
Math 561/661 Fall 2023
Homework 5 Drew Armstrong

1. First Isomorphism Theorem. Let ϕ : (G, ∗, εG) → (H, •, εH) be a group homomor-
phism. Consider the kernel and image:

kerϕ = {a ∈ G : ϕ(a) = εH},
imϕ = {ϕ(a) : a ∈ G}.

(a) Prove that ϕ is injective if and only if kerϕ = {εG}. In this case, prove that G ∼= imϕ.
(b) Prove that kerϕ is a normal subgroup of G, so the set of cosets G/ kerϕ is a group.

Prove that the function Φ : G/ kerϕ→ imϕ defined by Φ([a]) := ϕ(a) is a well-defined
group isomorphism.

2. Orbit-Stabilizer Theorem. Let (G, ∗, ε) be a group and let X be a set. An action of G
on X is a function G×X → X, which we can denote by (g, x) 7→ g(x), satisfying two rules:

• For all x ∈ X we have ε(x) = x.
• For all a, b ∈ G and x ∈ X we have (a ∗ b)(x) = a(b(x)).

(a) Consider the relation ∼ on X defined by

x ∼ y ⇐⇒ ∃g ∈ G, y = g(x).

Prove that this is an equivalence relation. The equivalence classes are called orbits:

Orb(x) := {y ∈ X : x ∼ y} ⊆ X.
(b) For any x ∈ X we define the stabilizer subgroup:

Stab(x) := {g ∈ G : g(x) = x} ⊆ G.
Prove that Stab(x) is indeed a subgroup of G. [It need not be a normal subgroup.]

(c) Consider any element x ∈ X. From part (b) we may consider the set of cosets
G/Stab(x). Prove that the function Φ : G/Stab(x)→ Orb(x) defined by Φ([a]) = a(x)
is a well-defined bijection.

3. Burnside’s Lemma. Suppose that the group (G, ∗, ε) acts on the set X. Consider the
set of pairs (g, x) ∈ G×X satisfying g(x) = x:

S = {(g, x) : g(x) = x} ⊆ G×X.
Suppose that G and X are finite so that S is finite.

(a) Explain why #S =
∑

x∈X #Stab(x).
(b) For any g ∈ G, let Fix(g) = {x ∈ X : g(x) = x} ⊆ X be the set of elements of X that

are “fixed by g”. Explain why #S =
∑

g∈G #Fix(g). It follows from (a) and (b) that∑
x∈X

#Stab(x) =
∑
g∈G

#Fix(g).

(c) From Problem 2 we know that X is a disjoint union of orbits. Let X/G denote the
set of orbits. Use the Orbit-Stabilizer Theorem to prove that

∑
x∈X #Stab(x) = #G ·

#(X/G), and conclude that the number of orbits is equal to the average number of
elements of X fixed by an element of G:

#(X/G) =
1

#G
·
∑
g∈G

#Fix(g).



[Hint: Let k = #(X/G) and let X = Orb(x1) t · · · t Orb(xk) be the decomposition
into orbits. For any element x ∈ Orb(xi) show that #Stab(x) = #G/#Orb(xi). Now
add them up.]

4. Counting Necklaces. Fix some integers n, k ≥ 1. Let X be the set of words (x1, . . . , xn)
with xi ∈ {1, 2, . . . , k} for all i, so that #X = kn. The symmetric group Sn acts on the set
X by permuting entries. Let c = (1, 2, . . . , n) ∈ Sn be the standard n-cycle and consider the
cyclic group G = 〈c〉 of size n. The orbits of G acting on X are called necklaces. We can think
of a necklace as a cyclic configuration of n beads using k possible colors.

(a) Explain why #Fix(ci) = kgcd(i,n). [Hint: You investigated the permutations ci in
Problem 3 of Homework 2.]

(b) Use Burnside’s Lemma to show that

#{necklaces} =
1

n
·
n−1∑
i=0

kgcd(i,n).

(c) Compute the number of necklaces with 12 beads of 2 possible colors.

5. Euler’s Totient Function. For any integer n ≥ 1 we define

φ(n) := #(Z/nZ)× = #{a ∈ Z : 1 ≤ a ≤ n and gcd(a, n) = 1}.
(a) Consider any integer k ≥ 1 and prime p ≥ 2. Explain why φ(pk) = pk − pk−1. [Hint:

The only integers less than pk that are not coprime to pk are the multiples of p.]
(b) Let R and S be rings. The direct product ring R× S is defined analogously to groups.

It is straightforward to check that the groups of units satisfy

(R× S)× = R× × S×.
Combine this with the Chinese Remainder Theorem to prove for all m,n ∈ Z that

gcd(m,n) = 1 =⇒ φ(mn) = φ(m)φ(n).

(c) Combine parts (a) and (b) to prove for any integer n ≥ 1 that

φ(n) = n ·
∏
p|n

p− 1

p
,

where the product is over the distinct prime divisors of n. [Hint: Write the prime

factorization of n as n = pk11 · · · p
kN
N . From part (a) we have φ(pkii ) = pkii − p

ki−1
i =

pkii (pi − 1)/pi. Now use part (b).]


