Math 561/661 Fall 2023
Homework 5 Drew Armstrong

1. First Isomorphism Theorem. Let ¢ : (G,*,eq) — (H,e,ex) be a group homomor-
phism. Consider the kernel and image:
kero ={a € G:p(a) =cn},
ime = {p(a): a € G}.
(a) Prove that ¢ is injective if and only if ker ¢ = {e¢}. In this case, prove that G = im ¢.
(b) Prove that ker ¢ is a normal subgroup of G, so the set of cosets G/ ker ¢ is a group.

Prove that the function ® : G/ ker ¢ — im ¢ defined by ®([a]) := ¢(a) is a well-defined
group isomorphism.

2. Orbit-Stabilizer Theorem. Let (G, *,¢) be a group and let X be a set. An action of G
on X is a function G x X — X, which we can denote by (g,x) — g(z), satisfying two rules:

e For all z € X we have ¢(x) = .
e For all a,b € G and x € X we have (a*b)(z) = a(b(z)).

(a) Consider the relation ~ on X defined by
x~y <= 3JgeqG,y=gx).
Prove that this is an equivalence relation. The equivalence classes are called orbits:
Orb(z) ={ye Xz ~y} C X.
(b) For any z € X we define the stabilizer subgroup:
Stab(z) :={g € G: g(z) =2} CG.

Prove that Stab(z) is indeed a subgroup of G. [It need not be a normal subgroup.]

(c) Consider any element x € X. From part (b) we may consider the set of cosets
G/Stab(x). Prove that the function ® : G/Stab(z) — Orb(z) defined by ®([a]) = a(x)
is a well-defined bijection.

3. Burnside’s Lemma. Suppose that the group (G, *,¢) acts on the set X. Consider the
set of pairs (g,z) € G x X satisfying g(z) = x:
S={(g,z): g(x) =2} CG x X.
Suppose that G and X are finite so that S is finite.
(a) Explain why #S = >y #Stab(z).
(b) For any g € G, let Fix(g) = {z € X : g(z) = 2} C X be the set of elements of X that
are “fixed by ¢g”. Explain why #S =3 . #Fix(g). It follows from (a) and (b) that

Z #Stab(z) = Z #Fix(g).
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(¢) From Problem 2 we know that X is a disjoint union of orbits. Let X/G denote the
set of orbits. Use the Orbit-Stabilizer Theorem to prove that ). #Stab(z) = #G -
#(X/G), and conclude that the number of orbits is equal to the average number of
elements of X fixed by an element of G:

#X/G) = 2z Y #Fix(o).
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[Hint: Let k& = #(X/G) and let X = Orb(z;) U --- U Orb(zy) be the decomposition
into orbits. For any element x € Orb(x;) show that #Stab(x) = #G/#O0rb(z;). Now
add them up.]

4. Counting Necklaces. Fix some integers n,k > 1. Let X be the set of words (x1,...,2,)
with x; € {1,2,...,k} for all 4, so that #X = k™. The symmetric group S,, acts on the set
X by permuting entries. Let ¢ = (1,2,...,n) € S, be the standard n-cycle and consider the
cyclic group G = (c¢) of size n. The orbits of G acting on X are called necklaces. We can think
of a necklace as a cyclic configuration of n beads using k possible colors.

(a) Explain why #Fix(¢!) = k&) [Hint: You investigated the permutations ¢ in

Problem 3 of Homework 2.]
(b) Use Burnside’s Lemma to show that
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1 .
klacest — — . ged(in)
#{necklaces} - ZZ;
(¢) Compute the number of necklaces with 12 beads of 2 possible colors.

5. Euler’s Totient Function. For any integer n > 1 we define
o(n) :=H#(Z/n2)" =#{a€Z:1<a<nand ged(a,n) =1}.

(a) Consider any integer & > 1 and prime p > 2. Explain why ¢(p*) = p* — pF~1. [Hint:
The only integers less than p* that are not coprime to p* are the multiples of p.]

(b) Let R and S be rings. The direct product ring R x S is defined analogously to groups.
It is straightforward to check that the groups of units satisfy

(Rx S)* =R* x S*.
Combine this with the Chinese Remainder Theorem to prove for all m,n € Z that
ged(m,n) =1 = @(mn) = ¢(m)o(n).
(c) Combine parts (a) and (b) to prove for any integer n > 1 that
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where the product is over the distinct prime divisors of n. [Hint: Write the prime
factorization of n as n = plfl .- -p?VN. From part (a) we have qﬁ(pfi) = pf" — pfi_l =

P (p; — 1)/pi. Now use part (b).]



