in the c;. Now note that any permutation of the a; induces a permutation of
the ; (by definition). Since the coefficients of h(x) are symmetric under permutations of the (3;, they
are also symmetric under permutations of the a;. By Problem 2, we conclude that h(z) € F|x].

Finally, note that g(x) is the minimal polynomial for 8; over F'; i.e. the evaluation map g, :
F[z] — K has kernel (g(z)). Since h(31) = 0 we have h(z) € (g(z)), hence g(z) divides h(x). Then
since h(z) splits in K, so does g(z). O

4. Let FF C K be a normal field extension (this means that K is the splitting field for some (non-
unique) polynomial over F'). Given any « € K, let m,(z) € F|[x] be its minimal polynomial. Then we
define the norm of « by
Nig/p(a) = (araz- - g ) [IGF/ deg(ma(z)

where aq, ..., a are the roots of my(z). (Without loss, you can say a = «;.)

(a) Prove that [K : F]/deg(mq(x)) € N.

(b) Use The Splitting Theorem to prove that N p(a) € K.

(c) Then use Problem 2 to prove that actually Nk, p(a) € F.



(d) Suppose 0 # d € Z is squarefree (i.e. has no repeated prime factor) and consider the quadratic
field extension Q C Q(v/d). Given a,b € Q, find the minimal polynomial of a 4+ bv/d € Q(+/d)
over Q and use this to compute the norm Ny /Q(a + bv/d). Do you recognize this? (All

things are connected.)

Proof. First we prove (a). Given any « € K with minimal polynomial m,(x) € F[z|, we consider the
intermediate field F' C F(«) C K. Then the Tower Law says

[K:F])=[K:F(a)]-[F(a): F]=[K : F(a)]-deg(mu(z)).

We conclude that deg(mg(z)) divides [K : F], hence [K : F|/deg(mq(x)) € N.

To prove (b), note that the irreducible polynomial my(z) € F[z] has one root in K (namely, «).
Since K is the splitting field for some polynomial in F[z] (namely, m,(z)), the Splitting Theorem says
that all of the roots oy, as,...,a; are in K. We conclude that any power of the product «y --- oy is
in K, hence Ng/p(a) € K.

To prove (c), let r = [K : F|/deg(mq(x)). Then the polynomial g(x1,...,xx) = ajah-- ] is
symmetric, hence Problem 2 implies that Ng/p(a) = g(a1,...,ax) € F.

Finally, let d € Z be squarefree, so v/d is irrational and Q C Q(\/&) is a degree 2 field extension.
In fact, Q(v/d) is the splitting field of 22 — d € Q[z], so parts (a),(b),(c) will apply. Now consider an
element a + bvd € Q(v/d) with b # 0. The minimal polynomial of a + bv/d over Q is

(z — (a+bVd)(z — (a — bVd)) = 2% — 2az + (a® — db?) € Q[z].

(Since a + bV/d are irrational, this quadratic polynomial has no rational root, hence it’s irreducible
over Q.) We conclude that the norm is

N@(d)/@(a + b\/g) = ((CL + b\/g)(a - b\/&))2/2 = a2 - db2 S Q

If b = 0 then the minimal polynomial of a € Q(d) over Q is x — a € Q[z]. In this case the formula
gives No(q)/0(a) = (a)?/' = a2, which still looks good. O

[Notice that the norm is a natural generalization of |z|? for complex numbers. In fact if d < 0 (the case
of imaginary quadratic fields) then |a + bv/d|?> = a® — db? is a true statement. (See Chapter 13 of Artin.)
You used this on HW?2 to prove that Z[\/—2] is a Euclidean domain.]

5. Consider v = V2 € R and w = €2™/3 ¢ C.

(a) Prove that Gal(Q(v)/Q) is trivial, and hence Q(v) is not the splitting field of 23 — 2 € Q[x].

(b) Prove that the splitting field of 2% — 2 € Q[z] is Q(v, w).

(c) Prove that G = Gal(Q(vy,w)/Q) is isomorphic to the dihedral group Ds of size 6. [Hint: An
element is determined by how it acts on v and w. Define o by (o(y) := wvy,0(w) := w) and
define p by (p(v) := v,p(w) := w?). Recall the description of D3 as a semi-direct product.]
Note: This is the smallest nonabelian group in the world.

Proof. Let pn € Gal(Q(v)/Q). Then pu is determined by the single value p(vy) € Q(v). Furthermore,
since v3 —2 = 0 we must have 0 = 1(0) = p(y> —2) = u(vy)® — 2, so p(y) is also a root of 3 —2 € Qlx].
But Q(y) € R and 2® — 2 has only one real root (namely, 7). Hence the only choice is () = v and
we conclude that p is the identity map. In particular, we have |Gal(Q(v)/Q)| =1 < [Q(y) : Q] = 3,
which means that Q(v) is not a splitting field for any polynomial in Q[z]. (You can just quote this
from class.)

So what is the splitting field of 23 — 2 € Q[z]? The roots of 2% — 2 are v, w~,w?y (thought of as
complex numbers), hence the splitting field is K = Q(v,wy,w?y) C C. Clearly v,wy,w?y € Q(v,w),
hence K C Q(v,w). Conversely, v € K and w = (wv)/w € K imply Q(v,w) C K, hence K = Q(v,w).



You showed on Exam 2 that [Q(vy,w) : Q] = 6 so we expect a Galois group of size 6. Any element
w € Gal(Q(v,w)/Q) is determined by the two values pu(7v), p(w) € Q(v,w). Furthermore, p(y) must be
a root of 22 — 2 and p(w) must be a root of 22 +z + 1. If we let o denote the map (7, w) — (wy,v) and
let p denote the map (7, w) — (7,w?) then we can generate all six group elements as in the following
table:

1 o o? p po pa2
Yoy Y wy Yy wy ey YWty Yy wy
W = W W= w w — W wi—>w2 wb—>w2 wi—>w2

(Here we use juxtaposition to denote composition; i.e. po = poo.) Note that the group is not
abelian because po sends (7,w) — (w?y,w?), whereas op sends (7,w) — (wy,w?). In fact, this
shows that op = po?. Recall the definition of the dihedral group D3, the group of symmetries of an
equilateral triangle. It is generated by a rotation R satisfying R® = 1, a flip F satisfying F? = 1,
and the single relation RF = FR?. Sending o — R and p — F gives the desired group isomorphism
Gal(Q(v,w)/Q) = D3. We can also view this as a semi-direct product

Gal(Q(y,w)/Q) = (p) x ()

where (o) is a normal subgroup and the (non-normal) subgroup (p) acts on (o) by conjugation,
sending o to pop = o2. O

6. The norm from Problem 4 can be defined equivalently in terms of the Galois group. Let F' C K be
a normal extension with Galois group G = Gal(K/F'). For each a € K we define the norm

Ngp(a) = H o(a) € K.
oeqG

(a) Use this definition to give a different proof that actually Nk, p(a) € F. [Hint: For all u € G,
show that u(Ng/p(a)) = Ng/r(a).]

(b) Consider the field Q(w), where w = ¢?™/3. The minimal polynomial of w over Q is 2 + z + 1,
hence Q(w) has basis 1,w as a vector space over Q. Compute a formula for the inverse of
a+bw € Q(w). Use the norm in your answer. [Hint: It’s “the same” as the formula for
inverting a complex number; i.e. 271 = z/|z|2

Proof. To show part (a), suppose [K : F] = n and let G = {o1,...,0,}. If u € G, note that
G = {po1,...,uo,} is just a permutation of the group elements. Hence

1(01(0) - 0n()) = po1(@) -+ pom(a) = 01(a) -+ 7(a) € K
and we conclude that (N /p(a)) = Ng/p(a). Since this is true for all u € G' we have that Ng/p(a)
is an element of the fixed subfield K& C K. By the Tower Law we have [K : F| = [K : K- [K% : F].
We will see in class that [K : K¢] = |G| = [K : F], which implies that [K® : F] =1, or K¢ = F. We
conclude that Nk, p(a) € F.

Finally, part (b). Let’s just write IV for the norm Ng,,)/q- The Galois group Gal(Q(w)/Q) consists
of the identity element 1 and the “conjugation” map o defined by o(w) := w?. Note that o(a + bw) =
o(a) +o(b)o(w) =a+bw? =a+b(—w — 1) = (a — b) — bw for arbitrary a,b € Q. Thus we have

N(a+bw) = 1(a+bw)o(a+ bw) = (a + bw)(a + bw?)
= a® + ab(w + w?) + bw® = a* — ab + b* € Q.
Finally we get
1 ola+bw) (a—b)—bw a—1>b B b "
a+bw  a+bw olat+bw) a?—ab+b2  \a? —ab+ b2 a?—ab+0b%)
More compactly, this is (a + bw)™! = o(a + bw)/N(a + bw). Compare 2z~ = z/|z|?. O




