Math 561/661 Fall 2021

Homework 5 Drew Armstrong
1. Bézout’s Identity for Vectors. Consider a vector of integers (a1, as,...,a,) € Z".
Since every common divisor of ay, ..., a, is bounded above by the maximum of |a;|, it follows

that there exists a unique positive GCD. Let’s call it d = ged(a1, as, . .., ay).

(a) Prove that there exist integers z1,...,z, € Z satisfying a1x; + - -+ + apx, = d. [Hint:
Consider the set S = {a1z1 + -+ anxy : x1,...,2, € Z} and let e be the smallest
positive element of this set. Since d divides each a; we have d|e and hence d < e. On
other hand, show that e is a common divisor of the a;, so that e < d. Idea: If the
remainder of e mod a; is nonzero then you can find a smaller positive element of S']

(b) Use part (a) to prove that

ged(ag, ..., an) = ged(ged(a, ..., an—1),an).
(c) We can turn part (b) into a recursive algorithm. Use this algorithm to find integers

x,y, z € Z satisfying 35x+21y+15z = 1. [Hint: First find 2,y such that ged(35,12) =
352" 4+ 21y’. Then find z”,y” such that ged(ged(35,21),15) = ged(35,21)x" + 153" ]

2. Generalized Chinese Remainder Theorem. Consider some positive integers nq, ..., ng
such that ged(n;,n;) = 1 for all ¢ # jﬂ If n = ny---ng then our goal is to show that the
following ring homomorphism is invertible, and to find its inverse:

@ Z/n7 — Z/Z X --- X L/ngZ
amodn +— (amodny,...,amod ng).

(a) For each i, define n; = ny ---n;_1ni41 - --ng. Prove that
ng(fll, ﬁg, ey ﬁk) = 1.
[Hint: Use induction on k. For 1 < i < k let 7; = ny---nj_1miy1---ng_1 so that
n; = nyng and assume for induction that ged(nq,...,nx—1) = 1. If some prime p

divides each 7, then it either divides ny or it divides each 7;, which is a contradiction.]
(b) It follows from Problem 1(a) that there exist some integers xy, ...,z € Z satisfying

T + Noxs + ... + Npxy = 1.

In this case prove that ¢~ '(ai,...,ax) = a1f1zy + - - - + apiprg mod n. [Hint: You
only need to show that ayniz1 + - - - + apngrr = a; mod n;.|

(¢) Use your answer from Problem 1(c) to find an expression for the ring homomorphism
0\ Z/37 x 757 x )77 — Z,/105Z.

3. Partial Fractions. Let R be a Euclidean domain with size function N : R\ {0} — N.
You can assume that the result of Problems 1 and 2 still hold in this context.

(a) Suppose that an element n € R has prime factorization n = p{'---pi* and write
n; = p;'. Show that there exist elements z1, ..., z; € R satisfying
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[Hint: n;/n = 1/n;.]

IThis is a stronger restriction than ged(na,...,ng) = 1. For example, ged(2,3,4) = 1 but ged(2,4) # 1.



(b) Continuing from part (a), prove that there exist elements m,r;; € R satisfying r;; = 0
or N(rij) < N(p;), such that
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[Hint: Consider a fraction of the form z/p¢. Divide x by p to obtain z = pq + r where
r =0 or N(r) < N(p). Then we have z/p® = r/p® + q/p*~ 1]

4. Conjugation of Complex Polynomials. For any polynomial f(z) = 3 apz® with
complex coefficients we define the conjugate polynomial by conjugating the coefficients:

ff(x) = Za,’gwk.

(a) For all f(x) € C[z] and « € C prove that

fla)=0 <= [f(a")=0.
(b) We can think of R[z] C C[z] as a subring. For all f(x) € C[z]| prove that

f@) = f(x) <= flz)eR[z]
(c) For all f(x),g(z) € C[z], prove that
(f+9)7 (@) = (@) +g°(x) and  (fg9)"(z) = [ (2)g" (2).
(d) For all f(z) € C[z], use parts (b) and (c) to show that
f(@)+ f*(z) € Rlz]  and f(x)f"(x) € Rlz].



