
Math 561/661 Fall 2023
Homework 2 Drew Armstrong

1. One Step Subgroup Test. Let (G, ∗, ε) be a group and let H ⊆ G be a subset. Consider
the following four properties:

(S1) ε ∈ H,
(S2) For all a ∈ H we have a−1 ∈ H,
(S3) For all a, b ∈ H we have a ∗ b ∈ H,
(S4) For all a, b ∈ H we have a ∗ b−1 ∈ H.

Prove that (S4) holds if and only if all three of (S1), (S2), (S3) hold.

Proof. If (S1), (S2), (S3) hold then (S4) clearly holds. Conversely, suppose that (S4) holds. In
this case we will show that (S1), (S2) and (S3) hold. We will prove them in this order.

(S1): We will assume that the set H is non-empty. (Sorry I forgot to mention this.) Pick any
element a ∈ H. Then from (S4) we have ε = a ∗ a−1 ∈ H.

(S2): From (S1) we have ε ∈ H. Then for any b ∈ H, (S4) implies b−1 = ε ∗ b−1 ∈ H.

(S3): Consider any a, b ∈ H. From (S2) we know that b−1 ∈ H. Then from (S4) we have

a ∗ b = a ∗ (b−1)−1 ∈ H.

2. Homomorphism and Isomorphism. Consider two groups (G, ∗, εG) and (H, •, εH). A
function ϕ : G→ H is called a homomorphism if it satisfies the following condition:

ϕ(a ∗ b) = ϕ(a) • ϕ(b) for all a, b ∈ G.

(a) If ϕ : G→ H is a homomorphism, prove that ϕ(εG) = εH .
(b) If ϕ : G→ H is a homomorphism, prove that ϕ(a−1) = ϕ(a)−1 for all a ∈ G.
(c) Let ϕ : G → H be a homomorphism and suppose the inverse function ϕ−1 exists.

Prove that the function ϕ−1 : H → G is also a homomorphism. It follows that invertible
homomorphisms are the same as isomorphisms. [Hint: Given a, b ∈ H, apply the function
ϕ to the group element ϕ−1(a) ∗ ϕ−1(b) ∈ G.]

(a): Let ϕ : G→ H be a homomorphism. For any group element a ∈ H we have

ϕ(a) = ϕ(a ∗ εG) = ϕ(a) • ϕ(εG).

Since H is a group, the inverse ϕ(a)−1 ∈ H exists. Multiplying the previous equation on the
left by ϕ(a)−1 gives

ϕ(a) • ϕ(εG) = ϕ(a)

ϕ(a)−1 • ϕ(a) • ϕ(εG) = ϕ(a)−1 • ϕ(a)

ϕ(εG) = εH .

(b): Let ϕ : G→ H be a homomorphism. For any element a ∈ G we have

ϕ(a) • ϕ(a−1) = ϕ(a ∗ a−1) = ϕ(εG) = εH ,

where the last step follows from part (a). Then multiplying on the left by the element ϕ(a)−1 ∈
H (which exists because H is a group), we obtain

ϕ(a) • ϕ(a−1) = εH



ϕ(a)−1 • ϕ(a) • ϕ(a−1) = ϕ(a)−1 • εH
ϕ(a−1) = ϕ(a)−1.

(c): Let ϕ : G → H be a homomorphism and assume that the function ϕ−1 exists. Then for
any elements a, b ∈ H we have

ϕ[ϕ−1(a) ∗ ϕ−1(b)] = ϕ[ϕ−1(a)] • [ϕ−1(b)]

= a • b.

Finally, applying ϕ−1 to both sides gives

ϕ−1(a • b) = ϕ−1
[
ϕ[ϕ−1(a) ∗ ϕ−1(b)]

]
= ϕ−1(a) ∗ ϕ−1(b),

as desired.

3. Powers of a Cycle. Consider the “standard 12-cycle” in cycle notation:

c := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) ∈ S12.

Compute the first twelve powers c, c2, c3, . . . , c12 and express each of them in cycle notation.
Try to guess what the k-th power of an n-cycle looks like.
We have

c = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),

c2 = (1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12),

c3 = (1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12),

c4 = (1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12),

c5 = (1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8),

c6 = (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12),

c7 = (1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6),

c8 = (1, 9, 5)(2, 10, 6)(3, 11, 7)(4, 12, 8),

c9 = (1, 10, 7, 4)(2, 11, 8, 5)(3, 12, 9, 6),

c10 = (1, 11, 9, 7, 5, 3)(2, 12, 10, 8, 6, 4),

c11 = (1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2),

c12 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) = ε.

You may observe the following general phenomenon: If c is an n-cycle then for any integer k ∈ Z
the permutation ck is a product of cycles, each of length n/ gcd(k, n). We will prove this later.

4. Order of an Element. Let (G, ∗, ε) be a group and let g ∈ G be any element. Recall that
there is a unique way to define group elements gn ∈ G for all integers n ∈ Z so that

• g1 = g,
• gm+n = gn ∗ gm for all m,n ∈ Z.

This notation satisfies g0 = ε and (gn)−1 = g−n for all n ∈ Z.

(a) Let 〈g〉 ⊆ G be the smallest subgroup of G that contains the element g. Prove that

〈g〉 = {gn : n ∈ Z}.
[Hint: Show that the set on the right is a subgroup of G.]

(b) If 〈g〉 is a finite set, prove that there exists some n ≥ 1 such that gn = ε.



(c) Let 〈g〉 be a finite set and let m ≥ 1 be the smallest positive integer satisfying gm = ε.
In this case, prove that 〈g〉 has exactly m elements:

〈g〉 = {ε, g, g2, . . . , gm−1}.
This m is called the order of the element g ∈ G. If the set 〈g〉 is infinite then we will
say that g has infinite order. [Hint: For each integer k ∈ Z there exist unique integers
q, r ∈ Z satisfyiing k = qm + r and 0 ≤ r < m.]

(a): Let 〈g〉 ⊆ G be the smallest subgroup of G that contains the element g. Let P = {gn : n ∈
Z} be the set of integer powers of g. I claim that 〈g〉 = P .

To see this we must prove that 〈g〉 ⊆ P and P ⊆ 〈g〉. For the first statement, we observe that
P is a subgroup of G since for any two powers gm, gn ∈ P we also have1

gm ∗ (gn)−1 = gm ∗ g−n = gm−n ∈ P.

Then since P is a subgroup of G containing g = g1, it must contain the smallest such subgroup.
That is, we must have 〈g〉 ⊆ P .

Conversely, we must show that every power of g is in 〈g〉. Since 〈g〉 is by definition a subgroup
that contains g we must have ε = g0 ∈ 〈g〉 and g1 = g ∈ 〈g〉. Now assume for induction that
gn ∈ 〈g〉. Since g ∈ 〈g〉 and since 〈g〉 is closed under ∗, this implies that gn+1 = gn ∗ g ∈ 〈g〉.
Hence gn ∈ 〈g〉 for all integers n ≥ 0. Finally, since 〈g〉 is closed under inversion, we have
g−n = (gn)−1 ∈ 〈g〉 for all n ≥ 0. In conclusion, we have P ⊆ 〈g〉.

(b): Suppose that 〈g〉 is a finite set. From part (a) this means that the list of powers

. . . , g−2, g−1, ε, g, g2, . . .

contains some repetition. That is, we must have gk = g` for some integers k < `. Multiplying
both sides of this equation by the inverse element (gk)−1 = g−k gives

g` = gk

g` ∗ g−k = gk ∗ g−k

g`−k = ε,

with `− k ≥ 1.

(c): Let 〈g〉 be finite. Then from part (b) there exists a smallest positive integer m satisfying
gm = ε. In this case I claim that that the m group elements ε, g, . . . , gm−1 are distinct and that
every element of 〈g〉 is in this list. To see that every element of 〈g〉 has the form gr for some
0 ≤ r < m, we consider an arbitrary integer power gn. Then there exists a quotient and
remainder q, r ∈ Z such that {

n = qm + r,
0 ≤ r < m.

In this case we have

gn = gr+qm = gr ∗ gqm = gr ∗ (gm)q = gr ∗ εq = gr.

To see that the list ε, g, . . . , gm−1 contains no repetition, suppose for contradiction that we have
gk = g` for some integers 0 ≤ k < ` ≤ m − 1. But then multiplying both sides by g−k gives
g`−k = ε with 1 ≤ `− k < m, contradicting the minimality of m.

1The identity (gm)n = gmn holds any integers m,n. This can be proved by induction.



5. Join of Two Subgroups. Let G be a group and let H,K ⊆ G be subgroups. Recall that
the subgroup generated by the union H ∪K is called the join:

H ∨K := 〈H ∪K〉
:= the intersection of all subgroups that contain H ∪K.

(a) If (G,+, 0) is abelian, we define the sum of H and K as follows:

H + K := {h + k : h ∈ H, k ∈ K}.

Prove that this is a subgroup.
(b) If (G,+, 0) is abelian, use part (a) to prove that H ∨K = H + K.
(c) If (G, ∗, ε) is non-abelian, show that the following set is not necessarily a subgroup, and

hence it does not coincide with the join:

H ∗K := {h ∗ k : h ∈ H, k ∈ K}.

[Hint: The smallest non-abelian group is S3.]

(a): Let (G,+, 0) be abelian and let H,K ⊆ G be subgroups. I claim that the set H + K =
{h + k : h ∈ H, k ∈ K} is also a subgroup. To see this, consider any two elements h1 + k1 and
h2 + k2 of H + K. Since H is a subgroup we have h1 − h2 ∈ H and since K is a subgroup we
have k1 − k2 ∈ K. Finally, since the operation + is commutative, we have k1 − h2 = −h2 + k1
and hence

(h1 + k1)− (h2 + k2) = (h1 − h2) + (k1 − k2) ∈ H + K.

(b): Continuing from part (a), let H ∨K be the smallest subgroup of G that contains the set
H ∪ K. I claim that H ∨ K = H + K. On the one hand, we know from (a) that H + K is
a subgroup of G. And we know that H + K contains all elements of the form h = h + 0 and
k = 0 + k for h ∈ H and k ∈ K. Hence H +K contains the set H ∪K. By minimality it follows
that H ∨K ⊆ H + K.

Conversely, we must show that H + K ⊆ H ∨K. To see this, note that for all elements h ∈ H
and k ∈ K we have h ∈ H ∨ K and k ∈ H ∨ K because H ∨ K contains the set H ∪ K.
Furthermore, since H ∨ K closed under addition we must have h + k ∈ H ∨ K. Hence every
element of H + K is in H ∨K.

(c): Consider the symmetric group S3 = {ε, (12), (13), (23), (123), (132)} and the (cyclic) sub-
groups H = {ε, (12)} and K = {ε, (23)}. By definition we have2

H ◦K = {ε ◦ ε, (12) ◦ ε, ε ◦ (23), (12) ◦ (23)}
= {ε, (12), (23), (123)}.

But this set is not a subgroup of S3. Indeed, the inverse (123)−1 = (132) is not in the set. Since
H ∨K is by definition a subgroup of S3, it follows that H ◦K 6= H ∨K. (In this case, H ∨K
is the whole group.)

6. Two Groups with Eight Elements. There are two different non-abelian groups with eight
elements, called the dihedral group D8 and the quaternion group Q8. We will use multiplicative
notation with identity element called “1”.

2In this case the group operation ∗ is functional composition.



(a) The dihedral group has elements D8 = {1, r, r2, r3, f, rf, r2f, r3f} subject to the relations

r4 = f2 = rfrf = 1.

Write out the full 8× 8 group table.
(b) The quaternion group has elements Q8 = {1, i, j, k, e, ei, ej, ek} subject to the relations

i2 = j2 = k2 = ijk = e, e2 = 1, and ae = ea for all a ∈ Q8.

Write out the full 8× 8 group table. [If you want you can write e as “−1” and write the
elements ei, ej, ek as −i,−j,−k, respectively.]

(c) Prove that D8 and Q8 are not isomorphic. [Hint: Isomorphic groups have the same
number of elements of each order. Count the elements of order 2.]

(a): Here is the group table of D8:

· 1 r r2 r3 f rf r2f r3f

1 1 r r2 r3 f rf r2f r3f
r r r2 r3 1 rf r2f r3f f
r2 r2 r3 1 r r2f f3f f rf
r3 r3 1 r r2 r3f f rf r2f
f f r3f r2f rf 1 r3 r2 r
rf rf f r3f r2f r 1 r3 r2

r2f r2f rf f r3f r2 r 1 r3

r3f r3f r2f rf f r3 r2 r 1

(b): Here is the group table of Q3:

· 1 i j k −1 −i −j −k

1 1 i j k −1 −i −j −k
i i −1 k −j −i 1 −k j
j j −k −1 i −j k 1 −i
k k j −i −1 −k −j i 1
−1 −1 −i −j −k 1 i j k
−i −i 1 −k j i −1 k −j
−j −j k 1 −i j −k −1 i
−k −k −j i 1 k j −i −1

(c): To show that D8 and Q8 are not isomorphic we will look at the orders of their elements.3

Here are the orders of the elements of D8:

g 1 r r2 r3 f rf r2f r3f

#〈g〉 1 4 2 4 2 2 2 2

And here are the orders of the elements of Q8:

g 1 i j k −1 −i −j −k

#〈g〉 1 4 4 4 2 4 4 4

The group D8 has five elements of order 2 but the group Q8 has just one element of order 2,
hence these groups cannot be isomorphic.

3If ϕ : G→ H is a group isomorphism then g ∈ G and ϕ(g) ∈ H have the same order because ϕ(gn) = ϕ(g)n

for all n ∈ Z and ϕ(a) = εH if and only if a = εG.


