Math 561/661 Fall 2023
Homework 1 Drew Armstrong

1. Group Axioms. Let G be a set with a binary operation (a,b) +— a % b. Consider the
following four possible axioms:

(G1) For all a,b,c € G we have a* (b*c) = (a*b) *c.

(G2) There exists some ¢ € G such that axe =ec*a=a for all a € G.

(G3) For each a € G there exists some b € G such that a xb=bx*a =¢.

(G4) For each a € G there exists some ¢ € G such that a ¢ = e.

The element ¢ in (G2) is called a two-sided identity. The element b in (G3) is called a two-sided
inverse for a and the element c in (G3) is called a right inverse for a.

(a) If (G1) and (G2) hold, prove that the two-sided identity element is unique.

(b) If (G1), (G2) and (G3) hold, prove that the two-sided inverse is unique.

(¢) Assuming that (G1) and (G2) hold, prove that that (G3) and (G4) are equivalent.
[Hint: One direction is obvious. The hard part is to prove that the existence of right
inverses implies the existence of two-sided inverses.]

(a) Assume that (G1) and (G2) hold and suppose that the elements e, € G both satisfy
(G2). Then we have

[Remark: Actually I didn’t need to use (G1).]
(b) Assume that (G1), (G2) and (G3) hold and suppose that the elements b’ € G both
satisfy (G3). Then we have

b=bxid=0bx(a*xb)=(b*xa)xb =id*t =V

(c) Assume that (G1) and (G2) hold. Then (G3) clearly implies (G4). On the other hand,
suppose that (G4) holds. Then for all a € G there exists some ¢ € G such that a x ¢ = . But
we can also apply (G4) to this ¢ to obtain some d € G such that ¢ x d = . Putting these
together gives

d=idsxd=(axc)xd=ax(cxd) =axid = a,

so that cxd = ¢ *x a = ¢ and hence c is a two-sided inverse for a. Finally, since a € G was
arbitrary we conclude that (G3) holds.
2. Groups of Matrices. Let R be a commutative ring. Prove that each of the following
sets of matrices is a subgroup of GL,,(R):

SL,(R) ={A € Mat,(R) : det A = 1},

On(R) = {A € Mat,(R) : ATA =1},

SO, (R) = {A € Mat,(R) : ATA=1T and det A = 1}.

[Hint: You will need the matrix identities det(AB) = det(A) det(B) and (AB)T = BT AT ]

[Remark: I originally stated this problem in terms of the real numbers R but it applies equally
well to any commutative ring R.]



Special Linear Group. Note that det(4) = 1 € R* implies that A~! exists, hence SL,(R)
is a subset of GL,(R). We need to show that it is a subgroup. To see this we first note that
A,B € SLy(R) implies AB € SL,(R) because det(A) =1 and det(B) = 1 implies

det(AB) =det(A)det(B) =1-1=1.
Next we note that [ is in SL,(R) becuase det(I) = 1. Finally, if A € SL,(R) we note that
A~! (which exists because SL,, is a subset of GL,,) is also in SL,(R) because

AAT =1
det(A) det(A™) = det(I)
1-det(A™hH =1

det(A™1) = 1.

Orthogonal Group. If AAT = I then we have
det(AAT) = det
det(A)det(AT) =1
det(A)? =1,

which implies that det(A) = 1. Since £1 € R* this implies that O,(R) is a subset of
GL,(R). We need to show that it is a subgroup. To see this we first note that I € O,(R)
because I71 = IT = I. Next we note that A, B € O,,(R) implies AB € O,(R) since ATA =1
and BTB = I imply

(1)

(AB)'(AB) = BTATAB=BTIB=BT"B=1.

Finally, we will show that A € O, (R) implies A~! € O,,(R) to do this we will use the (highly
nontrivial) fact that

Suppose that A € O,(R) so that ATA = I. Then we must have AA” = I and we can take
the inverse of both sides to get

(AAT) "L = !
(AT)_lA_l =7
(Afl)TAfl — I,

which implies that A= € O, (R).

[Remark: We discussed in class the fact that
ATA=1 <« The columns of A are orthonormal.
The equivalence of ATA =T and AAT = I tells us that
The columns of A are orthonormal. <=  The rows of A are orthonormal.
You will never find an elementary proof of this fact. This is an example of the mysterious
influence between rows and columns of a matrix.]
Special Orthogonal Group. It is easy to show that the intersection of subgroups is a
subgroup. Since SL,(R) and O, (R) are both subgroups of GL,(R), and since
SO, (R) = SL,(R)NO,(R),
we conclude that SO, (R) is a subgroup of GL,(R).



3. Groups of Permutations. Let S35 be the set of all permutations of the set {1, 2,3}, i.e.,
all invertible functions

fA12,3F = {1,2,3}.

(a) List all 6 elements of the set. [I recommend using cycle notation.|

(b) We can think of (S3,0,id) as a group, where o is functional composition and id is the
identity function. Write out the full 6 x 6 group table.

(c) Let S, be the group of permutations of {1,2,...,n}. An element of S, is called a
transposition if it switches two elements of the set and sends every other element to
itself. We denote the transposition that switches i <» j by (ij) € S,,. Let A, C S, be
the subset of permutations that can be expressed as a composition of an even number
of transpositions. Prove that A, C S, is a subgroup.

(d) List all elements of the subgroup A3 C S3 and draw its group table.

(a) Here are the six permutations of {1,2,3} in word notation and cycle notation:

word notation | cycle notation
123 €
132 (23)
213 (12)
231 (123)
312 (132)
321 (13)

(b) Here is the group table:

e (12) (13) (23) (123) (132)
= (12) (13) (23) (123) (132)
(12) | (12) e (132) (123) (23) (13)
(13) | (13) (123) = (132) (12) (23)
(23) | (23) (132) (123) e (13) (12)

(123) | (123) (13) (23) (12) (132) «

(132) | (132) (23) (12) (13) e  (123)
(c) By the notation (i1,42,...,i;) € Sy, I mean the permutation that sends sends i; to ;41
for all 1 < j < k, sends i to i1, and sends every other element of {1,2,...,n} to itself. We

call this kind of permutation a k-cycle. [Example: Transpositions are 2-cycles.] The cycle

notation tells us that every element of S,, can be expressed as a composition of (commuting)

cycles. Thus we will be done if we can show that every cycle is a composition of transpositions.
Here is the proof:

(il,ig,. . .,ik) = (il,ig) o (ig,ig) 0---0 (ik717ik)'

[Example: The permutation f = 615432 in word notation can be expressed as f = (162)(35) =
(162) o (35) in cycle notation, hence we have f = (16) o (62) o (35).]

(d) Let A, C S, be the subset consisting of permutations which can be expressed as a
composition of an even number of transpositions. I claim that this is a subgroup. Proof.



e Closure. Suppose that f,g € A,. Then by definition we can write
f=s1080---0s5 and g=tiotyo---oty,
for some transpositions s; and t;, where k, ¢ are even numbers. But then
fog=s1080---08,0t;0tg0---0ty

is a composition of k + £ transpositions, where k£ + £ is an even number.

e Identity. By convention we will say that the identity & is a composition of zero
transpositions. Since zero is an even number this means that € € A,,. If you don’t buy
that, let t € S, be any transposition. Then we have

e=tot,

which is in A,, because 2 is an even number.
e Inverses. For any transposition t € S,, we have t> = tot = ¢ and hence t—! = ¢t. More
generally, if f =ty otg0--- 0t is any composition of transpositions then we have

Sl =trotg_10---otyoty.
It follows that f € A, implies f~! € A,. (]

[Jargon: The subgroup A, C S, is called the alternating subgroup of S,

(e) Note that (123) = (12) o (23) and (132) = (12) o (13) are both in As. It is a bit harder to
check that the elements (12), (13),(23) are not in As. Check. Let’s write ¢ = (123) so that
c? = ¢! = (132). Now assume for contradiction that (12) can be expressed as a composition
of evenly many transpositions:

(12) = (tl o} tQ) O---0 (tgkfl o) tgk).

But from the group table we see that any two transpositions compose to €, ¢ = (123) or
c¢~! = (132). This implies that (12) is a power of c¢. Contradiction. /// We conclude that

Az ={¢,(123),(132)}.
Here is the group table:

o ‘ € (123) (132)

£ e (123) (132)

(123) | (123) (132) ¢
(132) | (132) ¢  (123)

[Exercise: In general we have #A,, = n!/2. Later we will give a short proof which depends on
the identity det(AB) = det(A) det(B) for determinants.]



